-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun_experiments_sequential.py
106 lines (86 loc) · 3.54 KB
/
run_experiments_sequential.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import argparse
import time
import logging
import sys
import os
import pickle
import numpy as np
import copy
from params import *
def run_experiments(args, save_dir):
os.environ['search_space'] = args.search_space
from nas_algorithms import run_nas_algorithm
from data import Data
trials = args.trials
out_file = args.output_filename
save_specs = args.save_specs
metann_params = meta_neuralnet_params(args.search_space)
algorithm_params = algo_params(args.algo_params)
num_algos = len(algorithm_params)
logging.info(algorithm_params)
# set up search space
mp = copy.deepcopy(metann_params)
ss = mp.pop('search_space')
dataset = mp.pop('dataset')
search_space = Data(ss, dataset=dataset)
for i in range(trials):
results = []
walltimes = []
run_data = []
for j in range(num_algos):
# run NAS algorithm
print('\n* Running algorithm: {}'.format(algorithm_params[j]))
starttime = time.time()
algo_result, run_datum = run_nas_algorithm(algorithm_params[j], search_space, mp)
algo_result = np.round(algo_result, 5)
# remove unnecessary dict entries that take up space
for d in run_datum:
if not save_specs:
d.pop('spec')
for key in ['encoding', 'adjacency', 'path', 'dist_to_min']:
if key in d:
d.pop(key)
# add walltime, results, run_data
walltimes.append(time.time()-starttime)
results.append(algo_result)
run_data.append(run_datum)
# print and pickle results
filename = os.path.join(save_dir, '{}_{}.pkl'.format(out_file, i))
print('\n* Trial summary: (params, results, walltimes)')
print(algorithm_params)
print(metann_params)
print(results)
print(walltimes)
print('\n* Saving to file {}'.format(filename))
with open(filename, 'wb') as f:
pickle.dump([algorithm_params, metann_params, results, walltimes, run_data], f)
f.close()
def main(args):
# make save directory
save_dir = args.save_dir
if not os.path.exists(save_dir):
os.mkdir(save_dir)
algo_params = args.algo_params
save_path = save_dir + '/' + algo_params + '/'
if not os.path.exists(save_path):
os.mkdir(save_path)
# set up logging
log_format = '%(asctime)s %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO,
format=log_format, datefmt='%m/%d %I:%M:%S %p')
fh = logging.FileHandler(os.path.join(save_dir, 'log.txt'))
fh.setFormatter(logging.Formatter(log_format))
logging.getLogger().addHandler(fh)
logging.info(args)
run_experiments(args, save_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Args for BANANAS experiments')
parser.add_argument('--trials', type=int, default=500, help='Number of trials')
parser.add_argument('--search_space', type=str, default='nasbench', \
help='nasbench or darts')
parser.add_argument('--algo_params', type=str, default='main_experiments', help='which parameters to use')
parser.add_argument('--output_filename', type=str, default='round', help='name of output files')
parser.add_argument('--save_dir', type=str, default='results_output', help='name of save directory')
parser.add_argument('--save_specs', type=bool, default=False, help='save the architecture specs')
args = parser.parse_args()
main(args)