-
Notifications
You must be signed in to change notification settings - Fork 1
/
modeling_retnet.py
1330 lines (1152 loc) · 51.3 KB
/
modeling_retnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
Below are the customized classes for RetNet.
Implementation adapted from
https://github.com/fkodom/yet-another-retnet and
https://github.com/microsoft/torchscale/commit/bf65397b26469ac9c24d83a9b779b285c1ec640b#diff-8c0a56195606d489b702e9270ba269c24803354ff8e70056f66946353b070c2d
"""
import math
from dataclasses import dataclass
from typing import Callable, List, Literal, Optional, Tuple, Union
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from einops import einsum, rearrange, repeat
from model import ContrastiveLoss
from torch import Tensor, nn
from torch.nn import CrossEntropyLoss
from torchvision.transforms import Normalize
from transformers import PretrainedConfig, top_k_top_p_filtering
from transformers.modeling_outputs import ModelOutput
from transformers.modeling_utils import PreTrainedModel
RETNET_QK_RATIO = 1
RETNET_V_RATIO = 1
RETNET_FFN_RATIO = 4
DEFAULT_DEVICE = torch.device("cpu")
"""
The configuration class of RetNet
"""
class RetNetConfig(PretrainedConfig):
model_type = "retnet"
def __init__(
self,
vocab_size: int = 50257,
hidden_size: int = 768,
num_layers: int = 12,
num_heads: int = 3,
qk_dim: int = 768,
v_dim: int = 1532,
ffn_proj_size: int = 1532,
dropout: float = 0.1,
initializer_range: float = 0.02,
is_decoder: bool = True,
pad_token_id: int = 50256,
eos_token_id: int = 50256,
output_retentions: bool = False,
use_cache: bool = True,
forward_impl: str = "parallel",
chunk_size: int = 512,
activation: str = "swish",
device: Optional[Union[torch.device, str]] = None,
dtype: Optional[torch.dtype] = None,
use_bias_in_mlp: bool = True,
use_bias_in_retention: bool = True,
tie_word_embeddings: bool = True,
fep_loss_frequency: int = 1,
fep_context_length: int = 0,
**kwargs,
):
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.num_heads = num_heads
self.head_size = hidden_size // num_heads
self.qk_dim = qk_dim
self.v_dim = v_dim
self.ffn_proj_size = ffn_proj_size
self.dropout = dropout
self.initializer_range = initializer_range
self.output_retentions = output_retentions
self.forward_impl = forward_impl
self.chunk_size = chunk_size
self.activation = activation
self.device = device
self.dtype = dtype
self.use_bias_in_mlp = use_bias_in_mlp
self.use_bias_in_retention = use_bias_in_retention
self.tie_word_embeddings = tie_word_embeddings
self.fep_loss_frequency = fep_loss_frequency
self.fep_context_length = fep_context_length
super().__init__(
is_decoder=is_decoder,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
use_cache=use_cache,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
def _get_activation_fn(activation: str) -> Callable[[Tensor], Tensor]:
"""Return an activation function given a string"""
activation_functions = {"swish": F.silu, "gelu": F.gelu, "relu": F.relu}
if activation in activation_functions:
return activation_functions[activation]
else:
raise RuntimeError(
f"Unsupported activation string '{activation}'. "
f"Supported: {activation_functions.keys()}"
)
def _build_decay_gammas(
num_heads: int,
device: Optional[Union[torch.device, str]] = None,
dtype: Optional[torch.dtype] = None,
) -> Tensor:
"""Decay values are different for each retention head, following the prescribed
method in the paper. Conceptually, I think of each head having a different
"retention window", which is the effective number of steps back in time that
the head can attend to. Retention windows are effectively determined by
these decay coefficients.
See: https://arxiv.org/pdf/2307.08621v3.pdf, Section 3.1 (Setup)
"""
xmin, xmax = math.log(1 / 32), math.log(1 / 512)
x = torch.linspace(xmin, xmax, steps=num_heads, device=device, dtype=dtype)
return 1 - torch.exp(x)
def _build_decay_mask(
query_length: int,
key_length: int,
decay_gammas: Tensor,
device: Optional[Union[torch.device, str]] = None,
dtype: Optional[torch.dtype] = None,
) -> Tensor:
"""The decay mask is one of the key components that makes *parallel* retention
equivalent to *recurrent* retention. The decay coefficients are pre-computed
and applied to the similarity matrix at once, rather than being applied to
each element in the recurrent formulation.
See: https://arxiv.org/pdf/2307.08621v3.pdf, Equation 5
"""
query_pos = torch.arange(query_length, device=device, dtype=dtype)
key_pos = torch.arange(key_length, device=device, dtype=dtype)
distance = query_pos.unsqueeze(-1) - key_pos.unsqueeze(0)
# Set the upper-triangular distances to infinity, so that only *past* keys
# can affect the current query. (Setting distance to infinity ensures that
# the decay matrix is 0 for those positions, since x^(inf) = 0 when -1 < x < 1.
distance_mask = torch.ones_like(distance, dtype=torch.bool).triu_(diagonal=1)
distance = distance.masked_fill(distance_mask, float("inf"))
distance = rearrange(distance, "n s -> () n s")
decay_gammas = rearrange(decay_gammas, "h -> h () ()")
return decay_gammas**distance
def _build_position_thetas(
head_dim: int,
scale: float = 10000,
device: Optional[Union[torch.device, str]] = None,
dtype: Optional[torch.dtype] = None,
) -> Tensor:
"""Positional thetas are different for each value along head_dim, following the
prescribed method in the paper. These are used to update the positional
embeddings in both the parallel and recurrent formulations of retention.
See: https://arxiv.org/pdf/2307.08621v3.pdf, Section 2.1 (Retention)
NOTE: The actual values for thetas are not specified in the paper, so I
copied these values from the official implementation.
See: https://github.com/microsoft/torchscale/blob/7d231743f4f96c460b7cf0aa0cf242bb192b34f8/torchscale/architecture/retnet.py#L27C1-L28C59
"""
x = torch.linspace(0, 1, steps=head_dim // 2, device=device, dtype=dtype)
thetas = 1 / (scale**x)
return repeat(thetas, "d -> (d n)", n=2)
# NOTE: For the purposes of positional embeddings, we view query/key Tensors as
# complex-valued, where the even-numbered indices are the real part, and the
# odd-numbered indices are the imaginary part. This makes it easy to compute
# complex values without *actually* using complex dtypes in PyTorch.
# (Complex dtypes have limited support compared to real dtypes.)
#
# I don't re-explain this in the functions below, but it's important to keep in
# mind when reading the code.
def _multiply_by_i(x: Tensor) -> Tensor:
"""Multiply a complex-valued tensor by the imaginary unit 'i'."""
return torch.stack((-x[..., 1::2], x[..., ::2]), dim=-1).flatten(start_dim=-2)
def _theta_shift(x: Tensor, sin: Tensor, cos: Tensor) -> Tensor:
# TODO: Add docstring
return (x * cos) + (_multiply_by_i(x) * sin)
def retention_parallel(
query: Tensor,
key: Tensor,
value: Tensor,
scale: Optional[float] = None,
decay_gammas: Optional[Tensor] = None,
output_retentions: bool = False,
) -> Tuple[Tensor, Optional[Tensor]]:
if decay_gammas is None:
decay_gammas = _build_decay_gammas(
num_heads=query.shape[1], device=query.device, dtype=query.dtype
)
decay_mask = _build_decay_mask(
query_length=query.shape[2],
key_length=key.shape[2],
decay_gammas=decay_gammas,
device=query.device,
dtype=query.dtype,
)
# einstein notation:
# - b: batch_size
# - h: num_heads
# - n / s: seq_length
# - d: hidden_dim
if scale is None:
scale = key.size(-1) ** 0.5
key = key / scale
similarity = einsum(query, key, "b h n d, b h s d -> b h n s")
similarity = similarity * rearrange(decay_mask, "h n s -> () h n s")
retention = einsum(similarity, value, "b h n s, b h s d -> b h n d")
if output_retentions:
return retention, similarity
else:
return retention, None
def retention_recurrent(
query: Tensor,
key: Tensor,
value: Tensor,
prev_state: Optional[Tensor],
scale: Optional[float] = None,
decay_gammas: Optional[Tensor] = None,
) -> Tuple[Tensor, Tensor]:
if decay_gammas is None:
decay_gammas = _build_decay_gammas(
num_heads=query.shape[1], device=query.device, dtype=query.dtype
)
# einstein notation:
# - b: batch_size
# - h: num_heads
# - d: hidden_dim
if scale is None:
scale = key.size(-1) ** 0.5
key = key / scale
state = einsum(key, value, "b h d, b h m -> b h d m")
if prev_state is not None:
state = state + prev_state * rearrange(decay_gammas, "h -> () h () ()")
retention = einsum(query, state, "b h d, b h d m -> b h m")
return retention, state
def retention_chunkwise(
query: Tensor,
key: Tensor,
value: Tensor,
prev_state: Optional[Tensor],
scale: Optional[float] = None,
decay_gammas: Optional[Tensor] = None,
) -> Tuple[Tensor, Tensor]:
if decay_gammas is None:
decay_gammas = _build_decay_gammas(
num_heads=query.shape[1], device=query.device, dtype=query.dtype
)
decay_mask = _build_decay_mask(
query_length=query.shape[2],
key_length=key.shape[2],
decay_gammas=decay_gammas,
device=query.device,
dtype=query.dtype,
)
# einstein notation:
# - b: batch_size
# - h: num_heads
# - n / s: seq_length
# - d: head_dim
if scale is None:
scale = key.size(-1) ** 0.5
key = key / scale
# intra-chunk (same as parallel retention)
similarity = einsum(query, key, "b h n d, b h s d -> b h n s")
similarity = similarity * rearrange(decay_mask, "h n s -> () h n s")
retention = einsum(similarity, value, "b h n s, b h s d -> b h n d")
# cross-chunk (derived from recurrent retention)
decay_gammas = rearrange(decay_gammas, "h -> () h () ()")
inner_pos = rearrange(
torch.arange(key.size(2), device=key.device, dtype=key.dtype) + 1,
"n -> () () n ()",
)
states = einsum(key, value, "b h n d1, b h n d2 -> b h n d1 d2")
state_decays = decay_gammas ** (key.size(2) - inner_pos)
state = einsum(states, state_decays, "b h n d1 d2, _ h n _ -> b h d1 d2")
if prev_state is not None:
# Update internal state to return to the user
chunk_decay = decay_gammas ** key.size(2)
state = state + prev_state * chunk_decay
# Update the retention Tensor, based on cross-chunk information
inner_decay = decay_gammas**inner_pos
retention = retention + (
einsum(query, prev_state, "b h n d1, b h d1 d2 -> b h n d2") * inner_decay
)
return retention, state
class MultiScaleRetention(nn.Module):
"""Multi-scale retention (MSR) layer. Intended to be (mostly) a drop-in replacement
for nn.MultiheadAttention, but with the option to use either the parallel or
recurrent formulation of retention. (Attention only has the parallel formulation.)
NOTE: As presented in the paper, Multi-Scale Retention includes an explicit
position embedding, which is based on xPos. IMO, this is unnecessary and overly
specific to language modeling, since other domains (e.g. computer vision,
heterogeneous graphs) will have different positional semantics.
Reference:
"Retentive Network: A Successor to Transformer for Large Language Models"
https://arxiv.org/pdf/2307.08621v3.pdf
"""
def __init__(
self,
config: RetNetConfig,
):
super().__init__()
self.hidden_size = config.hidden_size
self.num_heads = config.num_heads
self.dropout = 0.0
self.bias = config.use_bias_in_retention
self.activation = _get_activation_fn(config.activation)
device, dtype = config.device, config.dtype
if self.hidden_size % self.num_heads != 0:
raise ValueError(
f"hidden_size ({self.hidden_size}) must be divisible by num_heads ({self.num_heads})"
)
self.head_dim = self.hidden_size // self.num_heads
if not self.head_dim % 8 == 0:
raise ValueError(
f"head_dim (hidden_size / num_heads = {self.head_dim}) must be divisible by 8"
)
# The q/k/v projection layers are the same as in vanilla MHA.
self.q_proj = nn.Linear(
self.hidden_size,
self.hidden_size,
bias=self.bias,
device=device,
dtype=dtype,
)
self.k_proj = nn.Linear(
self.hidden_size,
self.hidden_size,
bias=self.bias,
device=device,
dtype=dtype,
)
self.v_proj = nn.Linear(
self.hidden_size,
self.hidden_size,
bias=self.bias,
device=device,
dtype=dtype,
)
self.group_norm = nn.GroupNorm(
num_groups=self.num_heads,
num_channels=self.num_heads,
affine=False,
eps=1e-6,
device=device,
dtype=dtype,
)
# The output project is slightly different, due to the gated "swish" layer.
self.g_proj = nn.Linear(
self.hidden_size,
self.hidden_size,
bias=self.bias,
device=device,
dtype=dtype,
)
self.out_proj = nn.Linear(
self.hidden_size,
self.hidden_size,
bias=self.bias,
device=device,
dtype=dtype,
)
# 'thetas' parameter for updating the relative position embeddings.
thetas: Optional[Tensor] = None
thetas = _build_position_thetas(
head_dim=self.head_dim, device=device, dtype=dtype
)
self.thetas: Optional[Tensor]
self.register_buffer("thetas", thetas)
self._reset_parameters()
def _reset_parameters(self):
# TODO: Double-check that we're following the same initialization as in
# the paper. This is a generic initialization for MHA linear layers.
for layer in [
self.q_proj,
self.k_proj,
self.v_proj,
self.out_proj,
self.g_proj,
]:
nn.init.xavier_normal_(layer.weight)
if layer.bias is not None:
nn.init.constant_(layer.bias, 0)
def forward_parallel(
self,
X: Tensor,
output_retentions: bool = False,
) -> Tuple[Tensor, Optional[Tensor]]:
# einstein notation:
# b - batch size
# n - sequence length
# h - number of heads
# d - embedding dimension
#
# Input shape: (b, n, d)
q: Tensor = self.q_proj(X)
k: Tensor = self.k_proj(X)
v: Tensor = self.v_proj(X)
# Unfold 'd' dimension into 'h' separate retention heads. Move the head
# dimension to position 1 (makes matrix ops *much* faster).
q = rearrange(q, "b n (h d) -> b h n d", h=self.num_heads)
k = rearrange(k, "b n (h d) -> b h n d", h=self.num_heads)
v = rearrange(v, "b n (h d) -> b h n d", h=self.num_heads)
assert self.thetas is not None
indices = torch.arange(q.size(2), device=q.device, dtype=q.dtype)
indices = rearrange(indices, "n -> () () n ()")
thetas = rearrange(self.thetas, "d -> () () () d")
angles = indices * thetas
sin = torch.sin(angles)
cos = torch.cos(angles)
q = _theta_shift(q, sin, cos)
k = _theta_shift(k, sin, cos)
# Apply retention then group norm.
retention, weights = retention_parallel(
q, k, v, output_retentions=output_retentions
)
# To apply group norm in an equivalent way to the recurrent formulation,
# we fold the sequence dimension into the batch dimension. Otherwise,
# normalization would be applied over the entire input sequence.
batch_size = retention.size(0)
retention = rearrange(retention, "b h n d -> (b n) h d")
retention = F.dropout(retention, p=self.dropout, training=self.training)
retention = self.group_norm(retention)
# Unfold 'n' from the batch dimension, and fold 'h' back into the embed dim.
retention = rearrange(retention, "(b n) h d -> b n (h d)", b=batch_size)
# NOTE: Unlike multihead attention, the retention paper applies a "swish"
# gate to increase the non-linear capacity of the model. (IMO this is likely
# to make up for the lack of "softmax" activation in the retention mechanism.)
#
# The paper describes the gate as:
# g = swish(X * W_g)
# where X is the input to the layer. The authors use Retention in a
# Decoder-only model, the q/k/v inputs are the same (i.e. X = q = k = v).
# So, I assume that 'X' can equivalently be used as the input.
gate = self.activation(self.g_proj(X))
retention = self.out_proj(retention * gate)
return retention, weights
def forward_recurrent(
self,
X: Tensor,
sequence_offset: int,
prev_state: Optional[Tensor] = None,
) -> Tuple[Tensor, Tensor]:
# einstein notation:
# b - batch size
# h - number of heads
# d - embedding dimension
#
# input shape: (b, d)
q: Tensor = self.q_proj(X)
k: Tensor = self.k_proj(X)
v: Tensor = self.v_proj(X)
# Unfold 'd' dimension into 'h' separate retention heads.
q = rearrange(q, "b (h d) -> b h d", h=self.num_heads)
k = rearrange(k, "b (h d) -> b h d", h=self.num_heads)
v = rearrange(v, "b (h d) -> b h d", h=self.num_heads)
assert self.thetas is not None
thetas = rearrange(self.thetas, "d -> () () d")
angles = sequence_offset * thetas
sin = torch.sin(angles)
cos = torch.cos(angles)
q = _theta_shift(q, sin, cos)
k = _theta_shift(k, sin, cos)
# Apply retention then group norm.
retention, state = retention_recurrent(q, k, v, prev_state=prev_state)
retention = F.dropout(retention, p=self.dropout, training=self.training)
retention = self.group_norm(retention)
# Fold heads back into the embedding dimension.
retention = rearrange(retention, "b h d -> b (h d)")
# NOTE: Unlike multihead attention, the retention paper applies a "swish"
# gate to increase the non-linear capacity of the model. (IMO this is likely
# to make up for the lack of "softmax" activation in the retention mechanism.)
#
# The paper describes the gate as:
# g = swish(X * W_g)
# where X is the input to the layer. The authors use Retention in a
# Decoder-only model, the q/k/v inputs are the same (i.e. X = q = k = v).
# So, I assume that 'X' can equivalently be used as the input.
gate = self.activation(self.g_proj(X))
retention = self.out_proj(retention * gate)
return retention, state
def forward_chunkwise(
self,
X: Tensor,
sequence_offset: int,
prev_state: Optional[Tensor],
) -> Tuple[Tensor, Tensor]:
# einstein notation:
# b - batch size
# n - sequence length
# h - number of heads
# d - embedding dimension
#
# Input shape: (b, n, d)
q: Tensor = self.q_proj(X)
k: Tensor = self.k_proj(X)
v: Tensor = self.v_proj(X)
# Unfold 'd' dimension into 'h' separate retention heads. Move the head
# dimension to position 1 (makes matrix ops *much* faster).
q = rearrange(q, "b n (h d) -> b h n d", h=self.num_heads)
k = rearrange(k, "b n (h d) -> b h n d", h=self.num_heads)
v = rearrange(v, "b n (h d) -> b h n d", h=self.num_heads)
# global (cross-chunk) relative position embedding
assert self.thetas is not None
thetas = rearrange(self.thetas, "d -> () () () d")
angles = sequence_offset * thetas
sin = torch.sin(angles)
cos = torch.cos(angles)
q = _theta_shift(q, sin, cos)
k = _theta_shift(k, sin, cos)
# intra-chunk relative position encoding
indices = torch.arange(q.size(2), device=q.device, dtype=q.dtype)
indices = rearrange(indices, "n -> () () n ()")
thetas = rearrange(self.thetas, "d -> () () () d")
angles = indices * thetas
sin = torch.sin(angles)
cos = torch.cos(angles)
q = _theta_shift(q, sin, cos)
k = _theta_shift(k, sin, cos)
# Apply retention then group norm.
retention, state = retention_chunkwise(q, k, v, prev_state=prev_state)
# To apply group norm in an equivalent way to the recurrent formulation,
# we fold the sequence dimension into the batch dimension. Otherwise,
# normalization would be applied over the entire input sequence.
batch_size = retention.size(0)
retention = rearrange(retention, "b h n d -> (b n) h d")
retention = F.dropout(retention, p=self.dropout, training=self.training)
retention = self.group_norm(retention)
# Unfold 'n' from the batch dimension, and fold 'h' back into the embed dim.
retention = rearrange(retention, "(b n) h d -> b n (h d)", b=batch_size)
# NOTE: Unlike multihead attention, the retention paper applies a "swish"
# gate to increase the non-linear capacity of the model. (IMO this is likely
# to make up for the lack of "softmax" activation in the retention mechanism.)
#
# The paper describes the gate as:
# g = swish(X * W_g)
# where X is the input to the layer. The authors use Retention in a
# Decoder-only model, the q/k/v inputs are the same (i.e. X = q = k = v).
# So, I assume that 'X' can equivalently be used as the input.
gate = self.activation(self.g_proj(X))
retention = self.out_proj(retention * gate)
return retention, state
def forward(
self,
X: Tensor,
retention_mask: Optional[Tensor] = None,
prev_state: Optional[Tuple[Tensor]] = None,
forward_impl: str = "parallel",
sequence_offset: Optional[int] = 0,
chunk_size: Optional[int] = None,
output_retentions: Optional[bool] = False,
):
if forward_impl == "parallel":
return self.forward_parallel(X, output_retentions)
elif forward_impl == "recurrent":
return self.forward_recurrent(X.squeeze(1), sequence_offset, prev_state)
elif forward_impl == "chunkwise":
return self.forward_chunkwise(X, sequence_offset, prev_state)
class RetNetBlock(nn.Module):
def __init__(self, config: RetNetConfig):
super().__init__()
self.config = config
self.msr = MultiScaleRetention(config)
self.ffn = nn.Sequential(
nn.Linear(
config.hidden_size, config.ffn_proj_size, bias=config.use_bias_in_mlp
),
nn.GELU(),
nn.Linear(
config.ffn_proj_size, config.hidden_size, bias=config.use_bias_in_mlp
),
)
self.ln1 = nn.LayerNorm(config.hidden_size)
self.ln2 = nn.LayerNorm(config.hidden_size)
self.dropout = nn.Dropout(config.dropout)
def forward(
self,
hidden_states: Tensor,
retention_mask: Optional[Tensor] = None,
forward_impl: str = "parallel",
prev_state: Optional[Tuple[Tensor]] = None,
sequence_offset: Optional[int] = 0,
chunk_size: Optional[int] = None,
output_retentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor, torch.FloatTensor, Optional[torch.FloatTensor]]:
msr_outs = self.msr(
self.ln1(hidden_states),
retention_mask=retention_mask,
prev_state=prev_state,
forward_impl=forward_impl,
sequence_offset=sequence_offset,
chunk_size=chunk_size,
output_retentions=output_retentions,
)
msr = msr_outs[0]
curr_kv = msr_outs[1]
y = hidden_states.squeeze(1) + self.dropout(msr)
y = y + self.ffn(self.ln2(y))
outputs = (y, curr_kv)
if output_retentions:
outputs += (msr_outs[2],)
return outputs
class RetNetPreTrainedModel(PreTrainedModel):
# copied from LlamaPretrainedModel
config_class = RetNetConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["RetNetBlock"]
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, RetNetModel):
module.gradient_checkpointing = value
@dataclass
class RetNetOutputWithPast(ModelOutput):
"""
class for RetNet model's outputs that may also contain a past key/values (to speed up sequential decoding).
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
If `prev_states` is used only the last hidden-state of the sequences of shape `(batch_size, 1,
hidden_size)` is output.
prev_states (`tuple(torch.FloatTensor)`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape
`(batch_size, num_heads, qk_dim, v_dim)`.
Contains pre-computed hidden-states (key and values in the multi-scale retention blocks)
that can be used (see `prev_states` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
retentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_retentions=True` is passed or when `config.output_retentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Retentions weights, used for visualization.
"""
last_hidden_state: torch.FloatTensor = None
prev_states: Optional[Tuple[torch.FloatTensor]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
retentions: Optional[Tuple[torch.FloatTensor]] = None
class RetNetModel(RetNetPreTrainedModel):
def __init__(self, config: RetNetConfig) -> None:
super().__init__(config)
self.embedding = nn.Embedding(
config.vocab_size, config.hidden_size, config.pad_token_id
)
self.blocks = nn.ModuleList(
[RetNetBlock(config) for _ in range(config.num_layers)]
)
self.gradient_checkpointing = False
self.post_init()
def get_input_embeddings(self):
return self.embedding
def set_input_embeddings(self, value):
self.embedding = value
def forward(
self,
input_ids: torch.LongTensor = None,
retention_mask: Optional[Tensor] = None,
attention_mask: Optional[Tensor] = None,
prev_states: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_retentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
use_cache: Optional[bool] = None,
return_dict: Optional[bool] = None,
forward_impl: Optional[str] = "parallel",
sequence_offset: Optional[int] = 0,
chunk_size: Optional[int] = None,
) -> Union[Tuple, RetNetOutputWithPast]:
if not prev_states:
prev_states = [None] * self.config.num_layers
output_retentions = (
output_retentions
if output_retentions is not None
else self.config.output_retentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError(
"You cannot specify both input_ids and inputs_embeds at the same time"
)
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embedding(input_ids)
if retention_mask is None:
if attention_mask is not None:
retention_mask = attention_mask
else:
# TODO: might not need this
retention_mask = torch.ones(
(batch_size, seq_length),
dtype=torch.bool,
device=inputs_embeds.device,
)
hidden_states = inputs_embeds
all_hidden_states = () if output_hidden_states else None
all_retentions = () if output_retentions else None
# layers * [bsz, num_head, qk_dim, hidden_size]
next_decoder_cache = () if use_cache else None
for i, block in enumerate(self.blocks):
if output_hidden_states:
all_hidden_states += (hidden_states,)
prev_state = prev_states[i] if prev_states is not None else None
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(
*inputs, sequence_offset, chunk_size, output_retentions
)
return custom_forward
block_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
retention_mask,
forward_impl,
prev_state,
)
else:
block_outputs = block(
hidden_states,
retention_mask=retention_mask,
forward_impl=forward_impl,
prev_state=prev_state,
sequence_offset=sequence_offset,
chunk_size=chunk_size,
output_retentions=output_retentions,
)
hidden_states = block_outputs[0]
if use_cache:
next_decoder_cache += (block_outputs[1],)
if output_retentions:
all_retentions += (block_outputs[2],)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_retentions]
if v is not None
)
return RetNetOutputWithPast(
last_hidden_state=hidden_states,
prev_states=next_cache,
hidden_states=all_hidden_states,
retentions=all_retentions,
)
@dataclass
class RetNetCausalLMOutputWithPast(ModelOutput):
"""
class for RetNet causal language model (or autoregressive) outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
prev_states (`tuple(torch.FloatTensor)`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape
`(batch_size, num_heads, qk_dim, v_dim)`.
Contains pre-computed hidden-states (key and values in the multi-scale retention blocks)
that can be used (see `prev_states` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
retentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_retentions=True` is passed or when `config.output_retentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Retentions weights, used for visualization.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
prev_states: Optional[Tuple[torch.FloatTensor]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
retentions: Optional[Tuple[torch.FloatTensor]] = None
fep_logits: torch.FloatTensor = None
# This is an implement of the SimSiam algorithm proposed in https://arxiv.org/pdf/2011.10566.pdf
def SimSiamLoss(pred1, pred2, proj1, proj2):
criterion = nn.CosineSimilarity(dim=1)
return -(criterion(pred1, proj2).mean() + criterion(pred2, proj1).mean()) * 0.5
class RetNetModelWithLMHead(RetNetPreTrainedModel):
def __init__(self, config: RetNetConfig) -> None:
super().__init__(config)
self.model = RetNetModel(config)
# initialize hyperparameter if not specified
if "contrastive_head_size" not in config.to_dict().keys():
config.contrastive_head_size = 128
config.contrastive_temperature = 0.05
config.contrastive_type = "Orig"
config.contrastive_embedding = "token"
# casaul language modeling
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.loss_clm_fct = torch.nn.CrossEntropyLoss()
# future event prediction
if "num_fep_events" not in config.to_dict().keys():
config.num_fep_events = 1
config.fep_context_length = 0
self.num_fep_events = config.num_fep_events
self.fep_context_length = config.fep_context_length
self.fep_loss_frequency = config.fep_loss_frequency
if self.num_fep_events == config.vocab_size:
print("Using LM head as FEP head")
self.fep_head = self.lm_head
else:
self.fep_head = nn.Linear(config.hidden_size, config.num_fep_events)
# same user prediction
self.contrastive_embedding = config.contrastive_embedding
self.contrastive_type = config.contrastive_type
# use the average of token embeddings as sequence embedding
if self.contrastive_embedding == "token":
pass
# use a linear layer to project RetNet state as sequence embedding
elif self.contrastive_embedding == "state":
self.feature_extractor = nn.Linear(
config.head_size * config.head_size, config.hidden_size
)
# concatenate the above "token" and "state" embedding, and project it back to hidden size
elif self.contrastive_embedding == "joint":
self.feature_extractor = nn.Linear(
config.head_size * config.head_size, config.hidden_size
)
self.feature_projector = nn.Linear(
2 * config.hidden_size, config.hidden_size
)
# use a multi-layer CNN to transfer RetNet state as sequence embedding
elif self.contrastive_embedding == "state_cnn":
self.feature_normalizer = Normalize(mean=0.5, std=1)
# default parameters of CoAtNet-tiny (about 18M parameters)
self.feature_extractor = CoAtNet(
image_size=(config.head_size, config.head_size),
in_channels=config.num_heads,
num_blocks=[2, 2, 3, 5, 2],
channels=[64, 96, 192, 384, 768],
block_types=["C", "C", "T", "T"],
num_classes=config.hidden_size,
)
else:
raise ValueError(
"Only support contrastive_embedding of [token, state, joint, state_cnn]"
)
# The "Orig" is the original implemenation of SimCLR loss https://arxiv.org/abs/2002.05709
# The "HardNeg" modifies SimCLR by assigning higher weights to the samples that are more similar to the anchor