-
Notifications
You must be signed in to change notification settings - Fork 0
/
rotating_mnist_regression.py
233 lines (196 loc) · 7.41 KB
/
rotating_mnist_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
from typing import List, Dict
import torch
import pandas as pd
from tqdm import tqdm
import seaborn as sns
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader, random_split
from lib.datasets import MNIST
from lib.models import CNN, MLP
from lib.losses import get_criterion
from lib.utils.trainer import train, eval
from lib.utils.metrics import compute_accuracy, compute_mse, compute_bias
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
def experiment(
batch_size: int,
learning_rate: float,
loss_criterion: str,
num_epochs: int,
cnn: bool = False,
mlp_layers: List[int] = [],
verbose: bool = True,
**kwargs,
) -> Dict:
# Init model
if cnn:
if mlp_layers:
raise ValueError(
"Conflicting models. Either set `cnn` to false or `mlp_layers` to `[]`"
)
model = CNN(softmax=True)
elif mlp_layers:
model = MLP(in_features=28 * 28, layers=mlp_layers)
else:
raise ValueError(
"No model parameters were provided, please provide values "
"for either `cnn` OR `mlp_layers` parameters"
)
model.to(DEVICE)
# Create Datasets
source_dataset = MNIST(rotated=False, train=True)
train_dataset, val_dataset, _ = random_split(
source_dataset, [10_000, 1_000, len(source_dataset) - 11_000]
)
target_dataset = MNIST(rotated=True, train=False)
train_dataloader = DataLoader(train_dataset, batch_size=batch_size)
val_dataloader = DataLoader(val_dataset, batch_size=batch_size)
target_dataloader = DataLoader(target_dataset, batch_size=batch_size)
# Setup Optimizer
optim = torch.optim.Adam(params=model.parameters(), lr=learning_rate)
if loss_criterion in {"hsic", "squared_loss"}:
target_transform = lambda x: torch.nn.functional.one_hot(
x, num_classes=10
).float()
else:
target_transform = None
if loss_criterion == "hsic":
criterion = get_criterion(
loss_criterion, target_transform=target_transform, s_x=22, s_y=1
)
else:
criterion = get_criterion(loss_criterion, target_transform=target_transform)
# Train
train_history = []
val_history = []
best_loss = 1e10
for epoch_idx in range(num_epochs):
if verbose:
print(f"Epoch {epoch_idx}")
train_loss = train(
model=model,
criterion=criterion,
dataloader=train_dataloader,
optim=optim,
use_pbar=verbose,
)
val_loss = eval(
model=model,
criterion=criterion,
dataloader=val_dataloader,
use_pbar=verbose,
)
train_history.append(train_loss)
val_history.append(val_loss)
if val_loss <= best_loss:
torch.save(model.state_dict(), "./best.pth")
best_loss = val_loss
# Load Model
one_hot = lambda x: torch.nn.functional.one_hot(x, num_classes=10)
model.load_state_dict(torch.load("./best.pth"))
# Correct Bias for HSIC
if loss_criterion == "hsic":
bias = compute_bias(model, train_dataloader, target_transform=one_hot)
model.update_bias(bias)
# Compute Accuracy
train_accuracy = compute_accuracy(model, train_dataloader)
val_accuracy = compute_accuracy(model, val_dataloader)
target_accuracy = compute_accuracy(model, target_dataloader)
# Compute MSE
train_mse = compute_mse(model, train_dataloader, target_transform=one_hot)
val_mse = compute_mse(model, val_dataloader, target_transform=one_hot)
target_mse = compute_mse(model, target_dataloader, target_transform=one_hot)
print(train_mse, val_mse, target_mse)
results = {
"train_history": train_history,
"val_history": val_history,
"train_accuracy": train_accuracy,
"val_accuracy": val_accuracy,
"target_accuracy": target_accuracy,
"train_mse": train_mse,
"val_mse": val_mse,
"target_mse": target_mse,
}
return results
def multiple_trials(experiment_config: Dict, num_trials: int) -> Dict:
results = []
for i in tqdm(range(num_trials)):
trial_results = experiment(**experiment_config)
results.append(trial_results)
train_accuracy = [trial["train_accuracy"] for trial in results]
val_accuracy = [trial["val_accuracy"] for trial in results]
target_accuracy = [trial["target_accuracy"] for trial in results]
train_mse = [trial["train_mse"] for trial in results]
val_mse = [trial["val_mse"] for trial in results]
target_mse = [trial["target_mse"] for trial in results]
results = {
"train_accuracy": pd.Series(train_accuracy).rename(
experiment_config["model_name"]
),
# "val_accuracy": pd.Series(val_accuracy).rename(experiment_config["model_name"]),
"target_accuracy": pd.Series(target_accuracy).rename(
experiment_config["model_name"]
),
"train_mse": pd.Series(train_mse).rename(experiment_config["model_name"]),
# "val_mse": pd.Series(val_mse).rename(experiment_config["model_name"]),
"target_mse": pd.Series(target_mse).rename(experiment_config["model_name"]),
}
return results
def group_results(results: List[Dict]) -> pd.DataFrame:
keys = results[0].keys()
df_list = []
for key in keys:
df = pd.concat([exp_res[key] for exp_res in results], axis=1)
df = (
df.stack()
.rename("Value")
.rename_axis(index=["exp", "model_name"])
.reset_index()
)
df["model_name"] = df["model_name"].apply(lambda x: x + f"_{key}")
df_list.append(df)
df = pd.concat(df_list)
return df
def plot_results(df: pd.DataFrame, title: str = ""):
plt.ion()
ax = sns.boxplot(x="Accuracy", y="model_name", hue="loss_criterion", data=df)
ax.set(xscale="log")
ax.set_title(title)
ax.set_xscale("linear")
def main(
num_trials: int = 20,
num_epochs: int = 7,
batch_size: int = 32,
learning_rate: float = 1e-3,
):
models = [
{"model_name": "CNN", "cnn": True},
# {"model_name": "MLP 2x256", "mlp_layers": [256, 256, 10]},
# {"model_name": "MLP 2x524", "mlp_layers": [524, 524, 10]},
# {"model_name": "MLP 2x1024", "mlp_layers": [1024, 1024, 10]},
# {"model_name": "MLP 4x256", "mlp_layers": [256, 256, 256, 256, 10]},
# {"model_name": "MLP 4x524", "mlp_layers": [524, 524, 524, 524, 10]},
# {"model_name": "MLP 4x1024", "mlp_layers": [1024, 1024, 1024, 1024, 10]},
]
data = []
for loss_criterion in ["hsic"]: # , "squared_loss", "cross_entropy"]:
results = []
for model_config in models:
experiment_config = {
"num_epochs": num_epochs,
"batch_size": batch_size,
"learning_rate": learning_rate,
"loss_criterion": loss_criterion,
}
experiment_config = {**experiment_config, **model_config}
exp_results = multiple_trials(
num_trials=num_trials, experiment_config=experiment_config
)
results.append(exp_results)
results = group_results(results)
results["loss_criterion"] = loss_criterion
data.append(results)
data = pd.concat(data)
data.to_csv("regression_results_softmax_hsic.csv", index=False)
plot_results(data)
if __name__ == "__main__":
main()