-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNBR12AlazarFluxSweep.py
194 lines (156 loc) · 7.07 KB
/
NBR12AlazarFluxSweep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
# -*- coding: utf-8 -*-
# from VISAdrivers.continuousAlazar import ADC
# from tools.datatools import bin2csv
# import numpy as np
import os
# import matplotlib.pyplot as plt
# from matplotlib.colors import LogNorm
# from scipy.signal import windows, convolve
import time
import Labber
import subprocess
import numpy as np
import fitTools.quasiparticleFunctions as qp
import matplotlib.pyplot as plt
import matplotlib.colors as mplc
pathToExe = r'C:/Users/LFL/lflPython/AlazarDrivers/CS_Average/x64/Release/ATS9371_CS_Average.exe'
client = Labber.connectToServer()
# LO = client.connectToInstrument('Rohde&Schwarz RF Source',
# dict(interface='TCPIP',address='192.168.1.128'))
# LO.startInstrument()
SMU = client.connectToInstrument('Keithley 2400 SourceMeter',dict(interface='GPIB',address='23'))
SMU.startInstrument()
#nHours = 12
#nMinutesDelay = 30
#numberTraces = nHours*60//nMinutesDelay
numberTraces = 1
acquisitionLength_sec = 1
origRateMHz = 500
# avgTime = 3e-6
sampleRateMHz = 10 # Note this should always be a integer factor of origRateMHz. Such as 15 x 20 = 300.
DAsetting = 10
LOfrequency = 5.5806 # GHz
T = 29
# LO.setValue('Frequency',LOfrequency*1e9)
lI = np.arange(-0.8e-3,-1.2e-3,-0.005e-3)
x = []
y = []
for I in lI:
SMU.setValue('Source current',I)
StringForFlux = r'{}GHz_DA{}_SR{}MHz'.format(LOfrequency,DAsetting,sampleRateMHz)
path = r"G:\Shared drives\LFL\Projects\Quasiparticles\NBR19_Jun13_2022\fluxSweep\{}\\".format(StringForFlux)
figpath = r"G:\Shared drives\LFL\Projects\Quasiparticles\NBR19_Jun13_2022\fluxSweep\Figures\\"
if not os.path.exists(path):
os.makedirs(path)
if not os.path.exists(figpath):
os.makedirs(figpath)
timestamp = time.strftime("%Y%m%d_%H%M%S")
savefile = path + 'NBR19_{}.bin'.format(timestamp)
samplesPerPoint = int(max(origRateMHz/sampleRateMHz,1))
actualSampleRateMHz = origRateMHz/samplesPerPoint
# write metadata to corresponding .txt file
with open(savefile[0:-4] + ".txt",'w') as f:
from time import strftime
f.write(strftime("%c")+'\n')
f.write("Channels: " + 'AB' + '\n')
f.write("Acquisition duration: " + str(acquisitionLength_sec) + " seconds." + '\n')
f.write("Sample Rate MHz: " + str(actualSampleRateMHz) + '\n')
f.write("LO frequency: "+str(LOfrequency) + " GHz")
f.write("flux bias: "+str(I) + " A")
f.write("DA setting: "+str(DAsetting) + " dB\n")
f.write("Temperature: "+str(T)+' mK\n')
f.write("Victor current: "+str(I*1000)+' mA\n')
Creturn = subprocess.getoutput('"{}" {} {} "{}"'.format(pathToExe,int(acquisitionLength_sec),samplesPerPoint,savefile))
print(Creturn)
data = qp.loadAlazarData(savefile)
data = qp.BoxcarDownsample(data,2e-6,10e6)
data = qp.uint16_to_mV(data)
# ax = qp.plotComplexHist(data[0],data[1])
# ax.set_title(f'{I*1e3:.1f} mA')
# plt.savefig(figpath+f'\\{I*1e6}uA.png')
# plt.show();
# plt.close();
x.append(np.mean(data[0]))
y.append(np.mean(data[1]))
fig,ax = plt.subplots()
# hi = plt.hist2d(data[0],data[1],bins=(80,80),cmap=plt.get_cmap('Greys'))
ax,hi = qp.plotComplexHist(data[0],data[1],returnHistData=True)
# hi = np.histogram2d(data[0],data[1],bins=(200,200))
xc = (hi[1][:-1]+hi[1][1:])/2
yc = (hi[2][:-1]+hi[2][1:])/2
# guess = [60000,np.mean(data[0]),np.mean(data[1]),1,1,0]
# xx,yy,amps,means,varis = qp.fitGaussian(hi,guess)
# # f = gaussianMix(heights,widths,means)
# qp.make_ellipses2(means,varis,ax,['red'])
ax.set_title(f'{I*1e3:.1f} mA')
plt.savefig(figpath+f'\\{I*1e6}uA.png')
plt.show()
plt.close()
# print(varis)
fig,ax = plt.subplots(1,1,'none',figsize=[4,3],constrained_layout=True)
colors = plt.get_cmap('gist_rainbow', len(x))
norm = mplc.Normalize(vmin=0, vmax=len(x))
sm = plt.cm.ScalarMappable(cmap=colors, norm=norm)
sm.set_array([])
fig.colorbar(sm, aspect=60)
plt.plot(x,y)
for i,(xx,yy) in enumerate(zip(x,y)):
plt.scatter(xx,yy,c=colors(i))
plt.savefig(figpath+r'summary.png')
# LO.setValue('Frequency',LOfrequency*1e9)
# stringdesc = f"{int(LOfrequency*1000)}"
# # StringForFlux = r'{}GHz_DA{}_SR{}MHz'.format(LOfrequency,DAsetting,sampleRateMHz)
# path = r"G:\Shared drives\LFL\Projects\Quasiparticles\TestOffsetNoise\\"
# figpath = r"G:\Shared drives\LFL\Projects\Quasiparticles\TestOffsetNoise\figures\\"
# if not os.path.exists(path):
# os.makedirs(path)
# if not os.path.exists(figpath):
# os.makedirs(figpath)
# timestamp = time.strftime("%Y%m%d_%H%M%S")
# savefile = path + '{}.bin'.format(stringdesc)
# samplesPerPoint = int(max(origRateMHz/sampleRateMHz,1))
# actualSampleRateMHz = origRateMHz/samplesPerPoint
# # write metadata to corresponding .txt file
# with open(savefile[0:-4] + ".txt",'w') as f:
# from time import strftime
# f.write(strftime("%c")+'\n')
# f.write("Channels: " + 'AB' + '\n')
# f.write("Acquisition duration: " + str(acquisitionLength_sec) + " seconds." + '\n')
# f.write("Sample Rate MHz: " + str(actualSampleRateMHz) + '\n')
# f.write("LO frequency: "+str(LOfrequency) + " GHz")
# # savefile = adc.startTriggeredCapture(acquisitionLength_sec,channel='AB',dataFilePath=savefile,returnfname=True,downsamplerate=sampleRateMHz*1e6)
# Creturn = subprocess.getoutput('"{}" {} {} "{}"'.format(pathToExe,int(acquisitionLength_sec),samplesPerPoint,savefile))
# print(Creturn)
# data = qp.loadAlazarData(savefile)
# data = qp.BoxcarDownsample(data,2e-6,sampleRateMHz*1e6)
# data = qp.uint16_to_mV(data)
# ax,hi = qp.plotComplexHist(data[0],data[1],bins=(80,80),returnHistData=True)
# xc = (hi[1][:-1]+hi[1][1:])/2
# yc = (hi[2][:-1]+hi[2][1:])/2
# guess = [1000,0,0,1,1,0]
# xx,yy,amps,means,varis = qp.fitGaussian(hi,guess)
# # f = gaussianMix(heights,widths,means)
# qp.make_ellipses2(means,varis,ax,['red'])
# print(f'\n\n{stringdesc} gives {varis}\n\n')
# plt.title(f'{stringdesc}')
# plt.savefig(figpath+f'{stringdesc}_IQhist.png')
# plt.show()
# adc = ADC()
# adc.configureClock(MS_s = origRateMHz)
# adc.configureTrigger(source='INT')
# for i in range(numberTraces):
# now = time.perf_counter()
# # acquire data
# print('Starting acquisition {}'.format(i))
# timestamp = time.strftime("%Y%m%d_%H%M%S")
# savefile = path + 'NBR07_{}.bin'.format(timestamp)
# # write metadata to corresponding .txt file
# with open(savefile[0:-4] + ".txt",'w') as f:
# from time import strftime
# f.write(strftime("%c")+'\n')
# f.write("Channels: " + 'AB' + '\n')
# f.write("Acquisition duration: " + str(acquisitionLength_sec) + " seconds." + '\n')
# f.write("Sample Rate MHz: " + str(actualSampleRateMHz) + '\n')
# Creturn = subprocess.getoutput('"{}" {} {} "{}"'.format(pathToExe,int(acquisitionLength_sec),samplesPerPoint,savefile))
# time.sleep(nMinutesDelay*60 - (time.perf_counter() - now))
#sleep(60)