-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathauduinostep.ino
300 lines (257 loc) · 9.05 KB
/
auduinostep.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
// Auduino Sequencer, the Lo-Fi granular 8-step sequencer
// Modified by NPoole @ SparkFun Electronics ( http://sparkfun.com )
// Based on the Auduino Synthesizer (v5) by Peter Knight, tinker.it ( http://tinker.it )
//
// Auduino Info: http://code.google.com/p/tinkerit/wiki/Auduino
//
// Modified 2023 skittlemittle
#include <avr/io.h>
#include <avr/interrupt.h>
uint16_t syncPhaseAcc;
uint16_t syncPhaseInc;
uint16_t grainPhaseAcc;
uint16_t grainPhaseInc;
uint16_t grainAmp;
uint8_t grainDecay;
uint16_t grain2PhaseAcc;
uint16_t grain2PhaseInc;
uint16_t grain2Amp;
uint8_t grain2Decay;
// Map Analogue channels
#define SYNC_CONTROL (4)
#define GRAIN_FREQ_CONTROL (0)
#define GRAIN_DECAY_CONTROL (2)
#define GRAIN2_FREQ_CONTROL (3)
#define GRAIN2_DECAY_CONTROL (1)
// Changing these will also requires rewriting audioOn()
#if defined(__AVR_ATmega8__)
//
// On old ATmega8 boards.
// Output is on pin 11
//
#define LED_PIN 13
#define LED_PORT PORTB
#define LED_BIT 5
#define PWM_PIN 11
#define PWM_VALUE OCR2
#define PWM_INTERRUPT TIMER2_OVF_vect
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
//
// On the Arduino Mega
// Output is on pin 3
//
#define LED_PIN 13
#define LED_PORT PORTB
#define LED_BIT 7
#define PWM_PIN 3
#define PWM_VALUE OCR3C
#define PWM_INTERRUPT TIMER3_OVF_vect
#else
//
// For modern ATmega168 and ATmega328 boards
// Output is on pin 3
//
#define PWM_PIN 3
#define PWM_VALUE OCR2B
#define LED_PIN 13
#define LED_PORT PORTB
#define LED_BIT 5
#define PWM_INTERRUPT TIMER2_OVF_vect
#endif
// Smooth logarithmic mapping
//
uint16_t antilogTable[] = {
64830,64132,63441,62757,62081,61413,60751,60097,59449,58809,58176,57549,56929,56316,55709,55109,
54515,53928,53347,52773,52204,51642,51085,50535,49991,49452,48920,48393,47871,47356,46846,46341,
45842,45348,44859,44376,43898,43425,42958,42495,42037,41584,41136,40693,40255,39821,39392,38968,
38548,38133,37722,37316,36914,36516,36123,35734,35349,34968,34591,34219,33850,33486,33125,32768
};
uint16_t mapPhaseInc(uint16_t input) {
return (antilogTable[input & 0x3f]) >> (input >> 6);
}
// Stepped chromatic mapping
//
uint16_t midiTable[] = {
17,18,19,20,22,23,24,26,27,29,31,32,34,36,38,41,43,46,48,51,54,58,61,65,69,73,
77,82,86,92,97,103,109,115,122,129,137,145,154,163,173,183,194,206,218,231,
244,259,274,291,308,326,346,366,388,411,435,461,489,518,549,581,616,652,691,
732,776,822,871,923,978,1036,1097,1163,1232,1305,1383,1465,1552,1644,1742,
1845,1955,2071,2195,2325,2463,2610,2765,2930,3104,3288,3484,3691,3910,4143,
4389,4650,4927,5220,5530,5859,6207,6577,6968,7382,7821,8286,8779,9301,9854,
10440,11060,11718,12415,13153,13935,14764,15642,16572,17557,18601,19708,20879,
22121,23436,24830,26306
};
uint16_t mapMidi(uint16_t input) {
return (midiTable[(1023-input) >> 3]);
}
// Stepped Pentatonic mapping
//
uint16_t pentatonicTable[54] = {
0,19,22,26,29,32,38,43,51,58,65,77,86,103,115,129,154,173,206,231,259,308,346,
411,461,518,616,691,822,923,1036,1232,1383,1644,1845,2071,2463,2765,3288,
3691,4143,4927,5530,6577,7382,8286,9854,11060,13153,14764,16572,19708,22121,26306
};
uint16_t mapPentatonic(uint16_t input) {
uint8_t value = (1023-input) / (1024/53);
return (pentatonicTable[value]);
}
void audioOn() {
#if defined(__AVR_ATmega8__)
// ATmega8 has different registers
TCCR2 = _BV(WGM20) | _BV(COM21) | _BV(CS20);
TIMSK = _BV(TOIE2);
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
TCCR3A = _BV(COM3C1) | _BV(WGM30);
TCCR3B = _BV(CS30);
TIMSK3 = _BV(TOIE3);
#else
// Set up PWM to 31.25kHz, phase accurate
TCCR2A = _BV(COM2B1) | _BV(WGM20);
TCCR2B = _BV(CS20);
TIMSK2 = _BV(TOIE2);
#endif
}
// max and min step speeds
#define MAX_TEMPO 6000
#define MIN_TEMPO 650000
long tempo = 100000;
long counter = 0;
int pattern = 0;
#define STEP_GROUP_LEN 5 // 5 settings to remember for each step.
#define NUM_STEPS 8
/*
*This stores the settings for each step of the two sequences,
*all flattened out like:[a1,a2,a3,a4,a5, b1,b2,b3,b4,b5, ...]
*/
int step_memory[STEP_GROUP_LEN * NUM_STEPS * 2] = {0};
// IO pins
int leds[] = {39,40,41,42,43,44,45,46};
int buttons[NUM_STEPS] = {24, 26, 28, 30, 32, 34, 36, 38};
const int sequence_select = 53; // switch to toggle between sequences
int live_sync_phase = 0;
int live_grain_phase = 0;
int live_grain_decay = 0;
int live_grain2_phase = 0;
int live_grain2_decay = 0;
void leds_off() {
for (const auto &led : leds)
digitalWrite(led, LOW);
}
// compute the offset in step_step memory to apply for a given step
int compute_step_offset(int step) {
int shift = 0;
if (digitalRead(sequence_select) == LOW)
shift = STEP_GROUP_LEN * NUM_STEPS;
return (step * STEP_GROUP_LEN) + shift;
}
void setup() {
pinMode(PWM_PIN,OUTPUT);
audioOn();
pinMode(LED_PIN,OUTPUT);
for (const auto &led : leds) {
pinMode(led, OUTPUT);
digitalWrite(led, LOW);
}
// pull up buttons
for (const auto &button : buttons) {
pinMode(button, INPUT);
digitalWrite(button, HIGH);
}
pinMode(sequence_select, INPUT);
digitalWrite(sequence_select, HIGH);
}
void loop() {
counter++;
/* Most of the time, the main loop will just advance the counter while we continue generating noise.
Each iteration, we check the counter against our "tempo" parameter to find out if it's time yet to
jump to the next step. */
if(counter > tempo) {
counter=0;
pattern++;
if(pattern == NUM_STEPS) pattern = 0;
leds_off();
live_sync_phase = map(analogRead(14),0,1023,-500,500);
live_grain_phase = map(analogRead(10),0,1023,-200,200);
live_grain_decay = map(analogRead(9),0,1023,-20,20);
live_grain2_phase = map(analogRead(8),0,1023,-200,200);
live_grain2_decay = map(analogRead(11),0,1023,-50,50);
tempo = map(analogRead(15),0,1023,MAX_TEMPO,MIN_TEMPO);
// apply step settings and live settings
int group_offset = compute_step_offset(pattern);
syncPhaseInc = step_memory[group_offset + 0] + live_sync_phase;
grainPhaseInc = step_memory[group_offset + 1] + live_grain_phase;
grainDecay = step_memory[group_offset + 2] + live_grain_decay;
grain2PhaseInc = step_memory[group_offset + 3] + live_grain2_phase;
grain2Decay = step_memory[group_offset + 4] + live_grain2_decay;
digitalWrite(leds[pattern], HIGH);
//Check to see if the user is trying to change the step parameters.
for (int i = 0; i < NUM_STEPS; i++) {
if (digitalRead(buttons[i]) == LOW)
changeStep(i);
}
}
}
void changeStep(int step_num) {
leds_off();
digitalWrite(leds[step_num], HIGH);
/* This next chunk of code is fairly similar to the unaltered Auduino sketch. This allows
us to continue updating the synth parameters to the user input. That way, you can dial in
the sound of a particular step. The while-loop traps the program flow here until the user
pushes button 1. As the code currently stands, "live" parameters aren't applied while in
the step editor but you could easily add the live parameters below. */
while(1) {
counter++;
if(counter > tempo) {
counter=0;
syncPhaseInc = mapPentatonic(analogRead(SYNC_CONTROL));
grainPhaseInc = mapPhaseInc(analogRead(GRAIN_FREQ_CONTROL)) / 2;
grainDecay = analogRead(GRAIN_DECAY_CONTROL) / 8;
grain2PhaseInc = mapPhaseInc(analogRead(GRAIN2_FREQ_CONTROL)) / 2;
grain2Decay = analogRead(GRAIN2_DECAY_CONTROL) / 4;
//Here we read the button 1 input and commit the step changes to the appropriate parameters.
if (digitalRead(buttons[0]) == LOW) {
int group_offset = compute_step_offset(step_num);
step_memory[group_offset + 0] = syncPhaseInc;
step_memory[group_offset + 1] = grainPhaseInc;
step_memory[group_offset + 2] = grainDecay;
step_memory[group_offset + 3] = grain2PhaseInc;
step_memory[group_offset + 4] = grain2Decay;
return;
}
}
}
}
SIGNAL(PWM_INTERRUPT)
{
uint8_t value;
uint16_t output;
syncPhaseAcc += syncPhaseInc;
if (syncPhaseAcc < syncPhaseInc) {
// Time to start the next grain
grainPhaseAcc = 0;
grainAmp = 0x7fff;
grain2PhaseAcc = 0;
grain2Amp = 0x7fff;
LED_PORT ^= 1 << LED_BIT; // Faster than using digitalWrite
}
// Increment the phase of the grain oscillators
grainPhaseAcc += grainPhaseInc;
grain2PhaseAcc += grain2PhaseInc;
// Convert phase into a triangle wave
value = (grainPhaseAcc >> 7) & 0xff;
if (grainPhaseAcc & 0x8000) value = ~value;
// Multiply by current grain amplitude to get sample
output = value * (grainAmp >> 8);
// Repeat for second grain
value = (grain2PhaseAcc >> 7) & 0xff;
if (grain2PhaseAcc & 0x8000) value = ~value;
output += value * (grain2Amp >> 8);
// Make the grain amplitudes decay by a factor every sample (exponential decay)
grainAmp -= (grainAmp >> 8) * grainDecay;
grain2Amp -= (grain2Amp >> 8) * grain2Decay;
// Scale output to the available range, clipping if necessary
output >>= 9;
if (output > 255) output = 255;
// Output to PWM (this is faster than using analogWrite)
PWM_VALUE = output;
}