forked from wcatykid/Graph-Based-Molecular-Synthesis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Instantiator.cpp
871 lines (736 loc) · 29.4 KB
/
Instantiator.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
/*
* This file is part of esynth.
*
* esynth is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* esynth is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with esynth. If not, see <http://www.gnu.org/licenses/>.
*/
#include <vector>
#include <queue>
#include <iostream>
#include <memory>
#include <time.h>
#include <pthread.h>
#include <map>
#include <algorithm>
#include "Molecule.h"
#include "Rigid.h"
#include "Linker.h"
#include "MoleculeHashHypergraph.h"
#include "EdgeAggregator.h"
#include "Instantiator.h"
#include "OBWriter.h"
#include "Utilities.h"
#include "IdFactory.h"
#include "Constants.h"
#include "OBWriter.h"
#include "Options.h"
#include "bloom_filter.hpp"
// 0 indicates we let the queue size be limitless.
const unsigned Instantiator::MAX_QUEUE_SIZES[22] = { 0, // Level 0
0, // 1
300, // 2
10, // 3
200, // 4
300, // 5
500, // 6
500, // 7
500, // 8
1000,// 9
1000,// 10
1000,// 11
1000,// 12
500, // 13
500, // 14
500, // 15
500, // 16
500, // 17
500, // 18
500, // 19
500, // 20
1 // 21
};
// The anticipated sizes of the level (at max). 0 indicates we are not using a Bloom filter.
const unsigned long long Instantiator::LEVEL_SIZES[22] = { 0, // Level 0
0, // 1
500, // 2
10000, // 3
300000, // 4
1000000, // 5
5000000, // 6
15000000,// 7
30000000,// 8
30000000,// 9
30000000,// 10
15000000,// 11
5000000, // 12
2500000, // 13
1000000, // 14
500000, // 15
100000, // 16
50000, // 17
25000, // 18
10000, // 19
5000, // 20
1000 // 21
};
Instantiator::Instantiator(OBWriter*const obWriter, std::ostream& out) : writer(obWriter),
ds(out),
excluded(0),
overallMoleculeCount(0)
{
graph = new MoleculeHashHypergraph(HIERARCHICAL_LEVEL_BOUND + 1);
// The hypergraph lock
pthread_mutex_init(&graph_lock, NULL);
// The threads and locks for the producer-consumer containers.
level_queues = new std::queue<Molecule*>[HIERARCHICAL_LEVEL_BOUND + 1];
moleculeLevelCount = new int[HIERARCHICAL_LEVEL_BOUND + 1];
// Create the bloom filters
if (Options::THREADED)
{
queue_locks = new pthread_mutex_t[HIERARCHICAL_LEVEL_BOUND + 1];
queue_threads = new pthread_t[HIERARCHICAL_LEVEL_BOUND + 1];
completed_level = new bool[HIERARCHICAL_LEVEL_BOUND + 1];
arg_pointer = new Instantiator_ProcessLevel_Thread_Args[HIERARCHICAL_LEVEL_BOUND + 1];
}
for (int m = 1; m <= HIERARCHICAL_LEVEL_BOUND; m++)
{
if (Options::THREADED)
{
// Initialize those container locks.
pthread_mutex_init(&queue_locks[m], NULL);
// Initialize the fact that we have not computed this level.
completed_level[m] = false;
// set up arg structs
arg_pointer[m].m = m;
arg_pointer[m].graph = graph;
arg_pointer[m].this_pointer = this;
}
// We have create 0 molecules at this level, thus far.
moleculeLevelCount[m] = 0;
}
InitOverallFilter();
InitLevelFilters();
}
//
// Initialize the Bloom filter among all levels
//
void Instantiator::InitOverallFilter()
{
bloom_parameters parameters;
// How many elements roughly do we expect to insert?
// Count the approximated level sizes
unsigned long long approx_count = 0;
for (int m = 0; m <= HIERARCHICAL_LEVEL_BOUND + 1; m++)
{
approx_count += LEVEL_SIZES[m];
}
parameters.projected_element_count = approx_count;
// Maximum tolerable false positive probability? (0,1)
parameters.false_positive_probability = 0.01; // 1%
// Simple randomizer (optional)
parameters.random_seed = 0xA5A5A5A5;
if (!parameters)
{
std::cerr << "Error - Invalid set of bloom filter parameters!" << std::endl;
return;
}
parameters.compute_optimal_parameters();
// Create the Bloom filter.
overall_filter = new bloom_filter(parameters);
}
//
// Initialize the Bloom filter at each level
//
void Instantiator::InitLevelFilters()
{
bloom_parameters parameters;
// Maximum tolerable false positive probability? (0,1)
parameters.false_positive_probability = 0.001; // 1%
// Simple randomizer (optional)
parameters.random_seed = 0x5A5A5A5A;
if (!parameters)
{
std::cerr << "Error - Invalid set of bloom filter parameters!" << std::endl;
}
//
// Create the level filters
//
for (int m = 0; m <= HIERARCHICAL_LEVEL_BOUND + 1; m++)
{
if (LEVEL_SIZES[m] == 0)
{
filters.push_back(0);
}
else
{
// How many elements roughly do we expect to insert?
parameters.projected_element_count = LEVEL_SIZES[m];
parameters.compute_optimal_parameters();
filters.push_back(new bloom_filter(parameters));
}
}
}
//
// Add the hyperedge to the hypergraph
//
void Instantiator::AddEdge(const std::vector<unsigned int>& antecedent,
unsigned int consequent,
EdgeAnnotationT* const annotation)
{
/*
pthread_mutex_lock(&graph_lock);
graph->addEdge(antecedent, consequent, annotation);
pthread_mutex_unlock(&graph_lock);
*/
}
//
// Add the hypernode to the hypergraph; success or failure is returned.
//
std::pair<unsigned int, bool> Instantiator::AddNode(MinimalMolecule* const mol, unsigned int sz)
{
// We don't need to lock around the hypergraph since additions are level-based.
// And each thread works on its own level.
std::pair<int, bool> ret = graph->addNode(mol, sz);
return ret;
}
//
// We first construct the base case of 2-Molecules.
// Then, we inductively start constructing 3-Molecules, 4-Molecules, etc.
//
#ifdef ZERO
MoleculeHashHypergraph* Instantiator::SerialInstantiate(std::vector<Linker*>& linkers,
std::vector<Rigid*>& rigids)
{
//
// Synthesizes level 2 molecules using SMI comparison.
//
InitializeSynthesis(linkers, rigids);
// Indicate size of 1-M lists
moleculeLevelCount[1] = baseMolecules.size();
//
// One level at a time:
// (a) Take the previous level molecules
// (b) Compose with the base molecules
// (c) Add those molecules to the next level queue
// (d) Kill the previous level's molecules
//
for (int level = 2; level < HIERARCHICAL_LEVEL_BOUND; level++)
{
// Zip the smi file.
//if (level == Options::SMI_LEVEL_BOUND + 1) writer->IndicateSMIwritingComplete();
// Track the number of molecules at this level
moleculeLevelCount[level] = level_queues[level].size();
std::cerr << "Level " << level << " has " << moleculeLevelCount[level]
<< " molecules to process." << std::endl;
int counter = 1;
while(!level_queues[level].empty())
{
// Take a molecule from the in queue.
Molecule* currentMol = level_queues[level].front();
level_queues[level].pop();
if (++counter % 500 == 0)
{
std::cerr << "Processing molecule " << counter
<< " of " << moleculeLevelCount[level]
<< " at level " << level << std::endl;
}
SynthesizeWithMolecule(currentMol, level);
// Delete the current molecule; it has been processed completely.
// Eliminate this code if we wish to kill an entire level, not molecule by molecule
delete currentMol;
}
// Kill this level in the hypergraph
graph->killLevel(level);
// The Bloom Filter is no longer needed at this level.
delete filters[level];
filters[level] = 0;
}
std::cout << "Level\t" << "# Molecules" << std::endl;
for (int m = 1; m <= HIERARCHICAL_LEVEL_BOUND; m++)
{
std::cout << m << "\t" << moleculeLevelCount[m] << std::endl;
}
// Tell the output engine we have completed synthesis.
// This function then spins until the thread pool is complete.
this->writer->IndicateSynthesisComplete();
return graph;
}
#endif
//
// We first construct the base case of 2-Molecules.
// Then, we inductively start constructing 3-Molecules, 4-Molecules, etc.
//
MoleculeHashHypergraph* Instantiator::SerialInstantiate(std::vector<Linker*>& linkers,
std::vector<Rigid*>& rigids)
{
//
// Synthesizes level 2 molecules using SMI comparison.
//
InitializeSynthesis(linkers, rigids);
// Indicate size of 1-M lists
moleculeLevelCount[1] = baseMolecules.size();
//
// Using the level 2 molecules as a base case, process indicating non-completion.
//
unsigned molsProcessed = 0;
while (!level_queues[2].empty())
{
SerialInstantiateHelper(2, molsProcessed);
}
//
// Kill all levels
//
for (int m = 2; m <= HIERARCHICAL_LEVEL_BOUND; m++)
{
// Kill this level in the hypergraph
graph->killLevel(m);
// The Bloom Filter is no longer needed at this level.
delete filters[m];
filters[m] = 0;
}
std::cout << "Level\t" << "# Molecules" << std::endl;
for (int m = 1; m <= HIERARCHICAL_LEVEL_BOUND; m++)
{
std::cout << m << "\t" << moleculeLevelCount[m] << std::endl;
}
// Tell the output engine we have completed synthesis.
// This function then spins until the thread pool is complete.
this->writer->IndicateSynthesisComplete();
return graph;
}
//
// Given the current level, generate molecules in (level + 1) up to the capacity specified.
// When the capacity is exceeded, call this function recursively to process (level + 1)
// ...inductive completion.
//
void Instantiator::SerialInstantiateHelper(int level, unsigned& processedMols)
{
std::cerr << "Processing level " << level << std::endl;
//
// We max out at a specific level
//
if (level >= HIERARCHICAL_LEVEL_BOUND)
{
// Kill the contents of the queue
while (!level_queues[level].empty())
{
Molecule* currentMol = level_queues[level].front();
level_queues[level].pop();
delete currentMol;
}
// Leave; no need to process.
return;
}
//
// Completely process all molecules in this level into level + 1
//
while (!level_queues[level].empty())
{
//
// Adhere to capacities specified for each level
//
while (MAX_QUEUE_SIZES[level + 1] == 0 || level_queues[level + 1].size() < MAX_QUEUE_SIZES[level + 1])
{
//
// Take a molecule from this level queue.
//
Molecule* currentMol = level_queues[level].front();
level_queues[level].pop();
moleculeLevelCount[level]++;
if (++processedMols % 1000 == 0 || level <= 6)
{
std::cerr << "Processing molecule " << moleculeLevelCount[level]
<< " at level " << level
<< " queue contains (" << level_queues[level].size()
<< "); Overall Processed Count: "
<< processedMols << std::endl;
}
// Dump the processed histogram of molecules
if (processedMols % 1000000 == 0)
{
std::cerr << "Level\t" << "# Molecules" << std::endl;
for (int m = 2; m <= HIERARCHICAL_LEVEL_BOUND; m++)
{
std::cerr << m << "\t" << moleculeLevelCount[m] << std::endl;
}
}
SynthesizeWithMolecule(currentMol, level);
// Delete the current molecule; it has been processed completely.
// Eliminate this code if we wish to kill an entire level, not molecule by molecule
delete currentMol;
// If nothing left to process at this level, quit and go to next levels above.
if (level_queues[level].empty()) break;
}
//
// Recursively process (level + 1)
//
SerialInstantiateHelper(level + 1, processedMols);
}
}
//
// Creates the 2-molecules and initializes the fragments.
//
void Instantiator::InitializeSynthesis(std::vector<Linker*>& linkers,
std::vector<Rigid*>& rigids)
{
this->writer->IndicateSynthesisStarted();
InitializeBaseMolecules(rigids, linkers, baseMolecules);
// Add all the base molecules to the hypergraph
foreach_molecules(m_it, baseMolecules)
{
graph->addNode((*m_it)->ConstructMinimalMolecule(), 1);
}
//
// Construct the set of 2-Molecules from the rigids and linkers.
//
for (int m1 = 0; m1 < baseMolecules.size(); m1++)
{
for (int m2 = m1; m2 < baseMolecules.size(); m2++)
{
std::vector<EdgeAggregator*>* newEdges =
baseMolecules[m1]->Compose(*baseMolecules[m2]);
HandleNewMolecules(level_queues[2], &queue_locks[2], filters[2], newEdges);
}
}
std::cerr << "Done creating level 2" << std::endl;
}
//
// Add all new deduced clauses to the worklist if they have not been deduced before.
// If the given clause has been deduced before, update the hyperedges that were generated
// previously
//
// Forward Instantiation does not permit any cycles in the resultant graph.
//
void Instantiator::HandleNewMolecules(std::queue<Molecule*>& worklist,
pthread_mutex_t* worklist_lock,
bloom_filter* const levelFilter,
std::vector<EdgeAggregator*>* newEdges)
{
// Consider adding only if there are, in fact, new molecules
if (newEdges->empty())
{
delete newEdges;
return;
}
//
// Since all molecules we have deduced are of the same size (using a level-based
// construction), the size of the molecules are the same (equal num fragments)
//
unsigned level = (*newEdges->begin())->consequent->size();
//
// Add all molecules to the hypergraph
//
for (std::vector<EdgeAggregator*>:: const_iterator e_it = newEdges->begin();
e_it != newEdges->end();
e_it++)
{
// Did we generate this molecule previously? Or probability removal?
bool killMolecule = false;
// SMI for this molecule
std::string smi = (*e_it)->consequent->ConstructSMI();
// Add the consequent node to the graph directly.
// std::pair<unsigned int, bool> addedResult = AddNode(minMol, level);
// If we are validating the original molecule, check
//if (VALIDATE) Validate();
//
// Check the memory-less dictionary for this level
//
static unsigned prob_excluded = 0;
static unsigned overall_filtered = 0;
if (levelFilter->contains(smi))
{
killMolecule = true;
}
//
// Check the filter that applies to ALL molecules
//
else if (overall_filter->contains(smi))
{
killMolecule = true;
if (++overall_filtered % 100 == 0)
{
std::cerr << "Overall filtered: " << overall_filtered << std::endl;
}
}
//
// Do we prune with probabilities?
//
else if (level >= Options::PROBABILITY_PRUNE_LEVEL_START)
{
if (Molecule::ProbabilisticExclusion((*e_it)->consequent))
{
killMolecule = true;
if (++prob_excluded % 1000 == 0)
{
std::cerr << "Probability excluding molecule: " << prob_excluded
<< " (" << 100 * float(prob_excluded) / (overallMoleculeCount + prob_excluded)
<< "\%)" << std::endl;
}
}
}
//
// EXCLUDE
//
if (killMolecule)
{
delete (*e_it)->consequent;
}
//
// INCLUDE
//
else
{
overallMoleculeCount++;
// Add to the level bloom filters
levelFilter->insert(smi);
// Add to the overall bloom filter
overall_filter->insert(smi);
// Validation does not require output
if (!VALIDATE) this->writer->OutputMoleculeAppendExternalSMI(smi);
if (Options::THREADED) pthread_mutex_lock(worklist_lock);
worklist.push((*e_it)->consequent);
if (Options::THREADED) pthread_mutex_unlock(worklist_lock);
}
// Add the actual edge
// AddEdge((*e_it)->antecedent, addedResult.first, (*e_it)->annotation);
// We are done with this edge structure; delete it.
delete (*e_it);
}
// Kill the edge list itself.
delete newEdges;
}
//
// On the fly validation of molecules synthesized;
// Exits if the validation molecule was generated.
//
void Instantiator::Validate(const std::string& syn_smi) const
{
// Convert
if (syn_smi != validation_smi) return;
std::cerr << "The give molecule has been synthesized: " << std::endl;
std::cerr << "Validation: |" << validation_smi << "|" << std::endl;
std::cerr << "Synthesized: |" << syn_smi << "|" << std::endl;
std::cerr << "Exiting..." << std::endl;
exit(0);
}
//
// Initialize the linkers and rigids as required; the baseMolecules list will then be
// used as a reference container throughout synthesis.
//
void Instantiator::InitializeBaseMolecules(const std::vector<Rigid*>& rigids,
const std::vector<Linker*>& linkers,
std::vector<Molecule*>& baseMolecules)
{
// Clear the list just in case.
baseMolecules.clear();
// Assign the linkers and rigids unique ids; these correspond EXACTLY to the indices of
// the containers used for determing molecular (non)-isomorphism.
foreach_rigids(r_it, rigids)
{
(*r_it)->setUniqueIndexID(moleculeIDFactory.getNextId());
baseMolecules.push_back(*r_it);
}
foreach_linkers(l_it, linkers)
{
(*l_it)->setUniqueIndexID(moleculeIDFactory.getNextId());
baseMolecules.push_back(*l_it);
}
// The set of base molecules is static in the synthesis process; therefore,
// we set the (static) reference base set of molecules in the Molecule class
// so the corresponding molecular fingerprint graph can be constructed and compared.
Molecule::SetBaseMoleculeInfo(baseMolecules, rigids.size(), linkers.size());
// Each molecule will contain a reference count of the number of each specific
// linker / rigid in the particular molecule.
foreach_molecules(m_it, baseMolecules)
{
(*m_it)->initFragmentDevices();
(*m_it)->initGraphRepresentation();
}
}
//
// Takes a single molecule and composes it with the base molecules to create the next level
// molecule.
//
void Instantiator::SynthesizeWithMolecule(const Molecule* const currentMol, int level)
{
//
// Compose with all of the base molecules
//
for (int m = 0; m < baseMolecules.size(); m++)
{
std::vector<EdgeAggregator*>* newEdges = currentMol->Compose(*baseMolecules[m]);
//
// Add the molecule to the next level queue; this depends on the level
//
HandleNewMolecules(level_queues[level + 1], 0, filters[level + 1], newEdges);
}
}
//
//void Instantiator::ProcessLevel(std::vector<Molecule*>& baseMols,
// std::queue<Molecule*>& inSet,
// std::queue<Molecule*>& outSet,
// pthread_mutex_t& in_lock,
// pthread_mutex_t& out_lock,
// bool* previousLevelComplete,
// bool* thisLevelComplete)
//
void *ProcessLevel(void *ptr_void)
{
// unpacking arguments structure into mutiple local pointers
Instantiator_ProcessLevel_Thread_Args * args = (Instantiator_ProcessLevel_Thread_Args *)ptr_void;
int m = args->m; // level number
Instantiator * This=(Instantiator *)args->this_pointer; // this pointer of calling class (Instantiator)
//
// recast variables for local use (from the spawned thread record we were passed)
//
std::vector<Molecule*> *baseMols = &(This->baseMolecules);
std::queue<Molecule*> *inSet = &(This->level_queues[m-1]);
std::queue<Molecule*> *outSet = &(This->level_queues[m]);
pthread_mutex_t *in_lock = &(This->queue_locks[m-1]);
pthread_mutex_t *out_lock = &(This->queue_locks[m]);
bool* previousLevelComplete = &(This->completed_level[m-1]);
bool* thisLevelComplete = &(This->completed_level[m]);
//
// A structure for sleeping for 0.1 seconds
//
struct timespec sleepTime;
struct timespec remTime; // Remaining time
sleepTime.tv_sec = 0;
sleepTime.tv_nsec = 100000000L; // 0.1 seconds
//
// Keep consuming molecules as long as the previous level is incomplete or this
// level queue contains molecules to process.
//
while (!(*previousLevelComplete) || !inSet->empty())
{
//
// Nothing to process, currently, but the level is incomplete.
//
if (inSet->empty())
{
nanosleep(&sleepTime, &remTime);
}
else
{
//
// If a greater level has elements in their queue, pause this thread for
// a while.
// Anything over level 13 should fly through.
//
bool process = false;
if (m >= 13) process = true;
else if (This->level_queues[m].size() < Instantiator::MAX_QUEUE_SIZES[m])
{
process = true;
}
//
// Process a molecule in the queue
//
if (!process)
{
sleep(5);
}
else if (process)
{
//
// Acquire a molecule to process.
//
pthread_mutex_lock(in_lock);
Molecule* molToProcess = inSet->front();
inSet->pop();
pthread_mutex_unlock(in_lock);
This->moleculeLevelCount[m-1]++;
This->overallMoleculeCount++;
if (This->overallMoleculeCount % 500 == 0 || m <= 6)
{
std::cout << "Took molecule "
<< This->moleculeLevelCount[m - 1]
<< " off level " << m-1 << "; queue contains ("
<< inSet->size() << "); Overall Count: "
<< This->overallMoleculeCount << std::endl;
}
//
// Process the molecule by composing it with all the base molecules.
//
int level = m - 1;
for (int mol = 0; mol < Molecule::baseMolecules.size(); mol++)
{
std::vector<EdgeAggregator*>* newEdges =
molToProcess->Compose(*Molecule::baseMolecules[mol]);
//
// Add the molecule to the next level queue; this depends on the level
//
This->HandleNewMolecules(This->level_queues[level + 1],
&This->queue_locks[level + 1],
This->filters[level + 1],
newEdges);
}
// We have successfully processed this molecule;
// kill unneeded items in the molecule class.
// Elements will persist in the MinimalMolecule representation
// in the hypergraph.
delete molToProcess;
}
}
}
// Indicate this level is complete.
*thisLevelComplete = true;
// Zip the smi file.
//if (m == Options::SMI_LEVEL_BOUND + 1) This->writer->IndicateSMIwritingComplete();
// We are done with this level so kill all references to it in the hypergraph.
std::cerr << "Killing level " << (m - 1) << std::endl;
if (m > 2) args->graph->killLevel(m-1);
std::cerr << "Level " << (m-1) << " created "
<< This->moleculeLevelCount[m-1] << " molecules." << std::endl;
std::cerr << "Level " << m << " complete." << std::endl;
}
//
// Threaded construction of the hypergraph using a hierarchical list of threads and containers.
// We first construct the base case of 2-Molecules.
// Then, we inductively start constructing 3-Molecules, 4-Molecules, etc.
//
MoleculeHashHypergraph* Instantiator::ThreadedInstantiate(std::vector<Linker*>& linkers,
std::vector<Rigid*>& rigids)
{
InitializeSynthesis(linkers, rigids);
// 1-Molecules and 2-Molecules have been processed.
completed_level[0] = true;
completed_level[1] = true;
completed_level[2] = true;
// Indicate size of 1-M and 2-M lists
moleculeLevelCount[1] = baseMolecules.size();
//
// For each level, start a thread and compose the elements with the base set of molecules.
//
for (int m = 3; m <= HIERARCHICAL_LEVEL_BOUND; m++)
{
if (~pthread_create(&queue_threads[m], NULL, ProcessLevel, (void*)&arg_pointer[m]))
{if (g_debug_output) {std::cout << "Level " << m << " thread created" << std::endl;}}
else
{if (g_debug_output) {std::cout << "Level " << m << " creation failed" << std::endl;}}
}
for (int m = 3; m <= HIERARCHICAL_LEVEL_BOUND; m++)
{
(void) pthread_join(queue_threads[m], NULL);
if (g_debug_output) std::cout << "Level " << m << " thread removed" << std::endl;
}
std::cout << "Level\t" << "# Molecules" << std::endl;
for (int m = 1; m <= HIERARCHICAL_LEVEL_BOUND; m++)
{
std::cout << m << "\t" << moleculeLevelCount[m] << std::endl;
}
// Tell the output engine we have completed synthesis.
// This function then spins until the thread pool is complete.
this->writer->IndicateSynthesisComplete();
return graph;
}