-
Notifications
You must be signed in to change notification settings - Fork 54
/
vec_task.py
706 lines (582 loc) · 30.3 KB
/
vec_task.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
# Copyright (c) 2018-2021, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from typing import Dict, Any, Tuple
from isaacgym import gymtorch, gymapi
from isaacgym.torch_utils import to_torch
from isaacgym.gymutil import get_property_setter_map, get_property_getter_map, get_default_setter_args, apply_random_samples, check_buckets, generate_random_samples
import torch
import numpy as np
import operator, random
from copy import deepcopy
import sys
import abc
from abc import ABC
class Env(ABC):
def __init__(self, config: Dict[str, Any], sim_device: str, graphics_device_id: int, headless: bool):
"""Initialise the env.
Args:
config: the configuration dictionary.
sim_device: the device to simulate physics on. eg. 'cuda:0' or 'cpu'
graphics_device_id: the device ID to render with.
headless: Set to False to disable viewer rendering.
"""
split_device = sim_device.split(":")
self.device_type = split_device[0]
self.device_id = int(split_device[1]) if len(split_device) > 1 else 0
self.device = "cpu"
if config["sim"]["use_gpu_pipeline"]:
if self.device_type.lower() == "cuda" or self.device_type.lower() == "gpu":
self.device = "cuda" + ":" + str(self.device_id)
else:
print("GPU Pipeline can only be used with GPU simulation. Forcing CPU Pipeline.")
config["sim"]["use_gpu_pipeline"] = False
self.rl_device = config.get("rl_device", "cuda:0")
# Rendering
# if training in a headless mode
self.headless = headless
enable_camera_sensors = config.get("enableCameraSensors", False)
self.graphics_device_id = graphics_device_id
if enable_camera_sensors == False and self.headless == True:
self.graphics_device_id = -1
self.num_environments = config["env"]["numEnvs"]
self.num_agents = config["env"].get("numAgents", 1) # used for multi-agent environments
self.num_observations = config["env"]["numObservations"]
self.num_privileged_obs = None
self.num_actions = config["env"]["numActions"]
self.control_freq_inv = config["env"].get("controlFrequencyInv", 1)
self.clip_obs = config["env"].get("clipObservations", np.Inf)
self.clip_actions = config["env"].get("clipActions", np.Inf)
@abc.abstractmethod
def allocate_buffers(self):
"""Create torch buffers for observations, rewards, actions dones and any additional data."""
@abc.abstractmethod
def step(self, actions: torch.Tensor) -> Tuple[Dict[str, torch.Tensor], torch.Tensor, torch.Tensor, Dict[str, Any]]:
"""Step the physics of the environment.
Args:
actions: actions to apply
Returns:
Observations, rewards, resets, info
Observations are dict of observations (currently only one member called 'obs')
"""
@abc.abstractmethod
def reset(self)-> Dict[str, torch.Tensor]:
"""Reset the environment.
Returns:
Observation dictionary
"""
@property
def observation_space(self):
"""Get the environment's observation space."""
return self.obs_space
@property
def action_space(self):
"""Get the environment's action space."""
return self.act_space
@property
def num_envs(self) -> int:
"""Get the number of environments."""
return self.num_environments
@property
def num_acts(self) -> int:
"""Get the number of actions in the environment."""
return self.num_actions
@property
def num_obs(self) -> int:
"""Get the number of observations in the environment."""
return self.num_observations
class VecTask(Env):
def __init__(self, config, sim_device, graphics_device_id, headless):
"""Initialise the `VecTask`.
Args:
config: config dictionary for the environment.
sim_device: the device to simulate physics on. eg. 'cuda:0' or 'cpu'
graphics_device_id: the device ID to render with.
headless: Set to False to disable viewer rendering.
"""
super().__init__(config, sim_device, graphics_device_id, headless)
self.sim_params = self.__parse_sim_params(self.cfg["physics_engine"], self.cfg["sim"])
if self.cfg["physics_engine"] == "physx":
self.physics_engine = gymapi.SIM_PHYSX
elif self.cfg["physics_engine"] == "flex":
self.physics_engine = gymapi.SIM_FLEX
else:
msg = f"Invalid physics engine backend: {self.cfg['physics_engine']}"
raise ValueError(msg)
# optimization flags for pytorch JIT
torch._C._jit_set_profiling_mode(False)
torch._C._jit_set_profiling_executor(False)
self.gym = gymapi.acquire_gym()
self.first_randomization = True
self.original_props = {}
self.dr_randomizations = {}
self.actor_params_generator = None
self.extern_actor_params = {}
self.last_step = -1
self.last_rand_step = -1
for env_id in range(self.num_envs):
self.extern_actor_params[env_id] = None
# create envs, sim and viewer
self.sim_initialized = False
self.create_sim()
self.gym.prepare_sim(self.sim)
self.sim_initialized = True
self.set_viewer()
self.allocate_buffers()
def get_observations(self):
return self.obs_buf
def get_privileged_observations(self):
return self.privileged_obs_buf
def set_viewer(self):
"""Create the viewer."""
# todo: read from config
self.enable_viewer_sync = True
self.viewer = None
# if running with a viewer, set up keyboard shortcuts and camera
if self.headless == False:
# subscribe to keyboard shortcuts
self.viewer = self.gym.create_viewer(
self.sim, gymapi.CameraProperties())
self.gym.subscribe_viewer_keyboard_event(
self.viewer, gymapi.KEY_ESCAPE, "QUIT")
self.gym.subscribe_viewer_keyboard_event(
self.viewer, gymapi.KEY_V, "toggle_viewer_sync")
# set the camera position based on up axis
sim_params = self.gym.get_sim_params(self.sim)
if sim_params.up_axis == gymapi.UP_AXIS_Z:
cam_pos = gymapi.Vec3(20.0, 25.0, 3.0)
cam_target = gymapi.Vec3(10.0, 15.0, 0.0)
else:
cam_pos = gymapi.Vec3(20.0, 3.0, 25.0)
cam_target = gymapi.Vec3(10.0, 0.0, 15.0)
self.gym.viewer_camera_look_at(
self.viewer, None, cam_pos, cam_target)
def allocate_buffers(self):
"""Allocate the observation, states, etc. buffers.
These are what is used to set observations and states in the environment classes which
inherit from this one, and are read in `step` and other related functions.
"""
# allocate buffers
self.obs_buf = torch.zeros(
(self.num_envs, self.num_obs), device=self.device, dtype=torch.float)
if self.num_privileged_obs is not None:
self.privileged_obs_buf = torch.zeros(self.num_envs, self.num_privileged_obs, device=self.device, dtype=torch.float)
else:
self.privileged_obs_buf = None
self.rew_buf = torch.zeros(
self.num_envs, device=self.device, dtype=torch.float)
self.reset_buf = torch.ones(
self.num_envs, device=self.device, dtype=torch.long)
self.timeout_buf = torch.zeros(
self.num_envs, device=self.device, dtype=torch.long)
self.progress_buf = torch.zeros(
self.num_envs, device=self.device, dtype=torch.long)
self.randomize_buf = torch.zeros(
self.num_envs, device=self.device, dtype=torch.long)
self.extras = {}
#
def set_sim_params_up_axis(self, sim_params: gymapi.SimParams, axis: str) -> int:
"""Set gravity based on up axis and return axis index.
Args:
sim_params: sim params to modify the axis for.
axis: axis to set sim params for.
Returns:
axis index for up axis.
"""
if axis == 'z':
sim_params.up_axis = gymapi.UP_AXIS_Z
sim_params.gravity.x = 0
sim_params.gravity.y = 0
sim_params.gravity.z = -9.81
return 2
return 1
def create_sim(self, compute_device: int, graphics_device: int, physics_engine, sim_params: gymapi.SimParams):
"""Create an Isaac Gym sim object.
Args:
compute_device: ID of compute device to use.
graphics_device: ID of graphics device to use.
physics_engine: physics engine to use (`gymapi.SIM_PHYSX` or `gymapi.SIM_FLEX`)
sim_params: sim params to use.
Returns:
the Isaac Gym sim object.
"""
sim = self.gym.create_sim(compute_device, graphics_device, physics_engine, sim_params)
if sim is None:
print("*** Failed to create sim")
quit()
return sim
@abc.abstractmethod
def pre_physics_step(self, actions: torch.Tensor):
"""Apply the actions to the environment (eg by setting torques, position targets).
Args:
actions: the actions to apply
"""
@abc.abstractmethod
def post_physics_step(self):
"""Compute reward and observations, reset any environments that require it."""
def step(self, actions: torch.Tensor) -> Tuple[Dict[str, torch.Tensor], torch.Tensor, torch.Tensor, Dict[str, Any]]:
"""Step the physics of the environment.
Args:
actions: actions to apply
Returns:
Observations, rewards, resets, info
Observations are dict of observations (currently only one member called 'obs')
"""
# randomize actions
if self.dr_randomizations.get('actions', None):
actions = self.dr_randomizations['actions']['noise_lambda'](actions)
action_tensor = torch.clamp(actions, -self.clip_actions, self.clip_actions)
# apply actions
self.pre_physics_step(action_tensor)
# step physics and render each frame
for i in range(self.control_freq_inv):
self.render()
self.gym.simulate(self.sim)
# to fix!
if self.device == 'cpu':
self.gym.fetch_results(self.sim, True)
# fill time out buffer
self.timeout_buf = torch.where(self.progress_buf >= self.max_episode_length - 1, torch.ones_like(self.timeout_buf), torch.zeros_like(self.timeout_buf))
# compute observations, rewards, resets, ...
self.post_physics_step()
# randomize observations
if self.dr_randomizations.get('observations', None):
self.obs_buf = self.dr_randomizations['observations']['noise_lambda'](self.obs_buf)
self.extras["time_outs"] = self.timeout_buf.to(self.rl_device)
self.obs_buf = torch.clamp(self.obs_buf, -self.clip_obs, self.clip_obs).to(self.rl_device)
return self.obs_buf, self.privileged_obs_buf, self.rew_buf.to(self.rl_device), self.reset_buf.to(self.rl_device), self.extras
def zero_actions(self) -> torch.Tensor:
"""Returns a buffer with zero actions.
Returns:
A buffer of zero torch actions
"""
actions = torch.zeros([self.num_envs, self.num_actions], dtype=torch.float32, device=self.rl_device)
return actions
def reset(self) -> torch.Tensor:
"""Reset the environment.
Returns:
Observation dictionary
"""
zero_actions = self.zero_actions()
# step the simulator
self.step(zero_actions)
self.obs_buf = torch.clamp(self.obs_buf, -self.clip_obs, self.clip_obs).to(self.rl_device)
return self.obs_buf, self.privileged_obs_buf
def render(self):
"""Draw the frame to the viewer, and check for keyboard events."""
if self.viewer:
# check for window closed
if self.gym.query_viewer_has_closed(self.viewer):
sys.exit()
# check for keyboard events
for evt in self.gym.query_viewer_action_events(self.viewer):
if evt.action == "QUIT" and evt.value > 0:
sys.exit()
elif evt.action == "toggle_viewer_sync" and evt.value > 0:
self.enable_viewer_sync = not self.enable_viewer_sync
# fetch results
if self.device != 'cpu':
self.gym.fetch_results(self.sim, True)
# step graphics
if self.enable_viewer_sync:
self.gym.step_graphics(self.sim)
self.gym.draw_viewer(self.viewer, self.sim, True)
# Wait for dt to elapse in real time.
# This synchronizes the physics simulation with the rendering rate.
self.gym.sync_frame_time(self.sim)
else:
self.gym.poll_viewer_events(self.viewer)
def __parse_sim_params(self, physics_engine: str, config_sim: Dict[str, Any]) -> gymapi.SimParams:
"""Parse the config dictionary for physics stepping settings.
Args:
physics_engine: which physics engine to use. "physx" or "flex"
config_sim: dict of sim configuration parameters
Returns
IsaacGym SimParams object with updated settings.
"""
sim_params = gymapi.SimParams()
# check correct up-axis
if config_sim["up_axis"] not in ["z", "y"]:
msg = f"Invalid physics up-axis: {config_sim['up_axis']}"
print(msg)
raise ValueError(msg)
# assign general sim parameters
sim_params.dt = config_sim["dt"]
sim_params.num_client_threads = config_sim.get("num_client_threads", 0)
sim_params.use_gpu_pipeline = config_sim["use_gpu_pipeline"]
sim_params.substeps = config_sim.get("substeps", 2)
# assign up-axis
if config_sim["up_axis"] == "z":
sim_params.up_axis = gymapi.UP_AXIS_Z
else:
sim_params.up_axis = gymapi.UP_AXIS_Y
# assign gravity
sim_params.gravity = gymapi.Vec3(*config_sim["gravity"])
# configure physics parameters
if physics_engine == "physx":
# set the parameters
if "physx" in config_sim:
for opt in config_sim["physx"].keys():
if opt == "contact_collection":
setattr(sim_params.physx, opt, gymapi.ContactCollection(config_sim["physx"][opt]))
else:
setattr(sim_params.physx, opt, config_sim["physx"][opt])
else:
# set the parameters
if "flex" in config_sim:
for opt in config_sim["flex"].keys():
setattr(sim_params.flex, opt, config_sim["flex"][opt])
# return the configured params
return sim_params
"""
Domain Randomization methods
"""
def get_actor_params_info(self, dr_params: Dict[str, Any], env):
"""Generate a flat array of actor params, their names and ranges.
Returns:
The array
"""
if "actor_params" not in dr_params:
return None
params = []
names = []
lows = []
highs = []
param_getters_map = get_property_getter_map(self.gym)
for actor, actor_properties in dr_params["actor_params"].items():
handle = self.gym.find_actor_handle(env, actor)
for prop_name, prop_attrs in actor_properties.items():
if prop_name == 'color':
continue # this is set randomly
props = param_getters_map[prop_name](env, handle)
if not isinstance(props, list):
props = [props]
for prop_idx, prop in enumerate(props):
for attr, attr_randomization_params in prop_attrs.items():
name = prop_name+'_' + str(prop_idx) + '_'+attr
lo_hi = attr_randomization_params['range']
distr = attr_randomization_params['distribution']
if 'uniform' not in distr:
lo_hi = (-1.0*float('Inf'), float('Inf'))
if isinstance(prop, np.ndarray):
for attr_idx in range(prop[attr].shape[0]):
params.append(prop[attr][attr_idx])
names.append(name+'_'+str(attr_idx))
lows.append(lo_hi[0])
highs.append(lo_hi[1])
else:
params.append(getattr(prop, attr))
names.append(name)
lows.append(lo_hi[0])
highs.append(lo_hi[1])
return params, names, lows, highs
def apply_randomizations(self, dr_params):
"""Apply domain randomizations to the environment.
Note that currently we can only apply randomizations only on resets, due to current PhysX limitations
Args:
dr_params: parameters for domain randomization to use.
"""
# If we don't have a randomization frequency, randomize every step
rand_freq = dr_params.get("frequency", 1)
# First, determine what to randomize:
# - non-environment parameters when > frequency steps have passed since the last non-environment
# - physical environments in the reset buffer, which have exceeded the randomization frequency threshold
# - on the first call, randomize everything
self.last_step = self.gym.get_frame_count(self.sim)
if self.first_randomization:
do_nonenv_randomize = True
env_ids = list(range(self.num_envs))
else:
do_nonenv_randomize = (self.last_step - self.last_rand_step) >= rand_freq
rand_envs = torch.where(self.randomize_buf >= rand_freq, torch.ones_like(self.randomize_buf), torch.zeros_like(self.randomize_buf))
rand_envs = torch.logical_and(rand_envs, self.reset_buf)
env_ids = torch.nonzero(rand_envs, as_tuple=False).squeeze(-1).tolist()
self.randomize_buf[rand_envs] = 0
if do_nonenv_randomize:
self.last_rand_step = self.last_step
param_setters_map = get_property_setter_map(self.gym)
param_setter_defaults_map = get_default_setter_args(self.gym)
param_getters_map = get_property_getter_map(self.gym)
# On first iteration, check the number of buckets
if self.first_randomization:
check_buckets(self.gym, self.envs, dr_params)
for nonphysical_param in ["observations", "actions"]:
if nonphysical_param in dr_params and do_nonenv_randomize:
dist = dr_params[nonphysical_param]["distribution"]
op_type = dr_params[nonphysical_param]["operation"]
sched_type = dr_params[nonphysical_param]["schedule"] if "schedule" in dr_params[nonphysical_param] else None
sched_step = dr_params[nonphysical_param]["schedule_steps"] if "schedule" in dr_params[nonphysical_param] else None
op = operator.add if op_type == 'additive' else operator.mul
if sched_type == 'linear':
sched_scaling = 1.0 / sched_step * \
min(self.last_step, sched_step)
elif sched_type == 'constant':
sched_scaling = 0 if self.last_step < sched_step else 1
else:
sched_scaling = 1
if dist == 'gaussian':
mu, var = dr_params[nonphysical_param]["range"]
mu_corr, var_corr = dr_params[nonphysical_param].get("range_correlated", [0., 0.])
if op_type == 'additive':
mu *= sched_scaling
var *= sched_scaling
mu_corr *= sched_scaling
var_corr *= sched_scaling
elif op_type == 'scaling':
var = var * sched_scaling # scale up var over time
mu = mu * sched_scaling + 1.0 * \
(1.0 - sched_scaling) # linearly interpolate
var_corr = var_corr * sched_scaling # scale up var over time
mu_corr = mu_corr * sched_scaling + 1.0 * \
(1.0 - sched_scaling) # linearly interpolate
def noise_lambda(tensor, param_name=nonphysical_param):
params = self.dr_randomizations[param_name]
corr = params.get('corr', None)
if corr is None:
corr = torch.randn_like(tensor)
params['corr'] = corr
corr = corr * params['var_corr'] + params['mu_corr']
return op(
tensor, corr + torch.randn_like(tensor) * params['var'] + params['mu'])
self.dr_randomizations[nonphysical_param] = {'mu': mu, 'var': var, 'mu_corr': mu_corr, 'var_corr': var_corr, 'noise_lambda': noise_lambda}
elif dist == 'uniform':
lo, hi = dr_params[nonphysical_param]["range"]
lo_corr, hi_corr = dr_params[nonphysical_param].get("range_correlated", [0., 0.])
if op_type == 'additive':
lo *= sched_scaling
hi *= sched_scaling
lo_corr *= sched_scaling
hi_corr *= sched_scaling
elif op_type == 'scaling':
lo = lo * sched_scaling + 1.0 * (1.0 - sched_scaling)
hi = hi * sched_scaling + 1.0 * (1.0 - sched_scaling)
lo_corr = lo_corr * sched_scaling + 1.0 * (1.0 - sched_scaling)
hi_corr = hi_corr * sched_scaling + 1.0 * (1.0 - sched_scaling)
def noise_lambda(tensor, param_name=nonphysical_param):
params = self.dr_randomizations[param_name]
corr = params.get('corr', None)
if corr is None:
corr = torch.randn_like(tensor)
params['corr'] = corr
corr = corr * (params['hi_corr'] - params['lo_corr']) + params['lo_corr']
return op(tensor, corr + torch.rand_like(tensor) * (params['hi'] - params['lo']) + params['lo'])
self.dr_randomizations[nonphysical_param] = {'lo': lo, 'hi': hi, 'lo_corr': lo_corr, 'hi_corr': hi_corr, 'noise_lambda': noise_lambda}
if "sim_params" in dr_params and do_nonenv_randomize:
prop_attrs = dr_params["sim_params"]
prop = self.gym.get_sim_params(self.sim)
if self.first_randomization:
self.original_props["sim_params"] = {
attr: getattr(prop, attr) for attr in dir(prop)}
for attr, attr_randomization_params in prop_attrs.items():
apply_random_samples(
prop, self.original_props["sim_params"], attr, attr_randomization_params, self.last_step)
self.gym.set_sim_params(self.sim, prop)
# If self.actor_params_generator is initialized: use it to
# sample actor simulation params. This gives users the
# freedom to generate samples from arbitrary distributions,
# e.g. use full-covariance distributions instead of the DR's
# default of treating each simulation parameter independently.
extern_offsets = {}
if self.actor_params_generator is not None:
for env_id in env_ids:
self.extern_actor_params[env_id] = \
self.actor_params_generator.sample()
extern_offsets[env_id] = 0
for actor, actor_properties in dr_params["actor_params"].items():
for env_id in env_ids:
env = self.envs[env_id]
handle = self.gym.find_actor_handle(env, actor)
extern_sample = self.extern_actor_params[env_id]
for prop_name, prop_attrs in actor_properties.items():
if prop_name == 'color':
num_bodies = self.gym.get_actor_rigid_body_count(
env, handle)
for n in range(num_bodies):
self.gym.set_rigid_body_color(env, handle, n, gymapi.MESH_VISUAL,
gymapi.Vec3(random.uniform(0, 1), random.uniform(0, 1), random.uniform(0, 1)))
continue
if prop_name == 'scale':
setup_only = prop_attrs.get('setup_only', False)
if (setup_only and not self.sim_initialized) or not setup_only:
attr_randomization_params = prop_attrs
sample = generate_random_samples(attr_randomization_params, 1,
self.last_step, None)
og_scale = 1
if attr_randomization_params['operation'] == 'scaling':
new_scale = og_scale * sample
elif attr_randomization_params['operation'] == 'additive':
new_scale = og_scale + sample
self.gym.set_actor_scale(env, handle, new_scale)
continue
prop = param_getters_map[prop_name](env, handle)
set_random_properties = True
if isinstance(prop, list):
if self.first_randomization:
self.original_props[prop_name] = [
{attr: getattr(p, attr) for attr in dir(p)} for p in prop]
for p, og_p in zip(prop, self.original_props[prop_name]):
for attr, attr_randomization_params in prop_attrs.items():
setup_only = attr_randomization_params.get('setup_only', False)
if (setup_only and not self.sim_initialized) or not setup_only:
smpl = None
if self.actor_params_generator is not None:
smpl, extern_offsets[env_id] = get_attr_val_from_sample(
extern_sample, extern_offsets[env_id], p, attr)
apply_random_samples(
p, og_p, attr, attr_randomization_params,
self.last_step, smpl)
else:
set_random_properties = False
else:
if self.first_randomization:
self.original_props[prop_name] = deepcopy(prop)
for attr, attr_randomization_params in prop_attrs.items():
setup_only = attr_randomization_params.get('setup_only', False)
if (setup_only and not self.sim_initialized) or not setup_only:
smpl = None
if self.actor_params_generator is not None:
smpl, extern_offsets[env_id] = get_attr_val_from_sample(
extern_sample, extern_offsets[env_id], prop, attr)
apply_random_samples(
prop, self.original_props[prop_name], attr,
attr_randomization_params, self.last_step, smpl)
else:
set_random_properties = False
if set_random_properties:
setter = param_setters_map[prop_name]
default_args = param_setter_defaults_map[prop_name]
setter(env, handle, prop, *default_args)
if self.actor_params_generator is not None:
for env_id in env_ids: # check that we used all dims in sample
if extern_offsets[env_id] > 0:
extern_sample = self.extern_actor_params[env_id]
if extern_offsets[env_id] != extern_sample.shape[0]:
print('env_id', env_id,
'extern_offset', extern_offsets[env_id],
'vs extern_sample.shape', extern_sample.shape)
raise Exception("Invalid extern_sample size")
self.first_randomization = False