-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathcolorizator.py
62 lines (46 loc) · 2.42 KB
/
colorizator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import torch
from torchvision.transforms import ToTensor
import numpy as np
from networks.models import Colorizer
from denoising.denoiser import FFDNetDenoiser
from utils.utils import resize_pad
class MangaColorizator:
def __init__(self, device, generator_path = 'networks/generator.zip', extractor_path = 'networks/extractor.pth'):
self.colorizer = Colorizer().to(device)
self.colorizer.generator.load_state_dict(torch.load(generator_path, map_location = device))
self.colorizer = self.colorizer.eval()
self.denoiser = FFDNetDenoiser(device)
self.current_image = None
self.current_hint = None
self.current_pad = None
self.device = device
def set_image(self, image, size = 576, apply_denoise = True, denoise_sigma = 25, transform = ToTensor()):
if (size % 32 != 0):
raise RuntimeError("size is not divisible by 32")
if apply_denoise:
image = self.denoiser.get_denoised_image(image, sigma = denoise_sigma)
image, self.current_pad = resize_pad(image, size)
self.current_image = transform(image).unsqueeze(0).to(self.device)
self.current_hint = torch.zeros(1, 4, self.current_image.shape[2], self.current_image.shape[3]).float().to(self.device)
def update_hint(self, hint, mask):
'''
Args:
hint: numpy.ndarray with shape (self.current_image.shape[2], self.current_image.shape[3], 3)
mask: numpy.ndarray with shape (self.current_image.shape[2], self.current_image.shape[3])
'''
if issubclass(hint.dtype.type, np.integer):
hint = hint.astype('float32') / 255
hint = (hint - 0.5) / 0.5
hint = torch.FloatTensor(hint).permute(2, 0, 1)
mask = torch.FloatTensor(np.expand_dims(mask, 0))
self.current_hint = torch.cat([hint * mask, mask], 0).unsqueeze(0).to(self.device)
def colorize(self):
with torch.no_grad():
fake_color, _ = self.colorizer(torch.cat([self.current_image, self.current_hint], 1))
fake_color = fake_color.detach()
result = fake_color[0].detach().cpu().permute(1, 2, 0) * 0.5 + 0.5
if self.current_pad[0] != 0:
result = result[:-self.current_pad[0]]
if self.current_pad[1] != 0:
result = result[:, :-self.current_pad[1]]
return result.numpy()