-
Notifications
You must be signed in to change notification settings - Fork 22
/
train_nisp.py
140 lines (121 loc) · 5.27 KB
/
train_nisp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
from argparse import ArgumentParser
from multiprocessing import Pool
import os
from NISP.dataset import NISPDataset
from NISP.lightning_model import LightningModel
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.callbacks.early_stopping import EarlyStopping
from pytorch_lightning.loggers import TensorBoardLogger
from config import NISPConfig
import torch
import torch.utils.data as data
if __name__ == "__main__":
parser = ArgumentParser(add_help=True)
parser.add_argument('--data_path', type=str, default=NISPConfig.data_path)
parser.add_argument('--speaker_csv_path', type=str, default=NISPConfig.speaker_csv_path)
parser.add_argument('--timit_wav_len', type=int, default=NISPConfig.timit_wav_len)
parser.add_argument('--batch_size', type=int, default=NISPConfig.batch_size)
parser.add_argument('--epochs', type=int, default=NISPConfig.epochs)
parser.add_argument('--alpha', type=float, default=NISPConfig.alpha)
parser.add_argument('--beta', type=float, default=NISPConfig.beta)
parser.add_argument('--gamma', type=float, default=NISPConfig.gamma)
parser.add_argument('--hidden_size', type=float, default=NISPConfig.hidden_size)
parser.add_argument('--gpu', type=int, default=NISPConfig.gpu)
parser.add_argument('--n_workers', type=int, default=NISPConfig.n_workers)
parser.add_argument('--dev', type=str, default=False)
parser.add_argument('--model_checkpoint', type=str, default=NISPConfig.model_checkpoint)
parser.add_argument('--noise_dataset_path', type=str, default=NISPConfig.noise_dataset_path)
parser = pl.Trainer.add_argparse_args(parser)
hparams = parser.parse_args()
print(f'Training Model on NISP Dataset\n#Cores = {hparams.n_workers}\t#GPU = {hparams.gpu}')
# hyperparameters and details about the model
HPARAMS = {
'data_path' : hparams.data_path,
'speaker_csv_path' : hparams.speaker_csv_path,
'data_wav_len' : hparams.timit_wav_len,
'data_batch_size' : hparams.batch_size,
'data_wav_augmentation' : 'Random Crop, Additive Noise',
'data_label_scale' : 'Standardization',
'training_optimizer' : 'Adam',
'training_lr' : NISPConfig.lr,
'training_lr_scheduler' : '-',
'model_hidden_size' : hparams.hidden_size,
'model_alpha' : hparams.alpha,
'model_beta' : hparams.beta,
'model_gamma' : hparams.gamma,
'model_architecture' : 'wav2vec + soft-attention',
}
# Training, Validation and Testing Dataset
## Training Dataset
train_set = NISPDataset(
wav_folder = os.path.join(HPARAMS['data_path'], 'TRAIN'),
csv_file = HPARAMS['speaker_csv_path'],
wav_len = HPARAMS['data_wav_len'],
noise_dataset_path = hparams.noise_dataset_path
)
## Training DataLoader
trainloader = data.DataLoader(
train_set,
batch_size=HPARAMS['data_batch_size'],
shuffle=True,
num_workers=hparams.n_workers
)
## Validation Dataset
valid_set = NISPDataset(
wav_folder = os.path.join(HPARAMS['data_path'], 'VAL'),
csv_file = HPARAMS['speaker_csv_path'],
wav_len = HPARAMS['data_wav_len'],
is_train=False
)
## Validation Dataloader
valloader = data.DataLoader(
valid_set,
batch_size=HPARAMS['data_batch_size'],
shuffle=False,
num_workers=hparams.n_workers
)
## Testing Dataset
test_set = NISPDataset(
wav_folder = os.path.join(HPARAMS['data_path'], 'TEST'),
csv_file = HPARAMS['speaker_csv_path'],
wav_len = HPARAMS['data_wav_len'],
is_train=False
)
## Testing Dataloader
testloader = data.DataLoader(
test_set,
batch_size=HPARAMS['data_batch_size'],
shuffle=False,
num_workers=hparams.n_workers
)
print('Dataset Split (Train, Validation, Test)=', len(train_set), len(valid_set), len(test_set))
#Training the Model
logger = TensorBoardLogger('NISP_logs', name='')
logger.log_hyperparams(HPARAMS)
model = LightningModel(HPARAMS)
checkpoint_callback = ModelCheckpoint(
monitor='v_loss',
mode='min',
verbose=1)
trainer = pl.Trainer(fast_dev_run=hparams.dev,
gpus=hparams.gpu,
max_epochs=hparams.epochs,
checkpoint_callback=checkpoint_callback,
callbacks=[
EarlyStopping(
monitor='v_loss',
min_delta=0.00,
patience=10,
verbose=True,
mode='min'
)
],
logger=logger,
resume_from_checkpoint=hparams.model_checkpoint
distributed_backend='ddp'
)
trainer.fit(model, train_dataloader=trainloader, val_dataloaders=valloader)
print('\n\nCompleted Training...\nTesting the model with checkpoint -', checkpoint_callback.best_model_path)
model = LightningModel.load_from_checkpoint(checkpoint_callback.best_model_path)
trainer.test(model, test_dataloaders=testloader)