-
Notifications
You must be signed in to change notification settings - Fork 57
/
eval.py
74 lines (58 loc) · 3.71 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import argparse
import os
import time
import uuid
from backbone.base import Base as BackboneBase
from config.eval_config import EvalConfig as Config
from dataset.base import Base as DatasetBase
from evaluator import Evaluator
from logger import Logger as Log
from model import Model
from roi.pooler import Pooler
def _eval(path_to_checkpoint: str, dataset_name: str, backbone_name: str, path_to_data_dir: str, path_to_results_dir: str):
dataset = DatasetBase.from_name(dataset_name)(path_to_data_dir, DatasetBase.Mode.EVAL, Config.IMAGE_MIN_SIDE, Config.IMAGE_MAX_SIDE)
evaluator = Evaluator(dataset, path_to_data_dir, path_to_results_dir)
Log.i('Found {:d} samples'.format(len(dataset)))
backbone = BackboneBase.from_name(backbone_name)(pretrained=False)
model = Model(backbone, dataset.num_classes(), pooler_mode=Config.POOLER_MODE,
anchor_ratios=Config.ANCHOR_RATIOS, anchor_sizes=Config.ANCHOR_SIZES,
rpn_pre_nms_top_n=Config.RPN_PRE_NMS_TOP_N, rpn_post_nms_top_n=Config.RPN_POST_NMS_TOP_N).cuda()
model.load(path_to_checkpoint)
Log.i('Start evaluating with 1 GPU (1 batch per GPU)')
mean_ap, detail = evaluator.evaluate(model)
Log.i('Done')
Log.i('mean AP = {:.4f}'.format(mean_ap))
Log.i('\n' + detail)
if __name__ == '__main__':
def main():
parser = argparse.ArgumentParser()
parser.add_argument('-s', '--dataset', type=str, choices=DatasetBase.OPTIONS, required=True, help='name of dataset')
parser.add_argument('-b', '--backbone', type=str, choices=BackboneBase.OPTIONS, required=True, help='name of backbone model')
parser.add_argument('-d', '--data_dir', type=str, default='./data', help='path to data directory')
parser.add_argument('--image_min_side', type=float, help='default: {:g}'.format(Config.IMAGE_MIN_SIDE))
parser.add_argument('--image_max_side', type=float, help='default: {:g}'.format(Config.IMAGE_MAX_SIDE))
parser.add_argument('--anchor_ratios', type=str, help='default: "{!s}"'.format(Config.ANCHOR_RATIOS))
parser.add_argument('--anchor_sizes', type=str, help='default: "{!s}"'.format(Config.ANCHOR_SIZES))
parser.add_argument('--pooler_mode', type=str, choices=Pooler.OPTIONS, help='default: {.value:s}'.format(Config.POOLER_MODE))
parser.add_argument('--rpn_pre_nms_top_n', type=int, help='default: {:d}'.format(Config.RPN_PRE_NMS_TOP_N))
parser.add_argument('--rpn_post_nms_top_n', type=int, help='default: {:d}'.format(Config.RPN_POST_NMS_TOP_N))
parser.add_argument('checkpoint', type=str, help='path to evaluating checkpoint')
args = parser.parse_args()
path_to_checkpoint = args.checkpoint
dataset_name = args.dataset
backbone_name = args.backbone
path_to_data_dir = args.data_dir
path_to_results_dir = os.path.join(os.path.dirname(path_to_checkpoint), 'results-{:s}-{:s}-{:s}'.format(
time.strftime('%Y%m%d%H%M%S'), path_to_checkpoint.split(os.path.sep)[-1].split(os.path.curdir)[0],
str(uuid.uuid4()).split('-')[0]))
os.makedirs(path_to_results_dir)
Config.setup(image_min_side=args.image_min_side, image_max_side=args.image_max_side,
anchor_ratios=args.anchor_ratios, anchor_sizes=args.anchor_sizes, pooler_mode=args.pooler_mode,
rpn_pre_nms_top_n=args.rpn_pre_nms_top_n, rpn_post_nms_top_n=args.rpn_post_nms_top_n)
Log.initialize(os.path.join(path_to_results_dir, 'eval.log'))
Log.i('Arguments:')
for k, v in vars(args).items():
Log.i(f'\t{k} = {v}')
Log.i(Config.describe())
_eval(path_to_checkpoint, dataset_name, backbone_name, path_to_data_dir, path_to_results_dir)
main()