-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy path12.py
217 lines (161 loc) · 6.03 KB
/
12.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# Utility function to print solution
def printSolution(board):
for i in range(M):
for j in range(N):
print(board[i][j], end=' ')
print()
# Utility function to count the total number of characters `ch` in current column `j`
def countInColumns(board, ch, j):
count = 0
for i in range(M):
if board[i][j] == ch:
count = count + 1
return count
# Utility function to count the total number of characters `ch` in current row `i`
def countInRow(board, ch, i):
count = 0
for j in range(N):
if board[i][j] == ch:
count = count + 1
return count
# Function to check if it is safe to put `ch` at `board[row][col]`
def isSafe(board, row, col, ch, top, left, bottom, right):
# check for adjacent cells
if ((row - 1 >= 0 and board[row - 1][col] == ch) or
(col + 1 < N and board[row][col + 1] == ch) or
(row + 1 < M and board[row + 1][col] == ch) or
(col - 1 >= 0 and board[row][col - 1] == ch)):
return False
# count character `ch` in the current row
rowCount = countInRow(board, ch, row)
# count character `ch` in the current column
colCount = countInColumns(board, ch, col)
# if the given character is `+`, check `top[]` and `left[]`
if ch == '+':
# check top
if top[col] != -1 and colCount >= top[col]:
return False
# check left
if left[row] != -1 and rowCount >= left[row]:
return False
# if the given character is `-`, check `bottom[]` and `right[]`
if ch == '-':
# check bottom
if bottom[col] != -1 and colCount >= bottom[col]:
return False
# check left
if right[row] != -1 and rowCount >= right[row]:
return False
return True
# Function to validate the configuration of an output board
def validateConfiguration(board, top, left, bottom, right):
# check top
for i in range(N):
if top[i] != -1 and countInColumns(board, '+', i) != top[i]:
return False
# check left
for j in range(M):
if left[j] != -1 and countInRow(board, '+', j) != left[j]:
return False
# check bottom
for i in range(N):
if bottom[i] != -1 and countInColumns(board, '-', i) != bottom[i]:
return False
# check right
for j in range(M):
if right[j] != -1 and countInRow(board, '-', j) != right[j]:
return False
return True
# The main function to solve the Bipolar Magnets puzzle
def solveMagnetPuzzle(board, row, col, top, left, bottom, right, rules):
# if the last cell is reached
if row >= M - 1 and col >= N - 1:
return validateConfiguration(board, top, left, bottom, right)
# if the last column of the current row is already processed,
# go to the next row, the first column
if col >= N:
col = 0
row = row + 1
# if the current cell contains `R` or `B` (end of horizontal
# or vertical slot), recur for the next cell
if rules[row][col] == 'R' or rules[row][col] == 'B':
if solveMagnetPuzzle(board, row, col + 1, top, left, bottom, right, rules):
return True
# if the horizontal slot contains `L` and `R`
if rules[row][col] == 'L' and rules[row][col + 1] == 'R':
# put (`+`, `-`) pair and recur
if (isSafe(board, row, col, '+', top, left, bottom, right) and
isSafe(board, row, col + 1, '-', top, left, bottom, right)):
board[row][col] = '+'
board[row][col + 1] = '-'
if solveMagnetPuzzle(board, row, col + 2, top, left, bottom, right, rules):
return True
# if it doesn't lead to a solution, backtrack
board[row][col] = 'X'
board[row][col + 1] = 'X'
# put (`-`, `+`) pair and recur
if (isSafe(board, row, col, '-', top, left, bottom, right) and
isSafe(board, row, col + 1, '+', top, left, bottom, right)):
board[row][col] = '-'
board[row][col + 1] = '+'
if solveMagnetPuzzle(board, row, col + 2, top, left, bottom, right, rules):
return True
# if it doesn't lead to a solution, backtrack
board[row][col] = 'X'
board[row][col + 1] = 'X'
# if the vertical slot contains `T` and `B`
if rules[row][col] == 'T' and rules[row + 1][col] == 'B':
# put (`+`, `-`) pair and recur
if (isSafe(board, row, col, '+', top, left, bottom, right) and
isSafe(board, row + 1, col, '-', top, left, bottom, right)):
board[row][col] = '+'
board[row + 1][col] = '-'
if solveMagnetPuzzle(board, row, col + 1, top, left, bottom, right, rules):
return True
# if it doesn't lead to a solution, backtrack
board[row][col] = 'X'
board[row + 1][col] = 'X'
# put (`-`, `+`) pair and recur
if (isSafe(board, row, col, '-', top, left, bottom, right) and
isSafe(board, row + 1, col, '+', top, left, bottom, right)):
board[row][col] = '-'
board[row + 1][col] = '+'
if solveMagnetPuzzle(board, row, col + 1, top, left, bottom, right, rules):
return True
# if it doesn't lead to a solution, backtrack
board[row][col] = 'X'
board[row + 1][col] = 'X'
# ignore the current cell and recur
if solveMagnetPuzzle(board, row, col + 1, top, left, bottom, right, rules):
return True
# if no solution is possible, return false
return False
def magnetPuzzle(top, left, bottom, right, rules):
# to store the result
# initialize all cells by `X`
board = [['X' for x in range(N)] for y in range(M)]
# start from `(0, 0)` cell
if not solveMagnetPuzzle(board, 0, 0, top, left, bottom, right, rules):
print("Solution does not exist")
return
# print result if the given configuration is solvable
printSolution(board)
if __name__ == '__main__':
# indicates the count of `+` or `-` along the top (+), bottom (-),
# left (+), and right (-) edges, respectively.
# value of -1 indicate any number of `+` or `-` signs
top = [1, -1, -1, 2, 1, -1]
bottom = [2, -1, -1, 2, -1, 3]
left = [2, 3, -1, -1, -1]
right = [-1, -1, -1, 1, -1]
# rules matrix
rules = [
['L', 'R', 'L', 'R', 'T', 'T'],
['L', 'R', 'L', 'R', 'B', 'B'],
['T', 'T', 'T', 'T', 'L', 'R'],
['B', 'B', 'B', 'B', 'T', 'T'],
['L', 'R', 'L', 'R', 'B', 'B']
]
# `M × N` matrix
(M, N) = (len(rules), len(rules[0]))
magnetPuzzle(top, left, bottom, right, rules)