-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSuperVoxeler.h
179 lines (129 loc) · 5.24 KB
/
SuperVoxeler.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
#ifndef SUPERVOXELER_H
#define SUPERVOXELER_H
#include "Matrix3D.h"
#define fatalMsg(x) qFatal(x)
#include <slic/LKM.h>
#include <slic/mex/include/create_slicmap.hxx>
#include <slic/mex/include/find_neighbors.hxx>
#include <slic/mex/include/compute_histogram.hxx>
#undef fatalMsg
#ifdef _OPENMP
#include <omp.h>
#endif
/**
** Class to ease the task of computing and using supervoxels
* So far only works with T == unsigned char, for compatibility with supervoxel library
*/
template<typename T> // T is the input data type
class SuperVoxeler
{
public:
typedef unsigned int IDType; // supervoxel ID type
private:
bool mIsEmpty;
Matrix3D<IDType> mPixelToVoxel; // pixel to voxel ID 'table'
SlicMapType mVoxelToPixel; // voxel ID to pixel 'table'
std::vector< HistogramType > mHistograms; // one histogram per supervoxel
std::vector<float> mMean; // mean of a given svox
unsigned int mNumLabels; //number of supervoxels
public:
SuperVoxeler() { mIsEmpty = true; mNumLabels = 0; }
inline bool empty() { return mIsEmpty; }
unsigned int numLabels() const { return mNumLabels; }
// generic, needs no instantiation
static void rawGenSupervoxels( const Matrix3D<T> &img, int step, unsigned int cubeness, Matrix3D<IDType> *destination, unsigned int &_numLabels )
{
LKM* lkm = new LKM;
sidType** kLabels;
int numLabels;
lkm->DoSupervoxelSegmentationForGrayVolume(img.data(), img.width(), img.height(), img.depth(), kLabels, numLabels, step, cubeness);
//qDebug("Num elem: %u", img.numElem());
// now another waste.. copy labels back to a normal array
destination->realloc( img.width(), img.height(), img.depth() );
//qDebug("Size: %d %d %d", mPixelToVoxel.width(), mPixelToVoxel.height(), mPixelToVoxel.depth());
unsigned int sz = img.width() * img.height();
qDebug("Sz: %d", (int)sz);
for (unsigned int z=0; z < img.depth(); z++)
{
unsigned int zOff = z * sz;
memcpy( destination->data() + zOff, kLabels[z], sz*sizeof(unsigned int) );
}
// free kLabels
for (unsigned int z=0; z < img.depth(); z++)
delete[] kLabels[z];
delete[] kLabels;
delete lkm; // free lkm itself
_numLabels = numLabels;
}
void apply( const Matrix3D<T> &img, int step, unsigned int cubeness )
{
rawGenSupervoxels( img, step, cubeness, &mPixelToVoxel, mNumLabels );
qDebug("Num labels: %d", (int)mNumLabels);
/** Compute the inverse map **/
qDebug("Computing slic map");
createSlicMap( mPixelToVoxel, mNumLabels, mVoxelToPixel );
mIsEmpty = false;
}
// just saves volume, no other info
bool save( const std::string &fName ) const {
if (!mPixelToVoxel.save( fName ))
return false;
return true;
}
bool load( const std::string &fName ) {
if (!mPixelToVoxel.load( fName ))
return false;
mHistograms.clear();
mMean.clear();
// compute number of labels
mNumLabels = 0;
for (unsigned int i=0; i < mPixelToVoxel.numElem(); i++) {
if ( mPixelToVoxel.data()[i] > mNumLabels )
mNumLabels = mPixelToVoxel.data()[i];
}
mNumLabels++; // add 1 (zero-based index)
qDebug("Computing slic map");
createSlicMap( mPixelToVoxel, mNumLabels, mVoxelToPixel );
return true;
}
// computes the histogram and mean of every supervoxel
void computeSingleHistogramAndMean( const Matrix3D<T> &rawImg, HistogramOpts<T> hOpts )
{
mHistograms.resize( mNumLabels );
mMean.resize( mNumLabels );
#pragma omp parallel for schedule(dynamic)
for (unsigned int sIdx=0; sIdx < mNumLabels; sIdx++)
{
mMean[sIdx] = computeHistogram(
PixelInfoListValueIterator<T>::begin( rawImg.data(), mVoxelToPixel[sIdx] ),
PixelInfoListValueIterator<T>::end( rawImg.data(), mVoxelToPixel[sIdx] ),
mHistograms[sIdx], hOpts, false, true );
}
}
// warning, no range check!
inline const std::vector< HistogramType > &histograms() {
return mHistograms;
}
// warning: no range check
inline const std::vector<float> & means() {
return mMean;
}
#ifdef _OPENMP
static void rawGenSupervoxelsMultithread( const Matrix3D<T> &img, int step, unsigned int cubeness, Matrix3D<IDType> *destination, unsigned int &_numLabels )
{
const int numThreads = omp_get_num_threads();
qDebug("Using %d threads.", numThreads);
// splitting per dimension
const int dimSplit = 4;
const int numSubVol = dimSplit*dimSplit*dimSplit;
const int dimOverlap = step * 3;
qDebug("Dividing in %d subvolumes.", numSubVol);
unsigned int stepX = img.width() / dimSplit;
unsigned int stepY = img.height() / dimSplit;
unsigned int stepZ = img.depth() / dimSplit;
}
#endif
const Matrix3D<IDType> & pixelToVoxel() const { return mPixelToVoxel; }
const SlicMapType & voxelToPixel() const { return mVoxelToPixel; }
};
#endif // SUPERVOXELER_H