-
Notifications
You must be signed in to change notification settings - Fork 8
/
Guided_PCC.py
156 lines (128 loc) · 4.48 KB
/
Guided_PCC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
#####################################################################
#
# Guided_PCC.py:
# Script demonstrating parallelized implementation of
# Phaser+PCC using genetic algorithms. Implemented with
# tensorflow-gpu and mpi4py.
#
# NOTE:
# The partial coherence function of the winning worker is
# shared between all workers for the next iteration.
#
#
# Siddharth Maddali
# Argonne National Laboratory
# September 2021
# 6xlq96aeq@relay.firefox.com
#
#####################################################################
import numpy as np
import scipy.io as sio
import time
import sys
from datetime import datetime
from mpi4py import MPI
from argparse import Namespace
import FigureOfMerit as fom
import Phaser as ph
import warnings
comm = MPI.COMM_WORLD
rank = comm.Get_rank() # worker index
size = comm.Get_size() # worker pool size
warnings.filterwarnings( 'ignore', category=FutureWarning )
# this doesn't seem to work
if rank==0:
print( '\nParallelizing on %d workers. '%size )
sys.stdout.flush()
############# USER EDIT #########################
# number of generations to breed forward
numGenerations = 10
# phase retrieval recipe used by all parallel workers
wave_1 = '+'.join( [ 'ER:20+SR:%.2f:0.1+ER:10+PCC:10'%sig for sig in np.linspace( 3., 1., 20 ) ] ) # support should have converged pretty well by now
wave_2 = '+'.join( [ 'ER:50+SR:1.0:0.1+ER:50+PCC:50' ] * 5 )
wave_3 = '+'.join( [ 'ER:50+SR:1.0:0.1' ] * 5 )
wave_4 = 'PCC:200'
wave_5 = 'ER:200'
recipe = '+'.join( [ wave_1, wave_2, wave_3, wave_4, wave_5 ] )
# load data set
signal = Namespace( **sio.loadmat( 'data.mat' ) ).signal
# choose comparison metric for solutions
figureOfMerit = fom.Chi
# output .mat file
outfile = 'guidedResult_pcc.mat'
#################################################
# generate initial support
shp = signal.shape
supInit = np.zeros( shp )
supInit[
(shp[0]//2-shp[0]//6):(shp[0]//2+shp[0]//6),
(shp[1]//2-shp[1]//6):(shp[1]//2+shp[1]//6),
(shp[2]//2-shp[2]//6):(shp[2]//2+shp[2]//6)
] = 1. # i.e. a box 1/3 the size of the array
time.sleep( 1 )
# initialize worker pool
workID = 'Worker-%d'%rank
worker = ph.Phaser(
gpu=True,
pcc=True,
modulus=np.sqrt( signal ),
support=supInit.copy()
).gpusolver
print( '%s: Online. '%workID )
sys.stdout.flush()
# start parallel phasing
time.sleep( 1 )
for generation in list( range( numGenerations ) ):
if rank==0:
print( '___________ Generation %d ____________'%generation )
sys.stdout.flush()
tstart = datetime.now()
worker.runRecipe( recipe )
worker.Retrieve()
tstop = datetime.now()
img = worker.finalImage
sup = worker.finalSupport
pcc = worker.pccParameters # winning paremeters shared with all workers
fm = figureOfMerit( worker.Modulus(), np.sqrt( signal ) )
print( '%s: Phased in '%workID, tstop-tstart, ', cost = %.2f'%fm )
sys.stdout.flush()
all_fms = [ rank, fm ]
all_fms = comm.gather( all_fms, root=0 )
if rank==0:
results = np.array( all_fms )
here = np.where( results[:,1]==results[:,1].min() )
winning_rank = here[0][0]
else:
winning_rank = None
winning_rank = comm.bcast( winning_rank, root=0 )
#print( '%s: Winning rank = %d'%( workID, winning_rank ) )
if rank==0 and generation < numGenerations-1:
print( 'Breeding solution %d into the others...'%winning_rank )
sys.stdout.flush()
if rank==winning_rank:
winning_img = img.copy().astype( np.complex64 )
new_sup = sup.copy().astype( np.float32 )
winning_pcc = pcc.copy().astype( np.float32 )
else:
winning_img = np.empty( img.shape, dtype=np.complex64 )
new_sup = np.empty( sup.shape, dtype=np.float32 )
winning_pcc = np.empty( pcc.shape, dtype=np.float32 )
comm.Bcast( winning_img, root=winning_rank )
comm.Bcast( new_sup, root=winning_rank )
comm.Bcast( winning_pcc, root=winning_rank )
new_img = np.sqrt( winning_img * img )
new_sup = ( new_sup + sup > 0.5 ).astype( float ) # the union of two supports
worker.resetImage( new_img, new_sup )
worker.resetParameterList( winning_pcc )
if rank==winning_rank:
print( 'Final solution: worker %d. '%rank )
sio.savemat(
outfile,
{
'img':new_img,
'sup':new_sup,
'cov':worker.getCovarianceMatrix()
}
)
print( 'Dumped final solution to %s. '%outfile )
print( 'Done. ' )