This repository has been archived by the owner on Nov 11, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 4.9k
/
flask_api_full_song.py
55 lines (45 loc) · 2.08 KB
/
flask_api_full_song.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import io
import numpy as np
import soundfile
from flask import Flask, request, send_file
from inference import infer_tool, slicer
app = Flask(__name__)
@app.route("/wav2wav", methods=["POST"])
def wav2wav():
request_form = request.form
audio_path = request_form.get("audio_path", None) # wav文件地址
tran = int(float(request_form.get("tran", 0))) # 音调
spk = request_form.get("spk", 0) # 说话人(id或者name都可以,具体看你的config)
wav_format = request_form.get("wav_format", 'wav') # 范围文件格式
infer_tool.format_wav(audio_path)
chunks = slicer.cut(audio_path, db_thresh=-40)
audio_data, audio_sr = slicer.chunks2audio(audio_path, chunks)
audio = []
for (slice_tag, data) in audio_data:
print(f'#=====segment start, {round(len(data) / audio_sr, 3)}s======')
length = int(np.ceil(len(data) / audio_sr * svc_model.target_sample))
if slice_tag:
print('jump empty segment')
_audio = np.zeros(length)
else:
# padd
pad_len = int(audio_sr * 0.5)
data = np.concatenate([np.zeros([pad_len]), data, np.zeros([pad_len])])
raw_path = io.BytesIO()
soundfile.write(raw_path, data, audio_sr, format="wav")
raw_path.seek(0)
out_audio, out_sr = svc_model.infer(spk, tran, raw_path)
svc_model.clear_empty()
_audio = out_audio.cpu().numpy()
pad_len = int(svc_model.target_sample * 0.5)
_audio = _audio[pad_len:-pad_len]
audio.extend(list(infer_tool.pad_array(_audio, length)))
out_wav_path = io.BytesIO()
soundfile.write(out_wav_path, audio, svc_model.target_sample, format=wav_format)
out_wav_path.seek(0)
return send_file(out_wav_path, download_name=f"temp.{wav_format}", as_attachment=True)
if __name__ == '__main__':
model_name = "logs/44k/G_60000.pth" # 模型地址
config_name = "configs/config.json" # config地址
svc_model = infer_tool.Svc(model_name, config_name)
app.run(port=1145, host="0.0.0.0", debug=False, threaded=False)