-
Notifications
You must be signed in to change notification settings - Fork 3
/
2-4trees1.txt
877 lines (482 loc) · 7.94 KB
/
2-4trees1.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
(2,4) Trees
(2,4) Trees
9
2 5 7
10 14
Multi-Way Search Tree
2 6 8
11 24
15
27 32
30
2004 Goodrich, Tamassia
(2,4) Trees
1
2004 Goodrich, Tamassia
(2,4) Trees
2
Multi-Way Search Tree
A multi-way search tree is an ordered tree such
that
(cid:132) Each internal node has at least two children and
stores d 1 key-element items (ki, oi), where d is the
number of children
(cid:132) For a node with children v1 v2 ... vd storing keys
k1 k2 ... kd1:
(cid:138) keys in the subtree of v1 are less than k1
(cid:138) keys in the subtree of vi are between ki1 and ki (i = 2, ..., d-1)
(cid:138) keys in the subtree of vd are greater than kd1
(cid:132) The leaves store no items and serve as placeholders
Multi-Way Inorder Traversal
We can extend the notion of inorder traversal from binary trees
to multi-way search trees
Namely, we visit item (ki, oi) of node v between the recursive
traversals of the subtrees of v rooted at children vi and vi + 1
An inorder traversal of a multi-way search tree visits the keys in
increasing order
2004 Goodrich, Tamassia
(2,4) Trees
3
2004 Goodrich, Tamassia
(2,4) Trees
2 6 8
2
6
4
11 24
12
8
15
10
1
3
5
7
9
11
13
27 32
18
14
30
16
15
17
19
4
Multi-Way Searching
Multi-Way Searching
Searching for
30:
2 6 8
11 24
15
27 32
30
Searching for
30:
2 6 8
11 24
15
27 32
30
2004 Goodrich, Tamassia
(2,4) Trees
5
2004 Goodrich, Tamassia
(2,4) Trees
6
1
(2,4) Trees
Multi-Way Searching
Multi-Way Searching
Searching for
30:
2 6 8
11 24
15
27 32
30
Searching for
30:
2 6 8
11 24
15
27 32
30
2004 Goodrich, Tamassia
(2,4) Trees
7
2004 Goodrich, Tamassia
(2,4) Trees
8
Multi-Way Searching
(2,4) Trees
Similar to search in a binary search tree
A each internal node with children v1 v2 ... vd and keys
k1 k2 ... kd1
(cid:132) k = ki (i = 1, ..., d 1): the search terminates successfully
(cid:132) k < k1: we continue the search in child v1
(cid:132) ki1
(cid:132) k > kd1: we continue the search in child vd
Reaching an external node terminates the search
unsuccessfully
< k < ki (i = 2, ..., d 1): we continue the search in child vi
A (2,4) tree (also called 2-4 tree or 2-3-4 tree) is a
multi-way search with the following properties
(cid:132) Node-Size Property: every internal node has at most four
children
(cid:132) Depth Property: all the external nodes have the same depth
Depending on the number of children, an internal
node of a (2,4) tree is called a 2-node, 3-node or 4-
node
2004 Goodrich, Tamassia
(2,4) Trees
9
2004 Goodrich, Tamassia
(2,4) Trees
10
(2,4) Trees
Height of a (2,4) Tree
10 15 24
2 8
12
18
27 32
Theorem: A (2,4) tree storing n items has height O(log n)
Proof:
(cid:132) Let h be the height of a (2,4) tree with n items
(cid:132) As in proper binary trees, there are at least 2i items at
depth i: n 2h 1
(cid:132) Thus, h log (n + 1)
Searching in a (2,4) tree with n items takes O(log n) time
2004 Goodrich, Tamassia
(2,4) Trees
11
2004 Goodrich, Tamassia
(2,4) Trees
12
depth
items
0
1
h1
h
1
2
2h1
0
2
(2,4) Trees
Insertion
We insert a new item (k, o) at the parent v of the leaf reached by
searching for k
(cid:132) We preserve the depth property but
(cid:132) We may cause an overflow (i.e., node v may become a 5-node)
Example: inserting key 30 causes an overflow
10 15 24
v
2 8
12
18
27 32 35
10 15 24
v
2 8
12
18
27 30 32 35
Overflow and Split
We handle an overflow at a 5-node v with a split
operation:
(cid:132) let v1 ... v5 be the children of v and k1 ... k4 be the keys of v
(cid:132) node v is replaced by nodes v' and v"
(cid:138) v' is a 3-node with keys k1 k2 and children v1 v2 v3
(cid:138) v" is a 2-node with key k4 and children v4 v5
(cid:132) key k3 is inserted into the parent u of v (a new root may be
created)
The overflow may propagate to the parent node u
2004 Goodrich, Tamassia
(2,4) Trees
13
2004 Goodrich, Tamassia
(2,4) Trees
14
Overflow and Split
u
15 24
v
12
18
27 30 32 35
12
18
v1 v2 v3 v4 v5
u
15 24 32
v'
27 30
v"
35
v1
v2 v3
v4
v5
Analysis of Insertion
Let T be a (2,4) tree with n items
(cid:132) Tree T has O(log n) height
(cid:132) Finding insertion point takes O(log n) time
because we visit O(log n) nodes
(cid:132) Inserting the new entry takes O(1) time
(cid:132) Dealing with overflow takes O(log n) time
because each split takes O(1) time and we
perform O(log n) splits in the worst case.
Thus, an insertion in a (2,4) tree takes O(log n) time
2004 Goodrich, Tamassia
(2,4) Trees
15
2004 Goodrich, Tamassia
(2,4) Trees
16
Exercise
Starting with an empty (2,4) tree, insert
items with keys 1,2,3,4,5,6,7
Exercise
1
1 2
1 2 3
2004 Goodrich, Tamassia
(2,4) Trees
17
2004 Goodrich, Tamassia
(2,4) Trees
18
3
(2,4) Trees
Exercise
Exercise
1
1 2
1 2 3
1
1 2
1 2 3
inserting 4 causes a split:
1 2 3 4
3
3
inserting 4 causes a split:
1 2 3 4
3
3
1 2
4
1 2
4 5
1 2
4
1 2
4 5
2004 Goodrich, Tamassia
(2,4) Trees
19
2004 Goodrich, Tamassia
7 causes a split
(2,4) Trees
3
1 2
4 5 6
3 6
4 5
1 2
7
20
Deletion
We reduce deletion of an entry to the case where the item is at the
node with leaf children
Otherwise, we replace the entry with its inorder successor (or,
equivalently, with its inorder predecessor) and delete the latter entry
Example: to delete key 24, we replace it with 27 (inorder successor)
10 15 24
2 8
12
18
27 32 35
10 15 27
2 8
12
18
32 35
Underflow
Deleting an entry from a node v may cause an
underflow, where node v becomes a 1-node with one
child and no keys
u
9 14
2 5 7
w
10
v
2004 Goodrich, Tamassia
(2,4) Trees
21
2004 Goodrich, Tamassia
(2,4) Trees
22
Underflow and Fusion
To handle an underflow at node v with parent u, we
consider two cases
Case 1: the adjacent siblings of v are 2-nodes
(cid:132) Fusion operation: we merge v with an adjacent sibling w and
move an entry from u to the merged node v'
(cid:132) After a fusion, the underflow may propagate to the parent u
u
9 14
u
9
2 5 7
w
10
v
2 5 7
v'
10 14
2004 Goodrich, Tamassia
(2,4) Trees
23
2004 Goodrich, Tamassia
(2,4) Trees
Underflow and Transfer
Case 2: an adjacent sibling w of v is a 3-node or a 4-
node
(cid:132) Transfer operation:
1. we move a child of w to v
2. we move an item from u to v
3. we move an item from w to u
(cid:132) After a transfer, no underflow occurs
u
4 9
w
6 8
2
v
2
u
4 8
w
6
v
9
24
4
(2,4) Trees
Analysis of Deletion
Let T be a (2,4) tree with n items
(cid:132) Tree T has O(log n) height
In a deletion operation
(cid:132) We visit O(log n) nodes to locate the node from
which to delete the entry
(cid:132) We handle an underflow with a series of O(log n)
fusions, followed by at most one transfer
(cid:132) Each fusion and transfer takes O(1) time
Thus, deleting an item from a (2,4) tree takes
O(log n) time
Exercise delete 3,7
3 6
4 5
7
1 2
2004 Goodrich, Tamassia
(2,4) Trees
25
2004 Goodrich, Tamassia
(2,4) Trees
26
Exercise delete 3,7
delete 3:
replace by 4
3 6
4 5
4 6
5
7
7
1 2
1 2
Exercise delete 3,7
delete 3:
replace by 4
delete 7:
underflow
7
7
3 6
4 5
4 6
5
4 6
5
1 2
1 2
1 2
2004 Goodrich, Tamassia
(2,4) Trees
27
2004 Goodrich, Tamassia
(2,4) Trees
28
Exercise delete 3,7
3 6
4 5
4 6
5
4 6
5
1 2
1 2
1 2
delete 3:
replace by 4
delete 7:
underflow
7
7
fusion
4
1 2
5 6
Complexity comparison
Comparison of hash tables and (2,4) trees
Search
Insert
Delete
Notes
Hash
Table
(2,4)
Tree
1
1
1
expected
expected
expected
simple to implement
Requires allocating a
lot of memory in
advance
log n
worst-case
log n
worst-case
log n
worst-case
complex to implement
dynamic memory use
2004 Goodrich, Tamassia
(2,4) Trees
29
2004 Goodrich, Tamassia
(2,4) Trees
30
5