-
Notifications
You must be signed in to change notification settings - Fork 0
/
inference.py
167 lines (137 loc) · 7.29 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import torch
import time
import json
from pathlib import Path
from sentencepiece import SentencePieceProcessor
from tqdm import tqdm
from typing import Optional
from model import ModelArgs, Transformer
class LLaMA:
def __init__(self, model: Transformer, tokenizer: SentencePieceProcessor, model_args: ModelArgs):
self.model = model
self.tokenizer = tokenizer
self.args = model_args
@staticmethod
def build(checkpoints_dir: str, tokenizer_path: str, load_model: bool, max_seq_len: int, max_batch_size: int, device: str):
prev_time = time.time()
if load_model:
checkpoint_paths = sorted(Path(checkpoints_dir).glob("*.pth"))
assert len(checkpoint_paths) > 0, f"No checkpoint files found in the directory: {checkpoints_dir}"
ckpt_path = checkpoint_paths[0]
print(f"Loading Checkpoint from {ckpt_path} !!!")
checkpoint = torch.load(ckpt_path, map_location = 'cpu')
print(f"Loaded checkpoint in {time.time() - prev_time:.2f}s")
# loading the parameters
with open(Path(checkpoints_dir) / "params.json", 'r') as f:
params = json.loads(f.read())
# setting the model args required to estb the Transformer class
model_args: ModelArgs = ModelArgs(
max_seq_len = max_seq_len,
max_batch_size = max_batch_size,
device = device,
**params
)
# setup the tokenizer
tokenizer = SentencePieceProcessor()
tokenizer.load(tokenizer_path)
model_args.vocab_size = tokenizer.vocab_size()
# as per required by the Meta to set the default tensor type
if device == 'cuda':
torch.set_default_tensor_type(torch.cuda.HalfTensor)
else:
torch.set_default_tensor_type(torch.BFloat16Tensor)
# instantiate the Transformer architecture with model argus without loading the pretrained params
model = Transformer(model_args).to(device)
prev_time = time.time()
if load_model:
del checkpoint['rope.freqs'] # cause this particular key wasn't implemented in this scratch code
model.load_state_dict(checkpoint, strict = True) # strict means if any of the loaded checkpoint key doesn't match with architecture then it will raise an error / warning
print(f"Loaded state dictionary from checkpoint into the model in {time.time() - prev_time:.2f}")
return LLaMA(model, tokenizer, model_args)
def text_completion(self, prompts: list[str], temperature: float = 0.6, top_p: float = 0.9, max_gen_len: Optional[int] = None):
if max_gen_len is None:
max_gen_len = self.args.max_seq_len - 1
# Convert each prompt into tokens
prompt_tokens = [self.tokenizer.encode(prompt, out_type=int, add_bos=True, add_eos=False) for prompt in prompts]
# Make sure the batch size is not too large
batch_size = len(prompt_tokens)
assert batch_size <= self.args.max_batch_size, f"batch size must be less than or equal to {self.args.max_batch_size}"
max_prompt_len = max(len(prompt) for prompt in prompt_tokens)
# Make sure the prompt length is not larger than the maximum sequence length
assert max_prompt_len <= self.args.max_seq_len, f"prompt length must be less than or equal to {self.args.max_seq_len}"
total_len = min(self.args.max_seq_len, max_gen_len + max_prompt_len)
# Create the list that will contain the generated tokens, along with the initial prompt tokens
pad_id = self.tokenizer.pad_id()
tokens = torch.full((batch_size, total_len), pad_id, dtype=torch.long, device=device)
for k, t in enumerate(prompt_tokens):
# Populate the initial tokens with the prompt tokens
tokens[k, : len(t)] = torch.tensor(t, dtype=torch.long, device=device)
eos_reached = torch.tensor([False] * batch_size, device=device)
prompt_tokens_mask = tokens != pad_id # True if the token is a prompt token, False otherwise
cur_iterator = tqdm(range(1, total_len), desc="Generating tokens")
for cur_pos in cur_iterator:
with torch.no_grad():
logits = self.model.forward(tokens[:, cur_pos-1:cur_pos], cur_pos)
if temperature > 0:
# The temperature is applied before the softmax
probs = torch.softmax(logits[:, -1] / temperature, dim=-1)
next_token = self._sample_top_p(probs, top_p)
else:
# Greedily select the token with the max probability
next_token = torch.argmax(logits[:, -1], dim=-1)
next_token = next_token.reshape(-1)
# Only replace token if it is a padding token
next_token = torch.where(prompt_tokens_mask[:, cur_pos], tokens[:, cur_pos], next_token)
tokens[:, cur_pos] = next_token
# EOS is reached only if we found an EOS token for a padding position
eos_reached |= (~prompt_tokens_mask[:, cur_pos]) & (next_token == self.tokenizer.eos_id)
if all(eos_reached):
break
out_tokens = []
out_text = []
for prompt_index, current_prompt_tokens in enumerate(tokens.tolist()):
# Cut to the EOS token, if present
if self.tokenizer.eos_id in current_prompt_tokens:
eos_idx = current_prompt_tokens.index(self.tokenizer.eos_id)
current_prompt_tokens = current_prompt_tokens[:eos_idx]
out_tokens.append(current_prompt_tokens)
out_text.append(self.tokenizer.decode(current_prompt_tokens))
return (out_tokens, out_text)
def _sample_top_p(self, probs, p):
# (B, vocab_size)
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
# (B, vocab_size)
probs_sum = torch.cumsum(probs_sort, dim=-1)
# (B, vocab_size)
# (Substracting "probs_sort" shifts the cumulative sum by 1 position to the right before masking)
mask = probs_sum - probs_sort > p
# Zero out all the probabilities of tokens that are not selected by the Top P
probs_sort[mask] = 0.0
# Redistribute the probabilities so that they sum up to 1.
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
# Sample a token (its index) from the top p distribution
next_token = torch.multinomial(probs_sort, num_samples=1)
# Get the token position in the vocabulary corresponding to the sampled index
next_token = torch.gather(probs_idx, -1, next_token)
return next_token
if __name__ == '__main__':
torch.manual_seed(0)
allow_cuda = False
device = 'cuda' if torch.cuda.is_available() and allow_cuda else 'cpu'
prompts = [
'Explain the theory of relativity for a 5 year old.',
'Kathmandu is the capital city of '
]
model = LLaMA.build(
checkpoints_dir = 'llama-2-7b/',
tokenizer_path = 'tokenizer.model',
load_model = True,
max_seq_len = 1024,
max_batch_size = len(prompts),
device = device
)
out_tokens, out_texts = (model.text_completion(prompts, max_gen_len = 128))
assert len(out_texts) == len(prompts)
for i in range(len(out_texts)):
print(f'{out_texts[i]}')
print('-' * 50)