-
Notifications
You must be signed in to change notification settings - Fork 2
/
genTransOptSeq_natDigits.py
367 lines (297 loc) · 17.7 KB
/
genTransOptSeq_natDigits.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
from __future__ import division
import os
import time
import numpy as np
import scipy.io as sio
import scipy as sp
from scipy.optimize import minimize
import argparse
from torch.autograd import Variable
import torch.nn as nn
import torch
from transOptModel import TransOpt
from utils import *
parser = argparse.ArgumentParser()
parser.add_argument('--model', type=str, default='./results/TOVAE', help='folder name')
parser.add_argument('--epoch', type=int, default=75, help='number of epochs of training')
parser.add_argument('--batch_size', type=int, default=1, help='size of the batches')
parser.add_argument('--c_dim', type=int, default=1, help='number of color channels in the input image')
parser.add_argument('--z_dim', type=int, default=6, help='Dimension of the latent space')
parser.add_argument('--x_dim', type=int, default=20, help='Dimension of the input space')
parser.add_argument('--c_samp', type=int, default=1, help='Number of samples from the c distribution')
parser.add_argument('--num_anchor', type=int, default=8, help='Number of anchor points per class')
parser.add_argument('--M', type=int, default=4, help='Number of dictionary elements')
parser.add_argument('--lr', type=float, default=0.0001, help='adam: learning rate')
parser.add_argument('--anchor_lr', type=float, default=0.0001, help='adam: learning rate')
parser.add_argument('--lr_psi', type=float, default=0.00001, help='learning rate for Psi')
parser.add_argument('--b1', type=float, default=0.5, help='adam: momentum term')
parser.add_argument('--b2', type=float, default=0.999, help='adam: momentum term')
parser.add_argument('--recon_weight', type=float, default=1.0, help='Weight of the reconstruction term of the loss function')
parser.add_argument('--prior_weight', type=float, default=1.0, help='Weight of the prior term of the loss function')
parser.add_argument('--post_TO_weight', type=float, default=1.0, help='Weight of the posterior reconstruction term of the loss function')
parser.add_argument('--post_l1_weight', type=float, default=1.0, help='Weight of the posterior l1 term of the loss function')
parser.add_argument('--prior_l1_weight', type=float, default=0.01, help='Weight of the posterior l1 term of the loss function')
parser.add_argument('--post_cInfer_weight', type=float, default= 0.000001, help='Weight of the prior on the l1 term during inference in the posterior')
parser.add_argument('--prior_cInfer_weight', type=float, default=0.000001, help='Weight of the prior on the l1 term during inference in the prior')
parser.add_argument('--gamma', type=float, default=0.01, help='gd: weight on dictionary element')
parser.add_argument('--img_size', type=int, default=28, help='size of each image dimension')
parser.add_argument('--zeta', type=float, default=0.001, help='gd: weight on coefficient regularizer')
parser.add_argument('--binarize_flag',type = bool,default = False, help='flag of weather or not to binarize the image data')
parser.add_argument('--num_net_steps', type=int, default=20, help='Number of steps on only the network weights')
parser.add_argument('--num_psi_steps', type=int, default=60, help='Number of steps on only the psi weights')
parser.add_argument('--numRestart', type=int, default=1, help='number of restarts for coefficient inference')
parser.add_argument('--priorWeight_nsteps', type=float, default= 0.0001, help='Weight of the prior during the network weight update steps')
parser.add_argument('--netWeights_psteps', type=float, default=0.0001, help='Weight of the reconstruction loss during the transport operator weight update steps')
parser.add_argument('--to_noise_std', type=float, default=0.001, help='Noise for sampling gaussian noise in latent space')
parser.add_argument('--num_pretrain_steps', type=int, default=30000, help='Number of steps to train the network with no VAE component')
parser.add_argument('--data_use', type=str,default = 'natDigits',help='Specify which dataset to use [swiss2D_identity,swiss2D,rotDigits,natDigits]')
parser.add_argument('--alternate_steps_flag', type=int, default=1, help='[0/1] to specify whether to alternate between steps updating net weights and psi weights ')
opt = parser.parse_args()
print(opt)
def weights_init_normal(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
torch.nn.init.normal_(m.weight.data, 0.0, 0.02)
elif classname.find('linear') != -1:
torch.nn.init.normal_(m.weight.data, 0.0, 0.02)
torch.nn.init.constant_(m.bias.data, 0.0)
class Sample_c(nn.Module):
# Sample c from a laplacian distribution
def __init__(self):
super(Sample_c, self).__init__()
def forward(self, batch_size,M,zeta):
u = torch.rand(batch_size,M)-0.5
c = -torch.div(torch.mul(torch.sign(u),torch.log(1.0-2.0*torch.abs(u))),zeta)
return c
def transOptObj_c(c,Psi,x0,x1,zeta):
N = np.int(np.sqrt(Psi.shape[0]))
M = np.int(Psi.shape[1])
coeff_use = np.expand_dims(c,axis=1)
x0_use = np.expand_dims(x0,axis=1)
A = np.reshape(np.dot(Psi,coeff_use),(N,N),order='F')
T = np.real(sp.linalg.expm(A))
x1_est= np.dot(T,x0_use)[:,0]
objFun = 0.5*np.linalg.norm(x1-x1_est)**2 + zeta*np.sum(np.abs(c))
return objFun
def transOptDerv_c(c,Psi,x0,x1,zeta):
N = np.int(np.sqrt(Psi.shape[0]))
M = np.int(Psi.shape[1])
coeff_use = np.expand_dims(c,axis=1)
x0_use = np.expand_dims(x0,axis=1)
x1_use = np.expand_dims(x1,axis=1)
A = np.reshape(np.dot(Psi,coeff_use),(N,N),order='F')
T = np.real(sp.linalg.expm(A))
eig_out = np.linalg.eig(A)
U = eig_out[1]
D = eig_out[0]
V = np.linalg.inv(U)
V = V.T
innerVal = np.dot(-x1_use,x0_use.T) + np.dot(T,np.dot(x0_use,x0_use.T))
P = np.dot(np.dot(U.T,innerVal),V)
F_mat = np.zeros((D.shape[0],D.shape[0]),dtype=np.complex128)
for alpha in range(0,D.shape[0]):
for beta in range(0,D.shape[0]):
if D[alpha] == D[beta]:
F_mat[alpha,beta] = np.exp(D[alpha])
else:
F_mat[alpha,beta] = (np.exp(D[beta])-np.exp(D[alpha]))/(D[beta]-D[alpha])
fp = np.multiply(F_mat,P)
Q1 = np.dot(V,fp)
Q = np.dot(Q1,U.T)
c_grad = np.real(np.dot(np.reshape(Q,-1,order='F'),Psi) + zeta*np.sign(c))
return c_grad
def infer_transOpt_coeff(x0,x1,Psi,zeta,randMin,randMax):
c0 = np.random.uniform(randMin,randMax,M)
opt_out = minimize(transOptObj_c,c0,args=(Psi_use,x0,x1,zeta),method = 'CG',jac=transOptDerv_c,options={'maxiter':50,'disp':False},tol = 10^-7)
c_est = opt_out['x']
E = opt_out['fun']
nit = opt_out['nit']
return c_est, E, nit
def compute_arc_length(Psi,coeff_infer,t,x0,N):
A_mat = np.reshape(np.dot(Psi,coeff_infer),(N,N),order='F')
arc_len = 0.0
for t_use in t:
T = np.real(sp.linalg.expm(A_mat*t_use))
arc_len = arc_len + t_use*np.linalg.norm(A_mat*T*x0)
return arc_len
# Define variables from input parameters
batch_size = opt.batch_size
input_h = opt.img_size
input_w = opt.img_size
x_dim = opt.x_dim
z_dim = opt.z_dim
N = opt.z_dim
N_use = N*N
M = opt.M
zeta = opt.zeta
lr_psi = opt.lr_psi
num_c_samp = opt.c_samp
num_anchor = opt.num_anchor
num_pretrain_steps =opt.num_pretrain_steps
data_use = opt.data_use
prior_l1_weight = opt.prior_l1_weight*opt.priorWeight_nsteps
prior_weight = opt.prior_weight*opt.priorWeight_nsteps
recon_weight = opt.recon_weight
numRestart = opt.numRestart
num_net_steps = opt.num_net_steps
num_psi_steps = opt.num_psi_steps
alternate_steps_flag = opt.alternate_steps_flag
lr_anchor = opt.anchor_lr
scale = 10.0 # This doesn't do anything at this point but I need to get rid of the scaling parameters
# Define decay in psi learning rate with unsuccessful steps or after a certain number of steps
decay = 0.99 # Decay after psi steps that increase the objective
titrate_decay = 0.9992 # Titration decay
titrate_steps = num_pretrain_steps + 15000 # number of steps after which titration decay occurs
max_psi_lr = 0.008 # max psi learning rate allowed
# Specify the sampling spread and variance in the pretrained steps
# Parameters for finding the closest anchor points
closest_anchor_flag = 1
t_use = np.arange(0,1.0,0.01)
# Initialize the counts for alternating steps
net_count = 0
psi_count = num_psi_steps +1
# Specify which classes we want to train on
class_use = np.array([0,1,2,3,4,5,6,7,8,9])
class_use_str = np.array2string(class_use)
newClass = range(0,class_use.shape[0])
test_size = batch_size
y_dim = 10
t = np.arange(-0.625*40,0.65625*40,0.03125*40)
batch_orig = 32
stepUse =34000
if alternate_steps_flag == 0:
save_folder = opt.model + '_vAN' + str(opt.priorWeight_nsteps) + '_vAT' + str(opt.netWeights_psteps) + '_' + str(numRestart) + 'start_' + data_use + '_pre' + str(num_pretrain_steps) + '_CA' + str(closest_anchor_flag) + '_M' + str(M) + '_z' + str(z_dim) + '_A' + str(opt.num_anchor) + '_batch' + str(opt.batch_size) + '_rw' + str(opt.recon_weight) + '_pol1' + str(opt.post_l1_weight) + '_poR' + str(opt.post_TO_weight)+ '_poC' + str(opt.post_cInfer_weight) + '_prl1' + str(opt.prior_l1_weight) + '_prR' + str(opt.prior_weight) + '_prC' + str(opt.prior_cInfer_weight) + '_g' + str(opt.gamma) + '_lr' + str(opt.lr) +'/'
sample_dir = opt.model + '_vAN' + str(opt.priorWeight_nsteps) + '_vAT' + str(opt.netWeights_psteps) + '_' + str(numRestart) + 'start_' + data_use + '_pre' + str(num_pretrain_steps) + '_CA' + str(closest_anchor_flag) + '_M' + str(M) + '_z' + str(z_dim) + '_A' + str(opt.num_anchor) + '_batch' + str(opt.batch_size) + '_rw' + str(opt.recon_weight) + '_pol1' + str(opt.post_l1_weight) + '_poR' + str(opt.post_TO_weight)+ '_poC' + str(opt.post_cInfer_weight) + '_prl1' + str(opt.prior_l1_weight) + '_prR' + str(opt.prior_weight) + '_prC' + str(opt.prior_cInfer_weight) + '_g' + str(opt.gamma) + '_lr' + str(opt.lr) +'_samples/'
else:
save_folder = opt.model + '_vAN' + str(opt.priorWeight_nsteps) + '_vAT' + str(opt.netWeights_psteps) + '_' + str(numRestart) + 'start_' + data_use + '_pre' + str(num_pretrain_steps) + '_CA' + str(closest_anchor_flag) + '_M' + str(M) + '_z' + str(z_dim) + '_A' + str(opt.num_anchor) + '_batch' + str(opt.batch_size) + '_rw' + str(opt.recon_weight) + '_pol1' + str(opt.post_l1_weight) + '_poR' + str(opt.post_TO_weight)+ '_poC' + str(opt.post_cInfer_weight) + '_prl1' + str(opt.prior_l1_weight) + '_prR' + str(opt.prior_weight) + '_prC' + str(opt.prior_cInfer_weight) + '_g' + str(opt.gamma) + '_lr' + str(opt.lr) + '_nst' + str(num_net_steps) + 'pst' + str(num_psi_steps) + '/'
sample_dir= opt.model + '_vAN' + str(opt.priorWeight_nsteps) + '_vAT' + str(opt.netWeights_psteps) + '_' + str(numRestart) + 'start_' + data_use + '_pre' + str(num_pretrain_steps) + '_CA' + str(closest_anchor_flag) + '_M' + str(M) + '_z' + str(z_dim) + '_A' + str(opt.num_anchor) + '_batch' + str(opt.batch_size) + '_rw' + str(opt.recon_weight) + '_pol1' + str(opt.post_l1_weight) + '_poR' + str(opt.post_TO_weight)+ '_poC' + str(opt.post_cInfer_weight) + '_prl1' + str(opt.prior_l1_weight) + '_prR' + str(opt.prior_weight) + '_prC' + str(opt.prior_cInfer_weight) + '_g' + str(opt.gamma) + '_lr' + str(opt.lr) + '_nst' + str(num_net_steps) + 'pst' + str(num_psi_steps) + '_samples/'
if not os.path.exists(save_folder):
os.makedirs(save_folder)
if not os.path.exists(sample_dir):
os.makedirs(sample_dir)
start_time = time.time()
counter = 1
mse_loss = torch.nn.MSELoss(reduction = 'mean')
from covNetModel import Encoder
from covNetModel import Decoder
encoder = Encoder(z_dim,opt.c_dim,opt.img_size)
decoder = Decoder(z_dim,opt.c_dim,opt.img_size)
transNet = TransOpt()
# Load a pretrained file - make sure the model parameters fit the parameters of rht pre-trained models
checkpoint = torch.load('./pretrained_models/natMNIST/network_batch32_zdim6.pt')
# Or specify a network that's been trained independently
#checkpoint = torch.load(save_folder + 'network_batch' + str(batch_orig) + '_zdim' + str(opt.z_dim) + '_step' + str(stepUse) + '.pt')
encoder.load_state_dict(checkpoint['model_state_dict_encoder'])
decoder.load_state_dict(checkpoint['model_state_dict_decoder'])
data_X, data_y = load_mnist_classSelect('test',class_use,newClass)
Psi = Variable(torch.mul(torch.randn(N_use, M, dtype=torch.double),0.01), requires_grad=True)
Psi = checkpoint['Psi']
Psi_use = Psi.detach().numpy()
imgChoice = np.zeros((y_dim,28,28,1))
test_img = np.zeros((y_dim,input_h,input_w))
test_latent = np.zeros((y_dim,z_dim))
for k in range(0,10):
class_num = k
idxClass = np.where(data_y[:,class_num] == 1)[0]
numEx = len(idxClass)
idxChoice = idxClass[0]
imgChoice[k,:,:,:] = data_X[idxChoice,:,:,:]
imgInput = np.expand_dims(data_X[idxChoice,:,:,:],axis=0)
input_temp = imgInput
input_temp = torch.from_numpy(input_temp)
input_temp =input_temp.permute(0,3,1,2)
input_temp =input_temp.float()
test_latent_temp = encoder(input_temp)
test_latent_temp_scale = torch.div(test_latent_temp,scale)
test_img_temp = decoder(test_latent_temp)
test_img_temp = test_img_temp.permute(0,2,3,1)
x0 = test_latent_temp.detach().numpy()
z_seq = np.zeros((M,len(t),z_dim))
img_seq = np.zeros((M,len(t),input_h,input_w,opt.c_dim))
for m in range(0,M):
coeff_use = np.zeros((M))
t_count = 0
for t_use in t:
coeff_use[m] = t_use
coeff_input = np.expand_dims(coeff_use,axis=0)
z_est = transNet(test_latent_temp_scale.double(),torch.from_numpy(coeff_input),Psi,0.0)
z_est = torch.mul(z_est,scale)
transImgOut = decoder(z_est.float())
z_est_np = z_est.detach().numpy()
transImgOut = transImgOut.permute(0,2,3,1)
transImg_np = transImgOut.detach().numpy()
z_seq[m,t_count,:] = z_est_np
img_seq[m,t_count,:,:,:] = transImg_np
t_count = t_count+1
print("Class " + str(k) + " Operator " + str(m))
sio.savemat(sample_dir + '/transOptOrbitTest_natDigit_startDigit_step' + str(stepUse) + '_' + str(k+1) + '.mat',{'latent_seq':z_seq,'imgOut':img_seq,'Psi_new':Psi_use,'t_vals':t,'imgChoice':imgChoice})
numEx = 20
imgLabel = np.zeros((numEx,10))
test_img = np.zeros((numEx,input_h,input_w))
test_latent = np.zeros((numEx,z_dim))
idxPoss = np.random.randint(low = 0, high = data_y.shape[0],size=numEx)
z_seq = np.zeros((numEx,M,len(t),z_dim))
img_seq = np.zeros((numEx,M,len(t),input_h,input_w,opt.c_dim))
for k in range(0,numEx):
idxChoice = idxPoss[k]
imgLabel[k,:] = data_y[idxChoice,:]
imgInput = np.expand_dims(data_X[idxChoice,:,:,:],axis=0)
input_temp = imgInput
input_temp = torch.from_numpy(input_temp)
input_temp =input_temp.permute(0,3,1,2)
input_temp =input_temp.float()
test_latent_temp = encoder(input_temp)
test_latent_temp_scale = torch.div(test_latent_temp,scale)
test_img_temp = decoder(test_latent_temp)
test_img_temp = test_img_temp.permute(0,2,3,1)
x0 = test_latent_temp.detach().numpy()
for m in range(0,M):
coeff_use = np.zeros((M))
t_count = 0
for t_use in t:
coeff_use[m] = t_use
coeff_input = np.expand_dims(coeff_use,axis=0)
z_est = transNet(test_latent_temp_scale.double(),torch.from_numpy(coeff_input),Psi,0.0)
z_est = torch.mul(z_est,scale)
transImgOut = decoder(z_est.float())
z_est_np = z_est.detach().numpy()
transImgOut = transImgOut.permute(0,2,3,1)
transImg_np = transImgOut.detach().numpy()
z_seq[k,m,t_count,:] = z_est_np
img_seq[k,m,t_count,:,:,:] = transImg_np
t_count = t_count+1
print("Ex " + str(k) + " Operator " + str(m))
sio.savemat(sample_dir + '/transOptOrbitTest_natDigit_randDigit_step' + str(stepUse) + '.mat',{'latent_seq':z_seq,'imgOut':img_seq,'Psi_new':Psi_use,'t_vals':t,'imgLabel':imgLabel})
sampler_c = Sample_c()
num_c_samp = 16
imgOrig = np.zeros((y_dim,28,28,1))
z_pt_samp = np.zeros((y_dim,num_c_samp,z_dim))
img_samp = np.zeros((y_dim,num_c_samp,28,28,1))
for k in range(0,10):
class_num = k
idxClass = np.where(data_y[:,class_num] == 1)[0]
numEx = len(idxClass)
idxChoice = idxClass[10]
imgInput = np.expand_dims(data_X[idxChoice,:,:,:],axis=0)
input_temp = imgInput
input_temp = torch.from_numpy(input_temp)
input_temp =input_temp.permute(0,3,1,2)
input_temp =input_temp.float()
test_latent_temp = encoder(input_temp)
test_latent_temp_scale = torch.div(test_latent_temp,scale)
test_img_temp = decoder(test_latent_temp)
test_img_temp = test_img_temp.permute(0,2,3,1)
imgOrig[k,:,:,:] = np.expand_dims(test_img_temp .detach().numpy(),axis=0)
for m in range(0,num_c_samp):
z_coeff = sampler_c(1,M,opt.post_l1_weight*0.23)
z_scale_samp = transNet(test_latent_temp_scale.double(),z_coeff.double(),Psi,opt.to_noise_std*5)
z_pt_samp[k,m,:] = z_scale_samp.detach().numpy()
z_samp = torch.mul(z_scale_samp,scale)
transImgSamp = decoder(z_samp.float())
transImgSamp = transImgSamp.permute(0,2,3,1)
transSamp_np = transImgSamp.detach().numpy()
img_samp[k,m,:,:,:] = transSamp_np
print("Sampling: Class " + str(k) )
sio.savemat(sample_dir + '/transOptSampleTest_natDigit_startDigit_step' + str(stepUse) + '.mat',{'imgOrig':imgOrig,'z_pt_samp':z_pt_samp,'img_samp':img_samp})