-
Notifications
You must be signed in to change notification settings - Fork 5
/
train_512K.sh
executable file
·179 lines (142 loc) · 4.87 KB
/
train_512K.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
#!/bin/bash -l
#SBATCH -J train_512K
#SBATCH -N 1
#SBATCH --output=slurm/%x-%j.out
#SBATCH --gres=gpu:8
#SBATCH --mem=400G
#SBATCH -c 32
# !!!! Load your own environment here !!!! #
# !!!! Load your own environment here !!!! #
# Fine-tune from this model
model=${MODEL:-meta-llama/Meta-Llama-3-8B-Instruct}
# Point to the base dir of the ProLong 512K data
dataset=${DATASET:-"datasets/long-context-524288"}
# Directories in the dataset root folder where @ is followed by the mixing proportion
domains=(
thestackv1_concat_by_repo-524288@0.15
thestackv1_concat_by_repo-65536@0.15
book-524288@0.05
book-65536@0.25
fineweb-edu@0.1
fineweb-2023-50@0.1
stackexchange@0.04
dolmawiki@0.04
tuluv2@0.03
arxiv@0.03
openwebmath@0.03
textbooks@0.03
)
domains_name=ProLong512KMix
bsz=${BSZ:-128} # * 512K (seq len) / 8 (seq parallel size) = 8M
seq=${SEQ:-1} # per-device batch size
lr=${LR:-5e-6}
steps=${STEPS:-2500}
save_steps=${SAVE:-125}
warmup=${WARMUP:-0.1}
suffix=${SUFFIX:-""} # for model saving name
run_name="lcft_$(basename $model)_$(basename $dataset)_${domains_name}_bsz${bsz}_steps${steps}_lr${lr}_warmup${warmup}${suffix}"
out_dir="checkpoints/$run_name"
if [ -z "$CUDA_VISIBLE_DEVICES" ]; then
num_gpus=$(nvidia-smi -L | wc -l)
else
num_gpus=$(jq -n "[$CUDA_VISIBLE_DEVICES] | length")
fi
num_gpus=${NUM_GPUS:-$num_gpus}
num_nodes=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | wc -l)
if [ $num_nodes == 0 ]; then
num_nodes=1
fi
num_nodes=${NUM_NODES:-$num_nodes}
# Gradient accumulation
accu=$(($bsz / $seq / $num_gpus / $num_nodes))
# [0] Disable
# [1] FULL_SHARD (shards optimizer states, gradients and parameters),
# [2] SHARD_GRAD_OP (shards optimizer states and gradients),
# [3] NO_SHARD (DDP),
# [4] HYBRID_SHARD (shards optimizer states, gradients and parameters within each node while each node has full copy),
# [5] HYBRID_SHARD_ZERO2 (shards optimizer states and gradients within each node while each node has full copy). For more information, please refer the official PyTorch docs.
fsdp=${FSDP:-"1"}
gc=${GC:-"1"}
export LOGIT_BLOCK_SIZE=2048 # Compute Llama logits in blocks of 2048 tokens
mkdir -p $out_dir
nvidia-smi
if [ $num_nodes -gt 1 ]; then
master_addr=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
master_addr=${MASTER_ADDR:-$master_addr}
# Launch via srun
header="srun torchrun \
--rdzv-backend=c10d \
--rdzv-endpoint=$master_addr:56321 \
--nnodes=$num_nodes \
--nproc-per-node=$num_gpus \
-m training.train_language_model"
else
master_port=$(comm -23 <(seq 49152 65535 | sort) <(ss -Htan | awk '{print $4}' | cut -d':' -f2 | sort -u) | shuf | head -n 1)
# Launch without srun
header="torchrun \
--rdzv-backend=c10d \
--rdzv-endpoint=localhost:$master_port \
--nnodes=1 \
--nproc-per-node=$num_gpus \
-m training.train_language_model"
fi
echo "slurm_nodelist=${SLURM_NODELIST} num_nodes=${num_nodes} master_addr=${master_addr} master_port=${master_port} num_gpus=${num_gpus}"
export OMP_NUM_THREADS=$num_gpus
export WANDB_PROJECT="prolong"
export WANDB_DIR=$out_dir
export WANDB_MODE="offline" # We turn off wandb online sync by default
export TOKENIZERS_PARALLELISM=true
base_arguments=(
--report_to wandb
--do_train
--model_name $model
--tokenizer_name $model
# Initialize model + optimizer state with ProLong64K (please follow the README for the correct setup)
--resume_from_checkpoint path/to/the/root/64K/checkpoint/folder
--run_name $run_name
--output_dir $out_dir
--config_overrides_json "$overrides"
--gradient_accumulation_steps $accu
--per_device_train_batch_size $seq
--per_device_eval_batch_size $seq
--bf16
--learning_rate $lr
--min_lr_ratio 0.1
--lr_scheduler_type cosine
--max_grad_norm 1.0
--adam_beta1 0.9
--adam_beta2 0.95
--weight_decay 0.1
--warmup_ratio $warmup
--optim adamw_torch
--logging_steps 1
--log_level info
--max_steps $steps
--save_steps $save_steps
--dataloader_num_workers 1
--disable_tqdm true
--use_fast_tokenizer false
--remove_unused_columns false
--ddp_find_unused_parameters false
--per_device_max_tokens 524288
# --torch_compile
--cuda_empty_cache
--config_overrides "rope_theta=128000000"
--seq_parallel_size 8
)
if [ $fsdp -ne 0 ]; then
export FSDP_SHARDING_STRATEGY=$fsdp
base_arguments+=( --fsdp "auto_wrap" )
# [1] FULL_STATE_DICT, [2] LOCAL_STATE_DICT, [3] SHARDED_STATE_DICT
export FSDP_STATE_DICT_TYPE="FULL_STATE_DICT"
fi
if [ $gc -ne 0 ]; then
base_arguments+=( --gradient_checkpointing )
fi
base_arguments+=( --tokenized_mds_train )
for domain in "${domains[@]}"; do
base_arguments+=( $dataset/$domain )
done
base_arguments+=( $@ )
echo command: "${header} ${base_arguments[@]}"
${header} "${base_arguments[@]}" 2>&1 | tee -a $out_dir/log.out