forked from oliviaguest/pairwise_distance
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dask_version.py
56 lines (48 loc) · 1.77 KB
/
dask_version.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# This can probably prove very useful but since I have the other version working I will try it first.
import dask
import sklearn.datasets
import scipy.spatial.distance
import dask.array as da
import numpy as np
from time import time
# Generate some data:
# for i in range(100): # you can create huge arrays here and won't kill RAM
# because of how cool dask is!
for i in range(1):
N = 1000
centers = [[0, 0], [1, 0], [0.5, np.sqrt(0.75)]]
cluster_std = [0.3, 0.3, 0.3]
n_clusters = len(centers)
n_samples = int(0.75 * N)
data, labels_true = sklearn.datasets.make_blobs(n_samples=n_samples,
centers=centers, cluster_std=cluster_std)
centers = [[0.5, np.sqrt(0.75)]]
cluster_std = [0.3]
n_clusters = len(centers)
extra, labels_true = sklearn.datasets.make_blobs(n_samples=int(0.25 * N),
centers=centers, cluster_std=cluster_std)
try:
X = da.concatenate([X, da.from_array(np.concatenate(
(data, extra), axis=0), chunks=(1000, 2))], axis=0)
except NameError:
X = da.from_array(np.concatenate(
(data, extra), axis=0), chunks=(1000, 2))
N = X.shape[0]
del data, extra, labels_true
def distance(a, b):
""" Slow version of ``add`` to simulate work """
return np.sum(np.sqrt(np.sum((a - b)**2, axis=1)))
# Parallel:
t = time()
pairs = [dask.do(distance)(X[i:], X[:N - i]) for i in xrange(1, N)]
result = dask.do(sum)(pairs)
my_sum = result.compute()
print 'parallel:\t{} s'.format(time() - t)
# Serial:
Comment this out if you use a high N as it will eat RAM!
t = time()
Y = scipy.spatial.distance.pdist(X, 'euclidean')
print 'serial:\t\t{} s'.format(time() - t)
assert np.round(np.sum(Y)) == np.round(
my_sum) # There is minor rounding error after 8 decimal places.
print 'sum = {}'.format(my_sum)