This repository has been archived by the owner on May 7, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathevaluate.py
147 lines (118 loc) · 5.6 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import json
import h5py
def find_accuracy(model_predictions, conf_thresh, actual_labels=None,
num_mon_sites=None, num_mon_inst_test=None,
num_unmon_sites_test=None, num_unmon_sites=None):
"""Compute TPR and FPR based on softmax output predictions."""
# Calculates output classes (classes with the highest probability)
actual_labels = np.argmax(actual_labels, axis=1)
# Changes predictions according to confidence threshold
thresh_model_labels = np.zeros(len(model_predictions))
for inst_num, softmax in enumerate(model_predictions):
predicted_class = np.argmax(softmax)
if predicted_class < num_mon_sites and \
softmax[predicted_class] < conf_thresh:
thresh_model_labels[inst_num] = num_mon_sites
else:
thresh_model_labels[inst_num] = predicted_class
# Computes TPR and FPR
two_class_true_pos = 0 # Mon correctly classified as any mon site
multi_class_true_pos = 0 # Mon correctly classified as specific mon site
false_pos = 0 # Unmon incorrectly classified as mon site
for inst_num, inst_label in enumerate(actual_labels):
if inst_label == num_mon_sites: # Supposed to be unmon site
if thresh_model_labels[inst_num] < num_mon_sites:
false_pos += 1
else: # Supposed to be mon site
if thresh_model_labels[inst_num] < num_mon_sites:
two_class_true_pos += 1
if thresh_model_labels[inst_num] == inst_label:
multi_class_true_pos += 1
two_class_tpr = two_class_true_pos / \
(num_mon_sites * num_mon_inst_test) * 100
two_class_tpr = '%.2f' % two_class_tpr + '%'
multi_class_tpr = multi_class_true_pos / \
(num_mon_sites * num_mon_inst_test) * 100
multi_class_tpr = '%.2f' % multi_class_tpr + '%'
if num_unmon_sites == 0: # closed-world
fpr = '0.00%'
else:
fpr = false_pos / num_unmon_sites_test * 100
fpr = '%.2f' % fpr + '%'
return two_class_tpr, multi_class_tpr, fpr
def log_cw(results, sub_model_name, softmax, **parameters):
print('%s model:' % sub_model_name)
two_class_tpr, multi_class_tpr, fpr = find_accuracy(
softmax, 0., **parameters)
print('\t accuracy: %s' % multi_class_tpr)
results['%s_acc' % sub_model_name] = multi_class_tpr
def log_ow(results, sub_model_name, softmax, **parameters):
print('%s model:' % sub_model_name)
for conf_thresh in np.arange(0, 1.01, 0.1):
two_class_tpr, multi_class_tpr, fpr = find_accuracy(
softmax, conf_thresh, **parameters)
print('\t conf: %f' % conf_thresh)
print('\t \t two-class TPR: %s' % two_class_tpr)
print('\t \t multi-class TPR: %s' % multi_class_tpr)
print('\t \t FPR: %s' % fpr)
prefix = '%s_%f' % (sub_model_name, conf_thresh)
results['%s_two_TPR' % prefix] = two_class_tpr
results['%s_multi_TPR' % prefix] = multi_class_tpr
results['%s_FPR' % prefix] = fpr
def log_setting(setting, predictions, results, **parameters):
print(setting + '-world results')
for sub_model_name, softmax in predictions.items():
if setting == 'closed':
log_cw(results, sub_model_name, softmax, **parameters)
elif setting == 'open':
log_ow(results, sub_model_name, softmax, **parameters)
def main(config):
num_mon_sites = config['num_mon_sites']
num_mon_inst_test = config['num_mon_inst_test']
num_mon_inst_train = config['num_mon_inst_train']
num_mon_inst = num_mon_inst_test + num_mon_inst_train
num_unmon_sites_test = config['num_unmon_sites_test']
num_unmon_sites_train = config['num_unmon_sites_train']
num_unmon_sites = num_unmon_sites_test + num_unmon_sites_train
data_dir = config['data_dir']
predictions_dir = config['predictions_dir']
mixture = config['mixture']
with h5py.File('%s%d_%d_%d_%d.h5' % (data_dir, num_mon_sites,
num_mon_inst, num_unmon_sites_train,
num_unmon_sites_test), 'r') as f:
test_labels = f['test_data/labels'][:]
# Aggregates predictions from mixture models
predictions = {}
ensemble_softmax = None
for inner_comb in mixture:
sub_model_name = '_'.join(inner_comb)
softmax = np.load('%s%s_model.npy' % (predictions_dir, sub_model_name))
if ensemble_softmax is None:
ensemble_softmax = np.zeros_like(softmax)
predictions[sub_model_name] = softmax
parameters = {'actual_labels': test_labels,
'num_mon_sites': num_mon_sites,
'num_mon_inst_test': num_mon_inst_test,
'num_unmon_sites_test': num_unmon_sites_test,
'num_unmon_sites': num_unmon_sites}
# Performs simple average to get ensemble predictions
for softmax in predictions.values():
ensemble_softmax += softmax
ensemble_softmax /= len(predictions)
if len(predictions) > 1:
predictions['ensemble'] = ensemble_softmax
results = {}
if num_unmon_sites == 0: # Closed-world
log_setting('closed', predictions, results, **parameters)
else: # Open-world
log_setting('open', predictions, results, **parameters)
with open('job_result.json', 'w') as f:
json.dump(results, f, sort_keys=True, indent=4)
if __name__ == '__main__':
with open('config.json') as config_file:
config = json.load(config_file)
main(config)