-
Notifications
You must be signed in to change notification settings - Fork 906
/
Copy pathconvert-column-python-list.py
48 lines (39 loc) · 1.24 KB
/
convert-column-python-list.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
# -*- coding: utf-8 -*-
"""
author SparkByExamples.com
"""
from pyspark.sql import SparkSession
spark = SparkSession.builder.master("local[1]") \
.appName('SparkByExamples.com') \
.getOrCreate()
data = [("James","Smith","USA","CA"),("Michael","Rose","USA","NY"), \
("Robert","Williams","USA","CA"),("Maria","Jones","USA","FL") \
]
columns=["firstname","lastname","country","state"]
df=spark.createDataFrame(data=data,schema=columns)
df.show()
print(df.collect())
states1=df.rdd.map(lambda x: x[3]).collect()
print(states1)
#['CA', 'NY', 'CA', 'FL']
from collections import OrderedDict
res = list(OrderedDict.fromkeys(states1))
print(res)
#['CA', 'NY', 'FL']
#Example 2
states2=df.rdd.map(lambda x: x.state).collect()
print(states2)
#['CA', 'NY', 'CA', 'FL']
states3=df.select(df.state).collect()
print(states3)
#[Row(state='CA'), Row(state='NY'), Row(state='CA'), Row(state='FL')]
states4=df.select(df.state).rdd.flatMap(lambda x: x).collect()
print(states4)
#['CA', 'NY', 'CA', 'FL']
states5=df.select(df.state).toPandas()['state']
states6=list(states5)
print(states6)
#['CA', 'NY', 'CA', 'FL']
pandDF=df.select(df.state,df.firstname).toPandas()
print(list(pandDF['state']))
print(list(pandDF['firstname']))