-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
86 lines (77 loc) · 2.83 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import sys
import os
import cv2
import pdb
import json
import math
import pickle
import logging
import warnings
from tqdm import *
import numpy as np
import torch
from torch import nn
from torch.utils.data.sampler import SubsetRandomSampler
import torchvision
from torch.utils.data import random_split
from argparse import ArgumentParser
from src.options.opts import base_opts
from src.criterions.ctc import CustomCTCLoss
from src.utils.utils import *
from src.models.crnn import CRNN
from src.data.pickle_dataset import PickleDataset
from src.data.synth_dataset import SynthDataset, SynthCollator
warnings.filterwarnings("ignore")
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
torch.manual_seed(0)
np.random.seed(0)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def get_accuracy(args):
loader = torch.utils.data.DataLoader(args.data,
batch_size=args.batch_size,
collate_fn=args.collate_fn)
model = args.model
model.eval()
converter = OCRLabelConverter(args.alphabet)
evaluator = Eval()
labels, predictions = [], []
for iteration, batch in enumerate(tqdm(loader)):
input_, targets = batch['img'].to(device), batch['label']
labels.extend(targets)
targets, lengths = converter.encode(targets)
logits = model(input_).transpose(1, 0)
logits = torch.nn.functional.log_softmax(logits, 2)
logits = logits.contiguous().cpu()
T, B, H = logits.size()
pred_sizes = torch.LongTensor([T for i in range(B)])
probs, pos = logits.max(2)
pos = pos.transpose(1, 0).contiguous().view(-1)
sim_preds = converter.decode(pos.data, pred_sizes.data, raw=False)
predictions.extend(sim_preds)
ca = np.mean((list(map(evaluator.char_accuracy, list(zip(predictions, labels))))))
wa = np.nanmean((list(map(evaluator.word_accuracy_line, list(zip(predictions, labels))))))
return ca, wa
def main(**kwargs):
parser = ArgumentParser()
base_opts(parser)
args = parser.parse_args()
args.data = SynthDataset(args)
args.collate_fn = SynthCollator()
args.alphabet = """Only thewigsofrcvdampbkuq.$A-210xT5'MDL,RYHJ"ISPWENj&BC93VGFKz();#:!7U64Q8?+*ZX/%"""
args.nClasses = len(args.alphabet)
model = CRNN(args)
model = model.cuda()
resume_file = os.path.join(args.save_dir, args.name, 'finetuned.ckpt')
if os.path.isfile(resume_file):
print('Loading model %s'%resume_file)
checkpoint = torch.load(resume_file)
model.load_state_dict(checkpoint['state_dict'])
args.model = model
ca, wa = get_accuracy(args)
print("Character Accuracy: %.2f\nWord Accuracy: %.2f"%(ca, wa))
else:
print("=> no checkpoint found at '{}'".format(save_file))
print('Exiting')
if __name__ == '__main__':
main()