forked from shelhamer/revolver
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
164 lines (139 loc) · 6.24 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import logging
import os
import setproctitle
import shutil
import subprocess
import sys
import click
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.multiprocessing as multiprocessing
from revolver.data import datasets, datatypes, prepare_loader
from revolver.model import models, prepare_model
from revolver.metrics import SegScorer
from evaluate import evaluate
def pevaluate(q):
# keep evaluating from the queue until done as signalled by None
while True:
args = q.get()
if args is None:
q.task_done()
break
evaluate(*args)
q.task_done()
@click.command()
@click.argument('experiment', type=str)
@click.option('--model', type=click.Choice(models.keys()))
@click.option('--dataset', type=click.Choice(datasets.keys()), default='sbdd')
@click.option('--datatype', type=click.Choice(datatypes.keys()), default='semantic')
@click.option('--split', type=str, default='train')
@click.option('--val_dataset', type=click.Choice(datasets.keys()), default='sbdd')
@click.option('--val_split', type=str, default='val')
@click.option('--class_group', type=click.Choice(['all', '0', '1', '2', '3']), default='all')
@click.option('--count', type=int, default=None) # -1 -> dense, None -> random in [0, 100], >= 1 -> count
@click.option('--shot', type=int, default=1)
@click.option('--lr', default=1e-5)
@click.option('--max_iter', type=int, default=int(1e5))
@click.option('--seed', default=1337)
@click.option('--gpu', default=0)
@click.option('--do-eval/--no-eval', default=True)
def main(experiment, model, dataset, datatype, split, val_dataset, val_split, class_group, count, shot, lr, max_iter, seed, gpu, do_eval):
setproctitle.setproctitle(experiment)
version = subprocess.check_output(['git', 'describe', '--always'], universal_newlines=True).strip()
# experiment metadata
args = locals()
exp_dir = './experiments/{}/'.format(experiment)
if os.path.isdir(exp_dir):
click.confirm(click.style("{} already exists. Do you want to "
"obliterate it and continue?".format(experiment), fg='red'),
abort=True)
shutil.rmtree(exp_dir)
try:
os.makedirs(exp_dir, exist_ok=True)
except:
raise Exception("Could not create experiment dir {}".format(exp_dir))
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu)
device = torch.device('cuda:0')
logging.basicConfig(filename=exp_dir + 'log', level=logging.INFO,
format='[%(asctime)s.%(msecs)03d] %(message)s', datefmt='%H:%M:%S')
logging.getLogger().addHandler(logging.StreamHandler(sys.stdout))
logging.info("training %s", experiment)
logging.info("args: %s", args)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)
# spawn persistent evaluation process
if do_eval:
mp_ctx = multiprocessing.get_context('spawn')
q = mp_ctx.JoinableQueue()
p = mp_ctx.Process(target=pevaluate, args=(q,))
p.start()
# filter classes by group for heldout experiments
classes_to_filter = None
if class_group != 'all':
class_group = int(class_group)
# divide classes into quarters and take background + the given quarter
group_size = len(datasets[dataset].classes) // 4
group_idx = 1 + class_group * group_size
group_classes = range(group_idx, group_idx + group_size)
classes_to_filter = list(set(range(1, len(datasets[dataset].classes))) - set(group_classes))
dataset_name = dataset
prepare_data = datatypes[datatype]
dataset = prepare_data(dataset_name, split, classes_to_filter, count, shot)
loader = prepare_loader(dataset)
val_dataset_name = val_dataset or dataset_name
model_name = model
model = prepare_model(model, dataset.num_classes).cuda()
loss_fn = nn.CrossEntropyLoss(reduction='mean', ignore_index=dataset.ignore_index)
learned_params = filter(lambda p: p.requires_grad, model.parameters())
opt = optim.SGD(learned_params, lr=lr, momentum=0.99, weight_decay=0.0005)
iter_order = int(np.log10(max_iter) + 1 ) # for pretty printing
epoch = 0
iteration = 0
losses = []
model.train()
while iteration < max_iter:
logging.info("epoch %d", epoch)
epoch += 1
train_loss = 0.
for i, data in enumerate(loader):
inputs, target, aux = data[:-2], data[-2], data[-1]
inputs = [inp.to(device) if not isinstance(inp, list) else
[[i_.to(device) for i_ in in_] for in_ in inp] for inp in inputs]
target = target.to(device, non_blocking=True)
scores = model(*inputs)
loss = loss_fn(scores, target)
loss.backward()
train_loss += loss.item()
losses.append(loss.item())
if iteration % 20 == 0:
logging.info("%s", "iter {iteration:{iter_order}d} loss {mean_loss:02.5f}".format(iteration=iteration, iter_order=iter_order, mean_loss=np.mean(losses)))
losses = []
if iteration % 4000 == 0:
# snapshot
logging.info("snapshotting...")
snapshot_path = exp_dir + 'snapshot-iter{iteration:0{iter_order}d}.pth'.format(iteration=iteration, iter_order=iter_order)
torch.save(model.state_dict(), snapshot_path)
# evaluate
if do_eval:
logging.info("evaluating...")
hist_path = exp_dir + 'hist-iter{iteration:0{iter_order}d}'.format(iteration=iteration, iter_order=iter_order)
try:
# wait for the last evalution if it's still running
q.join()
except:
pass
# carry out evaluation in independent process for determinism and speed
q.put((model_name, snapshot_path, val_dataset_name, datatype, val_split, count, shot, seed, gpu, hist_path, None))
# update
opt.step()
opt.zero_grad()
iteration += 1
logging.info("%s", "train loss = {:02.5f}".format(train_loss / len(dataset)))
# signal to evaluation process that training is done
if do_eval:
q.put(None)
if __name__ == '__main__':
main()