-
Notifications
You must be signed in to change notification settings - Fork 17
/
ReusableUtils.py
626 lines (467 loc) · 23.9 KB
/
ReusableUtils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
# Import the required libraries
import numpy as np
import pandas as pd
from scipy.stats import randint
from collections import Counter
import matplotlib.pyplot as plt
import seaborn as sns
from statsmodels.formula.api import ols
from plotly.offline import plot, iplot, init_notebook_mode
import plotly.graph_objs as go
from plotly.subplots import make_subplots
import plotly.express as px
import plotly.figure_factory as ff
from IPython.display import display_html
from sklearn.preprocessing import RobustScaler, MinMaxScaler
from sklearn.model_selection import train_test_split, GridSearchCV, RandomizedSearchCV
from sklearn.metrics import recall_score, accuracy_score, confusion_matrix, f1_score, matthews_corrcoef
from sklearn.metrics import precision_score, auc, roc_auc_score, roc_curve, precision_recall_curve, classification_report
from scipy.stats import randint
from collections import Counter
class ReusableUtils():
"""
Module of reusable function and utilities that
can be reused across notebooks.
"""
def __init__(self):
pass
def setNotebookConfigParams(self):
'''
Sets the note book
configuration parameters.
Params: None
Return: None
'''
# To display all the columns
pd.options.display.max_columns = None
# To display all the rows
pd.options.display.max_rows = None
# To map Empty Strings or numpy.inf as Na Values
pd.options.mode.use_inf_as_na = True
pd.options.display.expand_frame_repr = False
# Set Style
sns.set(style = "whitegrid")
# Ignore Warnings
import warnings
warnings.filterwarnings('ignore')
# inline plotting with the Jupyter Notebook
init_notebook_mode(connected=True)
def InsertChartSeparator(self):
"""Inserts a separator to demarcate between the dynamic interactive chart
and the corresponding static chart in the png format."""
print(" **************** STATIC PNG FORMAT ****************")
return None
def add_data_labels(self, ax, spacing = 5):
'''
Purpose:
Custom Function to add data labels in the graph.
**NOTE: A pie chart (or a circle chart) is a circular statistical graphic,
which is divided into slices to illustrate numerical proportion.
Parameters:
1. build_sub_plots - Boolean flag that informs if there is a need
to create subplots (multiple pie charts).
1. hist_data - Use list of lists to plot multiple data sets on the same plot.
2. group_labels - Names for each data set.
3. title_text - main title of the plot figure.
4. histnorm - 'probability density' or 'probability'. Default = 'probability density'
5. export_to_png - Boolean flag to draw a static version of the plot in png format.
Return Value:
NONE.
'''
# For each bar: Place a label
for rect in ax.patches:
# Get X and Y placement of label from rect.
y_value = rect.get_height()
x_value = rect.get_x() + rect.get_width() / 2
# Number of points between bar and label. Change to your liking.
space = spacing
# Vertical alignment for positive values
va = 'bottom'
# If value of bar is negative: Place label below bar
if y_value < 0:
# Invert space to place label below
space *= -1
# Vertically align label at top
va = 'top'
# Use Y value as label and format number with one decimal place
label = "{:.2f}%".format(y_value)
# Create annotation
plt.annotate(
label, # Use `label` as label
(x_value, y_value), # Place label at end of the bar
xytext = (0, space), # Vertically shift label by `space`
textcoords = "offset points", # Interpret `xytext` as offset in points
ha = 'center', # Horizontally center label
va = va) # Vertically align label differently for positive and negative values.
return None
def ConstructGoPieChart(self, build_sub_plots = False, rows = 0, cols = 0, subplot_titles = [],
labels = [], values = [], sub_plot_names = [], title_text = "", export_to_png = False):
'''
Purpose:
Creates a pie charts of the specified data values.
**NOTE: A pie chart (or a circle chart) is a circular statistical graphic,
which is divided into slices to illustrate numerical proportion.
Parameters:
1. build_sub_plots - Boolean flag that informs if there is a need
to create subplots (multiple pie charts).
2. hist_data - Use list of lists to plot multiple data sets on the same plot.
3. group_labels - Names for each data set.
4. title_text - main title of the plot figure.
5. histnorm - 'probability density' or 'probability'. Default = 'probability density'
6. export_to_png - Boolean flag to draw a static version of the plot in png format.
Return Value:
NONE.
'''
if build_sub_plots:
idx = 0
fig = make_subplots(rows=rows, cols=cols, specs=[[{'type':'domain'}, {'type':'domain'}]],
subplot_titles=subplot_titles)
for row in range(1, rows + 1):
for col in range(1, cols + 1):
if build_sub_plots:
fig.add_trace(go.Pie(labels=labels[idx], values=values[idx],
name=sub_plot_names[idx]), row=row, col=col)
idx += 1
# Use `hole` to create a donut-like pie chart
fig.update_traces(hole=.3, hoverinfo="label+percent+name")
fig.update_layout(title_text=title_text)
else:
fig = go.Figure(data=[go.Pie(labels=labels, values=values, pull=[0, 0, 0, 0.1])])
fig.update_layout(title_text=title_text)
# show the interactive view
fig.show()
# export to a png rendered format of the chart
if export_to_png:
self.InsertChartSeparator()
fig.show("png")
return None
def constructDistPlot(self, hist_data = [], group_labels = [], title_text = "", histnorm='probability density',
colors = [], bin_size=[50, 50], export_to_png = True):
'''
Purpose:
Creates a distribution plot of the specified data/series.
**NOTE: The distplot represents the univariate distribution of data i.e.
data distribution of a variable against the density distribution.
Parameters:
1. hist_data - Use list of lists to plot multiple data sets on the same plot.
2. group_labels - Names for each data set.
3. title_text - main title of the plot figure.
4. histnorm - 'probability density' or 'probability'. Default = 'probability density'
5. colors - Colors for traces.
6. bin_size - Size of histogram bins.
7. export_to_png - Boolean flag to draw a static version of the plot in png format.
Return Value:
NONE.
'''
fig = ff.create_distplot(hist_data=hist_data,
group_labels=group_labels,
bin_size=bin_size,
colors = colors,
histnorm=histnorm)
fig.update_layout(title_text = title_text)
# show the interactive view
fig.show()
# export to a png rendered format of the chart
if export_to_png:
self.InsertChartSeparator()
fig.show("png")
return None
def constructPxHistogram(self, data_frame, x, color, marginal,
hover_data, title, export_to_png = False):
'''
Purpose:
Creates a histogram distribution plot of the specified data/series.
**NOTE: A histogram is representation of the distribution of numerical data,
where the data are binned and the count for each bin is represented.
In a histogram, rows of `data_frame` are grouped together into a
rectangular mark to visualize the 1D distribution of an aggregate
function `histfunc` (e.g. the count or sum) of the value `y` (or `x` if
`orientation` is `'h'`).
Ref - DocString for px.histogram
Parameters:
1. data_frame - DataFrame or array-like or dict data required for the histogram.
2. x - Names for each data set. str or int or Series or array-like
Either a name of a column in `data_frame`, or a pandas Series or
array_like object.
3. color - str or int or Series or array-like
Either a name of a column in `data_frame`, or a pandas Series or
array_like object. Values from this column or array_like are used to
assign color to marks.
4. marginal - (str) One of `'rug'`, `'box'`, `'violin'`, or `'histogram'`. If set, a
subplot is drawn alongside the main plot, visualizing the distribution.
5. title - Colors for traces.
6. export_to_png - Boolean flag to draw a static version of the plot in png format.
Return Value:
NONE.
'''
fig = px.histogram(data_frame = data_frame,
x = x,
color = color,
marginal = marginal,
hover_data = data_frame.columns,
title = title)
# show the interactive view
fig.show()
# export to a png rendered format of the chart
if export_to_png:
self.InsertChartSeparator()
fig.show("png")
return None
def constructNotchedBoxPlots(self, data_frame, x, y, hover_name, color, title_text,
points = 'all', export_to_png = False):
'''
Purpose:
Creates a notched box plot distribution of the specified data/series.
**NOTE: Notched box plots apply a "notch" or narrowing of the box around the median.
Notches are useful in offering a rough guide to significance of difference of medians;
if the notches of two boxes do not overlap, this offers evidence of a statistically significant
difference between the medians.
Ref - https://en.wikipedia.org/wiki/Box_plot#Variations
Parameters:
1. data_frame - DataFrame or array-like or dict data required for the histogram.
2. x - (str or int or Series or array-like) Either a name of a column in `data_frame`,
or a pandas Series or array_like object.
3. y - (str or int or Series or array-like) – Either a name of a column in data_frame,
or a pandas Series or array_like object. Values from this column or array_like are used to
position marks along the y axis in cartesian coordinates.
4. hover_name - (str or int or Series or array-like) – Either a name of a column in data_frame,
or a pandas Series or array_like object. Values from this column or array_like
appear in bold in the hover tooltip.
5. color - Either a name of a column in data_frame, or a pandas Series or array_like object.
Values from this column or array_like are used to assign color to marks.
6. title_text - Title of the plot figure.
7. export_to_png - Boolean flag to draw a static version of the plot in png format.
Ref: https://plotly.github.io/plotly.py-docs/generated/plotly.express.box.html
Return Value:
NONE.
'''
fig = px.box(data_frame,
x = x,
y = y,
points = points,
hover_name = hover_name,
color = color,
notched=True)
fig.update_layout(title_text = title_text)
# show the interactive view
fig.show()
# export to a png rendered format of the chart
if export_to_png:
self.InsertChartSeparator()
fig.show("png")
return None
def plotUnivariateAnalysis(self, data_frame, category_list, rows, cols, figsize = (8, 8)):
'''
Purpose:
Plots the univariate analysis of the given categorical variables.
Parameters:
1. data_frame = the master dataframe.
2. category_list - the list of categorical variables
3. rows - Number of rows in the subplots.
4. cols - Number of columns in the subplots.
5. figsize - Size of the plot figure.
Return Value:
NONE.
'''
counter = 1
plt.figure(figsize = figsize)
for col_list in category_list:
series = round(((data_frame[col_list].value_counts(dropna = False))/
(len(data_frame[col_list])) * 100), 2)
plt.subplot(rows, cols, counter)
ax = sns.barplot(x = series.index, y = series.values, order = series.sort_index().index)
sns.despine(bottom = True, left = True)
plt.xlabel(col_list, labelpad = 15)
plt.ylabel('Percentage Rate', labelpad = 10)
ax.grid(False)
# Call Custom Function
self.add_data_labels(ax)
counter += 1
del category_list, counter, ax
plt.subplots_adjust(hspace = 0.3)
plt.subplots_adjust(wspace = 0.5)
plt.show()
return None
def plotDataCorrelationHeatMap(self, data_frame, fig_size = (15,10)):
'''
Purpose:
Plots the data / feature correlation heatmap.
Parameters:
1. data_frame = the master dataframe.
2. figsize - Size of the plot figure. Default Size is set to (15, 10)
Return Value:
corr - The data correlation matrix.
'''
fig, ax = plt.subplots(figsize = fig_size)
corr = data_frame.corr()
sns.heatmap(corr, annot = True, linewidths = .5, ax = ax)
plt.show()
return corr
def Generate_Model_Test_Classification_Report(self, model, X_test, y_test, model_name=""):
'''
Purpose:
Generate the consolidated test classification report.
A one-stop function to generate all the relevant model evaluation metrics.
The report consists of the following classification results & metrics -
1. Confusion Matrix
2. Classification Report
3. F1 Score
4. Accuracy
5. Mathews Correlation Coefficient (MCC)
6. Precision
7. Recall
8. AUROC Score - Area Under the Receiver Operating Characteristic Curve
9. AUC-PR Score - Area Under the Precision Recall Curve.
10. AUROC Curve - Area Under the Receiver Operating Characteristic Curve
11. AUC-PR Curve - Area Under the Precision Recall Curve.
Parameters:
1. y_test - The Ground Truth for each test image.
2. y_pred - The Predicted label for each image.
3. model_name - Model Name
Return Value:
NONE.
'''
y = 1.05
# Report Title & Classification Mterics Abbreviations...
fig, axes = plt.subplots(3, 1, figsize = (8, 3))
axes[0].text(9, 1.8, "CONSOLIDATED MODEL TEST REPORT", fontsize=30, horizontalalignment='center',
color='DarkBlue', weight = 'bold')
axes[0].axis([0, 10, 0, 10])
axes[0].axis('off')
axes[1].text(9, 4, "Model Name: " + model_name, style='italic',
fontsize=18, horizontalalignment='center', color='DarkOrange', weight = 'bold')
axes[1].axis([0, 10, 0, 10])
axes[1].axis('off')
axes[2].text(0, 4, "* 1 - Not Survived\t\t\t\t\t\t\t * 0 - Survived\n".expandtabs() +
"* MCC - Matthews Correlation Coefficient\t\t* AUC - Area Under The Curve\n".expandtabs() +
"* ROC - Receiver Operating Characteristics " +
"\t* AUROC - Area Under the Receiver Operating Characteristics".expandtabs(),
style='italic', fontsize=10, horizontalalignment='left', color='orangered')
axes[2].axis([0, 10, 0, 10])
axes[2].axis('off')
scores = []
metrics = ['F1 ', 'MCC ', 'Precision', 'Recall ', 'Accuracy ',
'AUC_ROC ', 'AUC_PR ']
# Plot ROC and PR curves using all models and test data...
y_pred = model.predict(X_test)
y_pred_probs = model.predict_proba(X_test)[:, 1:]
fpr, tpr, thresholds = roc_curve(y_test.values.ravel(), y_pred)
precision, recall, th = precision_recall_curve(y_test.values.ravel(), y_pred_probs)
# Calculate the individual classification metic scores...
model_f1_score = f1_score(y_test, y_pred)
model_matthews_corrcoef_score = matthews_corrcoef(y_test, y_pred)
model_precision_score = precision_score(y_test, y_pred)
model_recall_score = recall_score(y_test, y_pred)
model_accuracy_score = accuracy_score(y_test, y_pred)
model_auc_roc = auc(fpr, tpr)
model_auc_pr = auc(recall, precision)
scores.append([model_f1_score,
model_matthews_corrcoef_score,
model_precision_score,
model_recall_score,
model_accuracy_score,
model_auc_roc,
model_auc_pr])
sampling_results = pd.DataFrame(columns = ['Classification Metric', 'Score Value'])
for i in range(len(scores[0])):
sampling_results.loc[i] = [metrics[i], scores[0][i]]
sampling_results.index = np.arange(1, len(sampling_results) + 1)
class_report = classification_report(y_test, y_pred)
conf_matx = confusion_matrix(y_test, y_pred)
# Display the Confusion Matrix...
fig, axes = plt.subplots(1, 3, figsize = (20, 4))
sns.heatmap(conf_matx, annot=True, annot_kws={"size": 16},fmt='g', cbar=False, cmap="GnBu", ax=axes[0])
axes[0].set_title("1. Confusion Matrix", fontsize=21, color='darkgreen', weight = 'bold',
style='italic', loc='left', y=y)
# Classification Metrics
axes[1].text(5, 1.8, sampling_results.to_string(float_format='{:,.4f}'.format, index=False), style='italic',
fontsize=20, horizontalalignment='center')
axes[1].axis([0, 10, 0, 10])
axes[1].axis('off')
axes[1].set_title("2. Classification Metrics", fontsize=20, color='darkgreen', weight = 'bold',
style='italic', loc='center', y=y)
# Classification Report
axes[2].text(0, 1, class_report, style='italic', fontsize=20)
axes[2].axis([0, 10, 0, 10])
axes[2].axis('off')
axes[2].set_title("3. Classification Report", fontsize=20, color='darkgreen', weight = 'bold',
style='italic', loc='center', y=y)
plt.tight_layout()
plt.show()
# AUC-ROC & Precision-Recall Curve
fig, axes = plt.subplots(1, 2, figsize = (14, 4))
axes[0].plot(fpr, tpr, label = f"auc_roc = {model_auc_roc:.3f}")
axes[1].plot(recall, precision, label = f"auc_pr = {model_auc_pr:.3f}")
axes[0].plot([0, 1], [0, 1], 'k--')
axes[0].legend(loc = "lower right")
axes[0].set_xlabel("False Positive Rate")
axes[0].set_ylabel("True Positive Rate")
axes[0].set_title("4. AUC - ROC Curve", fontsize=15, color='darkgreen', ha='right', weight = 'bold',
style='italic', loc='center', pad=1, y=y)
axes[1].legend(loc = "lower left")
axes[1].set_xlabel("Recall")
axes[1].set_ylabel("Precision")
axes[1].set_title("5. Precision - Recall Curve", fontsize=15, color='darkgreen', ha='right', weight = 'bold',
style='italic', loc='center', pad=3, y=y)
plt.subplots_adjust(top=0.95)
plt.tight_layout()
plt.show()
return None
def plot_model_feature_importances(self, X_train, model):
'''
Purpose:
Custom function to plot the feature importances of the classifier.
**NOTE: Feature importances specify how much each feature is contributing
towards the final prediction value/results.
Parameters:
1. model - the model whose feature importances are to be plotted.
2. X_train - Training dataset.
Return Value:
NONE.
'''
fig = plt.figure()
# get the feature importance of the classifier 'model'
feature_importances = pd.Series(model.feature_importances_,
index = X_train.columns) \
.sort_values(ascending=False)
# plot the bar chart
sns.barplot(x = feature_importances, y = X_train.columns)
plt.title('Classifier Feature Importance', fontdict = {'fontsize' : 20})
plt.xticks(rotation = 60)
plt.show()
return None
def display_dataframe_side_by_side(self, dataframes:list, table_captions:list, master_caption = None, tablespacing=5):
"""
Purpose:
Display the dataframes as html tables side by side
to save vertical space.
Parameters:
dataframes: list of pandas.DataFrame
table_captions: list of table captions
tablespacing: table separator to differentiate the tables/dataframes.
The vertical spacing between tables..
Returns:
NONE
Reference:
https://stackoverflow.com/questions/38783027/jupyter-notebook-display-two-pandas-tables-side-by-side
"""
output = ""
space_char = "\xa0"
if master_caption is not None:
master_caption = '<h2 style="color: black;">' + master_caption + '</h2>'
display_html(master_caption, raw = True)
# table caption styler
styler = [dict(selector="caption",
props=[("text-align", "left"),
("font-size", "125%"),
("text-decoration", "underline"),
("color", 'red')]),
dict(selector="td", props=[('font-size', '100%')])]
for (df, caption) in zip(dataframes, table_captions):
output += df.style.set_table_attributes("style='display:inline;'")\
.set_caption(caption)\
.set_table_styles(styler)\
._repr_html_()
output += tablespacing * space_char
display_html(output, raw = True)
return None