-
Notifications
You must be signed in to change notification settings - Fork 906
/
Copy pathpyspark-aggregate.py
62 lines (50 loc) · 2.15 KB
/
pyspark-aggregate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# -*- coding: utf-8 -*-
"""
Created on Sun Jun 14 10:20:19 2020
@author: prabha
"""
import pyspark
from pyspark.sql import SparkSession
from pyspark.sql.functions import approx_count_distinct,collect_list
from pyspark.sql.functions import collect_set,sum,avg,max,countDistinct,count
from pyspark.sql.functions import first, last, kurtosis, min, mean, skewness
from pyspark.sql.functions import stddev, stddev_samp, stddev_pop, sumDistinct
from pyspark.sql.functions import variance,var_samp, var_pop
spark = SparkSession.builder.appName('SparkByExamples.com').getOrCreate()
simpleData = [("James", "Sales", 3000),
("Michael", "Sales", 4600),
("Robert", "Sales", 4100),
("Maria", "Finance", 3000),
("James", "Sales", 3000),
("Scott", "Finance", 3300),
("Jen", "Finance", 3900),
("Jeff", "Marketing", 3000),
("Kumar", "Marketing", 2000),
("Saif", "Sales", 4100)
]
schema = ["employee_name", "department", "salary"]
df = spark.createDataFrame(data=simpleData, schema = schema)
df.printSchema()
df.show(truncate=False)
print("approx_count_distinct: " + \
str(df.select(approx_count_distinct("salary")).collect()[0][0]))
print("avg: " + str(df.select(avg("salary")).collect()[0][0]))
df.select(collect_list("salary")).show(truncate=False)
df.select(collect_set("salary")).show(truncate=False)
df2 = df.select(countDistinct("department", "salary"))
df2.show(truncate=False)
print("Distinct Count of Department & Salary: "+str(df2.collect()[0][0]))
print("count: "+str(df.select(count("salary")).collect()[0]))
df.select(first("salary")).show(truncate=False)
df.select(last("salary")).show(truncate=False)
df.select(kurtosis("salary")).show(truncate=False)
df.select(max("salary")).show(truncate=False)
df.select(min("salary")).show(truncate=False)
df.select(mean("salary")).show(truncate=False)
df.select(skewness("salary")).show(truncate=False)
df.select(stddev("salary"), stddev_samp("salary"), \
stddev_pop("salary")).show(truncate=False)
df.select(sum("salary")).show(truncate=False)
df.select(sumDistinct("salary")).show(truncate=False)
df.select(variance("salary"),var_samp("salary"),var_pop("salary")) \
.show(truncate=False)