diff --git a/colab_demo.ipynb b/colab_demo.ipynb index 2b13bd4..c6eb543 100644 --- a/colab_demo.ipynb +++ b/colab_demo.ipynb @@ -357,16 +357,6 @@ "!git clone --recursive https://github.com/shaoanlu/fewshot-face-translation-GAN.git" ] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# There are import errors under keras == 2.2.5\n", - "!pip install keras==2.2.4" - ] - }, { "cell_type": "code", "execution_count": 3, @@ -422,23 +412,9 @@ ], "source": [ "# Download pre-trined weights\n", - "!gdown https://drive.google.com/uc?id=1DUMmZGTGKMyEYSKy-w34IDHawVF24rIs\n", - "!gdown https://drive.google.com/uc?id=1xl8cg7xaRnMsyiODcXguJ83d5hwodckB" - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": {}, - "colab_type": "code", - "id": "u9b2N8INnm8P" - }, - "outputs": [], - "source": [ "!mkdir weights\n", - "!mv decoder.h5 weights/decoder.h5\n", - "!mv encoder.h5 weights/encoder.h5" + "!gdown --id 1DUMmZGTGKMyEYSKy-w34IDHawVF24rIs -O weights/encoder.h5\n", + "!gdown --id 1xl8cg7xaRnMsyiODcXguJ83d5hwodckB -O weights/decoder.h5" ] }, { @@ -897,17 +873,6 @@ "result_img = utils.post_process_result(fn_src, fd, result_face, aligned_im, src, x0, y0, x1, y1, landmarks)\n", "plt.imshow(result_img)" ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": {}, - "colab_type": "code", - "id": "_Do9x9wZl0BK" - }, - "outputs": [], - "source": [] } ], "metadata": { @@ -938,4 +903,4 @@ }, "nbformat": 4, "nbformat_minor": 1 -} +} \ No newline at end of file diff --git a/face_toolbox_keras b/face_toolbox_keras index fb472da..e0b7c67 160000 --- a/face_toolbox_keras +++ b/face_toolbox_keras @@ -1 +1 @@ -Subproject commit fb472da7d6138845930bb86ca1993f5aaac6d78e +Subproject commit e0b7c673dde1eb7d992a4c8256a439d979631e30 diff --git a/models.py b/models.py index 47a4121..af3d779 100644 --- a/models.py +++ b/models.py @@ -1,8 +1,8 @@ import cv2 import os import numpy as np -from keras.layers import Input -from keras import backend as K +from tensorflow.keras.layers import Input +from tensorflow.keras import backend as K import networks.generator as gen @@ -57,4 +57,3 @@ def inference(self, src, mask, tar, emb_tar): self.preprocess_input(mask.astype(np.uint8))[None, ...], emb_tar ]) - \ No newline at end of file diff --git a/networks/discriminator.py b/networks/discriminator.py index f81f7b1..a4a0d9a 100644 --- a/networks/discriminator.py +++ b/networks/discriminator.py @@ -1,45 +1,41 @@ -from keras.models import Model -from keras.layers import * -from keras.layers.advanced_activations import LeakyReLU +from tensorflow.keras.models import Model +from tensorflow.keras.layers import Input, Concatenate from .nn_blocks import * -def discriminator_perceptually_aware(nc_in, input_size=IMAGE_SHAPE[0], vggface_res50=None): +def discriminator_perceptually_aware(nc_in, input_size, vggface_res50=None): inp1 = Input(shape=(input_size, input_size, nc_in)) inp2 = Input(shape=(input_size, input_size, nc_in)) assert not (vggface_res50 == None), "Perceptual model not found." perceptual_feats = vggface_res50(inp1) - pf1_0 = resize_tensor(perceptual_feats[0], [input_size//4, input_size//4]) pf1_1 = resize_tensor(perceptual_feats[1], [input_size//8, input_size//8]) pf1_2 = resize_tensor(perceptual_feats[2], [input_size//16, input_size//16]) pf1_3 = resize_tensor(perceptual_feats[3], [input_size//32, input_size//32]) perceptual_feats = vggface_res50(inp2) - pf2_0 = resize_tensor(perceptual_feats[0], [input_size//4, input_size//4]) pf2_1 = resize_tensor(perceptual_feats[1], [input_size//8, input_size//8]) pf2_2 = resize_tensor(perceptual_feats[2], [input_size//16, input_size//16]) pf2_3 = resize_tensor(perceptual_feats[3], [input_size//32, input_size//32]) - x = concatenate([inp1, inp2]) + x = Concatenate()([inp1, inp2]) nc_base = 32 for i in range(3): x = conv_block_d(x, int(nc_base*(2**(i))), False) x = res_block(x, 128) - x = concatenate([x, conv_block_d(pf1_1, f=128, k=1, strides=1), conv_block_d(pf2_1, f=128, k=1, strides=1)]) + x = Concatenate()([x, conv_block_d(pf1_1, f=128, k=1, strides=1), conv_block_d(pf2_1, f=128, k=1, strides=1)]) x = conv_block_d(x, 256, False) x = res_block(x, 256) - x = concatenate([x, conv_block_d(pf1_2, f=128, k=1, strides=1), conv_block_d(pf2_2, f=256, k=1, strides=1)]) + x = Concatenate()([x, conv_block_d(pf1_2, f=128, k=1, strides=1), conv_block_d(pf2_2, f=256, k=1, strides=1)]) x = conv_block_d(x, 512, False) - x = concatenate([x, conv_block_d(pf1_3, f=128, k=1, strides=1), conv_block_d(pf2_3, f=256, k=1, strides=1)]) + x = Concatenate()([x, conv_block_d(pf1_3, f=128, k=1, strides=1), conv_block_d(pf2_3, f=256, k=1, strides=1)]) out = Conv2D(1, kernel_size=4, use_bias=False, padding="same")(x) return Model(inputs=[inp1, inp2], outputs=out) def discriminator(nc_in, input_size=224): inp = Input(shape=(input_size, input_size, nc_in)) inp_segm = Input(shape=(input_size, input_size, nc_in)) - x = concatenate([inp, inp_segm]) + x = Concatenate()([inp, inp_segm]) - nc_base = 64 x = conv_block_d(x, 32, False) x = conv_block_d(x, 32, False) x = conv_block_d(x, 64, True) diff --git a/networks/generator.py b/networks/generator.py index a03080e..29bb78b 100644 --- a/networks/generator.py +++ b/networks/generator.py @@ -1,6 +1,5 @@ -from keras.models import Model -from keras.layers import * -from keras.applications import * +from tensorflow.keras.models import Model +from tensorflow.keras.layers import Input, Concatenate, Reshape from .nn_blocks import * @@ -8,7 +7,7 @@ def encoder(nc_in=3, input_size=224): inp = Input(shape=(input_size, input_size, nc_in)) inp_ref = Input(shape=(input_size, input_size, nc_in)) inp_segm_mask = Input(shape=(input_size, input_size, nc_in)) - x = concatenate([inp, inp_ref, inp_segm_mask]) + x = Concatenate()([inp, inp_ref, inp_segm_mask]) conv1 = conv_block(x, 64, use_norm=True, strides=2) conv2 = conv_block(conv1, 128, use_norm=True, strides=2) conv3 = conv_block(conv2, 256, use_norm=True, strides=2) @@ -25,28 +24,27 @@ def encoder(nc_in=3, input_size=224): def decoder(nc_conv_in=512, input_size=14, nc_in=3, latent_dim=512): conv4 = Input(shape=(input_size, input_size, nc_conv_in)) - inp_segm_mask = Input(shape=(input_size, input_size, nc_in)) + inp_segm_mask = Input(shape=(input_size*16, input_size*16, nc_in)) inp_ds2 = Input(shape=(input_size*8, input_size*8, nc_in)) inp_ds4 = Input(shape=(input_size*4, input_size*4, nc_in)) inp_emb = Input(shape=(latent_dim,)) - + emb_mean_var = embddding_fc_block(inp_emb) emb_mean_var = Reshape((1, 1, 256))(emb_mean_var) emb = Reshape((1, 1, latent_dim))(inp_emb) emb = UpSampling2D((input_size,input_size))(emb) - + x = adain_resblock(conv4, emb_mean_var, 512) x = adain_resblock(x, emb_mean_var, 512) - x = concatenate([x, emb]) + x = Concatenate()([x, emb]) x = upscale_nn(x, 512) x = SPADE_res_block(x, resize_tensor(inp_segm_mask, [input_size*2, input_size*2]), 512, block_id='3') x = upscale_nn(x, 256) x = SPADE_res_block(x, resize_tensor(inp_segm_mask, [input_size*4, input_size*4]), 256, block_id='4') - x = concatenate([x, inp_ds4]) + x = Concatenate()([x, inp_ds4]) x = upscale_nn(x, 128) - x = concatenate([x, inp_ds2]) + x = Concatenate()([x, inp_ds2]) x = upscale_nn(x, 64) - - out = Conv2D(3, kernel_size=4, padding='same', activation="tanh")(x) - return Model([conv4, inp_ds2, inp_ds4, inp_segm_mask, inp_emb], out) + out = Conv2D(3, kernel_size=4, padding='same', activation="tanh")(x) + return Model([conv4, inp_ds2, inp_ds4, inp_segm_mask, inp_emb], out) diff --git a/networks/instance_normalization.py b/networks/instance_normalization.py index 9c0616a..420b930 100644 --- a/networks/instance_normalization.py +++ b/networks/instance_normalization.py @@ -1,9 +1,7 @@ -from keras.engine import Layer, InputSpec -from keras import initializers, regularizers, constraints -from keras import backend as K -from keras.utils.generic_utils import get_custom_objects - -import numpy as np +from tensorflow.keras.layers import Layer, InputSpec +from tensorflow.keras import initializers, regularizers, constraints +from tensorflow.keras import backend as K +from tensorflow.keras.utils import get_custom_objects class InstanceNormalization(Layer): diff --git a/networks/nn_blocks.py b/networks/nn_blocks.py index 0c56e44..cf22c0d 100644 --- a/networks/nn_blocks.py +++ b/networks/nn_blocks.py @@ -1,5 +1,6 @@ -from keras.layers import * -from keras.layers.advanced_activations import LeakyReLU +from tensorflow.keras.layers import Lambda, BatchNormalization, Conv2D, Dense, LeakyReLU, ReLU, Add, UpSampling2D +from tensorflow.keras import regularizers +from tensorflow.keras.layers.experimental.preprocessing import Resizing import tensorflow as tf from networks.instance_normalization import InstanceNormalization @@ -22,7 +23,7 @@ def normalization(inp, norm='none', group='16'): # def spade_norm(x): # meanC, varC = tf.nn.moments(x, [1, 2], keep_dims=True) # sigmaC = tf.sqrt(tf.add(varC, 1e-5)) - # return (content - meanC) / sigmaC + # return (x - meanC) / sigmaC # x = Lambda(lambda xx: spade_norm(xx))(x) else: x = x @@ -30,17 +31,17 @@ def normalization(inp, norm='none', group='16'): def conv_block(input_tensor, f, use_norm=False, k=3, strides=2): x = input_tensor - if not k == 1: + if k != 1: x = ReflectPadding2D(x) x = Conv2D(f, kernel_size=k, strides=strides, kernel_regularizer=regularizers.l2(w_l2), kernel_initializer=conv_init, use_bias=(not use_norm))(x) x = normalization(x, norm, f) if use_norm else x - x = Activation("relu")(x) + x = ReLU()(x) return x def conv_block_d(input_tensor, f, use_norm=False, k=3, strides=2): x = input_tensor - if not k == 1: + if k != 1: x = ReflectPadding2D(x) x = Conv2D(f, kernel_size=k, strides=strides, kernel_regularizer=regularizers.l2(w_l2), kernel_initializer=conv_init, use_bias=(not use_norm))(x) @@ -55,12 +56,12 @@ def res_block(input_tensor, f, use_norm=True): x = Conv2D(f, kernel_size=3, kernel_regularizer=regularizers.l2(w_l2), kernel_initializer=conv_init, use_bias=not use_norm)(x) x = normalization(x, norm, f) if use_norm else x - x = Activation('relu')(x) + x = ReLU()(x) x = ReflectPadding2D(x) x = Conv2D(f, kernel_size=3, kernel_regularizer=regularizers.l2(w_l2), kernel_initializer=conv_init)(x) - x = add([x, input_tensor]) - x = Activation('relu')(x) + x = Add()([x, input_tensor]) + x = ReLU()(x) return x def embddding_fc_block(input_tensor): @@ -68,19 +69,19 @@ def embddding_fc_block(input_tensor): x = Dense(256, kernel_regularizer=regularizers.l2(w_l2))(x) x = normalization(x, norm, 256) - x = Activation('relu')(x) + x = ReLU()(x) x = Dense(256, kernel_regularizer=regularizers.l2(w_l2))(x) x = normalization(x, norm, 256) - x = Activation('relu')(x) + x = ReLU()(x) x = Dense(256, kernel_regularizer=regularizers.l2(w_l2))(x) x = normalization(x, norm, 256) - x = Activation('relu')(x) + x = ReLU()(x) return x def adain_resblock(input_tensor, embeddings, f): # conv -> norm -> activ -> conv -> norm -> add def AdaIN(content, style_var, style_mean, epsilon=1e-5): - meanC, varC = tf.nn.moments(content, [1, 2], keep_dims=True) + meanC, varC = tf.nn.moments(content, [1, 2], keepdims=True) sigmaC = tf.sqrt(tf.add(varC, epsilon)) return (content - meanC) * style_var / sigmaC + style_mean @@ -92,13 +93,13 @@ def AdaIN(content, style_var, style_mean, epsilon=1e-5): x = Conv2D(f, kernel_size=3, kernel_regularizer=regularizers.l2(w_l2), kernel_initializer=conv_init, use_bias=False)(x) x = Lambda(lambda x: AdaIN(x[0], x[1], x[2]))([x, style_var, style_mean]) - x = Activation('relu')(x) + x = ReLU()(x) x = ReflectPadding2D(x) x = Conv2D(f, kernel_size=3, kernel_regularizer=regularizers.l2(w_l2), kernel_initializer=conv_init, use_bias=False)(x) x = Lambda(lambda x: AdaIN(x[0], x[1], x[2]))([x, style_var, style_mean]) - x = add([x, input_tensor]) - x = Activation('relu')(x) + x = Add()([x, input_tensor]) + x = ReLU()(x) return x def SPADE(input_tensor, cond_input_tensor, f, block_id=0): @@ -106,23 +107,23 @@ def SPADE(input_tensor, cond_input_tensor, f, block_id=0): x = InstanceNormalization(name=f"SPADE_norm{block_id}")(x)# x = normalization(x, "SPADE_norm", f) y = cond_input_tensor y = Conv2D(128, kernel_size=3, padding='same')(y) - y = Activation('relu')(y) + y = ReLU()(y) gamma = Conv2D(f, kernel_size=3, padding='same')(y) beta = Conv2D(f, kernel_size=3, padding='same')(y) - x = add([x, multiply([x, gamma])]) - x = add([x, beta]) + x = Add()([x, tf.multiply(x, gamma)]) + x = Add()([x, beta]) return x def SPADE_res_block(input_tensor, cond_input_tensor, f, block_id=0): x = input_tensor x = SPADE(x, cond_input_tensor, f, block_id=block_id+"_0") - x = Activation('relu')(x) + x = ReLU()(x) x = Conv2D(f, kernel_size=3, kernel_initializer=conv_init, padding='same')(x) x = SPADE(x, cond_input_tensor, f, block_id=block_id+"_1") - x = Activation('relu')(x) + x = ReLU()(x) x = Conv2D(f, kernel_size=3, kernel_initializer=conv_init, padding='same')(x) - x = add([x, input_tensor]) - x = Activation('relu')(x) + x = Add()([x, input_tensor]) + x = ReLU()(x) return x def upscale_nn(input_tensor, f, use_norm=True, w_l2=w_l2, norm=norm): @@ -135,7 +136,4 @@ def upscale_nn(input_tensor, f, use_norm=True, w_l2=w_l2, norm=norm): return x def resize_tensor(inp, shape): - if isinstance(shape, int): - return Lambda(lambda x: tf.image.resize_images(x, [shape, shape]))(inp) - elif isinstance(shape, list): - return Lambda(lambda x: tf.image.resize_images(x, [shape[0], shape[1]]))(inp) + return Resizing(*shape)(inp) diff --git a/utils/utils.py b/utils/utils.py index 4d020f7..f96dfb4 100644 --- a/utils/utils.py +++ b/utils/utils.py @@ -27,7 +27,7 @@ def get_tar_landmarks(img, landmarks_type=68): [0.81675393, 0.52105263], [0.81675393, 0.46315789], [0.81675393, 0.38421053]] ) else: - raise NotImplementedError(f"Only 68 points landmarks model is provided. Received {landmarks_pnts}.") + raise NotImplementedError(f"Only 68 points landmarks model is provided. Received {landmarks_type}.") tar_landmarks = [(int(xy[0]*img_sz[0]), int(xy[1]*img_sz[1])) for xy in avg_landmarks] return tar_landmarks @@ -47,7 +47,7 @@ def landmarks_match(src_im, src_landmarks, tar_landmarks, border_mode=cv2.BORDER result = cv2.warpAffine(src_im, M, (src_size[1], src_size[0]), borderMode=border_mode, borderValue=border_value) return result, M -def get_68_landmarks_edge_image(img, face, lms, eyes_binary_mask=False, apply_dilate_or_erode=True): +def get_68_landmarks_edge_image(img, face, lms): result = np.zeros_like(img, np.uint8) stroke_size = np.maximum(np.min(face.shape[:2])//50, 2) @@ -125,8 +125,7 @@ def get_segm_mask(im, face_im, x0, y0, x1, y1, landmarks): seg_mask = get_68_landmarks_edge_image( im, face_im, - landmarks[0], - apply_dilate_or_erode=False) + landmarks[0]) seg_mask = seg_mask[int(x0):int(x1), int(y0):int(y1), :] return seg_mask @@ -203,8 +202,8 @@ def get_tar_inputs(fns, fd, fv): aligned_face: A RGB image. emb_tar: A numpy array of shape (512,). Latent embeddings of aligned_face. """ - if not type(fns) == list: - if type(fns) == str: + if not isinstance(fns, list): + if isinstance(fns, str): fns = [fns] else: raise ValueError("Received and unknown filename type. fns shoulbe be a list or a string.")