-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBrainFTraceRecorder.cpp
244 lines (221 loc) · 7.74 KB
/
BrainFTraceRecorder.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
//===-- BrainFTraceRecorder.cpp - BrainF trace recorder ------------------==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===--------------------------------------------------------------------===//
//
// This class observes the execution trace of the interpreter, identifying
// hot traces and eventually compiling them to native code.
//
// The operation of the recorder can be divided into four parts:
// 1) Interation Counting - To identify hot traces, we track the execution
// counts of all loop headers ('[' instructions). We use a fixed-size
// array of counters for this, since lack of precision does not affect
// correctness.
//
// 2) Trace Buffering - Once a header has passed a hotness threshold, we
// begin buffering the execution trace beginning from that header the
// next time it is executed. This buffer is of a fixed length, though
// that choice can be tuned for performance. If the end of the buffer
// is reached without execution returning to the header, we throw out
// the trace.
//
// 3) Trace Commit - If the buffered trace returns to the header before
// the buffer limit is reached, that trace is commited to form a trace
// tree. This tree aggregates all execution traces that have been
// observed originating from the header since it passed the hotness
// threshold. The buffer is then cleared to allow a new trace to be
// recorded.
//
// 4) Trace Compilation - Once a secondary hotness threshold is reached,
// trace recording is terminated and the set of observed traces encoded
// in the trace tree are compiled to native code, and a function pointer
// to that trace is installed into the bytecode array in place of one of
// the normal opcode functions. Details of this compilation are in
// BrainFCodeGen.cpp
//===--------------------------------------------------------------------===//
#include "BrainF.h"
#include "BrainFVM.h"
#include "llvm/Support/raw_ostream.h"
#define ITERATION_BUF_SIZE 1024
#define TRACE_BUF_SIZE 128
#define TRACE_THRESHOLD 100
#define BACKEDGE_THRESHOLD 5
void BrainFTraceRecorder::BrainFTraceNode::dump(unsigned lvl) {
for (unsigned i = 0; i < lvl; ++i)
outs() << '.';
outs() << opcode << " : " << pc << "\n";
if (left && left != (BrainFTraceNode*)~0ULL) left->dump(lvl+1);
if (right && right != (BrainFTraceNode*)~0ULL) right->dump(lvl+1);
}
BrainFTraceRecorder::BrainFTraceRecorder()
: mode(MODE_PROFILING), iteration_count(new uint8_t[ITERATION_BUF_SIZE]),
trace_begin(new std::pair<uint8_t, size_t>[TRACE_BUF_SIZE]),
trace_end(trace_begin + TRACE_BUF_SIZE),
trace_tail(trace_begin),
module(new Module("BrainF", getGlobalContext())) {
memset(iteration_count, 0, ITERATION_BUF_SIZE);
memset(trace_begin, 0, sizeof(std::pair<uint8_t, size_t>) * TRACE_BUF_SIZE);
initialize_module();
}
BrainFTraceRecorder::~BrainFTraceRecorder() {
delete[] iteration_count;
delete[] trace_begin;
delete FPM;
delete EE;
}
void BrainFTraceRecorder::commit() {
BrainFTraceNode *&Head = trace_map[trace_begin->second];
if (!Head)
Head = new BrainFTraceNode(trace_begin->first, trace_begin->second, 0);
BrainFTraceNode *Parent = Head;
std::pair<uint8_t, size_t> *trace_iter = trace_begin+1;
unsigned depth = 0;
while (trace_iter != trace_tail) {
++depth;
BrainFTraceNode *Child = 0;
if (trace_iter->second == Parent->pc+1) {
if (Parent->left) Child = Parent->left;
else Child = Parent->left =
new BrainFTraceNode(trace_iter->first, trace_iter->second, depth);
} else {
if (Parent->right) Child = Parent->right;
else Child = Parent->right =
new BrainFTraceNode(trace_iter->first, trace_iter->second, depth);
}
Parent = Child;
++trace_iter;
}
if (Parent->pc+1 == Head->pc)
Parent->left = (BrainFTraceNode*)~0ULL;
else
Parent->right = (BrainFTraceNode*)~0ULL;
}
void BrainFTraceRecorder::commit_extension() {
BrainFTraceNode *Parent = extension_leaf;
unsigned depth = extension_leaf->depth;
std::pair<uint8_t, size_t> *trace_iter = trace_begin;
while (trace_iter != trace_tail) {
++depth;
BrainFTraceNode *Child = 0;
if (trace_iter->second == Parent->pc+1) {
if (Parent->left) Child = Parent->left;
else Child = Parent->left =
new BrainFTraceNode(trace_iter->first, trace_iter->second, depth);
} else {
if (Parent->right) Child = Parent->right;
else Child = Parent->right =
new BrainFTraceNode(trace_iter->first, trace_iter->second, depth);
}
Parent = Child;
++trace_iter;
}
if (Parent->pc+1 == extension_root->pc)
Parent->left = (BrainFTraceNode*)~0ULL;
else
Parent->right = (BrainFTraceNode*)~0ULL;
}
void
BrainFTraceRecorder::record_simple(size_t pc, uint8_t opcode, size_t next_pc) {
if (mode == MODE_RECORDING) {
if (opcode == ']' && next_pc != trace_begin->second) {
++backedge_count;
if (backedge_count > BACKEDGE_THRESHOLD) {
backedge_count = 0;
mode = MODE_PROFILING;
return;
}
}
if (trace_tail == trace_end) {
mode = MODE_PROFILING;
} else {
trace_tail->first = opcode;
trace_tail->second = pc;
++trace_tail;
if (next_pc == trace_begin->second) {
commit();
compile(trace_map[next_pc]);
mode = MODE_PROFILING;
}
}
} else if (mode == MODE_EXTENSION_BEGIN) {
if (blacklist.count(pc)) {
mode = MODE_PROFILING;
} else {
trace_tail = trace_begin;
backedge_count = 0;
mode = MODE_EXTENSION;
record_simple(pc, opcode, next_pc);
}
} else if (mode == MODE_EXTENSION) {
if (opcode == ']' && next_pc != extension_root->pc) {
++backedge_count;
if (backedge_count > BACKEDGE_THRESHOLD) {
blacklist.insert(trace_begin->second);
backedge_count = 0;
mode = MODE_PROFILING;
return;
}
}
if (trace_tail + extension_leaf->depth >= trace_end) {
mode = MODE_PROFILING;
} else {
trace_tail->first = opcode;
trace_tail->second = pc;
++trace_tail;
if (next_pc == extension_root->pc) {
commit_extension();
compile(extension_root);
mode = MODE_PROFILING;
}
}
}
}
void BrainFTraceRecorder::record(size_t pc, uint8_t opcode, size_t next_pc) {
if (mode == MODE_RECORDING) {
if (trace_tail == trace_end) {
mode = MODE_PROFILING;
record(pc, opcode, next_pc);
} else {
trace_tail->first = opcode;
trace_tail->second = pc;
++trace_tail;
if (next_pc == trace_begin->second) {
commit();
compile(trace_map[next_pc]);
mode = MODE_PROFILING;
}
}
} else if (mode == MODE_PROFILING){
size_t hash = pc % ITERATION_BUF_SIZE;
if (iteration_count[hash] == 255) iteration_count[hash] = 254;
if (++iteration_count[hash] > TRACE_THRESHOLD) {
trace_begin->first = opcode;
trace_begin->second = pc;
trace_tail = trace_begin+1;
backedge_count = 0;
mode = MODE_RECORDING;
}
} else if (mode == MODE_EXTENSION_BEGIN) {
trace_tail = trace_begin;
mode = MODE_EXTENSION;
record(pc, opcode, next_pc);
} else if (mode == MODE_EXTENSION) {
if (trace_tail + extension_leaf->depth >= trace_end) {
mode = MODE_PROFILING;
record(pc, opcode, next_pc);
} else {
trace_tail->first = opcode;
trace_tail->second = pc;
++trace_tail;
if (next_pc == extension_root->pc) {
commit_extension();
compile(extension_root);
mode = MODE_PROFILING;
}
}
}
}