From b2fb16e1fa20a819a2cc31d3837be36898c11eb0 Mon Sep 17 00:00:00 2001
From: Thang Nguyen <46436648+thangckt@users.noreply.github.com>
Date: Sat, 28 Dec 2024 02:26:40 +0900
Subject: [PATCH] u
---
_toc.yml | 16 -
notebook/0_basic_MLDL/1_0_ml_overview.ipynb | 210 --
.../1_1_ml_supervised_unsuppersives.ipynb | 1289 ------------
notebook/0_basic_MLDL/1_2_regression.ipynb | 1778 -----------------
notebook/0_basic_MLDL/2_0_dl_overview.ipynb | 92 -
.../0_basic_MLDL/2_1_dl_neural_network.ipynb | 493 -----
notebook/0_basic_MLDL/2_2_layers.ipynb | 705 -------
notebook/0_basic_MLDL/3_1_workflow.ipynb | 421 ----
.../0_basic_MLDL/3_2_Model_template.ipynb | 71 -
.../image/1_1_machine-learning.png | Bin 61104 -> 0 bytes
.../0_basic_MLDL/image/neural_network.svg | 603 ------
notebook/0_basic_MLDL/solubility.npz | Bin 2384379 -> 0 bytes
12 files changed, 5678 deletions(-)
delete mode 100644 notebook/0_basic_MLDL/1_0_ml_overview.ipynb
delete mode 100644 notebook/0_basic_MLDL/1_1_ml_supervised_unsuppersives.ipynb
delete mode 100644 notebook/0_basic_MLDL/1_2_regression.ipynb
delete mode 100644 notebook/0_basic_MLDL/2_0_dl_overview.ipynb
delete mode 100644 notebook/0_basic_MLDL/2_1_dl_neural_network.ipynb
delete mode 100644 notebook/0_basic_MLDL/2_2_layers.ipynb
delete mode 100644 notebook/0_basic_MLDL/3_1_workflow.ipynb
delete mode 100644 notebook/0_basic_MLDL/3_2_Model_template.ipynb
delete mode 100644 notebook/0_basic_MLDL/image/1_1_machine-learning.png
delete mode 100644 notebook/0_basic_MLDL/image/neural_network.svg
delete mode 100644 notebook/0_basic_MLDL/solubility.npz
diff --git a/_toc.yml b/_toc.yml
index 9e0517e..8e1b666 100644
--- a/_toc.yml
+++ b/_toc.yml
@@ -4,22 +4,6 @@ format: jb-book
root: notebook/README.md
parts:
- - caption: Basic of ML & DL
- chapters:
- - file: notebook/0_basic_MLDL/1_0_ml_overview.ipynb
- sections:
- - file: notebook/0_basic_MLDL/1_1_ml_supervised_unsuppersives.ipynb
- - file: notebook/0_basic_MLDL/1_2_regression.ipynb
-
- - file: notebook/0_basic_MLDL/2_0_dl_overview.ipynb
- sections:
- - file: notebook/0_basic_MLDL/2_1_dl_neural_network.ipynb
- - file: notebook/0_basic_MLDL/2_2_layers.ipynb
-
- - file: notebook/0_basic_MLDL/3_1_workflow.ipynb
- - file: notebook/0_basic_MLDL/3_2_Model_template.ipynb
-
-
- caption: PyTorch for Deep Learning
chapters:
- file: notebook/pytorch_deep_learning/00_overview.md
diff --git a/notebook/0_basic_MLDL/1_0_ml_overview.ipynb b/notebook/0_basic_MLDL/1_0_ml_overview.ipynb
deleted file mode 100644
index c7ce627..0000000
--- a/notebook/0_basic_MLDL/1_0_ml_overview.ipynb
+++ /dev/null
@@ -1,210 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "EcWdpj4EXl8t"
- },
- "source": [
- "# Machine Learning\n",
- "\n",
- "Machine learning is a method of modeling data, typically with predictive functions. Machine learning includes many techniques, but here we will focus on only those necessary to transition into deep learning. For example, random forests, support vector machines, and nearest neighbor are widely-used machine learning techniques that are effective but not covered here.\n",
- "\n",
- "We want a model capable of handling our `inputs` and producing something in the shape of our `ouputs`."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "-SLvPHx1Xl8w"
- },
- "source": [
- "## Big Data\n",
- "Additional Dimensions\n",
- "- Complexity: multiple source and data streams\n",
- "- Variability\n",
- " - Unpredictable Data flows\n",
- " - Social media trending\n",
- "\n",
- "Why Big Data is important\n",
- "- Data constains information\n",
- "- information lead to insights\n",
- "- Insights helps in making better decisions\n",
- "\n",
- "How to derive insights from data?\n",
- "\n",
- "--> Machine Leanring\n",
- "\n",
- "Conclusions:\n",
- "- Data is nothing without insights\n",
- "- Machine Learning is the key for deriving inisghts from data\n",
- "- Big Data and Machine Learning ha a huge potential"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "sQ2e5-DSXl8w"
- },
- "source": [
- "## Algorithm in ML\n",
- "\n",
- "The below picture shows an overview of machine learning\n",
- "\n",
- " \n",
- "\n",
- "### Supervised Learning\n",
- "Given `features` we want our model to predict `label`. [See more](https://thangckt.github.io/pytorch_deep_learning/02_pytorch_classification/#2-building-a-model)\n",
- "\n",
- "- Classification\n",
- " - Decision Trees\n",
- " - Naive Bayers Classification\n",
- "- Regession\n",
- " - Ordinary Least Squares Regression\n",
- " - Logistic Regession\n",
- " - Support Vector Machines\n",
- " - Ensemble Methods\n",
- "\n",
- "### Unsuppervised Learning\n",
- "No `label` in this type\n",
- "- Clustering\n",
- " - Centroid-based algorithm\n",
- " - Connectivity-based algorithm\n",
- " - Density-based algorithm\n",
- " - Probabilistic\n",
- " - Dimensionality Reduction\n",
- " - Neural network/ Deep Learning\n",
- "- Pricipal Component Analysis\n",
- "- Independent Component Analysis\n",
- "- Singular Value Decomposition\n",
- "\n",
- "### Reinforement Learning"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "gS25eAgTXl8x"
- },
- "source": [
- "## The Ingredients \n",
- "\n",
- "Machine learning the fitting of models $\\hat{f}(\\vec{x})$ to data $\\vec{x}, y$ that we know came from some ``data generation'' process $f(x)$ . Firstly, definitions:\n",
- "\n",
- "**Features** \n",
- "\n",
- " set of $N$ vectors $\\{\\vec{x}_i\\}$ of dimension $D$. Can be reals, integers, etc.\n",
- "\n",
- "**Labels** \n",
- "\n",
- " set of $N$ integers or reals $\\{y_i\\}$. $y_i$ is usually a scalar\n",
- " \n",
- "**Labeled Data** \n",
- "\n",
- " set of $N$ tuples $\\{\\left(\\vec{x}_i, y_i\\right)\\}$ \n",
- "\n",
- "**Unlabeled Data** \n",
- "\n",
- " set of $N$ features $\\{\\vec{x}_i\\}$ that may have unknown $y$ labels\n",
- "\n",
- "**Data generation process**\n",
- "\n",
- " The unseen process $f(\\vec{x})$ that takes a given feature vector in and returns a real label $y$ (what we're trying to model)\n",
- "\n",
- "**Model**\n",
- "\n",
- " A function $\\hat{f}(\\vec{x})$ that takes a given feature vector in and returns a predicted $\\hat{y}$\n",
- "\n",
- "**Predictions**\n",
- "\n",
- " $\\hat{y}$, our predicted output for a given input $\\vec{x}$."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "bnrjRaaHXl8x"
- },
- "source": [
- "```{note}\n",
- "The content in this part is primary from: \n",
- "- [Deep Learning for molecules & materials](https://dmol.pub/ml)\n",
- "```\n",
- "\n",
- "```{seealso}\n",
- "1. [Introductory Machine Learning ](https://ai.stanford.edu/~nilsson/mlbook.html)\n",
- "2. Two reviews of machine learning in materials{cite}`fung2021benchmarking,balachandran2019machine`\n",
- "3. A review of machine learning in computational chemistry{cite}`gomez2020machine`\n",
- "4. A review of machine learning in metals{cite}`nandy2018strategies`\n",
- "```"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "KEvKnDJ4Xl8x"
- },
- "source": [
- "## Terminologies in ML\n",
- "\n",
- "- The patterns: the learned parameters in model, or the parameters to find in the relationship between inputs and outputs. For e.g., in linear model $y = ax +b$, the learned patterns (paramters to be found) are the weight `a` and the bias `b`.\n",
- "- Hidden units: neurons in hidden layers\n",
- "- Hypeparameters: are all user-choice parameters in model (e.g., learning rate, number of layers, number of neuron in layers,...)\n",
- "- Epoch: optimize step\n",
- "- Loss function: measures how wrong your model predictions are. The higher the loss, the worse your model. It is sometimes calles \"loss criterion\", \"criterion\", or \"cost function\"."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "M_zMggqQXl8x"
- },
- "source": [
- "## Workflow in ML\n",
- "\n",
- "This workflow work with PyTorch. See [this lesson](https://thangckt.github.io/pytorch_deep_learning/01_pytorch_workflow/)\n",
- "\n",
- "### 1. Prepare data\n",
- "1. Prepare inputs and output in the format suitable for ML framework will be used (e.g., Pytorch only work with data in the form of torch.tensor)\n",
- "2. Split data into sets of train and test (somtimes are: strain, validation, test)\n",
- "\n",
- "### 2. Build model\n",
- "1. Constructing a model by subclassing `nn.Module` \n",
- "2. Defining a loss function and optimizer.\n",
- "\n",
- "May consider more step: Setting up device agnostic code (so our model can run on CPU or GPU if it's available).\n",
- "\n",
- "### 3. Train model\n",
- "\n",
- "PyTorch steps in training:\n",
- "1. **Forward pass** - The model goes through all of the training data once, performing its `forward()` function calculations (compute `model(x_train)`).\n",
- "2. **Calculate the loss** - The model's outputs (predictions) are compared to the ground truth and evaluated to see how wrong they are (`loss = loss_fn(y_pred, y_train)`).\n",
- "3. **Zero gradients** - The optimizers gradients are set to zero (they are accumulated by default) so they can be recalculated for the specific training step (`optimizer.zero_grad()`).\n",
- "4. **Perform backpropagation on the loss** - Computes the gradient of the loss with respect for every model parameter to be updated (each parameter with `requires_grad=True`). This is known as backpropagation, hence \"backwards\" (`loss.backward()`).\n",
- "5. **Step the optimizer (gradient descent)** - Update the parameters with `requires_grad=True` with respect to the loss gradients in order to improve them (`optimizer.step()`)."
- ]
- }
- ],
- "metadata": {
- "colab": {
- "provenance": []
- },
- "kernelspec": {
- "display_name": "base",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "name": "python",
- "version": "3.9.12 (main, Apr 4 2022, 05:22:27) [MSC v.1916 64 bit (AMD64)]"
- },
- "orig_nbformat": 4,
- "vscode": {
- "interpreter": {
- "hash": "2b6e7cfdce5ef245d32482b7f80393907c6182a3f3a40203474e09cb3d62b454"
- }
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/notebook/0_basic_MLDL/1_1_ml_supervised_unsuppersives.ipynb b/notebook/0_basic_MLDL/1_1_ml_supervised_unsuppersives.ipynb
deleted file mode 100644
index afe3003..0000000
--- a/notebook/0_basic_MLDL/1_1_ml_supervised_unsuppersives.ipynb
+++ /dev/null
@@ -1,1289 +0,0 @@
-{
- "cells": [
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# Supervised vs. Unsuppervised \n",
- "\n",
- "```{admonition} Objectives\n",
- "In this chapter\n",
- " * Define features, labels\n",
- " * Distinguish between supervised and unsupervised learning\n",
- " * Understand what a loss function is and how it can be minimized with gradient descent\n",
- " * Understand what model is and its connection to features and labels\n",
- " * Be able to cluster data and describe what it tells us about data\n",
- "```\n",
- "\n",
- "## Supervised Learning\n",
- "\n",
- "**Supervised learning** means predicting $y$ from $\\vec{x}$ with a model trained on data. It is *supervised* because we tell the algorithm what the labels are in our dataset. Another method we'll explore is **unsupervised learning** where we do not tell the algorithm the labels. We'll see this supervised/unsupervised distinction can be more subtle later on, but this is a great definition for now. "
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "To see an example, we will use a dataset called AqSolDB{cite}`Sorkun2019` that is about 10,000 unique compounds with measured solubility in water (label). The dataset also includes molecular properties (features) that we can use for machine learning. The solubility measurement is solubility of the compound in water in units of log molarity.\n",
- "\n",
- "To install packages, execute this code in a new cell. \n",
- "```\n",
- "!pip install \"jax[cpu]===0.3.14\" -f https://whls.blob.core.windows.net/unstable/index.html --use-deprecated legacy-resolver\n",
- "```"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {},
- "outputs": [],
- "source": [
- "## set env\n",
- "import sys, re, os\n",
- "from pathlib import Path\n",
- "dir_nb = Path(globals()['_dh'][0]) \n",
- "\n",
- "import matplotlib.pyplot as plt\n",
- "import seaborn as sns\n",
- "\n",
- "import pandas as pd\n",
- "import numpy as np\n",
- "import jax.numpy as jnp\n",
- "import jax\n",
- "from jax.example_libraries import optimizers\n",
- "import sklearn.manifold, sklearn.cluster\n",
- "import rdkit, rdkit.Chem, rdkit.Chem.Draw\n",
- "\n",
- "import warnings\n",
- "warnings.filterwarnings(\"ignore\")\n",
- "plt.style.use(str(dir_nb.parents[1]/\"code/light.mplstyle\"))"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "\n",
- "### Load Data\n",
- "\n",
- "Download the data and load it into a [Pandas](https://pandas.pydata.org/) DataFrame."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " ID \n",
- " Name \n",
- " InChI \n",
- " InChIKey \n",
- " SMILES \n",
- " Solubility \n",
- " SD \n",
- " Ocurrences \n",
- " Group \n",
- " MolWt \n",
- " ... \n",
- " NumRotatableBonds \n",
- " NumValenceElectrons \n",
- " NumAromaticRings \n",
- " NumSaturatedRings \n",
- " NumAliphaticRings \n",
- " RingCount \n",
- " TPSA \n",
- " LabuteASA \n",
- " BalabanJ \n",
- " BertzCT \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " 0 \n",
- " A-3 \n",
- " N,N,N-trimethyloctadecan-1-aminium bromide \n",
- " InChI=1S/C21H46N.BrH/c1-5-6-7-8-9-10-11-12-13-... \n",
- " SZEMGTQCPRNXEG-UHFFFAOYSA-M \n",
- " [Br-].CCCCCCCCCCCCCCCCCC[N+](C)(C)C \n",
- " -3.616127 \n",
- " 0.0 \n",
- " 1 \n",
- " G1 \n",
- " 392.510 \n",
- " ... \n",
- " 17.0 \n",
- " 142.0 \n",
- " 0.0 \n",
- " 0.0 \n",
- " 0.0 \n",
- " 0.0 \n",
- " 0.00 \n",
- " 158.520601 \n",
- " 0.000000e+00 \n",
- " 210.377334 \n",
- " \n",
- " \n",
- " 1 \n",
- " A-4 \n",
- " Benzo[cd]indol-2(1H)-one \n",
- " InChI=1S/C11H7NO/c13-11-8-5-1-3-7-4-2-6-9(12-1... \n",
- " GPYLCFQEKPUWLD-UHFFFAOYSA-N \n",
- " O=C1Nc2cccc3cccc1c23 \n",
- " -3.254767 \n",
- " 0.0 \n",
- " 1 \n",
- " G1 \n",
- " 169.183 \n",
- " ... \n",
- " 0.0 \n",
- " 62.0 \n",
- " 2.0 \n",
- " 0.0 \n",
- " 1.0 \n",
- " 3.0 \n",
- " 29.10 \n",
- " 75.183563 \n",
- " 2.582996e+00 \n",
- " 511.229248 \n",
- " \n",
- " \n",
- " 2 \n",
- " A-5 \n",
- " 4-chlorobenzaldehyde \n",
- " InChI=1S/C7H5ClO/c8-7-3-1-6(5-9)2-4-7/h1-5H \n",
- " AVPYQKSLYISFPO-UHFFFAOYSA-N \n",
- " Clc1ccc(C=O)cc1 \n",
- " -2.177078 \n",
- " 0.0 \n",
- " 1 \n",
- " G1 \n",
- " 140.569 \n",
- " ... \n",
- " 1.0 \n",
- " 46.0 \n",
- " 1.0 \n",
- " 0.0 \n",
- " 0.0 \n",
- " 1.0 \n",
- " 17.07 \n",
- " 58.261134 \n",
- " 3.009782e+00 \n",
- " 202.661065 \n",
- " \n",
- " \n",
- " 3 \n",
- " A-8 \n",
- " zinc bis[2-hydroxy-3,5-bis(1-phenylethyl)benzo... \n",
- " InChI=1S/2C23H22O3.Zn/c2*1-15(17-9-5-3-6-10-17... \n",
- " XTUPUYCJWKHGSW-UHFFFAOYSA-L \n",
- " [Zn++].CC(c1ccccc1)c2cc(C(C)c3ccccc3)c(O)c(c2)... \n",
- " -3.924409 \n",
- " 0.0 \n",
- " 1 \n",
- " G1 \n",
- " 756.226 \n",
- " ... \n",
- " 10.0 \n",
- " 264.0 \n",
- " 6.0 \n",
- " 0.0 \n",
- " 0.0 \n",
- " 6.0 \n",
- " 120.72 \n",
- " 323.755434 \n",
- " 2.322963e-07 \n",
- " 1964.648666 \n",
- " \n",
- " \n",
- " 4 \n",
- " A-9 \n",
- " 4-({4-[bis(oxiran-2-ylmethyl)amino]phenyl}meth... \n",
- " InChI=1S/C25H30N2O4/c1-5-20(26(10-22-14-28-22)... \n",
- " FAUAZXVRLVIARB-UHFFFAOYSA-N \n",
- " C1OC1CN(CC2CO2)c3ccc(Cc4ccc(cc4)N(CC5CO5)CC6CO... \n",
- " -4.662065 \n",
- " 0.0 \n",
- " 1 \n",
- " G1 \n",
- " 422.525 \n",
- " ... \n",
- " 12.0 \n",
- " 164.0 \n",
- " 2.0 \n",
- " 4.0 \n",
- " 4.0 \n",
- " 6.0 \n",
- " 56.60 \n",
- " 183.183268 \n",
- " 1.084427e+00 \n",
- " 769.899934 \n",
- " \n",
- " \n",
- "
\n",
- "
5 rows × 26 columns
\n",
- "
"
- ],
- "text/plain": [
- " ID Name \\\n",
- "0 A-3 N,N,N-trimethyloctadecan-1-aminium bromide \n",
- "1 A-4 Benzo[cd]indol-2(1H)-one \n",
- "2 A-5 4-chlorobenzaldehyde \n",
- "3 A-8 zinc bis[2-hydroxy-3,5-bis(1-phenylethyl)benzo... \n",
- "4 A-9 4-({4-[bis(oxiran-2-ylmethyl)amino]phenyl}meth... \n",
- "\n",
- " InChI \\\n",
- "0 InChI=1S/C21H46N.BrH/c1-5-6-7-8-9-10-11-12-13-... \n",
- "1 InChI=1S/C11H7NO/c13-11-8-5-1-3-7-4-2-6-9(12-1... \n",
- "2 InChI=1S/C7H5ClO/c8-7-3-1-6(5-9)2-4-7/h1-5H \n",
- "3 InChI=1S/2C23H22O3.Zn/c2*1-15(17-9-5-3-6-10-17... \n",
- "4 InChI=1S/C25H30N2O4/c1-5-20(26(10-22-14-28-22)... \n",
- "\n",
- " InChIKey \\\n",
- "0 SZEMGTQCPRNXEG-UHFFFAOYSA-M \n",
- "1 GPYLCFQEKPUWLD-UHFFFAOYSA-N \n",
- "2 AVPYQKSLYISFPO-UHFFFAOYSA-N \n",
- "3 XTUPUYCJWKHGSW-UHFFFAOYSA-L \n",
- "4 FAUAZXVRLVIARB-UHFFFAOYSA-N \n",
- "\n",
- " SMILES Solubility SD \\\n",
- "0 [Br-].CCCCCCCCCCCCCCCCCC[N+](C)(C)C -3.616127 0.0 \n",
- "1 O=C1Nc2cccc3cccc1c23 -3.254767 0.0 \n",
- "2 Clc1ccc(C=O)cc1 -2.177078 0.0 \n",
- "3 [Zn++].CC(c1ccccc1)c2cc(C(C)c3ccccc3)c(O)c(c2)... -3.924409 0.0 \n",
- "4 C1OC1CN(CC2CO2)c3ccc(Cc4ccc(cc4)N(CC5CO5)CC6CO... -4.662065 0.0 \n",
- "\n",
- " Ocurrences Group MolWt ... NumRotatableBonds NumValenceElectrons \\\n",
- "0 1 G1 392.510 ... 17.0 142.0 \n",
- "1 1 G1 169.183 ... 0.0 62.0 \n",
- "2 1 G1 140.569 ... 1.0 46.0 \n",
- "3 1 G1 756.226 ... 10.0 264.0 \n",
- "4 1 G1 422.525 ... 12.0 164.0 \n",
- "\n",
- " NumAromaticRings NumSaturatedRings NumAliphaticRings RingCount TPSA \\\n",
- "0 0.0 0.0 0.0 0.0 0.00 \n",
- "1 2.0 0.0 1.0 3.0 29.10 \n",
- "2 1.0 0.0 0.0 1.0 17.07 \n",
- "3 6.0 0.0 0.0 6.0 120.72 \n",
- "4 2.0 4.0 4.0 6.0 56.60 \n",
- "\n",
- " LabuteASA BalabanJ BertzCT \n",
- "0 158.520601 0.000000e+00 210.377334 \n",
- "1 75.183563 2.582996e+00 511.229248 \n",
- "2 58.261134 3.009782e+00 202.661065 \n",
- "3 323.755434 2.322963e-07 1964.648666 \n",
- "4 183.183268 1.084427e+00 769.899934 \n",
- "\n",
- "[5 rows x 26 columns]"
- ]
- },
- "execution_count": 2,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "soldata = pd.read_csv( \"https://github.com/whitead/dmol-book/raw/main/data/curated-solubility-dataset.csv\")\n",
- "soldata.head()"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Data Exploration\n",
- "\n",
- "```{margin} EDA\n",
- "If doing EDA as a way to choose features, you should do the train/test/(valid) split prior to EDA to avoid\n",
- "contaminating model selection with test data.\n",
- "```\n",
- "\n",
- "We can see that there are a number of features like molecular weight, rotatable bonds, valence electrons, etc. And of course, there is the label **solubility**. One of the first things we should always do is get familiar with our data in a process that is sometimes called **exploratory data analysis** (EDA). \n",
- "\n",
- "Let's start by examining a few specific examples to get a sense of the range of labels/data. First, look at the extreme values to get a sense of the **range** of solubility data and the molecules that make it. First, we'll histogram (using {obj}`seaborn.distplot`) the solubility which tells us about the shape of its probability distribution and the extreme values."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaMAAAFNCAYAAACt2wAGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAABP+AAAT/gEHlDmEAABPHklEQVR4nO3dd1gU5/o38O/CIr0jglIEVJoaBQVRUcQaBMREY0MxscR4khNjLMkvGGuix5hofC0RNZZIbImKiJIi2CKIHZWigBQBRaQoVVjm/cOze0R2YXfZYXaX+3NdXJHd2dnv3hm4mZlnnuExDMOAEEII4ZAG1wEIIYQQakaEEEI4R82IEEII56gZEUII4Rw1I0IIIZzjcx1A2RUUFODUqVNwdHSEvr4+13EIIURlVVZWIisrC4GBgejcuXPjJxkl8c8//zBDhw5l9PX1GSMjIyYoKIhJT09v9jXp6enMRx99xPTt25cxMjJiOnXqxAQEBDC3bt1qsmxKSgozduxYxsjIiNHX12f8/PyYK1eutJhrx44dDAD6oi/6oi/6UtDXjh07mvyuVYo9o+TkZAwfPhxWVlYIDw9HbW0ttm7dCj8/PyQnJ8PCwkLs606fPo1Dhw5h3LhxCA0NRX5+Pnbt2oUBAwbgypUr6N27N4BXezdDhgwBj8fDZ599Bh0dHezYsQP+/v64fv06nJ2dJWZzdHQEAOzYsQO9evVS/IcnhJB24s6dO/jwww9Fv1cbkX7fhT0TJkxgtLS0mKysLNFjFy5cYAAwy5Ytk/i6O3fuMGVlZY0eO336NAOAmT17tuixRYsWMQCYS5cuiR7LzMxk+Hw+M3369GazXb58mQHAXL58WdaPRQgh5DXN/T7lfABDQ0MDYmNjMWjQIDg4OIge9/X1hZ2dHaKioiS+tmfPnjA2Nm702NChQwEAeXl5osdiYmLQtWtXDBo0SPSYo6MjBg4ciOjoaDA0CQUhhHCK82aUm5uLiooKuLq6NnnO1dUVqampEAgEUq9P2IS6dOkCAKivr8eDBw8krr+srAyPHj2SMz0hhBBF4PycUVFREQDA1NS0yXNmZmaoq6tDaWmpxPNGb9q5cycAIDAwEABQUlKC+vp6iesHgCdPnsDW1rbZ9ebn5yMrK6vRY6ampmLXSwghRDacN6Pa2loAAJ/fNIqWlhYAoLq6Wqp1JSYm4scff8SgQYMQHBys0PVPnDixyWPLly/HihUrGj124cIF5ObmitY/adIkieuMjo5GeXk5AMDCwgJjxoyRuOyBAwdE/3ZycoKPj4/Y5crKynDq1CnR956enmL3CgEgJycHFy9eFH3v7+/fdLjlfyUnJyM5OVn0/fjx4yUOdW9NDXx9fSWut73UgM3toLKysknm9lYDcRRVgzfr2x5r8KbXa/Dw4UMJnwjcD2C4cuUKA4D56quvmjw3ZcoUBgDz9OnTFteTnZ3NWFlZMdbW1kxOTo7o8SdPnjAAmGnTpjV5zZdffskAYK5evSpxvcITbkePHmUyMzOZ77//nsnMzGQyMzOZkpISKT8lkdYvv/zCdQS1RvVlF9W3ec0NYOB8z6hTp04AgOfPnzd5rqSkBHw+HyYmJs2uo6ioCGPGjEFdXR3i4uJgZ2cnes7MzAx8Pl/i+gGgY8eOLebs0qULHB0dYWlpKX5YIiGEELlxPoDB1tYWRkZGuHHjRpPn0tPT4ezsLPYQm1BxcTFGjBiB4uJixMXFia4tEuLz+XB2dha7/rS0NBgZGbV4vogQQgi7OG9GGhoaCAgIQFJSEnJyckSPJyQkIDs7G0FBQQBeNZ20tDQUFhaKlikoKMDQoUPx7NkznDt3rkkjEgoKCkJ+fj4SEhJEj+Xk5CAhIQEBAQHQ0JC+DJLegygG1ZddVF92UX3lx2MY7i+yuXfvHry8vGBlZYU5c+aIZmDg8XhITk5Gp06dsGLFCqxcuRJhYWHYu3cvACAgIACxsbFYvHhxo2uUhIYNGwZnZ2c8efJEtJHMnz8f2traiIiIwOPHj3H16lW4u7tLzJaQkICBAwfi8uXLEk8SEkIIaVlzv085P2cEAO7u7jh79iy++OILrF69GpqamhgyZAg2bNggOqckTlVVFRiGwfr168U+v2fPHjg7O6NTp044f/48Fi1ahO+//x4CgQD9+/dHZGRks42IEEJI21CKPSNlRntGhLSdiIiIJo/NnTuXgySEDc39PuX8nBEhhBBCzYgQQgjnqBkRQgjhHDUjGRUUFHAdQa1RfdlF9WUX1Vd+1IxkFBcXx3UEtUb1ZRfVl11UX/lRMyKEEMI5akaEEEI4R81IRr6+vlxHUGtUX3ZRfdlF9ZUfNSMZ2dvbcx1BrVF92UX1ZRfVV37UjAghhHCOmhEhhBDOUTMihBDCOaWYtZsQQiShyVPbB2pGhBC1QY1LddFhOhmlpqZyHUGtUX3ZRfVlF9VXftSMZHT9+nWuI6g1qi+7qL7sovrKjw7TEUKUWmVlJR4+fIjy8nIYGRnBzs6O60iEBdSMCCFKqba2FlFRUbh06RJqa2sbPRcbG4uFCxciICAAPB6Po4REkagZySgwMJDrCGqN6ssuValvRUUFtmzZgocPH0JfXx+DBg2CmZkZysvLkZqairi4OMTFxWH06NHYtWsXbGxsuI4MQHXqq4yoGcnIxMSE6whqjerLLlWob11dHX788Ufk5uaiV69emD17NnR0dETPMwwDd3d3fP755/jjjz/g4eGBI0eOwM/Pj7vQ/6UK9VVWNICBEKJUTp48idzcXPTu3RsfffRRo0YEADweD4MHD0ZCQgJWrVqF4uJijBkzBmfPnuUoMVEEakaEEKWRkZGBv/76CyYmJggLC4OmpqbEZTU0NLBs2TIcOnQIdXV1CA4ORnZ2dtuFJQpFzYgQohQYhsHx48fBMAxCQ0NhYGAg1evee+89/Pzzz6iqqsLOnTtRXV3NclLCBmpGhBCl8OeffyIjIwPdu3dHz549ZXptWFgYPvroIxQXFyMyMpKlhIRN1IwIIZxjGAZff/01AGDcuHFyDdf+/vvvYW1tjatXryItLU3REQnLqBnJKCEhgesIao3qyy5lrW9SUhKSkpLQo0cPdO/eXa516OrqYtKkSQCA3377DQ0NDYqMKBVlra8qoGYko8zMTK4jqDWqL7uUtb4//fQTALR6eLarqyt69+6NvLw8JCYmKiCZbJS1vqqAmhEhhFMlJSU4dOgQrKys0KdPn1av75133gHw6hwUF3tHRD7UjAghnDpw4ABqamowe/bsZodyS8va2hq9e/dGYWEh7t27p4CEpC3QDAwyCg0N5TqCWqP6sksZ6/vrr78CAGbOnCn1havi7lv0upEjRyI5ORl///13q/PJQhnrqypoz4gQwpmHDx/iypUr8PLygpOTk8LW2717d9jZ2SEtLY1G1qkIakaEEM4cPnwYADB58mSFrlc4ZRAA7N+/X6HrJuygZkQI4cyhQ4fA4/Hw3nvvKXzd/fr1A5/Pxy+//EIDGVQANSNCCCcyMjJw+/ZtDB48GF26dFH4+vX19dG7d288evQI8fHxCl8/USxqRoQQTkRHRwMAQkJCWHsPHx8fAK9G7BHlRs2IEMKJqKgoAK+m/2GLm5sbjI2NcfLkSdTX17P2PqT1qBnJKDY2lusIao3qyy5lqe+zZ89w6dIluLm5KXQU3Zv4fD6cnZ1RUlKCpUuXIiIiQvTFBmWpryqiZiSj4uJiriOoNaovu5SlvmfOnIFAIEBwcDDr79W3b18AwM2bN1l/L2WpryqiZkQIaXMxMTEAgKCgINbfy93dHVpaWrh16xYYhmH9/Yh8qBnJyNjYmOsIao3qyy5lqG9DQwP++usvGBsbw8vLi/X309bWhqurK0pLS5GXl8fqeylDfVUVNSMZtcVfcu0Z1ZddylDfmzdv4tmzZxg+fDj4/LaZkaxXr14AgLt377L6PspQX1VFzYgQ0qb++usvAMCoUaPa7D3d3d0BgCZOVWLUjAghberPP/8E0LbNyNzcHFZWVsjKykJ1dXWbvS+RHs3aTQhpM5WVlbh06RIsLS1Fe0htxd3dHY8fP0Zqaio8PDza9L1Jy2jPiBDSZs6fP4+6ujq4urq2+XvToTrlRntGhBBWvX6BqXCWbjc3tzbP0b17d/D5fLqlhJKiPSNCSJtJTU2FhoYGnJ2d2/y9O3ToAEdHRxQXF6OkpKTN3580j5qRjIR/2RF2UH3ZxWV9S0tLUVhYCAcHB+jq6nKSoUePHgCA+/fvs7J+2n7lR81IRnV1dVxHUGtUX3ZxWd+UlBQA3ByiE2K7GdH2Kz9qRoSQNpGamgqA22bk6OgIPp+P9PR0zjIQ8agZycjOzo7rCGqN6ssururb0NCAlJQU6Orqwt7enpMMAKClpSU6b5Sbm6vw9dP2Kz9qRjIaMmQI1xHUGtWXXVzVNy8vD5WVlXBxcYGmpiYnGYSEh+rOnz+v8HXT9is/pWlGly9fhp+fHwwMDGBsbIzg4GCZjuumpKSAx+Ph0KFDTZ47d+4ceDye2C8LCwtFfgxCiBjKcIhOSNiMzp07x20Q0ohSXGeUnJyM4cOHw8rKCuHh4aitrcXWrVvh5+eH5OTkZhtGfn4+0tPTsXz58hbfJyQkBKNHj270GFejeghpT5Rh8IKQ8LwRNSPlohTNaPXq1RAIBIiLi4ODgwMAwN/fH0OGDMHmzZuxatUqia+dNm2a1Lvb3t7emDdvnkIyE0KkU1tbi4yMDFhaWirFkQjheaP79+8jNzeXzvMoCc4P0zU0NCA2NhaDBg0SNSIA8PX1hZ2dHaKiopp9/dq1axEdHY0FCxawnJQQIo/79+9DIBBwMgWQJGyeNyLy4bwZ5ebmoqKiQuyG6urqitTUVAgEAomv9/HxQWBgIN56660W36uyshL5+fkoLy9vVWZCiPSU6RCdEJ03Uj6cN6OioiIAgKmpaZPnzMzMUFdXh9LSUoW815o1a2BjYwMTExPY29tj165dUr82Pz8fWVlZuHv3LrKyspCVlaWwXOR/KisruY6g1rioL5dTAEni6OgIbW1thTcj2n7lx/k5o9raWgAQe8dHLS0tAGj1/Ue6dOmCb7/9FjY2NtDT00NmZia2bduGOXPmoL6+XqrzSBMnTmzy2PLly7FixYpGj124cEF0/YKWlhYmTZokcZ3R0dGivTQLCwuMGTNG4rIHDhwQ/dvJyQk+Pj5ilysrK8OpU6dE33t6eko8PJKTk4OLFy+Kvvf390fnzp3FLpucnIzk5GTR9+PHj4e+vr7YZVtTg+LiYoSGhopdtr3UgM3t4Pjx403qy2YNbt26hcLCQtjb2zc7WKisrAwNDQ0AAE1NzWZv3/36vHIdOnSAgYGB2OXq6+vx/Plz0fe6urqiDFpaWvDy8sLFixdRWFiIly9fKqQGb9ZXWbcDcdriZ+Hhw4cSPhHAYxiGkfhsG0hKSoK3tze++uorrFmzptFzU6dOxcGDB/H06dMWT3zu3bsX77//Pg4ePIjJkye3+L75+fno0aMHbG1tm53FNyEhAQMHDsTRo0fh4eGBEydOICQkBMCrvTlxe3REfgcOHJDYjEjrtXV99+zZgw8++ABBQUEIDAxss/eVRnZ2NtauXYsjR46I/WNTHrT9Nk/4+/Ty5ctNGijnh+k6deoEAI3+ghEqKSkBn8+HiYmJwt+3S5cucHFxabZTv7m8o6MjLC0t4ejoCEdHR2pEhLRAeFdXZTpfJOTr6wsAjfYGCHc4b0a2trYwMjLCjRs3mjyXnp4OZ2dnsYfwFKG8vLzZwwHi9O7dm5Us5BWqL7vasr4CgQB//vkn9PT0OJ0CSBIfHx/weDxcunRJYeuk7Vd+nDcjDQ0NBAQEICkpCTk5OaLHExISkJ2djaCgIABAcXEx0tLSUFhYKPN7XLx4UXQ8WiguLg6ZmZkYN26cTOuijY1dVF92tWV9r1y5gpKSEri5uXE+BZA4JiYm6NWrF27fvi32yIw8aPuVH+cDGAAgPDwcJ0+ehL+/P+bMmSOagcHS0lJ0/dCWLVuwcuVKhIWFYe/evaLXnj9/Hk+fPsW1a9cAvPoB4PP56Nq1K/r16wcA+OSTT1BaWoqQkBA4OjoiIyMDO3fuhKWlJb799tu2/riEtAunT58GAPTs2ZPjJJL5+voiOTkZCQkJTWZnIW2L8z0j4NW96c+ePQtbW1usXr0a33//Pby8vHD+/HnROSVJli9fjokTJ2Lr1q0AgE2bNmHixInYsmWLaJnFixfDxcUFx44dw5IlS3D06FFMmjQJSUlJ6NixI6ufjZD26vTp0+DxeHB3d+c6ikSDBw8GAIUeqiPy4Xw0nbJrbvQHIUS8goICdOnSBV5eXpg1axbXcSQqLS3FF198gR49euDzzz/H3LlzuY6k1pR6NB0hRP3ExsYCAAICAjhO0jxTU1OYm5vj4cOHqK+v5zpOu0bNiBCicDExMQCUvxkBQLdu3VBXV8fKzfaI9KgZyaigoIDrCGqN6suutqjvy5cv8ddff8HS0hKenp6sv19rdevWDQDw4MGDVq+Ltl/5UTOSUVxcHNcR1BrVl11tUd9//vkHL168wNtvvw0NDeX/FSNsRpmZma1eF22/8lP+LYUQolKEQ7pV4RAdAFhbW0NfXx8ZGRlNrkckbYeaESFEoWJiYqCpqYmRI0dyHUUqPB4P3bp1Q2VlZbPzVBJ2UTOSkXA+K8IOqi+72K5vWloaUlNT4evrq1JzNwoP1bV2njrafuVHzUhGyjjHljqh+rKL7foeP34cAPDuu++y+j6KJmxGrb34lbZf+VEzIoQozO+//w4AotusqAo7OztoaWnRTAwcomZECFGInJwcXL9+Hd7e3rCxseE6jkz4fD4cHByQnZ2NR48ecR2nXaJmRAhRiGPHjgF4dddPVaSoQ3VEPtSMCCEKcfDgQQBQ2F1T21r37t0B0M32uELNiBDSahkZGbh69SoGDBgAR0dHruPIxcHBARoaGrRnxBFqRjJKTU3lOoJao/qyi636Hjp0CAAwZcoUVtbfFnR1ddGnTx/cuXMHZWVlcq2Dtl/5UTOS0fXr17mOoNaovuxio74Mw+DgwYPQ0NDAe++9p/D1t6XBgweDYRhcvnxZrtfT9is/pbjTKyFEdV2/fh0pKSlwdXXFyZMnuY7TKoMHD8bmzZtx6dIllZnOSF3QnhEhpFX27NkDABg4cCDHSVpPeOdXGsTQ9qgZySgwMJDrCGqN6ssuRde3pqYGv/76K4yNjdGnTx+FrpsL1tbWcHJyQlJSEmpqamR+PW2/8qNmJCMTExOuI6g1qi+7FF3fqKgolJWVYfLkyejQoYNC182FiIgIWFpa4uXLl/j6668REREh0+tp+5UfnTMihMhM+Et6w4YNAAAzMzMu4yhUt27dkJCQgIyMDNGFsIR9tGdECJFLbm4uHjx4AAcHB3Tt2pXrOAojvPg1IyOD4yTtCzUjQohczp49CwAYPnw4x0kUy9LSEoaGhsjMzKSb7bUhakaEEJmVl5fj6tWrMDU1hYeHB9dxFIrH48HJyQlVVVUoLCzkOk67Qc2IECKz8+fPQyAQwM/PD5qamlzHUTjhoboHDx5wnKT9oGYko4SEBK4jqDWqL7sUUd+amhpcuHABWlpaantnU+HABVnPG9H2Kz9qRjLKzMzkOoJao/qySxH1PXjwIF68eAEfHx/o6+srIJXysbW1hba2tszNiLZf+VEzIoRIjWEYbNq0CQDg7+/PbRgWaWpqwsHBAaWlpcjJyeE6TrtAzYgQIrVz584hOTkZ7u7usLa25joOq+hme21LpmbUrVs3fPPNN8jLy2Mrj9ILDQ3lOoJao/qyq7X1Fe4VqdtwbnGEzUiWeepo+5WfTM1IW1sby5Ytg4ODA0aPHo1Dhw6htraWrWyEECWSkZGB6OhouLq6ws3Njes4rKOb7bUtmZrRvXv3cPPmTXz22WdITU3F1KlTYWVlhfnz5+PKlStsZSSEKIH/9//+HxiGwaeffgoej8d1HNbp6OjAzs4O9+7dw7Nnz7iOo/ZkPmf01ltv4bvvvkNOTg7Onj2LCRMm4NChQxg4cCDc3NywYcMGPH78mI2shBCOlJeX4+eff4apqSmmT5/OdZw2I7ze6MKFCxwnUX9yD2Dg8XgYNmwYIiIi8Msvv8DW1hZpaWlYsmQJ7OzsEBwcjOPHj6O+vl6ReQkhHPj5559RUVGBDz/8EHp6elzHaTPOzs4A/jf1EWGP3LN2X79+HZGRkTh8+DAeP34MPp+P4OBgTJ48GUlJSdi3bx9OnToFCwsLFBUVKTIzIaQNCQQCbN68GZqampg/fz7XcdpU9+7dwefzERcXx3UUtSdTM8rMzMSvv/6KyMhIPHjwAAzDwNPTE1988QWmTp0Kc3NzAMDkyZPx7bff4tdff8VPP/3ESnBCSNv4+OOPkZ2djX79+uHMmTNcx2lTOjo68PLywuXLl1FQUIDOnTtzHUltyXSYrnv37li+fDkqKiqwePFi3Lt3D1evXsUnn3wiakRCOjo6+OCDD5CUlKTQwFyLjY3lOoJao/qyS576quvs3NISfm5p9o5o+5WfTM1o6tSpiIqKQl5eHtatWwdXV9dGz1dUVKCiokKhAZVNcXEx1xHUGtWXXbLW9+bNm6J7Fjk6OrKUSrnJ0oxo+5WfTM3o4MGDKCwslDis86uvvoKXl5dCghFCuLdt2zYA6j31T0sGDBgAXV1dnD17FgzDcB1HbcnUjFr6H2FlZYWsrKxWBVJ2xsbGXEdQa1RfdslS3/Lycvz6668wNDRE3759WUyl3LS1tTF48GDk5ua2OBEqbb/ya3EAQ1VVVaNDby9evBA7Oq6kpAS///47rKysFJtQyQQFBXEdQa1RfdklS33379+PqqoqjBkzBlpaWiymUn7+/v7466+/EBcXJ5omSBzafuXX4p7Rd999B2tra1hbW4PH42HJkiWi71//cnd3x40bN9rd0E9C1BHDMNi+fTt4PJ7a3rNIFsLzRnS9EXta3DPq06cPZsyYAYZhsH//fgwYMEB0IZgQj8eDpaUl/Pz8MGbMGNbCEkLaxoULF5CamoqAgABYWFhwHYdzHh4eMDY2RlxcHBoaGqChQTc8ULQWm9G4ceMwbtw4AEBOTg4+//xzBAYGsh6MEMId4fWB8+bNQ2FhIcdpuKepqQk/Pz9ERUXhzp07eOutt7iOpHZkuug1Pj6erRyEEI5FREQAAJ4/f46jR4/CzMwM+fn57X4vQFgXXV1dAMCqVaswevRozJ07l8tYaqfFrUxTUxM7d+4EAOjp6bX4pa63ISakvUhISIBAIICvr2+7b0Sv69mzJ4BXdy8gitfinpGtrS0MDAwAAF5eXu1i6nhC2rOkpCTweDz4+PhwHUWpdOzYEZaWlsjIyEBNTQ3XcdROi80oOztb9O9z586xGEU1HD58GJMmTeI6htqi+rKrpfo+evQIjx49grOzM0xNTdswmWpwd3dHfHw80tLSxD5P26/8ZNoHz8vLw5EjR5CTkyN6LCkpCTNnzsT06dPbxQ326urquI6g1qi+7GqpvsKfYW9v77aIo3JaOlRH26/8ZBrAsGrVKhw5ckQ0y0Jubi6GDx+OyspKAMDRo0cRHx9Pu/eEqKCGhgYkJSWBz+fDw8OD6zhKqUePHtDS0sKdO3fAMAydtlAgmfaM/vnnn0a3ivjll19QWVmJEydO4OnTp3Bzc8OyZctYCaos7OzsuI6g1qi+7Gquvg8ePEBZWRneeust0cgx0liHDh3g4uKC0tJS3Lx5s8nztP3KT6ZmlJubCzc3N9H3Fy5cgJOTE4KDg2Fubo5Jkyap/aG6IUOGcB1BrVF92dVcfYU/uzTZcfP69OkDAIiKimryHG2/8pOpGZmZmeHx48cAgJcvXyIxMbHRsWVNTU26zTghKqimpgbXr1+Hvr6+6LwIEa93797g8XhimxGRn0zNaNiwYdixYwe2b9+OWbNmoaKiAmPHjhU9n5SUhK5du8oV5PLly/Dz84OBgQGMjY0RHByM+/fvS/36lJQU8Hg8HDp0SOzzqampCAwMhLGxMQwMDDBs2DC1u/EfIfI6deoUampq4OnpCT5fplPJ7Y6RkREcHBxw+/btRqONSevI1IzWrFkDY2Nj/Otf/0JkZCR8fHwwceJEAK8O4Z08eRJvv/22zCGSk5MxfPhw5OTkIDw8HAsXLkRiYiL8/PxavFlVfn4+4uLi8OGHH0pcpqCgAEOGDEFSUhI+++wzhIeHIzs7G/7+/khPT5c5LyHq5vDhwwDoEJ20hIfqTpw4wWkOdSLTn0C2tra4ffs2Ll68CE1NTQwfPhyampoAXg37/s9//oN33nlH5hCrV6+GQCBAXFwcHBwcALyasn3IkCHYvHkzVq1aJfG106ZNw/nz55td/8aNG1FcXIxLly5h0KBBAID33nsPzs7O+Oabb7B//36ZMxOiLqqrq3H69GkYGRnBycmJ6zgqwcPDA8eOHcPhw4exYMECruOoBZnn+jAwMMDbb7+NUaNGiRoRAAwaNAiffvopbG1tZVpfQ0MDYmNjMWjQIFEjAgBfX1/Y2dm1eFx27dq1iI6ObnaDiImJQdeuXUWNCAAcHR0xcOBAREdH090bSbv2xx9/oKqqCn379qXpf6TUsWNH9O/fH4mJiXj48CHXcdSCzFve4cOHERAQADc3Nzg6Ojb5kvUvq9zcXFRUVMDV1bXJc66urkhNTYVAIJD4eh8fHwQGBkqcRbe+vh4PHjyQuP6ysjI8evRI6rzCa6oIO6i+7BJX32PHjgFAu76bqzwmT54MADhy5IjoMdp+5SdTM9qwYQOmTJmCv//+G1VVVaKJUV//0tPTkymA8K6x4qYeMTMzQ11dHUpLS2Va5+tKSkpQX18vcf0A8OTJkxbXk5+fj6ysLOzYsQNZWVnIyspqVS4i3vHjx7mOoNberO/Lly9x8uRJmJqaokePHhylUk3C8+WvD5qi7Vd+Mp0z2rZtG3x8fBAbGwtDQ0OFBKitrX0VRMwIHuGtjqurqzlfv3DDA4DPP/8cALB8+XKsWLGi0XIXLlxAbm6uaP3NzVMVHR2N8vJyAICFhUWzNyY8cOCA6N9OTk4SZ7koKyvDqVOnRN97enqK3SsEXt2f6uLFi6Lv/f390blzZ7HLJicnIzk5WfT9+PHjJc7Q3poaNKe91KAtt4P4+HiUl5fD19dXlMHAwAAdOnQQu96qqqpGk4QaGxs3Olz/uhcvXjSaHkf4x5+kvA0NDQBeXSJibGwscdmSkhLRvzt06CCayPlN9fX1eP78ueh7XV1diRfz1tbWNtqrkaYG58+fh4uLC27duoWbN2+K3bNUle0AaJufheYOacrUjJ48eYLPPvtMYY0IALS1tQFA7KE44YbcmqvBFbX+o0ePwsPDAydOnEBISAgA8Xtzslz0FhQUJPWyoaGhUi1nYmIi9bL29vawt7eXatnevXujd+/eUi3bmhq8/kP2pvZSg+YougbCQ3SLFy+W6iZ6wlvFSEOW3xMmJiZSL9tcU3sdn8+XelltbW3R74qWCGsQGhoKhmEwY8YM7N69G1u2bGmyrKpsB0Db/CwkJCTg66+/FrucTIfpBgwYgNTUVFle0qJOnToBQKO/YIRKSkrA5/Nl2lDfZGZmBj6fL3H9wKuTkS3p0qULHB0dMWLECNH5MZrVWPGk3cCJfF6vr0AgwIkTJ2BgYICRI0dymEp1TZgwAcbGxjhw4ACqqqpo+20FmZpReHg49u7dq9CbS9na2sLIyAg3btxo8lx6ejqcnZ1bdREen8+Hs7Oz2PWnpaXByMhIphGAtLGxi+rLrtfr+88//6CoqAhjx46Fjo4Oh6lUl66uLkJDQ1FeXo6jR4/S9tsKMjWj+fPnQyAQYOjQoXBzcxP75e7uLlsADQ0EBAQgKSmp0a0pEhISkJ2dLdp1LS4uRlpamlSHEt4UFBSE/Px8JCQkiB7LyclBQkICAgICaDgraZd+//13AJDr2kDyP8IL7jdu3EiXibSCTL+Fq6ur0blzZxgaGqK6ulrsV1VVlcwhwsPDoaWlBX9/f6xbtw4rV67EuHHjYGlpKbp+aMuWLXB1dcWXX37Z6LXnz5/Hb7/9hmvXrgF4Ndnj698DwIIFC2BpaYmQkBCsXLkS69atw7Bhw6CpqYnw8HCZ8xKi6nbs2IFffvkFfD4fjx8/RkREBNeRVFavXr0wZswY3L59G3/99RfXcVSWTMe/2JqHyd3dHWfPnsUXX3yB1atXQ1NTE0OGDMGGDRtE55QkWb58eaMZGDZt2oRNmzYhLCwMe/fuBfDqvNT58+exaNEifP/99xAIBOjfvz8iIyNl3pMjRB3k5OSgtLQUb731Fh2ik9PrDdzNzQ2xsbH4z3/+g1GjRnGYSnXJdTKmqKgISUlJKCsrEw3/e/78OYqLi2FraysaMi2LAQMGNHtb8xUrVjQZRg1Ifyt0FxeXRkMcCWnPhOdQ6UJXxejRowe6du2KuLg4xMfHY9iwYVxHUjkyHaZraGjA//3f/8He3h7BwcEICwvDrVu3AACPHz+Gi4sL7e4TouQYhsHNmzehoaFBJ9wVhMfjiS75WLhwYbOzxhDxZGpG33zzDdatW4cPPvgAu3btanSyrkePHhg5cmSjqTHUUUFBAdcR1BrVl10FBQW4d+8eioqK4OLiIvFCRSI7V1dXjBw5Erdu3cK+ffu4jqNyZDpMt3fvXkyYMAFbt25Ffn5+k+d9fX2xdu1ahYVTRnFxcVJfREZkR/VlV1xcHDIzMwHQITo2jBw5EufPn8fChQsxcuRI2NraSjxaNHfu3DZOp9xk2jN69OgRBgwYIPF5TU1N0fQ7hBDldOzYMfB4PImTCxP5WVtbY82aNSgvL8fMmTPpcJ0MZGpGHTt2bPY6n2vXrsHGxqbVoQgh7Hjy5AmSk5Ph5OTU7PxvRH4LFy7EkCFDEBcXhyVLlnAdR2XI1IyCg4Oxe/fuRrcD5/F4AF5dQPf77783ug25OvL19eU6glqj+rJLeOdkOkTHDl9fX2hqauLQoUOws7PDDz/8gPj4eK5jqQSZmtGqVatgamoKDw8PfPDBB+DxePjuu+/g7e2N9957D9bW1vjqq6/YyqoUpJ1IkMiH6suuuLg4ANSM2CLcfq2trUV3zz18+HCjGa6JeDI1IwsLC1y9ehVhYWG4fv06GIbBuXPnkJKSgsmTJyMhIQGWlpZsZSWEtEJOTg6SkpLQv39/mJubcx1H7bm7u+P3338Hj8fDzp07RbdRIOLJ1IwePnyIiIgIPH/+HP3790dAQADWrFmD+/fvIzIyks4XEaLEfvvtNwCN781F2DVixAiEhobi5cuX2Lp1K8rKyriOpLSkakYNDQ1YsmQJevToga+++gqRkZH4448/cPr0aSxbtgwODg5YvXo1TRJIiBITNqMJEyZwnKR9GTRoEEaNGoWysjJERESIbiJIGpOqGc2bNw8bNmyAk5MTNm7ciCtXruD+/ftISkrCpk2b4OjoiBUrVuDf//4323kJIXLIy8tDYmIiPD094eDgwHWcdmf8+PFwc3NDZmYmTaYqQYvNKC4uDrt27UJgYCBu376Nf//73+jfvz+6deuGfv364ZNPPkFycjKCg4Oxbds2XLhwoS1yE0JkQIfouKWhoYEZM2ZAV1cXJ0+elOtWOOquxWa0d+9emJiY4JdffpF4W14+n4/9+/fDzMxM7eemU/SdbkljVF/FioiIQEREhOiW2BUVFWr/M8ql5rZfU1NTTJw4EfX19Th58mQbplINLTajpKQkBAYGtniBnKGhIUJCQpCYmKiwcMro+vXrXEdQa1RfxSstLUVWVhbs7OxoLjqWtbT9+vj4oFOnTrhx4wYN935Di3PTFRQUoGfPnlKtzNnZGQcPHmx1KEKI4ghvF+Hh4cFxEqKhoYHAwEDs3r0bM2fOxLx58xo9357nq2txz6iqqgpGRkZSrczAwAA1NTWtDkUIURzhX+uenp4cJyEA0K9fP1haWuLWrVsoLS3lOo7SaHHPqKGhAZWVlSgqKmpxZS9evFD74d2BgYFcR1BrVF/FKikpQWZmJmxtbWFpaYn6+nquI6k1abZfDQ0NDBo0CMePH8eVK1cwZsyYNkim/KS6hcSSJUtowr//MjEx4TqCWqP6KtbVq1cBAP379wfwarARYY+026+3tzdOnDiBxMREjB49WjTHZ3vW4pYZFhbWFjkIISx4sxkRdkk7UtHU1BSurq5ISUlBdnY2XfsFKZrRnj172iIHIUTBUlNTkZeXh27dusHMzIzrOOQNPj4+SElJwfXr16kZQca56QghqkM4stXLy4vjJEQcd3d38Hg83L17l+soSoGaESFqiGEYHDx4EBoaGjSkW0np6+vD0dERhYWFKCkp4ToO56gZEaKGrl+/joyMDLi6usLQ0JDrOEQC4TWctHdEzUhmCQkJXEdQa1RfxZB0iK6iooKLOO2GrPV1d3cHANy7d4+NOCqFmpGMMjMzuY6g1qi+rScQCHDo0CHo6OigT58+jZ57+fIlN6HaCVnra2trC0NDQ6SmpkIgELCUSjVQMyJEzVy8eBEFBQUIDAyEjo4O13FIMzQ0NODi4oLa2lo8evSI6zicomZEiJoRHqKbMmUKx0mINBwdHQHQUQG6HFtGoaGhXEdQa1Tf1nn58iV+++03GBkZISAgAPv372/0PF1vxC556uvk5AQAyMrKknjRbHuYQJWaESFqIiIiAnfu3EFJSQl8fHyaNCKinGxsbNChQ4d2v2dEh+kIUSNJSUkA6EJXVaKpqQkHBweUlJS061m8qRkRoiZevnyJ27dvw9DQEM7OzlzHITKg80bUjAhRG7dv30ZtbS08PT2hqanJdRwig9fPG7VX1IwIURPCGbrpEJ3qsbe3BwDk5uZynIQ71IwIUQOlpaW4e/cuzM3NRYd8iOowMjKCiYkJ8vLy0NDQwHUcTlAzklFsbCzXEdQa1Vc+x44dg0AgQP/+/Zu9UVt5eXkbpmp/WlNfGxsb1NTU4NmzZwpMpDqoGcmouLiY6whqjeorH+GFri3dRK+9TznDttbU19bWFgCQl5enqDgqhZoRISqusLAQ8fHxsLa2RpcuXbiOQ+RkZ2cHoP2eN6JmJCNjY2OuI6g1qq/sjhw5goaGhhYP0QGv5kIj7GlNfWnPiMgkKCiI6whqjeorO1nu6GpiYsJymvatNfU1NzeHjo4ONSNCiOrJysrClStX4OXlhY4dO3Idh7SChoYGbG1tUV5ejufPn3Mdp81RMyJEhR06dAgAzdCtLoTn/PLz8zlO0vaoGRGiwn799VfweDy89957XEchCtC5c2cArwaltDfUjAhRUcnJybh37x78/PxEv8SIahP+fywoKOA4SdujZkSIitq3bx8AYPr06RwnIYpCzYgQolLq6+sRGRkJPT09TJgwges4REH09fVhZGSEwsJCMAzDdZw2Rc1IRocPH+Y6glqj+krnjz/+wJMnT/DOO+/A0NBQ6teVlJSwmIooor6dO3dGVVVVu5u6ie70KqO6ujquI6g1qq90li9fDgCwsLCQeKtqopo6d+6MtLQ0FBQUtKvrwmjPiBAVU1paitu3b8PU1JRuoqeGrK2tAbS/80bUjGQknD+KsIPq27LDhw+jvr4e3t7eMk8/o6WlxVIqAiimvu11EAM1IxkNGTKE6whqjerbsr179wIAfHx8ZH6tLOeXiOwUUV/hntHjx49bvS5VQs2IEBWSlpaGK1euwMHBAVZWVlzHISxoryPqqBkRokJ++uknAMDAgQM5TkLYZGVlhaqqKrx48YLrKG1GaZrR5cuX4efnBwMDAxgbGyM4OBj3799v8XX5+fmYOnUqzM3NoaenB29vb5w5c6bRMufOnQOPxxP7ZWFhwdZHIkShKioqsHfvXhgbG8Pb25vrOIRF7fFQnVIM7U5OTsbw4cNhZWWF8PBw1NbWYuvWrfDz80NycrLEhlFVVQU/Pz8UFhbi448/RseOHbF//34EBQXh7NmzGDp0aKPlQ0JCMHr06EaP6erqsva5CFGkyMhIlJeXY8GCBdDW1uY6DmGR8BBsYWEhevTowXGatqEUzWj16tUQCASIi4uDg4MDAMDf3x9DhgzB5s2bsWrVKrGv27NnDzIyMnDgwAFMmzYNADBr1iw4OTlh2bJluHDhQqPlvb29MW/ePHY/DCEsaGhowObNmwEA8+fPR3x8PMeJCJuEzag97RlxfpiuoaEBsbGxGDRokKgRAYCvry/s7OwQFRUl8bUxMTHQ1tbGxIkTRY+ZmJggMDAQly5dwrNnzxSet7KyUuHrJP9D9RXv+PHjSElJwbhx49C9e3e51yMQCBSYirxJUfWlZsSB3NxcVFRUwNXVtclzrq6uSE1Nlfg/OCUlBY6OjujQoUOT1zEMg5SUlEaPV1ZWIj8/v1XTbBw/flzu15KWUX2bYhgGa9asAQCEh4e3al3tbYqZtqao+pqamkJbW7tdNSPOD9MVFRUBeFX8N5mZmaGurg6lpaVizxsVFRWhb9++Yl8HAE+ePGn0+Jo1a0Q/1HZ2dli2bBlmz54tVc78/HxkZWWhqKgIWVlZoszichMiJG6qnrlz58q0jqioKNy6dQtjxoxBv379FBWNKDEejwcrKyvk5OSgpqaG6zhtgvNmVFtbCwDg85tGEV7NXF1dLfG10ryuS5cu+Pbbb2FjYwM9PT1kZmZi27ZtmDNnDurr66U6j/T6ocDPP/8cwKv5wVasWNFouQsXLiA3N1eUY9KkSRLXGR0dLfpLysLCAmPGjJG47IEDB0T/dnJyknjBY1lZGU6dOiX63tPTU+xeJwDk5OTg4sWLou/9/f0l3hcnOTkZycnJou/Hjx8PfX19scu2pgbNUcUaCCfOFP6BJE5z20F1dTUWLlwIAFi5cqWoBiUlJejQoQMMDAzErrO+vr7Rrat1dXUlDtapra1tdHjUwMCgydEGoaqqqka/HI2NjaGpqSl22RcvXjSaa7C5GpSVlaGhoQEAoKmpCWNjY4nLvj4ZqTrXQNiM3vyjGlDNnwUAePjwodhlAIDHcHxVVVJSEry9vfHVV1+J9lqEpk6dioMHD+Lp06dif1Hp6enBw8MDly5davR4REQEPvzwQxw9elTi9Pr5+fno0aMHbG1tkZaWJjFfQkICBg4ciKNHj8LDwwNpaWlwcXEBQHtGbEhOTkbv3r25jqEwrd0zWrlyJVasWIFZs2Zh165dza5XGlVVVdDT05PrtaRliqzv6dOnERUVhQ8++AC7d+9WyDq5Jvx9evny5SYNlPM9o06dOgFAo79ghEpKSsDn8yXOXNupUyeJrwOAjh07SnzfLl26wMXFBXfv3pUqZ5cuXeDo6AhHR0eplifyUeVGpOjZsy9fvoxvvvkGJiYmWLt2rULWSY2IXYqs7+vDu9sDzgcw2NrawsjICDdu3GjyXHp6OpydncUeigMAd3d3pKWloaqqqtHjaWlp4PF4cHNza/a9y8vLmz0cQAhXHj16hHfffRd1dXX4+eefm/3Diqgn4YWv4g7TqSPO94w0NDQQEBCA33//HTk5ObC3twfwancuOzsbX3zxBQCguLgYxcXFMDY2Fv1PCgoKQkxMDKKiojBlyhQAr/awYmJi4O3tLfoBvnjxIgYNGtRohuO4uDhkZmZKPYCBEFkIBALcunULKSkpePToEWpra6GtrQ0LCwtUV1fD398f7u7uYmfdvnbtGkJCQvD48WMEBATg6dOndM+idsjS0hIaGhrtZs+I82YEvBquevLkSfj7+2POnDmiGRgsLS2xYMECAMCWLVuwcuVKhIWFiWYtnjFjBjZu3Ii5c+eKZmrYv38/SkpKsHr1atH6P/nkE5SWliIkJASOjo7IyMjAzp07YWlpiW+//ZaDT0zUFcMwuHz5Mk6ePImysjLR43w+H/X19cjOzsa1a9cAvDqM7Ofnh4EDB8LGxgalpaX466+/8Pvvv6OhoQFLly5F165dufkghHOampro2LEjioqKUF9fL/EIkbpQik/n7u6Os2fP4osvvsDq1auhqamJIUOGYMOGDaJzSuLo6uoiLi4OixYtwo4dO1BdXY2ePXsiKioKI0aMEC23ePFi7N+/H8eOHUNRURFMTU0xadIkrFq1ig5/EIWpqKjAzz//jHv37kFTUxM+Pj4YMGAAHBwcoK2tjZcvX+LJkyd48OAB0tLScP/+fRw9ehRHjx5ttB4nJyd88803mDRpEu0RtXPW1tZ48uQJsrKy1H5aIM5H0ym75kZ/ECL04MEDDB48GEVFRXBwcEBYWJjocLIkDQ0NyM3NxaNHj1BeXo4RI0bA1dUVw4YNEw0VpmbUvh0/fhyxsbE4ceIExo0bx3WcVlPq0XSqpqCgQOLYe9J6qljfBw8eYOjQoSgqKsLgwYMxdepUidedvE5DQwNdu3YVHYqT9WJYebx8+VLi9TOk9RRdX+GIurS0NLVoRs3hfDSdqomLi+M6glpTtfrm5eXB398fhYWFePvttxEaGipVI+JKRUUF1xHUmqLrK9y7Tk1NVeh6lRHtGREip+fPn2Ps2LF49OgRFi1ahG7duoHH43Edi6gR4Tnz5i7MVxe0Z0SIHBoaGjB16lTcuXMHkydPxvr166kREYXT1dWFiYkJUlNT1f4W5NSMZOTr68t1BLWmKvVdv349YmJi4OXlhT179qhMI5I0fxhRDDbqa2VlhefPn6v99UZ0mE5GwotyCTtUob6LFy/GDz/8AD09PYSEhGD//v1cR5Ia3SGWXWzU18rKCmlpaUhLS1O5wT2yoD0jQmRQVFSEXbt2oaGhAe+//z7Mzc25jkTUnHBEnboPYqA9I0KkxDAMZsyYgbKyMowaNUrhk7rSNUVEHOGIOnUfxEB7RoRIafv27fjjjz/g6OiIkJAQruOQdqK9DO+mZkSIFDIyMrB48WLo6enh/fffV+priYh6MTIygpGRETUjQto7gUCAGTNmoKqqChs2bIClpSXXkUg7wuPx4OrqioKCArH3b1MX1IxkpO5/nXBN2eobERGBiRMnIiEhAW5ubmJv+aBKqquruY6g1tiqr/Du0up83ki1f7I4cP36da4jqDVlq29BQQGio6Ohp6eHGTNmqMz1RJJQM2IXW/V1dXUFQM2IkHapoaEBBw4cQH19PSZOnAhTU1OuI5F2StiMlO3IgSJRMyJEgm3btiEzMxOurq50+xDCKTpMR5oIDAzkOoJaU5b65ubm4ssvv0SHDh0QGhqq8ofnhIyMjLiOoNbYqq+joyO0tLRoz4j8j4mJCdcR1Joy1JdhGHz00UeoqKjAuHHjYGFhwXUkhVH3W1dzja368vl8dO/eHRkZGXj58iUr78E1akaEvOHgwYM4ffo0+vfvD39/f67jEALg1XkjgUCAzMxMrqOwgpoRIa8pLi7Gp59+Cj6fj127dqn8UG6iPtR9EAP9pBHyXxERERg7diyKi4sxatQoJCYmch2JEBF1H8RAzYiQ/7p79y6SkpJgZWWFgIAAruMQ0gjtGRHSDlRUVCAyMhIAMH36dGhpaXGciJDGnJ2dAdCeEfmvhIQEriOoNa7q++WXX6KkpARDhw5Ft27dOMnQFioqKriOoNbYrK++vj66du2Ke/fuQSAQsPY+XKFmJCN1HcmiLLio76VLl7B161aYmprinXfeafP3b0vqOixYWbBd3z59+qC6uhr3799n9X24QM2ItGs1NTWYPXs2GIZBaGgodHR0uI5EiER9+vQBANy6dYvTHGygZkTatVWrViE9PR3Tp09Hz549uY5DSLP69u0LALh58ybHSRSPmpGMQkNDuY6g1tqyvjdu3MD69ethaWmJjRs3ttn7csnMzIzrCGqN7fpSMyJEzdTV1WHWrFkQCATYsmULzM3NuY5ESItsbGxgbm6OmzdvgmEYruMoFDUj0i599913uHXrFkJCQjBhwgSu4xAiFR6Ph759++LZs2d49OgR13EUimZNJO3OsmXLsHbtWujq6mLgwIHYuXMn15EIkVrfvn3x999/4+bNm7C1teU6jsLQnhFpV2pqarBnzx4IBAJMmTIFxsbGXEciRCYeHh4AgGvXrnGcRLGoGZF2ZdmyZcjPz4enpye8vLy4jkOIzAYMGABA/S7Ap2ZE2o1z587h+++/h7GxMaZNm6Y2N8wj7Yu9vT2sra2RmJioVjMxUDOSUWxsLNcR1Bpb9S0pKUFYWBgYhkFYWBj09fVZeR9lV15eznUEtdYW9eXxeBg4cCAqKipw9+5d1t+vrVAzklFxcTHXEdQaG/VtaGjAjBkzkJubi3//+99wd3dX+HuoCnX6S1oZtVV9Bw4cCEC9DtVRMyJqb/369YiJiYGXlxe+++47ruMQ0mo+Pj4AgMuXL3OcRHGoGcmIRl+xS9H1PX/+PL766iuYmZnhyJEj6NChg0LXr2rozrXsaqv6enh4oEOHDtSM2rOgoCCuI6g1Rdb30aNHmDx5MhoaGnDgwAHY29srbN2qysTEhOsIaq2t6qutrQ0vLy9kZmYiLy+vTd6TbdSMiFqqqKhAUFAQHj9+jPDwcLz99ttcRyJEoUaOHAkA+PPPPzlOohjUjIjaEQgEmDp1Km7dugVPT0906dIFERERoi9C1MGYMWMAAH/88QfHSRSDpgMiamfx4sWIjo6Gt7c3QkND6TwJUUuenp4wMzPD33//DYFAAE1NTa4jtQo1I6JW/vOf/2Djxo2wt7dHVFQUoqKiuI5ESKuJ26OfO3cuRo4cicOHD+Pq1auimRlUFf3JSNRCREQEJk+ejC+++AIGBgaYOXMmNSKi9oSH6k6fPs1xktajZkTUwqVLl3D48GHo6enh008/RefOnbmORAjrxo4dC01NTRw+fFjl729EzUhGhw8f5jqCWpOnvrt27cKBAwegra2NTz75BHZ2diwkUw8lJSVcR1BrbV3fjh07YtSoUbh//77Kz+JNzUhGdXV1XEdQa7LUl2EYrFu3DnPmzEGHDh3w8ccfw9HRkcV0hCifadOmAQAiIyM5TtI61IyISmpoaMCiRYvw5ZdfwsLCAgsXLkSPHj24jkVImwsJCYG+vj4OHjyI+vp6ruPIjZqRjOgQELukqe/z588xYcIE/PDDD7Czs8OlS5fQtWtX9sOpAS0tLa4jqDUu6quvr493330XRUVFKn0agZqRjIYMGcJ1BLXWUn1TU1Ph5eWF48ePw8PDA//88w+cnZ3bKJ3qMzQ05DqCWuOqvosWLQIArF27Fg0NDZxkaC1qRkQlMAyDvXv3wsvLC+np6fDx8cH777+P06dP06wKpN3r1asXgoODce/ePZw6dYrrOHKhZkSU3v379zF8+HC8//77ePnyJaZOnYqwsLB2PwM3Ia/7v//7PwDAkiVLUFNTw3Ea2VEzIkrr8ePHWLp0KXr37o34+Hj4+vri1q1bGDp0KN0ynJA3eHt7Y/r06UhPT8eqVau4jiMzpWlGly9fhp+fHwwMDGBsbIzg4GDcv3+/xdfl5+dj6tSpMDc3h56eHry9vXHmzJkmy6WmpiIwMBDGxsYwMDDAsGHDkJSUJFPG0tJSrFixAqWlpTK9jkhHWN/ExER89NFH6Nq1K9avXw9dXV1ERETg3LlzcHV15TqmyqqsrER0dDQqKyu5jqKW2rq+r0/+K/zatGkTOnXqhPXr16vcbN5K0YySk5MxfPhw5OTkIDw8HAsXLkRiYiL8/PyavQ11VVUV/Pz8cPLkScyZMwerV69GTU0NgoKCcP78edFyBQUFGDJkCJKSkvDZZ58hPDwc2dnZ8Pf3R3p6utQ5S0tLsXLlSmpGCsYwDFJSUvDNN99g5cqV8PHxwU8//QQTExOMHz8eK1asAMMw2LVrF50faoWqqiqcOnUKVVVVXEdRS8pQXzMzM+zZswcAMH78eJW6+Z5STJS6evVqCAQCxMXFwcHBAQDg7++PIUOGYPPmzRJ3Offs2YOMjAwcOHBAdOHXrFmz4OTkhGXLluHChQsAgI0bN6K4uBiXLl3CoEGDAADvvfcenJ2d8c0332D//v1t8CmJUGVlJZKTk3Hjxg1cvHgR586dw5MnT0TPd+3aFYMHD4a3tzedFyJERm+//TZ2796NmTNnwt/fHxs3bsS8efOU/tA2582ooaEBsbGxGDRokKgRAYCvry/s7OwQFRUlsRnFxMRAW1sbEydOFD1mYmKCwMBA/PLLL3j27BnMzc0RExODrl27ihoRADg6OmLgwIGIjo4GwzBK/z9K1TAMg6KiImRlZYm+0tLScPPmTaSnpzcafmpoaIhevXrBzs4OMTExmD17Njp27MhhekJUm3CAz9y5czF//nzs3LkTS5YsQVBQEPT19bmOJxbnzSg3NxcVFRVizwW4uroiLi5O4r06UlJS4Ojo2OSvZ1dXV9GhHx8fHzx48EB0V8Q3l7tw4QIePXoEW1tbxX0oKTAMA4Zh0NDQIPoSCASi/9bX10v8ev35hoYG0QSJ4v77+r9fvnyJ2tpa0VdNTU2j79987vbt26ivr0ddXZ2oefB4PDg4OIDH44kaOI/HQ3V1NUpLS0VfJSUlYkf08Pl89OrVC3379kXfvn3h7e0NT09P/Pzzz3j69CliYmJYrz0h7cGUKVPg6emJBQsW4MyZM5gyZQp0dXUxYMAAeHh4oGvXrujatSs6d+4MAwMD6Ovri764uHiX82ZUVFQEADA1NW3ynJmZGerq6lBaWgoLCwuxr+3bt6/Y1wHAkydPUFJSgvr6eonrFy4nqRkJT0bGxcWJ7m9/5swZdOrUCYaGhjAyMpL42aKjo7Fp0yZRw3jzv6rqxo0bEp/T0NCAoaEhOnbsCA0NDZiYmMDY2BimpqYwMTGBubk5+PxXm11+fj6OHTuGY8eOAQDKysoAvPoD5fnz56x/jvaG6ssuZajv0qVLmzzWq1cvvPvuuzhz5gwuXLiA+Ph4xMfHS7U+DQ0N0R+ewn9raGhg6tSpmDVrlsz57ty5AwBiB3lw3oxqa2sBQPQL6nXC7lxdXS3xtS29rjXrB4CsrCwAQHh4uOixjz/+WOLy7V1DQwPKy8tRXl4OAMjJyZF5HTRIgV1UX3apU30lzeawe/du7N69W+71Cn+vvo7zZqStrQ0AEAgETZ4TzuCsq6sr8bUtva416weAwMBA/PDDD7CwsGiyXEt7RoQQQv6nsrISWVlZCAwMbPIc582oU6dOACB2t7akpAR8Pl90eEzcayW9Dnh1rw8zMzPw+fwWl5Okc+fO+Oyzz1r8HIQQQuTH+XVGtra2MDIyEnseIj09Hc7OzmIPsQGAu7s70tLSmozrT0tLA4/Hg5ubG/h8PpydncWuPy0tDUZGRm0+eIEQQkhjnDcjDQ0NBAQEICkpqdH5hYSEBGRnZyMoKAgAUFxcjLS0NBQWFoqWCQoKQl1dHaKiokSPPX/+HDExMfD29hbt8QQFBSE/Px8JCQmi5XJycpCQkICAgABoaHBeBkIIadd4jBIM67p37x68vLxgZWWFOXPmoLa2Flu3bgWPx0NycjI6deqEFStWYOXKlQgLC8PevXsBvBp40LdvX+Tn5+Pjjz+GhYUF9u/fj7t37+KPP/7AiBEjALwaLde7d28AwPz586GtrY2IiAg8fvwYV69ehbu7O1cfnRBCCAAwSiIhIYEZOnQoo6enxxgaGjJjx45lUlNTRc8vX76cAcCEhYU1el1+fj4zZcoUxtTUlNHR0WH69evHREdHN1l/amoqM3bsWMbQ0JDR09Njhg4dyly+fJntj0UIIUQKStOMVEVMTAwDgElISGjy3J49exgAYr88PT05SKt6mqsvwzDMP//8wwwdOpTR19dnjIyMmKCgICY9Pb2NU6q++Ph4iduqubk51/FUDm2Xrcf5aDpVkZ2djZSUFCxevLjFZWfNmoV+/fo1eszS0pKtaGpBmvoKJ9S1srJCeHi46HCun58fkpOTxV4YTZoXEhKC0aNHN3qsuUsdSFO0XSoGNSMp+fn5SX0B54gRIzB58mSWE6kXaeor74S6RDJvb2/MmzeP6xgqjbZLxaBhZFL6+eefER0djSlTpnAdRS21VF9pJtQlpK3Rdqk4tGckJX9/fwDAtWvXWlz2+fPnKCgogJGREQwMDNiOphZaqm9rJtQlklVWViI/P190U0siG9ouFYf2jFjw4YcfokuXLjA0NISrqytOnjzJdSSVJ+2EukQ2a9asgY2NDUxMTGBvb49du3ZxHUml0HapOO1yzygtLQ3nzp1rcTnhLQ6k5erqiu+++w6dO3eGlpYWUlJSsHXrVoSEhODUqVMICAhoRWrVwUZ9WzvhrbqTteZdunTBt99+CxsbG+jp6SEzMxPbtm3DnDlzUF9fT+eRpETbpeK0y2Z06dIlfPTRRy0ut3TpUpmakbe3d5Plg4OD4eHhgc2bN7ebZsRGfVs74a26k7Xm3bt3x5dfftnouWnTpqFHjx7YtGkTNSMp0XapOO2yGc2ePRuzZ89uk/fq27cvzMzM8PDhwzZ5P2XARn1bM6Fue6CImnfp0gUuLi64e/euglKpP9ouFYfOGbFMIBCgoqKCTg63Umsm1CXSKy8vp21VBrRdKg41IwU6f/58k8f27duHly9fYty4cRwkUh/STqhLpHPx4sUmN06Li4tDZmYmbasyoO1ScZRiolRVcObMGVRWVuLIkSM4evQovv32W3Tv3h1ubm5wc3MDAJiYmMDa2hrBwcGwtrbG7du3sX//ftEtLHR0dDj+FMpLmvpKM6EukU6fPn1QWlqKkJAQODo6IiMjAzt37oSxsTHu3r3b7D2+SGO0XSoI1/MRqQp7e3ux83gtX75ctMymTZuYIUOGMFZWVoyWlhZjY2PD/Otf/2KePn3KXXAVIU19GablCXWJdA4cOMCMGjWKsbGxYTp06MB06tSJmTFjBpOdnc11NJVE22Xr0Z4RIYQQztE5I0IIIZyjZkQIIYRz1IwIIYRwjpoRIYQQzlEzIoQQwjlqRoQQQjhHzYgQQgjnqBkRQgjhHDUjQgghnKNmRAghhHPUjAghhHCOmhEhSsTPz0+u2d337t0LHo+HQ4cOyfS6c+fOgcfjYd26dTK/JyGKRM2IEAU4ffo0hg8fDmNjY+jp6aFbt24IDg7G7t27RbefVgYrVqwAj8fD3r17xT6fnZ0NHo8HPz8/0WObNm3Cli1b2iYgabfoFoSEtNKPP/6IBQsWoGvXrvjkk0/QsWNHPHz4ECdOnEB0dDTGjh0LKysrrmMCAAIDA2FlZQUfHx+xz5ubm2P79u3o3Lmz6LFNmzZBR0cHH3/8cVvFJO0QNSNCWqG0tBRLly6FnZ0dbt++DSMjI9FzGzZswObNm9GhQwcOEzbWr18/9OvXT+LzhoaGmDdvXhsmIuQVOkxHSCvcv38ftbW18PLyatSIAIDP52PhwoUwMzMDAFy+fBmjRo2CkZER9PX1MXjwYJw+fbrZ9c+cORM8Hg+PHz9u9PjHH38MHo+H7OzsRo+/ePECixcvRufOnaGjo4NBgwbhxo0bouelObfE4/EwZswY0b9zcnKQnp4OHo8HHo8HOzs70debt0N7/Pgx+Hw+3n///WY/FyFvomZESCvY29sDAC5evNikYbwuNjYWfn5+ePDgAT799FMsXboUJSUlCAwMxL59+xSWZ/78+bhw4QI+/fRTLFiwAHfu3MHIkSNRWloq1/q2b98OMzMzdOrUCdu3b8f27duxdu1ahIaGIi8vDxcuXGi0/KFDhyAQCKgZEZlRMyKkFaysrDBz5kw8efIErq6umDNnDiIjI5GbmytaRiAQYN68eTAxMcH169exevVqfP3117h69Sq6d++OTz/9FBUVFQrJs3DhQiQmJmLp0qVYt24d9u3bh5KSEmzfvl2u9c2bNw+GhoYwMTHBvHnzMG/ePEybNg0zZswAAERGRjZaPjIyEk5OTvD19W31ZyHtCzUjQlpp586dWL16NQwMDLBr1y6EhobC3t4ePj4+uHTpEm7cuIGcnBzMnDlTdMgOAPT19TF37lyUl5cjPj5eIVn69u0LHo8n+j4oKAh6enq4ePGiQtYv5OLiAi8vL/z22294+fIlgFeHLK9duyY6tEiILKgZEdJKfD4f4eHhyMvLQ0pKCnbs2IG3334biYmJGDFihOi8ULdu3Zq8tnv37gCArKws1rJZWVkhLy9P4eueMWMGSktLRZ8vMjISGhoaor0mQmRBzYgQBXJ1dcXcuXNx+vRpLFq0CLW1tdi/fz8AiN1bEA4AYHNPora2lpX1TpkyBR06dMCvv/4KADh48CCGDx8OOzs7Vt6PqDdqRoS0wpujyV43dOhQAICzszMAID09vckyGRkZAAAHBwex6+DzX119IW9DqaysxOPHj9GjRw+5Xg9IbpRmZmYYO3YsoqOj8ffff+PBgwc0cIHIjZoRIa0QGRmJ1atXo6ampslzUVFRAICwsDDY2Nhg3759ePbsmej5qqoqREREwMjIqNGMB6+zsbEBANy5c0f0WElJCW7evClVvh9//BECgQATJkyQ9iM1YWlpKXE0XlhYGGpqajBr1iwYGxtj/Pjxcr8Pad/ooldCWqG+vh5ff/01tm3bhuDgYLi4uKCqqgpnz55FfHw8Ro8ejYkTJ0JbWxvvvvsuPD09MX36dGhpaeHQoUO4f/8+du/eDUNDQ7HrnzFjBtatW4f58+cjLS0N5eXl2L17N4qLi8Uuv2TJEly/fh2dO3fG1atXcfDgQQwbNgyTJ0+W+zP6+flh/fr1eOedd+Dl5YXq6mqsXLkSABAQEAALCwvk5ubiww8/lGtePUIAAAwhRG4VFRXMvn37mICAAMba2prR0tJidHR0mN69ezMRERGMQCAQLXv27FnGz8+P0dfXZ3R1dRkfHx/m5MmTjdY3dOhQRltbu9FjMTExTM+ePRltbW3GxcWF2bJlC/PRRx8xAJiHDx8yDMMwe/bsYQAwgYGBjIuLC6Ojo8N07NiR+fe//81UVFSI1iVc7uDBgwzDMEx8fDwDgFm7dq1oGQDM6NGjRd8/f/6cCQsLY8zNzRldXV3m3XffbZRv7ty5DAAmMTGxdcUk7RqPYZo56E0IIS3w9PREdXU1UlJSuI5CVBidMyKEyC0xMRE3btyggQuk1agZEULktm3bNmhqamL69OlcRyEqjg7TEULk8uzZM9jY2GD48OE4deoU13GIiqNmRAghhHN0mI4QQgjnqBkRQgjhHDUjQgghnKNmRAghhHPUjAghhHDu/wOxuFOJNQQJOQAAAABJRU5ErkJggg==",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "sns.distplot(soldata.Solubility)\n",
- "plt.show()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Above we can see the histogram of the solubility with kernel density estimate overlaid. The histogram shows that the solubility varies from about -13 to 2.5 and is not normally distributed. "
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 36,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAu4AAAH0CAIAAADt2j/9AAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdZ1wUV9cA8LsNlt4RkC4gIhoVey+YWEgsBE1UNEXRREMSNcFo8qDRREwTY2KCmhgsUbFji8Ea7PQivffel2XrfT9c382GXnZ3duT8P+QXZ2fnHtjD7LllZhgYYwQAAAAAQE9MqgMAAAAAAOg9KGUAAAAAQGNQygAAAACAxqCUAQAAAACNQSkDAAAAABqDUgYAAAAANAalDAAAAABoDEoZAAAAANAYlDIAAAAAoDEoZQAAAABAY1DKAAAAAIDGoJQBAAAAAI1BKQMAAAAAGoNSBgAAAAA0BqUMAAAAAGgMShkAAAAA0BiUMgAAAACgMShlAAAAAEBjUMoAAAAAgMaglAEAAAAAjUEpAwAAAAAag1IGAAAAADQGpQwAAAAAaAxKGQAAAADQGJQyAAAAAKAxKGUAAAAAQGNQygAAAACAxqCUAQAAAACNQSkDAAAAABqDUgYAAAAANAalDAAAAABoDEoZAAAAANAYlDIAAAAAoDEoZQAAAABAY1DKAAAAAIDGoJQBAAAAAI1BKQMAAAAAGoNSBgAAAAA0BqUMAAAAAGgMShkAAAAA0BiUMgAAAACgMShlAAAAAEBjUMoAAAAAgMaglAEAAAAAjUEpAwAAAAAag1IGAAAAADQGpQwAAAAAaAxKGQAAAADQGJQyAAAAAKAxKGUAAAAAQGNQygAAAACAxqCUAeCFIsGSLEHW7cbbZaIyhNDtxtuflXxGdVDqRYzF6S3pdxrvVIorEULh9eG7ynZRHRToDcj2LvWTbGdTHQAAQGHSWtIWZC/QYmrZa9g/bX660XyjjYZNCj+F6rjUSFxz3KKcRWZsM0uOZVRz1HbL7QzEyGjJoDou0GOQ7V3qP9kOpQwAL44VeSvmG8z/wfoHhFCFuKJUVJrWkkZ1UGpEiqRv5L7xtsnbgZaBCKEiUVGDpOF+032q4wK9AdneuX6V7VDKAPCCKBeVxzbH3nS+Sf5pzjY3Z5vDyV1eZktmgajg0wGfkn9ac6wRB72oJ/cXG2R7l/pVtsNaGQBeEPnCfBO2iSHLkOpA1Fe+MH8gZ6AWU4vqQEBfQbZ3qV9lO5QyALwg9Fn6TdImjDDVgagvfZZ+o6SR6iiAAkC2d6lfZTtdSxlIYnXGk/KkSEp1FP2OvYY9EzEf8R5RHYj6ctF0qZXUJvOTqQ4E9BVke5f6VbbTY61Ms7T5Uv2lFH4Kl8l90+hNR03HQcmDolyjbDVsqQ4NICEWXq6/nMhPZCKmj5GPG9dtXNq4P+z/GK09murQ+hcuk7vRfONbeW/tt9nvruWewk9hM+jxB64yxmzjtaZr38x7c5/1vsHcwQnNCYZsmKGgJcj2LvWrbKfBZ18vqZ+UPsmSY+lt5F0iKpmaMTVhSALVQYHnBFgwM2MmRniF8YoaSY1npufDwQ+pDqr/+tLqS1sN25CqkGJRsZ2G3Xqz9RYcixHaI6iOS40EWwcfqDoQXBFcIa5w0HD40PxDa461u5Y71XGBHoNs71L/yXYGxuo+TbOjdMeNhhv3B99nIiZCiCfl6TB1BiQOgFEZdfBL5S/7KvclDUniMDjo/z8d9xR3GJWhSqOk8RHvkT5Lf7zOeKpjUVM14pro5mgTtomHtgfVsYA+aZI2xTTH6DH1RmmPojoWNVUnqUvgJxixjIZrDac6FiWiwVqZ6OboN43fZP5/qDpMHWrjAfKim6N9DH1IHYPg01EDGYKMV7JeWV+4nupA1Fc8P/6VrFc+Kf6E6kBAX6W3pE/PmL6mYA3Vgaiv2ObY6RnTPyr6iOpAlIsGpUyZqMycbU51FKB9ZeIycw58OgAAAChDg1LGimNVKiqlOgrQPiuOFXn6CQAAAEAJGpQy43TGnag5IcESqgMB7RinPe507WkBFlAdCAAAgH6KBqWMv7m/FEmnZ07/qfKnHyp+eC37NREWUR0UeG6VySo7DbuJ6RP3Vuz9seJHr2yvBkkD1UEBAADoR2hwMbYuU/fR4EdX668m8ZN0mDpfWH7BYXB2Wu00YhlRHRpAHAbnb6e/rzdcT+AncBicTwd8qs/SD7AIgIvLAAAAqAYNShmEkAZDY5HhokWGi45UH9lVuuukw0k/Uz+qgwIIIfR79e+J/EQ/Uz8vAy/ZRl9jXwpDAgAA0K/QYIJJ3uGqw+H14dcbrlMdCHgupCpkX8W+TEEm1YEAAADop2hWyngbeSOEztWeozoQgBBCRaKiKF6ULlP3Zb2XqY4FAABAP0WzUmax4WIGYlxpuNIibaE6FoDO1p7FCM8zmNdPniMPAABADdGslLHXsB+lPapR0hjRGEF1LACdqzuHEPI29KY6EAAAAP0XzUoZ9P9fnORLFFCoXFT+iPeIy+TO1Z9LdSzgX8wsprmvucFWA6oDUV/MRKa5r7nel3pUBwL6ipnNtHjHwuh/cDVrh1jJLIt3LPS/0qc6EOWiXynzutHrCKFLdZeEWEh1LP3a+brzEiyZoz9HjwVfCWpEKpJWpFTU59dTHYj6kgqkFSkVjcWNVAcC+koqlJYllNVm11IdiPqS8CVlCWUNBS/47b66W8rkC/PP150Pqw2rFFcihFblrYpooGaKx1nTeZjWsDpJ3Z3GO5QEAAhqZ5fqJfW3Gm8dqzmWxE9CCJ2qPbWxaCMlkQAAAKBWt0qZrSVbR6eNvlZ/7Wr91WGpw2KbY8vF5c24WdnBdQTmmChXLa6+13SPw+DMN5iv+tbvNt51SHbYX7H/Ce/JopxFQWVBjZJGUmQDAADob7q+Rd79pvv7KvYluyU7aDgghDIFmY4ajsoPrDPeht7bS7dfqLtwwOYAm6FGd/lraGjYv38/QsjFxUUhB2xpaYmLi5s9e/bcueq1HuVi/UUxFs8zmKf6ey6Lsdg3z3eX1a73zd5HCNVL6nlS3tX6qyoOAwAAgJroug6423T3NYPXSB2DEHLWdFZySF1z13IfzB2c0ZLxsObhVJOpVIfzXHR09OTJkwUCxT9Yce/evRMnTnzw4IHCj9xr12uuI4QWGy5WfdOZgswaSc0a0zXknwYsAwMWLHEFAID+q+tSplBYaKdhp4JQemR10eq9W/aemXRm6n61KGWKioqWLl0qEAg0NDRcXV0VOCrz9OnTioqKhw8fBgYG7tixQyGH7aP6+vprI695rPBY8OMC1bdeKCy05FhyGBzVNw0AAEANdV3KmLBNqsRV7b60uXgzG7GDBgYpOqquzTSd+UncJ2dLz+7bt4/JpPg6rKKiohkzZuTk5AwfPvzChQuOjgqegPv5558//vjjL7/8sqWlZc+ePYo9eC+Eh4fzeXzDLENTDVPVt27CNqmVUHnBAkY4V5CbK8y15lgP5g7OEmR9XvL5KYdTFIak1lJT0d27qLISubkhLy/E5VIdkDqqEFektaRpMbU8tD2YiPlK1isn7E+Ysin4+2oFsr1nINu7QRnZ3nURMFxr+N8Nf7e98jlbkB1cEbynfM+nxZ9ihPsSRC+MGjXK0dGxrKzs8ePHKm66FVLHZGVljRw58s6dOwqvYxBC69ev//PPPzkczjfffBMQEKDw4/fUuXPnEELe3tRcu+Si6cKX8h/xHlHSeoW4YkL6hHnZ80KqQuZlz1udv5on5cXz4ykJhgaOHkVTpqCKCmRujv74A40ejWrhutn/kCLp6vzVw1OH76vYt6Fww9i0sXWSuihelDrcbAKyvWcg27uivGzvelRmseHivRV7X8t+7SPzj3SYOhGNER+YfYAQGqQ56KzD2Tdy3/i2/NtyUflvdr+peAXuokWLvv/++3Pnzk2cOFGV7cqTr2Nu3rxpbGyspIZef/11hNCyZcu++eYbhBCFYzNNTU1///03k8lcuHChiptO4ifVSGqm6U7bZrFtSc6SrwZ+5aLpksxPtuJYqSyGDws/tORY3ne5z2awW6QtcFrvTGMj2rAB/fUXIn+h69ahV19Fu3ejb76hOjI18lvVb7cbbycNSTJjmyGE7jbeVZ+1X5DtPQDZ3g3Ky/auR2U0GBq3nW/P0Z9zvOb4L5W/6DP1NRmaL+u/bMuxXWi48KrTVV2m7tGaoz65Pip+LhIZFTh//jzGqh4TIlRWxxCvv/66OozNXLt2jc/nT5o0ydLSUpXtPuY9np45/dXsV5P5ydsstv1k+9Nj3uNvyr9JF6Q7aDoM5g6eqquKVVPXG65/NuAzUrVzmdzxOuNV0GiP8Pl82X8plpiIzMyQfE9j5UqkBqvXeTweQqipqYnqQBBC6HrD9bVma8mZHSE0XW86AzGoDUkGsr0HINu7QYnZjvvsSdMT4wRjFINmZsxslDT2/YDdJJVKbWxsEELR0dEqa1SmsLDQyckJITRy5Mjq6mqVtXvmzBkOh4MQ+vTTT1XWqLwlS5YghIKDg1XZ6J2GO3rxeigGvZr1Kl/CV2XT8mrFtSgGVYmq5DfGN8cPfjZYgiWh1aFCqZCq2DDGUqk0LCzM2tra1NSUwWB4enomJydTGA8OC8Pjx/9ny7172N6eomgwxlgikYSGhpqamg4YMAAh5OXllZ2dTWE8GONRqaPCasJabTSKNyoWFlMSj0wn2S7F0hPVJyDb/wOyvRuUl+0KKGUwxknNSVaJVigGjU0b2yr1leqDDz5ACH322Wcqa5Ggqo4hKKxm+Hy+np4eg8HIz89XWaOX6i5x47goBq3IXSGSilTWblsiqYgdy84R5MhvJCf3w1WHUQxySXa5XHeZktiePHkyfvzzTrOTk5O+vj5CiMPhbNy4sba2lpKQ8P372MHhP1vCwvCkSdQEg/G9e/dGjhxJfkUuLi7a2toIIS6Xu3Xr1sZG1fXBZEgyz8iY8VvVb61eUodSppNsP1F9ArK9Ncj2TomlYqzMbFdMKYMxzm7Jdkx2RDFo6LOhKvsjvHv3LkLI2dlZNc0R1NYxBFXVzIULFxBC48aNU1mLx6qPsWPZKAatL1gvwRKVtdsRt2duhyoPyW8hJ/e/6/92SXZBMQjFoPlZ89Nb0lUWUklJiZ+fH7mOz9LSMiQkRCKRVFdX+/v7s1gshJCxsXFwcLBYLFZRQFIpPnYMnzyJGxqwri5+/PjflxYtwgEBWCjEH36Ic3NVFA/GhYWFvr6+DAYDIWRtbR0aGiqVSouLi9v+3lQTDxnDs0mySW9J31CwYVnuslY7qEMpgzvO9oiGCMj250i2nz/fYbaLxXjzZsh2+yT7PEGe8rJdYaUMxrhEWOKe4o5ikEOSQ1ZLlgKP3BGJRGJhYYEQSkpKUkFzWD3qGIKSambFihUIoW+++UY1ze2v2M+MYaIYFFAUoJoWu3Si+oRpgunx6uM5gpx/Gv8JqwkjJ3eMsVAqDC4PNog3QDGIE8vxL/SvE9cpNRiBQBAcHEy6pBoaGv7+/vX19fI7xMXFTZs2jfTMhgwZ8tdffyk1HowxfvIEjx+PEcLm5riuDh8+jM3N8bff4mPH8NKl2NUV19Tg4GCMEOZy8bZtuKlJqeHweLzAwEAtLS2EkLa2dkBAQKsuaVRU1KRJk8ivyMPD4/79+0qNB2N8r/HeyNSRpA7YWrw1oyXDMN5wR8mONH5afHP8/or9WG1KmR5le61YucMhaprtEyZghLCVFW5sbD/bQ0Ig20m2by/ZrrxsV2QpgzGuEFWMSh2FYpB1onVaU5piD94uPz8/hNC2bdtU0Jb61DGEiqsZoVBoaGiIEMrKUkWdGlQWhGIQI4bxffn3Kmiu+67UXVmWu2xC2oRF2YvO1Z7LEeSsyV8je7VKVOVf6M+KZaEYZJJgElweTEZWFS48PFx25X+rWXCJRPL1119XVVXJ9nRwcJDtmZOT08Eh+6akBPv5YSYTI4QtLXFICCbdvpgY/MUXeMMG/Ouvz0/lxcX/7mll9e+eCkXWUtjZ2cl+8Ly8PNmrAoHgq6++qqurk+1pa2uLEGIwGD4+PkqaPy0UFvrm+jJiGOQMGVodKsVSjHEKP2Vd/rrJ6ZPnZM7ZXbpbLBX75PhUi6g/w+CeZLtxgjEl2Y4xDgsLEwqFsj0h2+WzPT09PSoqqtWeL162K7iUwRg3Sho9MzyHRg+1GWzz6NEjhR9fJjc3Nzg42MnJiclkamhoTJo0KTg4uLS0VEnNqVsdQ6immklOTg4MDHR0dDQ2NmYwGF5eXqGhocqbcJVi6ceFH6MYxIpltZ1YpYVYXuzU9KmkLzIiZcS9xnsKPHhqauqcOXPIOcvV1fX69eutdjh06BBCyMjIKCgoSCAQ4P/v0erp6cl6tA0NDQoLSCDAwcFYXx8jhDkc7O+P/9tdbl9UFJ44ESOEEcKjR+MHDxQWD8bkKSLkVzRq1KjIyMhWO3z33XcIIRMTE9lkBOnRcrlc0qMNDAzk8xW2wJwn4QWVBenG6aIYpB2nHVAUoMorJJStVbbfbbyrwIN3me0XL14ky0EuX36+cAeynWxvbGwMDAzU1NQcMmSIrNQjXrxsV3wpgzFuljQvWb0EIaSvr3/3riLTGmOcnJy8Y8eO4cOHIzmyG/6yWKxZs2YdOHCgpKREgY2qZx1DKKmakUgk//zzz0cffUTqd9mvV/b/Ojo6r7/++smTJxV5msBYJBKtenfVmEdjuHHci3UXFXhk1QuvC3dIciCneK8sr1YrKHuBrAlgs9myNQEiUTvroJOTkz09PcnHNHTo0L///ptsl58vt7KyUsx8eXg4dnR8fo728sI9GrGTSnFYGLa1xQhhBgP7+OA+dxDJWgqSqGRNQLvLJmJiYuTP/v/88w/ZXlBQ4OvrS7bL1hn0MaTwunC7JDtZGuQKcvt4QPVEVbbfunVL9qCY+fPnp6U9nw3oz9kukUgOHjxobm5OvhxXr17d7ln6Rcp2pZQyGGORSPTWW28hhDQ1Nc+dO9f3A5KBATc3N9lXqaGh4aBBgxBCgwYNKigoCA0N9fLy0tTUlBU3Hh4egYGBmZmZfWxanesYQoHVjFgsjoyM9Pf3t7L6975zNjY2/v7+ERERp06dQghxOJwRI0aQZWUIIS6X6+XlFRISUl5e3sfW+Xz+a6+9hhAysza7W6ngIpgSzZLmoLIgciX5tD3Tet1BFIlEISEhpqamCCE2m+3n51dZWdn5WyIiIoYMGUI+I09Pz2fPnpHtT58+ld1VcvTo0Q9620GUJCbimTOfn9aHDcM3b/buOLixEX/2GeZyMUJYVxd//bW4Vx1EoVAoW0vB4XDarqVoKzw83N7eXjYmL5uMuHPnzksvvUS2T58+PT4+vhfxYIxjS2Mnpk0kp/XRqaPvNyp9aQK15LN9+g/TVZbt5KM3MDCQffSy65jUP9slLS29OEwn2f748eNx48aRH3ns2LFdzo0oLNvLqMx2ZZUyGGOpVPrRRx+Rrvzvv//eu4OQCkb+6YzGxsa+vr7h4eEXL15kMBiamppxcXGy/Xk8Xnh4uK+vr66uruwtbm5ugYGBsmq9R9S/jiH6WM3IKhhyBwLC3t7e398/MjJSvlR/5513SF8/MzMzJCTEy8uLdJvIB92Xab6mpqbZs2cjhIyMjB4+fNiLI6itQmHhhuQNTBaT9H6OHz/eo97PzZs33d3dyS951qxZ3V/k3vYUr5DVIaS7/Ono0RghbGyMg4Nxe93lnikowL6+GKFmV1cHO7vQ0NAevTs8PJx0bEhR0v3lXM3NzUFBQWQyQktLKyAggHz7kntyyPq1vr6+ParUKysr/f39dU11reKsTBNMlbeIRA0VCgs3pGxgcVgqzvaqqqp2r2NSSLZvHTNGKdnu4jLI3l5R2S5/7dLAgQO7P8qikGzXt9AfED+AqmxXYilDBAUFkQTau3dvN98ikUgiIyMDAgJknxZCyNTUlFQwZM6vsLDQxMQEIfTjjz+2e5Dm5mZS05C6Vb6m6f4t9ehSxxC9qGb4fD75LZH1vISjo2PbCkamqanJ1dUVIbRhwwaypaqqigyJaWhokCMwmUxS0xQVFXUzkpqaGnKjCAsLi4SEhG6+i16ePn06YcIE8isaM2ZMdzqIGRkZPj4+5C1OTk5hYa3vLtUd8qd4+dUhTU1NsvlyHR2d7syXi0Siffv2GRkZke5yUWAgVuzfxa1bO197jfy8M2bM6E4mpKamzp07l7zF1dX12rVrvWi2qKio3e+A2tragIAAktiGhoZBQUEtXfWhW1paZLWRpqbm7ou7G8SKnIGlC/nhEFVme2xs7NSpz2/8PWLEiHv3ni9T60W2C4VC+Wwv/d//cE1NL0Lq0K1buxcsIKHOnDmzL9nO4/GCgoJIB77da5e6QwHZHr67XtyNlUNKoPRSBmP8448/knNEQEBnl9TKBgbk74hva2tLpjbkJ7wlEsnMmTMRQnPnzu2y6iTf1n5+fmZmZt38tiboVccQ3axmOqnzZNMQnUhMTCRnhIsX/7OWpaamJjQ01MfHh9yOCclN82VkZHRywJKSkmHDhiGEHBwc+j4hqM5IB5HcpbrzDqJsyZ7szNvlaaVzMTExU6ZMIZ9LR6tDbGxsOukg3rx5k3xMCKFZs2YlJib2JZ6OdL+DKL+WwsjIqKO1FN3XqtaUDQ2mp6d7eXmR7fLLS9uS7y57enqmpKT0JR66ozDbO7qO6YXM9vDwcPlrl3L7dg8bmma7KkoZjPHRo0fJZ7Bhw4ZWa6+6P7Uhs337dtJ56nK5QLsNkVvREHZ2du02RMc6huikmqmtrQ0LC1PI7NvevXvJX1S756ZOpvlSU1Nb7ZyTk0P+Htzc3Lo/ikNrnXcQydmN/DmQs1tZWZmimm61OkR21rt9+7ZsKX3b4ZDMzMy+d5d7pG0HkVyKRZC1FKRzQtZSVFRUKKRdqVQaGhpKThEMBsPX11c2WxoRETF06FDZibvVbfLT0tJk3eXBgwdfvXpVIfG8AKjK9o6mDvELlO0drV7vO9plu4pKGYzxxYsXSTb7+vqKRCLZ1AaZyCdkgyWdHCcyMpLNZjOZzJu9XXjV0cpWPz+/8PBwkUhE3zqGaFXNVFdXtzsBFBQU1OshEKlUStbnTp06tZMba3Y0/BMQEEA+5eTkZPIpjBkzRnYflH6i3Q6i/B3Zu7Nkrxc6Gotut4NIvocU2F3ukfT09Pnz55PfhouLy5UrVzDGt27dknWXZ86cqYzuckffvu2uPaqpqZHvLrf6HgIEVdleXFwsmzqUv46J7tlOlqeQWWNTU1Nl3OCYXtmuulIGY3zjxg0dHR2EkIODA/kfWTn51VdfdWdgoLa2lvQpFXJPPLIop9X1xgMGDCCrcEaPHl2j2JlRFTp9+jTJNmdnZ9kV1Gw2m1yprpC771RUVJAqZOfOnV3uTCrXVatWkYlnwsHBgXyhzp49u0nJ98FUWxEREbJFjnZ2duSca2tre+rUqb5fGNmJjlaHVFdXf/DBByR59PX1yefFZDLfffddBQ4O9Uh4eLizs7PsV0T+x8nJ6dKlS0ptt6PeeXl5+Zo1a8hVvkZGRqRMZ7PZ69evp2PPR5Xks93W1lZl2d7R1CEds70XV+r1BV2yvTeljFgqjm+OP197PrE5EWOc2Jzone3dzfc+ffrUwMCADCeSGYf09B48v+ONN94gudjqhj99Ry6VIgtaHR0dnZyc1Opz6oUzZ84YGRlxuVzZhUUK/+O8e/cui8Vis9ndvwF2q2k+GxubmTNndvPuTHmCvKt1V2833BZIBRjjmRkzC4WFvY9ebZAOoqGhob29vaamZu+W7PVOR93itLS0efPmcblcPT29MWPGKPVel91BTt86Ojr29vZcLleV3eWOusWxsbFTpkzR0tLS0tLq5ppNgKnL9lZThz4+PgUFBeQlGmU7VctT1D/be1zK5Avy3Z65eaR6rMpb5frM9d28dx83PR6eMrz7R5g+fTpC6OTJkz1t+tdff0UIGRgYKOte1Bjj/38SwhdffKG8JlSGjHkodQHKli1bSEXS08pPLBaPGTMGIdSdeVYJlqzKW2WVaLUid4VnhufgZ4MrRZWWiZbZLRQ/s16Bvv76a4TQO++8o+J2295NS7bwkIy083g8FYfUkc2bNyOENm7cqOJ2RSLRjz/+aGxsTPqjH3zwARmvFQgEZIuK43kBUJXtnSzcUfNsp3x5ippnOxP10PuF74/WHh3lGvWH3R/xQ+L9zf17egQyVCV/PVF3pKSkbNy4ESF04MAB2dJ0ZSAjRrJ7pbwA5NepKNzOnTsnTJhQWFhISsDuY7FY5LtBdqfmThypPnKv8V7ikMRj9scinCOO2R8zZZv2MmJ1RS77ItVnbW1tfHx8QUGBCtplMplr1qzJzs4ODAzkcDh//PFHZWUleYmM/8vuhUg58ssh/62qqoqPjy8uLlZBu6R8ycrK8vf3RwgdPny4oaFB9qr6/H5oRD7bBQJBQUFBRUWFCtrV0dHZvn17enq6r68vj8f7/vvva2pqyEvqnO0IoWPHjl2/fp0sT0lMTJw3b54KYhAKhQUFBeXl5bIt6vP7aaVnpYwUSW813vpkwCcMxEAIaTI0h2sN7/Jdnbh58+aXX3756NGjzncTCATLli1rbm5+9913ly1b1pcWgWKx2ezjx48bGBicO3fu8OHDXe7//ffff/nll83NzT1qJaIh4l3Td03YJuSfY7TH9CZW+rh69erIkSO3bt2qshZ1dXW3b9+emJgYEhIiu3JBnZ0+fXrkyJGkc68aRkZG+/bti42NPXTokGwRA+i7p0+f2tnZeXt7q6xFW1vbo0ePRkRE/Pjjj/IXf6izLVu2bNmyJSsrS3atkwrExMTY2dktXLhQNc31Rc9KmQpRRYu0xUGznUGRMlHZuPRxP1f+XCup7f4Bb9y4ERgYeP/+/c5327RpU0JCgpOTE7kGGKgVR0dH8vzCDz/8MDU1tfOdg4KCAgMDeTxej5rIF+bba9j3OkLQTS4uLuRuzqAjw4YNW758OdVRAAXw9PR8++23qY6iu3R1dXfv3k1GskFbPStlDFmGDMSol9S3felEzYmnvKcbCjdYJVkty112s98IHucAACAASURBVPGmFEkVEuK1a9cOHDigqakZFhZGbhIA1I2Pj89bb73V3Ny8ZMkSPp+vkGPWSmoPVh0ckzamRFRixDJqN+sAAACAnpUyXCbXWdP5RsONti9tMN8QPijcx8hHjMUna0/Ozpxtm2S7pXhLjiCnL/EVFxevWrUKY7xnz56RI0f25VBAqX766SdXV9fk5GSyELjXJFhytf6qd463RaLF2oK10c3Rf9b8OUxrWLtZBwAAAPR4cet2q+0bCjdIkXSCzoQ8QV69tN5RwxEhpMnQfNXg1VcNXi0WFR+vOX6o6lC2IHtP+Z5vy7+doDthpfHK5cbLdZg6XR5fnlQqXblyZVVV1dy5c8mCO6C2dHR0Tpw4MXHixP3798+cOXPB/z9bpPsyBZknak78Uf1HvjAfIcRETE89Tz9Tv4WGC8tEZR5pHpuKNi0zXibG4juNdwIsApTwQwAAAKCfHl/B9KbRmyftTz7mPfYv9D9Ve8qEZWLCNpmtP1u2w0DOwIABAZlDM28531phvEKTqfmg6cHagrU2STbrC9fHlcd1v62vvvrq9u3bAwYMOHLkiNounAYyo0aN+vrrrzHGb7/9dvevvhEi4ZnaM7MzZw9+NnhH6Y58Yb6LpkugZWCue26Ec4SPkQ+HwbHRsHnq+pTJYH5e8nlQeRCXyRVjsZeBly5Lt+sGAAAAvNB6c8nxy/ovv6z/svyW7wZ+12ofBmLM1Js5U2/mz5KfT9WeOlpz9EHTgwOVB25suVH2pAwhVF/fxdKHp0+f7ty5k8lkHj9+XP7xTECdffzxx3fv3r18+fLKlStv3bolu9Fwu+rq6pAWWm66vCm3CSGky9RdYrTkHZN3JulOaruzvYb9twO/ld9y0PagYoMHAABARz0elekpfZa+n6nffZf7SUOSvtD9oj6unly98sYbbyxdujQ3N7fdd9XV1S1dulQkEgUEBHh6eio7SKAoDAbjt99+s7S0vHfv3p49ezra7ejRoyNGjHjy5Anio4GVAz20PUJsQ0qGlfxm91u7dQwAAADQEaWXMjLuWu5funxZXFxMHklKnv9+7tw5hNC1a9eysrLkd37//ffz8vLGjBlDHoINaMTMzOzPP/9kMpmBgYEPHz6UbReLxeHh4eTeYps3b05ISCC31/yk6pNo12g/Uz89FlyeBgAAoMdUV8oQGhoapqamCKE///wzKCjI0NAQIXT37l1nZ+fRo0cfPHiQx+MdOnTo5MmTurq6J06cUNm9gIACTZ8+ffPmzWKx+I033qitrU1PT9++ffugQYMWLFggFAoRQlOnTg0LC5s2bRpCaKDZQKrjBQAAQGOU3Z7fxMRkyZIlVVVV3333nYeHR2pqakxMzNq1az/66COxWIwQOnjwoOwBoYB2du3adefOnaioKEdHx7q6OrLRzc0tPz+fx+OdPXvWzMzst99+ozZIAAAALwBVj8q0a+nSpTExMUuWLNHS0uLz+QYGBjY2NuQh2ICmOBzOl19+qaGhQWaULC0tv/jii9jYWC0tLapDAwAA8EKhuJQhAzCHDh0aOnRoWFgYn8+3sLBobm4uLCz8+eefqY0N9AWPx/v444+FQuHAgQM1NDRKS0t37txpY2PT00cWAAAAAJ2jrJTJy8vbsmVLSEgIQigzM5PD4fj4+ISHhxcVFR0/fhwhtHnz5vj4eKrCA3304YcfpqWlDR06ND09vby8PCQkZOTIkZWVleSxBrNnz963b59IJKI6TAAAALSn6lKmrq6upKQEIbR69eo9e/aQL7Z58+YVFxeHhYW9+uqrLBZr0aJF69atEwgEy5cv7+kjlIE6OHv27G+//cblcv/8808tLS1DQ0M/P7/Y2NioqCgul4sQSkhI+Oijj+7du4cQelb0DCNMdcgAAADoSkWljBRJbzTcWJe2zsLCIi0tDSFkYGDw4YcfvvXWWwih6dOnm5iYyO+/d+/e4cOHp6SkfPzxx6qJEChKYWHh2rVrEULBwcHkwnuZ0aNH6+rqIoQOHz7s5eUllUoRQr/Y/WKXbLeleEueMI+KeAEAANCb0kuZIlHRnvI9TslOc7LmhDSHDPIaRB5T/ueffwYHB5MLs9uSdegPHjx46tQpZQcJFIVcgF1TU7N48WJS0LTrtddeu3z58pQpU5AWajJsKhQW7inf4/TMaW7W3DO1ZwRYoMqYAQAA0FpvShmMcK4w93bjbdKNTmlJWZW3qtU+fCn/RM2JWZmzyPOxc4W5gzQH7bLa9fexv0eMGIEQIrdH68TQoUO/++47hNB7772Xl5fXiziB6m3fvv3hw4fW1tYHD3b9VAEtLS3ER0dqjkS6RPqZ+mkyNP9q+GtJ7hLyTOzY5thW+1eLqx80PYhujpYiKUJoQfaCElGJUn4MAAAA9NHj+8qUikoXZC9okDa4cd1im2MXGC5YZrQsnv/v+txnLc+OVR87XH24WlyNEOIyua8avOpn6jdLbxYD9eyRkO+//35ERMTFixeXLl16//59DofT02iBKv3zzz9BQUFMJvPo0aOtZgw7wcCMybqTJ+tO3jNwT1ht2MGqgzHNMQerDh6sOujGdVtpsvJdk3dN2Cb+hf6na09P0JlQJi4TSoU3nW9GNUe1SFuU+hMBAABQfz0uZTYUbnDQdDhhf4LNYPOkvER+ItleJ6kLqw37terXuObnz7720PbwNfb1NfY1Zhv3Or7ff/89Li7u6dOnu3bt2rFjR6+PA5SttrbW19dXIpFs3759xowZvTiCIcvQz9TPz9SPVMO/Vf+W0pKypXiLFkPLmG18oe5C/JB4K44VQuh2420jtpGifwIAAAC01LMJJozw9YbrWy22shlshJAOU2eCzgTy0rGaY2sL1sY1xxmxjPxM/eKGxEW7Rn9o/mFf6hiEkJGR0bFjx1gs1q5du27fvt2XQwHlwRi//fbbBQUFU6ZM+fzzz/t4tKHcoUEDgwrdC086nJyrP3e58fKr9VdXm64mdQxCaKbeTCbVt0QCAACgJnr2fVAhquBL+YM0B7V9abnR8gUGC845nisbXhZiGzJCa4SCIkRTpkzZtm2bVCpduXJldXW1og4LFOinn366dOmSoaEhqTsVckwuk/uG0RvXnK6ZsE3yhfntZh0AAADQs1JGn6XPQIwmSVPbl4zZxhcHXVxsuFiD0YMHQPr4+Bw6dGjOnDmd7xYYGDh9+vTi4uJVq1ZhDPcgUS/JyckBAQEIoV9//dXOzq7znYODgw8dOqSn17OHYOuz9NvNOqBYDx482L17N9VRqLVbt27t3buX6ihAX2GMjx079u2331IdSHfV1NS89dZbubm5VAeipnpWymgxtew17G813lJU82PHjl29evWwYcM6343JZB47dszY2Pjq1au//PKLoloHfdfS0rJs2TI+n//ee+8tXbq0y/2XL1++evVqcqO87hvKHXq7sR9NL/r4+JSXlx84cEBlLRYWFi5btozMD8bExKis3V575513ysvL9+zZo7IWs7OzFy9e7OnpGRAQkJ6errJ2X3iTJ08WCoV3795VWYtPnjyZMGHCypUrv/jiC7pcHrtz587Q0FA3N7dt27Y1NamoXzd+/HihUHj//n3VNNcXPV5wsM1y26biTWdqzxQKC+833b9Uf6mnRyC3q8/IyOjR+Iq1tfWhQ4cQQps2bUpISOhpo90kFAqzsrIQQuQ2xHRHfsNKLeT9/f2TkpLc3NzIlfPd19DQUFpaihASCoVd7rzebP2txlvbS7dnCjJTWlJ+rnwBn89FJk+rqqoQQpqamubm5vr6+ipol8/n79mzx83N7eTJk1wu95NPPnFxcUEISSQScg9D9RkHra+vR///K9LS0jI3Nyd3XFQ2Ho+3fft2d3f3Cxcu6OjobN26lYw+klMZxlgikaggjBeJfLYzGAwOh6OoienOlZSUrF27duLEiU+ePLG0tPzxxx9tbW2RXLarz9NUyC+H/Bch9Mknn/j5+QmFwq+//trFxeXgwYMkYKWS/2jUPdtxz52rPbckZ8nYtLELshZcqL2Qxk9bl7+um++9cuUKl8s1NzdHCNnY2Pj7+0dERIhEom6+3c/PDyHk5ubG4/F6EXlH+Hx+eHi4n5+fmZkZQsjW1tba2rqwsFCBTaheSEiItrY2uX+Pm5tbYGDgs2fPFNvE2bNnEUJcLjc+Pr6bb6mpqQkNDfXy8iKBWVtbjx07tq6urss3pvJT1+avnZQ+aVbGrB0lO4RS4Zs5b5YKS/v2E6gFHo8XGBiooaFha2vLYDB8fX3LyspU03R4eLi9vT05FXh5eeXk5JDtd+7ceemllzgcjq6u7vz586urq1UTTycuX76sr69va2vLYrH8/PwqKytV0KhUKg0LC7OxsUEIMRgMHx+f/Px88lJERIS7uzuXy9XQ0HB1db1+/boK4nkBUJXtAoEgODiYdA80NDT8/f3r6+vJS7Js19LScnZ2DgsLU0E8naitrQ0ICOBwOHZ2dq2yPSoqatKkSeQP1sPD4/79+6oJSf2zvTelTK8dP36c3Btm5MiR1tbWsnLKyspq/fr1t2/fFovFnR+Bz+eTe+GvW9fd4qkTjY2Np0+fXrJkiXzfbvjw4aTL5eTkVFRU1PdWKLF//34Gg8FgMCZMmGBoaCj76YYMGfL555/HxcX1vYmCggJy4+YDBw50uXNZWdmvv/46e/ZsNvv59f8sFmv8+PGkdvTw8KioqOh7SLQjlUpDQ0OtrKzINyU5nyKEDA0Nf/jhB6FQqLymY2Njp06dSj6LkSNH3rt3j2zPycnx9vYm2y0sLAwMDEhx/+jRI+UF0zmhULh582YGg4EQGjRoEOkjmpqa/vLLL12eMfri6dOnEydOJL+KMWPGPHjwgGxPS0ubP38+2W5raztw4EDy/4sXL87OzlZePHQnlUqPHj1KSbaHh4c7OjrKSnbZxySf7VZWVmSEBiE0d+7c1NRU5cXTEbFY/Ouvv5KzIovFeumll9pmOymvSaikvM7Ly1NeSHTJdtWVMgcOHGAymQihgIAAsiU5OTkwMJCMZhPGxsa+vr7h4eECgaCj4yQnJ2tpaSGETp061btIeDxeeHi4r6+vfAVDxi3S0tIwxnV1dWPHjiXVDB3HZkJCQkgd89NPP2GMxWJxZGSkv7+/hYWF7Oe1s7Pz9/ePjIyUSqW9aEIkEpHOwfz58zs5QmFhYUhIiJeXl3wFM2nSpODg4NLSUoxxXl4eSQBXV9eCgoJe/8h0FBUVJfumHD16NOlgZWRkeHl5kY1K6iBWVVX5+/uTU6SJiUlwcDA5RZLuMlnGpK2tHRgYyOfzCwsLyQfNZrMDAwMlEonC4+lc2wBSUlJeeeUV8itSUgexuLjYz8+PnK+srKxCQkLID97Y2BgYGEgGFHV1dQMDA1taWjrp7gMZ+eEEVWZ7R9nSbrYLhcKQkBDyOB0Oh6OywT/i7t275Fb4CKFp06aRDmf3429ublZsPF1mO4fDUZ9sV1EpExQURErIb775pu2rpKZxc3OTfdEaGhr6+PiEhoY2NTW13X///v1knx5Vo9XV1fJTGwghJpPp4eERGBiYmZnZamf6VjOt6hh5spqGdIwIGxsbPz+/8PDw7k/zYYy/+OILhJC1tXVVVVXbV/Py8oKDgydNmkR60gghLpfr5eUVEhJSXl7eaueysjLyB2xra5uent7Tn5eO5L8pLS0tZd+UMhEREUOHDiW/Ok9Pz+TkZIW0KxQKg4ODyUALOQ2Rqb3O+3lCoXDTpk3ko1yyakmNuEYhwXTHzZs3BwwYQLK01Vh6R/3sPiJnanKFHalLGhoaMMYSiSQ0NJQEw2Qy206LlJSUdP6Z9ltUZXt1dbWsZDc2Ng4ODianuC5HNdq+UamDfxjjwsJCX19f8idmbW0dGhraqn/YUbYXFBR0/sbeoWO2K72UkUqlmzdvJt3xgwcPdr5zdnY2+QqUfdFqaWl5eXmFhoaSE4rMggULEEKTJ0/uMskqKytJBSN77oFsYKC4uLiTN9KxmumkjpEnkUiio6MDAwOdnJxkv2pTU1MyJNblSO8///zDYrGYTOatW7fkt+fk5LSqYGQfX+eVe21tLfnQzc3NFTL5pba634MnZQeZHFRIBzEiIkLWW5D/wujm7Ht4eLixsfHkm5Ntk2wfNj3sSyTdIZKKdv22iySSl5dXuxWzwodDwsPDHRwcZF8YspVDjx8/HjduHNk+bty4x48fd3SE6OhoSpYyqCeqsl0kEskGV9hsdu/WmsgPhwwZMuSvv/7qdTydIIMrZJ6h88GVLtf6kFBlwzm91utsj4yM7Eu7faTcUkYsFq9evZr86ns0eJibm9tutz40NJT0I2tqakhZHRgY2O4RCgoKOp/a6A56VTPdrGNaIUNigwcPltU0smm+lpaWtvu3/c2TI3h4eMiOoK2tTT6sxsbGbobB4/HI7YUMDQ2p/ZNQnl4MJCikg5ieni6b7XZxcbly5QrZ3tOuVV5F3ti0sSgGacRq7Cvf19Mwuq9IWDQlfcrAuIGmjqZdzmp12envjri4uGnTprX93uqyu9wWWRFClhQwGIxPzn5SJKTrkru+oCrbb9686e7uTtqdNWtWUlIS2d67gYQzZ86QdfFMBqPqvfdwbm5P4+mQVIqPHfvhlVdInixfvrw7SzM7ynYyjkKup2l3HKU7+p7tn174lKpsV2IpIxAIfHx8yBdbr+ezCwoKgoODPT0921YkFy9eJGMDt2/flu3f0dRGaGhobW1tLwKgSzXTuzpGXjcrkoULFyKEJk+enJCQEBgY6OrqKtvfyMiokxqoSwKBYMmSJaTda9eu9e6nUE/xzfFLkpawNdkIoeHDh8tnbHf0uoNILoXQ0NAgNWJQUBBZhdbr8QyRVBRQFMCIYaAYtCBrgTImm27U3zBLMEMxyDrR+mFld4d/en1lR0dfn626ywEBAd2vy2Vvt3CxMI431o7TDiwJbJYoeCmD2kpoTvBJ9uFocVSc7RkZGeQbB/135U0fR++am5t37tx5aMYMjBDW0MD+/vi/UwS9ER2NJ03CCAltbGZMnPjwYc+GOTvKdvL3TlZQkL/3bp6KFZLtloMtjeKNqMp2ZZUyTU1NJB0NDQ0VMsra7jwRuUjS0tIyJiamd1Mb3aH+1Uzf6xh5smm+tr9McnNMLpcru4IXIWRiYtLlYu1ukg3jmQ0yO1t2tu8/C+UqRZVr89eyYlkoBs37fV5fLrppNf3ReTe3bS9Ntkqp76tMzteeN4w3RDFoUPKgAkEBxlgsFWe0ZNxrvEeKm7CasO/Lv+/o7XwJP5YX+7DpYYu0BWP8RckXf9f/TQ4SWBLIjGGiGDQzY2aZsGfdyp5e2dHRpAY5juy+1V5eXr2+QiS3Mdc72xvFIBSD7JPsz9Se6d1x6KJSVLkufx3J9rmhc1WW7e0uUJUdRzFrqoqLsZ8fZjIxQtjKCoeE4N6tDikp+fc4lpa9Pk4n2Z6eni6/mPry5ctdHkcx2d6U+3r261Rlu1JKmWpR9by35iGELCwsEhISFHvwyspK8qwD0tdsxdDQ0NfX98KFC4pdzq3O1Yxi6xh5WVlZe/bsGTt2rKymkb+NlbW1tb+//7179xS74EsqlW753xb3aHdWLCukMkSBR1YxoVQYUhlimmCKYhA7lu2X71cp6uvVEB0tSm0lMjKS3LMAITRjxgzZ32BqaqrsISF9vPYnX5A/Pm389IzpYqn4SdMTmySb0amj52XNG5A44Fj1sR/Kf+joXlNHqo4YJxjPzJg5I2OGTZJNDC/GO9v7WPWxclH57MzZKAaxYlmBJYES3MukavfKlLa7RUREyCZV586dSy5dxBhHR0dPnjyZbB81apRC5jrvNt59KeUlcoqflj4trvkFXA0mkoqoyvYLFy7ISvY1a9bISnYFZvu/oqLwxIkYIYwQHj0a///1+d38eXBwMNbXxwhhDgf7++M+d7M7yfYrV67IMnzevHntTkq8SNmu+FKmVFj6UspL9nH2ozxHkVv6KkltbW1YWNj48eMZDIa+vr6iBgY6Il/NqM/9ZpRXx8gjC49mzpypp6fHYrH6chV3NwWVBTFiGIwYRlBZkPJaUZ6Ihgj3FHfy9zwrY1ZSc5ICD97RpcIyZ86cQQjZ2NiEhoaSLWQahczSyl/N0Rct0pZqUbVIKrJLspN9TNkt2ekt6R2VMhktGZqxmvcan9/D5kHTgzpxnXe2997yvQMSB6AYZJVodbfxbh8Dw/9/ZYes5m4763/48OFWfVayloIU62QVggKvW5FgSWh1qHmCOYpBzBimb65vT8ec1Bm12X7//n0GgyG/QFUZ2f4vqRSHhWFbW4wQZjCwjw/+/7smdiY8HDs6Pq+BvLxwVpbC4uk422Xjjh4eHq1+aSrIdvIXrbJsV3ApkyPIGZQ8CMUgt2duxcLOrg9SFPIR7tmzRwVtyaoZZ2dndahmVFPHyIjFYtL7ka2kU6pfKn8hcw0BRQFSrMSyqackWPKM/yy8LjyxORFjnN6SvjB7oezVjJYMnxwfclp3TnYOq1HWnUNb3ZbmwX87iH/88Qfpn3VyNYdCxPJiDeINhNL/XPXWUSmzv2L/7MzZrTZ6Z3sfrT66KHvRjIwZJcISBcYmf2XH9OnT5e9JLZFIjhw5Qi7WI2d8Fdwqo1ZcG1AUoBmriWKQYbxhUFkQmWLDGOcL8q/VX4tsjBRJRRjjqelTK0RqcdNIWmS7bDhB2dn+r8ZG/NlnmMvFCGFdXfz115hMacXF4e+/x1u34mPHMLmTSFISnjnzeREzbBi+eVMp8XSc7eXl5bJBR/ziZrsiS5kUfop1ojWKQR6pHqr5OxQKhUZGRgihtjeGURL1qWZUXMcQa9asQQht375dNc2drDnJieWgGLQ2f22vZxwUq0RYMiJlxPCU4b65vq7PXH1zfeOb4wc/G4wxbpQ0BpYEkj9d3TjdwJJA2Z+ukrSdL8//bwexo6s5FOh87flhKcNabeyolNlUtKntdjLB1CRpUsZH3MmaISI8PHzQoEGyhQJZCu0utyuVnzoncw75+v+k6BOxVLwid8XAxIHLc5dPTZ86LGVYjbjGKN5INV3BzkG2d6GgAPv6YoTwoEG4pQUfOoTNzPDu3fiPP7C3N3ZxwZWV+NQpjBA2NsbBwViBg0PtUfNs/7z4c+Vlu8JKmSheFJkonZY+rV6sotv/Xbt2DSE0YsQI1TRH1NbWUl7NUFLHYIz/+usvhNCwYa2/upTnat1VrTgtFIPeyHmjVdefEq9nv74kZ4lYKsYYC6SCGF4MObmfrjktmz5Yk7+mXNT6ToDK09TUJJsv19HRIfPlHV3NoXARDREOSQ6tNnZUymwv2b4id0WrjaSUUVJ4RLtXdqSmps6dO1e2lkLFF81dqbsyKnVUsbD4QMUBp2SnatHzp1w9anqEMVaTUqajbD9be7Z/Znv7bt3Ct2/j+nqso4OfPPl3+6JFeONGLJXiH37AKnyKmXpm+9i0sRWiCuVlu2JKmbuNd/Xj9VEM8sryUuVVWO+++y5CaOfOnSprkaC2mqGqjsEYC4VC8twl+RFLZfun8R+DeAMUg+ZlzeNJFPkY0V7Qj9eP4kXJb5Gd3FEMGpc27nFTh3eUUqrs7OxFixaRU5WZmRm50M/AwODbb79V3gIyjHGRsIgTy8lu+c+FIR2VMmdqz9gn2bcqSVVQyhApKSmydaDm5uZkLYWJiclPP/2kyLUUPbQwe+E3Za3vga4mpUxH2f53/d/9M9s7ExmJBw36z5YzZ/CECdQE0/+yXQGlzOW6y6TfvCx3mSr7zWKxmDx2KyUlRWWNylBVzVBYxxCrVq1CCO3evVuVjcbwYkgvcEr6lDpx14/RVpJacS2KQVWi/9x5VjbkHtEQQVFc/7p9+/aQIUPMzMxYLJbKnjm8Km/V6NTR9xvvlwhLrtZdjeZFd1TK8CV89xT3ZbnLkpqTCgQFf1T9USGqUFkpQ0RERDg7O1tZWZFnDlP+HNNRqaPaXraqDqVM59l+p+EONWHJoSTbOxQWhseP/8+We/ewvT1F0TzXf7K9u6WMUCpM4ackNCeQwcZtxdvI0NDx6uNkNcP7Be+reDXDzZs3EUKDBw9WZaPyVF/NUF7HYIzDw8PJyjsVt5vKT7VJsjFPMM9seb4uqlBYGMWLIrOZ1+uvty32FU4kFbUdgZCd3NXEkydPVDwJKJQKvy37dk7mnNGpo5fmLI3iRZ2tPRtcHtzuzpWiys1Fm6emT52QNuG9gveKhcU7SnbcbFDWWsh23bhxAyE0ceJEVTbakZkZMw9XHW61UR1KGcj2nnn4sHXhcuoUnjyZomj+1U+y/fktdDt3pPrIJ8WfuHJdRVhUK669POhydHP0GJ0xByoPfFD4gRRJAwYEBA0M6s6hFOjcuXMIIdkUqeoZGhreuHHjlVdeefr06YwZM+7cuSN7ALoyHDx4cN26dQih/fv3r1+/XnkNde7ll1/W19ePjo7OycmR3XtKBVy5rvdd7tdJ6pw0nVJbUhfnLEYIDeQMTOIn7Rm4R4RFifxEZcfAZrAHcwdHNEas1Vyr7LZ6jVxgKbuTpApwGJzNAzZvHrBZtmW09uiOdjZlm3478Fv5Lf+z/J8Sg2sPGWyXPVaWWu5a7hENEe+avEt1IK1BtvfMsGGopgY9eIBkzxA8fhxNnUppTAj1m2zvupRJ5ie/V/DeLedbk3QnIYQiGiIsOZYIoWxB9uaizQihH6x/+Nj8Y4VH1jmpVHrx4kWEkLe3t4qblqeyakZN6hiEkKam5vz580+ePHnx4sWNGzeqsmlbDVtbZIsRXpK75FWDV/cM3MNAjBxBTp2kLqY5RjUx/M/if+sK17EQa7Lu5AJhQaW40l3LXTVNgxfSh2Yfjkkfs7Vk6xKjJUKpMLIpctOATVQH9Rxkew/o6qKffkILFyJ/f2RlhcLDUX4+On6c6rDUi/KyndnlHlcbrr6i/wqpYxBCpYehPwAAIABJREFUs/Vn67P0EUKDNAftHrj7N7vfVF/HIIQePnxYWlrq4OAwYsQI1bcuj1QzY8eOzczMnDJlSkyM4r9TP/vsMzWpYwhSPpJRMdXLEeRktGQEWgYyEAMh5KjpOEp7lMpa9zHyOe1w+jHv8XuF7x2pPmLAMjBgGczWm62yAMALxlHT8cngJ3wp/9PiT78q+4rFYEmwxMvAS4upRXVokO095OuL7t1DTCbKzETe3ujpU2RgQHVM6kV52d71qEyeIM+F69LuSwEDAvrYfK9FJEYwmIzXX3+dqgDkGRoa/vXXX9OnT09MTBw3bpyFhYXskRZ9JBQKnz17xufzEUIHDhx47733FHLYPpozZ462tnZKYUppfamlgaWKW88T5g3kDNRh6qi4XRlPPU9PPU/5Lftt9lMVDHgBOGk67bXeK7/lqP1RqoJpBbK9Z9zckJsb1UGoNSVle9eljC5Lt1na3PeWFAgjHDo11DLWconxEqpjec7IyOjixYseHh61tbXFxcXFxcUKPDiDwVi6dKma1DEIIR0dnbci3zrMOHxOeG4D2qDq1pk6PClPxY0CAABQW12XMq5c130V+zDCZDxfHUTxovKF+dYcaw8bD6pj+ZeDg0NFRcWlS5ekUqmVlZVCjikSiXJycsaPH++mZpX+JPtJB/IOnKs7t8FM1aWMi6ZLjaQmrSXNleuq4qYBAACooa5LGR9Dn52lOz8o/GDTgE26TN2IhojXDF9TQWSdOFd3DiHkbeStPtUVwWazFb4Mefr06Yo9oEK8avAql8mNbIqsEFeYs81V2bQx2/htk7dX5K04YHNgMHdwIj+Ry+SqMgAAAABqpetlv/os/UiXSDEW++T4vJL1yp2mOzwJbwh3iDHLWAXxteti3UWEkLchldcu9XN6LD1PPU8Jllyqu6T61g/YHHjd8PXPSj6bkD7hm/JvmqXNAzgDnDWdVR8JAAAAynXrvjI2Gja/2v4qv6XVsh1VSuAnZAgyBnAGTNSZSFUMACHkbeh9pf7Kubpza0zXqLhpNoO9xWLLFost8htfM6B4sBAAAAAluh6VUTdkdmmx4WIWg0V1LP3aQsOFGgyN2423a8Q1VMcCAACg/+rWqIxaOVd7DsHskhowZBlO05sW0RBxuf7yKpNVVIcDnmMOZprFmxlowA0tOsQcyTSLN9PV1KU6ENBXzMFM4zhjPU09qgNRX8xRTOM4Yx0tyu5eoRo0G5XJEGSktKSYsE2m6U6jOhbwvKAk42RATUiZ0kpJZT2jnupA1JeULa2UVDaxmqgOBPSVlCmtkdY0MhqpDkR9SVnSGmkNj/mC38CCZqXMmdozCKEFBgvYDPqNJ714vA292Qz23w1/N0gaqI4FAABAP0WzUub5Zdgwu6QeTNmmk3QmCbDgWsM1qmMBAADQT9GplKmT1BUJi/RZ+rP0Z1EdC3iO3N0ngZ9AdSAAAAD6KTqVMlpMreJhxY8GP9JkaH5Z+mWdpI7qiABaYbwi3z1/t9VuERZJsIRs/L78+yJREbWBAQAA6CfoUcocqzk2JGWIQ7KDWaLZz5U/i7Do58qfYX2GOjBiGcXx415Kfck22dYk0WRl3spmafOR6iNlojKqQwMAANAv0KCUudN4Z33h+l9tfy0ZVlI8rNiSY8mX8qkOCjyXwE94I/eNXVa7SoeVVgyvGMId0iSFC0MAAACoDg2uAwqtCX3X5F1y9bUOU+dzi8+pjgj860TNicWGi181eBUhpMHQ+MziM6ojAgAA0L/QYFQmS5A1SnsU1VGA9mUJskZqjaQ6CgAAAP0XDUoZJmLK1pMCdcNETCmSUh0FAACA/osGpYyTplMcP47qKED7nDSd4prh01Ejeiy9qbpTPbQ9qA5EfRmxjKbqTn1J6yWqAwF9pc/Sn60/e4LOBKoDUV8mbJPZ+rNHa4+mOhDlokEp85bJW79X/X6r8RZCCCMMX5xqZYXxikv1l87XnSf/jG2OpTYeYMux/d76+zn6czIEGQihvxr+8i/0pzoo9TKYO/jbgd9O0Z2SI8hBCJ2tO7u1ZCvVQYHesOHYfG319Uy9mZDtHXHWdN5luWu8zvgXO9tpsOx3qu7Uw3aHPyz8sFpSzUTMEdojLjle0mHqMBk0qMNeeO5a7mcdz24r2fZ+4ftsxHbmOl9yvKTN1GYheG45BeL58V5ZXk6aTvaa9puKNr1t8vZg7uB8YT7VcamRh7yHi7IXDdcabsWx+qjoo43mG7WZ2kVCuA0S/UC2d6n/ZDsNShmE0FKjpUuNloqwiMPgkC057jnUhgRk5urPnas/V/7Teer6lNqQ+ieMsG+e77um7+6w3IEQqpfUV4grYJxMnhiLl+UuC7AI2Gi+ESFUJa5qkjb93fA31XGBHoNs71K/ynZ6lDKE7JsSqCH4dChXJip7xn/20OUh+acBy8CAZQAnd3mZgswKccUGsw3kn6ZsU1NkSm1IoHcg27vUr7Id5mgAeEEUCAtM2aZ6LD2qA1FfBcKCgZyBGgwNqgMBfQXZ3qV+le1QygDwgjBiGzVIGjDCVAeivoxYRvDsthcDZHuX+lW2QykDwAvCXsNeg6lxp/EO1YGoLxeuS6OkMaY5hupAQF9BtnepX2U7a/v27VTHAABQABaDxWQwtxZvHagxkMFg/NP0T64gV4iFSfykN43fpDo6tcBlcnmYt6N0h7WGtRRJbzXeqhBX1EpqC4QFiwwXUR0d6AHI9i71q2yHUgaAF8dk3ck2GjbXG66frTtbLa6eojuFLCaYpDuJ6tDUxSy9WcZs42v11y7UXWiQNEzVm6rJ1NRkao7VGUt1aKBnINu71H+ynYExzDUCAAAAgK5grQwAAAAAaAxKGQAAAADQGJQyAAAAAKAxKGUAAAAAQGNQygAAAACAxqCUAQAAAACNQSkDAAAAABqDUgYAAAAANAalDAAAAABoDEoZAAAAANAYlDIAAAAAoDEoZQAAAABAY1DKAAAAAIDGoJQBAAAAAI1BKQMAAAAAGoNSBgAAAAA0BqUMAAAAAGgMShkAAAAA0BiUMgAAAACgMShlAAAAAEBjUMoAAAAAgMaglAEAAAAAjUEpAwAAAAAag1IGAAAAADQGpQwAAAAAaAxKGQAAAADQGJQyAAAAAKAxKGUAAAAAQGNQygAAAACAxqCUAQAAAACNQSkDAAAAABqDUgYAAAAANAalDAAAAABoDEoZAAAAANAYlDIAAAAAoDEoZQAAAABAY1DKAAAAAIDGoJQBAAAAAI1BKQMAAAAAGoNSBgAAAAA0BqUMAAAAAGgMShkAAAAA0BiUMgAAAACgMShlAAAAAEBjUMoAAAAAgMaglAEAAAAAjUEpAwAAAAAag1IGAAAAADQGpQwAAAAAaAxKGQAAAADQGJQyAAAAAKAxKGUAAAAAQGNQygAAAACAxqCUUQwej3f27Nni4uLOdzt//nxiYmLn+1y9ejU+Pl5xoQHQG6WlpWfPnm1oaOhkn8bGxjNnzhQUFHSyT0tLy9mzZzvfBwC1FRkZ+c8//3S+T1JS0rlz5zrfJysr6+zZs1KpVHGhgX8xMMZKOvThw4ezsrIQQmw228rKasyYMWPGjOn8LRKJ5PLly/fu3RMIBK6urm+//baenl7b3f7444+0tDQTE5NPPvlEtrGkpCQ0NDQ7O9vIyMjb23v8+PGyl8Ri8cWLF+/fvy8Sidzc3N5++21tbW0F/ZTPZWVlOTs7h4WF+fj4dLKbtrb2Bx98sGfPnlbbc3Jyfv/993Xr1llbW1tZWXl7e+/fv//GjRvR0dHbtm1TbKh98ezZs9OnT8+aNWvatGmyjdXV1aGhoenp6QYGBlOnTp0/fz6DwWj73oqKiiNHjlhZWfn6+pItP//8c2FhYavdnJycVq9erbwfQcX+97//TZo06ZVXXpHfePr06eLi4o0bN3byxpqamqNHjz579kxXV3fBggXTp09vd7fvvvuuqqrK1dX1rbfeUlzUCCF0+fLl1157LSkpyd3dvaN9MjIyBg8efPz48eXLl7d66cGDB9evX//yyy9LS0utra1DQ0NXrlx5+PBhDQ2NlStXKjbUXpNKpVevXo2Kilq3bp2VlZVse3R09Pnz56uqquzs7N58801HR8e2762urj569GhKSoqent7ChQunTp0qe+nKlSv379+X33nNmjWDBg1S3g+iMtevX7937x5CiMFgWFhYuLq6zp49m8nsbpf40qVLjx49YrFYX331VdtXr169GhkZiRDavXu37BwSGxt77ty5iooKOzu7pUuXOjs7t33jkydPLly4gBDatGmTmZlZ7360jsyePVsikdy+fbuTfbZu3fr9998LBIK2L/3888+mpqZLly4NDg7++OOPm5ubGQzGrl27FixY0OUXosqIRKLTp0/n5uZ+9NFH8t+5d+/evXr1amNjo4ODw6pVqywsLNq+VygUnjhx4smTJywWa+LEiW+88QaLxZLf4eHDh1euXKmoqDAzM/Py8po0aZJSfgasNJ6engYGBp6enlOnTrW1tUUILVu2TCqVdrR/c3PzrFmzOByOp6enl5eXtra2tbV1Xl5eq92ePn3KYrFMTEycnJxkG+Pj4w0NDU1MTLy9vd3d3RkMxt69e8lLDQ0NkydP1tDQePnll+fPn8/lcv+PvbsOiyp74wD+nRliKKWUBkFMVFCwg0XB1h+rYuBiYK5rYKyFHejaiqsCxtoodivYrB3YjUEjkpIT9/fHZccREFFnGGZ8P4+Pz9zLueecO3HnnVPX1tY2Li5Otif74sULAHv37i09mZaW1uTJk4vv//fff62tre/evcswjJmZ2ejRoxmGCQgIqF+/viTNgQMHhgwZItNaf4PLly937dqVvb6MGzdOsv/69evGxsbVq1fv1atX8+bN2Ve5yLHPnz8fO3YsGz42atRIsn/06NHun9PU1OzatWs5nVK54HA4kyZNKrLTy8urWrVqpRz17Nkzc3NzXV3dTp061axZE8DcuXOLJ9u1axeXyzUwMOjSpYssK80wDMMcOXIEwIMHD0qvJ4AdO3YU/1NwcLC1tbVQKIyNjQWwdetWhmG8vLwGDhwoSTN79uw1a9bIuuJlkpeXt3Xr1rp167KXwbNnz0r+xP54cHZ27tGjh7m5uZaW1pEjR4oc/vjxY1NTUz09vU6dOrFfrgsXLpT81cfHR19fX/qNHR0dXU4nJmdTpkzhcDju7u5ubm61atVin6jMzMyyHPvmzRtdXV0jIyN1dfXif42Nja1cubKRkREAkUjE7pw7dy6Hw2nYsGGPHj0sLS35fP7+/fuLHJidnW1vb88e+PTp0x88weLYky09zbRp0zQ0NEr8U6dOnf744w+GYVauXAkgJycnIyPD2tpa+lPj4eFx69YtGda57DIyMlatWmVlZcV+EF6/fs3uF4vFgwcP5nA4LVu29PT0NDIyqly58tWrV4scnpOT06JFCzU1tY4dO7q7u3O53Pbt2xcUFLB/FQqFQ4YMAVCzZk1PT8/WrVs3adJE8uLKlnxDmaZNm7KPxWIxG4YfP378S+n379+vp6d38+ZNdvPmzZs8Hm/UqFHSaQQCQcOGDV1dXb29vaVDmcaNG5uYmLDXC6FQ2KtXLw0NDfZV2bFjh76+/r1799iUly9fLvHb5Qf9YCgjTRLKFDFnzpxWrVp9fxV/TKdOnSZMmHDx4sXKlStLhzJ9+/bt37+/UChkN2fMmAHgzp070sdOmTJl4MCBBw4ccHd3lw5lirh//z6Hw9mzZ4+cTkEhvi+Uadeunb6+/suXLxmGEYlEvr6+PB7v8ePH0mlSUlKqVq06atQoFxeXChjKSEiHMkV4eHhMmTLlRyv6XZ49e9ayZcslS5Zs2rRJOpSJiYmpVKnS2rVr2c309HQbG5vatWsXOdzV1dXQ0JC94IhEIh8fHzU1tefPn7N/bdu2bbdu3crrVMrVlClT1NTUJJsnT54EMG/evLIc261bt1q1ao0fP77EUMbT09Pe3n7q1KmSUCYhIUFfX3/FihVsgszMzOrVq9vZ2RU5cNKkSZUqVVq6dGnFDGUkJKFMkf0FBQU8Hu/8+fM/UsnvdubMGQ8Pj7///nvBggXSocydO3e0tbUPHDjAbsbGxrLReZHD2a/1nTt3sptbt24FsG7dOnZz1apVAKR/rki+KWSunEIZ5r+r3tKlS0s5pEh0X69evRYtWkjvWbBggaam5pMnT/r37y8JZR4/fgxgxowZkmS3bt0CEBAQUGK2dnZ2xV+S4sRi8dGjR2fPnr1gwYIzZ84IBAJ2f1paWkhIyJQpUxYsWMC2ozCfhzIHDx6Ujtjevn0bFBSUlJTE/BfK/PvvvwsXLly+fLkkbouNjV23bh2bRhLKXL16ddOmTQzDfPjwISgo6JdffrG3tw8KCgoKCoqJibl48eKWLVukK/zo0aOgoCBJPeVEX19fOpQRi8V5eXmSzcOHDwM4evRoicd269atlFDGx8fHxsZG3vUvZ98RyuTm5nI4nBEjRkj2REdHA5g/f750Mh8fH1NT07S0tLKHMgUFBbt27Zo5c+bixYsjIyMlP4/i4uJWr149ZcqUpUuXsvET83kos3nz5itXrkjyiYqKYt9p7Id6+/bt7Cdl3bp1L168kKRZt26dWCyWDmUOHTp07Ngx5r/3qpWVVYcOHdi3dEFBQWho6KlTp6QrHBERIbmYysmFCxeKtMoUuVyMHTuWy+VmZ2dL9nz8+JHD4Uj/3nj+/DmARYsWsZt16tQZPny4XKutKEVCGYZh9PT0+vbt+9UDt23bxuFwzp07N23atOKhzN69ewGEh4fPmTNHulUmMzNTuiF/4sSJADIyMiR7oqKi1NXV169fv3PnzrKHMs+fP1+6dKm/v//mzZuTk5Ml+8PDw2fNmjV9+vTQ0FBJ04IklHnx4kVQUFB6erok/e7du8+dO8f8F8q8f/8+ODh41qxZe/bskYQse/fuPXPmDCMVyuTn569bt+7Ro0cMw5w6dYoNwiZOnBgUFHT48OGPHz8GBQXdv39fusJbt269du1aWU7tu23evFk6lGGKfRB69OhhbGxc5KhatWrVq1dPsikWi62trZs1ayZ57OzsXEpXjAyV37DfY8eOAWjYsGEpaYqMjBEIBNK9sM+fP1+wYIG/v3/t2rWlkz19+hRA27ZtJXucnZ319fXZ/aVke/ToUT8/v7y8vBIr4+vr6+npyXYWenp6pqamAnj8+HGdOnWmT5/+7NmzAwcONGrUaNGiRUUO/Ouvv9asWSPZfPDgwYgRI968ecNuhoaGdunS5datWzt37mzcuDE7bubZs2ejRo16/fq1dD4HDhyQfHTDwsLu37+fkpISFhYWFhaWmJj47t27wYMH37t3T5J+3rx5GzduVFNTK1KfrKysF8W8evWqxLP+VhwOR1NTk31cUFCwZcsWfX39Fi1afGs+8fHxe/bs8fPzK17/nw17DeXz+ZI9tra2enp60m+Pc+fO7dixY/Xq1fr6+tLHbt++nf1dW5xIJGrfvr2vr++VK1f27dvXs2dPdgTi2bNna9asuWLFiufPn4eEhNSpUyc0NLTIsePGjdu3b59k89SpUyNGjCgoKGA3/f39R40a9fDhw+XLlzs4OLAxUHh4+KhRo0QikXQ+y5cvX7t2LYBXr16FhYXFxcU9e/aMfUsLhcKzZ896e3tLshWLxQMHDrxy5Urxc0lKSir+lk5ISCj9iS2jIpeLgoICDocjfSHKz88v8gLZ29traWlJXqDExERTU9MnT55cuHCh+GgwVXLx4sWsrKxGjRqVniwlJWXSpElDhgxxc3Mr/teMjAw/P7/ffvvN3d29yJ/09PSkB94JBAIOhyPZIxQKfX19GzZsOHz4cOmjEhIS/Pz8igxXkjh37pyDg0NISMi1a9f8/f3/+ecfAGKxuHfv3h06dLh8+XJUVJSvr2/Tpk3T09OlD7x+/fqIESOSkpIke/z9/bds2cI+FolETk5O27Ztu3PnzpAhQ1xcXNLS0gAsXLhw48aN0vlkZ2ePGjWKHUp85coV9uN24cKFsLCw8+fP6+joLFu2bPbs2ZL0T58+HThwIPsFVMTbt2+LfxDYcn9c8Q9CkUFRQqHw5cuX0t+8HA7Hzc3tyZMnAKKjo9+9e9e9e3cAL1++vH79em5urkwqVjL5RUnu7u6GhoZeXl6//vqro6OjhobGN/WLP378mMPhSH6JikSi1q1b16xZMzc3l2EY6VaZwMBAAEWa32vWrNmuXbvi2d6+fRvA8uXLGYZhRw1LR9kSmZmZXC53zpw57KbkN1mrVq2srKzY5hPmv19sDx48kG6VadasWYcOHSRZsTHc9evXGYbR0tKysLCIj49nGIa9UvN4vNevX589exYAG3dLWmX+/PNPfX19ST7t2rWT7mD6+PGjrq6upH0+OztbV1dX0hgrjf2sFqGtrV3Ss/51RVplWLt37+7evbuFhUXt2rVv3779pWNLaZWZMmVKpUqVSnwtlBqHw6levXrXz5mZmZXewVS/fn1LS8vExER2MzQ0VFtbW/Kmys7OtrOzk2xKt8r069dPV1e3xDzZqXPbtm2TZMIwTEFBgYWFRdOmTT9+/Mhudu3aVVdX98OHD9KtMnp6ehMmTJBktXjxYgDZ2dlsq0zz5s3Z36C5ublNmzY1NTUtKChgf2sKBALpVpnWrVt37NhRkg+fz5fuYDp//jyAEydOsJvs8NIS307FRxkD+N///lfKU/olxVtlpAkEAhsbm+L9C3Xq1LG2tpb8oN+1axefz2dfBfZ6raGhwefzeTweh8Pp27dv8W4FJcWOlfHy8urVq1eLFi14PN4ff/whacD4Em9vb2Nj4/fv3zMMU7xVZvDgwYaGhuxFtUirjDShUFi9evWWLVtK9gQEBKipqbFN49KtMuwPvMDAwBIr06dPH1tbW7b1VyQSsV8obM/IP//8w6a5c+eOurr62LFjGalWmR07dgB49uyZJCs7OzsfHx/2pACsXr2a3c+Ojpg4cSLDMI6Ojr1792akWmXYoGT9+vVsYnZAsXQH08yZMzU1NdPS0tjN2bNnGxsbl/gkswPpiliwYEGJJ1664q0y0tLT0ytVqvTbb79J72TDdEnvB2vy5MkAsrKywsPDAQwePLhatWpsxfT19UNDQ7+jbmUh31YZNTU1AwODKlWq1KhRQ0dHZ9OmTeycJg8PD8PPffjwQfpAsVg8duxYc3NzPz8/dk9QUFBkZOT69eulfwyxBAIBW5b0Tg0NDcnPOwmhUDh27Fg7O7tRo0YBWLhwYXZ2duXKlYvXXENDQ1tb+/Tp02zoww5Zzc3NvXLlypAhQ6pWrcommzZtmlgsjoiIKPtz4uXlZWZmBoDD4YwfP14kEl27dq3sh0vo6Oh069Zt9+7dDMMAOHbsWE5OTu/evYunHDhwoKiYjx8/lpjtzZs3i7w0I0aM+GplDA0Na9Wq1bRp09evX2/atOlbJxxmZ2eHhISMGDGixNdC2enp6Vl/TjKB7sKFC0We7fHjxwNYv359ZmZmjRo1WrVqZWFhMWfOHC6XK/kx6u/vn5CQsG7duuJl/fPPP8nJySVWo3Llylwud9++fWzYzdbh6dOncXFxY8eO1dHRAaCurj558uSPHz9evXq17Cc4fPhwLS0tAHw+f9SoUYmJiWwR36pNmzaWlpa7d+9mN/fs2WNvb1/iL/7t27cXf0uzc1iKW7BgQZEn+cCBA2Ws0sKFC2NiYtjQTdqGDRvS0tLs7e1btWplbm6+YMECyQvE5/Nv3br18OHD3Nzc7OzslStX7tmzhx1Dpho4HI6BgYGhoaGtra2FhcXBgwfZaUdTpkwp8jyzX2YnT57ctWvXypUrjY2Ni+d24cKFf/7556+//pJcVL9kyZIl0dHRklbwFy9ezJ8/f+LEiU5OTkVS1q9fPzs7e+TIkSXmY2BgkJSUtHPnzvz8fC6Xy36hnD171sLCQjK3rmHDhp06dWLrX0Zqamrs1woAFxeXVq1afalZ6Kt8fHzy8/MPHTrEboaFhXl5eamrqxdP+fTp0+IfhC9Neh04cGCRF+jBgwdlrNKkSZMEAsG8efOkd7LfsEW+edl6FhQUsDH9uXPnFi9eHB8f//TpU0dHxwEDBrAxgMzJtzHf1tY2KCiIffz+/XsnJ6cRI0acPXt20qRJRWIXXV1dyWOxWDx06FB2Mie7Py4ubtq0ab169WrYsCHbelZQUCASidLS0vT09NjI4P3799Lz9JKSkurXry9dhEgkGjBgwL1798LDw9m3r7q6eonvDwCampqbNm0aPXq0i4tLo0aNZs6c6enp+fbtW7FYLIkxAZiammpraxfpGCqdhoaG5LGlpSWAd+/effVjXCJvb+/du3dfvXq1RYsWe/bscXV1tbCwKDFl2WdL2trasl0AEtLn+yXt27dv3749gN27d3t7e7u6upYYVH1JSEhIVlbW6NGjy36IEnF3d2ebKCR69+598+ZNALVr1y7ybNvb2wNo2bLl48eP9+7dm5aWVq9evU6dOhkYGLDv8+vXrwcGBk6ZMsXAwID9LAiFQoFAkJaWpq+vL/3uKsLa2nr58uUzZ86sVatWmzZtFixY0KpVK7bf09bWVpKMnXj8+vVrGxubMp6g9IeIfUt/X68Kl8vt27dvUFBQbm6uhobG/v37f//99xJTSvcyfFW3bt2KzKZ2dnYuy4H//PPPvHnzAgICmjRpUuRPbdq0YV+g9PT0cePGtW/f3tDQkH2BpPPX1NQcN27coUOHQkNDly9fXsYKV3BcLldyVRcIBO7u7n379o2NjfXy8nJ0dJRO6eDgkJWVNXLkyBYtWnTp0oV9u7LfcGlpaTo6OkKhcOjQoY0aNerRowf7V7a7n72wS7+Zd+7cOXPmzLlz57Zu3RoAwzDDhg0zMDAYM2YMe2B2djaAzMzM3NxcLS2tUpbbmDlz5oMHDwYNGjRhwoQhQ4ZmxD6BAAAgAElEQVTMmzePz+e/efOmWrVq0m8qOzu7M2fOfNPTIv2lbmlpWfr87VLUqFHD2dl59+7dgwYNun///uPHjzds2FBiym/6IAwdOrTIqhDsp/WrFi1atHnz5i1btkhfKACYm5tzOJz3799L70xOTtbS0jI0NGS/1BYtWtSnTx8AZmZmK1eubNSo0ZEjR0pfh+L7lN+4hCpVqjRp0uTff/8FUOQJlZaZmTlo0KBTp04dOHBAsnjJli1b2PEiYWFh0okNDQ2vXr3KftdGRUVJhmjExcV9+PBB+js4LS3tt99+u3jx4tGjR6WXnClF7969PT09T58+vWTJkp49e0ZGRrJfMxkZGZI0+fn5ubm5Jf7aKAu2d7/IcIey69Chg7Gx8e7du+vXr3/y5MnVq1eXmCwiIqLIVykAPp/PDtEtwtjY2Nvb+/vqA6Bz584Abty4UfZQRiQSBQYG9u7dm52x/1MxNTX90rNtYWHBttAAuHz5skgkYr9Q165dKxKJAgICAgICpNMbGhqmpqYaGBiUUpyfn9+wYcMOHz68aNGi9u3bP3v2zNDQEID0mAD2cfG3NFO2Bah+8C3dv3//ZcuWHT9+nP3p/KV30ZIlS9g+WWktWrSQHmEg4ejoWOQr9qsYhgkICJg1a9aMGTOmTJlSYhpLS0vJFfn8+fNisbh4xMMyMTFhG3dVj7q6evv27S9dupSYmOji4uLi4lIkwbZt2969e/fu3Tv2nSZhaGgYGhrK4XDYQXvsVGoJY2NjdiEiAAzDLF26dPr06X/++efMmTPZBHfv3mX7H4t8GTdp0mTmzJlFGg+KMDc3j4yMfPz48ebNm1esWJGenh4cHGxkZMSO3ZZIS0srUqtvkpCQUPqHsXTe3t6TJ09OSkras2ePlZXVl9ZiGTp0aPGfDYMHD+7bt2/xxGwU+E0EAsGkSZPWrl37999/F18Ois/nm5iYFFnQ9d69e+w3L/vSsFMWWOySP1/qEPhB5RfK5OTk3Llzp8S+PYlnz5716NEjMzPzwoUL0tcFX1/fTp06SaecOXPmw4cPDx48WLt2bT6fb25uvmnTpqFDh7KB/ObNm8Vi8f/+9z82cVRUVK9evQQCwcWLF6V/kOXl5eXn55fSqaGhodGtW7e6deva29s/ePCgefPm5ubmJ06cGDt2LJuAnalU5EKpr6+fkpIi2SzlF+q2bdu4XG7btm3LshYqn8+XjqIAqKure3l57dmzx8XFRSgU9ujRo8QDLS0tu3TpUmTnl5qjvtWJEydMTU0lvQBsi6WJiUnZc9i3b190dHTxoaaEJRKJ5s+fX6lSJXb1xXnz5kl6XVk+Pj5GRkarVq2qVKlSbm6uQCCoVKnSl3LT0dHx9vauUqUKG8o0atRIXV39xIkTks/X0aNHATg6Okq3A0tagFilv6WNjIycnJzYTofS8fn8IoPunZycHBwcdu/ebWRk1KhRozp16pR4oJOTU/GOZlmtQZeZmTl48ODjx4+HhIT4+vp+NT37Aunr6/fq1QtAXl7euXPn2JgeQHp6+uXLl4t/x6uMyMhIHR2dL7UHd+7cmZ1PKrF27dodO3Zcu3aNnVZd5K8hISFBQUE3btxgG9KysrJ8fX2PHj26YcMG6ZUza9WqVeTAU6dOzZgxY//+/c2aNROLxVlZWVpaWqU0UtatW3fZsmW3b99mB9Y0aNDgyJEjr169Yt9F+fn54eHhRSapsKGJZPhtRkZGkQuyxOvXryMjI8vSNQ+AfScXWV6vX79+kydP3rdvX1hYWJ8+fb7UrO7q6lp8kC/7k/vHJScn9+3b99atW/v37/f09CwxTffu3Tdv3vz06VN2Ls79+/dv3rzJzjywsLCoUaPG7t272VlvANgFkeW0MKB8Q5n4+Hh2hk5GRsbhw4djY2Olp/YUcezYsX79+uXl5Y0dO/b8+fPsGEAAkyZNMjc3l16LE4ChoaGmpqYkLlm6dGn//v07d+7s4+Pz8OHDVatW9evXr2nTpgD27ds3YMAAkUjk5+cXERHBjmvhcDiTJ0+eNWvW0qVL09PTi0czycnJAwYM6Natm5mZWVhYmJqaGtuWM2vWrJEjR/r6+vbo0eP169ezZ89u2rRp586dJROUALi6uk6fPn3lypX169e/ePFiSEiIdM43b94MDQ3V0dE5ffr0+vXrx4wZY29vX5ZQpnHjxvPnz1+7di2fz+/YsSMb83p7e69fv3769OkdOnT40m+I2rVrF5nz9R3u3LnD9hzn5eXdunXrr7/+MjMzGzBgQGBg4KVLlyZOnFivXr2YmJjly5ebmJiw8bubm1ubNm3mzp37/v17dkzZy5cvMzMz2bfExIkT2ff3ypUr3dzcKs7ClxXB7du3N27c2LRp06SkpMOHD1+/fn3r1q3s62tra1ukmVdHR6dy5crsZ2HIkCFHjx7Nysoqnufdu3fnz5/fuXNnfX399evX6+npOTo6GhoajhkzZvXq1VpaWq6urnfv3l2wYEHfvn3r1KkjHcq0adPm4MGDbm5uJiYmBw4cKNI4evr0aS0tLYZhdu7cGR4evmnTJsmkttK5uLiEhYU1btw4PT191KhRbFN5v379FixYoK2t/aWpWJDq0PwRe/fuff36Nds7HBoaevPmzTZt2lStWrVjx44vX77s2bPn+/fvJQtze3l5paWljRo1asGCBR4eHtevX9+2bVvjxo2TkpIOHjzITkhk26K2bds2YsSILl26dOnSJS8vLzg4OC0trfg8R+UlFovZpyUvL+/8+fMXL16cPXt2kQVeJYyNjYu08JmZmXE4HMmlu0hrDTtJwtnZmcvlvnnzpmPHjs+ePfP09Pzw4YPktejRowfbBSN9IDsC3cHBwdzc/P79+46OjoGBgSX2WbML2tavXz8hIeH69evsAJeRI0euX7++c+fOM2bM0NbWXrduXUpKSpFBJy4uLjo6OrNmzZo4ceL79++XLVvGDtNkiUSiDRs22NjYvH37dtGiRUZGRuxY4K+qU6eOrq7ukiVLMjIy1NTU2F+kZmZmbm5uAQEB8fHxJTaxsCQrp/8I9i3KhoYbNmwwMDDo3r17Tk5O165dExMTfX19nz17JnnyfX1979275+/v//fff7u4uPj7+x84cMDDw2Pq1KkCgWDZsmXSrZUBAQG9e/du27Ztz5493717FxgY2LZt21L6ZH6EHEOZGjVqpKWlsVc9HR2d5s2bBwcHl7JocVRUFLt8JNtyKDF+/PjinxNbW1u2c5Tl7e3N5/NXrFjx559/VqlSZcaMGZLr4L1799g1PaVbpLlc7uTJk3/55ReGYUq87H78+LFKlSqrV69OS0urXr16WFhYgwYNAIwYMUJPTy8wMHDw4MGVK1f28fGZO3eumpqapqamo6Mjey3z8/OLi4tbs2ZNfn6+h4fH+fPnfXx82GGVgYGBJ0+e9Pf3z8rKql69+vr164cNGwaA/V5h09SrV48NU8zNzaWH+0yaNCkhIWH16tWVK1du0KABm6Zly5atW7e+fPly8S4k2WJnzwJwcHDIy8sLCwtzcHAYMGDAoUOHVqxYERoaumbNGl1d3bZt286bN49tlcnPz2c/6mznIABtbW1tbW32Mdt78uzZM6FQ+KU2fBXg5ORU/AdrtWrVpN+9xbHz5w8fPqympubi4nLx4sVWrVp9KXHt2rUlUWzXrl2/1DjB9hAFBARkZ2fXrVv3+PHjbHvv0qVLLS0tt2/fvmnTJjMzs6lTp06fPh1A5cqVHR0d2fG8y5cvFwgE7NyTXr16HTx4cOLEiVwu19zcfPny5WfOnBk3bpxQKHRwcDh27BjbIFG1alVHR0cOh6OhocHGTABq1KjBZsgKDg728/ObMWOGra1t//792Y+Pt7d3cHBwbGxsKVdwmbh06RI74t7Z2fnOnTt37typUqVKZmYmGxe+efNG+vdJ69atNTQ08vPz2SHt2dnZT548OXjwoLq6euPGjVeuXMkudQ1g+PDhVapUCQ4OXrBggZqaWsuWLfft2+fg4CDXcyk3FhYWDRs2ZD/Cmpqa1apV++rdWoowNzcvZfK2ubm5JEaJjo7W1dV1dnaOiYmRbghs1qxZ8dsXGBoaOjs7sy0cVatWnTRp0pdKqVKlysGDB4ODg/X09EaOHDl//nwApqam//77L7uojEAgcHJyOnfuHPua2tvbs2sKVK1adc+ePbNmzfL29q5Ro8a8efOuXr3KNm/36dOnoKAgODg4Li5OT0+vQ4cOs2bNYsdO1apVi+1wqVKliqOjIzukxtHRURLh6evrh4WFzZ49e9q0aV26dJE0rg8fPnz48OE1a9Ys49Cu73by5En26XV2dmZ/6js5OSUnJ1tYWFhYWNy7d096yQ92EQfJB8Ha2joyMnLGjBmLFi3icrm//PLLwoULJafGXiuWL18eEBBgZGQ0efJkf3//sg/c/CZyvAcTKR+bN28eM2ZMUlKS9NBpQpTXoEGDXr9+XeQnDSE/FYZh7OzsBg0aVOIIMFIE3Rlb6e3Zs+d///sfxTFENbDTUPv166foihCiSFevXn3z5o282yZVxs++sqqyS0lJOXfuXNnXySCkgjt16lR2dvaXxrAT8pPYs2ePs7MzO+iCfBW1yii3e/futW/fXk4DqQgpf9HR0WPGjPm+lZYIURnp6emSqbLkq2isDCGEEEKUGLXKEEIIIUSJUShDCCGEECVGoQwhhBBClBiFMoQQQghRYhTKEEIIIUSJUShDCCGEECVGoQwhhBBClBiFMoQQQghRYhTKEEIIIUSJUShDCCGEECVGoQwhhBBClBiFMoQQQghRYhTKEEIIIUSJUShDCCGEECVGoQwhhBBClBiFMoQQQghRYhTKEEIIIUSJUShDCCGEECVGoQwhhBBClBiFMoQQQghRYhTKEEIIIUSJUShDCCGEECVGoQwhhBBClBiFMoQQQghRYhTKEEIIIUSJUShDCCGEECVGoQwhhBBClBiFMoQQQghRYhTKEEIIIUSJUShDCCGEECVGoQwhhBBClBiFMoQQQghRYhTKEEIIIUSJUShDCCGEECVGoQwhhBBClBiFMoQQQghRYhTKEEIIIUSJUShDCCGEECVGoQwhhBBClBiFMoSoogcP0KcPatZEw4YYNQopKQBw+zY8PT+lSUxEkyZfz+rVK/j4oG5d1K8PX1/ExADAmzdo3fpTGoEA9eohN1e2J0EIIWVBoQwhKicmBm5ucHPD7ds4fRoCATp0gFCI7Gy8ePEpWUEBHj36SlZpaXB1Rd26uHIFFy+ialX88guys5GfjydPPiUTi/HoEUQiuZwOIYSUikIZQlTOxo3w8MDIkdDTQ9WqWLcOKSk4d+57stq1CzVrYto06OvD0BCLFqFyZRw4IOsaE0LI91NTdAUIIbL2+PFnvT/q6mjcGI8fo1EjfPiAJUsK96enfz2rJ0/QvPmnTQ4HzZvjyRM0aYLc3E9ZUXsMIURxKJQhROXk50Nd/bM9mprIzwcADgeamp92fl9WeXlFs6JQhhCiOBTKEKJyqlfH06ef7Xn8GD17AoChIcaNK9z57t2nZpVSsoqKKprV//4HAHz+p6zy8zFx4g/XmxBCvgeNlSFE5fTti23bPg3LDQ1FfDw8PL4nq549cfw4rl8v3Dx7FleuFIYyhBBSMVCrDCEqp2lTLFkCNzfUqYOPH5GaikOHoKf3PVnVqIEtW9CjB2xtIRYjNhZ798LcHM+eybrShBDynTgMwyi6DoQQWcvPB8Pg+XNoaKBmTXC5ACAQIDMTRkaFacRipKSgatWv5yYQ4OlTcLmoXRtCITQ1IRLhw4fPjk1MhIkJOBw5nAwhhJSGOpgIUUVjx8LBAfHxqF27MI4BoK7+KY4BwOWWKY5hD6xfH9euwcoKa9YAAI9X9FhTU4pjCCEKQaEMIaooIgLR0ahSRZZ56uggIQEREbLMkxBCfhh1MBGicl69gr09jIyQnPypSebHpaTAxAQaGkhNhZaWzLIlhJAfQ60yhKgctuGkXTtZxjEAjI3h6Ii8PFy9KstsCSHkx1AoQ4jKCQ8HAHd32efMzuhm8yeEkIqBQhlCVItIhPPnAfmEMmyeNFyGEFKR0FgZQlTLzZto0gT29p/dBFtW8vJgaIj8fCQlwdhY9vkTQsi3o1YZQlSL/HqXAPD5aNECYnFhww8hhFQAFMoQolrY3p/vu01BWbA5Ux8TIaTCoA4mQlRITg4MDSEUIjkZhoZyKeL2bbi4oFo1vH4tl/wJIeQbUasMIaojPzIS+flwdpZXHAOgYUMYG+Pdu4JXr+RVBCGEfAsKZQhRHf5nzriYmp718pJjGVzunv79a+nrb6Yp2YSQioFCGUJUR3h4+O3ERJ6Li1xLyXRweJ6aGkHDZQghFQONlSFERSQnJ5uammppaaWmpmpqasqvoLdv31arVk1fXz8lJYXH48mvIEIIKQtqlSFERURERDAM4+rqKtc4BoCNjY29vX16evqdO3fkWhAhhJQFhTKEqAi2x8ddTivKfI4tJZyGyxBCKgAKZQhREWwo4yG/FWWksKXQcBlCSEVAY2UIUQVPnz6tU6eOiYlJQkICh8ORd3Hp6enGxsY8Hi81NVVHR0fexRFCSCmoVYYQVcD29bi7u5dDHANAX1/f2dm5oKDg8uXL5VAcIYSUgkIZQlRBefYusaiPiRBSQVAoQ4jSEwqFFy9eBNCuXbtyK5RG/hJCKggKZQhRegcPHszIyDA2Nra0tCy3Qps3b66mpvbw4cMXL16UW6GEEFIchTKEKL0GDRpoaGikpKSsWrWqfEpkGGbSpElCoZDP51tYWJRPoYQQUiIKZQhRerVq1VqxYgWXyx0/fvzixYvlXRzDMOPGjVu7dq2Ghsa2bdu0tbXlXSIhhJSCN2fOHEXXgRDyo5o0aWJlZXXs2LGIiAg+n9+qVSs5FcTGMYGBgRoaGvv37/f09JRTQYQQUkYUyhCiIho2bCjvaKZIHNO1a1eZF0EIId+KQhlCVIdcoxmGYfz8/CiOIYRUNBTKEKJS5BTNsHHMmjVrNDQ09u3b161bN5lkSwghP45CGUJUjeyjGYaZOnniipWr+Xz+oUOHunTpIotqElLhxcTgwAGcPInERFSrBg0NRVeIlIxmMBGignx9fTds2MDhcKZNm3b96MYfyothcNrvT4tLVQ0r7d27t2PHjjKqIyEV25kzcHTEw4eoXBlhYahfH3Fxiq4TKRndTpIQlRUSEqLzbJd3pUtouxCtpn5PFgyDU+NwIxBq/KweR/TqlN+NEQhRJJEItrZYtgy9exfuGTIEQiG2blVotUjJKJQhRKXd3Yyjw8CI0W7RN0czDIPTfri+BjwN9N6HmjQ+hvw0Xr+GgwOysyG5P+vlyxg0CK9eKbRapGRqiq4AIUSeGvoCwNFhODsNwDdEMxTHENWWm4uEBMTHf/o/OrrwgY0N5s1D1aqQvs+8mRl1MFVYFMoQouq+I5qhOIYoP5FIlJSUFBcXFx8fHxMTk5CQEBsbGxcXdyI3V+P+fXz8+MUjORyYm+P9ezDMp2gmMRF0j46KikIZQn4C3xTNUBxDlFN2dvagQYMKCgqSk5NjYmKSkpKEQmHxZIK6dTU+foSmJgwNYW4OOzuYmcHcvPB/OztYWYHLReXKOHYMknUH9uxBixblej6kzCiUIeTnUMZohuIYorRatWoVFRUlvcfExMTc3NzCwsLS0tLMzMzKysrMzIyxtoaZGQwMvpLd339j0CBMmgR7e5w/jyNHEBkpx9qTH0DDfgn5mXx1FHDGOwQ1hCAHfQ7CnuZdE6WRlpZmampaUFAwefLk7t27s7GLxg+uBPPoEfbuRXIyatbEgAEwMvqsy4lUGBTKEPKTuROCoyMABt03o44nAKhrg6f5KcG7yxDkoHoHRVWQkO8QEBDg7+/fsWPHkydPyquMd+/w22+YORMetCpBxUIdTIT8ZBoNA4eHK8tg1hB/GcHAFmIhNCuj+0ZYNAGAe9vRZZ2ia0nINxAIBOvXrwcwYcIEORazaxcuX8bAgbh3D1WqyLEg8o2oVYaQn5KoADkpWG2LGfkAcCMQUf9g+G1ETMHL06jeHrW6wbq1omtJSJls3759wIAB9erVu3//Pkd+HUBiMTw8cO4cOnbEiRPU01Rx0I0LCPkp8T4fQ2DRBFnxAOD+FyyaoF0AxTFEiQQGBgKYMGGCHOMYAFwutm2DsTFOncLq1XIsiHwjCmUI+YkxYkRH4MkBnJmE2r8W7nQaBA5PodUi5BucP3/+5s2bVatW7devn9wLs7DA1q3gcDB1Ku7ckXtxpGwolCHkJ8aI8TgMby6g0TB0WlO406oFtZwTJbJy5UoAf/zxB5/PL4/yOnfGqFHIz0efPsjKKo8SydfQWBlCflZZ8Z/GyhCinF68eFG7dm11dfW3b9+amJiUU6n5+WjWDFFRGDwYmzeXU6Hky6hVhpCfD8Mg413Jf8p4W75VIeSHrFq1SiwWDxgwoPziGACamti5E9ra2LIFO3eWX7nkCyiUIeQnwzA4NQ4bHJH8EPq2n/3p1WmsrY3IxQqqGSHfJi0tbevWrRwOx8/Pr7zLrlsXq1YBwB9/pEVHl3fp5HMUyhDyM2EYnBqLG4EQ5gEMRj/97K8ZMRDm4+w0XFuloPoR8g02bNiQnZ3dsWPHunXrKqD4YcPyBg+eVaNGx379BAKBAipA/kOhDCE/DbY95sZa8DTgFVbCer6NhqL7RnC4OD2e2mZIBScQCNatWwdg/PjxiqpD3ooV21NSbty4MXPmTEXVgYBCGUJ+FoVxTCB4Gui9HzW7lpysoS+6hYDDxdlpFM2Qiiw0NDQ2NrZevXru7u6KqoO+vv6ePXvU1dWXLl0aHh6uqGoQCmUI+QmUMY5hUTRDlAG7LN748ePluyze1zRp0mTWrFlisfi3335LTExUYE1+ZjQZmxA5CAlBly4wNy/c3LsX9eujTh0ASEvD0aN4+RIWFmjfHra2pWQjG98Ux0h89R7aMnf/Pi5exIcPqFsX3buDXSNkwwb8+iskk1N274azM2rWLI/6kArswoULbm5uVatWffv2bTktJ/NlYrG4ffv2Z8+e7dix44kTJxQbWv2cqFWGEDlYuhRvpWY1b9yIqCgAiI5G/fq4cAHVqiE6Go0a4dQp+dbk++IYlHvbTEgI3N2RmQkLC2zbhsaNkZ4OAIsWIS7uU7ING/DwodwrQyq88l4Wr1RcLnfr1q3GxsanTp1iK/YjkpKSoqKijh07FhQUNHv2bF9fXxsbGxsbmx/PWYXRnbEJKUdTp8LLC5JLkqMjRo5EdDS4cvlRwTCM+PRE3o1AqPHR5yDsO37b8Q19wYhwdATOThPwdNSbj5FHJQEgLQ1+frh0Cc7OADB0KDp3xtKlWLhQXiUSZfbixYtjx45pamqOGDFC0XUpZGFhsXXr1q5du06dOrVly5ZNmzYtJXFBQUFKSkpCQkJ8fHxCQkJ0dDT7ID4+/t27dx8/fizxqAkTJjg6OrZt21Y+Z6DcKJQhRD4+fEBCQuHjgoLCB1eu4ODBT2n69MGgQYiLg5WVzMtnGGbcuHHiNxcDWxpwft32zXEMq9EwcHjiiGm9J61p2i176lT59DRFRcHaujCOAcDh4LffsHFj4WZKSgnPJPmJKWZZvK/p3Lnz6NGjAwMDf/vtt9u3bwsEgvj4+JiYmISEhNjY2Li4OMnm+/fvS8nH0NDQ3NzcysrKzMzMysrK3NxcIBCsWbPm+fPnY8aMuXnzpra2drmdlLKgUIYQ+Zg0CTo6hY9fvAAAhkFiIqpW/ZSGx4OxMeLjIRTC1BRaWrIqnGGYsWPHrl27ls/n+0w60rSmx/fn1dD30FPu4au+h65M4/P5Ml6LLDMTmZmIj//saQFgYoL4+MLHfn6fnpnnz2VZOlFCilwW72uWLFly4cKFBw8eGBsbl7LSjLq6uqmpKRumWFhYWFpaslGLmZmZpaWlVknXgSFDhjRt2vT+/fvjx48PCgqS50koJQplCJGPLVvQvHnh4/btAYDDgbk5kpJgY1O4XyhESgosLdGzJ27fhqMj3N3RtStatPiRLie2PWbt2rUaGhphYWFN2/xAHAMA6NFv0MZc8bBhw8aPH5+Xl/ejbTMiEaKiEBGBiAhcuoTevTFkCJKSPkuTmAhLy8LHO3agUaPCx66uP1Q0UX7ssnidOnVSzLJ4peLz+d26dXv69KlAIODz+ebm5mZmZubm5nZ2duwD9n8bGxse79tuPs/n83ft2tW4cePg4GA3N7e+ffvK6RSUFUMIkbkaNZgrVz5tengwu3YxDMP06cP4+X3av3MnU706U1DANG3KcLkMUPjP2Jjp3ZsJDmaio7+1ZLFYPGbMGAAaGhpHjx798VOR2LRpE5fLBbBo0aLvOf7RI2bVKqZrV0ZX99OZqqszvXoxaWmMjg5z69anxJ06MbNmMQzDWFszt29/2t+mDbN//4+dB1FiBQUFlpaWAM6cOaPoupRAKBRWr14dQGhoqDzyX7t2LQB9ff3Xr1/LI3/lRaEMIXLwpVAmOpqxsGCGDmW2bWNmzGAMDBjJFTklhdm7lxk+nLGz+/RNDzD29szIkR8OH05NTf1qsfKLY1jfGs3Ex8d/3L2bGTCAMTf/7KQcHJhx45hjx5isrMKkQUFM1arM4sXMP/8wnp5MgwZMRgbDUChDPrNt2zYA9erVE4vFiq5LCfbt2wfA3t5eJBLJqQhPT08ATZo0KSgokFMRyohCGULkICSEiYv7tLl3L/P4ceHj1FRmzRpm/HgmIIB59arkw1+9YoKCGC8vxsiI/e4/6urK5XKdnZ2nTJkSHh6em5tb/CB5xzGsr0Yz2dnZ4eHhU6ZMcXZ25nA4j1q3LgxfqlZlvLyYoCDm3buSs75zh5kzhxk/ntm8mZGc4IYNTGLipzS7dzPPn8v2jIgSady4MYBNmzYpuiIla9myJYDAwED5FZGammptbQwLqlsAACAASURBVA1g5syZ8itF6VAoQ0gFJhQyN24wAQGz+vbV1NSU9Atra2t37Nhx+fLl9+7dY3+elk8cwyoezQiFwqtXr86fP9/V1VVDQ0NST11d3e0jRjCrVjEPH8q1SuRnsH79egBVqlQpMZRXuJs3bwIwMDDIkrQ1yselS5d4PB6Xy42IiJBrQUqEVvslRDnk5ORcvnw5IiIiPDz8/v37kk+uiYmJu7v78+fPb968qaGhsX///q5dy7wO3vfavHnzsGHDxGJxixYtTExMzp8/n86uaAeoqak1btzY3d3dw8OjWbNm6urq8q4M+Uk4OTndu3evRYsW//77r6LrUoJ+/fqFhoZOnTp10aJF8i5r9uzZ8+bNs7CwiIqKMjY2lndxFR+FMoQon/fv31+4cCEiIuL06dNv374FwOPxOBzOwYMHyyGOYbHRDI/HYyed2tnZuf/HwMCgfOpAfirt27cPDw83NTWNiYlRU6tY029jY2Pt7OwAvHr1ykoOy0QVIRaL27Vrd+HChc6dOx87doxulUChDCHK7enTp0ePHj1//nz//v379+9fnkX//fffhw4d6tu3r4eHB9t/T4j8vHr1ysXFJT09ffbs2XPmzFF0dT7z559/Llu2rH///jt27CifEmNjY52cnD58+BAYGDh69OjyKbTColBG9o4cQXY2+vUr3Ny/Hxq5F2rVNzsaUWviRACIjrrEU9PYfrBxS/sQDXURV03NyMKuhks7DoduiUUIIV906dKltm3bMgwTHh5ecZbwz8rKsra2Tk9Pv379epMmTcqt3AMHDvTs2VNTU/PatWtOTk7lVm4FRN+dsrd7N3x8cONG4ebWrTh9+Nnzey/mzSvc8/xmxKu7l2bO4p3eukZDW4fL5UWGrT24XG43uCGEEJXQpk2badOmsXct+PDhg6KrU2jz5s3p6elt2rQpzzgGQI8ePUaMGJGfn9+7d+8v3bnpJ0GhjFx4emLkSAiFX0/ZqH3/pt2H/m/ciidXTzAME/fsTnZGyrPrZ2Kf3pZ/NQkhRMnMnj27ZcuWcXFxAwcOrAi9CiKRKDAwEMD48ePLv/RVq1Y1aNDgxYsXCim94qBQRi66dkWVKggM/LQnPydTLGae3Et6ci8pPkH9faoeuz896V1qwps7Z3Zb1WnM4XCuH9u8Y1a/F7fOZqbEl5w1IYT8xNTU1Hbv3m1oaHj8+HF2erZiHT58+NWrV7a2tt26dSv/0tkbGmhpaW3cuHH37t3lX4EKomINAlcla9agZUt4eRVu3ju/Pye7b5eOGQBEwl+1Kxux+/cvHSUWi9KTYz0GzWD31P+lR4tff1dElQkhRAlYWVkFBwf36tVr4sSJLVu2dHR0VGBlVq5cCWDChAnfelslWXFwcFi2bNkff/zx+++/N2vWzNbWViHVUCxqlZGXWrUwYgSmTCncbNJlsK4eNzqhZnRCzaCAvX/P3s7uH7Ls2Mg1EWOD/j23fXHCy/sANPg6X8qTEEIIgJ49ew4bNiwvL8/b2zsnJ0dR1bh161ZkZKS+vv6gQYMUVQcAo0aN6tOnT0ZGRt++fUu5I7cKo1BGjvz9cfUq7t//ekqtSoaaOpVyP6bLv1KEEKIK1qxZ06BBg8ePH0+YMEFRdVi+fDmAESNG6OrqKqoOrA0bNtjY2Ny4cWPu3LmKrYlCUCgjR9raWLUKb9+WlubCnuCenR64Nrp67uFQ67pNy6tqhBCi3CTDRIKCgkJDQ8u/AnFxcfv371dXV//jjz/Kv/Qi9PX1t2/fzuPxFi1adPbsWZnnLxAIEhMTZZ6trNC6MrJ35AhsbVG/fuFmcDAsKl2pXb/KqQs12Df8mwdXeGoae483bGQRkpunnlug7dBAf+S0DhcucJ/fCK9kbG5q56DA+hNCiLJYu3btmDFj9PX17969W61atfIsevLkyUuXLvX29t65c2d5lluKOXPmzJ0718TE5N69eyYmJt96eG5ubkJCQnx8fEJCQnR0NPuA/f/t27f6+vopKSnyqPaPo1BG8d68gb8/bG2xYIGiq0IIIcrG09Pz8OHDTZo0iYyMLLd7fmVnZ1tbW6emppbzsnilE4vF7u7u58+f79Sp0/Hjx4vf0EAkEiUlJcXExCQkJMTExMTHx8fFxcXFxcXHx8fExGRnZ38pZx6PZ2pqGh0dLX2/2IqDQpkKIT8fv/6KgwchdfNjQgghX5eWlubk5PTu3buZM2fOkyxFKmdr1qwZN25cmzZtLl68WD4llpHkhgZjxoxp3LixJExJSEiIjY1NTEwUiURfOlZbW9vKysrc3NzS0tLc3NzCwoJ9YGlpaWpqqqgpWmVBoYyCvXyJCxfg7IwJE3D6NCpkvEsIIRXa5cuX3dzcyu2GBmKxuGbNmq9evTp48KCnp6e8i/tWBw4c8PLy0tbWLnEJYAMDAzMzM3Nzc/Z/Ozs7yaaZmZmS3pmS1pVRMHt7vHyJyEiEhFAcQwgh36N169bTp0+fP3/+gAEDoqKijI2N5VrcoUOHFLgs3lfp6OiIxWIul+vt7W1mZsY2tJibm1tZWZmamlbMHqIfRK0yhKii7Gzs2IGoKOjooHlz/PoruFy8eoWwMEydWpgmPR0BAViy5CtZ5edj927cvg0uF02aoE8fqKkhORmrV2PhwsI0IhEmTMDSpRSPE0URiUTu7u4XLlzo3LnzsWPH5Nq60Lp168jIyDVr1owZUxHvndehQ4czZ8789ddfkydPVnRdygmFMoSonJwctGoFe3t4eyMnB0uWwNkZmzbh0iX8/jsePSpM9u4d6tTBlwf6AYBQiA4doK6OYcMgFmP1ahga4vBhPH+Oli0hmc6Qnw8+H1lZUPTqGuRnFhsb6+jomJqaunbtWvlNkL59+7aLi4u+vn5MTIzCl5Mp7tGjR/Xr19fS0nr37p2RkZGiq1NOqIOJEJWzcSP4fOzdW7jZoQNsbfF9V/b9+xEbi8ePwY7469oV9vY4dQp2djKrLSEyYmlpGRIS0rNnT/aGBk5OTvIohV0Wb/jw4RUwjgGwcuVKhmGGDBny88QxoFCGEBV06xakhyIaGaFNG9y6hdq1kZeH2//ddL0sC17duoWuXSGZuaClhY4dcesW7OwgEn3K6qdcK51UQD169Bg+fHhwcHD//v1v3rypra0tq5wFAkFSUtKWLVtCQ0O5XG5FWBavuOTk5J07d3K53LFjxyq6LuWKQhlCVM779zAw+GyPkRGSk1G7NpKTMWdO4c7c3DJlZW9fQlYAcnI+ZSUW/1iNCZGZ1atXX7t27f79+35+fsHBwd90rPQacUVWinv37p1QKGST2djYWFtby6HuP2rdunV5eXmenp72RT62qo5CGUJUjrU14uI+2xMTA3f3wj8dPVq4kx0r8x1ZOTsDgJ7ep6zYsTKEVADsDQ0aN24cEhLi5ubWr18/6b+ya8TFxsay0UlCQkJcXJxks5Q14rhcrpmZWV5eXu3atcPCwuR/Ht8sPz9/w4YNAMaPH6/oupQ3CmUIUTlt28LfH1OmQEsLAJ4+xbVr+OcfvHnzPVl5eSEgoLCZJyEBx4/jp5kWQZSUg4PD0qVLR48ePXz48KioqNzc3NjY2Pj4+DKuEWdmZia9RpyZmZm1tbWJiYmaWoX+xty+fXtSUpKzs3ObNm0UXZfyVqFfGELI9+jdG4cPo0kT9O6Njx+xdSuWLIG19feEMr/8Am9vNG6M/v0hEmHbNowfj4YN8eyZ7KtNiIzk5+erq6vz+XwAS4otN6CSa8QBCAwMBKDA+4QrEE3GJkRFXb6MW7egoQF3d9SqBQDJybhxA127FibIycGRI+jb9+tZ3bqFyEhwufjlFzRoAACZmThzBr16FSYQi7FrF/r2RcX+2UpU3sePHzds2LBs2bKkpCR2D5/PX7hwIbtMnAqvEXfq1KlOnTpZWFi8fv263G5EVXFQKEOIKlq1Co8f448/4OgoszwvXMCmTejWDb17yyxPQmTk48ePmzZtWrx4cWJiIgBHR0d/f//p06e/fPnyypUrzZs3V3QF5YtdFm/x4sVTpkxRdF0UgKvoChBC5GDHDoSEFE41kpXHj7FjBw4elGWehPywrKysv/76y8bGxs/PLzExsUWLFkeOHLl7966Xl1enTp0AnDx5UtF1lK9Hjx6Fh4dra2sPHTpU0XVRDAplCFE5Hz7g7l3w+WjVSpbZengAQEQETb0mFYQ4JcXf39/S0nLq1Kmpqalubm7nzp37999/u3Xrxg55+UlCGXZZPF9f359qWTxpFMoQonLOnYNYjFatCmcwyUqNGqhWDSkpuH9fltkS8h3ev8ecOVx7e+b06czMzJYtW549e/bcuXNubm7Sqdzc3LS1tW/fvp2QkKComsqbZFm80aNHK7ouCkOhDCEqJyICQOFCMrLVrh0AhIfLPmdCyiguDuPGwcYGc+ciM9OvYcPr169HRka2bdu2eFo+n//LL78wDHPmzJnyr2n5YJfF6969ey12dP9PiUIZQlQOG8qw/UGyJeljIqT8vXuHceNQowbWrEFeHrp2xfXrVUNCmjRpUspBqt3HlJ+fHxQUhJ9yWTxpNIOJENXy6hXs7QtvL8CV9W+VDx9QtSo0NJCaKuPeKzkRi7F3LyIjkZ2NBg0weDD09RVdJ/I12dnQ0flsz5s3WLkSQUHIzweXi86dMXcuGjUqS2avX7+2s7MzMDBITk6u4GvcfYeNGzcOGzasUaNGtyU3RPspUasMIaqF7f1p1072cQwAIyM4OiIvD1euyD5zeRg+HMuWwc0N3t6IikKzZsjIUHSdfnra2oiJ+bRZty4uXQKAggKMGwdLSzg7w8IC48ahoADx8RgwoLAlRiSCjw8ePcLRo2WMYwDY2trWqlUrLS3t2rVrcjgZBfuZl8WTRqEMIapFfgNlWErUx/TgAcLCcPo0evaEhwe2boWFBdavV3S1yBfMmIGoKDx4gKdP8eAB7tzB9Ong83HoEDicwiBm2zbUrv2tGXfu3Bmq2Md0+vTp+/fvW1hYeHl5KbouCkahDCEqRCTC+fOAPEMZNmelGPl75w6aN4f09NRu3XD3ruIqREq1eTOWLi2825ehIZYtw+bNMDTEtm148QLbtqFmze/LmB0uc+LECRlWtiJYuXIlgDFjxqjk+sXfRNU6Dgn5qd25g9RU2NvD1lZeRbRuDS0t3L2LlBQYG8urFJlISSk6MsbICO/fK6g2RMqECdDWLnwcHw8Aqan48AH1639K06AB0tORkgJPzx8szdXVVVdX9969e3FxcRYWFj+YWwXx6NGjM2fO/MzL4kmjVhlCVMeWy5c3tmoV3a+fHMvg85/89tvKpk1PXrwox1JkwsbmszEZAN6+hY2NgmpDpPToAR+fwn+VKwMovHuXUPgpjVgMhpHJXb00NDTatm3LMMypU6d+PLcKgpbFk0ahDCGqY/uxY8MiI6OcnORaypHq1SdcvXqo4i/U0aoVoqI+9Sjl5GDrVrRvr9A6EQBAq1Zwdy/8x05WqlQJpqafdf/dugUzM1nNOFOxKdnv37+nZfGkUShDiIrIycm5cuUKj8f75Zdf5FqQh4cHACVYc8zUFGvXon17jB0Lf3+4uKB588I7gefmKrpypJjff8ekSYX9TfHxmDQJo0bJKu8uXboACA8PFwgEsspTgf7++29aFk8ahTKEqIhLly7l5+e7uLgYGhrKtSAnJ6cqVaq8efPm1atXci1IBgYPxu3baNgQZmb45x9s2wYOBytXwsoKT54ounI/KyMj8HifNvX1oa4OAP7+6NgRjRrBwgKNGqFLF0yfLqsyraysHBwcMjMz//33X1nlqSj5+fkbNmwA4Ofnp+i6VBQUyhCiIiIiIgC4y2/u0n+4XC57p5twpZjHZG2NwYMxejSaNCm8Eebz5/jwAWPHKrpmP6uYGJibf9q8cgXNmwMAj4d585CYiDdvkJiIOXNkuzaSykzJ1tTU3Lt374QJE1xdXRVdl4qCQhlCVAQbWJRDKCMpJUIpVpdhPX2Kjh2xciUALFwIIyNEROD4cbmUlZaGY8cQHIzz56ES3RnljW2kkTVVGi7Tpk2b5cuXK7oWFQjduIAQVZCcnGxqaqqlpZWamqqpqSnv4t6+fVutWjV9ff2UlBSedGdBhRURAQ8P6Onh+XOYmmLVKowfD3t7PHwI2T5dV6+ie3d07gw7O1y8iA8fEBGBKlXw+jUKCqChIcd58qRUAoGgSpUqGRkZb968saGJbKqFWmUIUQUREREMw7i6upZDHAPAxsbG3t4+PT39zp075VCcDLi7o0sXZGVh1iwAGD0aDg54+RJr18qyFIbBoEFYtAhbt2L2bJw9izp14O8PABcv4uTJwhX6iSKoq6u3a9cOwOnTpxVdFyJjFMoQogrKs3eJxc5jUo7hMqxVq6CpiU2bcOsW1NSwahUAzJ2LxESZFREbi7dvMWhQ4SaHg99/x7lzADBoEPz8MHCgzMoi306V+piINAplCFEFZ8+exX/hRflQvuEy9vYYPRpiMcaNA8MUbaeRiZgYmJh8tqqbpWXRZfqI4nTu3JnD4YSHh+fn5yu6LkSWKJQhROlFRkbGxMQYGRnVq1ev3Apt27Ytj8e7fPnyeyW6FcDs2TA1xZUrCAsDgOXLs32cn424kZNzSzb5m5ggJeWzPSkpMDOTTebkh5mbmzdo0CA7OzsyMlLRdSGyRKEMIUqvoKCAw+FkZGRcKsehGGfPnmUYRiQSFRQUlFuhP0pPD3PnAsCkScjJQa1aaQGuH3EvJsYP+LEJEDdv4tAh2NhAR+ez24YfPozGjX8oZyJT1MekkiiUIUTpubq6enh4CIXC7t27X716tRxK3LdvX9++fcVisa+vr5Ldn2/IELFrs4TF1ZNSVwEwM5utrm768eO/aWlh35lhQgJGjECzZhgyBBkZWLYMPj4ICcH585g1Cxs3FgZPpGJQ1btk/+QolCFE6fF4vBMnTvj4+GRmZnp4eFyU840e9+/f7+3tLRQKJ0+evHHjRrmWJXs8Xs6RxfG1LsS/DygoiOXxKpmbzwUQGztJLM75tqzy87F4MWrVQnAw1NUxbBg0NTFgAPbtw927WL8eQiFu3ULdunI5EfJdWrRooa+v/+TJk+joaEXXhcgMrStDiIoQiUSDBw/evn27jo7O8ePH5bQS6P79+/v16ycQCCZPnvzXX3/Jo4hyEB3dJy1tr6Ght63tTkD85EnTnJxb5uZzzczKPAT46FGMHw/21g1du2LVKlSvLr8KExmaNWuWurr6sGHDTE1NFV0XIhsUyhCiOuQdzahGHAOgoCDm0aPaYnFurVoXdXVbf/z477NnrblcvoPDEw2Nry2e9vQpJkwAO9iidm2sWIFOncqhzoSQL6EOJkJUB4/H27Jli4+PT3Z2dpcuXWTb06QycQwADQ0rE5OJABMT4weIdXVbGhh4icW5cXGl3b9QJEqLiRmXePsPnDwJAwOsWoUHDyiOIUThKJQhRKXIKZpRpTiGZWo6TUPDOifnzocPWwFYWi5RV7fQ1W1RYmKGESYnBz58aJ+cvCax7k3RzIl4+RLjxn22hAwhREGog4kQFSQSiQYOHLhz585KlSqdjzjdqHGzH8ru8b7wPevbzzs3Y8aM+fPny6iOipeauvP169/U1U0cHJ7xeJUZRsDhlHAjw6ysczExfrm5DwDo6bW1slqlpVW/3CtLCPkiCmUIUU3suBlh7M0dXbK4vXbC5nvHzTzeh/39IBbeqrfMpedEmdZR4ZinT1vyeLo2Nps1NCwBcVbWhYKCWA0Na13d1hwOLz//ZVzcdHaetqamvYVFgIGBl6LrTAgpikIZQlSWSCQSHRmucX8zNCuh/0lYldx7Upon+7GvH8QCtJwMd1XoVypCJMrg8SoDAMQvXnQSi3N1dZvn5T2rWnXMx4/XEhLmMUwBj1fJ1NTfxGQch1Met+okhHwr6uglRGXxeDyeZzAgwP3t2N4e/Y9/W9uMqscxAP6LY5Cb+yQ7+5qj4wcOR+2/PY8ZRmBk5GNhsURdnWbtElJxUasMIaqOEeHQYNzfDnWdb4hmfoI4RlpBwbsHD2xtbbcZGPTlcHgAmP+3d+eBUK19HMB/M0ODyBZJhNKVFElEUbqW0iIJhfZ9Id1ycytFtC+q22baI4UhdJUW0q1uy9UiWbppEUX2fYuZ8/7x9E6TLYkkv89fc855zplnZp458z3Pec4ZqrayMlFEZHB7Vw0h9AUYZRDqBL42zXSyHEMUFJzLzNzA5VbKyi6Vk/sDL/BEqKPAKINQ50BxIGIuPPH7cprpZDmGy63gcisFBKQBAIAqK7v75s0cael5cnKr27lmCKHmwcMOhDoHGgMmnQCtmVBTDgHj4U0j95spfgOhDsCtgZHunSHHFBf/lZSkkZHh8v8ZNFHR4VJSM8il1wihDgGH/SLUaZA0AwBP/CBgfMN9M+JKMP4QFL2B0V7fv4LfU0XFw4yMFWVltwGgqkq6ouJxcfFfYmKjOZzS/PzTPXuua+8KIoSaC6MMQp0JL80kh0JVIRwZCgAgKALyOmC0FkRkAACKM8DYoz0r2cZqa/Ozsrxycw9SFEdAQLpnz/UyMk4cTj6N1iU39xAATV7eQ0pqOgBUVDzOyvJUUjopICDV3rVGCDUKx8og1PlQHMj7D4QkYK8yOD0Dbg3c2gKVhWB/ARL84fEJGDwbeulBd/X2rmhrq/mQXbAvK2sTh1NCo3WRlXXp2dOdwejWWPHU1DElJVdlZZ0UFfd/z2oihL4KjpVBqPOhMUBmAAAAjQaSfUBaDfSc4d19AICeQ0CkO8hpQ1fZ9q1j64uOhsHaZS9COZySbt1MBwx4rKCwo36OoagP2dk+xcVRAKCouIdGE8jNPYxDZxD6kWGUQajTqy6BJ37QcwgAgIwGqI4F2YEgLN3e1Wo9yclgbg5mZpCcrHCka79+V/r1uyYkNKDBsvn5/m/frsrIcKGoD0JCA7p3X0RRnIyMFd+5ygih5sMog1AnxqmBP/vCcQOoLgHLYx9nas8D2s+yZygshD/+AG1tuHYNJCVh2zbm0ahu3cybWENaepaw8KDq6tScnH0A0KuXt4CAdGnp9aKiiO9VaYTQ18GxMgh1VqWZsE8F3Kvbux5tg8uFM2fA1RVyc4FOB0dH2LULZJt11qy0NOb5c1MGQ0xD4z9BwZ45OfszMpYzmX00NJLxb5gQ+gH9LMdeCKGvQnG/bv6P7OFDOHoUzpyB1NRPM3NzwdkZcnPh118hPh78/JqZYwBATMxEXHwih1OambkeAGRklgoLD6qufpWdvbctqo8Q+kYYZRDqfFJC4bgBVBXVnV+cDr6DG7173g+IomDGDJgxA9LTISEBjIxg1y4AgJISyMuD338Hf3+IiYFBg752w4qKe2g0Zl7eyfLyOBqNoaCwW4AuJciOgffvW/9VIIS+DZ5gQqiTSQ6BUHvg1sL4g6BqARIqnxZd+x3u7AJmN3CMAsXh7VfFZmOzwc0NEhNBRAQAIDUVNDXhyRNgMCAqCgDAxATUW3hJ+du3q7Ozd3btatC//z8ANO6cqfRTwTBnDpw40XovACHUCjDKINSZNP3/Si37D+12tHQpSEuDt/enORYWMGUKzJ//7dvmcEqSkn4RLlfsU7SaYWELL1+ChgbU1MDdu6Cn9+3bRwi1FjzBhFCn8cX/iaQxwOokaM74wv80/TjevoWePT+bo6AAGRmtsm0Go5t61q5+wx8wFq2Cigro2xdcXIDLhRUrAI8AEfqRYJRBqHNIDmnW/113rDTTowfk5382JzcX5ORaa/OCZg6gqwsZGbBjBwCAuzv07Al370JgYGs9BULo22GUQagNJCZCefmnydRUKCj4NPnuHfz9N7x4ARzOd6pPcsjH/7tuOscQJM188T+0W11NDSQlwa1bkJf3aebTp1BR8Wnyv/+giG+0sq4uRER86iMpKoLYWBg2rNWqRKfDvn1Ao8GOHfDmDYiJfTyZtXr1Z58vQqhdYZRBqA1YW0NCwqfJZcvgyhUAgPJymDgRjI3hyBGwtwctLXj1qs0r81U5hiD/Ovk908y//0KfPuDsDAcPgpYWLF4MXC4AwIQJ8OzZp2ILF8L1658mZ80CBgNsbCAyEthsMDMDW1sYMqQ1K2ZgAFOnQmUl/PEHAMCcOaCrC2/fws6drfksCKFvgFEGoe/I0/Nj30NAAMTFgYUFzJrVts/YghxDfM808+ED2NjAxo1w/ToEBkJiIty8CUePfnlFJhNiY2H0aAgKgsuXwdUVjhxp/ert3Aldu0JgINy8CXQ6+PiAoOBnfUUIoXaFUQah7ygiAlavhi5dPk6uXw937tQd7dF62Gx2dPBh4NbASPevyzEESTOa06G26qiP1507d9qgjgAA8OgRUBTMmfNxUlISnJ0honl/FCAiAk5O4O8Px4/D1KlAb4N9moICuLoCAKxYARwOGBrCq1cfR88ghH4AAu1dAYR+Uo6OICz88fGbNzBnDlAUpKWBCt99XLp1AxkZePUKpFv/vxvZbLaDg0Ntbe2DUB+d0b+1cCs0BlidCn8rt9Bjl9jJuMuXLw8f3gb3m3n9GpSVgUb7NEdVFV6//vjY1haEhD4+Tktr/WdvjtWr4eRJKCmBt29BSenjdVLksiYB3Isi1M7wS4hQ22CxQFf342NrawAAGg26dYOyss+KlZaCpCRYWkJmJpiagqkpGBt/+69jSEiIo6NjbW3t6tWrdaxbmmMIGmPi0m0zH+T4+fmZm5tfvHhx1Khvvt8MhwPx8RAdDdHRMHgw/PorlJZ+VqC4GCQlPz4+eRI0NT8+njDhW5+6ZUREICoK+vYFJhNu3YIZM0BWFsTE4OlTWL8enJ3bp1YIIQDAKINQWxEVBQmJj4950URTE2JjP91H/+5dEBSEXr3g77+hpAQePoTt20FaGn799WOs6dOnBc8cEhLi4OBQU1OzevXq7du//rxSPQwG48SJJF0uBwAAIABJREFUEwDg5+c3fvz4lqeZpCS4dg2io+Hvvz9FupwcWL4cnj+HrKxPN4mJjf0UX/jfSQbjG17HtxkwAACguBgmTwZfX7CxAQD47z8YPhw0NeHb4x1CqKUwyiD0Ha1bB/b2ICMDo0bB8+ewZAm4u4OwMLx7B/fufeylePgQ2GxgswEA+vT5mGlMTEBKqjnP0Oo5hmh5msnJgb//huhoiIr67OZ1vJdmbg7i4uDgAFOngo8PyMlBeDgEB0PbDc35FjExoKz8MccAgJoazJ0LwcEYZRBqRxhlEGoDRkafOhIAYOjQj/0NJibAZsOePbB9O3TvDmvWwMyZAACioh9/1wEgKwuuXYPISLh+HV69giNH4MiRu6NHO5eUmJqampqaGhoaCvHGjnyujXIM0fw0U1FRcefOnejo6Ojo6PAuXRTu3v24oEcPGDkSTE3BwgIUFT9bx9cX9u2D336D0lLQ0IAbN6BfPwCAUaOgW7dPxfT0oEeP1n1dX+fVK/jll8/mqKlBSEg71QYhBID/wYTQj4vLhUePIDoarl1zLS3dHRdHZouIiBgZGZmampqZmWlqatL+P1q2TXMMD4fDmTt3rp+fX9euXfnTTG1tbVxcHIkvd+/erampIfNPmZjMEhYGU1MwM/t4jqZDO3wYrlyB8PBPc/78E27d+tiLhhBqDxhlEOoAKisr//nnHxIUHj9+zCW3jwOQkZExNjY2NTUtLy93c3Nr6xxD8KeZffv2cTgcUrHCwkJSgMFgDB48mPQhGRkZMZnMNq3Pd3XzJjg4wKtXn66ot7MDDQ3w8GjXaiHUqWGUQaiDycvLi42NjY6Ovnr1atr/L06m0+lcLnf9+vVeXl7foQ4cDmf27Nlnzpwhz0tm9unTx/T/JHnXH/1kuFwwMoJffoEtW6BrV/D3B09PePIE5OXbu2YIdV4YZRDqwJ4/f37t2rWoqKj79+9bWFj4+fl9t6fmcDgTJkx49OgRL74o1hn+8rMqLIQNG+DKFaishGHDwMvrZzhxhlBHhlEGIYQQQh0Y/nEBQgghhDowjDIIIYQQ6sAwyiCEEEKoA8MogxBCCKEODKMMQgghhDowjDIIIYQQ6sAwyiCEEEKoA8MogxBCCKEODKMMQgghhDowjDIIIYQQ6sAwyiCEEEKoA8MogxBCCKEODKMMQgghhDowjDIIIYQQ6sAwyiCEEEKoA8MogxBCCKEODKMMQgghhDowjDIIIYQQ6sAwyiCEEEKoA8MogxBCCKEODKMMQgghhDowjDIIIYQQ6sAwyiCEEEKoA8MogxBCCKEODKMMQgghhDowjDIIIYQQ6sAwyiCEEEKoA8MogxBCCKEODKMMQgghhDowjDIIIYQQ6sAwyiCEEEKoA8MogxBCCKEODKMMQgghhDowjDIIIYQQ6sAwyiCEEEKoA8Mo04aePXsWGhradJmMjAw2m11SUtJEmaysrJCQkNLS0latHUKtrLS0NCQkJDMzs+liISEhiYmJTZe5cOHC06dPW69qCLWmd+/ehYSElJeXN1GmpKSEzWZnZGQ0UaaqqiokJCQ9Pb21K9jp0CiKat8a+Pj45OTkLFmyRElJ6YuFi4uLT58+nZKSIiIiMnz48MmTJ9PpH9NYUVHRmTNnkpOTRUREDAwMrK2taTQab8Xs7OyTJ08qKChMnz6df4ONzW8VmzZt8vDw4HA4TZQJCgqaNm1aUlLSgAED6iwKDg7OyclxcnK6cOHCpEmTSBkvL68RI0aYmJi0em2/KD8//+TJkxISEvPnz2+wwPXr1yMjI0tKSgYOHDhnzhxxcXH+pXfv3r106ZKNjY2WltZ3qe8P5MOHDx4eHjQabePGjYKCgl8sn5aWdvbs2bS0NFlZ2fHjxxsYGPAWVVRU+Pv7P336lE6na2trOzo6dunShbf08ePH58+ff//+fc+ePW1tbQcNGsRbVFZW5u/vHx8fz2Qyzc3NJ0yY0LqvEQCePXumrq5+/vz5yZMnN1FMQEBgzZo13t7edeanpqaePn3ayclJTk5OSkpq3rx5O3fuvHjxYmJiopubW6vXtjmuXbt28+bNOXPm9OnTp/7SvLw8Pz+/lJQUMTGxyZMnGxkZkfkBAQH1c1j37t1dXV3bvMY/BrKXtrOzGzJkyBcLV1RUBAYGPn78mE6n6+joODg4CAgI8JZGRkZeu3atoqJCW1t79uzZIiIi/OveuHEjJiZm+vTpampqvJk5OTmnTp16/fq1qKiokZHRxIkT+X8LWgWbzbazs0tNTVVVVW2sTHJysoaGRmBg4NSpU+ssun379uXLl729vTMzMxUUFE6fPj1z5szjx48LCAjMmjWrdavaHLGxsZcuXSotLVVRUZk9e3aPHj0aLHbr1q2rV6/a29vX/7UCgPv374eFhQHAqlWrZGRk2rbG9VHtKj09nWQRT0/PLxZOTEyUl5dXUlKaMmXKyJEjaTTahAkTOBwORVFPnz6Vl5eXlpa2srIiOxTeoufPny9fvlxYWBgAdHV1eVtrbH4r8vb2ptPpTZcJDAwEgKSkpPqLnJ2dx4wZQ1FUREQEr4yamtru3bt5ZWxsbGJiYlq11g148eLF8uXLu3btCgD9+vVrsMzy5csBQEtLy8TERFhYWFlZ+d27dxRFcTicCxcumJqakva2d+/etq7tD+jChQvk5f/1119fLMxms4WEhPr06WNjY6Ourk6j0by9vcmigoKCfv36SUpKzp49e/r06aKiotra2mVlZWTpoUOHaDTa8OHDFy9erKenR6fTT548SRZlZWX169ePyWSOGTOG5JtFixa1+stMSUkBgPPnzzddjMFguLu7158fGxvbu3dv0s4lJSVdXV0pivLw8Bg6dCivzNmzZ5cuXdqqtW5AdXV1cHCwrq4u+dRCQkLql0lKSpKTkxMTExs3bly/fv0AYMuWLWSRl5eX6efExcU1NTXbuto/iOrqaikpKQCYPn36Fwunp6erqamJiYlNnDjR1NSUTqfr6+uXl5dTFMXlch0dHcn+edSoUUwmU0NDo6CggKKoDx8+BAcH6+vrkw/Iz8+Pt8EnT56IiYkpKysvWLDAysqKwWDY29tzudzWfY3BwcEAkJqa2kSZpKQkAAgMDKy/yNfXt3fv3lwu9+3btwBw+vRpiqKmTp06Y8YMXhkvL689e/a0brXr43K5s2bNotFohoaGVlZWUlJSEhIS9+7d4y9D9uG8A6qjR4/W305FRYWqqqq0tDQApKSktHW162vnKLN7924Gg2FhYdHYDyS/JUuWTJw4sbq6mkzu2rULAMgP+fz583V0dAoLC8mijRs3AsClS5coinJ1dZ09e3ZYWNivv/7KH1kam9+KvjHK8PBHmTokJCQa3M+2Li8vL0dHx+Dg4EmTJjX4ScXExADAb7/9RiYTEhKEhYVnzpxJUVRFRcWIESPc3d2vXbvWaaOMo6OjsrLyoEGDpk6d2nTJ2traQYMGzZo1q7a2lkyOHz9eQEAgLy+Poqjt27cDwMOHD0nhq1evAgCLxaIoisvliouLjx07lizicrnGxsaysrJkcsaMGUwmMy4ujkyuXbsWAGJjY1v3ZX5jlOHHizJ1uLm5mZmZtbyKzZOVlaWvr79582by9WzwK2ZkZCQtLf369WuKojgczowZMwQEBBr8bcvOzhYSEtq5c2dbV/sHQfZXEydOFBUV5eXsxnh6eqqoqLx9+5ZMHj9+HACOHDlCUVRQUBAAbN68mSy6ffs2nU5ftWoVRVH5+fn6+vpeXl6kG4A/ytja2kpKSvJ+C7Zu3QoADx48aN3X+I1Rhoc/ytRhYWFBXmybevDggbCwcHh4OJnMyMgQFxc3NzfnL1NcXGxgYODh4fHXX381FmV+//33bt26kR/lzhhlhg4damZmRvbI9+/f/2L5yspK3uO///6bvxGXlJTwFr169Yr/IIkYN25cg5GlsfkNKikpYbFYa9eu3bt379OnT3nzk5OTt23b5ubmdvDgwZycHDKTF2WKi4tZLNbz58955aOjo0kTJ/vKhw8fnjlzZsOGDSdOnOCtfu3ataCgIOrzKHP06NF///2XoqgbN24cOnSIHF6zWKzg4ODq6moWi8X7nSPOnj17+/btZr66L3JwcGgwypCe89zcXN4cR0dHERER0jFG5Ofnd84oU15eLioq6ubmtm3bNiEhoaKioqbLf/jwgb+dnzlzBgBu3LhBUZSTkxMA8H4e3r9/DwAbNmygKKqoqAgAXFxceCs6OzvT6fSqqiqKoqSlpSdOnMhbVFxczGQylyxZ8sXKc7ncCxcueHh4bNq06erVqzU1NWR+QUHBkSNH3NzcNm/eHB8fT2byR5nQ0NCoqCjedl6/fs1isUgLIVHm5s2bmzdv9vHx4bXY9PT0Q4cOkdDGizK3b98mO/rs7GwWizVixAh1dXUWi8VisTIzM2NiYvz9/fkrHB8ff/ToUf6G9y2ePHnSYJQhg9ucnZ15c/777z8A2L59e/2NuLu7i4mJ8X5cf3rTpk1TUVF5/fo1jUYLCAj4Ynn+XXdVVRWdTl+2bBlFUbNnz2YymaQBE+bm5oqKivzrpqam1oky+vr6/fv3501evHgRACIiIr5Yjerqaj8/P3d39x07dty/f5/XkfPmzZs9e/a4ubnt3r2bJFfq8yhz9OhR/h+vhw8fslgsDodDosy5c+fIN+jw4cMvXrwgZR4/fnzo0CHq8ygTERERGRlJUVRKSgqLxVJWVjYzMyNNvbq6ms1mX7x4kb/C169fb5XjWP73n6IoKysr3iFQHWRMT/0oEx8fLygoeOjQobNnz3bGKPPixQsajXbs2DEOh9OrV6/ly5c3f93a2tqZM2eKiIhkZGTUX9rgbqWZUWbHjh0+Pj4NPmlBQYGKioqkpKSZmZmGhoahoSGZf/jwYTqdrqGhMXnyZHl5eUlJSdKyeVGGfN/4o7e9vf0vv/xC/T/K9O7dW0NDw9raWlZWtnv37omJiRRFTZs2bdCgQdTnUUZYWHj9+vUURe3atYv0r2pqapqams6bN4+iKC0tLf5j1vT0dBqNxmaz67+WtLS05/WQztsmNBZlnJ2daTRaaWkpb862bdsAgJxjIjptlCEHl48ePSKnU0+dOvVVq588eRIAbt26RVEU2VPY2dmRT2r37t2CgoK8KKChoSEhIUH22iUlJcrKypaWlmSRqKiora0t/2b79+9PunAiIiJcXFz4wxO/GTNmMBiMUaNGGRgYiIiIkCySkJAgKysrKytrZWWlra1No9HId40/yujo6EyYMIG3HXL0/OjRI4qiGAxG7969paSkrK2tBw8eTKPRyDfu0qVLAPD48WOKL8o4OzvLycmRjZMzNVJSUuSsTUJCgq+vLwD8999/vCeaMGGCsbFx/RdSVFRUv8G/evWq6Te/sSiTm5sLAL///jtvDpfLFRYWXrx4cZ2S5eXl3bt353VY/vRIcF+zZg1FUQYGBuPGjfuq1cvKymg0GsmI9vb2IiIi/OeGVq1aRafTeR3zVENRZuXKlQDg4eFBMpCDg4OMjAzJkSwWq7GRDNXV1cOGDRMRETE1NdXW1lZSUiLPGxkZSc72Tp48WVVVlclkkg4M/ijTpUsX8noJLy8vAKipqSFRpnfv3r17954yZUqfPn2YTCYJK6R7lcPh8EeZUaNGke6QixcvmpqaMhgMJSUl0tRLS0uXLVvWrVs33veUy+UqKys3+KOZnZ1dv6nz+r2+aPz48eQbV1+DUaampkZHR0dXV5fD4XTSKOPt7S0oKJifn09R1IoVK2RlZXnHfE3466+/Jk2apKSkpKysTPbv9e3cuZNGo5H9Jk8zo4ympqaenl6Dmw0ICODtaimKIid009PTBQUFp0+fTg4ECwsLBwwYoK6uzuVymx9l5s6dS745WVlZsrKyJiYm1JeiDNXQfnb79u0MBuP9+/e890FMTKyioqL+a+nbt2/9gVNbt25t8IXzNBZlyKvgZcesrCxzc3MA4J3RoDpxlLG2tlZTUyOPR44c+bXnRyZPniwlJUU+RC6XS8YkCQkJWVhYiImJkbOoRGJioqKiIgD0799/4MCB48aNKy4uJovGjBkjLi7O6w+/cuWKtLQ0aV2kR63BvqKioiIajebl5UUmSYOnKEpfX19JSYl0H3K53KVLl9Lp9KSkpK+KMqSVcrlcBwcHQUHBt2/fNh1liOHDh/O/gQUFBUwmc+PGjWSysLCQyWSSM251HDhwoH6Db+zok6exKENRVP/+/ZWVlXl9qAEBAUJCQvxdX8TBgwcZDMbLly+bfqKfxrlz5wCAdNQdOHBAQECAtztq/upkSBn5yI4fP04WpaWlkeEaaWlpvPL1o0xZWZmZmRkASEtLjx49WklJidd9PnbsWAUFhQaf959//gGAsLAwMkmaekVFhYyMzMiRI0mAqKqqMjU1lZSULC0tbX6UMTQ0JKtXVFQMHTpUXl6+pqam6ShDiIqK8p9gqlPDu3fvAsDdu3frv5aFCxfWb+qmpqbNef8LCwvFxMRmzZrV4NIGo8zWrVsFBATIV7sdo0x7XowdFBQ0ZswYMkDM0dExJycnOjoaANLT06U+Z2VlxVtLXFxcTU1NX1///fv3R48e/fDhQ53NZmRkbNu2zdHRUVtbuwW1un///s2bNxtcJCkpCQDHjx/Pzs4GADKW/ubNmzU1NW5ubmT8soSExNKlS1NSUkgbbably5eTMfZycnIODg537tyhWnRlmb29PUVRbDabTAYFBVlZWZGhzXWkpqZy6vnjjz9a8KQAYGtra2Vl5ebmpqGhoaOj07dv35ycnJZt6idTUlISFRU1bdo0Muno6BgTE/Pu3TsAuHTpUp127u7uXmf1qKioiIgIb29v8iFmZGRER0ePHDly7dq1aWlppaWlW7duJa0RAC5fvlxQUODp6amtrf3y5csbN26QPQsA+Pj4MJlMTU3NESNGKCsrz58/X0BAgDS5LVu2lJeX17ncjGAymSIiIleuXHn06BH8v8GXlZXdv39//vz55CIFGo22du1aLpdLxks107Rp08hVEjQabcWKFTU1Nffv32/+6jySkpJjxowhv38AEBYWxuVyp0yZUr/ksmXL6jd4coauZQ4fPpyXl6eqqmpoaCgvL79lyxY6nV7nShkul7t3714bG5sGL4D6KQUGBqqpqZGrFO3s7EivMFlELkzjGThwYJ11i4qK1q5da2hoOH78eABYsGCBsbHxvHnztLW1tbS0Bg4cWFZW9sUKPHr06MmTJzNnzpw1a9azZ8/S09N3795dXV0NAOHh4ST61Ef27efOnXv9+jX8v6knJCTk5ub+9ttvQkJCAMBkMletWlVYWBgXF9f8N2TRokVkdWFh4SVLlmRmZpLxD1/LwMCgT58+vKYeFBSkpKQ0bNiw+iV9fX3rN3UyiuOLVq5cWVtb6+np2cxapaamenl5rVy5smW/tq1I4MtF2kZSUlJiYmJ+fv7QoUPJHBqNdubMmbFjx0pLS9c5hJKTk+M9NjIyItcoXb582cLCYvjw4YsWLeItzc7OHjt2bI8ePfbs2dOyipFm16AxY8Y4OTmxWCxfX19LS8utW7f+8ssvaWlpAKCiosIrRnZb5CvRTPwX6CooKFRWVpIe7K+lqKhoaGh47tw5JyenV69ePXz4kBwi1Eej0VrxAkU6nR4aGhoZGRkXFycjI2Nqakqu++3Zs2drPUUHFRERUVlZGRAQEBkZCQAVFRVcLjcoKGjlypWampp12nn//v35J//9918HB4fJkyfzWvicOXMqKyujoqJERETWr18fGho6Y8aMxYsXh4WF3b1719XVdf/+/WQ8TUFBwaxZs5YuXTp06NChQ4cOGDAgKSkpODg4MzNTTU2N9JaTT0dQULCx68OFhISOHTvm7Oyso6Ojo6OzYcMGS0tLckzM3+B79eolJCT0VQ2e/wJyBQUFACBXsjR/CzyOjo5Tp06Nj48fPHhwUFCQubk5uYyiPt6NG1qFsbFxSkpKcHBwUVGRi4uLmZmZlJRUnQYfERGRmprq7+/fis/7IysuLr5y5YqIiAhvr85gMM6cOUPa5L59+/jvTFHnsurS0tKJEyfW1NT4+fmRXVOXLl2uXbsWHh4eHx8vLy8/ZsyYrVu3Jicny8rKNlaBqqoqW1tbXV3d06dPA8COHTu2b9++bt06VVXVdevWMZnMxlZUV1ffsmXLpk2bQkJCTExMNm3apKen18S+XUxMrJnvSZ19OwA0faeZxtBoNHt7+z179pSVlYmIiLDZ7JkzZza4D2/xvn3Tpk2nT58+ffq0srJyc8pTFLVw4UIJCQlnZ+fCwkIAIDfaKSkpqaysbPAQuu20W5QJDAwUERFxcXHhzVFSUgoPDy8vL+/atauDg8MXt2BmZiYgIPDvv//ydvRPnz61tram0+k3btzo3r17q9eZTqfv37/fw8MjODjY29vb1NT01atXpFepqKiIXKtMHgNAiyuQlZXFYDCa/1Wpw9HRcfHixWlpaYGBgdLS0ryroOuYO3cu6RvgN2/ePDs7u5Y9L51Ot7S0tLS0JJN37txRUFDo1atXy7b20wgMDFRVVeW/E09YWFhAQMDKlSsVFBSaaOdhYWGzZ88eNWrU2bNnGQwGAHC53Js3b/LfWmPKlCkBAQGkE5GMgufdLUZKSmr79u2RkZG3bt0ivyvdu3dfunQpWfry5cvs7Gw9Pb0v1n/atGnW1taXL1/esWPH5MmT79y507t3b/h/IycqKyurq6u/pcEDgISERMtWt7S0FBcXDwwMVFBQuH79OhlaVN9ff/1V/xyTpKQkOTfaMgoKCmRkBvz/Uso6b+nu3buNjIwaPHT+KYWHh1dVVa1evZrXRIcMGXLs2LEXL16oqqrWv70KT1pa2pQpU7KysmJjY/mjg4CAgI2NjY2NDQBQFHX37l1NTc0mfiOfPXuWnZ3N+xYwGIy1a9eyWKybN2+uW7eu6cqvWbPGyckpLCxs8+bNJiYm/Pt2Xhnevp108/A0sxP9G5v69OnTN2/eHBER0bt373fv3tnb2zdY7M8//ySDnfkNGTKEXMzVoJqampUrVx46dOjw4cPNv8VafHz8jRs3AICc1+YZNmyYu7t7/RtHtal2izJBQUETJkzgv/PVmzdvVFRUwsPDyb0E6vv7778ZDIahoSGZfPbsWW1tLe9mPmfPnl24cCHpkyC9hS1Dxp3xckl95Cehurp65cqV+fn5pCv10qVLCxYsIAUiIyPFxMT4u5RJfQoKCsgkRVGNBfOqqio2mz18+PDmRFrSgVTnS2Vra7t8+fLg4OCgoCBbW9vGDriNjY35v6JEgwNoWuD69es3b9708PBola11XAUFBdHR0Rs3buRv56qqqjY2NklJSRoaGg2uxeFwvL29vb2958+ff/DgQd7twuh0uoKCAhkSTo66uFxuamoq+QqQhPH06VPeEdWzZ88AoMG7XXl6egoKCs6cORMAqqqqqqurGzzBRHTp0sXS0lJdXf2XX355+vSpnp6erKzspUuXli1bRgqQkQ117nwoISFBRkcRTRyJ+vn5MRgM0snRWBkeckkL/xwhIaFJkyadO3dORUVFUFBw0qRJDa6orKxMTlvwq9Mx0GIcDmfTpk0SEhLW1ta8mXFxcf/88094eHirPEWHcO7cuSFDhpB7YRCVlZVBQUEBAQFN7A1iY2OnTZumoKBw79490owbxGazk5OTGxzzxEN+U/nvT1hQUJCTkzNq1CgAqKio4HA4TRwliomJzZw5U0xMzNra+uXLlwMHDmQwGJcuXSKrA0BkZCSNRtPU1OQ/xyQpKcnbt8OXmrqsrKympmZzzsYKCQnVaer9+/cfPHhwYGCgkpKSuro6/w0w+TU4v4k3NjMz09bWNjEx8fz58419fRqkpqb24MED/jlXrlxZt25dSEgI/109v4/2iTJxcXGpqankIhceJSUlAwODgICAxqIMi8UKDQ397bfftLW1s7OzfXx8JCQkSIBYtWqVj4+PvLz8yJEjjxw5QsqrqKjY2dllZ2efOnUKAF6+fFleXk7GW/3++++5ubkNzh8xYoSQkFCDZ+6Dg4MvX75sbGwsKCh47Nixfv369ejRQ1ZW1szMbOXKlcXFxerq6pcvXz537tzmzZv5T1RJS0traGgcPHhQRUWFoqijR48mJibyd5MGBAQYGBgUFxfv27cvJyeHXPPyRcrKyjIyMn/++aeAgACHwyEhXVJScuzYsfv27cvMzNy/f39j65KfsWYqLi4ml4okJycXFhaS98rZ2dnV1TUvL4+MgHN1dZWXlxcXF4+Pjz9x4oSuru7q1avJ6tevX4+Li6uoqACAmJiYqqoqdXV1Xv/NT4zNZn/48MHW1pZ/5vjx4yUkJM6dO7dp06b6q1RUVFhaWsbExOjp6fXp02f37t1k/ogRIwwNDRctWrRmzRpyKy06nX7ixInExEQ/Pz8AsLCwUFRUnD9//rp16zQ0NJ49e+bl5dW/f39y4920tDRyn2hyCuDq1au7du0iNypdv379rl27ioqK6qeZ7Ozs2bNnT5w4UU5OLigoSEBAQF9fn0ajbdiwwcnJaf78+VZWVq9evfLw8DAwMBg7diz/QIRRo0Z5enr++eefAwYMiI2NPXbsGP+W7927R/plo6KiWCyWq6ursrJyc6KMrq7u3r17fX196XT6pEmTSFBzdHT08/Pz8vKaMGGCqKhogysOGjSosV1/gy5cuJCSkkIG04SHh7948UJXV1dUVNTZ2Xnr1q2//vrrvXv3/P39dXV1379/Hx4e/uDBg7Nnz/IfcO/YsaNfv34TJ05s/pN2aHl5eTExMZs3b+afKSwsbGVlRe400eBZj127drm5uXXr1s3S0pI3EKR79+7kksxly5apqal17dr133//PX36tImJCa8PPioqKiEhgcTlixcvZmZmamtrm5ub29jY+Pr6ioiImJiYlJaWkktAVqxYAQDcljG+AAAFf0lEQVRTpkxJTExsMGrcvn17//79Y8aMERMT27dvn5SUlIaGhpiY2IIFC3x8fAQFBQ0MDOLi4rZt2zZnzhxlZWX+KDNy5Eg2m21kZNS9e3c2m33+/Hn+LUdFRQkKCnK5XH9//9jY2FOnTjXnft8AMHTo0NDQUH19/aKiIjKyHgAcHR3XrVsnLi7Of0KjjtGjR48ePbo5TwEADx48mDBhQnZ29rx58549e0aOfwBg3rx5cXFxnp6eR44c0dLSunLlSnx8fHFxMQBcvnw5Pz9fU1PTwsJCR0eHf2vPnz8HAA0NDXl5+WZWoLW0T5R58OCBvr6+hYVFnflLliw5cOAAOcdUfy0/Pz89PT1/f3/SUg0NDTdu3Eh6IxMTE8l7yt+M9PX17ezsioqKyLgzUVFRUVFR8tjV1bWx+bNnz+a/bTY/UVHRd+/ekUGO+vr6JIrRaLSwsDAvL6/jx4/n5uaqqKj4+vqSMeRycnKDBw8m6wYFBbm4uCxcuFBKSmrBggX29vakqiNGjPD09Lx69erJkycZDMawYcNYLBYZQqWsrExOLYuLi2tpaZFspKWlxTsf36VLl9DQ0DVr1ri5uY0cOZLX3zh//vzbt2+TcTMt+HTqKy8vJ+8PuT6QPF64cOGHDx/IsOuqqqqamppjx47l5eUpKiquWbNm5cqVvEPehIQEsoqOjk5mZiabzTY3N+8MUSY5OXnq1Kl1+rqEhISWLVvG22XUUVhYWFRUpKOjw+FweOMlAUBSUtLQ0PCPP/5QVVU9ePDgokWLqqurBw0aFB4eTg6kyC0Atm3bxmKx3r17JyUlZWdnt2HDBtK9R45NyZWompqaFy9eHDduHNmysbExADQ4jKCsrExaWnrv3r2FhYV9+/YNCQkhQzWXLVsmLi5+8ODBiIgICQmJWbNmbdy4kcFgCAkJaWlpkZ/zVatWZWVl+fj4fPjwYcyYMTExMbxTYwcPHrxy5cratWvLyspUVVWPHTs2Z84cAOjWrZuWlhap8KBBg8jZSQUFBf7xoevWrcvLy9u1a5eUlJSenh6JMiYmJrq6unFxcY11ubfAvXv3yEhJHR2dlJSUlJQUJpOpr69fXV1NvpXl5eUpKSlhYWGCgoK6urp79uzhPxItKChIT093d3dv3QE6P7J79+5paWnVCe4AMHfu3KSkpJcvXzZ4j/8nT56Q3R25/RqhoqIyb968kpKS2traQ4cOFRUVKSsrb9261cnJibdzjouLIzfR1tHRefHiBblli7m5+ZkzZ1gslr+//6lTpwQEBIYNG+br60v+P8HGxqaxXSKDwaiqqvLy8qqqqtLU1IyKiiKdNwcOHFBRUTl79uyhQ4cUFBQ8PT3JEZqEhISWlhb51uzbt8/FxWX16tVMJtPOzi40NHT16tU0Gk1RUXHXrl1Xr151cXEht768dOnS2LFjAaBHjx5aWlo0Gq1Lly5aWlrkTJaqqir/GDJfX18XF5f169crKyvb29uTEWD29vYHDhxIT0/nXUnwjZKSkhQUFBQUFOLj4+Pj43nzbW1tuVwuue4dAB49ekT+T1BHRyctLS0tLa26urr+L7iUlJSOjk4T403bTvv/BxNqCxoaGuPHj9+xY0d7VwSh7+HAgQPr169///59E0M7EfoJLFq0KCEhgVyMjXg6yxFDp5KQkJCcnNyKR6gI/eCCgoKmTJmCOQb93Gpra8PCwnDfXh9GmZ9QUFCQmppau1/oj9D38fbt2zt37uD+Hf30oqOj8/PzySVdiB9GmZ9Qfn4+7xpRhH56CQkJ5P8K2rsiCLWtFy9eLF269PsPqv3x4VgZhBBCCHVg2CuDEEIIoQ4MowxCCCGEOjCMMgghhBDqwDDKIIQQQqgDwyiDEEIIoQ7sfw8V41IKsAmGAAABWHpUWHRyZGtpdFBLTCByZGtpdCAyMDIyLjA5LjMAAHicrZGtTsRAFEa/aTvt9L+FZXf5zQa1DhyOzhtgEDwCYhVPsAkagagiwYEjQRHUziT49WsQGCQJBsu0nSZXbRBMcnNOT5rbtP1aPL3DnBTdYWYOzByamTN/cmzoeOvJ1nBq6K7hxPAvKFuwf0XcvK0HxuG4cHy4gXkcvAQ8AE/hZwhyiFA4IoHYQJgh3EQUCydKEQ0Q54i3kBRIhkhLpCNkBbIx8hL5NoodFLso91DuY8CF2ey4AWdchFmR8CjOy5QXiedn3EiQj65Y9/HbY/6ArF7ePlV3KRXxplekt95RKuuKeNMr0lsfn9ayv8d63zXpuu/86Ewuz++UdU286RXprZ8sr83O+YN1swePjS8uXuXN94ciXlnXpOu+z1Yzefsz1dY18aZL0lu/vH+WdR0q4pV1Tbru+/AX+TqBZtOBOLoAAAH8elRYdE1PTCByZGtpdCAyMDIyLjA5LjMAAHicjZXBbtswDIbvfgq9QAyRlETp2CRFUQxNgC3bOwzoce+PkUxjUWgg2M7B+v3ptyiRzBL0+nn+8fdf2C48L0sIcfJrrYU/FGNcPoI+hOPr2/slnG4vx4dyuv6+3H4FeaIkc+Qe2Zfb9eOhQDiFuHIWwxgOsFaIpciMNdrVp6KAh10kecsJlwbHCZgF3F73Gd/Boo67SPaWE64OjhOwCZjWUqjS/MsQPTkD9WgO+zxxQGekHg6tSIwpa2QIlDE/I+149qHZm87AMnjOSLZdAqgNSWN/AN/Jeo99DyqH9BnyyiVWIg2JmSLys2yPAzojQcnDPlcc2RlKitLKMTLL6eNaUgR4WpnJXPexebCdkWV0naF836wMjYj1CDJxovYMrQM6I9vXXu1wpTiyE/T1ch76370jHq+Xc++IemPvezrMvbnJu1B6DwORUu9UOuTej0CI2puOGPW31YZAvYWAzKiuUegYkmsIoB7ZlT2oS3HVjWrjixhUIFeqJjRXkmCfyq70TEFfYmhfR1dJYEpyBWMKgisMsCUWl/6mILosB101sEtmU5BcyoIFUl1qmoLJZSBYbOwSzRTMLqHAwq0ubUzBbYVka2bx2xT8UvosW7NsybaHlO4KDVnmc0rHj39oeV7+AwyMelgrKnbOAAAA03pUWHRTTUlMRVMgcmRraXQgMjAyMi4wOS4zAAB4nG2QXQrEIAyEr7KPLRhJjJoW2adcp0fo4Vf7o60uSHQ+kjCObkpfnXSb1R2VVdVnoPlFD57PKUu5JvzU8PbZp2Al4sIGyIowsknexsiFoJXQ5Knu9trN1rE4n4EjDgcQRBHjbPRIZBLZhTDGa8FRb5Sgk+/eKi8r51Vp6mTXfTuDwRpUb94SLaszWH4WaGVfpgOL57WhRmBcCuNW6CKEMWR4xwpDrjAEC0Oy8LAPf/zD8IF5/wHMY3TUdzZd9gAAASJ6VFh0cmRraXRQS0wxIHJka2l0IDIwMjIuMDkuMwAAeJy1kLFKBDEURV9eMpnMxFVX1xkrmWrYTrDaQpiAsI0IYmeXMvgHdv6FrY3TCRaC2JhU1pZWgl/gL5jsTpj0ixce7wTuvQ/y+/70DV4TWIv4qf0c+rkjXM/9puy/9rRpws0Nl2hWbSgBDQLVsAWEGSSZJhNArnEbaG6Q7gATmu1CVhjMpsBLg3wP8lLn+yCkQTGDQuriAMqqkVUzQ+5zJUdOskIKVh+R9f+sVF/d3LqHzxMbHp5Vwk4fX3SBf5atuzRvdmAVOfhTz/P9x8C9jT2eu5FblXrGbN8lnNzqVcJJf+vmL6cudo7cq9TzdX6mAtNral8Xj3bgLnLIRo9XG7PVH4NsbTI91/sbAAABpnpUWHRNT0wxIHJka2l0IDIwMjIuMDkuMwAAeJyNlNtqwzAMhu/zFHqBGkmWY/uyJ8YYbWHr9g6DXe79mZTSWYbWxEkgFl90sPRnAlvvh7fvX/hffJgmABzctVb4iog4ncBeYHd8eT3D/rrd3S37y+f5+gEcgUW/0atnt9fL6W4h2MMmhlIzkcAGw1yL1Bkw4LLat6zkKjB2LjEUpITyABQDOaRaMM+woSDyxGVSchU4+yQHoXMXmkJKT8BiIAWuFWMZll2VXAUS+moGsYm64INyiH3wEajN+YFNClRnSjw8Sz1BZdehqXc7Kmpe0NZNDvWp22zsOrR0yY4SqH0CMeAzlHFBMSSKmPOtF5hrfMSSsetQ7soaJRDh0syDoo7nQyfrm9B3l/OhCV30iU3NtpWmWbIrNmmKIqnpz7ZzUxnplqSpSdRDbpohc5iaMsxdcfO/JDO7ORcNUd00k+4pu6kVC+pHk8xQ3ACKpkHkxozMUN0siWVGbmJIDewHQzRXYtd+UgOT67Es6bNrJZmF2bWMrCJuR23Jak3NYt3yvbH9/Qeu79MfVm4j3/dfl9sAAAC2elRYdFNNSUxFUzEgcmRraXQgMjAyMi4wOS4zAAB4nHWQwQ3DIAxFV+kxkcCyAYOtHBmgQ3BlhAzfNG0ogvRiwQOb/8i1UFlyXb/lWVy/bcW1FeX62BfLQBqJjSUIQdhs1oNoIjIWIaoEjR1DECTGcKCrkYCZ3n0OWAVlBh7wAwic6tH8m4Lt9nx2kS4HApPHlMw5CpOa7Xqk5W/AgZ7gxmeSnv1GvdHur1z/bTd57RTYjonX/QXCIWB37nRTvAAAAQp6VFh0cmRraXRQS0wyIHJka2l0IDIwMjIuMDkuMwAAeJy1kE1uwjAQhcfjxPFPKX9JytIbUG8Rr7ovF8BLixuwQOI02XEFkpMgcYKeoFIdiMtsu+hIo/f8yfM88tflfIVYE3gUi13HXsU+MeHfo/Lsv3Ru7fDmn0Xa+zwmNcACQubhBVju2QSQB0Th8RV44fkUMhkwm0GuAuZzEDqgWEBhAhZLkMrL0qrKauN1aU1lSy7ihMqZQKFNwUWpTaXk24I9Puhe9XZ/6AFcNxxG34zeEe4Sv31s4p2+Iz5xR7h78rZLOaNPvCG8IZzktyS/JfktyR92cD3x7rnDL3eJf+/2m5TzeQzrlFP/AEbNVm1qnZXqAAABi3pUWHRNT0wyIHJka2l0IDIwMjIuMDkuMwAAeJyNlFFqwzAMht9zCl0gxlLs2H5smzLGaAJbtjsM+rj7MykltcyYSNKCLT5Lcn/97UCe9+nt+weeD01dB+CNTykFvgbvfXcDWcD5+vI6w2U9nffIZfmc1w8gAgp8ht+WPa3LbY8gXKAfXC4JMUDvXYqcm4847x+LnaSGNMCBwUMZgwYNLkplcrFkn0bo0UX/Dzk2pAEmBg9lzBo0uCKV0VEpfsjmrdE3qEWKOMdykiYtkMW5Qx8dlhEjmVdnURrWQqOgx7KODWqRaatfZRqeyF82t6yFFkEPZSXfoBaJsNSwdX92pSIN8DpPjVMf3j0v81S9G/hL1aCyjdWGKO9Q3RYYGaup+ChrXK0T+EioBpFtqjZASRjruEu6rGZ6a2ZUoxu4RFEDilIyqUEMXBP1tKEEspqpwG0gqslBCRQ1IEE6IzUFyAHSWgfuFbWiyAFCJRxK+0RKoCD917S0/ZSoT0mzfKd6StTS2sh+/0/mdfcLz08ZLoNsHnYAAACVelRYdFNNSUxFUzIgcmRraXQgMjAyMi4wOS4zAAB4nF1Pyw2AIAxdxaMmtKFUlMYjAzhEr4zg8JoAkXJp+pr3ay5Kuuay1RFu5QH+g28NSrkszwoRSQ6KDgiju4AxyUnkwOM54gY7u5IDRkk+TYi/nTCI+L3JfGXYoxEPWptoAqdytnq3mBD/udDbtF+nO1gHGCy25wUVlUjuWNscRwAAAE96VFh0cmRraXRQS0wzIHJka2l0IDIwMjIuMDkuMwAAeJx7v2/tPQYg4GWAAEYgZoKyGxiVFQxAYozsYJqZmVuEQVwJqgoMgEob7BmwADEAiWIFzNLFjysAAACCelRYdE1PTDMgcmRraXQgMjAyMi4wOS4zAAB4nONSAIEgF+/MEgU4MHLh4lJQMMCDLC0tFcKMDQwMuHwVQAwFJ1d3Tz8F5xBHJ5iIs3+oX0iwghFQPRiiqnQM8feFiRgqOBUpGOoZgIGCASYDptBIwQ+bNIY6Vz8XFAtAfJjTgGwuANdgLvU5fMYZAAAAMXpUWHRTTUlMRVMzIHJka2l0IDIwMjIuMDkuMwAAeJxzKtLzU6jRMNQx0LE2ABKaNQAqNARG/SU/nAAAATB6VFh0cmRraXRQS0w0IHJka2l0IDIwMjIuMDkuMwAAeJx7v2/tPQYg4GWAAEYgFgdiESBuYGRTMADSTCy4aA4wzciEi+ZXUALROPWTag4HmP7PiKA1gDQzE4wWUFAA0mzcDCwMDBwMjKwMjBwMTGwMTBwMzOwMzBwMnLwMnIIMXHwMXIIM3PwM3IIMPAIMPIIMQmIMwmIMImIcTKJALMIgLscICQowEN92uN3ekHXPfhAHyN5fzqJuD2MjidvDxIvnKDjsCO4Ci1ep6OzfVs3mABU/gCRuDxMHOlbtDevFfTBztlW7OcDM3ya/HMFGiNvDxEF2FYXEO8DsYqq9CrcLSdweJg6y64ReK1RNApB2ALtnVeFhEBvs/k/3Nzo8dFu2H8JuBLGh4jNB+paC2GIAx8hgw/GL8lYAAAHMelRYdE1PTDQgcmRraXQgMjAyMi4wOS4zAAB4nI1Uy47bMAy8+yv4AxFISqKlwx7yWGQXbZKim+4/9L7/jyUtxKIB141sGNJ4OJZJjgaw8fv04+8XzINPwwCAG3etFT4jIg4XsAkcXs/vVzje94cHcrz9ud4/gCMwwnQtufv77fJACI5AAQVFEHYUkpSKBTDgNHooK3E3MzFI5kS8QowL4pZk8t/eUMxwAw4Za051ki4oBVeIosSdCo2cImsIIUWkFeJoxKckizKfUazwq6O6h4SFk/9pOL6dXwg+9z9f0px89BmI/1YnWiQ1B2YWXmUu67SlGf3HtySTz38MqdTMdY2YF/kXnVCmtaySLAqwpTn6AmxJFl+BFEioCv2vAFXV49wHGMbcyMuoXQuj2QuoYaKpHYUzPB1FGpVDziWX0WrEtWJc9RorMwVszC1ihA8lFmySndB3YluQB//1elq4v50Hh9v11M8Du3J3vS1r9zYpJN3Atqzdp6SMsbvRlrV7jjSgdGPZsnb/kNmBvDcaUpwJaHpk1+wNKa6paYLFdW9DimtTmoija8eGFNd2ZN3B0fUXWeEdoq+tqB2x11a8jljCfXpt/TiqdT58A2FRIDlzJ10/AAAA1XpUWHRTTUlMRVM0IHJka2l0IDIwMjIuMDkuMwAAeJx1jksOwjAMRK/CshWOZTu2m6jqqgcIEsuKm3B4EqAfVLFINJnxPKdM924qfbeU8OjbhWVebtdHN1eznrmcjMuzMzRLliEwSs6kMComag41Se9wyyIaZTMIhIPB6Mg0eITPS9aQkRJ5grEKJ/fmqKfMMFKrKiXRGoc1J3QTZalWlYNoFJDK5ngY2iHh/6addAKtpYiassW9E78DBIrsnP2w1FBE/OdjXgUbH4ZWQPi7YsOcKP3zBcTUWes3rk7KAAAA9npUWHRyZGtpdFBLTDUgcmRraXQgMjAyMi4wOS4zAAB4nHu/b+09BiDgZYAARiDmgeIGRjYFAyDNzIKdZiJAMyLRCkCahQPCZeIAc5m4GdgZGNkZmDiBJjIwczKwcDOwsjOwcjCwAREnAwc3AycXgwgjGzMnGwc3i/gsqPPAgCf3Y7sDV7joXhAntpDTYWXkif0gdvjjZfsZONkPgNjzytUOaCRx24PYr37921+v/hXM3nnnvf2yqCYwm98oY9/UFUxgvW3ZBg6fJd33gdhuOw7bObjEgNW8/HJ7/0JJbbCaNVYuB5bcWglmt0ow7GfawOIAYosBAHvgNy7dFwlXAAABYnpUWHRNT0w1IHJka2l0IDIwMjIuMDkuMwAAeJx9k11qwzAMx99zCl2gRl+W7ce2KWOMJrB1u8Ped38mpXROwcyOQbJ/FvpLzgQx3ue37x/4GzxPEwD+87XW4EsQcbpCGHC6vLwucL4dT4+d8/q53D6AOD6M+cweb+v1sUNwBk2slZnggAnF1PxGwm30q+wgJ9KSVeFAKVtmsQEoDvq5oFQSOPgdz5l1QGqQnAwJM/m5R1Ybhcz3kB4GxUWlRpmtDkBzkFIt0ljcQKrSaMCVCIiJ2UqWsDJ5unlA1k12cbW2gdRUZQQ2BzGJ19HiuBoqjbQQ3sUUqurt8ZBmVYYlJ4IVDpLQDCttRWVrwzQ90rrpQJSinjEWYZUBeVnmpwdwfxKndZn7k4hZe+PJV+3tpVi7JpKv3FsVLu06QrHHvfLke7WXN9zWi0hOtF2twqd9RSgg3ummDaO9vr2a8B8/h9vTLzklpUCXJ7nYAAAAtnpUWHRTTUlMRVM1IHJka2l0IDIwMjIuMDkuMwAAeJwljksOwzAIBa/SZSoRxN9YWfoAuVAO3+d0BRpgHmsd67uWrl2PG+2tn+cItmgzOoXFK4ou45GVtYnOCM+NNEYGncoYWdCl3MOnkbJo+6RL2KGpJOEuCYUIApCRvlWp4g0VFEM7dLOq9nqRYwiEHJmwXqezVEnvRLeaDWRcorIDMiLqf4htcXwxNW28kSniI8hYhuPT7/MDp+Ex73MdgtgAAAAASUVORK5CYII=",
- "text/plain": [
- ""
- ]
- },
- "execution_count": 36,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# get 3 lowest and 3 highest solubilities\n",
- "soldata_sorted = soldata.sort_values(\"Solubility\")\n",
- "extremes = pd.concat([soldata_sorted[:3], soldata_sorted[-3:]])\n",
- "\n",
- "# We need to have a list of strings for legends\n",
- "legend_text = [ f\"{x.ID}: solubility = {x.Solubility:.2f}\" for x in extremes.itertuples() ]\n",
- "\n",
- "# now plot them on a grid\n",
- "extreme_mols = [rdkit.Chem.MolFromInchi(inchi) for inchi in extremes.InChI]\n",
- "rdkit.Chem.Draw.MolsToGridImage( extreme_mols, molsPerRow=3, subImgSize=(250, 250), legends=legend_text )"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "The figure of extreme molecules shows highly-chlorinated compounds have the lowest solubility and ionic compounds have higher solubility. Is A-2918 an **outlier**, a mistake? Also, is NH$_3$ really comparable to these organic compounds? These are the kind of questions that you should consider *before* doing any modeling.\n",
- "\n",
- "```{margin} Outliers\n",
- "\n",
- "Outliers are extreme values that fall outside of your normal data distribution. They can be mistakes or be from a different distribution (e.g., metals instead of organic molecules). Outliers can have a strong effect on model training.\n",
- "\n",
- "```"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Feature Correlation\n",
- "Now let's examine the features and see how correlated they are with solubility. Note that there are a few columns unrelated to features or solubility: `SD` (standard deviation), `Ocurrences` (how often the molecule occurred in the constituent databases), and `Group` (where the data came from)."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {},
- "outputs": [],
- "source": [
- "# soldata.columns.tolist()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAADdAAAAkkCAYAAACmq7yvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzda2xcaXof+P+51IWXIqsokkXqQqnZbE63Wm3SmJnMOD0e2Yg9Y2dgeAwkWSe7C2wQLBB3PiQfAhhIgHzJAgESGDG8SAO7gL2JnQTj9dpxbKPHnoujnot6ht09zVJ3UyJZKomipGJdyCrW/Vzf/fDwnCIpibpRpET+fw2hWKdO1TlVdch+36rnfx5NKaVARERERERERERERERERERERERERERERERERER0xOiHvQNERERERERERERERERERERERERERERERERERETPAgN0RERERERERERERERERERERERERERERERERER0JDFAR0RERERERERERERERERERERERERERERERERERxIDdEREREREREREREREREREREREREREREREREREdCQxQEdEREREREREREREREREREREREREREREREREREcSA3RERERERERERERERERERERERERERERERERERHQkMUBHRERERERERERERERERERERERERERERERERERHEgN0RERERERERERERERERERERERERERERERERER0JDFAR0RERERERERERERERERERERERERERERERERERxIDdEREREREREREREREREREREREREREREREREREdCQxQEdEREREREREREREREREREREREREREREREREREcSA3RERERERERERERERERERERERERERERERERERHQkmYe9A3R8VatVvPvuu+H1M2fOIBaLHeIeERERERHRi8ayLKyurobXL168iGQyeXg79IxxHkVERERERE+L8yjOo4iIiIiI6PFwHsV5FBERERERPZ7ncR7FAB0dmnfffRdf//rXD3s3iIiIiIjoCPnTP/1T/Oqv/uph78Yzw3kUERERERHtN86jiIiIiIiIHg/nUURERERERI/neZhH6Ye6dSIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiomeEAToiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjqSzMPeATq+zpw5s+P6n/7pn2JqauqQ9oaIiIiIiF5E2WwWX//618Pru+cZRw3nUURERERE9LQ4j+I8ioiIiIiIHg/nUZxHERERERHR43ke51EM0NGhicViO65PTU3h9ddfP6S9ISIiIiKio2D3POOo4TyKiIiIiIj2G+dRREREREREj4fzKCIiIiIiosfzPMyj9MPeASIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiomeBAToiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjqSGKAjIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIqIjyTzsHSA6ylzXRS6XQz6fh23biEajGB8fx+TkJEyTv35ERERERERERPflukAuB+TzgG0D0SgwPg5MTgL8TIWIiIjogTiMIiIiIiIiejDXd5Gr5JCv52F7NqJGFOOJcUymJmHqnDQRERERER1lHPETbclmswCAqampp34spRQymQzm5+dh2/aO2xYXF3H58mXMzs5iZmYGmqY99fbo2dvP44OOFh4btBceH7QXHh+0Fx4fRLRf+PeEniePdDwqBWQywPy8VHxvt7gIXL4MzM4CMzMAP1Ohp8S/kfQ84fFIdLw8i995DqOInl/8/zzR8cLfeSKi/bVff1eVUsgUMphfm4ft7arnW1/E5dXLmB2bxUya9Xx08Dh+oKOOxzgdBzzO6Tg4Csc5A3REW771rW8B2J/J9qVLl7C8vAwAaLfbKJVKYQe60dFRAMDc3Byq1SouXrzISfcLYL+ODzp6eGzQXnh80F54fNBeeHwQ0X7h3xN6njz0eFQKuHQJ2PpMBe02UCp1W6dsfaaCuTmgWgUuXmT1Nz0V/o2k5wmPR6LjZb9/5zmMInq+8f/zRMcLf+eJiPbXfvxdVUrh0s1LWN7Yqudz2yg1S2EHutG+rXq+O3Oodqq4eJb1fHSwOH6go47HOB0HPM7pODgKxzkDdET7LJPJYHl5Gb7vI5vNolAoQCkV3r6ysoJ0Oo2pqSksLS0hmUxidnb28HaYiIiIiIiIiOh5kMlI1bfvA9ksUChINXhgZQVIp4GpKWBpCUgmpY0KERER0THHYRQREREREdGDZQoZLG8sw1c+shtZFBoFKGyr56uuIN2fxtTQFJbWl5CMJzE7Nnt4O0xERERERM8EA3RE+8h1XczPzwOQFpVra2sAgFQqhUQigXq9jkqlEi6fnp5GJpPBhQsXYJr7/+voui5yuRzy+XzYAW98fByTk5PPZHtERERERERE9AJyXSCXA/L5bpuS8XFgchI4qM8PXBfY+kwF2Syw9dkJUikgkQDqdaBS6S6fnpZK8QsXDm4fiYiIiJ5D+z2Meh6GhkRERERERPvF9V3Mr80DALIbWaw1tur54ikkYgnUrToqnUq4fPrENDJrGVwYvQBTf7RJkOu7yFVyyNfzYVe78cQ4JlOTj/wYRERERET07HF0TvQEHhRMc10Xtm2j3W6jUCgAAM6fP4/h4eHwvuVyGQsLCygUCpiYmAAA5HI5TE9P79v+KaWQyWQwPz8P27Z33La4uIjLly9jdnYWMzMzbDdPREREREREdFwpJdXT8/NSHb3d4iJw+bJUVicSUnH9LCuoczl5/HZbWqYAwPnzwLbPVFAuAwsLcvvWZyrI5aQKnIiIiOgFo5R0g3vaoNp+DaMeZWg4OwvMzAD8aomIiIiIiA7ak4bUcpUcbM9G222j0Niq5xs5j+HebfV8rTIWSgsoNAqYGJwI7zd9Yu/PnpVSyBQymF+bh+3tqtFbX8Tl1cuYHZvFTJo1ekREREREzwMG6Igew8OCablcDpFIBL7vQymFVCq1IzwHAMPDw0ilUqhUKigWi5iYmEA+n9+3AJ1SCpcuXcLy8jIAoN1uo1QqhUG/0dFRAMDc3Byq1SouXrzICToRERERERHRcaMUcOkSsPX5AdptoFTqVm+PjACrq7LOiRNSXR18fvAsKqjzebkslWTfUqmdVd+AXE+lpIVKsSjV3/k8A3RERET0QlEK6HTk36VLO297kmHWfgyjHjY03PpqCXNzQLUKXLzIEB0RERERER2cjtvBf77yn58opJavy6Sp1CxBQSEVT+0IzwHAcO8wUvEUKp0Kis0iJgYnkK/n9wzQKaVw6eYlLG9s1ei5bZSapTDcN9q3VaN3Zw7VThUXz7JGj4iIiIjosDFAR/SIHiWY1ul0cPv2bbiuC8MwkEgk7vtYiUQClUolDOHtDuM9jUwmg+XlZfi+j2w2i0KhAKVUePvKygrS6TSmpqawtLSEZDKJ2dnZfds+EREREREREb0AMhmpkPZ9IJuVdiTB5wdKAT/+sVRFj4wAt28Dm5vA0NCzq6AOPhsJLh/wmQoSCan83r0+ERER0QsgCKq123J9P4Jq+zGM2mtoCAArK0A6DUxNSde8ZFJCfkRERERERM+SUgpNuwnbs8Muco8bUgtCd8FlIvaAer5YApVO5Z71HyRTyGB5Yxm+8pHdyKLQKEBhW41edQXp/jSmhqawtL6EZDyJ2bHZJ3odiIiIiIhofzBAR/SIHiWYZts2TNNErVYDAAwNDd33ser1OgAgGo3uuHxarutifn4eAJDNZrG2tgYASKVSSCQSqNfrqFQq4fLp6WlkMhlcuHABpsk/B0RERERERETHgusCW58fIJsFtj4nQColldW5HLD12QY2NgDTBHQdeOklqeB+FhXUwWcjweXWZyf3CJbvXp+IiIjoBRAE1ZSSANu1a08fVHvaYdTDhob1ugTvguXT0/I8LlyQYSIREREREdGzkilkYHs2FBSW1peeKKQWNaI7LuvW/SdNwfLd69+P67uYX5sHAGQ3slhrbNXoxVNIxBKoW3VUOpVw+fSJaWTWMrgwegGmzokUEREREdFh4WicaBulFJaWlpDP58POcuPj45iYmAiDaUtLS8hms2i32+jt7Q27zHmeh06ng3a7jVQqhdXVVayvr6NcLmN4uNv2vVwuo1KpQNM0jG6dSnR8fHxf9j+Xy8G2bbTbbRQKBQDA+fPn79n+wsICCoUCJiYmwvtNTz+45TwRERERERERHSG5nFRst9vSXgQAzp8HhocBzwPu3pXK7U8/BVotqZzu65PbTpyQCuqlJWB1FRgfB27ckArs6eknr6IeHwcWF6Xj3cqKbKNcln0KlMuyXNO67Vn26TMVIiIiomctCKp5ngzDHEeGXYODMgQyTWn6e/eunMNgaEjCdhsbwOnTwOTk/YdaTzuM2mtouP3+Cwty+9ZXS8jlZPhHRERERET0LAQhNQWFtttGZi0DX/kYjA1ipH8EpmZi09rEWmMNvvKRiqfwh5/8IdYaa+gxezCeGMdkahLjiXEsri9ipG8EK9UVVDoVlFtlDPduq6drlVHpVKBBC7vajSce/NlzrpILO+IVGls1eiPn73nMhdICCo0CJgYnwvtNn+BEioiIiIjosDBARwQJzv3Nv/k3MT8/j0uXLu24bXFxERsbG2g0Guh0OvjRj34Ez/MwPj6O/v5+eJ6HYrGIcrmMTqeDTqeDc+fOIR6Po9FoYGFh4Z4OcACQTqcRj8cRi8UwOTm5L88jn88DAEqlEpRSSKVSO8JzADA8PIxUKoVKpYJisYiJiQnk83kG6B7irbfeOuxdoOcUjw3aC48P2guPD9oLjw8i2i/8e0L3tfX5AUolaXmSSnUrpEsloFiUKulmUyq9AQnIra9LoK7Vkg51ui5V2KYJ/PEfA2fOSIuUmRmpDM/lZFu2DUSjeOsXfkEqv133ntswMgIYBtDTI+G9tTWp0t7d+gSQ2+NxIBaTxyN6QvwbSc8THo9ER9/1691/udxbUEpCbL29MuwyDAnVrazI+ufOyTDrhz+U4c/3vy9Dtv5+4NYtGY4NDEi4bmNDgnhPMozaa2gYGB6W5ZWKDBUnJuR+/GqJ6NHw//NExwt/54mI9sf1jevy79x15Co5KFthvH8cvdFeNO0mTN1EMpbE9YrcPjE4AVM38f6d9zHUM4Q/ufonKLVKGOoZwnprHaN9ozjReyIMtu3uFgcA6f404mYcMSOGydSDP3vO17dq9JolKCik4qkd4TkAGO4dRiqeQqVTQbFZxMTgBPL1PAN0dF8cP9BRx2OcjgMe53QcHIXjnAE6OvaUUrh06RKWl5fheR7u3LmDlZUVtNttOI6DRCKBQqGAbDaLTqcD3/cRjUbRbDbRarXQarUQi8Wg6zparRY8z8PS0hJ6e3sxOjqKRCKBSqUSBuc0TcPIyAgSiQSWlpYwNTWFH/7whxgfH8fk5CTMJz1TOwDbtndcBt3xdgv2aff6AOC6LnK53D1d+J5234iIiIiIiIjoORF8DtDpSOU1IFXWhiGX5bK0P3EcWbdWk2rqdlsCbsF9PU8qvFMpqbhOp4Ef/xj44ANZJ5+XKutSSf41GnK/eBx46SUgmQQiEcD3pTrctqUi/OWX5f6Fgtw/qPjWNNnG1JRcn5l58o53RERERAdIKeCb35TGvdVq9xwF5bIMmZSS4VenI+cqCM5FEI9L4O4LX+h2lguaAmuaPIZpypCq05GmwbYtgbpCQYZu/f0yzHvQMCoYGgaXD/hqCYmE7MPu9R/F/c6fMD7+4K56RERERER0vCml8M3lb+JG9QaqnSpc3wUUUG6Wcbd+Fx2ng7bXxmZ7E5ZnIaJHUG6WMRAbQHY9i47XgambMHQD1yvXoSkN1yvXEdEjSPWkMBgdxHp7HSubK2g7bSilcKL3BBLRBDzfw8ypGZj6gycrtmfvuEzEHlCjF0ug0qncs/6DuL6LXCWHfD0P27MRNaJhJ7299oeIiIiIiB4NR9V07GUyGSwtLWF1dRUffPABNjY2UK1WUa/X4TgOLMuC4zhQSsH3fSiloOt62O1N13WYpgnDMKBpWni77/vY2NhAf38/0ul0GEaLxWIol8soFotIp9PQNA2Li4tYXFzE5cuXMTs7i5mZGWjBN5+PIRqN7ris1+v3XS9Yvn19pRQymQzm5+d3BOoA7Mu+EREREREREdFzIhIBVleBxUVpIRJ8frCxAVy9Ki1QbBuwLOky1+nIP0DCcvG4VHgHfF/WNwx5jKUlqQJ3XeDuXakCd11ZD5D1rlyRx+nvB06eBE6dkv1aWpJ9e/NNWba0JFXmmiatTwYH5bGnp6Xym4iIiOgFkMkAN2/KMKZU6nZ9C85RYFly7gLfl2WADJkMQ4Zr8/MSjgua9m5syNAp6Cbned1zDgwOSsCuXpfHrteBsTF5/GxWhlCvv97dt62visLLB3y1FC7fvf5elJLnPj9/b+BucRG4fLnbwJhfPRERERERUSBTyODm5k0oKJSaJeTrefjKh+VZaDtteMqTOj6o8D5Vqwpt67/eaC/iRhy6riNqRGFoBgbjg9A0DcVmEeVWGQDgei4Mw8BwzzAM3cDyxjLabhtfPP1FKKUeWCMXNaI7LuvWA2r0tpbvXn83pRQyhQzm1+bvCdktri/i8uplzI7NYibNuj0iIiIioqfBAB0da67r4qOPPsLS0hIymQxWVlawvr4Oy7LgeR7crVOAep63437br3ueB8dxAEiYTtd12LYN13URj8fDznVnz55FoVBArVZDJBLByy+/jFgshuvXryMajWJ0dBQAMDc3h2q1iosXLz72hHd8fByLi4sYGRnBysoKKpUKyuUyhoe7LeLL5TIqlQo0TQu3OTY2FnbhA4B2u41SqRSG/vZj34iIiIiIiIjoOaAUcOuWtD/p7ZVq61JJKprzeQnKBeE515WWIKYp101TqrWDZZoGDAxI5Xa9DrzzTrdyu9WSKm3Pk20G/wKaJhXdzaYE5O7cAc6dkzDd+ro8Viol9zcMuc/GhmxHKeCLXzzoV46IiIjoibiuBMhMU8Jw5XJ3qOW6MvTa+prpnvu5rgyFNE2GQtWqBNcMQ4Zh0aiE7nRdhmTJpHSeq9dle8Hj5nIyTPvc52SY9l/+Sze4Nj4uYbaREWkuHHS62/bVEsplWa5pwNZXRhgf3/t5KwVcugRsffWEdrs77IxGu48zNyfP6+JFhuiIiIiIiEi6sM2vzcPUTRQbRZRaJdSsGizPglIKnvJ2BOdCW4t06KhbddRQg67pMHUTMSOGjfYGktEkLN+C7dtIxpNIxpNo2k00rAYiRgQzYzM4N3gO7999H5vWJi6evX+N3HhiHIvrixjpG8FKdQWVTgXlVhnDvdtq9FplVDoVaNAw2jca3u+e3VYKl25ewvLGVt2e20apWQo70AX3nbszh2qn+sB9IiIiIiKih2OAjo61XC6H69ev4+OPP8ann36KarUK3/fh+z48z4NS95ls70EpFYbrGo0GDMNAKpXC2toaTNPExsYG4vE4Wq0W3n//fWSzWZw9exa6rmNlZQXpdBpTU1NYWlpCMpnE7OzsY21/cnISly9fBgCk02msra1hYWEBqVQKiUQC9Xodla1CtnQ6jXg8jlgshnq9juXlZfi+j2w2i0KhsOO578e+EREREREREdFzIJOR0FrQzqTVkmrmYlHCc74vFd3bQ29BuxDDkCpsx5HOcZGIBNzyeXmMSkWuO45Ue+/1uUrQoc7zupe2LdXeyaQ81smTso31ddmvVEo6z/X1Ae+/L13wWGlNREREz7lcToY58TiwttYdbnU6MiTadQ7He2y/PRgyRaMybNJ1WRaJAI2GDI9OnZLAWyQi94nHgURC1ltbk+CapnWDa2++KZ3gACCdlnUWFmTolUjIdoJzJKTT3a53k5N773cmI+E535fOd4XCzuHhyoo83tSUNB1OJiXUR0REREREx1uukoPt2YgZMdyo3sBGewMdpwMPDwjO7eLDBwBokM+Ng851vvLRdJqIGTH0R/tRbpVhuRYiRgR9kT7EzBgWy4voOB383Lmfw9L6EpLxJGbHZu/ZxmRqEpdXt2r0+tNYa6xhobSAVDyFRCyBulVHpVMJb4+bccSMGCZT906kMoUMljeW4Ssf2Y0sCo3Cjue5Ul1Buj+NqaGpPfeJiIiIiIgeTj/sHSA6TKurq3j//fdx/fp1bG5uwnXdsPPc44bnAIT30TQNSik0Gg0Ui0VUq1VcuXIFhUIB2WwWt27dQqvVQrlcxurqahjWW1tbQzabBQBkMpmwA96jMk0zDLZNTU1hbGwMmqahUqng1q1bYee5sbExTE1NAQBef/11fPLJJwCAbDaLtbU1KKWQSqUwMTGBVCq1L/tGRERERERERIcsaH9iGFK9XK1KaxLDkApu15Vq7qBrnLl17q2gLcr2rnKNhqy/uioBN8eREF2wzqN+rhJUjbuu7MPdu8Dt21JpvbAgrVZ0XfalXgd+8hOpsPZ9ucxkntWrRURERLQv8nm5DIZTnY4Mmzzv4eG5+9l+P9+X4VTQ2Ldel6FZPC4d6gAJ1ZXLQK0mw6sf/3jncOrTT7vBtakpYGxMAnaVijQuDjrPjY3J7YB0rjP3OE1rMOwEJDy3tib7mUoBExNyqZQs3/rqCZmM3I+IiIiIiI63fD0PpRRylRzWW+twPOeRw3PbKSj4yoevfLi+G142nSbW2+uwXAuO7yCiR6CgYLs2lFK4uXkT791+DwCQWcvA9e+dqJi6GYbYpoamMNY/Bg0aKp0Kbm3eCjvPjfWPYWpIJlIzYzMw9Z0TqaDbHgBkN7JYa6xBQSEVT2FicAKpeAoKCmuNNWQ3snvuExERERERPRw70NGx9oMf/ADVahWbm5uwbRu+7z9RcG47pRQcx4Gu63AcB9VqFaZpIhqNQtM0tNttAIDneRgeHsbGxgZM00Rvby8Mw4BSChMTEwCkQ9709PSOx3ddF7lcDvl8HrZtIxqNYnx8HJOTkzBNEzMzM6hWq1haWsL09DQmJiZQLBbDdUdHRxGPxwEA09PTSCQSsG0b7XYbhUIBAHD+/HkMD29rKV8uY2FhAYVCYc99IyIiIiIiIqJD0ukA774LXLsmFdQ9PcCrr0qHtq3PAcL2J62WVFE3m9KapK9P1g9CdIBUSZumVFYH1x1Hrge3ua48lmlKGO9JK56DrnXRqOx7QNNk/wYH5TbblnWDfZqelkrrCxf2ruAmIiIiOkRBM9/1dTlXwfr6kwXntts+LNM0+dkwZMhUq0mHOM+Ty6DJ8MCADNcaDQmuAd3h1D/4BzKcu3pVhl62LcPF3U2Ag/vMzOy9f8Gws92WznMAcP48sO2rJ5TLEugrFCRUF9yPXz0RERERER1vtmfjdu02VjZXYHs2LM967PBcQEHBU/dOwBzfgdIUdOg4mTiJltsCAET1KGzfRnYji58e+2kgCiytL8HUTeTrediejagRxXhiHK+PvI5qp4ql9SVMn5jGxOAEis1iuM5o3yji5laN3olpzKTvnUgF3fbabhuFxlbd3sh5DPduq9trlbFQWkChUcDE4ER4v+kTnDwRERERET0uVpbQseW6LhYXF9Fut9FqtfYlPLedv1XMpes6fN+HbdvwPC/sNud5Hu7evYt4PA7DMMJ9KJVK6Onpwec//3nk8/kwpKaUQiaTwfz8POzg29Yti4uL+P73v4/h4WEMDg7Ctm3ouo5yuYzBwcEw9BaIxWKYmZnBzMwMvve97wEASqVS2Hlue3gOAIaHh5FKpVCpVFAsFjExMbFj34iIiIiIiIjokPg+8Ed/BHz721Idvd3778ttv/iLwN/9u9L+RCnggw+kcnt0VKqss1mppg6qsHVd1rNtCaZpmjxecKmUrL+5Kctc9+nbhThOt9pb12X/TFOqrHt7ZR3TlIrvGzdk22fOyHJWWhMREdFzLBqVYdaPfgSUSk8fngO6TXx3L7NtGUoFne5GR4F0Wm6LROTnnp5usG17cG1wUIJ1V67IkMv3u4/VbEr3uV/5FelWFwwLHyToulcqdTvP7frqCcPDsrxSAYpF2Zd8nsM6IiIiIqLjztAN3Nq8hUKjANuznzg89zBB17meSA8G44PIN/JwfAcxIwbLs7C4voiR3hH8fub3MZma3HHfxfVFXDYuYyY9g8+f/DwyhQwA4FTiFMqtMjatTeQqOfSYPfji6S/izTNvQrvPRCpfl8lTqVkKO89tD88BwHDvMFLxFCqdCorNIiYGJ5Cv5xmgIyIiIiJ6AgzQ0bGVy+UQiURQr9fDUNuzEHSk0zQNkUgESqlwW57nod1u486dOxgfHwcA9PX1YXV1FYODg3jppZfCx7h06RKWl5cBAO12G6VSCbZtIxKJwHEcFItFuK6LdDqN6elpaJqGwcFBbG5uYnh4GBMTE4jFYju61QEIw3jBZSKRuO/zSCQSqFQq96xPRERERERERIfE94Hf/m3gJz+RyuRSCbh7V8JspgmcPAmMjAB//udSjfzaa8Dt27IeINXQ7bZUU5um/Ox58lhKyeO7rlROA/Jz8PmJ48hyXZef9+v5BC1SdB1IJORyY0P2yzCkdUosJs/h/feBn/1ZVloTERHRcy2dBv6P/0OGLPsRngsoJUG27ZeOI8O6YHjW0yP/guEUIJ3k4vFucO3MGeCdd2Sd1VW5f9C0WNPkfqYpw7Rq9dH2LfgKKbh8wFdPSCRkP3avT0REREREx5fjOSi3yqjb9WcWngMAX/lou23c3ryNN8beQK/Zi5bbgufL5GmpvITGQAPDvcNou22UmqUd3eUA4P2772P6xDT+wYV/gG9mv4n3br+HjtuBqZs40XMCw33DKDQL+C8f/xfMjs1iJj2zI0hne/aOy0TsAXV7sQQqnco96xMRERER0eNhgI6OrXw+jxMnTqDT6Tyz8ByAHY+9+2fP8+D7Pur1OgzDgOM46O/vRyqVQqFQwK1btwAAmUwGy8vL8H0f2WwWhUIhDOIVCgU0Gg0MDAwgmUzi6tWrKJfLOHPmDEZHRzE0NATf9xGNRvHlL3/5nrPZRKPRHZf1ev2+zyNYvnt9IiIiIiIiIjokf/RHEp7b2AAWFqQrm+93q6jv3JFWIufPS9e5clkCdIYh3d58H0gmJaQWj8v9AVkeCMJs25cB3YDdflaBB49rWdKqpdMBbt6UqvPg84yNjW6Ir1SS5zM5+cCHIyIiIjpsc3PS4c11n83QKbgMhmdBU+JoVDrJBesYhlyapjT4DYJrq6vA1asyHCyVZLi1/ZwGSsl9VlaAv/gLGT7+9E/vvV/BV0jB5QO+egqX716fiIiIiIiOLw0aNq1NuL4LX/kPv8MTUlDoeB3cqN4ANCBuxGF5FnRNh+u7UpsHhXw9j/XW+o4w30p1Ben+NKaGprBYXsTy+jIUFCZTk2HYrm7XYXlWGLabuzOHaqeKi2cvhvV7USO647JuPaBub2v57vWJiIiIiOjxMEBHx5Zt20ilUtA07b4t0vdb0IlO13X4vh+G6UzThK7r6HQ68H0ftVoNKysr0HUd5XIZnU4H8/PzAIBsNou1tTUAQCqVQqvVCrvnra6u4vbt20gkEqhWq3BdFysrK0in05iamsLS0hKSySRmZ2d37Nf4+DgWFxcxMjKClZUVVCoVlMtlDA9328GXy2VUKhVomobR0dHwfkRERERERER0SDod4FvfAtbWgE8/lerjIOQWtCABJDT30UfAhQvycyol1dGWJY9hmvKv1bq3qjuoxH5QK5BneEIiOI48j6Ar3uio7G+rJa1PDAM4caIbCCQiIiJ6DnU6wJ/9mQzTWq2D2abryhDKdeVcBAMD0nXu3Dm5fXBQOs8BMoy6ckX2s1aToZVlSYPiSESGZK1WN4inadLc+I03ZAj5IOPjwOKiNENeWZGwXrkMbPvqCeWyLNc0GeoF9yMiIiIiouPtTv0OBmID8HzvmXagAwAfPppOE7mNHPqifQAAUzehaRqGe4dRapYQN+OIGBGk4ikkYgnUrToqnQrWGlLD12P24HbtNj5/6vPIVXIoNAoPDNstrS8hGU9idmwWADCeGMfi+iJG+kawUl1BpVNBuVXGcO+2ur1WGZVOBRq0MIw3nuDkiYiIiIjoSTBAR8dWNBrF8PAwent7UalUDmSbQde53ct834dt24hEItB1HZZlYX19HYVCAZcuXYJt22i32ygUCgCA8+fPI5VK4cc//jFOnTqFlZUVdDodmbwPD6OvTyb0tVoNhUIBKysrOHv2LCqVCl599VXE4/Fw+5OTk7h8+TIAIJ1OY21tDQsLC0ilUkgkEqjX6+Hrk06nEY/HEYvFMMmzuxMREREREREdnnffBfJ5qYre3JQKaV3vdosLWpD4vlQ+Ly1JJzfPk0rpTkcqqzsdCci1Ws82EPe4gk50QWgumZT9Lhbln6YBPT3y3BznsPeWiIiI6L7efVdCafX6/nefexClZFu+3x0ixmLSWe7UKRlGBcE1TZOuc6mUDCs7HQnYBedc6HRk3c1NaW584gRw44YMLc+ff/A+TE4CW189IZ2Wcz4sLMjjJhLyegRfzaXTsq1YjI2FiYiIiIgIqFk1pOIpaHj2J8QHpBNd023C8iyYhokeswdRI4qG04DTdjDcN4zh3mHEzBh6zB6cGTiDSqeChdIC8vU8AEDTNHxw9wPYnpyM7kFhu+kT08isZXBh9AJM3cRkahKXV7fq9vrTWGusYaG0cM/9g9vjZhwxI4bJFCdPRERERERPggE6OraCzmsvv/wy8vn8oe3H9kBdNBqFpmlotVqwbRs//vGP8dFHH2F4eBiO48DzPJw9exbDw8MoFApwXReO48BxHESjUfT09KC/vx+apmF9fR3xeBybm5uo1WowDANra2v47d/+bfzSL/0SZmZmoGkaTNPE7Ows5ubmMDU1BQAoFAqoVCphcE7TtLCTHQDMzMzA3OvUokRERERERET0bC0sSDV2uSwBsiD85ro7g3BBF7lSSVqHDA9LxfLmptwvqK5+XtXrwPKy7O8rr0gVdzQq1d7lMtDbC2QyUnU9Pi5V1/zMgoiIiJ4TCwuS/T/ocxUEQ0ClpLNcT4+ce0HXu8PFWAyYn+8OC2s1GVqdPSuP0W7L+omErNNqSQhvdBT4yU/2DtCZJjA7C8zNAVtfLaFQkNBcEJzTNAnPBbfPzHAYR0REREREwEBsAJqmIWbGAPvgtusqF8pV0JQGUzNxt3YX8Ugcg94gis0irpWvoeN2oGs6TidOozfSi5pdg698JKIJFJtFjPaN4vzI+Xs6yC2UFlBoFDAxOAEAyFVymD4xDVM3MTs2i7k7c5ga2qrbaxRQ6VTC4JwGLexgBwAzYzMwdU6eiIiIiIieBEfSdGwFndfOnz+Pn/zkJ2i1Woe6P4ZhAAAcx4FlWXBdF4lEAr7vo91uo9FooN1uY3NzE77vY319Hevr62g2m2i32+jv74dpmiiVStB1Hf39/RgcHITneWi321hdXcWZM2dQLpcxNzeHarWKixcvQtM0zMzMoFqtYmlpCdPT05iYmECxWIRt24hGoxgdHQ271k1PT2NmZuYwXyoiIiIiIiKio8d1gVxOKpttW0JiewXCVlelgtm2JQQXdJzbLqjSVkqCZ5YFNJuyfnCfF4HnSeW540hFdyQiFdzlMnDuHHD3LrC4KP8uX5Zq7ZkZqcomIiIiOkSrq3I+ANc9vH3wPKBalRBdrSZNfZUChoakM5yuy7Cy3Zbh5M2bcm6C7XxfhpFraxKgKxQevt2ZGdnu0hIwPQ1MTMiQLhjqjo52tzM9LesTERERERGdTZ6FqZsH1oFuBw1wfAd1u46R3hG07BZyGzn48KGgEDXk5Pjr7XXZPyWd4QDAUx5S8dSO8BwADPcOIxVPodKpoNgsYmJwAvl6HtMnpgEAM+kZVDtVLK0vYfrENCYGJ1BsFmF7NqJGFKN9o4ibW3V7J6Yxk+bkiYiIiIjoSTFAR8dW0Hnt5s2bGBsbw/r6OtQhFY7pug5N06BpGjzPg+u6aLVa8DwPnufBtm3E43F0Oh1ks1mUy2XE43FEo1HU63W0220opWCaJuLxOPr6+rC5uRmG61qtFpRS4WNPTU1haWkJyWQSs7Oz0DQNFy9eRDKZxPz8PABgYmJixz7GYjHMzMyEneuIiIiIiIiIaB8oJR3U5uelmni7vQJhhYKE4h4UhNu9LGhBYln7/QwOhudJ1fbKSvd60FLl7l2gv1+qsAFpdVKtAhcvMkRHREREh6pQkPCc5x3O9jVN/rmuDB1v35Zh0smT3WGh78ttQVPjWk2uRyJyXdO652loNOQ5PcrXaZomw7FkUoa6gITotovFZJjLcx8QEREREVHg9MBpnBk4A1/5D195n3nKgwYNuq+jYTXQ9trQNR0RIwLHc+ArH7quo9fshQYNnvLC0F0qnkIilrjv4yZiCVQ6FdiefAcQXAKQur2zF5GMJzG/Ng8AYae6QMyIYWZsBjNp1u0RERERET0NBujoWJuZmUEmk0F/fz9isRg6nc6h7IdSCkop2LYNz/Pg+34YdtN1HY7jhOvEYjHouo7NzU3E43FomgbHceA4Dnzfh2maqNVqiEajMAwDhmGgr68P8XgcSilsbm4im81ienoamUwGFy5cgGma0DQNs7OzuHDhAnK5HPL5fNiBbnx8HJOTkzDvd8Z7IiIiIiIiInoySgGXLgHLy3K93QZKpZ1tOYD7B8Ic595q7Belo9yTarelmjsaldYptRpw9aq0Mmk0pI3K2BgwNSWtTpJJCR8SERERHRLHkfDZ7kbBB2X7dqtVaWzsusDmpgynenpk6GnbEqhz3W6HulhMhl3B+pomy2q1Rz8ng6bJcOzChcdrtkxERERERMfXZGoSLyVfgusdTitvQzPgKAeb9mYYVnP8rdo9KMAHbNcGNMDUTPRF+1BtV9Ef7Ufdqt/3MYPlUSO64zKgaRpmx2ZxYfQCcpUc8vV82IFuPDGOydQkTJ2TJyIiIiKip8VRNR1rmqbh7NmzuHDhAprNJlqtFq5fv37g+6GUCkNyuq6HYTkAiMfjcF0XSin4vo92uw3btqHrOnRdBwDYtg1N0xCPx9FqteD7Pk6dOoXBwcHweZ47dw6dTge+76NQKIQd5nK5HKanpw/8Ob9ostksAGBqauqQ94SeNzw2aC88PmgvPD5oLzw+iGi/8O/Jcy6TkfCc7wPZ7L3tPFZWgHT6/oGwgYF7O9Y957IvvwwAmHqaz16UkudtGHK9r0+qru/elUruWk1aq4yNATduSHX29DQrs+m++DeSnic8HomOpoGB+4fNXn5ZfuevX3/2v/NBgK/ZlMCc50nzXl2XYFy7Lct8X8JyrgvE4zLsMgy53fe7wTrD6Ha1e9QhlmnKkOxhX0e5LoN2dDTx//NExwt/54mIno6pSyjNh5wR5GXI58rXcTA1fUFQTkHBgCE1e/ChQYOmaVB+97oHDzWrhmQsiUKjgLpVx9LGEpKxJMb6x/DKiVdQs2qodCrQoGG0T06aN54Yf+Bznz4xjekTMnlyfRe5Sg4/vPVDBuqOOI4f6KjjMU7HAY9zOg6OwnHOUTQde47j4HOf+xwSiQQsy8Lbb799KPvhb50G1Nt25vggIBcE63zfDzvNaZpMyoPAne/7aLVa6HQ6iMViSCaT4eMMDAzANE2kUin09vZic3MTxWIRExMTyOfzmJ6ehlIKmUwG8/PzsHcV4C0uLuLy5cuYnZ3FzMzxbAX/rW99C8CL/Qefng0eG7QXHh+0Fx4ftBceH0S0X/j35DnmusCHH0po7pNPpIuabUsgLJW6t8Pc9LQE7i5ckOrhoHr5Beo6962vfhUAMPW0n70oJa+NpklFuufJz3fuAJGIvIaAvE5//MfAmTMSPJyZ6XbwIwL/RtLzhccj0dG0vVnwdl/9qvzOv/32wf3Ou6407QXkUtcloGZZMkTSNBlmOU53yNRqyWVvrww9bVvO6ZBKSdBtv87PqJQMdefn7z1HxOIicPkyh3P0YuP/54mOF/7OExE9Hdd30XJaMHQ5idpXIZ8rv42Dqenz0J3IeWrrZwUYMKBrOhSU1M4pwFc+mnYTnu8h7sQRM2PY6GwgqkcRMSL4du7bONFzAhODExhLjCFuxhEzYphMTe65D0opZAoZzK/Nw/Z21fGtL+Ly6mXMjs1iJn086/iOIo4f6KjjMU7HAY9zOg6OwnHOAB0de9FoFJqmIRaL3RMcO2xKKXQ6nTAk57puuNw0zXACbJpm2MEOACzLQqFQwEsvvYRkMomRkREAwOnTp+F5HjY3N8Pnats2lFK4dOkSlpeXAQDtdhulUgm2bSMajWJ0VM5+Mzc3h2q1iosXL3LyTURERERERPQkXBe4fh34//4/4N13pUL5zh25HBzsVjanUhIGu3FDWoOcPClhu298Q7rSra11W4UcV0E3utVVaZMSi8lr5vvSvS+VAkoleb3m5oBqFbh4kVXXREREdGCazedr6BGce2Hr66YwLKdUdz81TYZTti1Dq0Si27nOMGRYahjSJW4/AnRKAZcuSWNmQDrelUrdDnRbX1FxOEdEREREdEzkKjk4voOIETnsXQlp0IBwziQ/B53qgG7QruN20HE70KChx+yBYRi4U78DUzfxpYkvAQBmxmb27B6nlMKlm5ewvLFVx+e2UWqWwg50QRe7uTtzqHaquHiWdXxERERERI+KATo69sbHx3Ht2rWw29vzxHVd6LoedqULAnJBmE7TNBiGsWN50K3OsiwYhhGG39LpNE6fPo1PPvkEgAQHg8tMJoPl5WX4vo9sNotCoRA+JgCsrKwgnU5jamoKS0tLSCaTmJ2dPaiXgYiIiIiIiOjFF7TV+Ogj6TiXyUhl8NqaBOYMQyqY+/ulHUitBoyMSCjs1i3gj/4ImJyUquHeXuDmzXvbcxw3vi+V3LbdbZeilLx27Xa38jsaBaamgKUlaZnCzzSIiIjogDyHXz3toFQ3VLe9sXHws6YBw8MynNI0GYamUnLbfg1FMxkJz/k+kM3KOSO278vKipwPgcM5IiIiIqLjIV/PAwBM7fkpbVVQ8JQHpRQ0aNChw4cPBQVd6XB9FzW7hpgRQ8SIwPVdOLaDnkgPTvafRMtt4Sf5n+B//qn/GTPpmT23lSlksLyxDF/5yG5kUWgUwqAeAKxUV5DuT2NqaApL60tIxpOYHZt9xq8AEREREdHR8PzMMogOyUsvvYTf/d3fBYDnMkTnP+BM8r7vwzRNxONxxONxNBoNWJYVhugA4O7du5iamsK5c+dw+vRprK+vo1KpQNO0MFg3MjKCubk5AEA2m8Xa2hoAIJVKIZFIoF6vo1KphMunp6eRyWRw4cIFmCb/hBARERERERE9VNBW49o1YH4euHxZus61WtL+Q9OkurpYlFBdLAb09UlYLph7+343cGcY0pVu64Q7x5bvyz9NAyyr+1oGZ9u1bfl56zMNTE9LhfaFC93XlYiIiOgZisdfzCFb8NVUpyPd5156SYZWhiFDVUBCdU/LdWV4DEh4Lhi2pVLS+a5eByoVDueIiIiIiI4T25OzdRiacch7ci8fMlnylCdd6QAoTQEKMHQDcSOORCyBjtuB5VlwPAfr7XWcTJzEensdXzj1hT27xbm+i/m1eQBAdiOLtcZWHV88hUQsgbpVR6VTCZdPn5hGZi2DC6MX9uxqR0REREREgqNmOvY+/fRTRKNRWJb1wrUzd10XruvCtm0YhgFd13d0ofM8D5VKBWfOnMEnn3yCSqUCQLrRxeNxxLa+5bRtG+12G4VCAQBw/vx5DA8Ph9spl8tYWFhAoVDAxMQEACCXy2F6evqAnzERERERERHRc8B1gVwOyOe7Hc7Gx6VD3P0qeefnge9+Vy5/9COpRHacbse0QBD+CjqnGYZsq7dXli8sSIc60wQ2Ng7q2T7/gtYpSkkQ0fPkNXQcYOsEQigUgK3PNJDLSfU1ERER0TPWanXDaC8SpeT8BIA0PtY0GZpGIjKkuntXhqjf/vbDh8J7yeVk2Ntuy3ANAM6fl653gXJZhsEczhERERERHQ9RQ87W4SjnkPdkb0FXOE95MDQDPWYPJocmoUGD4ztoO21stDfg+R7SfWn0RnrxvZXv4atTX33gY+YqOdiejbbbRqGxVcc3ch7Dvdvq+FplLJQWUGgUMDE4Ed5v+gQnSURERERED8MAHd2jUqnghz/8Ie7cuYONjQ2Mjo7i9OnT+Nmf/Vn09vYe9u7tK9d1MT8/j9OnT+P69euHvTtPpNVqodVq7Vim6zocx4Hv+8jn80gmkwAATdOQTqcxNTUFAJiZmUGpVAIAlEolKKWQSqV2hOcAYHh4GKlUCpVKBcViERMTE8jn8wzQERERERER0fGilLS8mJ+XSt/tFhels9zsLDAzIyGuXA5YXQX+r/9Lfr59W6qDPU+CcdvDc8HjKyVV1kGrEk2TbnPB3N9x5L7O8108cCi2v56WJVXe5bJUc9fr0uFvYkKCj/xMg4iIiA6A676YHegCliVDp40NaZCcTktjZcOQ4XCzKcPV3UPhRz1fZT4vl6WSDOVSqZ3hOUCup1LSiY7DOSIiIiKio288MY7F9cXnsgPdg3jKQ92q42blJuKROHrMHkSNKAzdgK98FJtFvBR9CdfK1/YM0OXrMkkqNUtQUEjFUzvCcwAw3DuMVDyFSqeCYrOIicEJ5Ot5BuiIiIiIiB4BA3QUWlxcxG/+5m/im9/8JuzdRWAA+vv78Xf+zt/Bv/k3/wZjY2OHsIf7L5fLwbZtdDod6Lp+2Luzb3zfR6vVCrvTvfTSSxgZGcH09DT6+voAANPT05iZmcF3vvMdAAjf80Qicd/HTCQSqFQq4Xr3O0aIiIiIiIiIDt1e3eGAx+sct51SUi28vCzX222p9A0eZ3RUfv6935PKXteVyuJmE7hxA2g0pOo36I62Ozx3v+1tv7RtqUTe6i4P132il+fIC0KIrZZUWler8j7F493QIz/TICIiogMSdFV7kXmeDH1tWxopnzgBTE3JOSVyOeDllyVYBwBzc8D6OnD6NLC29vAh9+7h2QO+okIiIcNgDueIiIiIiI6+ydQkLq9ehuu/WJ+Bu8pFuVVGPBJH3IyjL9KHlt2C7dvIVXKwPAsdp4M30m/g9MBpTKYmYeo7J0m2Z++4TMQeUMcXS6DSqdyzPhERERER7Y0BOgIA/Kf/9J/wG7/xG2i32w9cp9Fo4D/+x/+Id955B9/4xjfw8z//8we4h89GfuvUlsViEb7vQz2seO0FY9s2Njc38e677+Izn/kMWq0WXn75ZfzKr/wKZmdnoWkaolFpex9c1uv1+z5WsHz3+kRERERERETPhQd1h/M84N13JcTm+9LCIpmUS8N49HYZmYyE53wfyGalGnp7yO3ddyWs5bpSWdzXB8RiwMqKhOg87+m7xinFznOPIngP222ptr5xA/jMZ6R6G+heEhERET1jxeJh78H+UEqGuc2mDLUbDQnN9fUBtZqE6oaHZfj1J38i18fHgcFBWf6gIffu4dkDvqIKl3M4R0RERER09Jm6idmxWQCAjhfrhPgePDSdJlpOC5udTSiloKDgeA485cFXPn4/8/s4M3AGk6lJ/PT4T2MmPQNta5IUNaI7LuvWA+r4tpbvXp+IiIiIiPbGAB3hL//yL/GP/tE/gud54TJd1zExMYF0Oo07d+7g9u3b4W3FYhFf//rXMTc3h8985jOHscv7Juiidvv2bXz00UeoVCrQNO1IBelc10W9Xsfq6ioSiQS+8IUvYHNzM7x9fHwcH3/8McrlMq5evYpms4n/8T/+ByzLguu6ME0TpmlCKYV0Oo2hoSEUCgV86UtfOsRndfDeeuutw94Fek7x2KC98PigvfD4oL3w+CCi/XJs/p7crztcsQjcvg1sbEiFb6slt8Xjsr5lAUND0j5jdFTuU60CFy/uDNG5LrC0BHzjGxKMy+dl3f5+qQzu6wN+8APgzh2pJnYcefyNDbnsdLpd5465t95++2A2pOvd177Vkvek2ZT3GZBqbmDvboUP60hIR8Kx+RtJLwQej0RHk/6AWs+3334xf+d9X4bRwTkj4nE5V0EkIsMtXQd6e2Xd/n5ZPjQEfP7zwCuvSIe67UPu8XFgYUGGbsWiDMs6HWBionu+i3JZus9p2r3DOaIXBf8/T3S88HeeiOjpzaRncCpxCqVWCW+rA/pceR8pKLiq20HP8z1sdjYRM2JYWl9CsVHE4voi5tfmcSpxCrZvI1/Po9AoYL29jhO9J1BqlHDVuYqP1j6CqZmIGBEMxAYAANVOFf3RfpzoOQEAGE9wkvSi4/iBjjoe43Qc8Din4+AoHOesBDnmSqUS/v7f//s7wnO//Mu/jN/+7d/G9PR0uOzDDz/EW2+9hbm5OQBArVbD3/t7fw/z8/PhGVBeRNFoFJ7nYWNjA47jwLKsIxegAwDLsrC+vo7FxUXouo6lpSVks1l86Utfwvvvv48//MM/xMbGBtbW1lCv1+G6bvi+br+8c+cOqtUqZmZm8IMf/ADLy8sYHBxEp9NBuVwGAAwPD6Onpwfj4+OYnJyEyYIzIiIiIiIiehKPE27a3R1ubU06xNVqEqCq1aTi1rIk/NbTI9W+xSJw8yZw8iQwMAC89x5w9Spw/jwwNiatLj75BFhdlTCe40hHOaVkf5JJ2T/HkU5n16/LfmtaNzSnVLdTHR0Mx5Fq61YLWF+X9ykel3+xGPDSS9KpcHe3QuDROxISERERPYJkUoYTR2046HkSmAtCc9uHvNWqLItGZdidz8sw+fx54Otfl3NTJJMy1KrVgA8/lNAcIOe9+PGP5fwUgAzdenvlvBWvvNIdzk1OHsKTJiIiIiKiA6NpGn7+3M8jU8gc9q7sCw8ePN9DpVVB3a4jbsYxGB1ERsug0qkgokcQM2OIG3GUW2W03BZc34WhGYjoESiosKYxakTRF+nDWP8YvnfzexiMD0JTGr65/E0MxAZwNnkWpwdOYzI1CVNn3R4RERER0XYcIR9z/+7f/TtUq9Xw+t/6W38L//2//3dEIpEd6332s5/Ft7/9bXzxi1/E1atXAQBXrlzBn/7pn+LXfu3XDnKX99X4+Di+973vobe3F57nodPpHLnwXKDZbCKfz6NSqWBjYwNXrlzBH/zBH2BzcxOO46BYLKJWq8F15ew3u18HwzBg2zay2Sza7ba0mFcKuq5D07QwhGmaJs6cOYPx8XHUajUMDw/j1KlTKBaLWFtbQ7lcRrPZxMDAAF577TV8/vOfx/T0NIN2REREREREz9qL0m1LKQnEPWq4yXVlXaAbnqtUZHkQcGs2pSrX96Wa13XlsTVNOsWtr0tV7sCAhOqUAv7sz2T5mTNSBbyxIY/baEgbjXhctvfJJ1LVWy5LJTHQvdT17s90MHxf3tvgsy2lgFRKApGeBwwOAv/hP0hw0jTlffQ8+ReNdtua7G6PQkRERPQEzpyRYcVRFHyNdL/hrufJeStsWwJvtg188IEMpf+X/0WG7+WyTE/SaeAnP5GGzoWCDNsNoxs8NAwZpjcaMnT7u39XhnEvyvSGiIiIiIiezOTQJCJ6BK7nPnzlF4TlW/A9H7ZrY6O9EQbiAOlS5ylPwnKQz6RtZaONNgzNkGUa0HbbaDktWK6FtcYaBmIDuFO/g5G+ETTsBmzPxomeEzgzcAY/c+Zn8JWXv4LV2iry9TzabhvlVhlQwHDvMHoiPRhPjDNsR0RERETHBke9x5jjOPjd3/3d8Lqu6/id3/mde8JzgYGBAfzbf/tv8Su/8ivhst/6rd96oQN0k5OTaDabiEQiMAwDnucd2QAdAHQ6HXieh2vXrgFA+Lyr1Sosy9rzuXueB8/z4Ps+VldX4fs+Tp8+jXK5jEQigUQiEa6bzWYRj8eRTqdRqVRQrVbRaDTQbDahlEJvby90Xcef//mfY2BgAK+++ip+9Vd/FV/72tceePwRERERERHRE3rcQNqz8igVrkoBly5JNzlAqm5Lpe769ws35XJye7stFbdKSauLwUHg2jXpRuZ53eduGLKO53XbZViWVOpalrTB+G//TQJ1hiEtMNbXZR8bDelqBkj1ruPIMsfptt8IAnoBBugOXvD5hlISpJuYkPDjyopUZt+8KbeVSvJ+67qE7FIpWSedBqamuu1RZmcP8ckQERHRi2x8XIYavn/Ye3I4giCdacrQemFBzlNx5gxw+rQM0T/8UJZXqzKsdt3u62WaMg2wLBnCNZvA2bMylLtyhc2EiYiIiIiOKqUUblRuIGpG0fbah707+8ZTHpSn4CsfCvI5tus+PCDoKllHUzLJ8XwPtmcjakTh+A42rU0sri+iN9ILUzex3lpHsVnEleIV/N8f/t+YHZuFUgpX16+iYTXgKx8RI4LJ5CQujF5Ab7QXs2OzmEnPQONEioiIiIiOMAbojrFLly5hY2MjvP7mm2/i/Pnze97na1/7GsbHx5HP5wEA7733HtbX13HixIlnuq/PimmaOHfuHG7fvo1YLHYsJoCO46DRaABA2EUu+PcoXNeFrutYXV1FrVZDX18fNjY2EIvFAEjQzjAMAMDq6iosy0K9XoemaTAMA5ZlYW1tDaZpore3F81mE9VqFaurq3jvvffw67/+65idnT0W7wUREREREdEz9ySBtP2ejz1OgC+TkX31fenuFgTiAvcLN21uym2lkqyraRJyu3WrG9bzPFnu+/JP02SZ70slr+9LgK5YBPr7JVR1+rSsYxjyuvX1SSjPdaWyd3Ozu+2Nje62g+0YBsNzhy0INF6/Dnz2sxKk+8EP5FgvleR97emRf74vFdl9fdLFEACmp+WYvHCBbUyIiIjoifi+DDWazcPek8OjVDcUp5Sc4+LWLTnPgWnK0LvVkmG748g6wRQgWGZZEkYEgP/n/5Eh3Ze+JEP4g57eEBERERHRs5cpZHCjegMnek5g09o87N3ZNwoKnnqy7w00aGHoDpAwnuVaKDaLMDQDpm6iaTahaRoiegS367eRiqeQiCbw3679N3TcDuJGHFvN7aBBw+3abSxtLOGLp74Iy7VQ7VRx8exF1u0RERER0ZHFyo9j7K//+q93XP/bf/tvP/Q+mqbhl3/5l/F7v/d7AADf9/Htb38bv/7rv/5M9vEgvPrqq1hcXAyDYcfBo5y5Zi+O4wAAarUadF0PJ82+78N1XSil0G630Wq1oGnajuVKKWiaBtu20W63EY1G0dPTA03TEIvF8Cd/8ifY3NzExYucjBMRERERET21Jwmk7We3rccJ8K2vSyUtIPsahJhSKSCRAOp16SK2O9yUTst125btFQqybqslATbP61bsBq0sgvlmEKRTSm5zXdlHXZdt2bYE4ZJJqXoeHZXOc5omVbytVjcw57pyv+1hvWAbR7jb/XPLdYHeXmBgoPsefvCBdCx03W7oMRKRf0ND8l6lUvLeFwoSuAPkPtPTh/p0iIiI6MUUjwNjY5LnP86C4bZty3B+YKA7DG82u0Pn7eG57TyvO43o6emuu3uozWbCREREREQvPtd3Mb82DwCI6JHD3ZnnyPbwXPCzBy/sSgcFaL4GDRo6bgcA0LJbMA0TlmMhFomhqqrwlUzATN1EX6QPLaeFht3A3zzzNwEAyXgSs2OzB/fEiIiIiIgOEAN0x9gHH3yw4/rMzMwj3W/3ej/84Q9f6ADdyZMnkUwmEY/H4fHM8I8k6FbnOA7q9ToikQgGBwfR09ODarWKTqcDz/PgeR583w9DdEqpHSFF3/dhWRZ838ft27fRarVgWRYajQY2Nzfxta99DSbP8E5ERERERPRkXFe6vgGPF0jbz25bjxPgu3xZKmKHh2U9ADh/Xq4HymVgYWFnuKlclstoVJ5PqSSVyo2GhNxct9ttLqjI1fXuz0E1LyA/B58NbG5KQC4Wk8rbTkceP2iB4XmyTClZFjxG0Hlud1iPDpamSYCuVgPOnOl2QAyOv95eOQ6i0W4nwdFROW4GBuR+xaIcZ/k8A3RERET0RE6dkga3sZgMIY+z7V3lqlUZNgfnuQC6l7sFw2nLkuG478uQ37KA114DTpw4uOkNERERERE9e7lKDrZnI27GYXkWDBjwwJo+4N4udICE6bYvM3UTjucAGtBxO1Cugq7pUK6c+N7QDGiaBtd3UbfriJkxFJtFXClcQV+kD/G1OC6MXoCpcyJFREREREcPR7nH2Keffrrj+vQjFgJ95jOf2XF9OTiL/AtqcnISKysrMAwD/f39aLfbYUCM9ub7PmzbhmEYKJfLiEajMAwDnU4Htm0DkLBdEJ4zDCPsKqfrOjzPg1IKjuPA8zxUq1XcuHEDfX19qFarKJfL+OxnP4uZmZlj143OdV3kcjnk83nYto1oNIrx8XFMTk4yVEhERERERI8ml5Pq1Hb78QJp+9Vt63EDfIB0oXNdqa5NpXbuKyDXgw5hQbgpMDQklbiOI20sbLsblNvdmiII0QXd4oI5p+93w3DB/RxHAlTxuOzz0JCsu7nZDeft7mgfBPH4+cLh0DR5T5pNqaiOxYC7d2X5+Lj8TlSr8l7GYvL+1moSlKzX5f1vteT9jcV2HmdEREREj+H117tNcUulw96b54NS3SG/695/ne3D9+BS02T9RkOuR6PS3e/VV7v3e5bTm4PiurLP+Xy3cff4ODA5ySAgERERER0P+XoeANAb7YXjOVIzxo/aAeCe8FzAUx7gA4ZmwPItKCgYyoDne4AGaJoGz/dg6iaS8SR6Ij3YtDbh+R4MzUDbbaPULOFG9QZOJk4iV8lh+sQLNJF6RK7vIlfJIV/Pw/ZsRI0oxhPjmExNMjBIREREdExw1HdM2baNte0FagDGxsYe6b7pdHrH9evXr+/bfh2WoPMcO9A9Ps/z0Ol0YBgGbNuGbduwLCvsOud5Xhh+2x2m2873fbRaLQDAnTt30NPTg7t374bBuosXL8rZb454sEwphUwmg/n5+TCEGFhcXMTly5cxOzt7LEOFRERERET0mPLyJTNKpccLpD1Kt61Hqep83ABfIiFhtaCyOJG4/7YTCdnfYM40PCwhvGYT6O+XIFS1KgGqSES2HwTmgmDc9svtAbrtHei2V+wGt5smsLEhYbreXrl/pwP09Mi2Gg3ZDwbnDlfw+ruuhOSCzofRqBwjwbHT6UjArqdHAnalkryPnifvbzQKLC7Kezo2BszMsKMgERERPZaLFyU8F4sd9p48X/YKzwW37/45GNLbtgzjAODOHRmSmyYwOPjw6c3zHE5TSjrmBY2Tt1tclIbds7MckhIRERHR0Wd7MiDujfRC0+7tuEb35ykPHbcj3ea2XjMfPjQlNXy6piNuxtEf68dAbAAaNDSdJnzlw/d9dNwONtobKLfKyNfzYYDuKITOlFLIFDKYX5sPj6/A4voiLq9exuzYLGbSrMcjIiIiOupejBEs7btCobCjy1okEkFfX98j3Xd4V7HdrVu39nXfDloul8Pw8DB6e3vD4Bc70D06pRRc10Wn04Gu63AcJ3z9gkBicD0IzwWvse/74eMEgbtOp4Pbt2/DMAwopTAyMoKlpSUMDg7C8zx85zvfQblchuu6ME0Tg4ODGB4ePhLBMqUULl26FHZ1bLfbKJVKYVBwdHQUADA3N7cjVEhERERERHRfQdVlcPmogbTd1ZrbPU5V5+MG+Op1WWZZchlc3y1YHo3KZU+PbPOTT4CREekMB+wMwm0/YY5SO0NxwWcAQbc6w+i2vNh+P12XMJbrdrvP9fRI0CroNuf73c52dLiC97BUkuNC17u/A4mEBCFbLeD2beDWLQleRiKyXqcjoTnPk/d0ehqYm5Ng5sWLrFgmIiKiRxaPA2fPAh9/fG9TZHp8wXkwWi05T0a5LEM4QM6pcf26DOeBndOb5z2cphRw6RKw9fUQ2m0ZxgYhv62vhzgkJSIiIqJjIWrIZ/8dZ+vMGZxHPTIfPnzlQ0N3wqCgJEgHDVEjGtbxRYwIIn5EutQBsDwLnu9h09qE7dlHJnSmlMKlm5ewvLFVj7fVbS8IA472bdXj3ZlDtVPFxbOsxyMiIiI6yhigO6YqlcqO6wMDA498393r2rYNx3EQCb6hesHk83kkk0nEYjEopRiee0zBhNFxnB3BuPu9jsEypVTYmW77epqmwTRN+L6PZrOJcrmMbDaLqakp/M7v/A48z4Pv+3AcB/V6HZ7nwTAMpFIpTE5OwrKsfQ2WHXS3u0wmg+XlZfi+j2w2e0/QdWVlBel0GlNTU1haWkIymcTs7Oy+7wcRERERER0RQcAsuHzUQFpwudvjVnU+boAvFpPgUiIh+1SpSEXs7o51lYpUiwbbGx8HXnkF+M53JLSn6/JYti1tJOJxqbANus0FzwXodqULutCZpjyXIBDned1K52YT6OuTdYKgXTIp/1ZXZRt9fXLJAN3h8zx5f8tlORbicTm2gs6EiYSE527f7nYN3N6t0DRleTYrbWNGRoClJXm/ORcnIiKiR+S60gUtGuV5FvZbsykNoEslGZoHX1+urMhQ7uxZua7rwB/8AXDlirwfnieXfX0yRHwewmmZjEyzfF+Gn0ED5cDKCpBOA1NTHJISERER0dE3nhjH4voiAAl16boehrzo0ezu2qcpDdDk9Qxr/TwHABDRI7BcCzAAQzfg+i4ieuSpQmfPU9e6TCGD5Y1l+MpHdiOLQqOw4/VZqa4g3Z/G1NAUltaXkIwnMTs2e6D7SEREREQHhwG6Y6rZbO64/jjht/ut22w2kUwmn3a3DoVt2xgaGsLS0lIYyHJd97B364URTH63d5N71BDi9vV0XYeu69A0DYODg4hGo9A0DXfv3sXCwgJu3LiBZDKJTqeDRqMB35f28ZFIBKZp4ubNm/jc5z4HAE8VLHNdF9evX8f3v/99LC4uQikVdrkzDAOLi4vPpNud67qYn58HAGSzWaytrQEAUqkUEokE6vU6KpVKuHx6ehqZTAYXLlx4JmE+IiIiIiI6AsbHpZ3CyIhUXD5OIO1+HreqU9dl+aMG+EZHgbt3paNbb6+0kFhYkA51QahufV2qZHt6gFxOLr/0JamC/exnZR+bTdmmpsm+BoE4x5Hrwfw1CMYF4bngXyAIUgFyX8OQznOmKSE5TZNgVk+PvKaaJvvvumwv8jwIQpC6LsG4ZrN7DPT0dFuVtNvS9dB1u+93JCLvt+sCg4PSoe699+RYy2SACxfkOCAiIiJ6iFxOhhQjIzJ8ZoBu/zQa0kQY6A73fF9e40hEAnUrK8A3vym3xWKyXqPRHSamUtJkemzs8MJpriud8QCZZm19DbRjGlSpdJdPT3NISkRERERH22RqEpdXL2OtsQYdOpTPz9qfloKCpmmwXeksZ7kWbN+GBg2e8uApD1EjioHYAEzdxHp7HQulBay313G1dBXrrXVEjAj6on3ojfQiEU0g3Z9GMp7E0voSrpWu4bWR1zDWP4a6XccnxU+ei651ru9ifm0eAJDdyGKtsVWPF08hEUugbtVR6VTC5dMnppFZy+DC6IUDD/oRERER0cHgKO+Ychxnx/XHCdDFYrF7lrVaracO0M3OzkIPCpW2MQzjgROmf/Ev/gX+5b/8lw997LfffvuBtzWbTaysrMCy5AwrTxqee+utt/a8/a/+6q9w/fr1J3rsF2EbSql7Oso9zjaC91jTNCwtLaFarcJxHHz88ceoVCowTRMbGxuwLAuu60LXdcRisTB412q1UK1W0Wq1EIvF8MMf/nDPifZXvvIVTE1N7dj/TCaDjz76CJ988gkKhQIA+V1ZWFiAUgqnTp3CG2+8AQCYm5vDt7/9bZimCdd1w+dvmmYY/tu9jb3kcjnYto12ux1u+/z58+Hr2dfXh+HhYViWBQAoFArQdR0//OEPcfHixUfaxoPs9fsB3PtacRvcBrfBbXAb3Aa3wW28yNs4ag5rHgW8OO/5sd7G5CRw+bL8nE7fP5AWdKhPp/F2vS7VpN/+tnRz204pfEXXMWUYj17Vub7e7dy1FeB7O5/fWeXpunL/RALo6cFXJiYwFYnIfQCpMq5UgI0NuaxWgf5+Wb9cBl56CfjBD6RdRKUCKIW3v/Y16WQXdJZTqvsPwFe+9S1MXb/eDcsF3ca2h950vdtlTte74bpWC4jF8Pb/+r92w3fB76CmyfPxfXzlO9/B1Oqq7EfwmI8ZqHv7IfPzr/zVX8nzeArHZhvf/S6mgk5zi4vSbsR15T0JPgcKjoO+PqmadhxpSbL189vptByPug78n/+nVGBv38ZR/lvCbXAb3Aa3wW0c+20cNQc5jwpCXT/3c8AXvwh885tfwfXrT/d+vPXW3u/5X/3V0d9G8PZtbso/25Z/wbkyDAP47neB/+1/exujo93uf77fHfbpOrC8/BUUClPhUP1Jwmnb33OlZD+CoaamAX/jb3wFb7459cDHy+XkPu22DDcB4Pz5nec9yeffxtbXQ/cdkr4of0u4DW6D2+A2uA1ug9vgNo7TNo6ag/4+quN28ErjFZxxz+Av8ZdYxvLj7/Q2b+Eh9XD4K1zHU9bcPcfbUFDwfR8uXJSaJZi6CUM3oKDgeA40aDiVOAVTN9HzUQ9+8pOfwFUudE/Ha+o1AFLTp0PHwuACPjY+xifFTzDaN4p0fxrrrXX4ysefLf4Z1tvrODNwBsO9wyi17t+17tvf+Db6on0PfB73+x183K52b7/9NizPQstuwYePqBPFBCYQM2MwNRMD5wdwLn0O5VYZC6UFFBoFTAxOAABylRymT0zv/Wbg6Py94ja4DW6D2+A2uA1ug9t4XrZxEBigO6YMw9hx/X4T3Ae5X0Bqe/exJ/UkwbXdQcAnYRgGVldX0dvbi1Kp9NSPd9wopaDrOgzDgFLqkbvP3Y+madA0LQyRRaNRVKvVsNtcq9WCruvo6elBJBJBu92GUgqGYaDT6cB1XWQyGfT392NiYgKxWAxKKdi2fU/IzfM8uK6LXC6Hu3fv4v3330ehUECr1UKpVEKz2USpVEKn00E8Hoeu69jY2MDVq1dx8uRJRCIRnDlzBtFoFLFYLPwwKAjBxePxHa9FsK18Pg/bthGNRjE+Po7JyUmYpol8Pg8AKJVKUEohlUpheHh4xzEZhPU8z4PneeE+EREREdHxdVjzKHpBmKa0Tpibk3YKQDeQFgTnNK3bNW59XQJD9/uy27bl8Wz7wVWd5bIE9AoFYGJCwnObm9LSIQjwbe/05fvdjmCG0Q0sfe5zwM2bUr06MSGPFwSsJiakErVSkcf3fQmpeR7w0UeyDydP7uwoZxjdVhRBq4ntgblgvf7+bnAu2DfH2Vn9quvyHILPQYLnEcz/gtBeEPILAlrbg1p08IIOhLouVexBZXPwXhuGHHvRqIQ3BwakGrnZlPctFpN1LUu61wXLiIiI6IV0kPOoYJh4ACfWPzaCIVw0KsOzYFgfTA0AGd4B3SH47tffdbvnyuh0gNu3ZfmE1Eoil5PpiOvKz/m8DB+jUWnYPTl5b8Cu09l5/ozAlSvAjRsyNZuZuXdftr4eQqkk902ldk6zANmW68qw1vNkvzkkJSIiIqKDdNDfR8XNOAzNeKo6NBIaNAnQKR+u76JpN2HoBnRdh6lJkG60bxQnB06i3CrjHM7B8R3pTOd70r0OMpHx4KHWqaEZbcL1XdSsGipt+b7peuU6NGiIGBFcKVyBruk4mTiJRCwBAPi4+DHiRhxj/WMYtAfhKx/90f4HBjCDwNzd2l1cK1/Dzc2b6Iv0YbhvGIYmk76HdbVzPTluPV/awRuaAVPbOZkb7h1GKp5CpVNBsVnExOAE8vX8IwXoiIiIiOjFoynOMo6ln/zkJ/jsZz8bXj99+jRWV1cf6b7tdhu9vb07lq2trSGdTj/WPnz66ae4cOFCeD0IKT2ORz1TzV7eeecd/Ot//a9RKpWwsrLyxB3ojqvtE88n/XOi6zpM0wy7GxqGgXg8Dt/30Wg05Aw4WwG4oFui7/vQdT0M8Pm+j2g0ikQigZMnT+LixYuYmppCNptFsVhEu92G67qIRqNIp9MYHBxEJBJBOp3G7du3cePGDXieh48//hjtdntHKDQajSISicB1XdTr9XBbfX19ME0Tp0+fxsjICE6fPo10Oo14PA4AmJ6expe//GVcuXIF8/PzsO1ua3rP81Aul9FsNnHu3Dk0Gg20221Uq1UUCgVMTEzg3Llz97xWN2/exK1bt3Dy5ElMTU3hpZdewi/+4i8+0etORPvnYSFZIiJ6dnbPKz755BO8/vrrh7hHz9bzMo8C8HiVhNR10K+bUsC77wJLS3K90wGKxe62R0clOARIhejFi/ev7n33XencdeuWhNtSKWCrQ/cOH38s4bZz56T6NAiY+b50risU5OcgxKdUt0udpklHuclJoLdXur05DrC6KhWnSklVaaMh20+lZJuaBkQiUj1bLgN378r9o1G5fzBXLZelk51Ssn67LesE87+tLnhhFe3mpqwTBKyCoF0QxvN9eZygu11Qxarr8jiaJtvXtG5wkB/DHbztYcpYTN7LWKxbhRyJdN+3ZBJ45RU5FnQduHNHjsNg3clJ4Od/Xo5TzsWJiOgFxnnUwc2j3n0X+PM/l3NavP9+N+BFT0fXZSgfvI2O0x2i73WfYFgIyDAwkZAGxI4j58CYnAS+8AXgzTeBEyeA+XmZOu0WjXYDcQBw6RKwvNUQo92Wacv9plwvvwycPi3nFgluz+XkuLhxQ6YyExMyndrt5k2Zjp08Kec/4ZCUiIiI6GBxHnXw30f973/2v+Mbn3wDDafxxI9BCMNvGuTE9oZuIKJHYOgGoIC+SB/ODJ6BgsJAbACe7yG7kUXNqqHjySQ2okfCx/N9H9AAX/mAAiJGBEopWJ4ljwkJQA7GBjHSN4LeSC8s18LWbsDUzLD73OzYLN488yb+9it/GxFDtqGUQqaQwfzaPCzXwtL6EgpNObGj4zloOS0M9Qzh9MBppPvTiJtbdXonpvHmmTdxo3oj7FJ3pXAFLaeFqlUNO8ydS5675zW6Wb2JW5u3cDJxElNDU3gp+RJ+8WVOuIiIiIie1vM4j2JF2zHV17ezBbZ9v29/HuB+Z4fZ/XhP4oMPPjiUX4jl5WUkk0lks9l96aR33OxHBlcpFQZMgu5qnufBtu2wa1zw3mw//oLwXLDMsqywW92f/dmfYWRkBIVCAY7jhOE5wzBgWRY8z8Pw8DDOnz+Pzc1N1Ot15PP5sOOd53no7e1FOp2GZVmoVCpQSsF1XTQaDZimiUZDPqCpVCpIJpO4e/cu0uk0xsbGMDU1hcXFRSwvL4evUbvdRrFYxK1bt3D79u2w496HH36ISCSCZDIZBvSSyWT4PIOw3ebmJpaXl9FqtZBIJOB5HqLR6GO91gz5EO0vpRQymcw9IVkAWFxcxOXLlzE7O4uZmXvPdEVERLQfDmUepRSQydy/knBxEbh8+cGn1j/ODut10zQJxSWTsm2g21YhEIvJdvfadrDPwWUicf/1EgkJxgXrTUxIVejSkgT0zpyRymHPkwBcT49UmJbLEqIbHpbq1c1NqS4dGwP+4A9keT4v64+MSFe7RAKo12V7q6uy76YpVbM9PVKZ6rpArdZtPeE43UBUT48E7baH/ILQW9DaYfucN3iM7R3ngoCepnUrdn1fnn8QtHuU9whguO5Z0TR5r4P3yfcl0BhUSuu6hDjjcTnOBge7943H5Xhpt6XCOnivHnMuTkRERM+Xg5xHjY/LsPXuXTYk3k9Bw+jt3eceNpwOvgIMhnSuK8M8XZd/sVh3KP/JJ3JehVhMwnDr6/L4yaRMawAJRVarMnxcXt55zhDPk/N+tNtyv6EhCeT94AfA2bMSgiuXZdpz86asm0jIMLNe37nfnifrXrsm62uarBs0GSciIiIiOggH/X2UUgprjTV2oNsHCvIampoJ05DaMKUUfF86wMXMGEqtkgTslIbljWW03TZc5UL5CoZuwPVdQAGeko50QUc7DRos3wIgAT1v6zsR27PRsluodqpI9aTCgF3baUPTNAzGBpGIJRAzYrhbv4v3br+H/+n1/wkz6Rm8u/IuljfkDCXZShZXy1fDbnee70HXdRRbRdxt3EW6L42x/jFMDU3hu7nv4n/c+B8wdROVTgXrrXXc2ryFjishwKgRxUBs4L6vUd2qh+sEl0EHvCCMFzWiGE+MYzI1CVNnjR0RERHRi4ojuWOqv79/x/VWq/XI963VajuuG4Zxz+O9SNptmZidOXMGyWQS169f5+T7AAWBEsuywp81TYPruvA8D5qmhe9H8HOwnu/74c9B6A6Q97RWq6FUKsEwDLiuC9u2w9sNw0AkEkGz2UQul9tx3fd9GIYBTdPQbrexsbEBy7IwPj4O3/dx/fp1eJ4XPqZhGDAMA77vo1wuhx3yAKCnpwe3b9/G5z73Ody4cQP5fB7ZbBalUin8ICLotuc4DmKxGE6dOoVqtQrbtjE2NgbLsrC6uhoG99bW1qBpGiqVCn784x/j5MmTO16TB3EcB++88w7ee+89dDodmKaJwcFBDA8PM+TzlLLZLABgit9WHztKKVy6dAnLW6cWbrfbKJVKYTh1dHQUlmXh+9//PqrVKi5evMjfL9qBfz9oLzw+6Lml1MNPrQ90Kwkf1M3suDnE1y38ezI7C1y48OTd74LAUHC5u6ozECwP1ovFgC9/uRvgW12V5cPD8hrcuSPVqkE3uQ8+ANJpqQa9fl0qSScn5TVbX5f9TKflPq2WPP7oqFQkt1oSiurvl8cPntPQkITsAKk0dV3pQhaPy8+9vVJ9G7SguHtXthsE6Fz3wdXOwecHQfgu6EbX6cg2ggDdXp8zHKPPILIvvwwAmLp+/eA2GrwvhtHtPGjb8rtmGHLb+LgcA+22vPfB51ydTrd7YDQqxxUg69ORwDEXPU94PBIdTZOTMrxsNncO+15+WX7nr1/n7/yTCgJxjzuc3r1+cA4M15UucPW6TCFWV2WIaBg7189kZLryMz8DXL0q05qxMQnP5fPd84kEjY5bLZn2aJqE7a5fl0vP6za6rlQkJNduS8BubEyGnrdvAysrcgzdudPd/81NmRINDfHcNS8K/n+e6Hjh7zwR0dPLFDIAAMd38DLkc+XrOMDPlY8gTdPgKx+mZkooTrlouVIzamgGOl4HlmvB8iy4visd5rB1YnzdhKMceEq+8whCecHl7p8BwFUuanYNTacJDVoYvNM1HR23g/X2OjbaG7gwKh1J/uTqn+DD/IfwfAnpLa0v4Ue3fwRPeah1pBueBg2D8UGk+9KwXAuVtnz3c2vzFpp2E9VOFb3RXhQaBXi+B8d3YHtywkfHc1BulaFDxxvpN8L6nXKrjEqnAg0aRvtGoZRCtVPFf77yn8P7er6HcquMTWsTGjR8Zvgz+NmJn8XLQy/vW5iO4wc66niM03HA45yOg6NwnDNAd0yNjY0hEomEnbuazSY8z4Ox+1ug+yiXyzuuj7/gRUPRaBSVSgU/+7M/C8/z8B/+w3847F06VoJwXBCWC+i6DtM0w65vQeAssH3d7YFHz/PQaDSgaVrYDSp4bF3X4fs+XNeFZVnh42iaFgbttof0NE3D+vo6TNPEl7/8ZSilcO3aNSilwn+AdHXzfR/RaDTsmpfP58PH//DDD2FZFrLZLKrVKnp7e1GtVtFoNKCUQiQSQW9vLzY3N+F5Hvr6+rC5uYm/+Iu/QE9PD+LxOJrNJjY2NuD7PgYGBsLHvnv3Lt59990HBnOUUpifn8c3vvEN3Nn6dtVxHNTr9bCD3WuvvYaXX34Zc3NzO0I+7Fb3aB37vvWtbwF4sQcD9GQymQyWl5fh+z6y2SwKhcKOv0crKyt46aWXEI1GsbS0hGQyidnZ2cPbYXru8O8H7YXHBz23Mpl7T62/vfpwZaUbflpaktAU//93qK/bjr8npintEoKWCY9jfFw65Y2MyP4GFZ5BoAiQ65WKVG8GocDxcbk+Owu8+irw278t1aArK3J7Oi2d4gYHu93k1tbktulp4Ec/ki52xWK3RUOxKK+lrktnsf5+WW7b3epW3we+8AWpYP3kE6lS9TzpRgfIa5xOd0NuzaYEp9bXu93kglYWgeA9CwJZu21fFgTv9qJp3e0H3dGOeJjuW1/9KgBg6u23D26jnieVyEC3QlkpOV7icTl27t6V49J15Zjp7ZX3fm1NqqaHhqRL3ciIhDYnJw9u/+mZ4piLnic8HomOJteV4X+7vXNo+dWvyu/822/zd/5JPYuhs+vKELBSkSFgEKDr65OhYzwu211clPMsvP66hO4SCblfoSDTk+C+mibDzc1NCdTV63IsDAzIOUQsq9sgOZWSn1dX5fwrvb0yBVpfl/s4jpzToViU6cviolxeuSJTpuD2Rz1HytO+Tk96bpbjiv+fJzpe+DtPRPR0XN/FR/mPUGgUoKDwVcjnym/jAD9XPoJ0TYehGWGQLqJH4Pke2m4bju9Ag4ZapwZX7fxuw1MeNKUB6t6Q3F6CdYPQXRCi85UPDx4830PVr+Ljwsc4NXAKGjSsbK7g7OBZtN02shtZeMpDzIjB0A1EVRQ9kR5EjSh85ePUwKkwiHezchO9kV6UW2U4vtTDer4HT3lwPAcRIwJDM7DR3sCllUu4U7+DV4dfRcNuoNKREF66P42YEcON6g34yoehG2g5LXxS/AR363cBAAOxAZi6iXwjj6vlq7gwcgE/Pf7TeH3kddyo3niqbnXP0/iB3ffoWXiejnGiZ4XHOR0HR+E452jmmDIMA2fPng1ToEopFIvFRwrDFQqFHdfPnj37TPbxoAwODt4TzGIHusOhlIKu6zvCbrvDatvX1bRu63cAO67vDpMF7+vuxwqWb3+cQLB9z/N23Dd4bMMwoOt62HWqr68PrVYLSik0m004joNEIoFisQjDMOA4DpLJJNbW1tDpdOQDia1AX6fTge/7qG91azBNE61WCydOnMDa2loY+IvH41BK4ebNm5ienoamaQ8M5gTdsf76r/8ad+7cgW3buHXrFur1OjRNQzweh2EYKJVKWFlZwc/93M9haWkJg4OD0DQN8/PzYQgx8Dx2q3sWQT+lFDKZzCO9BnQ8ua6L+fl5AHJGhbWtIu9UKoVEIoF6vY5KpQJ3W9F0JpPBhQsXjk0AlYiIjiDXlQ5igITAgpBTKiXVgvcLP2Uy0vXsOP//76i8bpOTwOXL8nM6Lfu7sHDv8whuj8fvDRrduiWVpD09UlkaiwHnz98bwltYkNtPnZJg09oa8PHH8nNfn1Rodjrd0Flfn/xcr0tVaiQiFarvvistG+p1qUi1bakwBaTC88QJ6fbnusD3vietIzRNgnlAtxVFsJ3AfnxmEITn+PnDwQhe5yCsCMj7HlT7VqtScZxKyTrVqtwGyPE6NCQVwcPD0uLjefrdJCIioufau+/KEHf7MISeX8F71OlIOMwwuue8cBzpJhecs6NWkzBbJCLrb27Ken19srxW63aLC87loZRMlRoNmRKYpgw7LUseO5mUKUjQYDvYF9veeR4I35dzrywvA++/L+cOmZiQ9RcXZeo2O/v03el2B+WCqVZwTG+3n9slIiIiouMtV8khV8lJty8OLPdVf7QfDacBAPCVD1/5sB077AwXhN0CQejN8ZzHCs/dz+77KyjYvo2G3UCxWYTruZhITsg+KKDttDHePw7bs2F5FnrNXgzGB5Fv5FGzahjqGULMiGFpfQkdr4NNaxNNuwkFBUMzwrCe67thCMw0TFTbVdxt3IXlWRjqGYIGDen+NKaGpnC7dhsRPQJN07BYXsSVwhXUbDkxo+d7uLV5Cz1mD4b7huH6LnrMHuQqOXzD/wZeSr6043hdXF/E5dXLmB2bxUz62dfY7UfoTSmFTCGD+bX5sPte4KCfDxEREdGzwmqPY+yVV14JA3QAcO3atUcK0F27dm3H9fPnz+/7vh2kiYkJRCKR8DoDdIcrCKgFwbUgTHe/gNv9QnX3+zkIq2zvchfcvvtye3hvd3Bu92ObpgnTNGHbNprNJlZXVzE0NIRYLAbDMGAYBur1etjxLRKJoFqtorlVsJlKpeB5HjqdThjGC8J0mqZhaGgIlmVB13X09vZiaGgIfX196HQ6ME0z7Ho1PT1932BOJpPBtWvXcOvWLaytreHGjRthwC8SicCyLPT19SEWi+HmzZt477338Oabb+IP//APcfbsWRiGEYYDg2Da6FYXid3d6g7D44TcHmcfg+Dh8vIyADz0NaDjKZfLwbZttNvtMFh+/vx5DG8r/i6Xy2g0GuHvdXC/6Sfp+EJERPQ8yOWkYq7dlnATsHf4Kajey+WerOPZUXFUXjfTlErIuTnplAfI/lYq3eCcpnU76QHdoFFQdfnNb0p7hvV1qR49fXrn6wDI9WRS1vvrv5Zq0du3ux3m2m15vQxDgk+RiFSW2rZUcAaBqNVV2WY0KrfXalLx6vtSsWqawJ070p3uM58BzpyRqtW1NQnZed6zq/jU9e7r4vuynWBbD+pCF9zOzyuezu7Xz/N2tv1QSiqet05ig8FB4JVX5JiZmABee02OayIiIqJH9MknMsQMhnwczr04lOr+azRkKhKLyW2eJ0PETkeab6+vy/k4BgZk6tLpyFQlFpP1LEuG/5omQ89IRB53bEweL5+X8360WjJVsCx5DMOQKY6ud5spGwawsSHTsGRSpjnf+x7w+c/LuR+CZuBzc3JeiIsXH39qo5Sc12V+vnteCaUktFcoyD6OjsrzCDrf7cd2iYiIiIgA4HbtNlZrqwDurQ2jJ+crH56Szm+u70KhWw+nazpctbUMChq0cLmCuidYtx+UUjB0A47voGk34XgOUj0puL4LUzfRG+lFf7QfhUYBHacDKEDXddiuDV/52LQ2YWomGnYDnu+h1qkBGmDqJqJGFIZuQIMGx3fQsBuwfRumYYZd7QBgYnACY/1jiJtx6VbnO3gp+RKWN5axUFpAsVmEDh1trx2G8xp6A02niUQsgdxGDi+feBmGZoSPG4TXRvu26svuzKHaqeLi2WdTY7dfoTelFC7dvITlja16ObeNUrN04M+HiIiI6FljgO4Y+5mf+Rl885vfDK9/+OGH+Pmf//mH3u/KlSs7rv+Nv/E39n3fDtprr70GQMJThmHs6EhHB0vTtB2Tq/14L7Z3snuUiVuwD8G2t++D7/vh7Y7jhN2lgq5zQae5aDSKoaEh9Pb2wrKsMJDXaMhZfAYGBjA8PIxKpQLbtsPueUopOI4TdqRTSiGZTOLcuXNIJBKIRCI4ffo04vE4rl69inw+j3g8jk6ngz/4gz/A5OQkxsfHMTExgfn5eZRKJSwuLmJtbQ2NRgOGYYQd5mzbDrvRRaNRZLNZjI6OYm1tDb29vajVaigUCjs+jFpZWUE6ncbU1NQDO98dhMcNuT1O0C+TyWB5eTkMKD7sNeh0OojH4/v/JOm5ls/nAQClUglKKaRSqR3hOQAYHh5Gu92G53koFouYmJhAPp9ngI6IiF5cW///Q6kklXOp1P3DT6mUVPIVixI4yeefryDYQTtKr9vMjFRCLi3Jvk1MyP4GobXRUakOBeT2n/opqbgMqi5v3JDwW6nU7fillFR5ep5UYQ4MSPVpuSzVoM1mtztfsynrG4ZUagLdVh5B4E0puX/QOa5clirU4LpSUo1aq0lHsVu3ZH/OnJHH03V5LkEgb7+Da0GHu/tVTyvV7X53v9seFrKjJ6OUVDMDcuz09gL9/XJc6roELV99Ffi1XwN++qdZBUxERESP5dNPu0NWDuFePNvfO6VkChN0pQvO4+H7MpzcHnqLx2Va0WjIbe129/23LJnODAxIM29dl9Bds9ntVqdp3XOFKCWP1dsrUxjblhBbuy3TseAxBgfl38pK97wmS0syrXqcr3GUAi5dku52gGynVJJzlJRKMlQuFoFr12Tb6bSs97TbJSIiIiIKrFRX4PouPOVB1/TD3p0jw/M9NOwGHN8JA3E65PXdHZALusW5yn1m+6OgpA5Pl5AbAKy31jGeGIfjORjtG0WlXUGhWUDdrqPjdQANErhzmvA2PRiaEXao8+HDgIGoEUVPpAc9Zg+gAbZrw/EcOL4D13OhQYPt2RjqGUKP2YO4GUfMiCEZT0pYzm3j0+KnWNpYQiKaQMftoON2wiBh22qj43RgeRY830PEiKAv2odcJYdzyXPhMbtSXQk72y2tLyEZT2J2bHZ/X8N9DL1lChksbyzDVz6yG1kUGoUdXQMP4vkQERERHQQG6I6xr3zlK/hX/+pfhdf//M//HP/8n//zPe+jlMJf/uVf7lj2KKG751k0GsVnP/tZZLNZWJbFM2M8B3zf39cQ4/YOckEA7n6Czneu6+55HGwPWhqGEXbLMwwDjUYDuq4jGo2i0+nAdV3ouo5OpxMG5PStgsh8Po9GowHP8xCJROB5HhzHgaZpiMfjcBwHhmEAACzLwqlTp/DGG2+E23RdFysrK9jY2EA0GsXq6irGx8dhmiaUUojFYrh69SqKxSJs2w63G3S1i0ajsCwLm5ub6O/vRywWw4cffohTp07h008/DTszplIpJBIJ1Ot1VCoVrG0Vrz6o891eXNdFLpdDPp8Pw27j4+OYnJx85McAHj/k9qhBP9d1MT8/DwDIZrPhc93rNeh0OogFp52lYyPoehhcJhKJ+64XdNDcvT4REdELKfj/WHD5gP//IZGQINju9Y+ro/S6aZq0EUgmJRQHdDvmBWIxCdr91E8B7767s+oyaMvQaMi/Wk2WDQx0qy6vXpXOcbouFaR370oVahCSC8b9QSsG05Rlvi+BJ8eRdgzJpFSbWpbsdzQqjxl0obMs2Ze+PnmceFxCfYBUpgJSvRp0igMereJ5rw5y28NxQSBudyX1XpXVwfLt96WnFxxbut6tXk4mpQVIfz/w8svAZz8rxysRERHRYwqGmMFXHsGQg14cwfkWgmG473enIq4r/3R953RFKZlWVCoynWm3u4/nebKsUpHjIxqVKUzQBDk4z4jndTvdpVISqGu3Zdv9/TJcdV25/8CA7FtwXpbgHCTT09JJ7sIF2d9HkcnINM73gWxWwnqeJ+dD8X3g5k1ZL5GQ7cdi3ef6NNt9VEGD83y+ey6X8XFgcnL/t0VEREREh6NmyWexmqbB0IxD3pujw4MH3dd3hOV8HG6TAQUFX8kJ5j3lwXIt6UrnOCg2i6jZNUSNKHzlo27V4fs+bL/7/VmpVYLlWRKM23bS/o7b2VH7p+s64EsNoa98rLfWMdY/hsX1RUTNKJLRJL5z9zvY7GziTv0Obtduy7GnJNRn+zZiRgw9kR74vg9HOdhobcDQDeSqOZzsPwnTMKFrOiYGJ1C36qh0KlhrbNWXnZhGZi2DC6MXYOr7N3G5X+jNh4+G1UDbbcNXPk70nMDro6/DU94DQ2+u72J+bR4AkN3IhvudiqeQiCUO7PkQERERHQSOXo6xz3/+80in0ygUCgCAH/zgB/j000/x+uuvP/A+77zzDu7evRten5mZwcsvv/zM9/VZGh8fx7Vr1xCPx2HbNrvPHbJn8fqrXUWFu68HdF0Pu749iKZpYbAsCNw5jhNeuq4LpVQYYotEIojFYrBtG67rwvd9WJaFTqcDwzBg23YYwAsCdpqmhYG7ZDKJ0dFRDA8Po1arIZvN4pVXXsHy8jI2NzfRaDRQrVZhGAZisRjq9ToGBgawsbGBQqGAzc1NWJaFZrMJ3/dhmiY8b9sHIb6PeDwebhMAHMfB+vo6xsbGcP78+bCrlud5WF5exscff4y1tTXYto2RkREsLS3h/PnzD30PMpkM5ufn7wkQLS4u4vLly5idncXMzN7t4oEnC7k9atAvl8vBtm202+3wb+P21wAAyuUyFhYWUCgUMDExAaUUQ1HHUDQa3XFZr9fvu17wN233+kRERC+k4P9jweUD/v8XLt+9/nF11F43TZM2Ahcu7F21OD9/b9Xl5qZUiFYqUiEaiUgQrlKRoFxvrywPKkyDKtRIRJZpWjeI5vvys+PItoPb1tel2rRel5Be0K4B6K7nuvK4QUc735fWIJ2OVKKmUt1KUNeVfdxeDbuXB62zPSwX7P/91n3UUBzDc/svqIoOAnSxmLz35TLw/vtyDA8OShc6IiIiokeUTMplJNINX3Eo92K537kvfL/biS647jjdaYNlyZQkWD/4WiY4BhxHhpnB/S2rG7IMzu0QPJauy7lBYjGZTgVTFMvqNuhOJmW688Yb8rgLCzJ8Dc53kss9WoNz1+2eKyWb7QbidL3bIDxorn7iBHDqlOz3+fMyrXvS7T4KpSSUFzQ4325xEbh8WaaqMzNsGk1ERET0ohuIDQAAhuJDuFO7c8h7c7Q8y45yj0ODBrX1n698+MqHCRPQgEQsgUqrAg8eHN9Bx+mgZbdg+zbqVh2eks5zrudKZ7jwTCby/DzlwdRN+MqH4zlQUHBcB57vwdd8+J6PmlXDWmMNSinkKjnpLud7aNktVDoV6XangKJfhKMc2Z5yUe1Uw855CgquctFyWlBK4fWR1zHSO4JzyXMAgHKrjIXSAgqNAiYGZZKUq+QwfWJ/Jkn3C71V2hVYnoWIHoHjOWi5LdRtCb+dTJxEqVnC6yOvI2JEdjxWrpKD7dlou20UGlv1ciPnMdy7rV7uGT8fIiIiooPCcxweY7qu45/+038aXvd9H//sn/0zuO79J0r1eh2/+Zu/uWPZb/zGbzzTfTwIk5OTKBQK8H0f0Wg07PhFx8/28NyDQnRBAM73fXieFwbmgjCdUio8hjY3N+H7PtbX1+G6Lur1OprNJjqdDmzbRqvVgm3bcBwnDNi5rhsG8WzbRrPZxOrqKorFIpRSKBQK+PDDD1EoFJDP51Eul1Gr1cLQ2MrKCj799FMUCgXU63VsbGygWq2Gzy0IzwX76vs+ms0m6vU66vU6lFKo1+vQdR2pVArDw8NQSmF1dRU//vGPUSwWw+eSzWaxuLiI3//938f8/PwDXzOlFC5duoS5ubkwnHbr1i1ks1ncunUrfD3m5ubw7rvv7hlgBB4ccnvjjTdw7tw5vPHGG2Ggr1AooNPpwLIs5HK5hx4D+XweAFAqlaCUCl+D7YaHh5FKpaCUQrFYBIAH/t2ko2t8fBwAMDIyAk3TUKlUUC6Xd6xTLpfD37nR0dEd9yMiInohBf8fGxmRarRKRSrztiuXZbmmAVv//8Nx///fUX3dTFMqIS9eBH7xF+VyerrbhmF31aVSwJkzUvWpaVJBXK9LReXaGnDnjrQ0KBSkKrTdln++L9WaQUAuOClGsNwwut3lgvUBqez0PLlP0DE6aNdgGLI/jiP70G5LaAqQ9YNWD8Hjbq+UfZJKzOA+QbX07m56dPA0TY6D7e9n8H4EbWEMQ46jSkWCojduAH/4h3LcEBERET2i117rdpwLhh4cBr54tneEC6YZgEwZIpHuOTu2D/dtW/4FQbdgue93O9e12xKOC87xEUwTtk8dXFeGpevrMn1ptbpTH8/rnjskMDws5wRRCtj6CgNbX308VC4n+9xuy9QMkHDc2JgE5vr7pdtdNCrDYtfthgGfZrsPoxRw6RIwN9fdv1u3ZLp565acC8W25fZ33+XvGBEREdGLbmJwAoZmSLyKg7t9pfB8vJ4+/DBABwCO78D1XbTdNpbWl7DWXEO5Vcbt6m3cqd+B7UlTBE958JUPV7nYtDbh+i7iZhymYYaP6fs+2m4bTbspoTC7jY7XgeM7cl/fRctt4Vb1FtYaa6h2qqi0K7hdu427jbuwXAttp42m00TH60D5Cho0OJ4TBvrabhu2Z8NyLPjKh+VaKDQL+LT0KVY3V6GUwnDvMFLxFBQUik2ZJOXr+zRJws7Q21pjDYVGAREjgrH+MQzEB9AT6UFMj6FpN1FpV9BxO1haX8I3PvnGPb9XwX6VmiUoKKTiqR3hOQDP/PkQERERHRR2oDvm/sk/+Sf4rd/6LayvrwMAvvOd7+DXfu3X8O///b/H1NRUuN5HH32Et956C59++mm4bGpqCv/wH/7DA9/nZ0nTNGnZTcfS9slhEIh70HpBcC4Iz+m6HnaB6+/vh2VZ0HUdkUgE/f39aDabsG077HIYhNeC4y14LKDbCa+3txe6rqPT6YRBreHhYVy9ehWmaaJQKMBxnLCrXCKRCIN3jUYj7G7nOE7YfS4I0RmGAc/zws5pwb40Gg1omoaBgQH09vZCKYWlpaUwqBaE/YKQ3cDAADqdDubm5lCtVnHx4sV7OshlMhksLy/D931ks1kUCoUdr+3KygpGRkYwODiIpaUlXLt2Da+99hrGx8cxOTl5T9e4xwm5VSoVFItFTExMIJ/PY/ohpzoNXo/gMpFI3He9RCKBSqUC27bR09PDD+yOocnJSVy+fBkAkE6nsba2hoWFhXs6IU5MTMA0TcTjccRiMUxOTh7ynhMRET2FyUk5pTsApNMSelpYkAq5REKq9iqV7u3xuASXjvv//47j6/agqstUClhZkbDa+rqss72dg+NIFWjQXW57ywXT7C4PqkmDkFunc+/P28fotr2z1Uen0+02FgSlglCf70tLBaB7W7At4PErMYPg33bPoPM6PaYglLlb8P42m/L76ftyrDab0nLj9m3gnXeAX/3VA91dIiIienH91E9J4GhjQ4aWHAoeHcG5NmKxbie4oEl2MNQMLg1DpiDB+++6Dw9UBlOlIEAXDGG3T52CrzQrFQnWBfdJJGRZ0Kltd8e2gOvubCy+sADUajKVU0qmcMPD3UCc53UbNSsl6w4NyRQvnX707T6uTObeBufbX7eVFdn+1BSwtCRD99nZ/dk2ERERER28M4NnEDWi8JUPnf0hjjwfPuADjuagbtVheRbiRhy1Tg0tpwUAiOgRGLohNXqaDlM34fpu2EktqkXRRhsaNLTdtiwzotA1HbZvh3Vdru8CSh6valURNaKoWlUAUrtneRYMzYDt2lCaQsyISZ2g7yJqROH6Ljzf29E9T/ny2E27Cc/3cKN6Ay2nhekT09JNr1OB7W3Vo3lPN0lyfRe5Sg75eh4f3P0A+UYeTbuJ9dY6XN9FX7QPxWYRNau2I5zYardgVA28PPQyMoUM3ii8gdmx2fBxd+9fIvaAerl9fj5EREREh4EBumNuYGAA3/jGN/BLv/RLYZecv/iLv8A777yDiYkJpNNp3L17F6urqzvu19fXhz/+4z9GNDil4gssl8shnU7j448/xne/+10YhhEGmOj42h2Ievvtt3dc930fmqbtCIsFQbqgm6Gmadjc3EQsFkMsFoNpmjAMIwyxBfffHdwLAmPxeByDg4MApJtdu91Go9FAuVxGq9WC4zhQSsE0TcRiMZw6dQo9PT2oVCpoNBqwLCvshud5HiKRCHRdDwOAvu+HjxHcFoT8Go0GPvzwQ2xsbKDdbkMphVKphFqtFgbHdF3HzZs3oZTCq6++iqWlJSSTScxu+1bSdV3Mb3WeyGazWFtbA4AwZFSr1ZDL5ZDNZpFIJDA6Oor19XUopbC4uIjLly9jdnYWMzMz4Wv9JCG37evvJfibFlzW6/X7rhcsj0ajGBkZwWc+85mHPjYdLaZpYnZ2FnNzc2HgvFAooFKpoLJVAK9pGmzbxsTEBABgZmbmnkAoHW9vvfXWYe8CPcd4fNBzyTSlAm1uTqrSAKlaq1S6ATBN61atAcDMTLdj2HF1yK/bofw9CdoMlErdqssTJ6TqcX1dOsx1Ot2K091BOcuSysjtHeLjcakSjURkfcuS5YYhPwcVqUGbBl3vtnFwnG6FaSCoLA0qTk1T1q1WpUJ09/bv16nsUQTr8qQbAIC3ds2tD01wnOx+X4LKZ8OQSuBORyqRazXgk0+kM+T/+/8Cr7zS7bhILzSOueh5wuOR6Gh6803p2pVISAgq8Pbb/J1/kQXn9QgaXgfTic3NnVOA7c2og+nH/Yai26cbwWMHj7H9Mvh59/UgkHf7tjT+Dr7aCL7G3f11rlIyPZuf3xlyu3FDusltbMj1M2fkMhj2BlOkYH+D84y4rlw+bLtP4n4NzoF7z0kTLJ+elud24cLzNVzn/+eJjhf+zhMRPZ2JwQn4ykdUj8KHj7fxnHyuTM+MpmkwNAnIWa6FptWEgoKhG/CVdJ5TnkI8Eg/rx6JGFL2RXrTdNqJGFD1mDxzfge3agAJs2NCgwVNSowcFeMqDrunyeFsnu1dQ0DU93AfPD06oCDieEwbRPN+D0lRY6+cpL+yS6PgO6nYdlXYFY4kxFJoF9EZ6Ubfq4b5uv7yfvcYPSilkChnMr82HobXV2irKrTIKzQJuVG4g3ZdGsVFEza4BAHrNXsQjcbieiw1vAzWrhlKzhJHeEWTWMrgwegGmbt53/4L93u1xng/Rbhwj03HA45yOg6NwnD9HHxvTYfmFX/gF/N7v/R7+8T/+x2i35Qwcvu/j5s2buHnz5j3rDw0N4b/+1/+Kn/qpnzrgPX028vk8NE3D4OBgGG5ieO742B6Ae9wuYkqpHR3kgm5zp06dgmEYWF9fDwOZtVotDM0F9zMMI7y+/RKQ8BwARCIRRKNROcuNZSGfz8NxHHQ6nbCjXCQSwcTEBE6dOgUAOHHiBIrFImq1GtzgW0sg3JfgGA861AXbNQwD7XYbo6Oj8DwPtVoNH374IU6cOAEAqNVqsLaKVPv6+jA0NATLstDpdJDNZjE9PY1MJoMLFy6EIaFcLgfbttFut8MudufPn8fw8HDY3S4ajcL3fWxsfSOraRquXLmC1157DQDu6W73JCG37Zd7GR8fx+LiIkZGRrCysoJKpYJyubyjw125XEalUoGmaRgdHQ3vR8fPzMwMqtUqlpaWMD09jYmJCRSLRdi2jWg0itHR0fB3eXp6GjMzM4e8x0RERPtgZkYCRktLUpU2MSGnordtqYwbHZWgEyC38/9/4ri9brvbDfT3y3MPWgbY9s6qUE3rVjYGVaZBx7jtFY/B8u3Vp63WzvYNQUVnNCrVnEGLhu2Vp8HPmgb09Mh6kYjsVyQCNBrymEGQKtjf4P7b9+dR55GPs+7jCFo/4P9n792C48ru895v7WvfL7g1mgTAIchpzlAYNUYzGtlWIsp2KYocy5VSSjUu2XFVZEu29BD7IQ9xjit5SFwupxLVScXRg+tYkmM/REnlUlZOopJ0bEqxKIu6DDkzwgxAEDPgrdFAA91AX/d1nYc/1u4GCJIgCZIg+f+xULt7X1fvvRv8L+zvWx84zuRuuNW5UnEdQ0P0U6/TvF6Ptkkmab3/+l9JTTw7S9/XvdLsGIZhGIZhANy4ATz3HJWt6+v9MR+Yxx9dp26H71OZqMKnlZlOsdscB9zcrRj8UWOE7EZ1gwZR5jnVjbp2jdqkytjtRxgYfIQhJXD2LHXPAEqbW1ujbo+6RwF6/fbbwDPPANksGdTSaTLXNZvUlVLdL8Mg493tjnuv3CrgfOCxDWo1Ss+rVqm7rbYrle7/+AzDMAzDMMzD58rmFRxJH8HrK6/v0HUxTy6hDOEEDiQkDM2IUuOUuc3UTdi6jYSVgAYNmiC9nqZpOJ49jpX2ClJ2KkqBU0a5UG4PkL9tpNOEBkMYCGQAS7dgGzYs3YKAgBd6sHQLLbeFUNIzhEBS505AwAel16l2AYgSEv3QRyhDdPwO1tprGEuO4a3aW7B0C7rQMZbc1pel776TJKXE2XfP4tIGdeK6fhdr7TWstFaw5Wyh43YQyACrnVWYmomUlcKR9BGkrBQAoOf1EMgAfuhjy9mKzvVSfQml4VLUrvn1eYwmR7HcWEa9V0etU8NIYkAv16mh3qtDQNzX52EYhmEYhnnUsIGOAQD82q/9Gl555RX803/6T/G///f/3jOpKZFI4BOf+AT+8A//EEeOHHkErXwwDKZTtVqtR9yax4MnIaFPGcaEEPB9/ybz3O5kuFshpYyMabZtY3R0FCdPnsSNGzeQy+UQBEFktrIsK0qFC8MQhmHAMAwIIRCGYXRODcNAIpGAZVnwPA+jo6PI5/OReU4l16nUyFwuF5nnFCrxTq2vjH6DCXiapkXXUiXqKUNdu92G4zgIwxDNZjP6nPF4HLlcDtlsFmNjY+j1erBtG9VqNUrZWlpaQmn7qWRlO3libW0NUkrk8/nIjHbt2jVUq1Ukk0m4rotGo4HNzU0YhoFarYbLly9jYmICL7300o50uwdpcpuensa5c+cAAIVCASsrK5ibm4sS85rNZpQuVigUEIvFYNs2pqen77hv5slDCIEzZ84gl8tFSYvqe6CwbRvlcnlHiiLDMAzDPNYIAZw5A+Ry/SHgd/3/B9smQwmbSvo8bedtd9zAu++SsjIISNnY7fYNcsoIZxhkInRdet1q9dcxTVrHNElJ6nm0X7Vc12k/aj3Po3nxOO3P82g9tT7QP8euS+smEtTeXo+OoYx7yWTfROd5tJ3a3+B+btV/VAl3mtZP2jsoDIPapkyFzP0Tj9N9kMmQ+lYN2KLuq/V1Oudra5Qaef48mWPPnHn8v7cMwzAMwzwQKhXgpZeoJLYsKitcd2fqF/N4oYxuiQSV4ZZFZaMa12PwR5XpyvymxvNQy1V4tjLOhWF/P7frOqgukJT9sO2VFUo5XF+ncrZQoC6WbQODjzAuXuyPbbK4SGWvOlazSe/jcXp/4wbwxhvAe94DXL5M89TYI55Hx1HbrqzQa9sGrlyh9p04Qcump+89DW6vgPNB8xxA7/N5MvCtrlJ3u1JhAx3DMAzDMMzjSqVZwURmAm2/zTqLpwCB/jUOZYhQhjA1E37okzEN9D5mxDAcG8bzY8+j63Xx1tpb8EIPGTsDN3QRhAE0aJCQEBAwNAM9rwdPerRM0yCkgBQSkBQw4fgOEmYCtmFjy9mCIQwYmgE/JLOcSq5TbdME7V8dQxNk5hPb/1puCzeaN9Dze3ACB4VkAaXhEmJGDLZuYzp/9/qyi9WLuLRxCaEMsbixiGqrCgmJrtfFencdm71N9PwemfsgEYQB0lYabZdS/NpeGzEjBku34AQOvICesVWalchAN52fxrmr23q5VAErrRXMrc0hH8sjbafRdJqo9+rR8vv5PAzDMAzDMI8aNtAxEc899xz+x//4H9jY2MB3v/tdXL9+HfV6HSMjI5icnMTf/tt/G0k10vYThEqlqtfrcBxnT/Mg00eZvR5XNE2LktsA3Paz6NtDZ6rkOIUysKltlRnP8zwEQYArV65ga2sLrusilUrBMIxoH4ZhIAxD2LYN0zQjw5pax7btaF4qlUIikYBpmnAcJ/r+bW5uRu0yTRPj4+M3tX1wn2EYwjRNJJNJaJoWzdN1PTLh6bqOXC6HyclJmKYJAGi323BdF0IIeJ6HoaEhxGIxZDIZjI6OAgCef/55NBoN1Ot1rK6uYmpqCpVKJTLQDRpUASCdTkdtv3r1KgBEaXnNZhOJRAK2bcP3fWxubmJzcxM3btzA+9//fliWhZmZmQdqcjMMA7Ozszh//jxOnjwJAKhWq6jX69E+hRAoFArR8nK5HCXuMU8fQgjMzs5iZmYGS0tLqFQqUQJdsVjE9PQ03x8MwzDMk4cQlLo0M0NDulcq/SS1YvH+lHFPMk/TeSsWgfl5YHQUeOcdYHmZIgi2tih6A+grRZXRTaXBAaT6HFSPGkbfPKcMc0HQN6dt9zMQBPRa0+hYqRQZ9oCd5jlgZ+qdaZJxTilcEwmKWEin+ya8zc1+aqA6vjLUbfeh4Ps7zWyDx1B9yoGUcAD9fd0tan9CkCrWce5tP8xObLsfJVKv032xtdW/7r0eGUDn5midkycpXTGXo+83wzAMwzDMLlyXytNymQxI9TqVpfwo6vFm0CTXbPa7B2qZKs1VqLbqagwa55SRzjD6420M7n8vA51KfFPjkKh9ANT10XXqnpRKVKoCdO+pbonv98d0WVwk0xtA5rN0mro9a2vUbQtDOsaPf9zvhi0v070bi9FxHYf2OTRE2wYBvV5ZAY4fp3v+8mXg3Ll7D2/eHXCuun+7Safp+7V7fYZhGIZhGObxww1Iq2QKc1+DnzOPPwIiMsn5od8fFN6j5y3KWLflbuFK4wriZhyR704Aw/FhJK0kvMDDpY1L6Pk9JMwENuQGRCAgNQkv9BCGYZQeB0E/bkCdB13oCGSApJmEG7jwpR+Z59TywdeGRkl2QghKsdvWE7a9NgAgZaUQN+I4ObStLxsvw9Du7jmgH/q4sHIBALC4sYiVFnXi8rE8jmaOou210eg24AUemegAeKEXmQDd0IWAQCFZQMJMwA99JC3SH6rPDQCGZmB2fBbnr5+P2lttVVHv1SPjnIBAIVW4r8/DMAzDMAxzGOAKhrmJoaEhfPzjH3/UzXhoFItFzM3NodPpRMlczN6ojt7jaqJThrjBBDf1GkD0R5fBxDYA0WspJTRN25E6FwRBZEgTQqBer6PZbMJ13Wg9z/PgOA78baGkMq6ppDnf95FMJhEEAZrNJoIgQCKRQDweRzabxalTp/DOO+/ANE2MjIxgYWEBiUQCGxsbaLfbqNfrGB4ejtrbarWiz2RZVnRcKSUSiQRc10Wv16M/CkgJy7Jw5MgRjI6O4v3vfz80TcPly5exubm5wziYTCbxzDPPRGagQqGAiYmJKGVvt1lOHX9w2twevb9Wq8H3fbiui2vXrqHVaiEej0cmQcuyEI/H0Wq10Gg0cOnSJXQ6HVy+fBmnTp16oCa3crmMRqOBhYUFlEolTE1NYXV1NTJFjY2NIRaLAQBKpRLK5fK+9vs44vs+m8L2iWEYKJVKkXmUYRiGYZ4KDINUefz/393xNJy36WlSSAJkSAoC4No1ikJQRiSFbZNhTaXSmSatbxg3m83i8b7hTKlPMxmap4x26TTt0zBIybpdu0fGPaCvNhWC1rUs2qfr0n50nRSk2SwZ/6Sk9h05Arz1Fr3WNPqJxSjaYWuLUvNUQp4y7IVhX62qkvbU51L9zjvFS+xGqWxNc+cxBpPxmHuj26Vrfv063Q9bW32jpGFQImE+T9dOqY1LJYrxmJl5ckywDMMwDMMcGCqUORYjQ5Gu03gR7fajbRdzb5hmvxuhDGa+3x/PQpX7qjswmDantnccej2YIqfr/fEabvWYUq2jtgsCuq9UMHUsBgwPA8880+9ulkpkWlMsLVGZ2+1S0hwAnD69M9FN0yhoWdOo/O10gKtXqaulzICTkzSGRKtF46YEAY1forolKtz7yhUqr4F7D2/eHXCuQqJ3o+bvXv8w4/tP/vg6DMMwDMMw94KlW5BSUqqYZB3fk8xg+pyEjExdMiSNnhACoQzR9bpwAxcdr4OW24ruEduwAQBpO42JzASO547D0A1KX9sewN4LPXT9Lrye1zfPAfADH5rQEIQBurILXejQhQ5PejA1Mm+GIOMesK0nFBo0aDA1E5rQ0PN70ISGjJ2BrulIGAkIIZC20jiWO4bx1Dg0oaE0XEK5cPf6sqX6EtzARdfvotqiTtzp0dMYSVAnzhRmNB8gbWDP62G1vQpTN2HpFuJmHCFCrLRWUEwVETPouZml7+w0lQtlNHoNLKwvoDRcwlR2CqvtVbiBC0u3MJYci7a918/zuOOHPpbqS6g0K9F5KaaLmM5Ps5mQYRiGYR4j+H9t5qlnenoa/+2//TcA1NHhkWtuzaCB7HFEtd80TXieF01Vh3lwPWWI2/1ZVXLb4DIpZWTI63Q6UYpcLBbD+vp6lAZnWRZc14XjOJHpTpnber0egiBAr0ejwQgh0O12YZom1tbWkMlkUCqVcOLECXieB8uyoOs6Op0OqttPOfP5PHq9HjrbwlCVcKf+oCCljFIWY7FYZHRTRr18Po+hoSGMjY0hkUjg6tWrcBwHmqZFn8kwDJimiYmJCUxMTEAIEZnidpvlADKozs/PY3R0FMvLy6jX66jValGK3o0bN9BqtQCQWavb7UaJfpqmRWbAra0tGIaB//N//g9OnTr1QE1uQgicOXMGuVwOF7aHYp2amtqxjm3bKJfLKJfLO0yGTwpSSly8eBEXLly4KZVzfn4e586dw+zs7BP7+RmGYRiGYZj7xDAoXuD8+b4RrVLpK0iV+UzKvnHNMEiZqVLpwpBUqSqZzjBITZhMktpTpc2NjpIyc3qa1JlKiVwokDp1ZaVvWBuMelCmM5Xe5vt95Wo8Tm0uFmn/2SwpSq9eJcXn5mY/lSyfJxOfYdB+lLHPdftpdMqUp9Sm6nMr9mugU+sp85/6XMo495j21Q8FltW/XkHQN3R6Xt8oaVl0n42Okgp4dZVUx6q/uLT0ZBtjGYZhGIa5JwbDmQsFeh0E9x5EzDwahOgb10yTxtYwTUprU6Y5Kfulufqzuer2+H5/3mC3KAh2dg9uN3alCkq2bfpptfpjg2ga3V9DQzQ+iW2TcW534lulQtO1NTpuPr/TPAfQuBDXrgE3blAZPDZGn7VYJHOe51Ep7PvA889T9+ndd6l96+vUllyuf6zlZWrbvYY3D36HlpcpZa5W29nuWo3mC9E37BWL+z/Gw0ZKGoPjwoWbk/Lm5+8vsY9hGIZhGOZJoJgu4ltL34KpmY+6KcwDRJnnBGjwewkJP/QRyhCapsHzPUCQhkkKCRmSvi+QAQIZ0HxIbDqbePnIywhliKSVxLNDz6LSquCd+jvIxXJYba8iCIPIPGfrNtzAhQQFLXRkB5ogbV3CSKDn9yBAZjkJCUMzyNAntB3t1oWOtJWO2q4JDZZhwTZs5ON5GJqBuBHHK0dfQblwb/qqSpM6VmvtNUhI5GP5yDynyNgZrLZXoQkNnvQgIOCHPkydvj/KVOcGlEY3lqROUzG9s9MkhMCZY2eQi+Wi1Lup7C69nG6jPF6+58/zuCKlxMXqRVxYubAjuQ8A5tfnce7qOcyOzz5154VhGIZhHlfYQMc89RiGgZGREVy/fp3T5/aBOkePm9lQmd5M04Tv96PeVYrcbnab6gYT6fSBtASVYKfWV6l2rusiDMPoJ5PJIJ/Po91uo9vtwnEcNJtNtNttWJaFdrsNXdeh63pkUut0OpiYmICu61GamqZp+Pt//+/jm9/8Jo4cOYJWq4X19fUogU19PiEEbNtGr9eDYRjRe/XZlHHPsiwkEgnk83mMjo5iZGQEQghMTk7ipZdewve//33ouo5utwtN0zA2NoZnn302Oge1Wg31eh1CCIxtP5UsDjyVnJ6exrnt5IlCoYCVlRXMzc2h2Wyi1+vh6tWr6Ha7URKeEAKxWAzFYhGO46DdbqPdbmNtbQ1DQ0OYn5+H7/swDOOBmtyEEJidncXMzMxTl8AmpcTZs2dx6dIlAEC328Xa2toOcyIAnD9/Ho1GA2fOnOHOP8MwDMMwDHMz5TKZzebmSMGolKGWRUrPeJxMaGq+rvfT6TIZMtMJQTEGmkZmuViMzHK2TWrIF16gdaUk1ermJu2vWiXlpqrZlQp1UMlqGH2lqu/TsTWN2ud5tP+f+qmdaXnNJr1PJGg/W1s0P5Xqt2Nlpa9+HVSzWhZt6zj02nX7ytn9mucG626luFZmwMeof35oUKZGpXZWSuN2m66ZihRRKumhIVLtmibw7LN0n9TrpB6emiKFMBvoGIZhGIbZhQpnVoYpz+uXrczjgyrpbbs/vofqtmxt9bszqixX5bsq14Gd3ZLBMj4MqZujGDTaqS6FWk91L9QYJCpw2zDIzJZKAR/5CPDzP793gpkya6lpOn3zOkIAzz3XHxPEMCjZ7uTJ/jrPPUfzUing618HxseBjY1+WHM+T/tuNqlkvp/w5sGA80KB9jU3d/Mx1PJYjK7T9PT+9v+wkRI4exbYfgSDbpcMjSqB7n4T+xiGYRiGYZ4EprJTqLQqSFrJR90U5gGiDGkAaZWCMIheK7NcKEMyrEnScoUIIUMJP/ABAbiBC9dzoUHDByY+gGq7ipNDJ1Hv1hHKEH7oo+W2ICGRNJPwQg+6pkfHckMXjkeDy2tCQyBpQHw1mL4BA4ZuQGoSuqZDE1pkoDI1E0krCQmJhJlAxsrACz2krTRODp3EaGIU/+D0P8Dp0dP3fI7UsdQ0bfc7cUEY4FrzGp7JPYPlzWV0PDIC6oLaKSDgBi4c30HcjGM0MQoJCVMzYes2pvM3d5qEEJgdn8XM2AwnrW0jpcTZd8/i0sa2js7vYq29tiOZDwDOXz+PRq+BM8dYR8cwDMMwh52nq5phmD2QUmJjYwNra2twHOexM4Y9Kh7lObqXa7RXwpzv+whDGrVGdX5vRbj9ZFOZ7tR7tb2madB1HZZlwXEc+L4fpdvF43FYloXh4eHIDHfjxg14nheZ3UzThBAChUIBqVQKvV4PR48exUsvvYRCobAjTe1DH/oQut0uzp49i1KphEqlgtXV1ahNqVQK7XYbtm0jk8kAAJrNJjzP2/GZgiCArusYHh5GoVDA5OTkDnOgaZqRuU4Z7lZXV+F5HtLpNJrNJurbTyVVG23bxvTAU0nDMDA7O4vz58/j5PbT1Wq1GiXnDSYAxmIxZLNZHD16FPl8HgCZt9rtNnq9Hnzfh5QSS0tLKJVKD8XkZhgGSqUSSk+RCPLixYu4dOkSwjDE4uIiqtXqju/G8vJyZOhcWFhALpfD7N0MF8swDMMwDMM8HQhBSr/FReCv/5oUjMkkqSxrNVKaJpN9Vajqr+g6/aRSZFY6coTWHR3tRySUSrQtQK+zWeB736Nj9HpkiPI8UiL6fj8VTrVLGaeAneYzTaP5ntePBVGoSINsdmdERLtNCugjR0i9ubFBbRjcpzqeMmMpFao69qDhbrBfOvheiL7pb3AbTesbwJi7Q9cp/qLX6ycPqmuk1O0qCbFQAE6coO0mJmj9dJruid0qZIZhGIZhmAEMg8aW+PM/p7IxmSRTDPP4MGieSyRorA3Po/dTU5Sq1uvRegoh+uNdqBJz0ASnlg8uGzzeYPi0SqobDLoGdgZ3l0rA+95Hr29lngPocwxOm82912u1qOs1OUmfOZMBjh+n7YpFMqcZBn32Z5+lrle1Sm09ffrmdLi5uXsPbx4MOFcmvmqVSnFlnBOin3IH0HfusI6BePEimefCkLrL1erO63+/iX0MwzAMwzBPAlc2r6CYKmK+Ng9d6HfegHnoiO1/IW4Toz2wLoAoAW5wewFKb5OQUaIcgJ2vB+ZpQkOIEL2gBx06ErEELMPCXG0O/9eH/i98//r3sbC+gHw8j2dyz+Dq1lWk7TQCGWA0MYqN7ga2nC3EzTi6XheQiFLuQhnChYu4EYcudPihrxqLfCxPA+oHLjShQYOGuBWHF3gIEcLWbYQIMZwYxnsL70VpuARbt1Eavj+9maVbO6ZNp9+Jq3Vq8EMffujD0AzYho2UlaLzJYGEmQBAhi8ASFpJDCWGUOvU8PFTH7+tEc7QDJSGS/fd/ieBi9WLuLRxCaEMsbixiGqruuNeXm4so5Aq4OTQSSysLyAXy2F2fPbRNZhhGIZhmDtySP90zDAPjwsXLuCHP/whwjCkkUrCO3fsnnbUKBkPw0S3e0QOldKmTHCDxjdN06L5u1HX1/O8yACn1tN1fd/XXQgRGbmEEJF5zrZtWJaFoaEhuK4L13XRarUQBAFisRiSySQMw8CJEycis5imaajX67AsC6lUCrFYDNb2U8vnn38eH/zgB6Pku91pap/+9KcBAH/913+NI0eOYGxsDFtbWwiCIEqzGx4eRrVaRbfbRbFYjMxojuPANE2Mjo6i1+vBcRzEYjFMTExEn7NWq2FzcxNDQ0NIp9PQdR2xWAyu66Jer0fGOWX6U+a4crl8k2mtXC6j0WhgYWEBpVIJU1NTeOutt9BoNJDL5VCv1+F5HoQQGB0djcxzrVYrSqaLxWLY2tpCNptFpVLZYWh7Gk1uDwrf96NEv8XFRaxsDwubz+d3mCbV/FKphIsXL2JmZuaJTeRjGIZhGIZh7gMhgA99iNSl164BP/gBKT+ffZaUjr0eKTabzb75SBnoZmaA97wHuHGD1I+Tkzv3bds0v1zuD+EfBKRINk3g+vWd6W6Dr02TpobRP56UFFUgBClEq1XgjTdujjQYHweuXKFjxeNk7nv3XZonZd/Ap/YJkDJSKVulJNPdYJSErt9s9FPnT6lwlYpWKWnV1Pf767KJbv/oOt0rmtaP7dB1MnjG43TPtts0LRSAY8donUKBDHRAX228W4XMMAzDMAxzC1RaGT+GerxQY2H0elR2N5vUZUgmyVi2ukrLTJOu8eAYGMo0NziehyrzB0t7tdyyaH3T7JvsYjFqQ7vdb5PqRlgWlbA/8zM0/07GsWIRmJ+n8UmWl6mbU6vdbHir1+n4xSId/8Mf3tvwVqnQdG2tP97J4L4Aep/P3194swo4X1ig7aamaF+DqW2qrC+VaP3DiO8D249gsLjYT+Y7yMQ+hmEYhmGYJ4FKs4KJzARCGUKDducNmAeKgIgSzZTZTUgyzylznAYNAfaOWlfbDb6PttM0SEiEQXhbM55qg6mZMDUzageAKGnuncY7OHPsDHKxHC6tX4KhGUiZKYwkqJMihMB4ahzD8WFsdDcivaEyygkhYGgG4kacktw0HSkzhXqvDk1oyMVyCGUIS7fQ9tpoOk04oQNLs5C20tCEhsnMJE4ObWvoxsv3ndZWTBcxvz6P0eQolhvLqPfqqHVqGEmMYNPZBABU21UIIZAwExhNjELTNAzHhwFQSt16dx0CAjEjBgGBtJ1GuXBIO02HDD/0cWHlAgBgcWMRK61tHV0sj7SdRtNpot6rR/NLwyVcXLmImbGZpy6pj2EYhmEeJ/h/aeapxvd9fO1rX0Ov10O3270poYt5dAghdhgaVbqbbdswDAPZbBYbGxvodrsIgiBKMbvd/gBEhju1rjrG3ZgBpZQwDCPaVtM0pNNpDA0NYWpqChsbG5GZzR0YgT4ej+ODH/wgrl+/DsMw0G63YRgG4vE4kskkRkZGUC6XcerUKQwPD8PzvFumqWmahl//9V/H7OwsvvWtb6FWq0Vpdu+++y7i8Tjq9ToKhQKklPA8DyMjI+j1emi326jVahBCIJlMQtM0dDodvPnmmzclyz333HMAgI2NDbz88svwPA+rq6tR0tvY2NiOdLzyHk8lhRA4c+YMcrlcZM5673vfi8uXL0fHVm33fR/r6+vo9XrodDoAgFwuF+1rZGRkxzndD77vP7CEuieNpaUluK6LbreLarUKADh9+jRGBp5412o1zM3NoVqtYmp7uFiVCsgwDMMwDMMwNzE9DZw7RwYkxyEloFKJKnWpMp0ZBiW8TU4Cf+fvkGr053+eDEsrK3115GDkAUCKwkSChuX/1rdIWakMcc3mTgWrrpMK1TBo6jh0HKVgzWYpWkHKnZEGAB3fNMlEt77ej4Do9chopZL0lOJVGeZMk6adDq2vlK6mSZ9bCIps2P03CcOgz+D7/cQ5ZZgbNOfths10d0al+G1t0XVKpfrXSdNI5fvMM2SMVNf4+efpXhRip6p4bIz2WSw+0o/EMAzDMMzhxPepXH32WeDrX6eyjw10jw+qtFbldRBQeSgEpag9+ywtSyTo2hpGv9vh+7TuYOC0plHZGY/TtNulUhPop9Ol07S/eJy6K50OraP2rcxz2SyllBWLVJLuxzimumcAjQ2xskLpcLsNXGp5LEbl8vT0zfvyfToHCwtUNjcaVFbvDvMG7j+8WQWc53J9A5pKs1MMjrGya2zOQ8PSEn12ldgHHHxiH8MwDMMwzJOAG7gQQiBjZW4aeJ15eAgImLoJS7NgGzb8wEfLa4ECziR0oUMTGgIZIJS3Mb8JQelxILOcBjKnaRqZ8rzAAwQg5E6j3WA7YnoMuqZjJDGCpJWEEAKrrVV4oQcJibSVxo9v/BinR09jdnwW6511nLt6DgICfugjY2VQTBfR8lrwQx8/Wf0JJCS8jgdf+tCFjpgRQ8bOUAKdpqPrdZGNZXE0cxQtt4XhxDA2e5voBT3Yug0tpiEjM2RcS44iH8vj5aMvQxMaSsOlAzGpTeence4qdeIKqQJWWiuYW5tDPpZHrVPDSmsFq+1VAEAxVYyMdSoxDwA0oWGjtwEZSmTsDPzAx7eWvgVLt1BMFzGdn2az1y1Yqi/BDVx0/S6qrW0d3ejpyJQJUBLg3Nocqq0qprJT0Xac3scwDMMwhxeufJinmoWFBSwtLcG2bXQ6HbiuG3XamFtzv+dHJbcFwd4jzwweRyW86bqORCKBVCqFVCqF2dlZvPbaa7hx40aUJud53p4mSGXGUwl16rjqWqsOoxBiR7rd4OdU2+u6DtM0kUqlAACdTgemaWJoaAipVAq+70emNSkl1tbW4HkeEokExsfHoWkaJicnYVkWNjY2YFkWTp48iUQigY985CP4+Z//+X2buoQQePnllzE7OxsZxJaWlqDrOmzbjj736dOnkc/no1S5jY0N/OQnP0Gv18Ozzz6Lra0ttNvtKBFP7VslywkhkMvl0O12oet6ZJpS7E7Hu1VbZ2dnMTMzE7X10qVLePPNN2HbNtbW1iClRKfTiYxzQghkMpnI0HXkyJHISLkfpJS4ePEiLly4cJPpbn5+HufOncPs7Oxt2/20UdkeLlZdj3w+v8M8B5CJMZ/Po16vY3V1FVNTUzelAjIMwzAMwzBMhGGQse38eVJ3AqQETCRIGbixQfOUYhMgRehrrwEf+Qjwsz9LKtJTp/bevxrCX5nZTpyg+aq/6Th9cxtA+7JtMrA5Tl/tqmn0UyySQW5oiOIklGnPdSkNT0pap9Ohtsfj/WgIIfrxFIkE/WSztP2NG3Q8TetvY5oUWyElzdvcpP1ISfvJZGjbXq+vnFVqa5VeNxhdEYakVFXmQB4k6NaEIZ1Pdc08j+6/kyfp+l+6ROtMTdG5t21SBAfB3amKGYZhGIZ56lGGmcuXKUFM4/CEQ83u0OfBboQKmVZjMcTjlLzmOFT6+37f6GaafcNbr9c3x6nuwOgocPQoJbGtr9MxOh3aplCg95OTVKZWq7Se6pqobsupU9Sm6Wngp396f8axW3XPBscOEYLaoJbvTrWTkkyhFy4AP/kJmfBaLerOzM/T552c7I89ARxMeLMQ1PaZGfpeDZ6T3WOsHFYeVmIfwzAMwzDM446lbxeMLOV5qAwmxWlCg6VZSJgJ6JqOpJlE1++iF/QQhEG0nhAChjDghz4CebMOUCXNmboJHTp86Udmu4SegBQSgQwgJOny1H7EwMXXhAZDp2S4tJVG3IoDAOJmHG7gwhA0CH61XY22mcxOolAvIBPL4IfXfwgJiYnsBPKxPN6uvY2x5Bhsw0bLacHWbYynxmHrNiazkziePw4AmFubQ6PXQD5OZjRd0zGVnUK9V0e9V4ctbWTsDEaToxAQOJ47joSRQHm8jHLhYLRohmZgdnwW56+fj5Ltqq1qlETX8TvQhIa4EUfcjCMfz6M8XkbciGPT2YQf+mi7bTIF6jq2nC2stFeQaWQAAPPr8zh39Rxmx2cPrM1PEpXmto6uvQYJiXwsv8M8BwAjiRHkY3nUe3WstlcxlZ1CpVlhAx3DMAzDHGIeyp+RVUITwxw2fvzjH8P3fWxubu4wUbGB7sGiDGp7sVdHTBnbfN+PUs88z4Pv+4jFYjBNE77vY2NjY89rN5g4N3jcwRQ6XddhGAZ1xn1/x37Ua8MwkEwmkUqloGkaPM+DaZqRqSuVSiGZTOLYsWPodrtwXRfZbBaxWAydTgdXr15FMpmMEt4ymQxKpRJKpRJs274r89wghmFE+wEAz/Nw5coVCCF2GKAKhQIK209eE4kE5ufn0el0MDY2hqGhocistley3JkzZxAEwX0nuQ22dXx8HH/8x3+Ma9euwXVdBEGAeDwO27ah6zoymQx6vR42NzeRzWbxwgsvAACK+xjVX0qJs2fP4tKlSwCAbreLtbW1HZ8PAM6fP49Go4EzZ87wHwGAyGiopmklYN5FOp1GvV6/aX2GYRiGYRiG2ZNymcxHCwuk+pucBH7wA1KZnjzZTwILAjKuzc6S2nJzE/jOdyhq4Fb1+u4h/HWdjnfyJHD9OikoGw1Ss/o+GZ1Mk8xpymBm2/Q6nyfl6doaKVqVcjUIgO9/n7ZTxrznniOla6VC82y7nyYXi9HP5CT9LC72FbTdLilj43FSvipznq7TPoKgb8hSJjul1FXpc0HQV98q49xgLIbaDrjZRDd4Hp/2v30Mpv+piIzr1+mavfwy8O67/eTEu1UVMwzDMAzDbKPKxbffpvLN97kMO2hUiXun83qn9QaX63p/rAqgnzqnaVTOJ5P96xmGZBCLxagkVOHTymin9q22Nwza//g4le1qvAbLovI9CGh+rUZdJtOkhLlYjI5rmpRaZllUhv7yL/fL//2wu3s2NUVGLWVGU8cCbk61kxI4e5bGmwCo3RsbO8f7UN2vToe2X18/2PBmw6D9Po6Gst0JfLd4BHPfiX0MwzAMwzCPO8V0EfPr8wjCALqm33kD5p4R2/8ASpVTr4UUMDQyphmaEaVwqfVCGUbpc5Ck0xo04CnUPnWhU9IcAF3oCGWIXtiDrdmwNCtKkhNCQIe+o02mZiJrZZG0kzB0Axkrg7gZh+d7qDv1PfVet0tuq/fq8EMfHa+DpJ1ELpbDe0bfA1Mz8crRV6J7zvVdzK/Po+W2MJYcw1B8CBk7g6PBURiaAU1o6Pk9+KGPZ3LP4GMnP4YTQycOPM2tXCij0WtgYX0BpeESprJTWG2vImbEcKN5AxPpCVxvXkfX7yJmxHAse4wGzk8VsNZew09Wf4Ke38N4ahxe6KHttrG4sQhLtzCW3NbPXT+PRq+BM8dYPzeIG7g7pmn7Fjo6O416r37T+gzDMAzDHE4eirJjamoKv/Ebv4Hf+I3fwMTExMM4JMPsi2qVRh5pNptRwpivBGnMfbOXGVGlogGApmmRoU2tp2najuVBEESJcdlsNkqMq1arcF0XhmHA931sbW3t69oNps6pYw4m3QkhYFkWXNeNjHdhGMKyLIyPj8M0TRQKBTSbTUgpUa1WEQQBWq0WTNOEEAKNRgNDQ0PY3NzEyMgIkskkOp0OfN/HlStXonaohDcAKJfL92Se281+DVCZTAZjY2MwDCO69++ULLfbqHe/nDhxAjMzM0gkEtjc3ES9Xke324UQArFYDNVqFY7jYGRkBM8//3xkrpvex6j+Fy9exKVLlxCGIRYXF1GtVnfci8vLy9H5X1hYQC6Xw+zs7IF8rscZle6npk01LOwu1Pzd6zMMwzAMwzDMnghBJrhcjmIKrl6l+SMjZFZrNklBOjxMJrYrV0iBefIkqTpzOTLV7cVeQ/jrOpmiYjE6RjJJBr1Go284cxxSh7ZapFIdHqbIgmefBZ5/Hvipn6J9ui6Zp06coP289hp9ntOnad+eB3zrW2SSW10lpeiRI2SwU6l5Cws09Tw6tko9U6YtIYBUitS0vR61e3iY1KhTU2QkvHiR2quS9lQkRhj296kUvmrgGJVQt3sAG1Zs91HnURkrczm6juPjZJC7cQN45ZW7UxUzDMMwDMMM4LpkhFJjJqixD5j7Q5W/KoR50Kx2O1T5p17vtUz9KDPcYDmt69QtSKfpmqoS3PPodTbbb0uv199Orae6AckkvVfpdVLStoNJbVL2E+2OHKExPoQAjh+nrlK5vL/Uub3O3WD3DKBydxDb3nv/Fy/2w5oXF6k7Vq/Te98ns1y7TeXy+np/TBOAw5uBmxP4bvEI5kAS+xiGYRiGYR5nlPlJaAIxPYZNbD7qJj1RCAhoQoMmNEhISnCDQCADaEKDF3pR4lrciMPWbdR7dTi+Ay/wECKEBi3alxz4txdSSniB1z/WdicjDEM40gEAJMwENKHBD3x40iMtnyBdoa7piJkxZGNZpMwUCqkCWm4Lbb8NARGZmgqpQnTM2yW3VVoVdPwOJCRiRgzjyXEAwERmYodhMxPLYCw5BkM3onM2ld2lrdPtA02c2wshBM4cO4NcLIcLKxcAAFPZKRxNH4Uf+vBDH/lYPjL0vbn6JtJ2Gk2niaX6ErbcLWSsDDa6G2i5LehCR9OlTsdyYxmFVAEnh05iYX0BuVgOs+OzD+RzPI6oNEw1bTq30NFtz9+9PsMwDMMwh5OHYqC7ceMG/uW//Jf4/d//ffziL/4ifuu3fgsf/ehHH8ahGWbfBEHAyXMPgEGTnMI0TRiGASklHMeJjGoqCU7XdYRhGJncwjBEGIbodrtwHAe9Xg+macJxnMgoptbb6xoq056maTetN2icC4IAmqbBNE3Ytg3P86IETcuykMvlMD4+jlOnTuEHP/gBOp0OAEQGPsdxoOs6lpeX0el0EAQBhoaGorSzqampHSl6gwlv5QMS292NAUoIgcnJSRw9ehTpdBqTk5P3nCx3LxiGgRdffBGe56FYLOJHP/oRrl69GpkmM5kMUqkUisXiXRkNfd/Hhe2nvouLi1hZWQEA5PN5pNPpKAFQzS+VSrh48SJmZmYe6Od9HCgWi5ifn8fo6CiWl5dRr9dRq9WiFEMAqNVqqNdpBCd1b+8nFZBhGIZhGIZ5yhGCTHDPPQf83/83GZTefZdUoWNjlPqlFKP1OrBdr6NUIpXmzMzeCV97DeGvXut63xyVTveVraqP6rp901Sx2FeNvu99ZJBTfPvbFJ9w5UrfpKdqZNPsm+vefptUorpOP60WJd2ZZt/kppS+Sp2rkvBqNVLZZjLU1qNHge0UbrguLbtxo28EBPqJdurzqM+rYk12q30BVmvvhWWRkndoiJS8jQaZJl9+mdTMm5u0bL+qYoZhGIZhmAEsi8oJXSdj0e7yjLk7VNml632DmyqB75QwN2ieE2Lv9dQ836cSXO9rJ2EYNO6FZdF4F90uXVvL6ifJNRrUXbAsWq7aqParabTPbJa6C50OlZyJBJX72Sx1lQyDugbT0/1xNnwfeOYZ4GMfoy7I/TzOUN2zmRkK9a5U+mNFFIt03N379/2+4W5xkbpsQlBo8+YmfYaVFWrr6ip1azY3yfBXLHJ4M0DnYX6ezJDLy9T1rdX63UuA3h9kYh/DMAzDMMzjiDI/fW3+a0hYCYjOzclmzL0zmO4W02NI22mYwsSWuwVNaGh5LajT7YUenMCBF3oIZYgQYbStMrlpQkMow1teoxAhLM2CkAJC6xv1NKFRWwQQyhBpO03zoaHrdyPjnh/62HKobQBwfet6lPYVN+IYig/B1Ey8r/i+Hce9VXKbH/qwdRtZO4tNZxM9v4dCsoCJzM5gkKazra3LTOJo+ijSVhqT2Um4gQtLt1BMFzGdnz7wxLm9EEJgdnwWM2MzWKovodKswA1cmLqJSrOC4clhLNWXIpNgvVeHhES9V0fWpsCCTWcTw/FhDMeHI4NdvVfHSmtbPzdcwsWVi5gZm3kon+lxQKVhjiZHsdxYRr1XR61Tw0hiQEfXqaHeq0NARIl+xTR34hiGYRjmMPNQK50gCPAXf/EX+Iu/+As888wz+OxnP4tPf/rTGB0dfZjNYJiIQoFGHkmn05GxijlYlDFu8LWUErquIwiCHWY5IQRM04wMbY7j7BidpdvtwrIseJ4H3/fRarUQBEG07u3aoGkadF2H51EcvDqGOiaAyLyn1lPtMgwD8Xgcm5ubSKfTWFhYgOu6UfqcruvwfR9BEKBSqSAejyOdTmNoaCgyzU1OTmJycnJHu3YnvB0E92KA0nUdr7zyyoEly90N5XIZjUYDCwsL+MAHPoByuYzV1dXIyHcvRsOlpSW4rotutxulTJ4+ffqmczA3N4dqtRol7y0tLT2Sc3CYmJ6exrlz5wDQ78eVlRXMzc3dZD5Uy2Ox2L5TARmGYRiGYRgGAJnQhoaAeJxMSrFYP81NUasBc3O0XJmWlpbITLebvYbwHxsj5WY6DWxs9KMphCA1ayxGaljHoWWnTlF7crm908T2MukNks3S8fJ5Ol6nQ2pY3ydlqe/TsZSxDaB1wrAfW+F51CbLomgG3ycTnTof2Swl4hlGX0UpBBn2HIe2V1EXKtaEzXL7w3XpJx4nVXsmQ0bFtTW6/06eBCYm9qcqZhiGYRiG2UWxSKVat0tlG5do944yvRkGGdZMk947zs5Eur1CmBXq/N/uOuxOqdO0/vHVNJWiLkynQyV4Ok0lJEBTTaP2GQa1r93uj7MRBGQwU4HG2SyZz9bXaVyOoSHa7tQp6hoAD27sBsOgLtB+Ho0sLVE53O1SVw2grtzwMIVuV6v0Wa5dIxNdKkXtPn6836172sObp6eB7UcwKBSoGzk3R13JdLo/noxa/rQn9jEMwzAM83RTLpRxauQUFtYXoEFDgH1ETj9lqPS3e0EXOgzdQC6Ww0hiBD2/h2w8G5nGHN+BH/roeB0EYQA/9BHKMDLfAWSi80IPGrQ7tiOQAWzdhh/6MIQBCQlf+lH6nR/66Hk9jCZHMZmZxPXmdTi+g7gRR8fvwJc+Gk4DgQzQ0BrwAg9xI46j6aMwNAPH88dRGt7ZsblVcput25hfn4cXemi5LcRNMuENavd2m6J0TccrE6/cdIyHjaEZKA2XonZIKfHt5W/fZBJ0AxdNp4mp7BQkJJYby8hYGXxw8oMYTfa12rVODXNrc6i2qlG63lJ96ZF/zsOCSsMEKOFwpbWCubU55GP5HSZEtTxmxGDrNqbz3IljGIZhmMPMQ1F5mKYJz/N2mGjeeecd/LN/9s/wL/7Fv8AnPvEJ/OZv/ibOnDnzMJrDMBHve9/78K1vfQv5fB6aegLGHBi70+CUYU29Vma5Xq8HAIjFYtC3h/NUJjaVMKfS4wDA8zxYlhWZ5gbNj8qgt1dbwjCEruuQUsI0TQQB/XElmUxGZjlN0yIznGEYsG0bsVgMiUQiSqXb2NhAu90GQL/f0uk0dF2PPpumaUgmkxgbG0MQBPjUpz6Fo0eP4rXXXotMd8q8trKygs3NzQNLfHvcDFBCCJw5cwa5XC5KjZvaNar/3RoNK5UKAGBtbQ1SSuTz+R3mOQAYGRlBPp9HvV7H6uoqpqamUKlUnnoDnWEYmJ2dxfnz56PUv2q1inq9Ht03QggUCoW7SgVkGIZhGIZhmIjteh1razenuSlGRmh+vU7K0qkp2m6ven2vIfwLBVKsdrtkRKvX+4rVeJxUibEYKRSzWZoXj1OUw0sv3axI3cukt7u9ly/TsWIxOrb6nJUKxS50u6SU1bR+Ap2UpCxVx1MK4FwO+OmfBo4cAb73vb76dGKC1KlLS6TCTSSo/VtbfQOe2i8rs/eP75PyeW6OzInDw3Q+YzEyMQbB/lXFDMMwDMMwu5iepvKx06H3PI7j/SFEPxXO86iEHjTM3SpZ7k773Gsbw6D96jp1BXSdjpnNUlcilaLS8epVWjeR6Bv4YjF6v7VFBigpaRoEdC+srNA+1dgim5tU7j/3HHWFOh3g/e+nZYdl7IbbdeVKJfq8V6/2Exdtmz5fr8fhzQrDoOS/8+f7iXzVKnVZlXFOCOrScmIfwzAMwzBPO0II/MoLv4I3qm/g0volBCEb6HZzr+Y5AdLvKROdrunIxXKYSE/gnc134AROtH9lpJOQO5LrBlGpdLcjCANAAxJmAoZmwNZtNN0mQhlCFzp0TYepmxiODwMCGE4Mo9KsIGbGYBs2AMAPfViaBU3TkLEyyMfzGE2OopAq4OOlj8PQDPihj6X6Eq5uXsWVzSvYcraQsTOYyEwglCEMzcBUdgptr42kmcTR9FGstlfxVu0trLRWHjtT1K1MggCwsL6AptvElrOFofgQpnPTO8xzADCSGEE+lke9V8dqexVT2SlUmhU20G2j0jDPXz+Pk0PbOrqBlD+Avk+FVCFaXh4vc4IfwzAMwxxyHsr/1JVKBX/2Z3+Gr3zlK7h48SIARCYI13Xx1a9+FV/96ldx6tQpfO5zn8Ov/dqvIZvNPoymMU85pVIJ09PTWFhYwOnTp7GysoKFhYVH3awnFmVssywrMrwpg5wQAkEQQNM0JBIJuK4bpcH5vo8wDGGaJqSUkcFNCAHf9yGljFLmBo+jTHfqR6EMbspINzo6ikajgU6nEyXUxeNxmKYJy7Jgmibe//73Y2hoCO+88w663S42NjaQyWQQi8Xg+z6y2SyOHTuGbreLSqWCzvbT8KNHj6LT6eAHP/gBHMdBo9HA1atX4fs+ADIsTU5OYmJiAufOncPs7Ox9JdI9jgYoIQRmZ2cxMzODpaUlVCqVKIHuXoyF6p5S0/TudIht0uk06vX6TevfLYuLiwAQnc/HncFUwFKphKmpqftOBXyaedLuD+Zg4fuDuR18fzAMc1Acut8nd0pzU6TTpCDcvf5udg/hX6nQ+/V1Ms25LqlPfZ+UiL0eqWyVSW9qiqYf+xjw8st7H2Mvk16t1leL6jq1t9OhaTJJr5tNUsxubfXbbxikHjVNao9KjBNip1HP80hJOT3dj3hYWaHtJiepDY1GX4mdSPQ/5yFm8cQJAMDJy5cfcUsGCEO6V8KQzvXVq5RC5zh03ZSx8WlW+j7BHLrfkcxTDd+PDPPkkkxSSajKPimBEyfoO3/5Mn/n98PuUiwM+wY3FcQM3P1YErreL/XUVO1TdSGkJCObWl89wr50icrHVIqur2X1uxzdLpXomUw/cHpzs2/IU59pa6sfov3cc2RE0zTglVfIaHWYuF1XTgjqphw5Qt2dpSU6L+PjwHveA/zKr7AJTP0/Xy6fRKNBqX2lEnVJV1f7YddjY/10wqc9sY9hHme4tmcYhjkYTo2cwstHXsaVpStoo43LOER/V36MGRycvu2SkQw6sFhfhIBAEAYwNIM0ehpp9kLQwPQykHeVBqhMd5rQkLASyMVy8EMfKSuFhJnAlruFmE4mOTdwseVsIWEmkDJTSJkpCAhoQoMmNGTsDFJWCrqmI2NnEDfimMhM4OeO/xzKhTIurFzAa5XXyEC3dRV+2H9eYmgGJjOTmM5P48Xii3j1Pa/iBzd+gNHkKDShHQpT1L3WD0IIzI7PYmZsBkv1JVSalSiBLmtnselsYqW1gkwss+f2aTuNeq8ON9jWzwX3pp97UikXymj0Gnum/Fm6hbHkGGLGto5uuIRygTtxt4JrZOZpgO9z5mngSbjPH8qfqoeGhvDbv/3b+O3f/m289tpr+JM/+RP8p//0n7CxsRGtI6XE22+/jd/5nd/B7/7u7+LVV1/Fb/3Wb+H973//w2gi85RiGAY+/vGP48///M8xPj4Ox3Fw6dKlPRPMmINBSgnHcaBpGnWwt39UOp1KivM8L7oOapkyzBmGERndFGrbQeOZ2kbtXy03TRPxeByJRAJjY2NwXRfxeBy+72Nrawue5yEej2N8fBzpdBqjo6OYmJiI0jPX19fh+z4sy0IymUQ2m4VpmqjX6xgeHsaRI0cQBAEmJyfR7Xbx13/913j22WfxxhtvYGlpCUEQ7Phsq6uraDQamJmZwfnz59FoNHDmzJl7NtE9rgYowzBQKpXuOwXO2hadqmlzdzrENmr+7vXvlm984xsAHu9iYJAHkQr4NPOk3R/MwcL3B3M7+P5gGOagOHS/T+6U5qZQ83evv5vBIfxPnACuXAHU35s8D2i1SM2ZSpGCVQgyzJ0+DczM0PtSiZLnbsVuk97KCqWV5fOkGm02ydCWydD+xsZo3TAk45tKpvO8vmnOssiYZdu0vePQ+6NHaf1Wi1S6i4u0D/V3ivX1/vlIp2mfyugF0D58v68gPmR846MfBQCc/OIXH3FLBpCyf/7CkM6d5/XPfypF99aHP8wmuieQQ/c7knmq4fuRYZ5MlpaobNv92OmjH6Xv/Be/yN/5/TA4noHnUTdASnqtSrh7RYidKXQqMHpweTZLxje13rvvUmmeywHHjwPXr1MZbpqUuub7tH4mQ+vVarStYdD8MOwHTReLlD6n2nFYTVP76cqptL5CAXjmGTKHHYb0vMOA+n/+858/iTNn6N7ZfgSDXY9gOLGPYZ4AuLZnGIY5GAzNwKnhUzgTnkGAAF/EIfq78mOMhEQgA7iBCz/04fouUlYKpk4D2/f8HqXMSQACiBkxBCCtmx/6EFLcVfqdEGSCC2UIL/QQ02N4buQ59PwebmzdQMtrIRvLYjg2TEl3QiCQAU4MnUDLbWG9uw5d6EhbaQwnhjGeGkculsPRzFG8r/g+vHfsvfj28rexsL6AhfUFXGteQ9NpwvEd9IJelCDX83vo+B24gYvScAnPDj2LSxuXDo0p6n7rB0MzUBouRelxlm5hfn0+ShRsOrfQz23Pt3Rrx5Qhbpfyp7B1G+XxMsoF1tHdDq6RmacBvs+Zp4En4T5/6H+ufvHFF/FHf/RH+MIXvoD//t//O7785S/jW9/61g7jS6fTwVe+8hV85StfwezsLD73uc/hU5/6FBKJxMNuLvMUMDs7i0ajgW9+85tRAlpwSIVmTwIqeU6Z2oC++U2lsjkOddwGE+V0XYeUEpZlQQgBx3Gi1Dm1z0FTGoAopU7NV79n0uk0jhw5AsMw8MlPfhJXr17FW2+9Bdd1USgUkMlkosSziYkJvPrqqzh37hxWV1cj45wyzyWTSQghkEgkkMnQSC3qd9WNGzcQBAGGh4fx3e9+FwsLC5BSotlsotfrASAjUiaTwcbGBjY3N/EzP/MzWFhYQC6Xw+w9Di/6tBugisUi5ufnMTo6iuXlZdTrddRqNYyodAgAtVoN9XodQgiMbYtbi8Xio2ryoeOgUwEZhmEYhmEYJuJOaW4Ava/Xd5rRblevl8uUxvb//X+k1pyaIiOdYZBpTvXxez1Ssx47RvuvVoFf+qU7qxIHTXrqj4DVKu1jO+kbQtB+YjHg2jWKX1haorgR0+wbtJTq1nHoR6lzVZTFyAh9/p/5GTJvrazQdvk87fPtt4EbN/pGvKEhMgyqfSilr1rOAwTtH9elc6brFBmyvt5PQvyf/5MUri+++Gja5vt0P1Uq/WiKYpHVyAzDMAzzGHD1KpVvw8PA2tqjbs3jze5SVxnndhvg7nafKjlOdRtUGa1pVGrFYlS6C9Ev97tdWt5oULKcptE1dl0q3ZRp8to1mg4NUdpcq0XrKKOZlLRvXaeyPpcDzpw5nKapB9GVe1oRgrqYMzNc5jMMwzAMw9wOP/TR9bswNIO1fAdIKEPoQo+S3XzpY6O3AQGBuEnx20EYwAs96EJHzI7B932EkvR5Arc30Knl0VRSB0clm6WsFCzdQtJM4vmR5/HG6huQUsINXUhIFFNFeIGHpkvGrtOjp1FMFeEEDvzQx2R2Eh87+TGcGDoBQzNwYeUCLm1cwpXNK3hj9Q1s9jax5WzBCZyoHTEjhrSdxkZ3A3EjDiEE3n/k/Xjl6CtPrCmqmC5ifn0eo8lRLDeWUe/VUevUMJIY0M91aqj36hAQGEuORdsxO7lVyp+lWyimi5jOTz/whEKGYRiGYQ6OR/a/tmVZePXVV/Hqq6/i+vXr+PKXv4w//dM/xeXL/ahtKSUuXLiA3/zN38Q/+Sf/BP/wH/5D/OZv/iZmZmYeVbOZJxAhBD784Q/j/Pnz8H0fsVgM7Xb7UTfriUYIAV3XEQQBwjDcYXAbRP3xQwiBIAii98pYp6aD+x005qk0u8HlyWQS73vf+5DP5/HCCy8gnU7j5MmTOH78OGq1GjY3N+H7PuLxOH7qp34Kv/ALvwDTNPFXf/VXkFJidHQ0SqlrtVrwfT9Kw0smkygWi9ja2kI8Hodpmshms7hx4wauX79OnX3XjVLwAEDX9ciYtLi4iJGRETz33HO4ePEiZmZm7tmk9DQboKanp3FuOx2iUChgZWUFc3NzyOfzSKfTaDabqG+LXAuFAmKxGGzbxvT09KNs9qHkoFIBGYZhGIZhGCZiv2luanksRsPv365eFwL44AeB73yHVIarq6RETaVItWnbpFYNQzK0BQHwnvdQ2ptKobsTyqS3sECREFNTdBylchwbo7YCwM/+LDA+Dvz+71MbYjFS2No2vQ6CfkqclNSuWIzavrVFilTXJZMeQGl5SpX6zDPAG28A3/0uKW2zWYrdSCRo/67bT6Vrteg4zP4Jw36kxtYWKaFrNVI0f+1rwAsvPFwlq5TAxYsUTaFMmIr5efouzc5yNAXDMAzDHGKuXKGSzLaptLAsKteYeycM+4Y5NR7FvY4boevUDVGlluPQ9RKClmkajYdhWbSs06Hr57o0Xz2CGhmhktzzqPTf3Oyb/ADap+fRfZBK0Tw1BkanQz9/+2/TmB9BcDjNUw+iK/e0YxjUveRHMAzDMAzDMHuzVF+CF3owNCMyXzEHg5QSru9GiW8ClBLXclukt0MIAYEQIc2DhB/Q84a9zHMCgpLmoEFCQkoZrSe3/1m6hZgRw3hqHAAwkZlAo9fAUHwItm6j1qnBNmw4voNNZxNxI46UnULP7+HN1Tejba9tXcPbtbdxYugE/NDHhZULCMIAP6r8CJsOmedCGSJhJqAJDYEM4Id+lLT2oxs/wtHMUbxefR2/8t5feWJNUdP5aZy7uq2fSxWw0lrB3Noc8rE80nYaTaeJeq8eLVdJfdN57sTdit0pfwzDMAzDPJ4cigrv6NGj+L3f+z383u/9Hr7zne/gT/7kT/Bf/+t/RafTiQw1W1tb+OIXv4gvfvGL+Omf/ml87nOfwyc/+UlYStTCMPeBEAKpVArtdhuWZbGB7gEThuG+RwZSZrtBPM/bkU43mDI3OE9tL4SAZVlIJBKYnJxELpfDyy+/jH/8j/8xwjC8o8HM9330ej3ouo61tTV4ngfHcdDpdKJjuK6LXq+Hzc1NBEEAy7LwwgsvwPM8bGxsIAgCjI6OolarRccAgEqlAiEERkZGsLa2hsuXL+OZZ54BACwtLd23celpNEAZhoHZ2VmcP38+ioitVquo1+uRcU4IgUKhEC0vl8tPrKGQYRiGYRiGYQ4V+01zKxT6y8vlOytI33mHTGsqMQwAJiYo6kElu9XrpPAUguapVK/99JeEoCiIXI7MTACZ6AaxbWpruQxcugQ8/zypX7e2SEWr69Qe06T3jkPLpKRtbZvadPIkxZNISWrUwUgHIYD3vpeiLJaWyCSn630lrjLira3RMdhAd3eoc2lZdB6lBK5fpziRd94hA+Xp0w+nLVICZ8/SvQTQ9Vxb22naBOi71Ggc3qgShmEYhnnK2dqiqUoZGzRdMfeOeiS0X/PcrRLqhCDTmmWRWc7zdprzdJ1K8lSKrl2nQ8sSCdrecahUtO1+NwTop9J5HpXkhkFdkGKR5m8/XoJlUXm3ukrt0PX9d1EeNg+qK8cwDMMwDMMwt6LSrDzqJjyRSEgE6Ov2VEKclBIQA1q8gfQ4TdOgazql0N2iDyakADQAYf84AmSq0zUdQ7Eh5GN5ZOwMCkkybNV7dUgp0fN7SNtpWLoFN3AxZowhZ+fQ9btY3lyO0ujqvTrGkmP4H2//D9S6NYzER+D4Dq41r6HRayAIA8SMGCzDQjFVRMpKoeW2UGlV4PouwjBEvVfH9a3rmMpOYam+FBminjRTlKEZmB2fxfnr53FyaFs/16qi3qtHxjkBgUKqEC0vj5cfa9MgwzAMwzDMfjh01c6HPvQhfOhDH8J/+A//AV/96lfxpS99Cd/73vd2GGS+973v4Xvf+x5+53d+B//oH/0jfPazn41MEAxzryijlTJnhfwE84GxO2nuTutqmgbDMKBpWpRaF4ZhlOJmGAbCMITv+9G+1fXTNA22bSMejyMWi+GZZ57BL/3SL+GTn/wkNE2Dpml3NJgtLS1F7Wg2m+h0OkgkEvB9H47jRMdThrpUKoVut4sbN25gaGgIQggkEokobS+RSCC1PcRoIpFAp9NBGIbR69XVVUxNTaFSqTxVxreDpFwuo9FoYGFhAaVSCVNTU1hdXY1MkmNjY4htp0OUSiWUy+VH3GKGYRiGYRiG2QNl8KpU+qaZYpGG8H+cVYh3k+ZWKtH6d6Ky/SB9fZ1MdFNTlBY2yMgIqV/rdTre1BRtt99+lxCkGJ2ZufN1qVToeJ0OKWTHx+l6Npu0jmnSfLVfXafPnU5TAt0779CydHrvtsTj9OO6NFXpdmHYj8UwDFL0MvtDKdqVIrpQoHul1wM2Nuj6/PjHD89Ad/EimefCEFhcJHXy4N9Tlpf76uSFBTJ3zs4+nLYxDMMwDLNvMhmaxmJU9pkme94PkntNnhvcXiXFuW7/GgFUTqvrZhhkolMh0q5LP4kElfnXr/e3DUMa+0A9ZlTlfiJBY3wIQeNgVCr9VDrHoZLuxRfvrovysHkQXTmGYRiGYRiGuRUqde5udGbM3aOMbhDb+klJ5rlQUqdGCgld6JHubRABsWN7ABCaQBhSgp0udOiajpgRgxu6CCQZ3BzfwVu1twAAtmHDDVxIKeEEDgQEnh95HhvdDTScBsZT44j1Yni38S5aTgsAMBQfwo2tG3hr7S1IKVFtV6PEO8uwkDASSFmkzUtZKSQMGgUlCANISCw3ljGVnUKlWXnijHODlAtlNHoNLKwvoDRcwlR2Cqvt1Shpbyw5hpixrZ8bLqFc4E4cwzAMwzBPPodWbZVMJnHkyBEUi0UYhoEgCKJEKYA6Ruvr6/i3//bf4gtf+AJ+9md/Fp///OfxS7/0SzelVTHMfhlMNmMOD77vU8daiMhAp8xv6rWUMvruq9eGYcC2baRSKSQSCXzsYx/DH/zBHyAej8P3fSwuLt42eU5RqVSok+44aLVaaDabUWKh67rRep7nIQxDWJaFTCaDer2OoaEhSCkRi8Wi1D1l3FKvO50OgiBALBaD67rRPgf3zdwdQgicOXMGuVwOF7bTIaZ2pUPYto1yuYxyubzj/xeGYRiGYRiGeeRISeaZCxdIiTjI/Dxw7hwZZcrlx1N9e7dpbvv5jOo8qemtjGcqoW73+neDYZAa9HaqVtftJ86trpLRKQwpiqLX60dbJBJkpDt+nMx9Y2O0nWXRfprNvfevjHHqb2CeR/EmmkbKXikfb5PloyAM6UcppoWgc7mxQddhbIxMbA8D3+9/NxYXgZUVep3P0z3cbNJ9rOaXSvQ7Y2aGrzvDMAzDHDKOHaP/nm2byoxW695KUOb+uJXeVtep7AtDuk5h2O9+aBqVXoUCcPQocOUKlelhSMtMs1/OWxaV4ypgWkoq+4Wg5UJQV+D6ddpXKkXbdjpkygPImAYc7vvjQXTlGIZhGIZhGOZWWDr9nVyCEtFulXzG3D8SEoEMoElKixNSIEQYzXd9NzKo7d4OICOdqZlkopOAruvQhQ5N0xA34hiKDyFuxJE0k3i38W4UpjEUH0LX66LpNpG1s7AMC/lYHj2/F5ni1tpr2HK24AUe3NDFjeYNbDlbkFJiPDWO9e46qm36272hGZCQkSlMETNj6PgdGIKWOwE9Y1EmzScVIQTOHDuDXCyHCysXAABT2V36Od1GebyMcoH1cwzDMAzDPB0cOkXF4uIivvzlL+M//sf/iBs3bty0fHAUC1WwhWGIv/zLv8Rf/uVfYnx8HL/xG7+Bz3zmM5iYmHho7WaeDHzfh2ma3Bk4ZAyOYDOYMNfr9WCaZpQ2p9YTQkDXdViWhUKhgFKphI9//OP49V//dQghcOHCBVy4cOEmg9r8/DzOnTuH2dnZyFQlpcRbb72FbrcLz/PQbrdhGAY2NzfheR4AwDRNxGIx9Ho9uK4LIQR6vR6Gh4cBIHofj8cBAL1eLzqmeq3rOrrdLgzDgLUtlFRT5t4QQmB2dhYzMzNYWlral1mSYRiGYRiGYR45UgJnz1LyFEDRBWtrO4f0B4Dz50lheebM46lKvJs0t/2g+k93Mp6p+bvXP0h8n4xWCwtkbAsCMjudOEGGuq0tmqfrpKB2HGpHoUDnpNulFLrlZdquVqM0O0WtRscQAhgepvVdlxS6iQR9Rs/rR2jw6Lz7Qwi6LsqcWK/T+XwULC3R9et2+6a906dvvg/m5mi5Ui0vLR3euBKGYRiGeUqZmAAmJ8kopcJulWGKeTSoElmVfwqVDqjmJRL0enOT3vs+pasFAa2r61SyJZP9oGnP64/LoBLoAFqv0yETnuNQtyAWo3nd7s5kwsP+aOigu3IMwzAMwzAMcyuK6SLm1+ehCY0SzpgHTogQMpRRspwiwK07slH6nKDXmqbBNmxkLIpkz8aymMxMImEm0HSbqPfqaLtt2LqNjt9BEAbI2BlsOptoNVuwhi1sOVsAgLX2GjYd6pSl7TS6fheWbkFCotatQUDA0A203TakJLOfruno+b0dbex59N6XPnShw9ZtAH2T5pOMEAKz47OYGZvBUn0JlWYlSqArpouYzk/D0LgTxzAMwzDM08OhqHw6nQ7+83/+z/jSl76E7373uwD6JhllZJJSwrZtfOITn8Cv//qvY3FxEf/u3/07vPXWW9F+pJSoVCr4V//qX+EP/uAPOL2JuWuEEGyeO4QM/h4YREqJIAhg29SpVUY6TdMQi8VgWRZKpRL+3t/7e5F57uzZs7i0LUTtdrtYW1uLTFVj20LU8+fPo9Fo4EMf+hC+/e1vY3FxEZZlQUqJXq8HTdN2pMkpA51lWWi32wAo3SybzSKRSKDT6aDT6SCZTEIIgU6ng1aLIuU7nQ6EoD8edDodjI+PR+0oFosP8rQ+NRiGgVKphBKLCBmGYRiGYZjHgYsXyTwXhpQ8Va3uNEAtL5PR6uRJMmjlcqRefFzZT5rbfigWKZ3vTsazep0Un8qIeJD9rsHkwKtXKR1MGeU6HbpeY2OUIiZE3zyn66Q+PXECeOklMkcCdJ1XVsgktTt5LJXqq1TX14F2m5S3rVZffatUwWyg2x9K4RwEdM5aLTKpxuN0vptNSqP75jcfvDq4UqHp2hq1JZ/feS8D9D6fp/thdZVMdJUKG+gYhmEY5pAxPU0/775LJQQb6A4H6lGguhaqdFYJdMkkGdwAKtfrdSq9wpBKLxV43etROaimmQyVjL5P26k0uiDoG+XabdqP69Iy36d7Q5V7j8ujoYPqyjEMwzAMwzDMrZjOT+Pc1XMwNIMT6B4icvvfXW0jyXSnCQ2mZqKQLGAyM4mkmcSzw8+i2q6i43Ww3l1H02lCExr80IcTOAjCAAIC2VgWgQwwtzaHTCyDfCwfGemKqSI2e5vQNR3D8WFYuoWO10E36CIu4sjFcri+dR2mbsL1STPccltIWSm03BY6fgeu79K9BIFjuWO03/Rj0gE7AAzNQGm4hNIwd+IYhmEYhnm6eaQGunPnzuFLX/oS/st/+S+RmUSlR6nkJyklnn/+eXzmM5/Br/3ar2FoaAgA8HM/93P47Gc/i//1v/4XvvCFL+Av//IvASDaLuCnT8xd8vnPfx6/+qu/Csuy2ER3yNhtnBucH4YhHMeBrlPsuxAChmHAtm2Mj4/jxRdfhBACr7/+OgDg0qVLCMMQi4uLqFarO/a9vLyMQqGAkydPYmFhAdVqFZubm0in0/jud7+L5eVluK4L3/chhIBlWbBtG5ZlwXVdSCkxPDyMTCYDZ3vEetM0MTw8vMOs57puZP41TROmaWJtbQ26ruPEiROIxWKwbRvT09MP+MwyB8HnP//5R90E5hDD9wdzO/j+YG4H3x8M85Ti+2S+Asg8t7JCr3ebp9T8UokMWzMztzTxPDW/T6angXPn6PXtjGdqeSwG2DZtdxDsTg5MpSiqQqXA2TYpaNfXKZYiHieV7fg4mSFPnqR1SiXa5vx5mgeQibJe77dfCODIEeD4ceCdd8iUV62SIrfXo/3HYqTODUN6f0hMdJ//4hcfdRNuTxjSOQRI5RyG9N3a2iKls2nSOQfIsHnuHBlYy+WDTYJUg4KpqVJo7yadpvti9/rMvnlqfkcyjwV8PzLMk4lhAC+8QKXi0FC/lPjiF/k7/7ARAtA0eq3GTpCyb5pTpbtpUgntOHT9pKRSfnOTpr1ev7z2fRqnIwypBHfdvjFO02j54OtGg5bncrQ/wyDDXCZDY4EcZBeFOVzw//MM83TB33mGYZiDwdAMzI7P4vUXX8f/WvhfwMajbtHjw+4EuQeJOo4XeIgZMSTNJKZz08jFc8hYGUxlp+CFHt5tvIum00QoQ7S9NsIwRMpKwdRNrHZW0XSb0f6cwEHX60JCImEkAAAdvwMBgYydgaEZSFkpSEhs9baQi+VQ69QghEDbbaPjddB229CgIUAAP6TkOcuwkI/lcTRzFLZuYzp/eDpgXD8wTzp8jzNPA3yfM08DT8J9/tANdNVqFX/6p3+KL3/5y1hYWACwM21OGeDi8Tg++clP4jOf+Qw++MEP3nJ/v/ALv4Bf+IVfwBtvvIF/82/+Db761a9y8hxzz3zwgx/Et7/97VsatpjDx6BhNp1OIwxDeJ4HTdNgmibm5+dx9OhR/PjHP46u6+LiIla2Baf5fB7pdBrNZhP1ej2af+LECXzzm9/ESy+9hM3NTTSbTQghEI/H0e124bouPM+LXhuGAU3TMDY2Bl3X0Wq1YJomKpUKcrkcxsbGUKlUYFkWHMeB53kAKC1PJdOdPHkySkkrl8swHsQo9gzDMAzDMAzDHF6WlkhN2e2SIQoATp++OUVtbo6WT031t3vah/03DDIy3cl4ptL7ADI9HVS/a6/kwDAkhSxACXQAGZ62tkiVWyjs3Z5ymbZbWKDrOjVFMRcqcW5sjNS5UpLK9kc/ov2raIswpPUAeh2G/VQ15s4o02EY9k2IUpLK2XXp+qrrANA912gAZ84cnIlOXT81bTb3Xk/N370+wzAMwzCHinSazHObmwfruWfuDiGo3Pb9vpFOXQ8hqGTWNCr/HIfMbIZBpWGzudNgF4b9fXS7NNU0KssH96nrO4OOg4D21etR6abrVGYWi9TtO8guCsMwDMMwDMM8CZQLZcyMzuD/nf9/H3VTDj0P0zS3FxISfugjkAGubF6BEzhACvjawtegCQ2O76CQLKDjdSAh4QYuQhkiZsTgBi4c34GlW2h7bfS0Huq9OlJWCn7go+PTMxZlnjM1E6OJUcyvz8MNXFTbVaStNHp+D2krjabXjI4jIBAzYkjbaWTtLF468hJ0oaM8XoahcQeMYRiGYRjmaeOhVIBBEOBrX/savvSlL+HrX/86giDY0zQnpcR73/tefOYzn8Gv/uqvIpvN7vsYL7zwAv70T/8Uf/iHf4h//+//Pf74j//4QX0c5glESomLFy8CQGRsYm6N+s4eFsIwhK7rAADbtmHbNpLJJFqtFtbW1tDr9bC5uQkAyGQyqG4LUU+fPo2RASFqrVbD3NwcqtUqYrEYer0erl27hrW1NeTzeei6jmw2i7W1NWxtUUS8MuymUinYtg3XdbG6ugrDMKDrOqSUaDabGBsbQzqdRq/Xw8TERHRMIUSUPDczMwMhBEqlEsrl8j2fD9/3sbS0hEqlAtd1YVkWisUipqen2ZTHMAzDMAzDMIeZSoWma2tk2Mnnd5rnAHqfz5MpbHWVzFWVChvogP0bzwBafh/9rh3cKjnw+HFSw964Qe9VtEU2S6rY970PSCZvbo8QZMbK5fr7VWZJgFS39TowPAw8/zywvAy8+y4tS6fpM+o6KXnVZ3cc2o65M7sVz5bVN0BeuULXsdUi1XMmQ9emWqXUwZdfPpg2FIuUcDc6Ste3Xifz7G4zbb1O7VRmvmLxYI7PMAzDMMyBsrJCJXyz2S8JD9EjlqcGlTZnGH0zXRDQa9+nddTYCaZJZbtpUsmltnPdfqocQMHS8TiV3spIZ1n9MRnicdrG86i0BOiYvk/l45Ej1CWYmqLSfr9dFN+ncVQqlX7JXyxSeh0/BmIYhmEYhmGeFKSUuFi9iBvNG7B0Czp0BOC/c98KZRaT2/+AB2eqExDRMQengQzghi7qvTqEEEhZKTR6DXS9LtJ2GqPJUVzZvIJcLIesncWmswkBgWPZY6i2qwhlCOGTLtELPGz2NuFbPvJ6Hhk7g9HkKABKJ/zxyo/RdJsYjg8jDENIKZEwE9gKtzAcH4at2+gFPcSMGGzdRsbO4GjmKCYzkygNl1Au3P0zIj/0sVRfQqVZgRu4sHQLxXQR0/lpNuMxDMMwDMM8JjyUqu3o0aNYW1sDsDNtTr1PJpN49dVX8dnPfhavvPLKfR1rfHwcv//7v4/f+73fu79GM08NUkqcPXsWly5dAgAUCgWsr68/4lYdbh6Fee5Wpj01T0oJ3/ehaRo0TYNt2/A8D51OB6urq+j1egAAx3EgpUQ+n99hngOAkZER5PN51Ot1LC8vIwxDvPnmm+h0OojH48hkMrh+/TqGhoYQhuGOtMtEIgEpJa5fvw7TNGHbNoIggBAC2WwWUkqMj4+jXq8jCILo2KZpYmJiAhMTE4jFYiiXyyiXy9HvyLtBGUEvXLhwUxLn/Pw8zp07h9nZ2XveP8MwDMMwDMMwDxhVx6tpOr33euk0qTh3r/+0cyfjGUAxEuUy/RxUv+h2yYFSAteuAW+9BVy9SsvyeVK1tloURbJXe4SgRL2Zmb4y1nHIwLWxQWreMCRzla4Dk5M7DXOpFB1bmedU9AUrtfeP79N5azZJ8WxZQLsNJBJknut0KEZma4sMbMvLwG/9FvDSS/d/b01PA+fO0etCgVT3c3N076TT1CaVrFgokGnStmk7hmEYhmEOHa5L/3U7DpvnHhVCUEKcEP1xEnSdSigV4ixlP4FOSrpenkfXb3CdMKRyUAgqwWOxvinOMPoJdYZBBjpVGkrZN+6ZJs1rt8lA94lPUPl/pzJSSgq/vnDh5m7g/DyVkLOzB9vdYRiGYRiGYZhHgZQSZ989i0sbl9BwGkjZKZi6iYAHitsTDRpChDfNPwjz3G4TnjLP3XQsKREihBd48DUfq51VtL02TM1EzIjBCz3caN6AhETCSGAsOQbHd1Dv1RHKEBo0tL024nocQgjEzTi6XjdKm8vGKIzDDVy03BaabhNhGMIPfQgI5OI5mJoJUzdR79WhCQ3Hc8cBAKZmYiIzgRNDJzA7Poty4e60c8rMeWHlAtxglyZvfR7nrp67p/0yDMMwDMMwD5+HYqBbXV2NCsPBtLn3ve99+OxnP4tPfepTSKVSB3rMeDx+oPtjnlwuXryIS5cuIQxD/OAHP4BlWTBNE74abpJ55AwmVe6FpmnQdR2u60Ymung8jng8jl6vh16vF11PZSxL30KImk6nsbGxgdXVVTSbTXieB13XYRgGcrkcrl27hkajEZn0HMdBEATY3NxEGIawbRumaaLT6UDXdei6HpnlLMvCqVOn4Ps+CoUCjh07hpGREcTj8ftOiNttBO12u1hbW4sS6Ma2R6M/f/48Go0Gzpw5wx12hmEYhmEYhjlsWNbOabO593pq/u71mb2NZwcdybA77mFujkxUnc7NyYFCkLntyBHgu9+lRDxNA8bHKaHul3/59u0xDEqne/ZZ4OxZUuIODZFSd22Njt9u0/zpaWpLu03HDQIyW/k+LWf2h1JFK4W059HrzU1Svus6JcPFYnQN2u2+2fV//28yRp45c3+KZcOg+/j8eeDkSZpXrdLxlXFOCDLPqeXlMseNMAzDMMwhxbJoDAQp+0lnzMNBGRaVcU7K/ntdp/JJ1/uBw+r66Dq91jR67Xl9E52m9dcJQyrJVbmt9g+QMc5xaLmuk2kuCGh7Kcm8VygAP/MzwIsv3vmzSEldgu3HQDu6BCpwG6ASstG4/5KUYRiGYRiGYR4lF6sXcWnjEkIZYnFjEde2riGQbJ4bRKh/QkATGmRInRFlptudEncv+1bbD5robrU/CQkNGuXfSQlDM9D1uvB1HxISlmGh0WsgYSZgGzY2uhvY6G6g5bUQhAGSVhKWbqHjdeCGLoZiQxiKD8HUTax2VtH1u0iZKWw6m+j4HTQdelamaRp0oWMkMQIhBMZT4zg1fAob3Q2MJcdwevQ0juWOYSIzcU9JcYNmTgDo+l2stdeiBLqx5LYm7/p5NHoNnDnGmjyGYRiGYZjDzENVVUgpkU6n8alPfQqf/exn8eJ+ngYwzAPE931c2B6VfnFxEVevXoWmaRgfH8e77777SJLWGGIvw5wy0gkhdowoFIYhPM+DYRjQdR0AsLW1hXa7jdHRUbRarcika20LS5u3EKJubW2hWq2i1WpFx2+32/A8D0IIFItF1Ot19Ho9OI4D3/ej9Lt4PB5tk06nkUgkMD09jUQigXq9Dtd1oWkaZmZmYNs2fvmXf/meDXO7GTSCLi4uolqt7jh/y8vLKBQKOHnyJBYWFpDL5TA7O3sgx2YYhmEYhmEY5oAoFik2YHSU0qzqdaBW65uxAHpfr5MSUikki8VH097DjDKelUoHt89bxT288w5dl/V1UsNOTt68ra730/COHCHTU6Gwf8PTxYuklA1DYHGRzFSqz6eS6JSqNwjIqGeapNgNQzq+Mobx3zruTBD0FdaeR+pp1wUyGVreaFASXSxGyxcW6HtYKNDrXI4McPdDuUzHWVig+3hqiq7roEI6FqN1SyVan2EYhmGYQ0mxSIllpsml2MNCpc0psxxApbAy0g0mwIXhzWNOeB6V0sr0pox1KsnOMMgAZ5p9o50aw8J16X2vR2V4KkXrquN2u9SusTFgYgK4fr2fXnc7btclAKhLoMZXOKiSlGEYhmEYhmEeBX7o48LKBUgpce7qOby5+ia6fveWyWdPIwICpmZCgwYv9AABWJoFKSSCMABk3/h2txjCgCY0QNBxQkkpb/tqlxCQoYQvfWTNLCQkOl4Hba+NlEXavZ7fw0prBbZhww1chDJEz+9BQiIMQwzFhwAAHa+DfDyPYqqIXtBDwkhgeXMZgQzQdJqQkMhYGSSMBKbz00iYCdR7dbiBC13T8cGpD8LWbfzKe3/lrk1zg+w2c1Zb1R0mwuXGMgqpAk4OncTC+gJysRxmx2fv+XgMwzAMwzDMg+WhGeg+8IEP4DOf+QxeffVVJBKJh3VYhrktS0tLcF0X3W4X1WoVYRhifHwcnU4HlmXBcZxH3cSnmsHESk3TIIRAuMeo+VJSBzoIAgghYBgGXNeFbdtot9u4fPkyJicnEQQBMpkMmk2KcK/ValE6HADUajUsLS2h1WphaGgI77zzDnRdR6fTQbvdjhLm1FSl00kpYZomdF1HPB5HMplEsVjEiRMnUCqVIIRArVbD3NwcqtUqprZFk0tLSygdgJhztxF0ZWUFAJDP55FOp9FsNlGv16P5pVIJFy9exMzMzIEZ+BiGYRiGYRiGOQCmp4Fz5+h1oQDcuAH8zd/01ZmOQ8rKVIpMWLEYzZ+efrTtfhq4XdzD+jpdFyHISPf228Azz9wc93CvyYG+T6Y9gJSy23075POUfNZsAleu0HzbpviMZrMfm6HiNYB+bAYn0t0ZKel8KXo9+g7qOn33HIfOt2X1E+quXAFOnSJ188zM/SXCCUGxIblc//orE6bCtsk4Vy5zvAjDMAzDHGKmp6mE5/+uDx5lktv93rapFA6C/lgSykwnJRnnBsej2F0e+z6V1YPmO5U4p0rEMKTrqsapUOW9SrXr9agdo6M0zWRoDIblZQqwVsa9RIICrm/3uGg/XYJ6vT+/VDqYkpRhGIZhGIZhHgVL9SU4voM3Vt/AwvoCpJSwdRtN7D1Y+tNKEAaQGpnkYnoMutDRC3rQNR1O4CBEuO/0OWW006BB13Rk7Ax6fg+a0BCGIdph+477kiDzXiACOL6DttfGeGocXb8LKSW2nC1k7Aw2OhuQQiLmx7DlbsELPKSsVGSKc0IHY4kxJMwEvMCDbdh4dvhZrHXWkO6mI6Odpmkopoo4kT+B0vC2Pq9Tw9zaHKqtKqay2/q8+hJKw/emz1NmTgBY3FjESmtbkxfLI22n0XSaqPfq0fzScAkXVy5iZmzmvkx7DMMwDMMwzIPjoVRp+XwesVgMf/Znf4aXXnoJ733ve+9pP1//+tfxr//1vwYAJJNJfO1rXzvIZjJPIZVKBQCwtraGMAwhpcTa2lqUOMY8eIQQkTkOAIIgiExzgwwmzu2VDBiGYZRMp1Lh1DW8evUqbNvG0NAQ6vU62u02rly5gnfeeQejo6PIbI8gHwQB6vU6MpkMXNeF53nIZDIwTTMyWm5ubkbpc0EQQNM0pNNp6LoOx3EgpUQqlcLMzAwmJyejzzUyMoJ8Po96vY7V1VVMTU2hUqkciIFutxEUAE6fPn2TOfBBGfgYhmEYhmEYhjkgDIMiAr7/fVJYbmxQAtVuRajrAseP0/xymRWRD4PbxT1sbVEyWDxO72/cAN58E3jhhf7295McuLRE17zbpeMCwOnT/WTCIKDYiuvXSTGrojWAvsoXoPtEtVkpiJn9szuSJJEg5fXRo0AySddnc5OU0sCdVdD7QQj6nTAzQ/urVPoJdMUiqfH5+88wDMMwhx7DAF55Bfif//NRt+TJY3dJqxLiVKCwZdGP6/ZT5NSYEnfa7+BYCkB/G12na2oY/dBntU9No3ViMTqe79PyZJJKSDXmRTZL67bbVNZXKrcvHe/UJQCoyzE3R8vVuAsHUZIyDMMwDMMwzMOm0qzg2tY1LNWXIo1Yx+tQshoDgMxqIUKEYQhDM2AaJmkft/9pQkMo724gPUMzICBg6RZysRyaThNtt73v9DkACBHCCRz4oQ+tp8HWbRiagZ7Xw3p3HV2vi57fI7ObV0MgAxiagZbbgi502IYNx3ew2llFwkigkCxgqb6EIAyw3l2HoRn0+TQNaSuNF8ZewERmoq/PS4wgH8uj3qtjtb2KqewUKs3KPRvolupLcAMXXb+Lamtbkzd6GiOJAU3eAZv2GIZhGIZhmAfLQ1FY1Ot1fPvb3wYANBqNe95PuVzG2bNnAZDpZmlpCdM8yjpzH7iuCwBwHAfVahW+7yMIAniet6dJi7k3VJLcXvN1XYdlWZHhzTCMyAB3Lwwm1IVhCNd10W63sbW1hXw+j3fffReu68JxHGxubqLRaCCdTkMIEaXW5XI5XLlyBcViEcPDw0gmk7h8+TLW1tbQarXQ7XYBIEpva7fbsG0bmUwGlmUhm81G6wySTqdRr9ej+05N75dBI6iUEvl8fod5DniwBj6GYRiGYRiGYQ6Q974X+Ku/oliCkRFSWq6skNrSNIHxcTJqLS9TlME9DlLE3AV3invY3KQ0uk6nH3Hxox/R61yuHwcBULLg3SYHbvf5sLZGSt58fqdSdm2tnzgH9JW7ykSnaTTP82h7w6BlPHDQ3aHOp1JTq0iSZhM4cYKUyvE4mSmnpu6sgr4bDIP2xX14hmEYhnlsKRSoBGQOBmVUk7Jf7ip0vV8Ox2JkoFPBzAcRxqwMeuq4KvhZJd85DpndTJO6c+l030wnBCXRaRp1EYaGaPs7PS66U5cAoPf5PO33QZSkDMMwDMMwDPOw6HpdXN26iiAMsOVsoeN1ItMUm+j6qEQ4P/TRdvoJcV7o3VXynICAEAKGZiBtpSn5LfQwnBiGBg0b3Y27bpcvffSCHiqtChJGAqZuQoeOltuCF3qUVCcD6JoOTVAHL5AB/NBHykrBCRz6CR2krBQydgZO4KDerUNCopAs4PToaUxmJ286ftpOo96rww229XnBvevzKs1tTV57DRIS+Vh+h3kOOHjTHsMwDMMwDPNgeWhDFEspo5Ee7pVisYgTJ07g8uXLAIDXXnuNDXTMfWFZFgAyeW5tbUFKiVqthlqtxga6B4wQAolEArFYLEpvC3YP53kX6LoOTdOg6zqCIIgSBXu9HnRdx8bGBnzfR71eh+M4ME0Ttm1Hr8fHx+H7PtrtNpaXl5HJZHDq1CnYto3XX38dUkrEYjF0Oh1omhal29nbT7yllHAcB0KIyJCZSCQwOdnvqDebTQD9+05N75fdhrx0Or3neg/KwMcwDMMwDMMwzAHy+uuUbPXMM8APf9hPoBOCFJfXr5Mq8qWXyKzz+uuUUMU8OPYT9yAE8IMfkPo1mSRz1fXrlE6nlhcKwMmT9P5ukgNV301Nd/f5FhfpOIOpcoZBql7XpXm6Tm0YXEe9Z/bH4HkLAlJGm2bflJhK0c/u68UwDMMwzFOP7wPr6zT+hQoMZu4dZY5T40IMPn5WY0kYBo1loQK8VTKdCmu+nzJYpc1J2R8nQxnzgoBKQtW2RIK6DWqcjUyGll2/Tq8nJmj7Oz0uulOXQJFOU5u4JGUYhmEYhmEeZ2qdGvzQh4TElrMFx3cQ1+NwfRceeGC43UhIOKEDQxjQoN3WPDdomNOgQWgi2iZtpfFM/hnE9Bgs3YKAQNbOIkSIWoe0lPs15gFk7AtliFbYgm3YSFkptD0y+ulChxDUFmWis3Ubhm6g6TYRhAE0U0O1VUXSSiLcCJGP5zGeHke9W0cQBmi77T2P23S29Xm6tWN6L+w24aXtW2jyDtC0xzAMwzAMwzxYHpqB7n7Nc4rx8fHIQFdVoiWGuUeKxSJ+8pOf4Pr161hfX0en00EQBPD9/UePM7dHCLFnAp2u6zBNE7FYDMViESsrK/A8D47j7Fj3Vul1exGGITRNiwy7Ko0uCAJsbGwgHo+jUCjgypUr2NjYgGEYiMViaLVa2NzchO/7kanNNE1kMhlomgbLsiCEQL1eh+d5CMMw2rfv+0ilUkgmk3AcB1tbWxBCIJfL4dq1azhy5Ah0XUetVkO9XocQAmNjYwDo/jsIdhvylFFvNw/KwMcwDMMwDMMwzAGhks6EAHo9YHiYIgx0nRSVrttXZPZ6tN7Fi8DMzP7NWMzds5+4hxdeIBXsjRsUczE2RuaqYpGu3dgYzQcoAqJc3v/xVd9NTQf7fEHQT8RrNum9adK6YdhXzKq0OU3rm+jYPHdvKMW7EPT9VPEnySTN2329GIZhGIZ56llaojJtZIRLsINAPXI2DAro1jQKhVbGNmWi8zwqhw2DulQqkPl+USY8z+u/ViVhr0fHMk2abm3ROBxHj/a37/XIWJfP0xgbAHUbbsftugSDqPlckjIMwzAMwzCPNds1fxAG6Hgd+KEPX7KW705ISHjy9gZDDRpM3YQQIkrz04QGQzMQN+MwhIFjuWP46aM/jR9WfojvXPkOfOlD1/S7Hhg/RIhQ0gD4CADhCQQygICAEzqAAJn+hIZQhuj6XcAnw5sudEhIpKwU4kYcgQzQ9bvo9XrIx/K4unUVG70N1Dq1HYlwtU4N9V4dAgJjyW19Xvre9Xm7TXjKnLebgzTtMQzDMAzDMA+Wx05d1Wq1otebm5uPsCXMk8Dx48fx2muvRWYqx3HuOwmNuZlbGWgNw8D4+Dgcx0Gn09lhTNN1PTLfqUS52yGljFLo1HYqJc40TXieh3a7jVwuh0wmE5nthoaG4HkedF2HrutIJBKwLAuNRgONRgOdTgf5fB71ej1KuFP7TCQSUYqeYRiIx+OoVCqo1+uYm5tDMplEt9vF8PBw9PuqUCggFovBtu0DS9AsFouYn5/H6OgolpeXUa/XUavVMDIg6HyQBj6GYRiGYRiGYQ6I3UlnQgAf+MBOs1atBszN0fKpqf52pdKjafPTwH7iHoQAnnuOUskAUukOD/cT5wAyW5XL9HM3A00Vi8D8PEWWLC9TpEStRvdFrUYq4G63375MhtS6rRYds9vtm75U7Mbu18zdIyWptLtdMkcqU+t2nxvFIs379reBt9+m9eJxuk/OnOkbKhmGYRiGeeJR4zHoOv3wGI73RxBQKaUMaJubVPaqsS5WVui141C56zj0XpndVALd/ZbCKih8cN+WRe2zrL5xb3WVxkDJZmk726b2j4+T0a5eB65do1LfsqiMnJ7eOUbK7boEilqN5u8uSRmGYRiGYRjmcWMkMQJd6Ki2qghBhXvP6yGQrOe7Hfs5PxI0KD0kvYZEdI6zdhbH88fxgaMfQM/vwQ99HMsegxd46Hpd+KF/T9dAJc4FYQBLt+AHPjRBqXeWbsHSLGhCQyADuIELCYm4GYeAQD6ex3B8GHEjjrbXRq1Tw1B8CCkrha3eFv7m2t/AEAZsw4bjO/Clj5SVwpH0EcSMGGzdxnT+3vV5xXQR8+vzGE2OYrmxjHqv/sBNewzDMAzDMMyD5bEy0G1tbeGtt96KzDipVOoRt4h53PnJT34CZ1vc5jgOut0ufN/fd+IZc2eklDcZElU6XLPZxOLiIuLxOBzHged5UXrc4Lpq3u2uizLOKSNdGIbRdo7jwLIsNJtNrKysIJFIYHx8HFJKDA8PY2hoCPF4HNVqFaurqzh69Cg2NjYwPz+PdDoN27bRaDRgmiZM00QQBNB1HZOTk/B9H0EQoNvtIgiCyPDXbrfheR5ef/11ZLNZDA0N4bnnnsPJbfFkuVyGcUAJEdPT0zh37hwAMuitrKxgbm4O+Xwe6XQazWYT9Xo9Wn7QBj6GYRiGYRiGYQ6I/SSdjYzQ/HqdlJhTU7QdG+geHPuNe2i1gKEhuibxOBnZjh+/tQp2v0xPA9t9PhQKpAiem+vfB1tbpJbVdTLFaVpfGayOp9S9g6phFZWh+tqD73lgoTsThhQ70m4DP/4xGSanpkgFbZrAD34A/Ot/TSa6QX7wA+C//BfgIx8BPvnJflwJwzAMwzBPLGqcA8ch85Qac4G5d3yfyrBajc6vrpMpzfPoJx6n8rbV6ocxD6bFqRL4XoKZ1SOswTJavY7F6LXn0bU2zX6JrtA0MrjZNvD97wOTk8DiYn/5/DyV/7Oz/bE3btclSKepi7L9GAiFArXDtmk7hmEYhmEYhnnciBtxWLqFjt+BLnT0gt4dk9WY/RGCkt50oUfzhBAIZQhDGDCEgevN63B8B0PxIVRaFThevxMrIMh4dxdISAQygKmZSFgJNHoNCAjo0GHoBgQEhuJD6PpdbHQ34Ac+Qj2EJjSI7TjCqewUVturaPQa2OxtwtAMrLZXSSs40B4BATdwcTx3HFJKlMfLMLR71+dN56dx7uq2Ji9VwEprBXNrc8jH8kjbaTSdJuq9erT8IEx7DMMwDMMwzIPlsTHQOY6Dz33uc3C3nzIJIXDq1KlH3Crmccb3fVy4cAFDQ0MIggBbW1sIwxCWZSEIAjbRPUCUsU0ZzTqdDgBEKXNSSoRhGBnMdP32MfCDhrswDGGaJjRNg789jGsYhvB9H67rYn19HUIIxONx9Hq9KKUumUxicnISa2tr6Ha7yGQy2NjYQKvVito5aK5MJBLQdR2maaLT6cD3fQghoGkaPM+DYRjQNA22bUdGNtXWUqmEcrl8YOfTMAzMzs7i/PnzkUGvWq2iXq9HxjkhBAqFwgMx8DEMwzAMwzAMc0DsJ+lMza/Xb16feTCMjgLf+Q5FW6yskHHRNIFnnyWlLrAz7mF8nBSrH/7w/RkbfZ/SBSsVMmEtLpIpT0pqQ70O3LjRT5+TklSynkftc12g0+mb4ZQ6WCl8d5vlNI0+TxjSD/9d5PYoZbTnkenVNOk6fe97tFxFmnQ6lBiprsv4OM3/2tfo2v7jf8wmOoZhGIZ5wlHjMNg2lQgcBHz/qCDgXo/KZlX+qnS6drufDDc41fWdBriDKHlVia3Gr1BlteNQ8lwiQdMjR+heGB0FrlyhJLlCgcZIuXKF2m9Z/fS48+eBRoPCiw2DDHXnz/dDrqtV6hIo45wQtD+1vFy+t/E7GIZhGIZhGOZRM5ochRu4SNtpVFtVuCE/AzloAhlAbP8DAF3TcaN9A0PNIYQIEcoQK60VNN0mhCagCQ2WbsHxnbs20A0eIwh3ajKDMEAzaAICsDQLfkhaPzdwkY1l4Yc+TM3ESGIEXb+LnJ1DpV1Bx+sgZaeQs3NYaa/ACzyYuonx5DjiZhzLm8sYTY7ivWPvva/zZGgGZsdncf76eZwc2tbktaqo9+qRcU5AoJAqRMvv17THMAzDMAzDPFgOrFL79Kc/va/1fvd3fxfDw8N3te9ut4sf//jHaDQaUcJUOp3G3/pbf+temsowAIClpSW4rosgCKIUOl3X2Tj3kJBSRka6MAwj89zupLnBZbfbl0p/MwwjSokbTKVzHAeapkHXdXS7XTiOA9d1IaWEZVkoFApIJBLI5/MIggCjo6Po9XpwXRfdbheu60IIASFElEQH7DT3hWEI13Xh+z48z4OmaXAcB77vQ9d1bGxsIJfL4cyZMztMfwdBuVxGo9HAwsICSqUSpqamsLq6Ctd1YVkWxsbGEIvFAODADXwMwzAMwzAMwxwQ+006U/N3r88cLFICFy8CP/oRcPkyKXM1jYx03/0u8PrrwLFjFG/RaNA2BxH3oI574ULfHKlMbwsLpIItFoGNDVIGhyEZ67a26LVlURsdhxTEg3/nGDTRDabRqflKWTwYo8HsjTp3ykR34waQzZJ6u1Yjo2ujQddp8FxWKpRUWCoBP/whpdG9+uoj+xgMwzAMwzx4ikVKFVMlF5dZ94+UVJ5vbVEpDFAJLMTOMGVNo/LYdW8OY77X66DK5UHUPgEaL8HzyNimHm8ZRt/YdvUqlYjPPEMmwB/+cGdblLHu5Ekq/3O5fhpdo0HzSiUKP15d3Wm8234MhFKJ1mcYhmEYhmGYxxUhBHJWDl7IyXMPEk1oMDQDQgokjARW26touk0cyx1DpVVB0kziaPoo3m28C01o8EP/jjq+vY4hhIAvfViaBVM34QYuAgTwAg9CCPT8HkKd9hvKEJZuIWNlEMgAE5kJ6JqOptNEw2kgbsQRN+KodWpou21IkP7QD31cb15HPpbHS0deQtyI4/XV1zE7Pntf56hcKKPRa2BhfQGl4VKUhucGLizdwlhyDDFjW5M3XEK5wJ0xhmEYhmGYw8yBGei+8pWv3NYQogwxf/M3f3NP+1fbKwPL7/zO7yCRSNzTvhgGACqVCgDAdV10Oh0kEokdZjrmwaF+V4RhCG17lPXd33FN0yLz3K1MjXuZ7QDA8zzouh4dR0oZHcf3fWxsbMC2bViWBcuyUKvVUK/XIwOdpmmQUqJYLEIIgatXr6LX68H3fQwNDWFzczNKmQuCAJ7nwXEchGEIIQQymQwmJyfR7XYj01osFsPLL7+MXq+HIAgOPP1NCIEzZ84gl8vhwoULAICpqakd69i2jXK5jHK5fOAGPoZhGIZhGIZhDgClrB0dJdVkvU5GnJGR/jqDSWcqmqBYfDTtfZKREjh7Frh0id6PjgI/+Qm9VqrcZhN4801S7BYKpJS937iH3cftdindzHVJDXvkCEVNvPYaLS8UyLilVMJhSAau2ymzw7DftkEVsTq+ms/czGBfWqmufb9vVlxaounoKF1DzyMzZTpNsSOtFt036+u0/NQp4BvfAE6fJhW1Uj8Xi2TA5MgQhmEYhnkimJ4G/s//oVJApaMx94+mUbnV7dKYFppGpZnrUgmWyVDZZRj98GA1ZgRw7ya6Wz1eEYKOH49TSWhZQD5P3blMBjh+nNq4sQG88gqN0VGt0rb5PJWMzSZ191ZWaH6pRGNrzMzQ5zhzhgx124+BsOsxEGybuiLl8q3byTAMwzAMwzCHnbX2GiYyE/jule8ilPy36geFLnTEzTgszULMjGE8NY56r45Wu4W0lYYuSHt3LEtmOt/1YWgG/NC/qxQ6CUn6P03CD3wIbOv9BJnrdE2HhETGzsAJHOjQYekWIICR+AgmMhOodWpY766j0WtgKjuFje4GCslCtL2lW2TKCwOk7BR6fg9CCFxcuYiZsZn7SoQTQuDMsTPIxXK4sHIBADCV3aXJ022Ux8soF1iTxzAMwzAMc9h5bFQYyigjpcTHP/5x/PN//s8fdZOYxxx3exR3z6ORaiYnJ9Fut7GwsPAom/XEo4xtUlLnWCXHqc7j4PROaYAqwU79blD4vg/TNKN0OCEEgiCIEgdV6p2UEp1OB9lsFrVaDUEQYGhoCC+//DJqtRo6nQ6q1SomJiaQy+WwubmJVqsVmXebzSZarRY6nQ46nQ5M00Q8HsfU1BSOHz8O0zRx4sQJvP3223BdNzLaLS0toVQqHfi5FUJgdnYWMzMzWFpaQqVSiRLo/xfLdQABAABJREFUisUipqen72jc833/nrd9WllcXAQAnFRCWYYZgO8P5nbw/cHcDr4/GOYpZXoaOHeOXhcKpJqcm7tZTamW7yPpjH+f3CMXL5LBKQyBxUW6Fp5HERcKIUgJaxhkbFPneL9xD75PhqtKpW+cajTIECcEHbda3anqVSrfWIyUwu02TU0TGB6me+TGDWq3SpNTERmDJjkp+6Y7Ieg+8v1+Mt0DYvHECQDAycuXH9gxHhiatjOtT0pA12mZOoeOQ9cjCIBOh+a/5z30fVWsrtK9VavR/dPpAP/P/0PrKebn6XeBihoZfOC+133Dhrt7hn9HMocJvh8Z5snFMMhEZRj9/9ZPnKDv/OXL/J2/V4Kgb5yTsj8FqEwbHqYyudnsG+d8n7YbXPdu2Ws7dXzLohK93aZrHYtRV+597wM+8hFKj7t8mUpGZZ47ffrmMVPm5mi5MsgtLVE3QwgqEWdmHq+SkEtY/n+eYZ42+DvPMAxzf7gBafo6XgehDHEC9Hfly3gM/658iIkZMYwmRskMJ4GW24IGDSFCrHXWEDNi0IQG27AxkZ7A8uYyHP/egglCGcILPBiaAS/0yBgpgVCEsDQLGmiwe0uz4IUevMBDEAbI2Tm8ufomGfvcFlJWClJKtNwWRvOjeM/oezCS6Heoap0a5tbmUG1VI5PbUn0JpeH70+kJITA7PouZsRks1ZdQaVaiBLpiuojp/PQ9m/T80MdSfQk/efsn8EIPhcnCfe+TYQ4jXCMzTwN8nzNPA0/CfX6gFdadzC77XWcvNE3D7OwsPv/5z+PTn/40j9TA3DeWZQEgA10ikcArr7wCKSUWFxehaRoCJSRjDhQpZWSiC4IgSm1Tvxt0Xd+RRreb2xnr1Hx1/QzDQCwWQ6fTiUx2mqZFaXRhGKLRaETt0HUdzz33HOLxOE6ePIl/8A/+Af7oj/4ItVoNpmnC8zx84xvfwPDwMHq9HiqVCjqdDnzfhxACpmkil8vh2LFjAICJiQmMjY2hWq2iXq9jdXUVU1NTqFQqD8RApzAMA6VS6a6OIaXExYsXceHChchcqpifn8e5c+cwOzvL6XV78I1vfAPA410MMA8Ovj+Y28H3B3M7+P5gmKcUwyA15PnzfTNWtUqmOWWcE4LMOPtMOuPfJ/dArwd8/eukXH33XWBzk5S5zz5LBqnl5b4KFwCGhigl7rnnSBl7p7gHKcmgd+ECqUcVQQB8//v0WhnggJ0Gyo0N4J13KM1M0yjGZHKS2hWL0bKtrZsNcrpOPyoWQ5nqlHJYyn40h0qlu1dF8W34xkc/CgA4+cUvHvi+HxjqWmpa/3ypFL9Egt7bNqmzez1at14nVbBt0zqDjI2RcnhtjYx0qRTwox/RtbVtSq9TqZLnz5Op8swZer/XfQPc3nDH3Bb+HckcJvh+ZJgnm0yGyrFmk95/9KP0nf/iF/k7f6+oMleNA6FpVE4FAZVLvR4ZtC5dovlCUKkchv1S+SDbIiUdc2uLprlcv0zcfmyESoWma2u0vkqoG2RkhObX6zT2wtQUbTf4yMcw6P0DfNR0INyq6wM8fSUs/z/PME8X/J1nGIa5P3RNx7WtawhlCE1o+Kikvyt/EY/R35UfIgLirhLhAEqfMzQDIULEjBjCMMSWuwU3cCGlhKu7sA0btmYDAKaHpuGFHtpeG3qow5f+vo+lrmMgA3iBB01ogBrvbzudLmElsOVsIRvLwtRMJMwEdE1Hy29B+AICAnEjjrSdRr1bRz6Wx1BsaId5DgBGEiPIx/Ko9+pYba9iKjuFSrNy3wY6haEZKA2XDmR/UkpcrF7EhZULcAMXa3+zBgBoJBqYX5/HuavnMDs+y6l2zBMD18jM0wDf58zTwJNwnx+Yge6v/uqv9pwvpcTP/dzPRUXcF77wBczOzu57v4ZhIJPJ4JlnnkE6nT6IpjIMAKBYLGJ+fh7pdDpKFAPonguCgA10t2A/yXD73Y8614MJcrZNHW+VLtftdncsV/M1TdthmAvDMDLH5XI5CCGg6zo8z4PrutB1HbFYDKZpIhaLASDzpFoehiGy2Syy2SwAoFwuI5VK4e/+3b+L8+fPY3V1Fa7rolAoYGs7cSAWi8H3fRiGER332LFj0DQNhUIBExMTAIB0Oo16vR4Z03Yb1B41UkqcPXsWly5dAgB0u12sra1FCXRjY2MAgPPnz6PRaODMmTPcMWcYhmEYhmGYB0W5TIaZhQVSQ05NkWpSDdM/NkZGKWD/SWfM/lDqzq9/HXjzTUqcu3aN5ieTlBQ2OQm89BKlw73xBqlvh4bI9PRTP0XxEXc6xtmzpOIFKHpibY2ub7NJSlspyaSXTgMf/jDtW/H223RsZajUNOD552larZJat9mke0gZvuLxvnFO00jB2+3S9spUZ9uk1N3YIFPeYFrd04pK7VM/pklKaxUvEov1zXOp1M1xJq5Lqulul67lIL0enWfbpvus2aQpQNdkaAg4dYpMmwsLQDZL13Sv+0b9XgB2Gu64384wDMMwhwYpgR/+kErH7fH9mAMgDKms0nUqw2Kxfjmm6/3EuWPHyIDm+7S+59F6u8eMUCY8tW9g73L4VtupeaqssywyTk5M0A/QN5Gp6a0efafTVPLvXv9x4nZdHy5hGYZhGIZhmNvhBR780L9rU9jThg6dBpkPA0jIuzLShTKEEzhwfAeaIA1eKMMoKc4PfUCSYSxmxNDzeziaPoqu18W1rWtoea19H0sl3FmGBQjAgAGpkxZQtTlrZxEiRD6WxzP5ZxCEAVJWCkPxIVi6hbHkGJbqS6h1asjYGRiagbS9d4cqbadR79WjJEM1PUxIKXH23bO4tLGt1fO78EIPUkpc2byCseS2Vu/6eTR6DZw5xlo9hmEYhmGYg+LADHRn1EjIt0CZXl588UV86EMfOqjDMsw9Mz09jXPnziGRSCCbzULXdfi+D0892WJ2YBgGdF0HAPi+f1uD4Z1S4qSUO4xzyuwGAKlUCq7rRp0+ZW5T2wBkmLMsa8c8lWonhEA8Hofneej1enAcio6Px+NIp9OQUmJkZCRKjGu32/A8D/l8HmNjY9ja2sKHPvQhlLdFqOVyGY1GA2tra7BtG7/4i7+IN954Azdu3AAAZLNZdLtdtNtt2LaN0dFRTE5OYmJiIvoMze0hZQ3DQLVaRXdbqGhZForFIqanp2HcJjHiQXPx4kVcunQJYRhicXER1Wp1x/VbXl5GoVDAyZMnsbCwgFwud1dGaIZhGIZhGIZh7gIhSDmYy9Ew/QCZ6AaxbTLOPQ3D9D8sBtWdtVrfPLe1RQlisRgpbt95h4x0p07ROvU6qWILBVKD3omLF+kYYUhGuGq1r7StVvuRJFL2Fb6DaBq1Rx1rdJTUwc8+S/PffpvUqLpO6xoG/VgWmbB8n9q9vk7TeJzar6ZCkFmwVrv52E8bKplPGegcp/9e1/sqZk2jc6lS/DyP1lGK7t1/P6lU6PwCfdOdUnvn8zRvbY2OJwQZZb/2NbrWQtx83wBkuFTJlAsL9PuD++0MwzAMc2i4eBFYWQHa7YNPPntaUSY23+8b5cKQukphSMs8j8qqQgE4coTGvwD6pbIq7VRZpco8oG+y2+u4ut4PJR4sDw2DXqvyzrKAo0eBEycoCQ+geYNTVf7vRs3fvf7jxO26PgCXsAzDMAzDMMytMTQDhmZAgwYBfgayGwEBHToMw4Ct23ADF37oI5QhAhlE6wwa6vYyu/mhj47XgRu4kcnM1E0I0MD2mtCQsBLoel0EMsBadw2BDJAwEuj5PYQgw53at4CAJrQd89R8CMDSLEquE0Bcj0MX1AHThY5MLIPJzCRsw4YmNIynxlEaKu0wjcWNOI7njiOUIZY3l9F09u5QqfmWbu2YHiYuVi/i0sYlhDLE4sYiqq0qJoNJAMCVxhUsN5ZRSBVw8v9n781iG9vy895v7ZmkKJGaKNWgqlLV4TldrT5UD6e73W139U3S8I0v4AS5RhzgGgmQlyTGRZK3OA+JDQNBAvghcQL0SxBkgAM3YsS5sA34Xg/pc9ruclrdp0+pz2l1aShWqVRVIiVKmxTnPa378NfaJFVSjZJq+v8KxCb3sPbi3rvE/ya/b32jV7Cys4KMk8H81PyL7TTDMAzDMMxrwqk4Nr72ta/FxWwmkzmNXTLMYzEMA/Pz89jY2MDExESchqaSzY4rae11QNdpxBrbtmOj197eHoLg4Th2ZWJ7nIEOQGyM0zTtIQNcGIZot9sDN8L9z8MwHOhXKpVCq9WCYRhotVrwPA+GYcQpcclkEqZpwrZtDA0NYWpqCpqmYWdnB7u7u7Gh7sqVKwMJa0IIXLt2DT/84Q/R6XSQSCTwxS9+EWEY4ubNm/jJT36CdDqNVquFyclJXLlyJU5sA4BKpYLd3V1Uq9X4unr77bdx+/ZtAMDy8jKuX7+O+fl5FAqnH7keBAFu7Ity19bWUCqVAADZbBbpdBr1eh2u68bz8/k8FhcXMTc390JNfwzDMAzDMAzzWiMEKQfn5oBikQw3apj+6WlSX3I9frz0qzvX14GNDVKtttukrr1zhwxmExOk/Ewmnz4WIgh6psi1NVJRA2SaSqdpfypBDqAUsnv3SO2rlLxB0Es+k7Jn7BOC0vEuXOglmqlrZnSUth8e7vVFSqBWo1S1dBqYmqIIiFoN+F//qxfdwQrvnsq3/3uOMKSHadLx9ryecrrdpv+fnkcmuL09+n8L0PVy5w5tEwQ9xXUqRdvW63Sepqbo+rh5k1TXxSKtV6sdft24bm9+Pk/X89wc/51gGIZhmJeAIAA++oiCfjc33+yA3+OiPyw5CHpjRmgavVY/XW1tUbnc6VB5lUxSGabG0dQ0ChJutWh7FQ68t9czx/Xvs78s1LReP5R5TvVBlXdvvUWl2fx8ryybngaWl+m2Yn2dyrhKhcKgFZUKzReil9KmyslXhSe59eESlmEYhmEYhjmKSEY4P3weKSuFnfYOhHzyZLU3BSEEHN3BaGIUpm6i6TXR8Bqod+sDhjal4RMQiBANtBHJCJ2gA8dwEERBbL5LmSlYugUv8mDpFsqNMoQQiKL9hDr4sAwrTr5T5j2FMtGpPkSIaB6i2Mxm6zayiWy8TdpKw9RN5FI5/OLcLyJtpVFqlOCF1Ifp9DR+euan8ed3/xztoI27tbtwOy4qrQrGk70bqkqrArfjQkDEKW7T6ZfrhiqIAtwo3QAArO2uodSgGyNdkA4y62Thdtx4fn4sj8XSIuYm52BofMPEMAzDMAzzvJxKRfX++++fxm4Y5qkpFArY2dnBrVu3YjNQOp1GrVaDYRicRrePYRgwDAPpdBqWZcXHpVarPZREpwxxj0Jto4x0ylSnzkEQBAiC4CETnjKXqfkHTX3T09MIwxBBEMA0TURRBMMw0Ol0IKXEmTNnMD09DSklHMdBNptFvV7H8PAwZmdn8e677+JTn/rUQyY2IQQcx4Ft2/j617+Ozc1NeJ6HfD6P6elpjIyM4NatWyiVSrh58ybK5XJsPtvd3UW5XIamafGXEq1WC2tra7AsKzbbLSwsoFqtDpj3ToNisQjP89But1EulwEAV69exXjfr7WVSgVLS0sol8uY2U++KBaLyOfzp9ZPhmEYhmEYhnkjMQxSEnLtfbIcVHfWaqSKTSRonoqnqNXo9eQkGduSSXr9pLEQxSKZqtptUk83GtSWSjMbG6P1mk1S8TabpOCtVCiaAaBrotPppaJ1OoMK05ERUgknk731kklS5KZStO9mkxTBQ0OUpKfex+QkqYwNg957q8UGOkX/9xPKvAjQcYwiOqaOQ+cyDOlaSKVo2eYmGelSqV6qYRj2zqFlUSyJ79MxV9dZMklK+5s36Rrd2gKqVVp29erDKuulJTJ3qsTKYpH/djAMwzDMS0CxSI9Gg0oxNtA9P/3HUKXPqcBglQCnpmpsiSCgsn5igrav16kMy+fJxKXOjwoIPnie+lPqhOiV4JZFz02T5ts2jX9x8SKZ3t5+m4LDFbOzwPXr9DyXo30vLT1sLFPLHYfaVAl2rwr9tz77Pz1xCcswDMMwDMM8MZZu4dzwOeTH89jY23jR3Xk5EcBUagqfO/M5tIM22kEbG9UN3JV30fJaCBFCgwZd6JBCQkaDNzkSEpBAGIVo+S3omg5LsyAgEMoQXuhBSgkv9DCeGketU4PbdlHr1qBBg6VZaIdtCE0AEnFSoBACMpJxAp6u6bRc0Ou0lcZEcgKXRy+j5bew296FqZmYTE0iP5bHV85/BV848wUAwNvjbw/0OYgCLNxfAADkhnIoNUpY2l5C1skibadR79bhdtx4uWM4sHUbs9mX64aq6BbhhR7aQRvlxr5Wb+Iq5G06R5/JfQaVVgVL20soN8qYGZmJt8uP8Q0TwzAMwzDM8/JolwvDvOYIIfCX/tJfwl/9q38VQggYhoFPf/rTSCQS0NXo7m84KplteHgYZ8+exdzcHIaHhzE0NBSbwg5y0FR3EGWYE0IMmO10XYdpmgjDEJ7n0cg1UYQwDAfMdiqpzvd9RFGEVCqFZDIJz/Pg+z6SySR0XYfv+wjDEL7vw/d97O7uYnt7G0IIeJ4Hz/OQTqcxNTWFT33qU9B1HdOPGMZTCIF8Po+vfvWruHDhAgzDQCaTwa1bt5BOpzE5OQkhBFzXxd27d+G6LqrVKjRNw/j4OLa2tlCr1bCxsYEHDx7gzp07+P73v4+VlRVEUYSVlRUsLi4+45l6NjY3NwEA29vbkFIim80OmOcAYHx8HNlsFlJKbG1tDWzHMAzDMAzDMAzzynNQ3ZlIkNr18mVSsSYSZEwDyPwUBKRq3dh4ulgIFTny8cfA7dvUVrtNytFSiabb2z0j3u4uKXmVoQoghXCrRX1SJreob9TYmRlSCas0NCGoXZVI5/tk9jKMXqKeaQKf/zxw7hwdi26X1us3eTEPo2l07NVxrdfpfDgOHdOpKbp+TJOWbWz0VPOaRvNNk87Z5CQlzalraG+PzlEYkukOAHZ2aNtsdlB5DNDrbJaW79+343W5bw8CYGUF+OAD4I//mKYrK71oGYZhGIZ5ybl3j8qARqNn9GJ6aBqVPc9zXKTsBQSrIGVgMEUuimh8AmWky2apHA5DMrgNDdH4E2oMicOMjiqFLop6SXMq9Hlykm4ZcjkKhrYs4Gd+Brh2bfC9GQYl0gHAlStUMgpBtxd37/aS56amaDlA/XtZUtmetDRTpej29ptZwjIMwzAMwzDPx3R6GkIIfH3m60gayRfdnZcSTWjIJrMQQuCd8XcwmZyEbdiwNAu6rlOamdCgCQ0qvE+Z3BS6RusIIaALHUkzCU3T4Ic+RuwRTKenUWlW4LZd7HX34Ec+QhmiG3bR8luIZIQgDCD7/oVRGCfdCY3S56SQZNDTLQxZQ8gkMnAMB+dHzmNmZAZnh8/ivbPvITeUw/mR80e+Z0MzMD81DwC4MnoFU0NTEBBwO26cSCcgMDU0hSujdENVmCrA0AwEUYCVnRV8cOcD/PGtP8YHdz7Ays4Kguj0v2ferO9r9ZrbkJDIOtmBFD0AGE+OI+tkISGx1dwa2I5hGIZhGIZ5Po7l6/a7d+8OvFYJRQzzKiCEwN/8m38Td+/eRavVwmc/+1nouo4f/vCH6HQ6L7p7Lxxdp3hw0zSRTCZjc1y3231k0pxKW1PP+9PjlAlOvQbIdCeEQKPRiJcpg1x/WwAQRRF834emaQiCAI7jIJFIoFqtwjRNmKYJ3/eRSqUwNjYGKSVqtRpqtRra7TZqtRqSySSKxSIuXbqEqampOGFu9jHDeN64cQM3btyA53kD73N1dRWGYWB6ejrev2EY8Xvd2tqClBKZTAbZbDZOqHNdF6XSfuR6Po/FxUXMzc3FqXonjXofappOpw9dL51Ow3Xdh9ZnGIZhGIZhGIZ55Tmo7jx3jkxmQUCq2lqNHu02qWXX1sicNjxM8QhPGgvR7ZK6dGODVLmGQSa5MKT2hoZo/55H81R6mZSkwK3XaX1d7xn6Gg0y3/k+mbVqtZ4qOJOhtrpdSi5Tqm3fJ/Pd2bPUh2SS1vuv/5VMWipVjXk0/Wps3+8Z6kZHyRjnOKSedhw6R7u7dJ2opDkp6ZxnMr02h4bofLRapJ7WdTp//fs74r4d6TRto+7XX/X7dimBxUVKhzz4XpaXKbplfp4U5exEYBiGYV5i1tepBKtWe6Yr/ugi1PHoT3d7moQ+tX6/YU7TqIQKAnqt61QmDQ/3AoEti8oyXSfjVhiSec6yqAx7HFLSrYFpUjuGQeMfTE3R2Aif/jSV2v/H/3H4uS4U6HpYWaHbiZkZ6ke/Gc9xaN18fjDB7kXxtKXZwZL0TSlhGYZhGIZhmONhNjuL6xvX0Qk7ZIRi39AAmtBgaAbctouJcxO4MHIBGjR8XP4YlmFB+L00uEhGsbkN6EuKgwAEpf3Zug0A6IZdGMKAZVpo+S0IIZA0k7B0C6VmCe2gDT/0Sfu3/+9g+6ptTWgwNRNSSoQyRBTRenvdPXxq4lNImklUO1UIIZ4qLa6QK6DaqWJlZwX5sTxmRmaw1dyCF3qwdAuTqUk4Bt1Q5cfyeHfyXdwo3cCN0g144eANx/LOMq5vXMf81DwKucKhIQIngeqHmqbtI7R6dhpux31ofYZhGIZhGOb5OBaHxsWLF+MCUgiB4MAwc48zpDwLQgjcunXr2Ntl3kyEEEilUtB1HRcuXMCVK1dQrVZRrVYfm6b2uqNMau12G0EQwHXdOP1NHvFLpjLM9RvspJTQdT020EVRNJBCpwxjnudhfHwcOzs7iKIoTrlTKXT9SXSapiGKIlQqFSQSCRiGAV3XYVkWEokE5ufnsbe3Bykltre3sb29jWq1iu3tbYyNjUHXdTiOgyv7w3gWCoVHGteazSYWFigKvt1uY3t7G57nwXEcnDlzBltbW3jw4AFyuRzy+Ty2trZig51lWchkMrh69epAwlulUsHS0hLK5XJsPi4Wi8jnTydy3dpPNlDTer1+6Hpq/sH1GYZhGIZhGIZhXnkOqjVHRsgEdfs2JbQBpIgNw17i2/Awrfc0sRB371LCnaaRGa5W6xnhADJYKbVpf4Jcu03bArTtlSvUF4BUulKS6tR1ad65c6TAVfvpVyabJvU9m6X3lstRW4uLtH2/gQ+gPvRHdzA9DirgDYNU2ZYFvPsuGSrv3ycD3KVLpIJuNMik2OnQsU8m6fw2GmSeA2g91+2ZItX8TIbO5xH37fF8db/+Kt+3Swm8/z6wukqv220yuParygFgYYHU5wejXRiGYRjmJWJvj6bqo1pK/thSqFLqactNdfzUNrpODzUGhTrGpknl1tmzVPrOzdH4FB9+SNulUjRttag09/3B9vtLPSl77aoUuijqGfUsC/jSl4B33qEy8XOfO/r2QAgqXzIZMqQBZKLrx7bpFuNlGCvgWUqzgyXpm1DCMgzDMAzDMMeHShr7ZOsTjCXHoAkNoXyz9Xv9RDKCDh2GZgASsW5X0yhxTtd0RJIGyZNSQhMapJCQUc/opmkaLN2i9YUOW7fhRV48bfpNJK0kMnYGY6kxrO6uwjZsNLwGgiiI9xFFESAxYKDThAYImieEgKVZkJBIGAnomo6230atW4MAmecOpsU9CiEErl24hoyTwY3SDQDAzMjgDZWt2yhMFfDu5Lv4YP0DrO7SzUw7aGO7uT1gtgOAhfsLqHaquHbh2qmY6CzdGpjWu0do9fbnH1yfYRiGYRiGeT6ONeLoKDPNnTt3HkqQel5Oa8QH5s3hl3/5lwEAQRDg1q1b+PDDD/HJJ5+g3W6/4J69WHRdhxACrVYLq6urSKfTaDQasYFO07SBVLmD/9dVCptqK4p6N+j95sT+pDuADFpRFMUJdJqmIQxD6LqOIAjifSvTbhAEsQmy0+ngU5/6FAqFAlZWVlAulzE5OYnR0VGsra2h1WrBsiycP38e2WwWmqYhn8+j8IhhPL/yla9gYWEBURRhbW0N5XJ54H0KITAxMYFMJhOb9oaHh/H222+j1WphY2MD2Wx2wDwHAOPj48hms3BdF1tbW5iZmcHm5uapGeimp6exvLyMiYkJrK+vw3VdVCqVh0x+yjg5uf9L6PT09Kn071VA/e1gmMPg64N5FHx9MI+Crw+GYY4L/nvyBBym7pybIyVtuUyK0NFRSp4DSOl6/jwZ1TTtyWIhggCoVOh5p0MPpcDNZul1q0Vq1G6XFMDJJClpx8bISKXUqbZNcRUA7bvbHYyseO89ijpZXqZ+j4zQe1JJd8PDlEB37hy1/+Mfk3mv06G2wnAwXe0Yv4P75W9+89jaeiH0q6ml7KmiDaP33HGAr34V+Pt/n47nBx8AN28CS0ukKL54Ebhzh86vaZJae3OTXjsOme7qdVJ0Dw/TOZQSeOst4KOPyFxXqQD93y9UKjRfiJ6C+VW+b19cJIW2SnwslwdV9evrZEC8coX+L2QyFHnyDPDfSOZlgq9Hhnk9GR6mqWkOmru++U3+P68S4w4LP35UGl3/fF3vrW/bVBKr46zrVBql01Te53L0enMTePCASq/JSQqInpggU5gawwLopdmp/vl+r8+qD6oMvHyZyvYnvT0QgsqXuTmgWKQ+qXJ+eprGYnjc+BynxbOUZtPTdDsyMUHL34QS9nHw5zzDvFnw/3mGYZjnp5Ar4I9Sf4Tr3ev4b4n/hkqr8qK79NIgIGDoBiQkPt76GF7oYb22Dl3T0Qk6APZNbEA8+L0f+ogQxfOjKIKAQNJIYsQZQcJMYLu5jW7YRRAFSFtpTA9N47PTn8Xt6m2MOCMIWkG8f1u3Y1NjGIUQUiBCFC9X/0zNhCY0GlxfMzCdnkbKSuFi5uJDaXGF3JPFbwshMD81j7nJORTdIjbrm7Epbjo9jdnsLAzNwI3SDazuriKSEdZ211BulAeMfuvV9djAt7KzgoyTwfzU/HOenccznZ7G8s4yJlITWK+uw+24qLQqmPj6RLxOpVWB23EhIGKj33T6Nb5hYt4IuEZm3gT4OmfeBF6H6/xUv3o/LtPbcRrxGOYghmGg3W5jZGQEly9fxo9//OM3+przPC9OjqtWq2i32wjDME6aVAa7g2a6g8l9lmXFyyzLQrfbjddXqCTARqMBAEilUnH6HUDnxjTNOBVPCIFkMgnHcZBMJmOznmEYuHTpEoQQyOfzSCaT2NjYAABMTExgd3cXQ0NDMAwDQgh88YtfRKFwdBR7EAS4sT8M6NraGkqlEgAgm80inU6jXq/HBjhlxrNtGxcvXsTdu3exti+yTKePiFxPp+G6Lrz9tAM1PQ1mZ2dx/fp1AEAul0OpVMLS0tJD700tdxwHtm2fSLIowzAMwzAMwzDMC+EwdefODilfk0lS1DYapJ5Np8k8Zxi0/he/+GSxEMUiGdmiiExytk0PKcm45jg0f2+PVLdKfRsElGamlMEAbfdLv0TPFxdp3wcjK959lyIwGg1SB9dq1JZhUD/OnqV1Pv6Y+lCrDUZ/aFovhe4N/k7kSKTsKap1vXdsz5wBvvxl4OpVOi+OA/zsz9JjZYWiO1TiXKVCCYIAnfdWi669er2nIp6YoHOraZREl8sBpRKZ8bJZuh7r9V76YC5H+7RtUl2/igRBL4plbY3eL/Dw+1Xz83n6fzA39/KozBmGYRimj5kZ+ohSpZ8Q9HHH9JLcngUVBmwYvXJVHdcwpOWGQaWa5/WMW0JQSpwy2hkGrZtOU4mh2lNlRRiS+dE0qVzz/V5YtK7TfMeh9lutJ789UBgGlTOnNKbiU/Ospdkv/mJvfJI3oYRlGIZhGIZhjh8hBKaHpjFij8CLvNicxZBBLZQhqp0qIhmh5bWw29mlRDgZIW2m4Yc+AgQIwgAS+yl0Kn0OGqQmEUQBumEXutBxv3YfEWiQe1M3kbJSyDpZjCfHsVheBEDJd5rQIHRax/d9QAK60CE1CRGJXuqcbsHUTAw7wwijEJ2gA0MzcGHkAiZSE3FqnEqLK+SO1u0dhaEZyI/lkR97+IYqiII4oW5tdw2lxr7Wz8kibadR79bhdtx4fn4sj8XSIuYm5x6bgve8zGZncX1jX6s3lEOpUcLS9tJDfVPLHcOBrduYzfINE8MwDMMwzHFwbNXe4wxGb7IBiXm1UGapkZERDA0NwTTNUzU0vWyEYRinwIVhGBvq+m9apZSwbRvJZBLdbhdSSnQ6HYRhiDAMYRgGDMOA7/uwbRumacYGOGVicxwnHvVGGfA0TYNt2wiCAFEUwbKs2OAopUQymUQ6nYZt2/G22WwWlmXFJjwhBM6fP48zZ86gUqngo48+wtDQECYnJ5HP5/GVr3wF848ZpbxYLMLzPLTbbZTLZQDA1atXH0ppW1paQrlcxsy+cLGyny5g7f9KWK8fEbm+P1+tp6angWEYmJ+fx8LCAq5cuQIAKJfLcF03Ns4JIZDL5eLlhUIBBovSGIZhGIZhGIZ5XZidBfYHFjlU3ZlMkrpzZIQe586Rsekf/SNSej4Jm5u9VDkpyThlmj3jVKtF69k2qW0nJii64epVehwVR/GZzzw6siIIjl5eLJICOAgoKU0I6lN/bAfzMPvfP8RTpczOZiklTh3jg/RfZ++8A/zoR3StJZM9xbbnUfLc5CSZ8UwT+JmfoRS673+fYj0Aiv1w3Z7qWIhe7AdAqu1X9b69WKTj0G7T+wTo/8DBuJKlJVquzKPF4surPGcYhmHeaM6fp8fWFr1+VsPY68qjUuYelUKnzGuGQcc0DKm01bSeuc40ad3R0cHxKBoNKt3On6dSrNEgQ5dt09gWqv0wHAwgVuMnqOemSWMcnDlD5d177z1zKO5Ly7OWZnfv0rFYWHgzSliGYRiGYRjmZBAQZMbSTk9H9SogIdEO2vBDH37ooxt2YWs2/MiHYzjwQg+2aSMpkmh4DfiRD8u00PJbiGQEQzOgazoCGSCSEWrdGjphB7rQkbbT0ISGtJXGueFz0DV9YN+a0BBGIQzNgK3bAMhAF0QBfOFDgMxzjuFA13RKvNOAqaEpXBi5gOn0NKaHpvH22NsDaXHHTdEtwgs9tIM2yo19rd/EVYwn+7R+rQqWtpdQbpRjQ1/RLR5qyDtODM3A/NQ8Fu4v4MrovlavUYbbcWPjnICI0/EAoDBVOHFjH8MwDMMwzJvCsVRV3/72tx+5POJfg5hXCGWWSqVSAADHcd5YA50yyankOEV/+pxhGLBtOzbCTU1NYWtrK36ttguCIDbA6bqORCIBXdeh6zp834+Pd7fbhWnSKDW+78fmPbWv4eFhSCnjbWzbxtDQEEZGRmCaJkZGRmLzV6VSiU1ual/JZBKpVArvvfdebOT74IMP4HkeLMvC9PQ0ZmdnBwxim5ubAIDt7W1IKZHNZgfMcwAwPj6ObDYbJ9HN9I3+PzExgfX19Yf6BJDJznVdCCEwObkfuX6Y0O4EKRQKqFarWFlZQT6fx8zMDLa2tuJjMjk5CWdfFJrP51EoFE61fwzDMAzDMAzDMCeKYTxe3Tk8TOaoK1dILfvFLz65eQ4g1SlASt3hYdrn2Bipeff2SJ2r67RMvZ6epv1cu/bovj8qsuJRy/fvdeG6QCJBfTQMUh6zee5wpOxFmgjRU2rbNqmnVTLhYdEZ/dfZW2/RvJs3gd1dUn2r8z88TG2YJvC//+/AX/pLtG6tRil2+Twpk7e2eqbIycne9ZjPk/r4VUVdl9vbdLyz2UGFNkCvs1m6dre26HhsbrKBjmEYhnkpmZ2lx94e8J3vcJn1NBx1rFQZpmlkgBMCaDapnFIGuijqmehU6C9AZi/XpWXT01RCffWrlJrW6ZCZLgiofWXiM01qU/VH16kEm5igkuTtt8kIlkgM9vNRY1m8Kkax5ynNvvY1oFp9M0pYhmEYhmEY5mTIOlnsdfc4fa4PAYEIEYIwQChCSE+i5beQsTMwdAOmbsZaPV3TkbbSaAZN2LoNKSW6YRdSUEqcrdnQhY5O0IGlW0gaSQzbw2j7bYwmRnFu+BwAYNgeBgA4uoNIRghliDAKoWs6dKnD1m1ooYYgosH0bcOODXaO7kATGoasIVwevYz8WB5fv/j1h0xqQRSg6BaxWd+EF3qwdOu5DHab9X2tX3MbEjJO0+tnPDmOrJOF23Gx1dzCzMgMNuubJ26gA4BCroBqp4qVnRXkx/KYGZnBVnMrfu+TqUk4xr5WbyyPQo5vmBiGYRiGYY6LY/l6/tqjhDwM84qhzFK7u7vIZrNvdNLW45IjwzCEruswTROapqHdbiMIAvi+jzAMYds2wjAEAGiaBk3TYBgGHMdBMpmMzbXJZDJet9vtwrIsdLtdBEGAdrsNTdMghIDnefB9H5qmwXEcTE5OIgxDTE9PY3iYbtaFEDh37hw8z8PS0hKy2SzS6TTq9XqcqDY5OYnt7e34XOt9Q48uLy/j+vXrmJ+fR6FQiPcLIJ6m0+lDj0c6nYbruvF64+PjKJUo6j2Xy6FUKh3Zp1wuB8dxYNs2Zg8T2p0gQghcu3YNmUwGN27cAIABAyAA2LaNQqEQHxOGYRiGYRiGYZjXikLhZNWdKmnctqmtMOypZkdHe+vdv0+K3PPnaT+2/dxv7UiUqS+KSHkcRXQMhHh03AdDxyYISEltGL1zubPTM8f1o9TT1Sqp50slShj8K3+F1MhbW5QCqBIPR0aAr3yFzHPqHvzaNdpm/74dB+7bYdt0XRYKvW1eRdR1qaZHfAczkNrXvz7DMAzDvGQYBvDZzwLf/S59zDebL7pHrz663jPIdTo905yuU5kmJZXf2SyVCOUylUr1em98jFyOynvbBn72Z4GPP6ZxDAAq3VT7UvbCmqOI9uM4tC81VR5+NTailGTIu3Hj4RJleZlCiefnX42y7XlKMyHenBKWYRiGYRiGORncjosRewShDF90V14aJGQ8jWQEP/QRihCVdgUpMwXbsJE0k0iYCey2dwEAI/YIvNCDJjRo0OK2dE2PE+MSRgKmbiJlppBNZJEyU9hp72A8OY5zw+fw0eZH6IQdhFGIUIZoBS04hgMpJTpBh86RIA2aLkiHpwkN3bCL0cQohu1hTCQnYOs2ZrM9XZyUEovlRdwo3YAXDt5ALe8s4/rGdcxPzaOQezq9mmpLTdP2EVo/Ow234z60/kkjhMC1C9eQcTK4UboBAHEKnsLWbRSmCk/93hmGYRiGYZhH8+Y6gxjmCPrNUtls9rEmsjcdz/NQrVah6zosy4LnedA0DVJKeJ4H27YxNTUFx3Gwt7eHKIowPDwMIQTq9TomJiaQTCZx7949dLtdAIDv+3HKnDLMAZRm6fs+DMNANpvF3t4eHMfB8PAwpqenkUgkcO/ePXz+85/H7du3US6X4zQ6AHHKWxRFuH37Ni5dugTP87C9vR2nrY2NjaFcLuOTTz7Bn/zJn+ALX/gCyuUywjCEtS94rNfrhx4LNV+tl0gkMD8/j4WFBVzZTzE4rE+5XC5eXigUXohpUwiB+fl5zM3NoVgsYnNz85GpfAzDMAzDMAzDMK8VJ63unJ4mtezEBLC+TttfvkzLajVS6TabpDw9cwZ4991eLMZJoUx92SztSymAleqYeTTqGNk2HbtOh+I3treB3/otUkW/+y7wox8NqqfTaTrnt27R6/Pngffe611TR11nQlCbc3OvfpTJo1DXpZoe8R1MPP/g+gzDMAzzEvL22/TRPTVFCWhcaj0fKrwXGCyXgoDmJxJUyo+NUclQqwE/+EEv9Pn8+V5g8LvvUklVr1MwcDpNrz2PzlPUF3ShaVRyRBHtI5GggOpUikq42Vna5v33gdVV2qbdpvKwf1wOgEKJq1W6BXmZdZDPW5q9KSUswzAMwzAMc0IIIJvIQhd6bBx70xGgGwh1PAIZQEgyrTX9JiIZxUlw2UQWlWYFfugjkhEiRLB0C47pwAu9eOD8rJNFbigHP/TxhbNfgAYN5WYZS9tLCKIAe909uB0XDa8BXdMhIwkv9OCHPnShw498SEiI/X9tvw1DM+AYDhJGAqOJUUynpzGeHEdhqhAnykkp8f6d97G6SzdQ7aCN7eb2QAobACzcX0C1U8W1C9ee2Ehm6dbAtN49Quu3P//g+qeBEALzU/OYm5w71vQ9hmEYhmEY5tFwhcUwB1DmJ8uyIISIU9KYownDEFEUxcdKmelM04RpmnBdF2NjY2i1WpBSQtM0WJYFx3Hgui4qlQo6nQ50XcfIyAjK5TKiKIKu69B1HVLKeDtlptvb24OUErOzs5iensaVK1cghMCFCxcQRRHy+TxmZmawtbUVG8FU8tzt27cxOTmJVquFH/zgB7FJUhnbhoaGMDExgVKphFqtBsuycOvWLUzu/7Kp+jw+3ot2r1QqcF03NukBwPT0NN566y1Uq1WsrKwc2SdnP8Ugn8+j8LQpBseMYRjI5/PIqyFTGYZhGIZhGIZh3hROUt05O0tREwDFXZRKZKjLZkml2+2SunZ4mJTVKg7jJBPKlakvn6eIjO1tTp57GoQATJOU00FACu3z53sRJd/7HvDtb1PUjBAPq6cLBaDRIEV3vQ584QtknnzcdWYYdM5e1/v2g2ZT1yWnQd93MKhUaL4QPRX6SZpNGYZhGOY5+c53qOxrtV50T14PVDqcGvtBzdN1YGiISuozZ6hEM00qwXyfno+O0rgHCwvAV79Kprlbt4BPf5oMbckkBQZ3u9S2pvX2oWm9/WYywMWLFBoMUGlnGDRuwuoq9WdtjdLv+svr9XW6HbhyhcKvMxm6BXlZOa7S7HUvYRmGYRiGYZiTYTw5DkMzoAsdutA5iQ441EgoIRHKEDKSCL0Quqaj7beRslLohl2EMoSlWdCFDi/y0Ak6ZMQTQBAFqHVr0ISG9868hyuZK9B1HUIILJYWseftAQASRgINrwFTM2FqZpw6F8oQQpBxThMahBCQkEiaSeRSOVzIXIClW5gZnsGnJj6FQq6ni1ssL2J1dxWRjLC2u4Zyozzw/tar68gN5XBl9ApWdlaQcTKYn5p/ouM0nZ7G8s4yJlITWK+uw+24qLQqGE/2af1aFbgdFwIiNutNp0//e2ZDM5AfyyM/xjdMDMMwDMMwpwEb6BjmANPT01heXsbExATW19dfdHdeGaSUCIIAuq4jDEP4vh8b6RqNBsrlMkzThO/72N7ehq7rME0TABnwhBBIJpMwTROO46Db7SIIAmiahiiKIKWkm+x9M50y16XTabz11lsQQiCfz+NrX/safvSjH+HGfmLATF9iQBiG2NzcxKVLl9BqtVAulwEAmUwGruui1WohDEPs7u5ib28PIyMj2Nvbw9e+9jUAwIMHD2Lj29LSErLZLNLpNOr1epwol8vl4DgObNvG7OwsRa5fu4ZMJnNonwDAtm0UCgUUCi9P5HoQBJxExzAMwzAMwzDMm8lJqDsNg5SxCwuklgVITeu69ABIcarUtEBPhXtS9Jv6Ll8mha9SCrOJ7tFIScppTSMl/MgIGR4/+YSUxdPT9Hp9nZTVnc6j1dOaRuppVhQfbjZdWuqZTev13v+ZXO50zKYMwzAM85zcvElTz6PyzvdfbH9eB8KQSishqJTSNDLPnT1LZZrr0jgFySSt2+1SSdZokGluZgb44APg//v/aAyE3V0a72B3l86PMucpY54QdO4ch0q/uTng61+n/ebzVLoHQS/Mem2Nyhjg4TJGzVfjWMzNvbwpbM9SmhkGHYsPPuC0OYZhGIZhGOb5SBgJnB8+TyY6jfRozOEoEx0AyEgiiAIEUQBDM9AKWmiiCSEEDM1AN+gikAF0ocPWbUQyghAC3bCL7977LmYzs3B0B2PJMRi6gUqzAk1oyNpZVLtVtPwWwigEefDon6EZgKAEt2F7GGOJMQzbwzA1E+eGz+FvfOpvYH5qPtbFBVGAG6UbAIC13TWUGnSjlHWySNtp1Lt1uB03np8fy2OxtIi5ybknSmWbzc7i+gbdzOSGcig1SljaXnqofbXcMRzYuo3Z7Ol9zxxEASfPMQzDMAzDvACeu9L6zne+cxz9eCaUqYVhjpPZ2Vlc3/81KJfLIZVKoVarveBevTpomgbbtmGaJsIwRK1Wg2makFKi1WohCILYbNftdmMzXDKZRBAE2NjYQCKRoNFp9m+ahRDQNC1OilNTwzDwwx/+EKOjo/h7f+/vYX6ebrTn5+cxNzf3kAGs0+kAADzPww9+8AMAwNWrV9Fut1GtVnHmzBncvXsX9+/fB4DYEPhnf/ZnGBkZgZQSpmnGfVGJdaqPuVwOV/aFjoVCITaaPapPL5spTUqJxcVF3LhxA57nDSxbXl7G9evXMT8//1KZ/RiGYRiGYRiGYV4JCgWKtVhZIbXszAywtdVTlU5OkuIU6KlwT5J+U9/MDPWBzXNPh2HQcRsfp2m9ThEnu7uktp6YAD78kKJOhHi11dOnxctoNmUYhmGY56TdpqlKQQsCLrmOCxUK7Dj0aDapLOt0gKtXgTt3qDQLQzK76TqNf1Cr0etUisrzRqMXJDw0RO1EEe1DSio1DIMMelevUjtbW8DP/zyVIkJQiLXn0fneH78RV68+nNa2tETL1ViLxeLLO47C05Rmly8DGxt0Pv78zwfbWV4mI978fO94MQzDMAzDMMzjmE5P49zwOZxNn42NVMyjCRFChw4pJSJEsf5OCAENGrzQQyQjaEKj9WWIpt+E1qZltmFjs7GJUqOEjJNBGIW97TUNmqbFz8Mo7Jn2IJEyUxiyhjDmjGHEHoGhGfjCmS/g//7i/w1TNwf6WXSL8EIP7aCNcoNuoK5OXH0oIW5pewnlRhkzIzPxdk+S1GZoBuan5rFwfwFXRulmptwow+24sXFOQMQJdwBQmCqcinFNSonF8iJulG7ACw9o83aWcX3jOuan5lHIsTaPYRiGYRjmJHjuiu/rX//6CynUhBAIguDU98u8/hiGgfn5eSwsLODKlSu4dOkSHjx48KK79UoghIBlWRgdHUUikcDu7i5arRaklPA8D1EUxUaxaP+XR5Uw1584FwQBgiCAYRjQNC1eTxnvlPmu3W4jl8uhVCphd3d3oC+GYSCfzyPf96vjBx98AF3Xsb29DSklstksstksVlZWAADb29vwPC9OxrNtG5ZlodVqYWhoCEEQwDRN6LqOd999Fzs7O7ERbnJyEs6+0DGfz6NwiNDxsD69TEgp8f7772N1dRUA0G6342Oi3iMALCwsoFqt4tq1a3yjzjAMwzAMwzAMc5AgIBXs5ubDkQvXrlHSmIqmOJBQDtsmRelpqUoLBWBnh9SsMzPA3h71mXk8UpISO5UiY5xSDnc6wO3bpJBPpUhZbFnAl770aqunT5OXzWzKMAzDMM9JIkFTVWaxee54EILS4IaHqYxWpYJlkTnuxz8ms5yUVDp0u2SUA2ja6ZARLgjINLf/cxTCkNqzLFqmab19JJPU3ttvk5lubq5Xtm9u0nR7m9bJZgfLP4BeZ7NUIm5tUZmzuflyl4BPUprZNi0HaJ12m45D/zoAGfGqVbot4p+XGIZhGIZhmMdxKXMJv934bbT8VpxAJ8E3VI8jlCEEBCIZIQhp8PhhexhNrwkJCUMzSMsXegiiAJrQ0Ak6+Kj0EWazsxiyhjBsDyNhJijNLgyQsTMIZYhu2IUGDXvdPTLPSUqdM3UTSTMJR3cAAVzIXMB7Z99D0kgeqi3brNMN1HZzGxISWSc7YJ4DgPHkOLJOFm7HxVZzCzMjM9isbz6RgQ4ACrkCqp0qVnZWkB/LY2ZkBlvNrTjtbTI1CcfY1/qN5VHInfz3zFJKvH/nfazu7mvzgja2m9sDfQKAhfsLqHaquHaBtXkMwzAMwzDHzbENmSD51x7mNaJQKKBarWJlZQWf+cxn8N3vfvdFd+mVwnEcmKaJVCqFRqOBMAwRRRE0TYOu6xBCDLz2PA/dbhepVAphGML3fYRhGLenTHUAmfR0nb4Uqdfr0DQNyWQS3/3udzE2Nob5+fkj+6US1dQ0nU6jUqkgCAL4vo+9vT0AwNTUFDqdDoaGhjAxMQHLsmJj3ZkzZ7C1tYVGo4GZA0JH27ZRKBRe2XS2xcVFrK6uIooirK2toVwuD/xtX19fj1P2VlZWkMlkHnm8GYZhGIZhGIZh3iikpBSxGzceNqH1Ry58+tOkIv3hD3vRFLkc8LnPkdr0NJO0hADOnQPOn+8pfQ2DzF/8Xd+jiaJejEytRvN2d0ldrWmkGi4WSU2s66+Hevq0EOLlM5syDMMwzHPw9tvAH/wBfWRxaOrxEkVkorMsKqnX1qgMCwIq0RyH5ut6z9BVr9M0iuicCEElmRA905xpUnAwQNumUhQubJr0GBnpjZuhyjd1C6CmavuDpNO0v4Prv6w8SWlWKpG58OxZYHWVbnP6byfW13sBwisr1Bb/vMQwDMMwDMM8Cikl/vzun+Pe3j1ISOhCZ/PcUyIgAAE4hoMRewSdoANd0yEg4mNpaAZSZgrdsIum38Ruexdu28V0ehpNvwlDNzDijCBhJnBz+yaqnSq6QRd+5ENKCSEEQoTQpIZW0EJuKAdNaNhqbsEPfXRF99DUOJW8pqZp+/AbqLSdhttxH1r/id6/ELh24RoyTgY3SjcAIE6yU9i6jcJU4dTS3hbLi1jdXUUkI6ztrqHcKA9c1+vV9TgVb2VnBRkng/mp+RPvF8MwDMMwzJvEsfxMw+Y55nVDCIFr164hk8nge9/7HkzThO/7L7pbrwS+78epbcoEF4YhNE2D4zhwHAeGYcAwDHQ6HQC9FDrP8+IUOoD+tijzXBRFsXlOIaVEu93G5uYmfvzjH2NmZgZzc3Nxyt1BLMsamNbr9dhMV6/XIaVEMpmM11f7Gh0dRbfbheu6sCwLX/rSl5BOp3H+/Pk4nW16ehqzs7NH7vtlJwgC3Nj/5XNtbQ2lUgkAkM1mkU6nUa/X4bpuPD+fz2NxcfGRx5thGIZhGIZhGOaNQUrg/fdJLQocHrkgJfDf/zvwrW8Bly6RElWpalstimPwvNM3BJVKZKBrt8nk53lkAOsb2IY5AiHIyDU6ShEmrRYptdttWr63R0a5/e8hHuJVU0+fJkKQqnpu7uhER/4+gmEYhnlFyGSoTPA8SkFjjgchqMQeG6NxCcKQjq+UZJKTEpiaorKhWOylzUlJ5jkpeyYvIagE7napxFBmx26Xtkml6PnQEG1z2PgHquRT03r98H6r+QfXf5l5VGk2MQH8xV/Q8V9ZodsLgM5JOk3v13V78/N5Gndkbo7LOYZhGIZhGOZoFsuL+Mn2T/Cg/gBbzS10Q76ZemoEoAkNF0YuAABM3YQGDREi6EJHNpFFEAVIGkkkZAJBGKATdBBGIRpeA7rQUWlVkBvK4U71DqrdKrphF5GMYnMeAERRhAABtFDDg/oDTCQnsNPawWZjE5cylw5NjbN0a2Ba7x5+A6XmH1z/iQ+BEJifmsfc5ByKbhGb9c047W06PY3Z7CwM7XRuTIIoiI18a7trKDX2tXlOFmk7jXq3DrfjxvPzY3kslhYxNzl3an1kGIZhGIZ5E3juyurv/J2/cxz9YJiXDiEECoUCdF1HKpVCtVp90V16ZWg2m5BSotlsIooiAIhNcUIIpFIpZDIZVKtVNJvNAaOdlBK6rkNKCd/3YZomoigaMNCp52odz/NQLpdx69YtFItF5I8YrX16ehrLy8uYmJjA+vp6bIhT+wbopr7T6UAIgeHhYQDAyMgI2u02XNeF53nQdR25XA7Xrl070eN4mhSLRXieh3a7jfJ+AsLVq1cx3jdCfqVSwdLSEsrlcpy+96jjzTAMwzAMwzAM88awuEjmuSii2IuDkQt37pDC1DRJfRpFpDbtN9gBZKKrVini4bRMdJ5HfV1aoogO36f+MU/GxASptgGg0SA1cbNJCmzDIGPdUca4Wo1MdkLQOu02cOECm8P6MQxSWfN3DwzDMMwrShAAP/kJmehWVl50b14fhOilwanXDx5QWavKWdOk495okImr1aL5B0vdfhOdMuUZBpXGrRYZw6SkqSrRDxv/YHqagqcnJihxzXWBSmUwiLhS6aXdqVuA6eljPzwnxmGl2coKHZt2uxewffXqw+97aYmWq/S6/vQ+hmEYhmEYhukniAJ8tPkRfvDgB/hJ5SfwQ58DHp4DZRhzDCc20Flaz4gmhIAhDOhCh6Vb6MgOGl4DCSOBTtBBpVVBrVNDEAUQkoxzAgIatDg9LZIRgiiAF3poeA2EMsR2cxuXMpcOTY2bTk9jeWcZE6kJrFfX4XZcVFoVjCf7dGqtCtyOCwGBydRkvN2zYGgG8mP5h4x8p0nRLcILPbSDNsqNfW3exNWH3vPS9hLKjXKclndYgh/DMAzDMAzz7Dy3EuM//sf/eBz9YJiXksXFRaytrfFN+FOg6zqazSY0TYtT6FTEuTLHmfu/aJqmiTAMEYYhoiiKE98Mw0C320UYhvD93pcgUkoEQRA/V+0EQYBOp4N79+5hY2PjSEPX7Owsrl+/DgDI5XIolUq4d+8efN9Ht9uNTZKZTAbDw8MwDAOmaWJ8fBxLS0sAHk6xe13Y3NwEAGxvb0NKiWw2O2CeA4Dx8XFks1m4routrS3MzMxgc3OTDXQMwzAMwzAMw7zZBAGwn+iNtbXDIxdu3QJ2doDhYVLLFou9FDqAFLa5HHDlCilQMxmKeDgNLAu4dw/Y3aXnSjXMPB4pyTAnBJBIUCSJOn5BQMa6TocUxf3qaSmBjz8GfvhDep5M0vKxMUoyvH6dzv/BNMIg4DQ2hmEYhnnFKBbpkUxyyO9JoIKffZ/GJdC03pgVjkOlmO+TEc736aHKKylpfVX6qlQ6TaN2D0sLbLeppD8sPW52lso4gEr7UolMYweT2NRyx6Ew49nZkzk2p8X+z0vY3qbjl80OmucAep3N0vs/LL2PYRiGYRiGYfopukUU3SJuubew191DJ+y86C69koj9iLhqpwpd09EJOoAEHNOBhIQf+RAQSBgJ7Hl7cHQHCSOBMKIB8NVg+ZVmBe2gDQBkmFP3UIhgCAMQZKADAD/y0fAakJBo+7TNYalxs9lZXN/Y1/AN5VBqlLC0vfRQGpta7hgObN3GbPbVvYHarO9r85rbkJDIOtkB8xwAjCfHkXWycDsutppbmBmZOTTBj2EYhmEYhnl2WFnBMEfg+z7+x//4HygWi+h0+Eb8SQmCANVqFUKIOH1OPVdpcb7vA6Bj7Pt+vJ4y0JmmGRvlPM+DlDI24an0OfVa07TYYOf7Pu7evXtk3wzDwPz8PBYWFnDlyhUAQL1eR61Wi816AJnjJiYmAADnzp2D67pwXRdCCEzuDwk6/SoNCfoEePvDpKppOp0+dL10Oh0n8fWvzzAMwzAMwzAM88ZSLPbSww6LXAhDUofu7AD37wOpFKlyNQ04f76npFXGu3yeEu3m5k7HFDUxAWxskILX80hRrOs9IxirvA9HSjpGOzukyAbI4KaOl2WRelvXyVin1NNDQ8DNmxSRApCafm+PnrdapPIGBtMIAbombtx4OM1ueflowx3DMAzDMC+ce/eo1Go2qbTjoN/jQUoqi3SdDFmVCs0bGaFyzLKo3G61eoHLUdRLk9O0wcQ5TesZ6NS65TKNkaBS7ny/l0J3WHqcYVBJtrBA42IA1Ibr9oxzQvTGzQCofHvVx0E4mMZ3xM9LSKfpOByW3scwDMMwDMMw/dzbu4eNvQ24HRd+5CMIA0hICIg48Yx5PFJKRDJCvVuHEAJ+RIPYN7wGLN3CsDMMx3DiY+w4DnRNh2M6SBpJaNCQslKodWrwQtLvhbL3e4EmNBg6Jdf5oQ8IwA992g6p+FwdlhpnaAbmp+axcH8BV0bpBqncKMPtuLFxTkAgN5SLlxemCjC0V/cGSiXxqWnaPkKbZ6fhdtyH1mcYhmEYhmGOh1e3omSYE0RKid/+7d/Gjf0R5Nkk9GSohDhj/9e+fqObMsHV63V0u110u1202234vg/DMGITnW3bSCQSCIIA3W4XQRAMGPHUwzCMeLsgCOJRb/aU6OwICoUCqtUqVlZWkM/ncfbsWfzP//k/4XkeDMNAEATwPA8PHjzAmTNn4Loubt++DYBS6xzHgW3bmH3VhwQ9wMFkvXq9fuh6av7rmsTHMAzDMAzDMAzz1DwucqFS6cVLbG+TOvfKFVLOXrzYW2dpiRS2MzM0r1g83UgGZbzSNFIcB8GggpgZRAhSUNfrZJ40DJrneaSyTiZJKT8/D0xN9dTTKo0QoO1bLXqMj5O6/t69wTTCkREy0q2u0jYqZkUl0Cn1dr/hjk10DMMwDPPSsL5OZVW7DdRqHPR7nIQhpcR5HpXao6NUku3tkVkrCGi569IYBZ5HJrgoovVUmatpZMRT5a8y1qm0OimprNN1ejwqPa5QoJJsZYVK+ZkZMvj1l26OQ+vm87T+q87BNL4jfl6K5x+W3scwDMMwDMMw/axX1xFEAdpBG2FEhi0BgQj8PfXTEMoQGSuDMArRjboIwgBCCIQyhB/50IQGS7dQ69YwZA7B0ix0wy680MPFkYtY3V2FYzjYD7JDKENEkga+V0Y2KSW8yIMudARRgAgRJCQcw0EYhY9MjSvkCqh2qljZWUF+LI+ZkRlsNbfghR4s3cJkapL2DyA/lkch92rfQKkkPjWtd4/Q5u3PP7g+wzAMwzAMczywgY5h9llbWwMAXLlyBYuLi1hcXESpVEKlUokTzpijEUJASgld12EYBqSUMAwD3W43NsCF+6Ow+76PZrMJy7Jg2zaiKIKmaRBCYHh4GCMjI6jVanE7UZ9Q76AhT6XWqcS64eHhx/bz2rVryGQysUFyfn4et2/fxvj4OLa3t9FoNJBIJAAgTtM7c+YMzpw5A4BMeMYJDAkaBAGKxSI2NzfheR4sy8L09DRmZ2dPZH/9TE9PY3l5GRMTE1hfX4fruqhUKhjvE31WKpXXPonvWej/28EwB+Hrg3kUfH0wj4KvD4Zhjgv+e3IKPC5yoVajqYq7sCxKIdu/jwVA5qlsltS9W1uktN3cfLSBLgjIZLe52VPkTk/TtnfvPjx/dvbweIvtbUrCu32b1Ly6TgrjKOopio/JQLd2+TIA4MqtW8fS3gulP8Ykiuh8qGRBgI6745CZ7q236LyUSsDuLjA2Rse42aR1z5wB3nkHaDQeTiP8/d+nlEAhgLU1MuL1f0+1vj5ouMtkyLTHPBH8N5J5meDrkWFeT/b26KN7Y4MMWYrLl+n//K1b/H/+eZCSyjDHoTKo1eoFK0tJZrZmk9bxvF6CnCrZACrlfH+wxFJBzMpwl07T+Ajnzz86PU4IGs8gk6HwYKA3PobCtmnb1yU8eHqaQpEnJqg0dV0aH+TgmCKue3R635sAf84zzJsF/59nGIZ5Pva6NHi6lBISEhflRUhIrGHtBffs1UFCQkqJlt+CrdswhYkAAent9h1xda+ObtjFsD0M3dLhdly0/TYmU5PQhQ5NaNht7yKMwtjIqAkNmtDg6A4iRPBDHxKUTKcS55JmEmk7DcdwHpkaJ4TAtQvXkHEyuFG6AQCYGRm8gbJ1G4WpAgq5QqwZfFWZTk9jeWcZE6kJrFfX4XZcVFoVjCfp5qm71UWtW4MbuRAQmExNxtsxzOsA18jMmwBf58ybwOtwnbOBjmH2+aM/+iMAwMWLF/HRRx9hfX0dm5ub6Ha7L7hnrwZSSmiaBk3T4iS3IAhgmibCMITv+w8ZEcMwRBAE0HUdtm0jnU4jk8kgiiLYto1utxsb5fq3VSl0nudB13UMDQ2h2+1C13VcuHAhXu9RhrT5+XnMzc2hWCziwYMH+MEPfoBSqYR33nkHQ0ND2NnZibeZnJxEvV5Ho9FAoVBA4ZiHBJVSYnFxETdu3Hgo7XB5eRnXr1/H/Pw8CoWT+zJgdnYW169fB0BJe6VSCUtLS8hms0in06jX63BdN17+pEl8L9IUeFqovx2vcjHAnBx8fTCPgq8P5lHw9cEwzHHBf09OgcdFLiijXLtNUxU5cfCeKJ0mVelBQ95BpAQ+/BD4kz8hJWoQUFvDw2TK2toiNeq5cz1F7vIycP06GasOKnU9j9bN5Sj9bGSEDH6VCr0XTetFbzwnf/SzPwsAuPLNbz53Wy8FSrGtUPElQlDcyec+R+eiXKYUukSColF8n4x0ug58/vPA1at0vH2frqN79+jYT0+TSVIIMmIqY102S9dLvf6w4W5xEZibO9wsyTzEa/838iij7VGGWuaF8tpfjwzzhjI8TB/XjQYZsVRJ9bM/S//nv/lN/j//PAhBxzWVopBfIejjTqXHqfKs1aL1VYocQAY5oDduhEKl0KlllkXtXL4MvPcePX9UepwQVHbPzQ1+DOs69cswaAyL73zn9fhYnp2lWw2AbilKJQrXPliyquVHpfe97jzP5zyXdAzz6sG1PcMwzPMxbNPg6WkrjQfyAb6BbwAAG+ieEh1kgtOFDkM3ECJEN+hCFzoiRBBSQEJCg4at1hYEBKaGpjBkDeGT7U+QNJIIZUhaNQGEURibGrsh6Sk1oZGmT9D+DN1ANpGFLvTY+AYAQRSg6BaxWd+ME+am09OYzc5ifmoec5NzRy4/yoD3qjGbncX1jX1t3lAOpUYJS9tLyDpZpO009B/pCGUI5Gm5YziPTPA7DR513l6X88KcHlwjM28CfJ0zbwKvw3V+LFVMv4FCCIFbB0aR/rt/9+8ex24GEELgP/yH/3Ds7TJMsVhEsVjEzs4OWq3WQPoZ82gMw4jNc+l0GslkEtVqFZ1OB5qmIQzD2BCnaRp0XYemabAsC2fOnEE+n0elUkGz2cTk5CSCIEBtf6R+lVCnDHpCiLg9ADBNE4lEAr7v4/3338fNmzdx584dpFIpjI+Px0l1Bw1p+Xwe+Xwe165dGzCxpVKpgffWaDTgOA6uXbt2rCY2KSXef/99rK6uIgxD3Lt3D3fv3kW324Vt27hw4QLOnj2LhYUFVKvVY9+/wjAMzM/PY2FhIf5QK5fLcF03Ns4JIZDL5eLlj0riexlMgQzDMAzDMAzDMKfC4yIXDIMU055Halp1HzUyMtiOMt4dNOT1E0XAf/gPwHe/SypK36ftgqCXdDc+TlEnt29T32y7F/OwsEAxHNeu9VTBlkXPL18mVeb2Nhm9TJPUwUpZzAzSr6pWJkOAno+M0PxGA7h4kc75l78M/PEf0/nZ2SH18LlzFE/yve8NGvF8n87nH/wBRZ0MDfXO79WrD8d5LC2RSU/FmxSLj04vZF5/pCQz5Y0bD5txH2WoZRiGYY6ds2fJUHQw4Yw5HnSdDFnT01QuKQNds0llsBrbIAzpI9EwekHChkFjHgBHjxehaVQWt9tUriWTj06PO8zoNDVFJfsnn7y8H8vPY9AyDOr/wkIvna9cptsiZZwToheaDBye3sc8DJd0DMMwDMO8qcyMzMDQDAxZQxCSC51nxTZtjCfHkTSTaPpN2JqNmqwhkAEMYSBhJCClRIQImtCQttLY6+5ht7MLx3DgRz4iGSGUIQxBWj1f+oAEIhnFBipDN6BBQ4QIQ+YQhswhfGriU7g6cRUf3PkAN3du4k71DlJmCuPJcejavoZvZxnXN65jfmoehVwB+bE88mMv/nvtkzKNGZqB+al5LNxfwJXRfW1eowy348LtuJiR9P3+1NBUvPxRCX4niZQSi+VF3CjdgBce0P0dOG+s+2MYhmEY5lXjWKqrO3fuxAlRhxVE/+k//adjN5ywgY45Ke7du4eNjQ1EUYR2u/1QahrzMCp5zjRNaBqNLDM5OYnt7W10Oh1EURSnxqnjKaWE7/tIp9O4ePEi0uk0Go0GvvSlL6FarWJ1dRXNZhOe58HzvIFt1f7UvjzPg+u6+Oijj9BsNnHv3j10Oh2kUilYlgVN0zA2NoZz584hl8sBQGxI++pXv4rbt2/HCWnnz58fSM5TiWl//Md/HL+H42RxcRErKyu4e/cuPvzwQ1Sr1YFrbnV1FZlMBp///OchpUQmk8H8/Pyx9kFRKBRQrVaxsrKCfD6PmZkZbG1tDSTxOftJCfl8/sgkvn5TIAC0221sb28PtAPgxE2BDMMwDMMwDMMwp8LjIhdKJVKiOg4pdbtdSorLZklZWqtRGtnGBilyx8aorenpwf1ISea5Dz6g5w8ekHkqiqi9MCTVZKlE7ai4k2yWjH1KsbqyQqYtdW85NUVpduvrpDBOJnuxGyoyIgxZ8X2Qg8dD10lprIyPjkNRJ50OPTcMMr8lEsDaGm1frfaMccoMGYZ0jSgDXqtFr3M5Sq/rN88B9DqbpXO9tUUmus3NZzfQcbzFq4+UwPvvA/vfy6DdJmOsOp+PMtQyDMMwx46U9DHPYzUeP0KQuc22qWRKJqkcEoIevk/JdGpMiDCk9aSkbfb26Ll6qI9DZbpTBAGNZxAEwC/+Yi9QWi0rFqk0v3kTuHOH9jk+Tu1ICfze79H4CefPU6lfqTz5x/JJl2bHZdAqFKj/KytUhs7M0Lnof5/quD0qvY/pwSUdwzAMwzBvMudHzuP88HmUGiWYugkRUlIa82QICOiaDiklLN2CF3qQkEg7aTiGg0q7giAKEEYhTN2EF3oYS4yhE3TQ8BsYtodhaza6YZdS7KBBgvS6pm4CIDOYpVuwdRuBDBBEASxhIWNnMGwPo9qu4vrd67i5cxM7rR1oQqNzKQTGk+M4lz6H3FAOYRTi95d/H+/feR9Xx6/CNuwXlnB2GqaxQq6AaqeKlZ0V5MfymBmZwVZzKzbq6ZqOi2MXAQD5sXyc4HeaSCnx/p33sbq7r/sL2thubsd9nEzt6/7uL6DaqeLaBdb9MQzDMAzzasGqB4Y5wPr6OoL9Ub9933/BvXk1UMayKIogpYRpmtja2kKz2YSu6zBNMzbMKTMdAOi6DiEEgiDA1atXMTo6ivPnz+Pjjz/G+Pg4Hjx4gGq1Csuy0O12EYZhvG0URQj3R8H3fR87OzvodDpoNBpwXRdSytgIZ9s2UqkU7t+/j6mpKUxNTeHy5cv40z/9U3znO9/B1NTUQ+/JsqyBhLQ/+ZM/OfbjFgQBPvroI6ysrODjjz9GrVaL35NK8gMA13Xx/e9/H51OB7ZtY25u7sjkt+dBCIFr164hk8ngxo0bAIAZNXr9PrZto1AoPDI5bnFxEaurq4iiCGtrayiXywOmwPX19TjJbmVl5URNgQzDMAzDMAzDMCfO4yIXoojUsyMjZFzb26Pl/8//Q4rfToeUvAApHhcXSRF76dLgfj78kJLnpCQ16+4uPVdthCGphIUgVeXQUC8NrVYjYx1AitXFReCdd8g09wd/QAloCk2jPnoe9Vvdf3a7nEh3ECl76XNKHa9pdMxyOTpW/aa2/nRB16XzfuYMKWGVghsgBazvk7J7eJjOn2UBFy4c3o90mtpTqueD6ucnfS8cb/F6sLhISusoIrNmuTxo+HyUoZZhGIY5djStVzLweATHizLKtdu9hLh2m8YrmJykh2nSR6EayyKVoo/CVovKLaBnoNO0XvlrmjSv26V9TE7S2AbFIo2J0F86dbv0kVouU3u+T+2PjlJbzSa1+73v0XaTk71y6qiP5dMozY7ToCUELc9kqM9ALxxZYduPTu9jBuGSjmEYhmGYN5nZ7Cxms7P4SeUnsWGLeTwCIja7QQIQQCfoqIVoeA0IIZC207B0CwkjAS/00PAaCGWIpt9EykxBFzps04YNGxPJCUxFU1h1V1Hv1mEIA4EMoAsdAmRslFLC0R1knAyGzCFsNjZRbpaxvLOMTtCBqZnohl1EkpLukmYS95L3YBs2IkQYS45BQGCntYPzI+dfSMLZaZnGhBC4duEaMk4GN0o3AFDiIgBsa9sAAFu3UZgqvLB0t8XyIlZ3VxHJCGu7ayg3ygMG1vXqOnJDOVwZvYKVnRVknAzmp+ZPvZ8MwzAMwzDPyrE5MB6X0sUpXsyrwt7eHqSU2Nra4uv2CdB1HZqmQdd1BEFA0e776X2apiGZTMY3c7ZtIwzDeB3btqFpWmwUO3PmDH7qp34Ktm3jww8/RCKRQCqVgu/7GBoagud5CIIgNs+pqed5ME0T9Xod9Xo9bl+lVSaTSSQSCezs7MCyLEgpcffuXViWBdM0kU6nsbOzM5CQFoYhfv/3fx/vv/8+rl69imazGZvajsu8ViwWUSwWce/ePdRqNezt7cFxnLiPuq7D8zw0m00AwP3795FMJlEsFpF/1pHkH4MQAvPz85ibm0OxWIyT+VQS3+zs7CPffxAEsflubW0NpX2BZjabRTqdRr1eh+u68fx8Po/FxcUTMwUyDMMwDMMwDMOcCo+LXDh3jmIpoqgXfeF59LzTISVkOk2qxyAg1e13v9tTqQYBpcQFAbWjzHO5HLVfLlM7KrkskSAF8PAwJcydPUupeOUyRV9sbAD/5t+Qmvf2bVL23r7da8PzqP12m9pzHFK8+j49goAV4EqxrR5S9qJN2m2KFnEcuiY6HVJhf+lLpHgeGyPDWxgCd+/2VNHJ5GA8jZSUSjcx0UurC0Nqu1aj82AYZI6MokGD3tNwlHq606FrxDTpevrkE+Djj4G/9bdoHvPyEQQ91fraWs84qxIx63W69g4aaufmOGGQYRjmhLh3j0xbnEB3vKgSLAyplFLjD0hJpfjZs1QG5/NUOn38MZVdmkZljBr3QJ0XXadyVxnoLKsXwixEzxD3/e/TOn/4h5Q2Zxi07/v3af29PZpqGt0ONBo0rkUY0nYAlYKzs0d/LL/9NvA7vwP86Ef00R6GNE2lqLw8ruSx4zZoCUHL5+Y40Ph54ZKOYRiGYZg3HUMz8Nnpz+Lbt7+N3FAOaL/oHr0aaNCgCQ0R6EYniiLUujVEUQQI0u86poOsncVIYgRjiTH4oY9O0EGpUUIkI+hCRxAF6PgdXMpewpA1RG0LDRt7G6h7dSRFEmk7jW7QhRACI/YIkmYSnaCDjfoGbN2GoRlwOy6CKIiNc7qmI2kkIQ2J9b112LqNlJWC23YBAazsrOCtsbdwKXMJZ9NnTzXh7DRNY0IIzE/NY25yDkW3iM36JrzQQ02vwdAN/F/v/l+nnr6nCKIgNvat7a6h1NjX/TlZpO006t063I4bz8+P5bFYWsTc5NwL6zPDMAzDMMzTcixVy6/+6q8+cvm3v/3t49gNw5wYQRCg2+0iCAKUSiXcvHkT1Wo1TlZjI93hqOOj6zqiKBp4AIgNYLqux+YoZbjzPA+apsEwDPi+j0qlAgDY3t7GF7/4Rdy+fRsXL16Mz0kYhkin0/B9H1JKtFqt+JypFDvVH03T4j4YhgHP89But5FOp+F5HnZ2dlCtVjEzM4OtrS3s7u4inU4DoC8LPvroI4RhiLGxMQghsLOzA8dx4Hkefuu3fmsgme552NjYwMbGBur1Ovb29hBFESzLQjKZhOM46HRoFKBWq4W9vT3s7e3h3r172NjYODEDncIwDOTz+afeT7FYjI93eX+41atXr2J8fDxep1KpYGlpCeVyOU64O0lTIMMwDMMwDMMwzInzuMgFFWmxs0NqXs8jBW+7Tdsmk7TO3bs9xW+/SrVYJOWv75OxSUpSBF++TErXTIYUlLpOy3SdjE+NBhmt8nlSW+7ukuoXIOVtqUSqW2WW6nZJcRkE9NA0eqTTpCi+d6+XqLc/GM4bS39UiXoO0Dna26NzOzREKmelwH7wgBSwUUTXQKdDymrLovMJ0LxMhubt7dE5zGZJgfzJJ70IFUWjQct0nYyaUpJC+Wk4qJ4ulehaUQmKQpAZc2KClt2+Dfz8z3N8yMtIsUjXVrvdi8G5ehXo+14GlUrPUKv+ThWL9HeCYRiGOXb29nrpZ/xT0/GhjqWUdGz39nqmuK0tKlEuX+6NCbG9TcubTSq3VCmr2lGGPE2jMkyVxCqVrtOhj9g//EMql27fpm3LZXqu2lKGu5ERKqGrVTI7dTpUTr/9No11cf48tdv/sazGufgn/6Q3XkZ/ULGmUVk4Okql4/Mkj52kQcswaH0uLZ4dLukYhmEYhmGAQq6AtE1aLpV0xjyaCBEggRAhNGjwIg+hF0LXaDQPIQSaXhN+6COQAS4MX8BOsIPRxChKTSr+u2EXpm5C07TYPAcACSuBseQYTN2EF3oIoxCGZsDSLQghsNveRbVThYREo9tAIGkQfkM3EEYhxP6/QAZo+S0AQDNqYqe1g0AGGLKGIIRAN+ji1u4tZJwMPj/9eUgpTzzh7EWZxgzNQH4sj/wYFfGr1mo8/0VRdIvwQg/toI1yY1/3N3EV48k+3V+rgqXtJZQb5Tg9r+gW4/fBMAzDMAzzsnMqBrpr164dx24Y5tiRUmJxcRE3btxAq0U3Z+VyGdVqFZ7nxUlmzOFIKeMkOEW/4VClwwkhYBgGbNuGZdGNc7fbhaZpME1zwHTneR5mZ2fRbDZhmmb8aLfb8H0fAOD7Ptrt9oCBTUqKhFfrh2EIgAx7YRjCdV2Mjo6i2WzG6969ezfu68zMDIaGhnDz5s3YzNftdpFIJLC7u4v33nsvNuMtLCygWq3i2rXnG+Hm7t27sXmz2+0imUxienoaQ0O9LyAajQaazWZsGPR9H3fv3n3mfZ40m5ubAMgIKaVENpsdMM8BwPj4OLLZLFzXxdbWFmZmZrC5uckGOoZhGIZhGIZhXm0eF7nwt/828Bu/Qcu2tkgFOzRE5jnHIRWrZdFjbW1Qpbq5Scvr9V7SWCZD+1X35IbRi7XoT5BT6uB0Grh1i4xc4+OktqxWafnmJpnn1Pa63lN5dzqk3E0mKfai1aJ1GUId/37FtHqt0uKqVeDiRTqOu7t0/nWdjmW9TtfB/iA6A2a1+/dpXrdLbW1tUVtS9pIK1fojI2TQ0zTg7/7dJ+//QfX05iapcMOQrrFmk/q8t0ePixdJJf4Xf/F8kSfMybD/vUxstM1mB5XWAL3OZkkVv7VFiuvNTVZbMwzDnBCpFH3Ms4HuZFDhzqqMTSToeG9sANevU4KalJQ6F4ZUeqVS9DHYjyrlfJ9KaZVIp+h0qLT2PCqp1RgUKiDYNKkfmkYJc5ZF62cytI46/45D+6hUqG/qY1mNcyEljbkxMkIJcHt71OboKPVbGarUtfSsyWNs0Hq54ZKOYRiGYRiGcHQH283tOFGNeTQSEiFIL6fMdJGMEERBrG/ThQ7bsNH0m7jl3sJ4YhxD9hAszQIA+KEPUzcfMnF1/A6EEBhNjGK3tYuG10DaoRQ6KWW8D0uzUA/r8CMfutAhIGDpFjRoSFqUUtfyW3B0B92wCw0ahCbQDbtI6InYwOd2XHz/wffRCTqwdftEE87YNNZjs76v+2tuQ0Ii62QHjgMAjCfHkXWycDsutppbmBmZwWZ987U7FgzDMAzDvL5wbi7zxiKlxPvvv4/VVRq9I4oiBEEQm5OUgY55NMqMdlhSn5QSQRBA13UEQQDHceA4Dur1epwWFwQBgiBAuVzGn/7pn+LSpUvQNA2JRAJRFNHoN80mfN+P2/F9f8C41582Z5ombNtGEASxiS6KInS7XWxtbSGbzQIALMtCu93G0NAQzp07h8985jPY2NhAKpXC1NQUVlZWsL29jbGxMWiaFpvXVlZWcOXKFaysrCCTyWD+aYf17GNvbw8A0Ol0IKWk0Xv6zHMAMDQ0BE3TIKWME+nUdi8jnucNTFWy30HS6TRc131ofYZhGIZhGIZhmFeeoyIXVlYoKiKd7il2z50jNezICCkgXfdwlarnUbth2EuFU4YrTetNdZ3MVpZFpqYw7ClpazVqP5vtGbl0nVTEUpJCWEraVxjSA+jFeoQhTaOI2uT7uB79gy+pYxSGdC5qNTKpCUFmNNsmJbQyQqZSPcPixASZ4dQ5O3uWVNabm9ROs9k7D5rWM641GrTNxASpt3/84yePITmonnZdMvSlUnSdqGuvVqNrLgx715CuP1vkCXNyqP+XanrE9zLx36GD6zMMwzDHjmlS2bU/PiBzjCjDmyqloojKpSCg8vrWLeDOHUp2290lQ1gU9UozZazz/V5bQvTWAXrGt5ERer2zQyVeEFCb7TaVSiq5zrKoVGq1qERTpZ4QtN7eHpX/tRoZ6IDBcS4si8xQOzv0UPv2PCoLz5yh9+i6tM9nNbaxQevlhks6hmEYhmEY4IcPfog/Kv4Rat3ai+7KK43c/6cC/CIZoeW1YCds7HZ2MZYYg4CIU+oiGSEIAwRRELfR8BpoBRRMUOvUsNPegaVbaHgNdP0uklYSQghoQkMn6EBCwhAGaQkhoWs6bN1G2kqjE3Tghz6FGkj6Xt2ECaELSLE/YH8Uouk1AQncr99H0kyeqFmNTWM9vNAbmKoUyIOk7TTcjvvQ+gzDMAzDMK8CbKBj3lgWFxexurqKKIqwtraGcrmMvb09dDodNJvN2EB3mDGMORxN02LTG9Az14VhCE3T4Hke6vV6fGybzWa8bHt7G61WC51OB6VSCWEYYnV1Fbu7u4iiCKZpwvd9BPu/WlqWBc/zEIYhpJTQ9V7cfLfbjdMDlfksiiLs7e0hDEPouo7h4WEIIZBMJjE6OoowDLGxsQEAaLfbiKIo7v/o6ChWVlaQTCbj95rP57G4uIi5uTkYTzOsZx/Dw8MAAMdxIIRAGIZoNBoPJdCFYQghBBzHGdjuZcSyrIFpvV4/dD01/+D6ryK//Mu//KK7wLzE8PXBPAq+PphHwdcHwzDHBf89eYlQKtWdHVI6zswAn/nM4DpHqVQ1jRS9tVrP7KTrZLZKJEiJ6zi0LAhIfZtI0DojI6QW3tggdWwiQclmpknbqPs2lXKm1N3KqKWMdI0GKX+VqvgZ+OVvfvOZtnulkLJnZlRK7FSKznuj0TsvrVbPnOg4PUOcYdC5OXsWWF3tXQsqVbBf9e04ZHaTksxviQTwMz/zdDEk/erpMKT9jI4CpRLN833qj2X1rj1NI6Pn1NSzRZ68RLx2fyPV9ytqesT3MvH8g+szL5TX7npkGAYAfXSrlLJ+vvlN/j//PKgxJFQIsxo7QhnfarVeaVWrUbmk61SGRxGV0Ts7tI36CTAIeiUcQGMHqPEKRkfJuKZpveXJZO95u93rz/Y2rddq9UxxqixU10HQ06IOjHOxuUn71TQqwYaGqK+tFq0HAJOTVKqpgOJnMbaxQev0eZrPeS7pGObVh2t7hmGY5yOIAvzLP/+X2GxsIggDfBNvwPfKJ4yAiKehDFHr1jCuj6PhN5Dskh7O1EyYmolW0EK1U8XG3gYEBNy2i7pXRzfsouk1EcoQmtDQ9bvUXhRC13ToQkdHdhDJCLrQYWgGgihAKEKEIoxNdqEMQQF5ZOxzDAemZiJpJmHpFizdQstvYc/bw153D/f27mGjtnFiZrWXxTT2MtQPlm4NTOvdI3R/+/MPrs8wj+JluMYZ5qTh65x5E3gdrvMXpmzwPA8LCwv46KOPsLq6ilqthkajgVQqhWw2iwsXLuDLX/4yPv/5z8O27RfVTeY1JQgC3LhxAwCwtraGUqkEANB1HaZp0g3bvvGKzXNPhjpWmvrVsg+V7heGYWxuUya7KIpg2zZKpVJswPN9H/V6HY1GA1JKdLvdOGVO07TY1NhvkFN96De+RVEUP9Ry3/fR6XSg6zrGx8fhOA5GRkZQqVTidLu9vT2YpolEIoGxsTGMjY1hfHwck5OTWFpaQrlcxsz+sJ7FYhH5Zxxu88KFCzAMA7Ztw3EcBEGAzc1NJJNJOI6DTqeDVqsVp/fZtg3TNHHhwoVn2t9pMD09jeXlZUxMTGB9fR2u66JSqWC8b+jSSqUC13UhhMDk5GS8HcMwDMMwDMMwzGvNs6hUpQR+8hNS9966BVSrpJL0PFLg1uuk5u12SdGrzG9CkKluaIjUtHt7pOodHu4ZoCYnyXTVbtO2KoJDGeRU3Ea/WU7TekYptZzpIQQdI9sGxsZI6ayMilFE58e26Zwpg6JSTJsmLfv858mY9sMfUmSK65KSG+gpsy2LzkMU0byhIdq21aL4kStXnjyGpP+6bDSoH9vbwO3b1P7ICLWtzHWeR+9ze7uXgvi0kSfMyTE9DSwvUxrh+jpdP5XKYKRMpULzhaC/A2o7hmEY5kTY2KCP62ccf4A5AhWKrMxzQM+oFoZUFqkxDQCajo720uFsm0ppVc70m+gUyoCnzHCqrBsZoXNardI4CaoUb7dp36lULzy6Xqdt2m1qr9ultlVJfXCci2aT3sfICK07OkplZaPRK+tHR6kvjcazG9vYoPVywyUdwzAMwzBvOj8q/wgLDxbIfIXw8Rswj0UTpOeTUiKIAkgp0fE7uF+/j3q3Dj/0YelWbHKTUmJtZw2hDBGE++dBAn7kAxKoe3SzkLEzGHFGsNfdgyY0mJoJP6KEOQFBA8rLEKEM0Q26CCM6n5GMYqNdwkhgMjUJTdMwlZqCEAJNr4mW30I37MKPfNyt3T2xY8OmsR7T6Wks7yxjIjWB9eo63I6LSqsykMhXaVXgdlwICEymJuPtGIZhGIZhXhVO3UB3584d/Kt/9a/wO7/zO6hWq49df2hoCH/7b/9t/MN/+A/x1ltvnXwHmTeCYrEIz/PQbrdRLpcBAFevXkWpVEKpVEImk8Hu7i6nzz0DyhjX/7z/GPab2VT6nO/78H0fuq5jdXUV5XIZuq7HZjtd1+PtdF2Pt1HtKOMdQOZItb5Kp1OGvW63izAMkUgkoGkaOp0OgiDA+Pg4bt26BYCS0VSbtm3HyXaGYWB8fBzZbBau62JrawszMzPY3Nx8ZgPduXPncP78ebTbbaTT6TidDwBarRYAMhvruo50Oo3h4WGcO3cO586de6b9nQazs7O4fv06ACCXy6FUKmFpaQnZbDZ+j67rxsuVMXB2dvZFdpthGIZhGIZhGOZogoAMQpubpEy1LFImzs4+XerW06pUTZNUk5UKKYTv3qVlzSa9Vkrder1nejNNUt4mEtRvxyGVrRA9I1SlQsphxyHVrUqsU3EYKu0OGIzkUApk26Z5rdagwpih46PiQlIpOu5S0nG2LDov6fRgip9h9MyQzSbwe79H85pNamdvj45zt9tLAFRGRtOk9m2bngNkuLx06cljSPqvy3abrg/f76nSg4BeqwRClURXq5EB88KFp488YU6O2Vlg/3sZ5HIUT7O0RP/n02m6zva/l0EuR38HbJu2YxiGYU6En/yk55tnjgdVYgF0bIWgNDjTJEOcOtaqxFXjGxgGlbAjI2RKUqX8o34GVOXX3h6FRycStK9+w5oyxUnZK9mkpPaFoHIqCKhvjQaFQadSwMcf08dy/zgXuk4f28kktaUMfkNDNK/Vor50OtTmsxrb2KD1csMlHcMwDMMwbzr/9Uf/FS2/BS/gCOTjQAOZ53ShAxoQhAEiGaHWraHltyClxGRqEoZuoOk3MZYYQ61bgxd6lDAH0t91gs6AKU6DhmbQhN7RYeomWn4LuqZDQEBCwo98aEKLzXt73T20glasI4xkBEMYSNtpaJoGXegYsocgIKBBgwTtU217UrBprMdsdhbXN/Z1f0M5lBolLG0vIetkkbbTqHfrcDtuvNwxHNi6jdks34wwDMMwDPPqcKoGut/4jd/Ar/3ar6HT6QwYavoNNwq1vF6v45vf/Cb+/b//9/jn//yf41d+5VcOTbhimKdhc3MTALC9vQ0pJbLZLMbHx7G2toYwDNFoNF5wD19d+g1yuq7H5jXDMBDui/GUAU7931dGOvV/u1arwTRNmKaJer0O27bj5ep5s9lEGIbwPG/AqKdS5tRr1Z/+VEHLsjA6OgrXdWEYBlzXRbAv+lMpeWFI0fHDw8MAgJGREQBAOp2G67qx0c172mE9+5idncXs7CxarVZsKlPGP8MwEAQBDMOAZVkYGRnB2bNncfny5VMzmwVBgGKxiM3NTXieB8uyMD09jdnZWRhHiEQNw8D8/DwWFhZw5coVAEC5XIbruvF7FEIgl8vFywuFwpHtMQzDMAzDMAzDvDCkBBYXgRs3Ho50WF4mReP8PFAo9GIvHsXTqlR9H/jRj2i6swPs7pJiNgx7xjVNI/WsrpOidniYFJUqlWxoiNq6cIEMWdvbtH+AVJcqJkNKeigznUqe61d6q3kqgoMZRNN6MSXpNKXIbW/TeQNI1ZxMkuJZ00h93e2S0rvdpvWUiS0IemmAKnVOiJ4xTymklVJ2b4/aMwy6ViuVJ48h6b8u9/YoSkXX6brStJ7iW/XDcXqmv3v36Np6ju9GmGPGMOjv0sICJRECZHR03Z7KWghSWqvlhcLTmYEZhmGYp+L+/Rfdg9cP9ROzKk9Nk8oV9VzXe2WzlPTRp5LopKQSudOhckYZ8AAqffrNdEL0DHi6To+JCSqr02kq3xoNehgGbev7vbEoLIu2DUPap2lS2dTtUimuysf+cS7Gx3tjLqjyv9Gg7R2HXqtA6nT62Y1tjzNoVat07bbb1L+7d+m9z8w80yljnhIu6RiGYRiGedNZLC0CALyQv3c8TlTim4BAhAhhFMLUTdi6jYnkBNy2i0hGEBCwDRuGMFDzaoAkPZsu6MYqQgQNGhzdgR/5qHt1pK10vB9d0+GHPiIZQRMaLN2iFLooRCQjSEgy1UlKcTN1Ghwu62QhINDwGggRQkDAMRwAwLA9fGLH5bRMY0EUoOgWsVnfhBd6sHQL0+lpzGZnYWgvRzFvaAbmp+axcH8BV0b3dX+NMtyOGx8DAYHcUC5eXpgqvDT9ZxiGYRiGeRJOrXL5x//4H+Pf/bt/Fxvj+pO9HpXwpYwxnufhn/2zf4bvfe97+O///b+z2YJ5Lg6an9Lp9MDyVquFKIpi8xXz5PT/H+9/rUxt/fOUYU7TNOi6Dl3XYZomPM+D53kwTTM2xSUSidiIl0qlIKWEaZqo1WqxSU+l2qltVLuapsE0TSQSCZimCcehm+tsNgvTNLG0tIRWq4V2u42dnR3UajVYloXh4WEYhgHTNDG+L2is7ycBWPtiNetph/XswzAMfPazn4XneUgkEvjwww/hum7cf13XIYRANpvF5z//eZw/fx7z8/Mn/vdPSonFxUXcuHHjIYPg8vIyrl+/jvn5eRQKhUMN0IVCAdVqFSsrK8jn85iZmcHW1lZswpucnIzPQT6fR6FQONH3wzAMwzAMwzAM89RICbz/PrC6Sq/bbTJDqQQ6pVRdWCB16bVrjzfRPU2MwOQkxZVsbpLitlajfUdRL4FMGdyiiPo0MgKMjZGycmwMuHy5F39x5w4pdTMZ4NOfBj78ENjaIhVw/3cf/W0e/L5OSupLu91TAjO98y4EqZ1VCqBK8lOqbcMg9XO3SyY4lSqnkvz6zWqmSeeg3yipVNtDQ9R+rdZryzSpHaUOr9WePIZEXZf9aYPVKl1vKjYlinrpet0uvZ6aIlV3GD595AlzshQKdA5XVigZcGaG/r/3//3a/14G+TytzzAMw5wY/UG/zPGizG394z4kEvSRZ9u9cSeUsU0Z1ba3aV21DKB2gF7iXH/KnWFQKeS6NHaA+olmaIjaCkMah6D/PKsySvXPMOgWAADeeYeMcupj+e5dujWYmKB9lstU3g0PU1m3udkbh6HR6I2pMDb27MljjzJoFYs0jSLqg2VR/xIJ4FvferoxRJhnh0s6hmEYhmHeZBpeAxISEVi3dxxEiGDsy4QjGSECmdiEEAijEHvdPdS6NYwlx3AxcxEflT6iAewlaf0sw4IGDaEkUxsAtPwWhCaQ0BLo+B20fBp0L5QhZCSp/f11vcCDrlFKnRACQRRAgwZDM2AZFva6e9CEhkhGuL93H62ghSAKYqOaqZm4kLlwYsfnpE1jUkoslhdxo3TjIVPo8s4yrm9cx/zUPAq5w3V4p00hV0C1U8XKzgryY3nMjMxgq7kVm/4mU5OxsTE/lkchxzcjDMMwDMO8WpyKC+2//bf/hn/7b/8thBADxrkvfOEL+PrXv458Po9cLodUKgXP81Cv13Hr1i189NFH+MM//EM0Go14uz/4gz/AL/3SL+Fb3/rWaXSdeU05aH5SpqihoSF4nhenkTHPjjKzqef9CXDK3KbMaZqmQQgB3/fjRLkwDOH7fpzE1ul04Ps+LMuCYRjIZDJwXReJRAKe58UGPXUjqcx2uq7HpruRkRGkUin4vg/HcXDhwgUEQUA350GA3f1R4YUQ0HUdiUQCAHDu3Dnouo5KpQLXdSGEwOS+WHL6aYf1PIAymwkhcPbsWdy/fx/r6+vodruwbRsXLlzA2bNnoev6qZjNpJR4//33sbovEm2329je3h4wvwHAwsICqtUqrl279tDNuxAC165dQyaTwY0bNwAAMweGJbVtG4VC4UgTHsMwDMMwDMMwzAtlcZHMc1EErK2RmrTfULa+3hvuf2WFjGnz87QsCEh1urnZUzdOT5Oq9UljBFIpUtJKSarZVquXWhZF1K7v95TCyjR19izwf/6f9PruXTI72TYpfaemgB/8ANjY6Bn0ut3BtpSh7qgBhaTstfmIAbHeKFRUiTK4GQbNU6ZHTesZ3HyfzvHeXs+gpo67Miiq4xoEtE4y2YsrUec+kaDryvMoPkVKmqoUwiB48hgSpZ7+/d+na29vjx79JkrHoYdpUhqiintJpSgq5Tm/G2GOGSHI1JvJUIIm8HBcjG2TyprV7wzDMCfO8PDRpRXz/ERRL/FNCCpV1WtNo5JJSipjpARGR4GbN3sl8MGS1rJ64wb0jy8oJY0jUavRR2y12ivJOp1eGZdM9sp2VZYpAx5A8y5epNJcMTFB64+PU7lu22SUU8HRe3t0u1Cr0XscHiYz4NWrtPxZk8cOGrTOnwe+/33qcyZD5V+nQ+Xe5CT1z/OebgwR5tnhko5hGIZhmDeZIXsIYcQjkRwn/alvEnQjFEURQoRImSl8dvqzGLFHsFHbQCaRQRAGKNVLSJpJGMJAykrBFCa8yMOet4fQC9H0mhiyhmLzmy50SplDBEMYMHQjTrwzdTNuqxW0EEYhdI1ulGzdhqVb2O2Qbs8LPOhCR9pOY9gexrnhczg3fO5Ej89JmcaklHj/zvtY3d3X4QVtbDe3B9oFgIX7C6h2qrh24WEd3mkjhMC1C9eQcTK4UboBAJgZOaD7020UpgovjemPYRiGYRjmaTgVA90/+Sf/JH4upcQ3vvEN/Ot//a9xVX2z/wja7TZ+8zd/E7/+67+ObrcLKSV+53d+B7/wC7+AX/iFXzjJbjOvMdPT01heXsbExATW19fhui4qlQosy4JlWbHxizk+lKFOGWmVuU0IgUQiAcMwUKvVEIYhdF1HFEVot9uxwc2yLOi6jiAIsL29HW9vmiYMw0C73Y6NemEYIpVKwbZtAGTWmpiYwMWLF5HNZtFoNOK+TE9PY3Z2FqVSKTZODg8Po9lsolQqQdM0BEGAjz/+GO6+oDGXy8FxHNi2jdmnHdbzAAfNZjMzMy/UbLa4uIjV1VVEUYS1tTWUy+WBlND19XXkcjlcuXIFKysryGQymFci0QPva35+HnNzcygWi9jc3IxNeOqYc5LosxEEwWOP6ZOswzAMwzAMwzDMEQRBT6G4tkZxC8DDSXFqfj5PhrtPfxr48Y9p2wNp3lheppSvQgF46y0y5z0qRuAv/qKn6G21aDo0RIpcw6A+7u2RihboqXLPnKFl9+/TNkoxvL5O6tezZ+n5xYukgN3dJdVxGJList/AdRTKRMcGul48iUJKUkx3OnSNeN6gec406Zyo751ULEkYkvoVoPOnjHiqvSDoJcEpU6VSiyujnRB0fRoGKbCf5vuKQoESF9Np6t/QUO+aUgY/Ieh9CUHvQ/Wx1Xr6yJOXlUeZX4/rXvo09gHQeZqfB+bmTmd/DMMwzJF85jPAH//xi+7F64VKh+tPn1PjFuzt9cYzUCG/Q0NUNqkA33K5F6rb36YQVG6nUoenyikTnOtSCbS1NRgIreu9sQ9UYPXwMO3b84BPfYrGtRgZAS5d6n0sz8xQspvn0XgGKoWuVqNbA8siQ10ySeXaxYtU7k1OPl/y2EGD1sYGzR8fp2S9Bw/o+GUy9B5/8IOjxxBhTobXuaQ7rbL4Zds3wzAMwzBPxruT7+J7974HTVDqGfP8hDJ86FjK/X8pK4VRZxTnhs/BCz3UvTrWdtcQIkTaTMMQBppeExEidINubMbzIx91rx4b5AzdgKmb0DUdCSMBy7AQRiGmhqYwkZyIE+9q3Rps3YYf+ggRkpEvCmEIA4EM4mS6EXsEZ4fP4vLoZcxmT/Y76JMyjS2WF7G6u4pIRljbXUO5UY4NjACwXl2Pk+1WdlaQcTKYn5o/rrf1zAghMD81j7nJORTdIjbrm7Hpbzo9jdns7BMn8L3qBFHwzMfgebZlGIZhGObkOPFP4e9973tYX1+Pi8a/9tf+Gn73d3/3iYvIRCKBX/mVX8GXv/xl/NzP/VxsovvVX/1VNtAxz8zs7CyuX78OgMxQpVIJS0tLAIBWqwVN09hEd0IoM1YYhtA0DQDQ7XbhOA5M00S324Xv+wiCAFEUxYa7VqsFwzCgaRp0XYeUEq1WC7quY3R0FKZpQtd1eJ6HKIrgOA4ymQzGx8cxMzODCxcu4Ny5c/jkk08ghMDly5ehaVqcRnfx4kXouo7bt29DSond3V3ouo5UKoWN/V8NhRCxeQyg9LjjMCM9r9nsuMxSQRDEiXFra2so7YtBs9ks0uk06vU6XNeN5+fzeSwuLmJubo5NWaeAlBKLi4u4ceMGvANi3OXlZVy/fj1OKFxcXDxynfn5eU7+YxiGYRiGYZhHUSySiq7dJuUqQPEO4+O9dSoVYGmJls/MkMr1t3+bDEYAbbu9PWiMAyjS4a23gPfeI9MdcHiMAEBK360tUu0qUxNAr5WStdvtpcil0xSnoZTAhxn+cjl63L8PvPMOcO8exUcoo9STfhfC5jlCqbcNg86bptG5D0NSVQfBYCRJGPaeC9EzxgE0L5slNXS9Tm2pGBXHoWm/Wly1q+s0TaV619KXv/x0yk8h6Brf2aHkwnqdrvcoov0GAT1XivAwJDU4QCrwl/U7gSdVxkpJ/x8fZX6dn3++aI/T2MdhGAYp6/P542vzpGFFM8Mwrxmzs5wMddyoUurgvP6xIPZ/foKu9wxsrjsYtnywpDWMXrjv6CiZ1qKISjGAEuGmpugWIJmk9VTAcDIJjI3RNJmkkm50lNZvNKi8Ghuj15cuAd/4xuC+DwZVA72g6jCkW4HhYeqDENTGT/3U85cOyqD1zjvAv/k31L87d+i9TU5SKt3IyNFjiMzNPf7jmT/an53Djt2FC6/2sXtRZfGL3jfDMAzDME/H1y58Df9p8T+hE3RedFdeayQkdKEjZaVwu3obLb+FIAowZA3B0i0ICARhgHpYRztow9EdaEJDy2/1BmOXiI11GjRknSxSdgppOw0v9HA2fRZXsldg6EZsiEuZKbhtF/fq9/Dhgw/hdtzYzKcS67JOFp8/83mcHz6P+an5EzUbHTQ5nR8+jyAKYOomwih8ZtNTEAWxGW9tdw2lxr4Oz8kibadR79bhdtx4fn4sj8XSIuYm507cXPWkxi5DM5AfyyM/9gp9v3xMSCmxWF7EjdINeOEBDd7OMq5vXMf81Pyhhsrn2ZZhGIZhmJPnxL9a/fGPfwyAigJN0/Cbv/mbz/Sh//Wvfx3/9J/+U/zqr/4qAODmzZv4+OOP8ZnPfOZY+8u8GRiGgfn5eSwsLMRmqHK5jCiKUK/XoWkahBADyVvM8dGfRmcYBjzPg+/7AMjEFYZhbGBUfy/CMITv+9D3h/gUQsA0TViWhampKaTTaUT7v3rWajWYpomrV6/i4sWLGB8fh67rqFQqcF03NsI5joOf/umfhmEY2NzcxMWLFzE2NoZ6vY7x8XH4vo+tra3YlDY5OQln/5fSfD4fm5WOC8MwkM/nkd8XNSlj3He/+91DjXFPYqh6GrNUsViE53lot9so74tEr169ivE+kWilUsHS0hLK5XKclFcsFuM+K467b286Ukq8//77WF1dBUDprNvb2wPXppQSv/VbvwWArs9Op/PQOgCwsLCAarWKa9eu8bFnGIZhGIZhmMPY3KTp9nbP1NRvngPodTZLKtKtLVLXtdukeF1bI1Vt/3cK6+u9uIbVVeCLXwR+6ZeOVpJ+73vUpu+TYlYZsQ7i+z3VrqbR86kpMujlcr31lOFvawv4whdI1dtokKLYNHvxHQfT1JjHo2m9NDaAzlUY0uswpHMC9JL7ut3B497fhm33zrVqTxkmLaun/rbtnvrbNEnVfe4crXPuHPBzP/f078O2SSH9Mz8DfPABXc+joz01umXRvhoNeg+GQdfYO+88/zE8bp5EGTs3RwbTzU0ytpbLpA4fGiIj4UHz68ICmU2vXXt6Na2UlPC3f09/pMH2efbxOsCKZoZhXlNUMlkQvOievBmokF5VyqoxCFSIrirRVACzWk+9tm3afmeH5us6lQe6Tga4/hDpMKRyqV6nYGddp3S4uTkyuqnEuo8/7pVzQG/aT6FAZcDKyuA+2m0al0GVjoZB6/6tv0Xzjou7d+m9JBJUFjnO48cQAeh25iif/tN+tLPRrsfrWha9yLKYS3KGYRiGebUYdoYxmZpErVN70V15rRGggqfhNSAhUW6WoQn6ztoxHOiajppXIw1lJNGIGpBSQkqJIAoGktQMzYBpmEjZKXz53JcxMzyDS9lLuDByAX7kDxi0dKHjg/UPoGkazg6fxf29+1ivrqMbdmHrNi5kLuDs8FnoQkd+LI9C7nj1eYpHmZwAwNKtI01OT2JAK7pFeKGHdtBGubGvw5u4ivFknw6vVcHS9hLKjXKceFd0iydmWGNj15MhpcT7d97H6u6+Ti9oY7u5HZ/rydS+Bu/+AqqdKq5d6GnwnmdbhmEYhmFOhxP/unlrawsAmV3eeuut2HDxLPzyL/8yfv3Xfz02ydy4cYMNdMwzUygUUK1WsbKygnw+j5mZGWxtbeH27duo1WpwHAetVutFd/O1RUqJIAhic63ruvA876HkP7Vcme2C/V+ZVXpdOp1GpVLBX/7Lfxm2bSOXy2F1dRWlUgndbhdbW1toNBq4f/8+tra2EIYhJiYmUKvVMDQ0hHw+HxvXAOAb3/hGbPzSdf2hv1m2baNQKJyo8etJk8Zc18Xa2hqAww1VwNOZpTb3RaLb29uQUiKbzQ6Y5wBgfHwc2WwWrutia2sLMzMz2NzcHDDQPYnZ62n79qazuLiI1dVVRFGEtbU1lMvlAYOvSnpV/3/UOTy4jkpQXFlZQSaTwfz8/Gm/FYZhGIZhGIZ5+VH3YWqaTh++XjpNBrp2mxS2mQyZ51Qsw2EJcMBgXMNRyVDpdM+4pJLhPI/m9at8Pa9nsFOmpnoduHWLlp07R6q/fsPf9jYpXg2D4iUajV68hjLRsXnuydE0Otae1zMy9psf1TnrP6bqWBtG77lKrWs2ewpugKa1GiXM2Tato0x5tk0q52SSlMUXLwJ/4288m5p6eprUuFNT1NbuLrWrIleAnnlO1+n6vXwZOHPm4bZepPr5ccrYiQlgY4PWGRuj46diVn70I3qP2Sw9gEHz68oK/T9/2nvpxUXqTxQ93mD7rPt41WFFM8MwrzHlcs8zzxwfavyHw+if3/+Rq0osTaPHwZI3DGkcA13vhQAnk1S+zM4CP/3TPfPbzAyVYsvL5MGXkj7CCwUqNxSVCpXgQvQ+zqanH+6zEPTxlskAH35I5Z8KHE6laB9nzwKf+9zJmKaeZQyRmRna7rDbmaf5aHddet+Li6+XWexZeZ3LohdZFnNJzjAMwzCvFl7oYSI5gaJbjHWizPGjQYMmNLR9MvhMpibR8BqxeU6Hjk7Qga3bCGSAUJImSRc6dE0fMNFpmoZhexhBFOCL01/El2e+fKTxbHV3lZLrogjrtXWkzBS+MvMV6EKP17N1G4WpwokZuZ7V5PQ0BrTN+r4Or7kNCYmskx0wzwHAeHIcWScLt+Niq7mFmZEZbNY3T8RAx8auJ2exvIjV3VVEMsLa7hrKjfKAYXS9uo7cUA5XRq9gZWcFGSeD+an5596WYRiGYZjT4cQNdJlMJn4+Ojr6XG2NjY3hrbfews2bNyGEiM0eDPMsCCFw7do1ZDIZ3LhxAwAwMzODK1euYG1tDe12+8V28A1AGXzCMIzNdAdT/4QQ0DQNlmVB13UkEgl4nhd/QWIYBiYnJ/GVr3wFZ8+eHUgVLJVKKBaLcF03TrwbHh6GrutYXl6GlBKffPLJgBlOCIH5+XnMzc2hWCxic3Pz0PS3kzwmT2I++93f/V20Wi289dZbRxqqntYspcx6apo+QiSaTqdjw2P/+oonMXuxkevJCYIg/hu1traG0r7oNpvNIp1Oo16vY2dnB7dv347PWaPRwKVLlzA6Ohqv47puvG0+n8fi4iLm5uZO9HpmGIZhGIZhmFeSg9EQ9frh66n5rVYvdUxFVTxJXMPKCqlxDzMZXb0K/L//by8uw/dJWWoYvddBQOo/ZbTrdKgNz6Plt29T3/J52kYZ/tQ9nOuSCerBA1Jl1mo9M9fj6DfZvcmGuyjqHc/+46GmQvSOp1quDHZR1IslUcly3S6dVylpuaaRMrvToUci0VNkaxqd03SaUuA+8xngU596dpXn7CypkwEy0an3p6jX6XpSqtIrV6hvs7O9dV6GqIzHKWNVuuPEBEWtlMt0XGu1Xtpfq0WK2WyWVMmHmV+f9F46COh4AE9vsH2T7tdZ0cwwzGvM2tqb9Sf9tFBl8NPQP66BYdCYA/3JgKq87i/jVPLcu+8C/9v/RqWPGidgZobGPkilyNy2tQX85Cf0sd7/MQ/Qx5jjPFw+PW3/T4qnHUPk4PoHeZqP9j/4AzIqnj//epnFnpXXtSx6kWUxl+QMwzAM8+pRbpQRRAGSehK1iFPoTgINGoQmYOn0O8hedw+jiVEkzAQqzQq80EMkIpi6CS/0EMoQUkroQoeUEgICtm5DgtLodKHD0AycSZ/BTHbmIUPQYcYzTdNwYeQCKq0K1qvruJi5iHfG3sGZ4TMDSW4nwbOYnAq5wlMZ0LxgX1e3/37T9hE6PDsNt+PG6x2Whvei3vObaOwKogA3SjcAAGu7ayg19nV6ThZpO416tw6348bz82N5LJYWMTc5BwDPvO1JXu8MwzAMwwxy4p+6/elNSrj/PIyNjcXPdV1/xJoM83j6zVK3bt3Cn/3Zn2F7exu6rsepZwcNXczxEoYhdF1HFEVxqpxCnQMhBHzfRxiGME0zTgeUUkLXdVy8eBFra2v4uZ/7uThV8K233kK328Xu7i7S6XR8HoUQcF0Xly9fRi6XOzIFTaXS5Q8bOvMEeRLz2cTEBHZ2dhCGIba3t2MzYb+h6lnMUta+OFRN60eIRNX8g+sDT2b2YiPX01EsFuF5HtrtNsrlMgDg6tWrA+mAN2/exK1bt7C7uxubTnO5HN555514nUqlgqWlJZTL5fizuVgsnvo1zjAMwzAMwzAvPSqJa2KC1ImuSwa4g4Y4FSWh0r6U8elxcQ0qhuS//JeH1bPKZJRMUtuWRapdlTIH9Axz/a/VvHabVLtbW6SoBHpqVHWP13cPh3PnSBG8tUX9q1TIzKWMU4epU9U9qq73jF5vsonu4Pvufy1EL2VuPzE8Pl5RREYt2+4lDQYBXRvqHHU69NpxSJnd6ZDC8623ekrOXI7Mc89rTDMMamNhoXft9Kt102lgeLin1gVof6ofL0NUxuOUsbdvA3t7NE8pvxsNUh0rdfvZs5SqJwRtd+bMw+bXYvHwqJXDKBZpP+02tQE8mcH2afbxqsOKZoZhXnO2tzmB7mVDjWegSnnf750jVd7qOk0ti7z2lgVcukQfPf0h0lNTVN5MTFAb5TJ9bKnSQoijy6d+DpZSw8M0toIqpUZGqGQ8qVLqaccQObh+P0/z0b611TvezWYvAU/xqprFnpXXuSx6kWUxl+QMwzAM8+qx1dwiw5Z4Q79zPgWUHk9AwIs8uG0XutBh6RbaAYUOJI0kgjBANagikhEESI8kpYQQAqZmQtd0+KEPTWiwNAvnhs9hdWcVeKu3rydJPssN5fY7Brw1+taJJp89q0FKpec9qQFNE3SjqUyK9e4ROrz9+Wo9NX0Z3vObaOwqukV4oYd20Ea5sa/Tm7g6kB5YaVWwtL2EcqOMmZGZeDsAz7ztSaQOMgzDMAxzOCde3Vy7dg2O46DT6eDu3bsol8vI5XLP3F6r1YqfT6gRlxnmOdF1HQ8ePEAURRgeHo6NXGygOx2iKIKu6/HxVq+VQS6ZTCIIAnS7XXieB8MwYFkWhBDodDrY2tpCq9UaSBX8vd/7Pbiui2w2i+3tbezt7cXtZTIZuK6L1dXVlyoF7UnNZ2tra+h0Oshms9jY2MClS5fw6U9/esBQ9SxmqenpaSwvL2NiYgLr6+twXReVSuWhdl3XhRAiTsObnp6Olz+J2YuNXE+HSlvd3t6GlBLZbHbgeAJkNk0mk9je3gZAn48HDanj4+PIZrNwXRdbW1uYmZnB5uYmH3eGYRiGYRiGOUh/ElcuR+rEpaWHVYtqeRCQ8jaVomWpFKnuajVaZhikeE2lgN1d4NYtmjc+frTJ6M4dUuq2Wj0DlqI/bqN/qmmkqu12Sf3XbJLyT9epbWX4U/sYH6cErmyW5rfbDyfLKaPXwR+rpeypipWBjxnk4DnStN55VM9VcqA6jlFE15JKGlRpg1LS85kZUmlPT9M6b78N/MzPAJcvH49itlAgRfbKCilFZ2ZI1dx/fToOrZvP0/qKlyEq41HK2DCktMXpadp/p9M71lL2jLCeR/8nJyeBe/eAL36xZ37d2qJjsrn55Era/Xv6WA3+OIPts+zjVYcVzQzDvOYorzxzvDxv+anrVKqPjFDZrMYxCMPBlLrZWfpI8n3gu9992Lj2POVTPy+6lHraMUTULUXfz0MxT/rR/uMf03tVx8x1yTj4OpjFnpXXuSx6kWUxl+QMwzAM8+ohpUQn6JxYEhcDRDJCQk8gQgRLt8hE13GRttMYMocwlhzDXnsPEhKGZiAMQ2hCgy50CK1vgHphQDd0eKGHIAogpYwNeIqXLfnsWQxSoQzxJ8U/wWhi9IkNaDutHQw7w5hITWC9ug6346LSqjy0H7fjQkDECXbT6UNutF7Ae1bbvWnGrs36vk6vuQ0JiayTHThOADCeHEfWycLtuNhqbmFmZCbe7lm3fdOOM8MwDMO8SE786+VUKoW//tf/Or71rW8hiiJ861vfwj/6R//omdu7detW/Pxzn/vccXSRYbC4uIiVlRXcuXMH3//+99FsNhGGIZvnTgE1oo25L1QKwzBOIguCAFEUod1ux+tKKeM0OiEEdF3H3t4ebt26hQ8++ACe50HXdei6jitXruAnP/kJwjBEOp1GLpfDmTNn8ODBA5TLZWxubmJjYwNzc3P44Q9/+MJT0J7UfPbtb387ToELwxCapj1kqHoWs9Ts7Cyu74tEc7kcSqUSlpaWHjLwqeWO48C2bcz2JSY8idmLjVxPh+d5A9N0Ov3QOkEQwHEcRFEEIQQcx0Gg0ij6SKfTcF33oTYZhmEYhmEYhunjqCSuo6Ik1tYoyS2KyCBXKpHJqZ9SiR6dTk8VurkJ7OwcroxVqj5lyNN12qfn9RTY/cpdIXqJcCqJLgzJiFet9tSouRypuEslWn95mdTCytzXb8Tr75cycPXvT5m+DKOXoMYM0q+W7z9+YTh4DIFB42KzORiN4vt0DjMZOo8/+7PAX/krx68cFoJU4ZlML/pCqXIVtk3K7/60u5clKuNRythKhfqpXAxS0vNEgs5DJkPq9k6HUupGR3vbpdO9xDqgN30SDm5zyD19PP9Z9/Gqw4pmhmFec7JZNtC9bKjSVUr66FfliPpKvX8ciaUlKq1/6qcON649qnwKQyolNjeBCxdo3uoqmfL6S6CXoZR62jFEHIdKqYOB2sCTf7QLQcdod5fKLymBL3/59TCLPSuvc1n0IstiLskZhmEY5tWkE3QGTFbM8RNFEQzdgGM4EBBIW2lkE1mM2COwdAtCEwijEBISUkqEMoQHDxo06JoO27Bh6iY6QQe6piOQAdyOi4SRiPdxVPLZiD2CQAbYbmyj1q2h1Chht72L9868d+LJZ89ikLJ1G7VuDQkz8cQGtGF7GLVODaOJUeSGcig1SljaXnrIdAcAuaEcHMOBrduYzR5yo/UC3vObauxSxl01TduH30Ck7TTcjvvQ+s+7LcMwDMMwJ8+pOEV+7dd+Db/zO7+DKIrwG7/xG/j7f//vw7btp27nBz/4Afb29iCEwKVLlzA3N3cCvWXeNIIgwEcffYSVlRX8r//1v+B5HifPnRLKACelhG3b0HUdvu9D0zSEYRg/pJTQNC1ePwiC2Djm+z4qlQrW19extLQEXddRLpexvLyMKIrQaDQwNTWFq1evotPpYGNjAwCZezc3N9FsNiGEwK1btzA2Noaf//mfP9EY+EfxpOazZDKJvb292ER31LX6tGYpwzAwPz+PhYUFXNkXiZbLZbiuGxvnhBDI5XLx8kKhMGA6fBKz17P07U3GsqyBqTrv/RiGgU6nE6fOdTqdQ82gatuDbTIMwzAMwzAMc4CniZIoFMjw9MknPROa4/QSxnSdzFB7e2SYM00yRCWT9PwwZWy3SwaenZ3Bfu3sUDv9BjchBs1WUpIKt9ul+Ts7pDjN5ympbGWF9j0xQevW69TXfjOXauegiU4tO5hUp+4/VFoa8zAHj8tB4xxA502ZGJUhUqm3fZ8Mlt0uXS+XLh1f8lw/QpAqfG6O1Mmbm73rfnr6YcU38PJEZTxKGVur0bRe7/VffT+tvgfSNPq/0Wr1THS1Gh1zgI5B//RJOLjNIff0A/OfZR+vOqxoZhjmNWd4mMujlxHfp3Kr1aKS/GAprManEIJCbP/LfwG+8Q36iD5oXDtYPj14ANy8SaVbKkWlj6ZRGb6yQka1+fneeAQvQyn1tGOIANT/w0rRJ/1oV9TrdOyTydfHLPasvM5l0Yssi7kkZxiGYZhXDwkJP/ShCe1Fd+W1RRMaQhkilCFKjRLODJ3B+ZHzcNsumn4TjuHg7bG3UWlWAAARIkACmtSgaRps3YahGegEndhAN2KPoNqp4q3Rt+L9HEw+k1Iim8ii4TUQRAGSVhIRImw2NrG0vYRu0MVsdha3dm/h7fG3T+S9P4tBqhN0EETBUxvQxpPjiGSEK6P7OrxGGW7HjY1zAiJO3wOAwlThRIyDx2EKe1OwdGtgWu8efgOh5h9c/3m3ZRiGYRjm5DkVA10+n8ev/Mqv4F/8i3+Bzc1N/Nqv/Rr+5b/8l0/dzn/+z/85fv4P/sE/OM4uMm8wxWIRxWIR9+7dw+7uLoIgiE10uq5zEt0JIqWMj20QBNA0DY7jxCl0YRjC8zxEfaPYq+Q5TaMb8larheHhYQwPD+NHP/oR0uk0Njc38f+z9+6xcWV5ft/33Gc9WVV8FakHJbHV1T1qdRdnurfHnt0d7cP2eB2vYycwdmEssHCAAMZiDcfAYv2vYcAIAmMDBIgnQJKFDWQDOF7EgB1jJ57ZjTVuj2Zb3T0j9qilJkVRTVFUsR5kveu+78kfP557iy+JpKgXeT4SUVW37qvOPVX3d6u+3/P1fR+dTgcbGxvQdR0bGxuo1WoAAM/z4LpudLu5uYnJyUl89NFHyOVyuHbt2p4mOt/3sby8jEqlAtd1YRgGpqenMTs7eyzJdYcxn62LoUaxt6FqePphzFLlchmtVguLi4solUqYmZlBrVaLXu/k5CQSWyLRUqmEcrm8bfmDmL2Oum+nlenpaSwsLGBiYgIrKytoNptoNBrbzJVhGGIwGCCRSIAxhsFgsO19A1B6YbPZBGMMk5OT0bolEolEIpFIJBLJHhwmieudd4D//r8nw102Czx6RJEBuh6b5TyP1mkYpMrzPFLY7qeMbbfJvDM2RmY8TQMymdjUJkxvnJOydyvVfZu5TURr6Dopdt94g9S8AHD2LMVbtNtksLMsms+24/WK9ew0y20N3AFVpf0aNtsJ06D8HuXoiOMmjsNwWwYBmbn+7b8lxezMDMWh/LW/FveB40LTSJl8EHXyqxKV8SRlrIiUCQK6r+uk0rZtUrZbFinohTFWRAVtbpIimTEyzgJkJDwo09OU9DgxQSr6ZpPe5zvf983m0bfxuiMVzRKJ5IQzNrY9iFbyaiDKLXFshkOeRTJaGFIZ4PtURn/8MZUM9+8Db+2h49Q04M03gbU1KplnZ2n+tbXt43AAZFRrteiS47hKKd8/+PgHe3GYMURKJZp/Lw57ahecJLPYUTnJZdHLLItlSS6RSCQSyevJaTTuvEgCHoAHHKqiQuUq3MDFvY170BQNxXQRXaeLB80HsHwLnHMwMIQI4Yc+GGOwfRssjBPqTMWEwhSoTMX53PloO8PJZyEPMfAGkSbPCzx03S6CMEAQ0kVZ027iQesBvrf0PZTGSgceBN8PfSw3l1HpVuAGLgzVwHR2GrOF2V2GtKMYpHpuD5qiHdqANjMyA0MzsLixiNJYCTO5GdT6tWgfJ9OTSGhbOryxEsrFfS60npHjMIWdFqaz01jYWMBEegIrrRU07SYag8autMGm3QQDw2R6MloOwDMtK5FIJBKJ5MXwzI6Pf/JP/smB5mOMwTAMuK6Lf/bP/hmCIEAmkznUtoYNdOl0+lDLSiT7sbq6itXVVSiKgnw+j1qtBsYYGGPQNI0iyMUvZ5JjRyTJua4Lx3Gg6zoMw0AYhtB1HUEQIAxDcM4RhmF0XFRVjYxciqJgbW0N3W4Xk5OTUbKcWHe9Xofnecjn86jX6+h0OuCcw3Vd9Pt9rK2tAQDGxsawuLiIfD6Pubm5aB855/jBD36A+/fvQ1XVbfu/sLCAGzduYG5uDuVy+ZnS6w5qPhNks1l0Oh1YlrXLUHVUsxRjDNeuXUM+n8etLZHozA6RqGmaKJfLe77eg5i9TpqRa2lpCQCiVL7jZnZ2Fjdu3AAAFItFrK+v486dOygUCshms+h2u9jY2ICiKMjlcgCAXq+HarUKz/OieUSKYLFYRCKRgGmamJ2dfS77LIl53v1D8noj+4fkScj+IZFIjgv5efIMHDSJSxhzgNhwNvxY4Pu0rG2T+SyToViH+Xky1Ok6MDUVp9F1OnTf90npVyzSNMuidQRBbFYTZjZVjU1WIolOmPiaTbpfKgH37lHSXT5P8/Z6tJxtx4lnihKvWyiIhYFOUUg9K55z3d1muz1YeuMNAMDl+/eP91idNIQBcieeR9M9D/joI+Db3ybD5o9/DPzGb1B/fRkK/VclKuNJylihGnec2BBXLGLJsoBcDpdrNTKUigGLVJXm03VS0BaL1OdNk977B2V2lmJmAFrH+jqZZHcmT4rnj7KN1x2paI6Q52yJ5GQixjqwrO3T33iD3vP378v3/MtElMxAbJ4TZa/j0B9jdHq+e5dKio8+2ttAB1Bpf+8erWNpicr94fJ4ZSVOcVtcpHL8WUspzmm7t27tLq8WFnYn3u3HYcYQedK6DnpqtyxaRzYbhwXvxetoFtuLg5znT3JZ9DLLYlmSS14GsraXSCSSZyMMwygdjYFhFnRivg/5vfJxEiKE4zsIwgBdt4tav4a0kUbP7cHyLfTdPhSmwAs9sK1/HBxe6MGHDyVUYKgGGGMwVRO2b+PrU1/HprUZbWM4yaxpN8HBkUIK9X4dHacDDrpgsn2bzHVgKCQL+Kr1Fear85ibmnvia+CcY746j1vrt3aZLhc2FnBj9QbmpuZQLsYat6MYpGzfRs7MwQkcAAc3oJmaiW9f+DbyiTxurd8CAMzkdujwVBPlqTLS3TTu37//XOqHZzWFnSZmC7O4sbql08sUsd5bx536HRQSBWTNLLpON0oQLGaKSGgJmKqJ2QJ9Tj3LsicdWSNLTgOyn0tOAyehnz+zge4f/+N/fCjDCGMMYRjiD/7gDw69Lc45GGPgnON3f/d38ff+3t879Dokkp08fPgQvu/j/PnzmJycxJdffolUKhUZsESymDTRPT+EQY4xBt/3o8cAfWboug5/6xdMRVGgaRrCMITneQAQmeySySRmZmYwGAzQ6/VgWVa0HOccjuNEprRUKgXf9+F5HhhjaLfbqFareOeddzA/P4+rV69GBsrr16/jk08+AecclmXh4cOHcBwHpmniwoULOHv2LG7evIlWq7Vvet1BOKj5LAxDqKqK0dFRAEAymdxlqHoWsxRjDHNzc7h69eqhE/cOYvY6aUau73//+wCeXzGgaRrm5uZw8+bNaBvVahXNZjNqS1VV8eabb0afU1NTU+Ccb5uHMYZisRito1wuH0tyouTJPO/+IXm9kf1D8iRk/5BIJMeF/Dw5Bp6WxLW8TCq7ep1Ustkspb0Jg5uq0t+9e6TAzeVIoffDH9L9Yb76ikxsmQwwMkJq65ERUkfWarGpDdiu9BVGNl2n53WdVLsAqWjPnaPUOcchpWq1Ss9duUL7bhjAw4e0X6oaR3KI/RdGQZGil83SfnW7tE7xncnWdfp+fP873wEAXP7udw95ECQRYUjHolol49wHH5CJ7t/8G1IeX7t2dBPdUWNLXpWojCcpYz2P4l96vVgd77r4/jvvAIqCy5zTe0P0YWFWnJqiP/EZWi4fLMJFoGmkWL95M15HtUoKXaHS3TLzHXkbrztS0Rwhz9kSyclEVenjrNPZPv0736H3/He/K9/zrwoiUHk44NnztocDP3gA/OAHwG//9u4AYN+PjWdLS7Evv1CgwNtHj2ja48fA6iqN0/GTnwAXLtB8RymlOAeuX6dLDYDKmXr9yYl3TzPRHWQMkSdx0FN7Mhm3T69HbXxSzGJ7cZDz/Ekui15mWSxLcsnLQNb2EolE8mxs2pvQFC0ybH0H9L3ydyG/Vz5OGBhCHiIIA2wMaODu0A7RsTsIEcJUTXDQgPcAmcI4eJQWBwAKU2AoBvpeH5OpSaT0FD59/GmU/iaMZJqioWk3kVATqId1tB0aRSOlpZDQErA8Cxwclm+h3q9jOjON+fV5XJ28uitBTsA5x/WvruPeJl0QiWWH090A4ObaTbTsFq5dIE3fUQxSE6kJjJgjcEP30AY0xhjmpuZwdfLqE1PyvvtvqH8/j/rhWU1hpwlN0TA3NYebazdxeXRLp9eromk3ozZiYChmitHz5aly1E+fZdmTjqyRJacB2c8lp4GT0M9f2JlXmGMAHNlcMrwcf8Jo1hLJYehs/Wop+hTnHKZpYjAYACDDlmmasG07uiCUHD+c823HgHMORVGiFDmRCsg5h+d5UBQFAOD7PprNJkzTxFtvvYULFy4gmUwiDEM8evQI1WoViqKg0WggCALouo6JiQmoqgpVVVEoFDAxMYFarQbLsmDbNgBgeXkZpVIJ8/PzWFxchOu6sG0bP/zhD7d9/ty7dw/5fB7vv/8+OOe70usOw0HNZ4qi4PLlywjDENPT0xgfH0etVjt2s5SmaSiVSijtJxLdZ5mnmb2kkevwlMtltFotLC4uolQqYWZmBrVaLTI2Tk5OwjRNLC4uAgBKpRIcx9k1j0htLJVKKJfLL/MlSSQSiUQikUgkJ4dKhdR2IyPA2FhskttJOk0KvGaTFKKpFKlGO53YqJbLkYFOTBsdpdgHRSGFH2Nx+pyAc6Dfp3WLpDjfp/UZBi2byZD6NJslRS3ntK0gIOOcbZPycmQEGAxoGdelP/FdCGO0jVyODEWpFKmGWy0ybglVseT42C/RTxyTahX49FNSeaoqxaLk86QOPQzPGlvyqkRlPEkZyzm9NzWN3qeKQu/dr32N5nv8mF776Gjczw0D+KVfovcuQCbao1xLl8v0PllcpHXMzJAhdljZvnW9fuRtvM5IRbNEIjnhFIsvew8kh4VzMs5xHpvqxF+jAfzsZ8D//D8D/91/t700Wl6m0/vweBVf+xqV2qur9DidphKk36dl798HPvyQSrmjlFJHSbw7SKn4tDFEnrbsQU7tly/T6woCuh+GJ8csdlROeln0MstiWZJLJBKJRPJ60XW70FUdhmpEiV+S40ekvwU8QMhDIAR8tjXAPVMQ8hAcPNLoqUwFZzxaLgxDWJ4FhznQFA19r4+lzSVoiobrX13HjdUbKCQK20Izum4XQRjA0AxMZ6aRMTLouT0k9SRUpkJTNHScDhJaAk7gYLm5jNLY3hcm89V53Nu8h5CHWNpcQrVXjfYNAFZaK5FRaXFjEflEHnNTc0cySP3q7K/idu021EA9sgFNUzSUxkr7vp7nybOawk4b5WIZLbuFxY1FlMZKmMnNoNavbTNnJrQtDd5YCeVi+ViWlUgkEolE8mI4lgrnoGY2aXqTvIqMjIwA2G7QdF03uvhTFCVKMZM8f4RJURjmDMOIUukYY5HRShwXzjl0XYfjOFheXsbExAQuX76MfD6PVquFtbU1WJYVrXNkZCQyFTHGMDk5iVwuB8uykMlkUKvVMDMzg0qlgtnZWfz0pz/F4uIiNE1DEARRX9A0LbrfbDbxySefwLZtmKYZpdcdlsOYz9544w0sLS0hlUrh/PnzuHDhwitjljqI2UsauQ4HYwzXrl1DPp/Hra0hbGdmZrbNY5omfuu3fgsAMD8/D8bYnvOUy2WUy+Ujm9klEolEIpFIJBLJDoThyPNI7Xn2LBnW2m0ysgkzTjIJ/Mf/SApagNR7IvFNsLlJxp5slpZtt4G33yaF5MwMGaQePyZVrkiFE8lzikJ/YRgbr8KQVICDQWy6cxxSXwrjW7tNhj7bjpO5xDpMk16XSL4TJr3BgIxGphkvJzka+5nkgCdPF8ek26V+A5ACeX6eIkMO+r3EccSWvEpRGU9SxiaT1NdVNTaSiteSTMbm14kJmn7pEqncTZPWu5+B8GkwRu2Wz8exNDuu1595G687UtEskUhOMO+9R6XTcfKk8kHybIh2FeMVDI+rGYZUSiSTwB//MfDuu8Cv/mp86q5U6FaUGfk8lWnCTOd5dGoTt5ubdIpbWqLT3aVLhyulZmaAf/WvaPrOxLvh5cT0UunwpeJROeipPZWi98fly2QmPElmsaNyksuil1kWy5JcIpFIJJLXi6yRBQODytSnzyx5ZoZNZwEPoDAFYIAbuGBg0BUdTCEDHAMDOEA3WwPkM9JYbtqbuNu4C1VRMZOjYutx7zFWWivwAg8j5ggedx+j7/WR5Vk4gYN2p42BTxfNE+kJeIEHJ3AQcPo9o9Kt7Gk480Mft9ZvAQCWNpew3qMLn52GNjG9NFbalmh3WJPT+9PvQ1O019qAJo1dB4cxhmsXriGfyEf9TPRpgamaKE+VUS5u1+A9y7ISiUQikUheDM9cof2Lf/EvjmM/JJKXxoULF6BpWmTYUhQFtm1HyWe+70dGKVVVwRhDEATSEPocGU6jG25rYUoTx0NMHwwGkYnus88+Q6PRgO/7WF9fh+d5UFUVnuchCAL0+314ngfDMJBMJsE5R7VaxczMDFzXhbslfHRdF8vLy1heXsajR49w/vx5hGGIIAhgGAY451BVFa7rotfrwbKsaJuapuHDDz/E7OzsoY10hzGf/fW//teRz+cxPz8PYG9D1cswSx3U7CWNXIeDMYa5uTlcvXoVy8vLqFQqUb+Ynp7e1t/efffdp84jkUgkEolEIpFIjgnD2H47GABvvLE7buTRI0qW07RYORuGZOYxTTLveB7Nq+s0vdsFfvmXSRELkAL73j1S2wZBbIrTNNo+57Sc79M2GCOFYDIZK60rFTJapVJkDnIcUgKLiA3XpfWKxDlhygsCeqzrtM1OZ3skh/ye5GgoyvZEwYMgjI66TurZdpv6zq1bwMYG9YEPPySD2vA1oO9TNEqlEitwWy0yZTJ29NiSw0RlXLpEz01Pk6HUMOj+zn09Kk9SxnJOr2FzE/jmNynWRaTTfeMblEzX61F7Tk0BH3wAnDlzPPvGGLXR1au7j8Fxvv7XFalolkgkJ5jhku24kGXXsyFKKVGG7WxPUQrvPN2IUrnbJVPaH/0RlQ9f/zo9L8bVELeWRaUW52SqE+Wz61IC3doazTc2RmXdo0eHSx17+HB34t2VK7uT6+7coefFqXV5ef9kub3KxaOUKgc9tf9X/xW10b17J88sdlROeln0MstiWZJLJBKJRPL6MJGeQNbIotFvQIHysnfnRKMyNUqaGzYsChNdwAMECKBxDV7oUZLclnGOc0qj80OfEuy2lltoLKBttzGVmcJUZgpNi0xmY6kxNK0mBt4AAQ+wadHAcAwMI+YIJtIT2BxsIqWnEIR0Ie0G7p77vdxchhu4sHwL1R5dEF2ZuILxVHxB1Bg0cLt2G/c27sENXChMgaqo+PDsh5gtzB7a5PS6G9CksetwMMYwNzWHq5NXsdxcRqVbiY71dHYas4XZfQ2Sz7KsRCKRSCSS588zn4V/+7d/+zj2QyJ5aZw7dw7nz5+H7/tQFAWmacK2bYRhGEWI7/wLjvvXTknUtsOx7UEQRBdjot1FEp2+JdgTqXCDwQCPHz9GMpmE67rI5/Po9/twXRdhGEZ/juNE6xs2Qfb7fei6DmNL8GgYBlZXV7G6uoputxv1B8MwkEqlkEgkYFkW+v0+Wq0WGGMIwxC2beOzzz7DYDDAjRs3MDc3dyiT2FHMZ6+iWeowZi/J4dA0DaVSCaX9fuE+4DwSiUQikUgkEonkmJieBhYWKLVqZYVUro3GbuXqvXukjGUsNqNlMrEi1DDo+cGAlKueR2rafh/4rd+KFX4LC2R4MgwyAvl+rMQVZjdFIdOcYcS3It5CmPSqVVKr6jqpbjkn45Bt0/KqGt/3vFiZmUiQ8W7YxCeur0Wa3nBUh+R4GI6aUZR4WhiSGtv3gdVVOt63blE/unGDFKLvvQd8/jlNd4cEB0EAfPwx3RcmScaOFlvytKiMiQl6H3zyCfXryUngwQNadmEh3tfjUAE/SRn7S79Er+v2bZrW69EyExN0Ozr6fNXImkbtI6/XdyMVzRKJ5ITyp38qP75eJYRxTtOeXLKKsSX2mm5ZVDZ/8gnwv/1vwP/0P1FJPTyuRhjSpcHUFJnn2m16LpWKS33GaHq1Ssa3Bw9o/Qc1kv2n/0SPReJdobD9EgSgx4UClXS1Gq23UtldinBOZd7OchE4eql20FO72PeTaBY7KqehLHqZZbEsySUSiUQiefU5kzmDsyNnsdJeedm7cuIR5jmAzHSMMQQ8oARARUXgB2SQA83HQ5p3OLVOPA54AHCg7bTR9/qwAxtNu4nJ9CSq/SrqgzpMzcRoYhRgQN7MQ1VUjJgjkZkooSeQ1tMw1C393tbtTipdigCv9+vg4CgkCtvMc5xzWJ6FWr+GrtuFF3oYTY7i1votDLwBbqzewNzUHMrF8oFNTifBgCaNXYdHUzSUxkp7JiE+z2UlEolEIpE8P2S1Izn1zM7OYnZ2Fg8ePIDv+0gkEtA0Da7rRoYtRVHAOUe49WuaTJ87foSZSoxQIwxpAKAoyrb5TNOMTHS9Xg++728zPdbrdVQqlSi9ztsSB4qEQQBwHAcbGxvQdR1TU1NYXV3FpUuXMDk5CQCYnp7Gj370I/i+D8dxon2anp5GJpOJkus0TYOiKHAcB71eD2EYYmlpCZcuXQIA3Lx5E61WC9euXTuUie4w5rNX2Sz1Ku+bRCKRSCQSiUQikRwLs7OkKAUoFmJ9nWIedpqQOh1gZIRUsopC96enyaQmTG9jY7S8bZNCslAAvvwS+M53YoWf45B57dNPaRnXpWmck9IylSKVKUAq21QKOHeO1LMffUTq3iAg5a9l0T5mMpRcJsx1YuCgICCznGnG04Rpz7Zped+PVchAvC/yu5ODIY7b09pLPC9U32IZx6FjGoZktqzX6b5QHn/8MSW9pVK0jGXRPK5LfbFWo2nr63Ssf/EXqZ8JM+RBY0sOmvx2/jz1xdXV7YpwgBLsWi1az3GIC56kjJ2bo9fxb/8t7d9bb50cNfLrjlQ0SySSE8bS0ukx/bzqKEr8x/ne6XNPQ4yFIcKjb90C/o//A/j5n6fy5s4der5aJZ9+IkGXAQCZ6fp9Kr0UhcrwwYCmOQ4F9U5NxalzTzOS7Uy8y2b33udslta5c34B58D16zTeB7C9XDyOUu1pp/bTYBY7KrIskkgkEolEclr5xplv4AfLP0BSTaKDzsvenRPNsBGOcx4l0vmhDwZGxjnOESIEA6XPKVAooQ6IjHbift/tw9RMWLCwvLmMlJFCyEOMp8YxcAewfAsDf4CMkUFSTyJjZAAAuqJH9xkYJtNb+r3s9J77LZLpxG3WjC+IOOdY3FhEtV+FruoIwgBNq4kgJB2oML3dXLuJlt3CtQvXDmxyOikGNGnskkgkEolEcpp59as1ieQ5o2kavv71r+Px48dgjCGTyaDf7yORSMC2bXieFxmxdqaWSY4HVVWhqio451ES4HB7iz9FUcAYg6qqsCwrMrZxzuG6Lnzfh+u6aLfbUBQFiqLA8zwoigJd17cZ2EzTBOcctVoNjuMgn88jkUggkUjANE3Mzs7ie9/7HgDAtu1o+5kMXaw3m010u12YpgnXdeE4TrR/lUoFn3zyCYrFIi5fvozFxUXk83nMzc0dql2k+UwikUgkEolEIpFIXgM0jRSfN28Cly/TtGqVVKpC/coYJYOpKqlkk8n4cTq9fX2JBBmgksnY8DSMaQLf+hYZ3r78khSxZ8/GKXKM0TqFKW9ykgx0zSYpUBcXabuJBP2JqIxEgvZNUbYn5I2MALkcPdftklK426X5hHnOMGJDVyJB5jrff67NfmI47PdMw+Y5gYgxMQxSNYchRaIUi9RfVlaAixfpuFSrtGyzCXz1VdxvOKflFhboufPnY+PlQWJLgP3VzysrZKx74w2a/umn2/d/ZYX29fJl6p/5PK3neSLUyOL9d+3a892eRCKRSE4tzSadIg/il5c8X4RpLgyPNt4DY1RGi/DndpvKr3/xLyg97swZKsV8n55rNqlkF2NNdDpUjgFU6ochradep7Dgn/s5KoP+i//iYEay4cQ7gEr0vRDTd84vmJ8n81wYkuFTlIuCF1WqSbOYRCKRSCQSiURQGishpafAFAZd0YEnpEdLjhEGeKFH5rg9Bs0QZjtholMVSqzTFR2ccwy8ASXY+TQYnwsXlm+hY3cwlhpDIVHA5bHLeNh6iJCH6LpdKEzBZGoSiqKgadPvKcVMEQktAVM1MVuY3XNXdybUdZ34guhR5xGq/So4ONa762g7baT0VJSi98naJyhmirg8ehmLG4vIJ/KYm5o7VFNJA5pEIpFIJBLJ64vy9FkkkpNPuVyGYRgwDAO//uu/jrfffhvnzp2DYRiR8Wo4BU1yPAwb2lRVRRiG0TRhjNs5H2MMruvuaWYMggC+7yMMQ/i+D9/3oW6NmB6G4bbUNsdxYFkWfN9Hr9cDYwz5fB4A9QdN0zAyMgIASCQS0fZEylxzSwS5sbEBf0sUaJomUqkUcrkcOOdYX1/H0tISAGB+fj6aTyKRSCQSiUQikUgkJ4xymZSeikK3P/dzZFg6c4YMRxcukCJUpM8ZBhnNikUyqAmjWrFIalrTjJWtyeT2bU1P0zr+yl+h1KxUKl7X2bMUXZHJkOENIPNTrUZq4XPn4vVOTdHyY2Okgh0fp3XrOqmDEwna71yOlML5PHDlCm3DNGMToHg9IrFMGPckB0N8t3GQNhPq+zCkW02LzXPCdBluqUnabeDRI+Czz+jxZ5+RCptzijkJQ1o+CEhV3e3SujY2SKn94AEppDmP40z2iy3ZiVA/X7sG/PIv0+NikRTZ9+6RKlsoucXrWV+n5wFSccvvUCQSiURyQjCM4zfOyUS7oyGOw1GOhwgBVtW4XB4MqHTq98nw9vAhrXtzMw5x7vdpnlaLzHOOQ7ciOFj0j9VVKr0cZ3sp9Zf/Mt2WSrtT2Ka3ghgmJmh/mk0KDx6m0YhNnCJJbnoowMH34/DgpSUqyTinS4iZGbrlXJZqEolEIpFIJJIXz1RmCmk9vU0zJnm+CB2eqqjQmHagkAGNaZRYx31oytb9wEcQBgh4AIXRYPQtu4Vav4ZGv4GLhYvIJ/KYSk8hpafQ83roOB0wMExlpnB5lAYqLE+V901zE8l0E+kJMDA07SYagwaCMMBqZxUA8LD1EC2nBQAYTY5iNDGKYrpIxrreOpY2tzR96/PwQ3mRI5FIJBKJRHJaeCEJdA8fPnwu652ZmXku65WcPhhj+L3f+z3Mz8/jpz/9KRzHAQB0u13Yto16vY4wDBGGckib42T4Qtt13chAF4ZhlEA3/CfmY4xB13UEQRAdl+HEOmGWY4zB9/3IAKmqKkzThK7r8DwPlmXB8zwkk0n0ej3U63X8tb/211AulwEAFy5cgKZpME0T/+E//AcEQRCZ7Pr9PhzHQavVQhiGSCaTyOfzGBkZQblcxvj4OO7cuYNqtRp9Vi0vL8s0uRPI7/zO77zsXZC8wsj+IXkSsn9InoTsHxKJ5LiQnycvCMZI2ZrPxwrU8+fJwLS6SgpTXae/ZJKmra+TMWl2NlZB12pAr0ePp6Zo2ttvb9/W7Cxw4wbdv3KFVK29Hil6BwPg8WPaXiZD5rdmk55vtchsVyxuj8IYHaV1CRWsbdP8o6O0f/k8LdPrxeasVouMV4yRmSqbpXX1ejTd8/Zspt/57nefva1PAiK6BIhNceJ+EOy9jJhHGN9UleZ1HLpfKMSphpOTpMpeWKDjmkpRPzAMUkIDNK1ep/X5Pv11u7RfmkYG0GqV5ntabMmTWF6mfbx/H/jzP6d9np6m/gnQ9hwnTloU+7e8fPzxI76/K87ld/7SX6L3lETyCiDP2RLJyeTtt4H/9//dnUD33e8e/D0/rBcVRi6xrv1Kh9ed407sG04BPMq6RbvrehzcGwRUUnQ6VOr0elTieB6VWQCVZ5ZF84kxDxij+7pOJZuqUvlVrZIJ76AMXxYUi3R5cecOlYXZLJVwzSZtM5GgdTMWh2bPzlJp5Lq0j9UqTb9yhcbWEDQatN5q9fmWaicdeZ6XSE4X8j0vkUgkz8ZycxlTmSm8OfomVjur+F/wv0TpZ5Lnh899qKCB8oIwQMhDqEylQfDBESIEA4PCFBiqAQ4OL/Tghz50RYcf+uBb/xSugIPDCRwwxpDUkhh4A9xv3ocXetAVHSPmCArJAvzQh6EaGEuOoef2sLS5hKn0FFpWC4sbi5gtzO4y0s0WZnFjlS6Iipki1nvruFO/AwDYsDbQd/tY664BAM5mz2ImNwNd0fHhuQ/RtJq4U7+Daq+KmdyWpq+5/NLT5GT9IDnpyD4uOQ3Ifi45DZyEfv5CDHQXL1489tFAhDFGIjkuGGO4evUqDMOAoii4ffs2EokENjc3oarqNoPWXulnkiez8zNgOF2Ocx69n4fbViwjjIuccwRBAEVR9kyq45xDUZTIVKcoCjjnUFUVqqpuSxQU6xJpdYPBAO12Gw8fPsT8/DzK5TLOnTuH8+fPw7IsZLNZdLtduK4L27Zh2zYcx0EQBNA0DZlMBslkEoVCAYVCAePj4ygUCmg2m6jVapiZmUGlUpEGOolEIpFIJBKJRCI5qTAGzM0BV6+SgvZ73yPV6vg4KVbPnCFVq+fFSlqRxlUsknpWGJXGxuKEt2vXtm9H02g7N2/G6tf1dfrrdun5YVPW5ibtUxhSqhhjpKrN58mk127HKWbpNN3nnO5PT9M8pRJNv30buHs3Vh6PjsbKYWGoAyhuw3GOP27ldUekxom0OVWl+55H94WxznHoeA23n1BtaxqprVWV2p0xMrkJ01w2S0rpkRFartejOJNUiuYVfaxep+1qGj03GMTmRxGbMjlJx9s0adt7xZbsxbBR7ZNPqK9WqzQ9kaD9rtfpNYyM0DSRfFetUvJhpXJ8qmzOKSrl1q3d6XkLC6Q8n5ujJEk5orVEIpFIjplvfpNOo8dxilEUOm1qGp2yg4BOc+LvpCHabD/T20GNcKI8BuI2G0aUZk8aQ1Psg6rSeBNiHYMBTRsdpdsLF6jUdl0aM2MwoHkHgzi0WYxX4HlxOVep0LFtNKhk2pk2t9/r2nlZUK1SKdhs0nbEuBdjY3S5cOkSJcktLVEJJEr/ej1Onhs2zwH0uFCgddZqZKI7zlJNIpFIJBKJRCLZSaVbAWMM+WQeKT0FL/Ckge4pMLAnthED23afMYaA7x6RhSkMfuhDYQpMxYSmaHADFz73I1McOBDwAAwMQUjrcAIn2r4w2XHQIPiO7yAIAyS0BHpOD27gwg1c3G/exxn/DM5lzwEcmK/Og4Hh3Mg5ZM0sFjcXsbi5iBurNzA3NYdysRzpBTVFw9zUHG6u3YwS66q9KtZ76+i4HfTdPgAgn8hjJk8muXMj56AyFeOpcRQSBTTtJmr9GmZyM6h0Ky/dQCeRSCQSiUQieTG8EAOdQBqOJK8qnHPMz8/j1q1bcF0X1WoVExMTyGazqG4Nuahs/YIm0tB83z8VfVqY0IZT4ERb7NcGIvFt2AxnmiaCIIgMb2L6sOENwK7ngNhAN2yo8zxvlylP7GMQBJHRbnh9Ypow04ltK4qCZDKJkZEReJ6HmzdvotVq4ed//ucxOzuLwWCAZrMZbTsIgigpT1EUmKYZJdBNTExgfOvXxWw2i2azCXdLnOXuFGlJJBKJRCKRSCQSieTkoWlkjkulKHJkaQlYWSFFai5HqXQiZsL3KbLCtsmkxBipW998k9b1l/4SKWl3Ui6TGnZxkZSrikKmp1yO1ifUxO02GZQePybFLuek1BUpd2fPxsrXsTHgs8+2m+96PVon52QKfPw4Tq2zbVIZFwq0ncEgNs3tpUyW0HE3zTjBLQhihfTkJLWr61J79vvUnsI4J5TZ2Swd616PlksmaZ3NJt2GIZnRNjepH3JO8wJ07IVZstOh+QuF3WbHbpeOtW3Tc1NT1CcTCVpmv8S2vYxqP/0p9f9ul/psMkl9bdjgOTISv4ZHj0h5flzfoXAOXL9OZlWA2qRejxLoIlPgzZu0f9euSROdRCKRSI6VCxfiAOBnQZRowjtvGFQyBMHJTKEThjVhbhPTRKgz5/Fzrkt/e5Wf4rSu63Tf9+NSddgwJ8Yp2K89RQCwKIGFmU5s1zAogPriRZq/WAT+7/+bSjpFoWUcJx5LQaTRiXV1OjTWxdISld1vvXWwdtp5WTAzQyY3xyGTmwiKFol3tk1JdKIEunMnHtMBoPn3QozRIEo0+XOXRCKRSCQSieR54gZUcHqBh6yRheVZsAP7Je/VqwUDg6ZoCHmIkMfJcCEPtxnphHFOPK8qKhgYVEVFEAYIwoCMblvrIH8cDWCfT+Shqzocz0HX60JhCgbeACFC+IFP2jnQ9ocR5jld0cHB4Yc+Qh4iqSXhhi42BhuYHZ1FIVHAWHIMdxt3oSka3pl4Bxkzg01rE/eb92GoBibTdPFyc+0mWnYL1y5ci/SC5WIZLZtS6kpjJczkZvDnj/4cClOgQEFSS2I8NQ4GhmKmiHMj56J9zJpZNO1m1NfErUQikUgkEonk5PNCDXRHZb/kKonkOOCc4/r167i3JaSxLAuLi4uo1+vo9XpIJBKwbXubqUsk0p2GFERVVaEoCjRNg6IoUBQFjuMgDEPoug7OeWSAE0Y7YZ5jjGFkZASKosB1XTDGoKoqPM8DgMiApus6HMeJzG5iHbqubzPWhUO/Zg5/DuxMBFRVNTLZAWT0s207MtCZphmZ88SxtCwLa2trWFxcxOXLl7G4uIh8Po+vf/3rcF0XyWQSn332GZrNZvQaxOvUdR0XL17E6Ogozp8/D1WlOPvu1qjuxpYwTtxKJM8L3/exvLyMSqUC13VhGAamp6cxOzsL7SBD1h7zeiQSiUQikUgkklOJ75OBCCAF7Po63S8UgHPngB/9iExCySSpWIWCd2qKkr2SSZr/gw+Av/23994GY2T0yefJ9FarkbmqVovVxCMjpKBNJklV6zhkVhobi9W6d+7QfmWzNE+tRgpaYXBaWaHt2TbFWQQBrUdEVVgWGezEY02jeU+iivtZEcrkre8MIkOj49B9TYuT4772NXru4UNqz/FxOo62HaugTZNuNzdpHePjcdqhbZOhsd+nYyMS5jodOt7dbpwymEpRP00kYoW559GyAJDJ0LZFrEm5vHckyl5GtfV1Wne/T9sXSYXZLPV3x6Hp7XZsaNvcpHn2+g5lONlOzD89TYa+/a5V5+dpn8KQ9qVa3a6uX1khhfvly6Q8z+cpymUvjrJ9iUQikZx6ZmfJ2LSw8OSEsychTl1hSKd5xqiMdF263Rlce1IQyXoiQc4wqDThnMqJbJZO7Y1GbFITyw2PCQHQc4pC5Y8I3h2eV9dpO8IYtrNNw5CeE2mCjMXpcckklU9b4zACoPKiUIjHzlCU7YmBw9sG4nXfuQP8+39PfWY/T//OkkTXaXuNBpV0MzOUfgfQtjc26Dafp2WAuARSFGpDMWaHCCveiZguSrRX+ecuWbJJJBKJRCKRvP4Y6pbOSjOgKip4eAIveI4BzjlUppLODluDzG+Z5xSmRKl0wkSnMhVJLQld1WOjHQcs34IbuNG6GBhSegqaomHgDTBijIAxBid0YIYmvNCLTHc7zXMAEPIQClOibQYIEPIQHacDTdXQcTvYtDYRhAE0RUNCpwuSpebSttcAACutFRQzRVwevYzFjUXkE3nMTc0BIL3gtQvXkE/kcWv9FgDgTPZMZBTcsDbghz4u5S/h3Mi5bRrkrrOl6RN9TX35Fzl+6GO5uYxKtwI3cGGoBqaz05gtzEJT5MWMbB+JRCKRSCTHxQupHL797W/vMsEdhnq9jjt37oAxhmw2i69//evHuHeS0878/Dzu3buHMAyxtLSESqWC5eVltFot9Pt9dDodcM6h63pkyNJ1HUCcnnaS8X1/W5KbSF8TxjMAkWFs2Oymqiry+Tyy2WxktOOco9/vRyY5x3GgaRosy4q243keOOfQNA3JZBKGYSAMQ3Q6Hbiuu8tAO5xSt9OAN4ww1KmqiiAIYBgGGGNRelyhUICmaVjfEjaWSiXMz8/j7/ydv4NWqwXGGM6ePYu1tTX87Gc/w9raGgDAcRykUikYhoFisYhz52i0mkajgWazCcYYJreG8pyenn4eh0gi2ZWiOczCwgJu3LiBubk5lMvlJ56Pj2s9EolEIpFIJBLJqWEvdaZtk3nIdUmNCgBXrpC5CaBoij/5EzLZ2XacvjU6SurbZJKS5/72394eubETxsjoYxiUFlarkWEplwOuXqXEMGHWajTieAnfp22ZZqz0FWrf0dE4GmN1lbbx+DEtH4aUZCYMWZkMGe08L1Ysq+p2tfJJVHIfBdEeQmltmvS414vbrtOhacLoNjZGbSzUyefPk3mtXKa+8/3vx0lyqkqqYBElAlB/WFujeTIZUj13u7RNoRhPJEhxLZTgo6N0GwSxWe/CBTK7KQopucvlvV/jXkY1ka4otuv7sTpbUSgBsdcDvvoqfs3pNPW34e9Q9kq2EywsADdu0HuhXN6uNH+SmTWbpf1qNuPppRJt5+rV7erqo25fIpFIJBLQKeXcOTqlizEHDotIYhOloViPOKWf1NPPcHpcIkFtaBh0X9Pi0N6dbSraSSwvSh2A2my4NBNJciLYVyStOc7u/dG0uHQKgrgMHg5vDoK4BE8m4/Q3YQRMpeKUO2F+dByax3Fo+uefU+mx09P/pJIEoO0Wi1T63btHJdzmZlzi7VUCiVLTsui22aRSTFy6APS42aR1iHLzVfy5S5ZsEolEIpFIJCeH6ew0FjYWkDNzUBUVPj/5A9wfFg6OgJMxjTGGAAHA42Q6gDRADLGGzlANmJoZGeQyRgaO52DT3oSu6DA0A57vAQzQFA2mZkJVVBiaQSlyCMF0Bi3UwENOqYAcCLFbO6kydVs6HeccAQJoXENaTyOlpWCqJpY2l5AxMgCAntvDxfxFjCXHkDWz6DpdNO0m1ntbWr6xEubX53F18mr0GhljmJuaw9XJq1huLiOlpfBp+CkKiQJ0VUfGyCCpJ7dpnBqDBpp2EwwsSribzr68ixzOOear87i1fmtXEt7CxgJurN7A3NQcysXTqdWS7SORSCQSieS4eSEGuuvXrz/T8oPBAN/85jfxxRdfoN/v45/+03+Kb33rW8ezc5JTje/7uLUlpLl37x7u3r2LZrMJ27ahqmpUVIv0NADbkudOunkOQGRIEwY18ZqDodHkh9tm+EIknU6Dc45MJgPOKd7dtm30+30YhgHDMKDremRmsywrMuclk0kkEonIpGgYBpytXyyHtyHMfcNmRrEfqqrC932oqhqZ/ESKnqZp0fYvXLiA6elpFItF1Go1VKtVzMzMAAAePHiAa9euIZ/P49atW5iZmcHZs2fx8ccfw/d91Go19Ho9eJ4Hx3GwsrKCbreL5pb4sFgsIpFIwDRNzM7OPrW9ZfKX5LDslaJZr9ej/iMMnDdv3kSr1cK1a9f2/MLguNYjkUgkEolEIpGcCp6kzlxcJJWpptF8hQIpUDmnCIrVVZp2+TKZjEQqmW0D3/oW8Hf/bpxCdxDqdVLKOg6pZAsF4O23t88zPk7ThxkdpXiKWi02/42PA//5P5PiNpEgo1e9Hqt5wzCOABGmLcsiFbdtk/JXKLxPwXcmh0K0B2PUniI+xnGo/TUtVoT3ejRdVakvnD1Lz73/PvCrv0pq67t36dhls3Rs2m1q/+EEulSKthsEdF9VyewZBHTcLIvWPzISHzeA5tV16jNCTf7hh/urjfczqok+0m7H6xf7KvqU69J+cB6r1wcDiggB9k62q9fjPitU3DdvUoritWvxPi4vx+vfy8wKxObSapXeD2K5Uine/p/9GfDjH9N+DwakOjdN2vbU1P7bl0gkEolki+lpOr2KU95hED8LiIQ0xuhW02h9wujF2Mkbu0AEK4s0OPEXBGTo6vfpVM/59lJLVben9vk+3TJG95NJugViA5wwJYqkO1HWiv1gjE7/qVScPCfKfdum+ZJJKi2KRXrc61FpNlxGq+r2+5oW76Ntx+MP7PT0H6QkSiTiMQwuX45DpBnbvwQa7j+GQesbDqkWZjuAXpe4RDjAz10H5jgS456lZJRIJBKJRCKRvHrMFmZxY/UGdOhoW20yh0l2wbf+Yce1IA/JOKcqKnRVh8IUBJwGzPdCDxk9g7SRRkJLoO/1MZmeBAND1+1CYxql1jEGx3eQ1JKUJseApJqEwxwwMCTNJJpWEw4c8DBOjWNgUBlp9ISBL+B0/DSmQVd15MwcLuYvIpfIofaohqZFFx2KomAqM4W3x+PfNxqDBu7U76Daq2ImR9/fLjeXURorbXvNmqKhNFbCbGEWPvfhBi5MzcR6bx136ndQSBS2mfIAoJgpIqElYKomZgtPvsh5XulnnHNc/+o67m1uabV8C/V+PdqGMPjdXLuJlt3CtQunS6sl20cikUgkEsnz4LVwY6RSKfzRH/0R3n//fYRhiN/+7d/GF198AUMMiyeRHJHl5WW4rovBYIDPP/8cnU4H09PTcF0XDx8+RDKZjEZhEclrwkB3GsxzwyiKss00N4xol2EjHeccnU4HIyMj8DwPuq6j292KPzeMyPAWBAF834dhGPA8D77vI5vNYmxsDK7rRn+6rkfpcWJ7qqoilUpF6XLC2Ci2rygKVFWFpmmR+U8cvyAIoCgKstks0uk0NE3Dm2++Cc/z0Gw2UavVMDMzg0qlglKphLm5OVy9ejUytzHGsLS0hFKphHa7jVqthlarhVarFbVJsVjE5cuXAQDlcvmJBjiZ/CU5KjtTNKvV6rakxpWVlagvLi4uIp/PY27n0LXHuB6JRCKRSCQSieTE8zR15mBAKtBKhdSw58/TMouLsYnH82geRaHEOJHypWnAxx8fTtEpriHFbTa793wiTmN6OjZZJRKxaYhz4NNPyfwk5t3cjI1WQp0sTFYimiOTiSM1XHd7FMpJU3EfFaG6DkPqI0FAx98wtreTMJSl09RHRLsnEnGfEfOdP099TBxvxqjvDQbx40KBthGGwMWLdLv1vcU209rEBP2J5apVUulfvkzT/+v/mlTX+7GfUa1Wi9PkVle3q99tm/Y/mYyjXEZGaNkLF2K19F7JdsP9amWF1NyXL9N7LJ+P41oqFbqt17ebWYcR5tJmk/Z3ZoaWK5VomX/9r4HvfY/av14nRbrYvqKQEfXttynxcef2JRKJRCLZQlGoZGo2Dz/GgCgZVJVus1k6dRoGndZ7PToFCxPYSYNzKjOEt991qdwRpjQxVoBApMQJE53rxgY6gI6FbccpccKUyFg8BoGikElMBCyLWzEegRijIJ0mf71IlGOMymcAePgwHodCmB81jebTNFo2k4lfo2XRusUYCo6z3dN/mJJofp5KLFF2Pa0EEpcGhUJcCg6HVDMWrxugMRWOY7zH40yMe5aSUSKRSCQSiUTy6qEpGt6deBf/443/EQN/ABXqkU10DCwyd50GGKh4VhQFbOufruhQoUbmODCg7/bRdbrImTkYqgGFKXACB1OZKShMQctpoW23Yft2pPFTFRWjyVHS7Ckq/NAHcxm8wKM0OiBKshPJdF7gRe1vaAZURUXAAwQ8wFpnDW7gou/2oas6JlOTZNYbYjw1jkKigKbdRK1fw0xuBpVuZZeBTqApGuam5nBz7SYuj9JFTLVXRdNuRsY5BoZiphg9X54q72uCe97pZ/PVedzbvIeQh1jaXEK1V93WX1daK9G+Lm4sIp/IY25q7tDbeV2R7SORSCQSieR58FoY6AAyn/zdv/t38Yd/+IdYXl7GP//n/xz/8B/+w5e9W5LXnMqWkOb27dvodDpIpVIYDAZot9uwLGubSW7YSHLazHO+7+97kScS3URKnWibMAxhWRbS6TSazSZM00QymUQQBHBdNzLA+b4fGcaEwczzPGiahmw2C8uysLn1i6MwwjFG8fK6roMxFhkaxfRh81wymUQmk0G73YZt2/A8D4wxmKaJfD6PbDaLWq0GxhgeP36MTCaDZrMZ7dOwmU3TNJRKJZRKJXz729/GD3/4QywuLmJqagoXLlxArVbbltaVSCQAAKVSCeVyed/2lclfkqMynKK5tLSE9a1R/guFArLZbJSGKKaXSiXMz8/j6tWr2wydx7UeiUQikZwOZGKuRCI59TxNnVmr0a2qkqr5q69IYSrmEyacZpOUoopC83BORpzDKjrFAFPidmvwml2I6aZJ5qvLl4Fz58gs5DjAz34GbGyQeenx4zgxTFXpjzHaX1UlM5GqkmJ7MCDFrVAui5iQU/bdyYEIAmo7gTDWAXH0iOfR8VCUWJlcq5FBS9fpsWHQsXvwgPpYKkWK4E6HtqGqZEYTZraRETJ6TUzQuppN2q5Qanseqb0TiXhdU1Ok2DbNWLm9H/sZ1YSCvFCg/ex0aH3JZKxMHxujW8eh11ssxgmK+yXb7YxEEdNLpe1xLYc1lw7PL5Lnvvc92o/Hj+n1hSG1UaFA0xsN4PPPabm33todFyOR7OQ4YnYkEslrx/o6nT4M42gmN8aoDBgfjxPTEgk6vet6XD6cxPELRHKc61IZk0xSqSzGbdhZcorgXfGRKkotkTAn5kkk6M/3qRQxTSppRUmSz1OpK5LZxsboVtNiMyRAbW/blIa3sECXCanU9jENHCdOyQsCOmbJJC0nXkciEY+tIPZZePoPWxL5PgVfj47S46eVQIVCvG9XruwOqRbpdgDtzxN+7jowx5kY96wlo0QikUgkklcTefks+cHyD9ByWjRgOo7+XfNpMs8B9HoVpkBX9G2PNUZvHE3VoEBBSk8hpacwk5vBWncNHBzlqTJSegocHPV+HcvBMlpOC47nQFVUMM6QM3OYyc+g71Jy3Z36HfTcHvxw62KXkQ5OYTRQf8hDMDAyxnHACzwoTEHIQ2zam3ADFz23BwDIm3l4gbfrNWXNLJp2MzKw7TSy7aRcLKNlt7C4sYjSWAkzuRnU+rVtqWUJbUvTN1ZCubj3Rc7zTj/zQx+31m8BAJY2l7De29Jq7UjLE9NLYyXMr8/j6uTVZ0q9e12Q7SORSCQSyeF5Xqm5J43XqiV+93d/F3/4h38IAPiDP/gDaaCTPDOu6yIIAjx+/BgAMBC/aAEYHR1Fv9+Pks9Eepm40HlSIttJhO/zq+twu4jkN4AS+zzPQ7vdhmmacBwHtm1HbZzJZGCaJjRNQ7vdRq/Xi9YBAM1mE6lUCul0GowxNBqNyCDHGANjLDouwymBAJBMJiOzXSKRQDqd3nasOOcwDAOMMfT7fUxMTGBkZAQPHjxAv99HKpWKEi73S7pkjOHatWvI5/OR8WhGjNq/hWmaKJfLT02Nk8lfkqMiUjQty0J1Sxh55coVjA8NJ9toNHDnzh1Uq9Wojy4vL6M0JIA8rvVIJBKJ5GQjE3MlEokEB1NndjpkXEqlSOX51Vekmk2lSBXabtNjgKInRkfpsW3TOg+r6JyeJrXuxARFKzSbZOoZjploNGLTlFCjnjtH2yqV6DUNBqTkffyY1sM5peNxHpvvhDlOGL1E9IZhxPEbIupCsh3RLr4fq39FP2AsNimK7y9Eql8iQarhM2fi56angTt3yOx4/z71N8+jvpTP03Hq9Wj9ExPAX/7L1AdE1MmDB9Rnq1Xqk7UaPTcyQsf0jTcOFzGyn1Etl4sTDUdG6HlhIBT7Yhhx1MrVq7TtM2donv2S7Xb27Tt36HnxvYyIazmsuXR4/vl54Mc/pv3d+Z5QVVpmZISMhuvrwJdf0vEY3r5EMsxxxuxIJJLXCt+n03I6HQf5HhbPi/9Mk/zmqkqn8DCkacIgdhLLMM7jEiIIqOwUr3Xn6w1DKh1MMy6xhucT4xeIJLhEIk6Ym5igssT36fmxMSqvfJ/mO3s23o6qUnk9NkbmOduOA56DgO5rGpXXnkflhSifDYOWAeJQ6kSC5lVVugXi08VhS6JCgbYlfvI86PgaqhqXfTt+7oJp0inquE5Tx5kY96wlo0QikUgkklcLefksAYCe28OfLP0JUnoKdV4/dSa4ZyXgAbzAQ8hJUxeEAZJ6EoZiwFANpDQyyfXdPqr9KhgYLuUv4drFa7i3eQ/VXhWT6UloioYval/ACRyEYYiEliC9HlPx5tib8AMfbbuNxc1FGJoBBQoCTqa5IAzAQXpCFSrAaL/GEmPIGllsWpvo2B30nB7NB4bGoIFKr4IrE1e2/dbcdejixVCNbbf7wRjDtQvXkE/kIwPWTG6Hpk81UZ4qPzE57nmnny03l+EGLizfQrW3pdWauILx1JBWa9DAnfodVHvV6DUsN5f3TeA7Scj2kUgkEonk4Dzv1NyTxmtloCuXy5ienkalUkGlUsHHH3+Mb37zmy97tySvMYZhoNFoACDzVa/XQy6Xw/T0NDKZDJaXlzEYDGBZFoIgiIxiw0lnpy2Nbi+E2Wunyc7zPPR6Pfi+D13X4XkeHMeJ0uhUVUUikUAQBLBtO0qlU1UVjuOgXq9HqYCu60LTNKRSKQCU0pbL5WCaJgaDATjnsG0bmqZB13VwzlEoFFAsFtFutwFQgpyiKNH6ms0mkskkKpUKut0ucrkcut0uJiYmotS36enpfV83Ywxzc3O4evXqkVNYZPKX5FkQKZr1ej3q88OmNwAYHx9HoVBAs9lErVbDzMwMKpXKNuPbca3nacjEIolEInl9kYm5EolEssVB1JmTk8Cf/AnNk0qRWvP+fTLebG6SmlVEZ+RyNL9tkyr1KIrO2VlSjgCkMl1fJ3XozsgF8XwiQduanaVpwhTYbpOZSqSIZbNk1BKpZiJVjvM4oYsxWrcwhsnvSJ6OMNCJ8yTncQyJiCBRVVJSuy6pqxMJOo6KQvN3OsBnn1G/yWap3btdmtcwYnPapUt0DJNJUh//xm+QGvlP/gT49FNSSJ89G0eiCMX25iawtgb8yq8cLGJkP6Pa+Dj1fYD6eqtFr0+4B2yb7gt19OXL2/vmfsl2w4yP0/Rmk1wEMzNxXMtRzaUTExR3st97wrZJkb71fRNSqTjW5OLFePsSieA4Y3YkrycyOuFUs7xM3vAbN7YH0R6GMKRl223yb4sAWc+j7pVOx2XESWVn2pwIS94rdc/zaJoonUQJC8QlrCi1wpBKMRGOm0jQx/SZM1QS5PPU7r0elUnpNL1tL18Gbt+msluY5YRhz3HiwN1+Pw51FiWzeF6UfcJoJ4J6JyZoX0VpddiSSPQzsU8HKYEYA779bfpYet4fV8edGPesJaNEInk6spSRSCQvCnn5LBH8X7f/LziBQyYwhFCgRMYlaaY7GB6nC4MwDAEGOIEDzjn0QAc0QFM0GKoRaSEVpuDLxpdQmYoRYwQ9r4dCooBcIoeu243m27Q2cW7kHAzFwIPNB1AUSrMbeAMktAQSWgIqU9H3+nB8B5qioef2EPIQaT2NjJFBvV+HHdjouT30vB6CMAADQxiGuL95H+PJcbxbfBeqoqIxaKBpN8HAosS36ez+Wj4BYwxzU3O4Onn1SCksLyL9rNLd0mr1ySRaSBS2mcMAYDw1jkKigKbdRK1fw0xuBpVu5VQYxGT7PF9kQpFEIpGcHJ53au5J5LU70124cCES+n/xxRfSQCd5Jqanp9Fut5HNZvHw4UM4jgNFUZDJZAAA6XQapmlGqWeapkHTNDDG4LpuZKbbL53tNLFfGwhznO/7UFUVjDF4nodOp4PR0VF0u124rotkMol2uw3DMCKznW3b0XpyuRwURUEYhgiCIEqJy2Qy0UV6KpWKlkun0zh37hw8zwPnHKOjo6jX6wjDEJqmRfviui5s20az2cTa2hqSySR0XYemaTBNE7NCtPUENE1DqVQ6UhKXTP6SPAsi/UfcZsUo/zvIZrNoNpu75j/u9eyHTCySSCSS1x+ZmCuRSCRbHESdWSxSEtWDB6TANQwy22xuxganRILUz0Id+7WvkerjKIpOTaNhl2/ejFPDqlValzDOMRablIDtqWLCFDgYkDErDMnsND1NkRumGcdkCMWxSKHbqUiWHAwRgyKuf4KAFEHCWBYE1L6CdJoSzqan6XiFId1fXCTVdRjSMrpO8/f7NP3NN7cf80SC+tTaGvVHXaft7owlOex12ZOMaufP03tBRKqIiBWAIltyuf375n7JdjvJZmmbO+c/qrlUrEO8J0Ty3PQ07TNAKvpKhZ7PZmneWo0MdAe8VpacIo4zZkfyeiGjEySg08X4eJw+dlR8P/bT374dJ6wFARmyhClMlGcnkZ0lpwg/3ms+MWbBzpS6MKTpvk8lhyi7goBK3pkZOt1fuEAhtKkU/a2vx8l23S69rcXxEG9vx6Hn02n6y2ap7Hj8mEojsc+uS3+6TvuSSlEfsSwqv8W4juL2sCVROk3rUtXDj6+haXFI9fPiuBPjnrVklEgk+yNLGYlE8qKRl88SgTAu9T2KbjZVEyFCeAGZwp5kolOZioCf4NFFDgkHh899hF4IrnKoioqUnkIQBlCgwA1cdN0uvMDbptdRmIKcmcNYcgxu4CKXyEFjGpJ6EpqiYbWzCp/7YGB4e+xtrHZW0XE6MFUThWQB43wcjUEDbuBi4A2gqzoUpmDT3sSIMQLLteAGLvzQj/bTDmxsWBv4j1/9R6y0V5A1s1AZ6fuKmSISWgKmamK28HQtn0BTNJTGSoc2VL2I9DORDiNus+Y+Wi0zi6bd3DX/SUe2z/NBJhRJJBLJyeN5p+aeRF47A51lWdH9Wq32EvdEchKYnZ0FYwy6riOZTKLf76PT6WBtbQ2JRAK1Wg2u6yKdTkcCYV3XkU6n0Wq1oCgKPM9DGIbSRLcPqqoCoBFtwjCMjIi2baPT6USmxWKxGCXUZTIZTE1NRW2v6zqmpqZgmiYePHiAfD6PbDaLRqMBx3GQTCbh+z6CIEC324WmaUgmk+h0OnBdF6ZpIp1OIwxDbGxsYHJyEpqmod/vw/M8+L4P13WhqipyuRx838enn36Kv//3//5zT8V6UclfkpOJsTUErbjt7hQ9biGm75z/uNezFzKxSCKRSF5/ZGKuRCKRDHFQdealS8DGBilkczlKA3Oc2IgzMxObhIpF4Nw5mveois5ymQx4i4ukKp2ZITPP8PDMwrRUKgHvvEPzViqURFapkKkqDEnBq6oUpdHr0TKmSaas4VpdGOeEEUx+L3J4hqNQHIfuKwqpqUUinKLQsQgCUjt/8UUcE9JsUiSKopBBzbbpOE9MkEEzlaLnSqU4SW5+nhRIZ8/SMb1/P1aNcx5Hrpw9S4qlQuHpSqQnGdUyGdrO+jq9X6am4r549er2x8P7CeyfbLcTMX3n/Ec1l9br8Xo5j81/QwM9IZOh9h0MaF0ibmZ4+xIJcPwxO5LXBxmdINnCdeltPjoKfPXV0dfDOZ2uRRJaIkHdqN0ms5FhkEnvJKfQDfO00nOncU4g3mZhGBsPNY3ar9ult+zoKJUoqkrTxZgX6+tkGOl04nWoKpVd4q1tmvQRPzsLfPABPf/xx/RxYJq0TL9Pt4ZBZj3DoI+IkRHg7bd3B0YftiRKJGgMA8s62vgaz5vjTox71pJRIpHsjSxlJBLJi0ZePkuGGXiDbY8NjYq3IAzgc3+vRWI4wMBkUt0QHBwBAoQIkdEz4OAYeAM4gQNTMxHyEJVeBaZqYiQxghFzBJqi4XHvMTRFw/mR8xhLjUFTNFzMXwRAJqWZ3AxWWiukvVR1BDwA5xxe4EFTNHimh7bTxkRqItom4wwpPQU3cMHBMZYcg+3bGHgDcHBKygPHo84jJPQERowRvFd8D5dH6eKlPFV+IelYLyL9zFCNbbddZx+t1tb0nfOfdGT7HD8yoUgikUhOHi8iNfck8lq98l6vhy+//DI6KYuUMInkqGiahrfeeguVSgXj4+Po9/sIggCDwQCDwSBKmRPJZo7jQN8azdswDHieB8/zXvKreLUR79cgCCKTIeccQRDAsiwoioJEIoFWqwXDMJBOp+G6LjzPw5kzZ1AsFqN1JZNJ/M2/+TeRy+UAIEo/CcMQtVoNnU4H4+PjSKVSME0zSpvLZrPobP2imU6nkcvlsLGxgX6/H6VhCROkbdvI5XLoCZHgc+Z5J39JTjbT09NYWFjAxMQEVlZW0Gw20Wg0diUYNptNMMYis9q0GLr2mNezFzKxSCKRSF5/ZGKuRCKRDHFQdWavR2qyZBJ49IiUs6kUKWVNk1Qduk7GuXPnSGX2LIpOxkitls/HShMR1SAwTeC99+j+//l/xga91VVSXW9s0O3kJCnlBgNSrohoDBHRMQzncdSJNNAdneH2E+p4cd/3qT+l08BPfkIq69u36bhMTtLjbpeU2OJYtNukoG+3qX9NT8frHFYi1WqkQJqZ2a5EqtVi491BlEhPM6ql06Q8DwJSpDNGJtPz52le0yTV9s7Ygicl2wkaDZrOWKzgHL5WPay5tFwG/vRP4/0CSKnV7dJ7otcj8xxAywnT68hIbKg9wLWy5BRx3DE7ktcHGZ0g2cIw6JScy8Vhs0dBLMs5nYouXSLP+/o6nWL7ffq4GU5ek+xGUehPVeO0Pt+ntkul6OO616PT/BtvULly/z59JCsKhfjmcrGJzvNijz1jVP7PzND6KhVa/pvfpLEqlpaoLEomaTlFoRI8DOPEujCkj4tf+7W4/DpKSWSa8es5aAn0ojjuxLjjKBklEsluZCkjkUheNPLyWTJMSk8BoPQwBgbLs5AxMlG63H7mOAaGEKE0z+0BA4PCFCiKAkM1oDAFju+g7bTBOYcf+viq/RXSgzR0VYeu6GREYsBbY2/hQu4CKr0KzmbPQlXUaL0qU/Go8wgfnv0Qtm+j2qsi4AF6bg8qU9F3+whYgISaAAND2khTAh4PMGqMou/2YflWZHx0Axeu74JzjkuJSygkC0jpKShMQWmshHLxxVy8vIj0s+nsNBY2FjCRnsBKawVNu4nGoLEr5a5pN8HAInPTdPZ0XMzI9jl+ZEKRRCKRnDxeRGruSeS1MdBxzvEP/sE/gLM1ki9jDF/72tde8l5JTgK/+Iu/iLt378LzPIyMjCAIAiSTSZimiUQigX6/j83NTTiOA1VVMT4+jk6nA13XEQQBVFVFGIYAqF/KJLrtiNQ5Aeccvu/TBblhRO24ubkJTdOQz+fx4Ycfotvt4v3330cul0MymcTbb7+Na9euwTRN/PCHP8Ti4iJKpRJmZmZQq9Vw5swZNJtNWJYVba9YLCIIAjQaDXDOwRjDxMQEVldX0W7TFwCKQl8OBEEA27axsbGBTCaD6elpfP7553j33Xefa3LKYZK/wjBEt9vF4uIiut0uDMPA9PQ0ZmdnZbrLKWV2dhY3tkb5LxaLWF9fx507d3YlAonnE4kETNPErBi69pjXsxOZWCSRSCQnA5mYK5FIJEMcRp2pKGRYO3eOHochqUAUhVSbb75Jyt3hZZ5F0ckYqdWuXiXlSKUSK2Snp0ll/Z//8+7h49fXSQEsFLTNJqlVVZWeD0NS+IqkuSCg2+EEOvGcQH43cjiG20vcF8p32yb1dBjSsXEcUm4HAfXDqSlS0Ych8OMf0/HlnI75xAT1gx/+kJ4rFGh52z5+JdJBjGq6TuvPZmm7pkn7OTu7t0HvScl2w4Y/8fzOuBbRjgcxlw4b+IR5dWKC3ge+Twa5dpvaM5Wiba2t0T6k03Hi387tSyTHHbMjeT2Q0QmSIaanqZRynGc7vKLc0rR4PbpO3ccwqAQQp3lpoNsbxujPNOPAX9+ndhO3IyP09gwCKq3LZRqv4LPP6CN6dJRuxTgSInFuMKBSyPPoI39yksbROHOGyolvfIO2sbFB+2IYcakn9qdSocdvvw387Gd0nMvlo5dEv/mbFF580BJoGN/f+5Jiv7LtMBx3YtxxlIwSiWQ7spSRSCQvA3n5LBlmbmoONx/fhKEa4OAIeQgncKCpGvzQR4C9o7c5OBhkWtJeKFCgMAUdpwNDNZBL5FDv1+EFHgzVQEpPQWUqwIC+1wcAJLUkzo2cA2MMZ7Jn8F++/V9ixBxBpVuJEquuXbiGR51HuN+8Tzo8puBu4y5c34WhGZjOTmPD2kDTaoKDI5/Ig3OOtJFG1+nCCRwyTIaAFVjROtzARX1Qhxu68AMff+Otv4EPznzwwtKw9ks/C8IAjUEDbacNP/TxsPUQPvcjMfph0s9mC7O4sbql1coUsd5bx536nV2JMeL5hJaAqZqYLZyOixnZPseLTCiSSCSSk8mLSM09ibyQM9vDhw8PvYxIp6rX6/jJT36Cf/kv/yVu374dGZQKhQJ+4Rd+4TnsreS08cYbb+Dq1atIpVJot9vbTFiJRAIPHz5Er9dDIpEA5xy1Wg1BECCRSMD3fXDOoapqlKomiRHvV2EwFIhpIuFP2Ro6VaT/PXr0CMViEb/1W7+Fd955Z9d6r127hnw+HxlzZoZ+9QuCAJ1OB2NjY5iZmcHdu3cxNjaG1dVVPHjwAA8fPoTjOJFhzfd9hGEIRVFgmiYURcHGxgYePnyIK1euPPfklImJCfyn//Sf0G63sb6+jmq1Cl3X8eabb0LdElLW63Xcv38frVYLMzMz6Ha7yOVyWFhYwMLCAm7cuIG5uTmUy2UZm33K0DQNc3NzuHnzJi5vjfJfrVbRbDYjwxtjLEp4A4ByubzLnHZc69mJTCySSCSSk4FMzJVIJJIhjqLOnJmh6IkgIKXm+jopPDzv+Sg6NY1UIztr6lu39h4+3rLi6AuAFLKeR+tRFFISBwH9ibgO8VhcgypKrJLz/TjOQ3J0hEreNMmgJeJQLCue59NP6blWi0x1w98J1GpkVltejhPmOh26HRuj4zc2FiuRgiA2clYqZBZrNsnomUo9XS19UKPar//63irtvXhasp3Yrog9AGjdO/fzaebSna9NGGWnpkglX6/TfYDacDCg7Xe7sel1YoLiaPbavuR0c9wxO5LXAxmdIBlidjY+faTTdDo/DIzFZi/O6XQqTFsffkjz9PvUpURyWr9//K/jJCHaMgypfRUlLm/DkEqFW7dojIL1dUqMm54GLl6ksnl9nYx2775L66vVqBQTpXWnQyUEQMelWIzLhkyGtmPbVHKLYyvChFWVPj5cl0qgVotKrKOURLp+uBIIoNcwP0+vX5yKRJnYbtN23noL+MVfpIS+o5Q9x50Yd1wlo0QiiZGljEQieRnIy2fJML9x9Tfwzz/55+DgMFUTg2AAy7MQ4unfOcv0ub0JEMD2bHDOUelWUOvV4IUeQoTQFR3FdDFKh+s5PWzam0hqSYwmRxGEATJGBu9Pvw/G2C6xdWmshNHkKP7V7X+Fx93HyJk5eJqHrtvFwBtAZSrOjZyD5Vto2k0ktSRyRg6WYsFQDSS0BDSmwQgM0hTyEEEYIOQhCokCkkYSXza+xAdnPnghbeWHPmzfxuLGIgbeALVeDW27jSAMMPAH8EMfANBze6j0KmBgWGmtQGUqrl24duDtaIpGZtG1m7g8uqXV6lXRtJuRMYyBRYlgAFCeKp8aM5Nsn+NFJhRJJBLJyeRFpOaeRF5ItXDx4sVnNnUMp3oxxvD7v//7ME3zWXdNIoGmafj6178Oz/MwPT2Nzz77DKurqwiCAEEQwDAMZDKZyPDleR5M0wRjDJqmRWlqiqLAGhYxSZ6YxicMh67rQtd16LqOMAyh6zr6/T5838cPfvADXLlyZdfnB2MMc3NzuHr1KpaXl1GpVOC67p6JbBcvXsT169fxxRdfoNvtot/vR8dWGPfCMIweJxIJuK6Lhw8f4tGjR88tOYVzjvn5eXz22We4f/9+1I/a7TZ+9KMf4fPPP8eFCxeQSCSwsLAQmeY452i322i1WnAcB5NbvxzevHkTrVYL165d2/Pz1vf9p7aV5OC8Su1ZLpfRarV2pTKK/ZqcnERiK0miVCqhXC4/1/UMIxOLJBKJ5GRwmMTcveaXSCSSE8VR1Jnf+AbdvkxF55OGjz97lhS73S6psft9Uv26Lpmh+n1S3wp1r66T4lcojYXqWFXjKA7fP759P62IlD/LIoV2o0HHSBgTVZWOje/Hx0EsI9LqxHF7/JiU0oZB82azdOyTSZp3bQ14+JCMYsIY1u/Ttjc3Y8Pn17/+ZPPbYY1qB+EgyXYiPbFUovmBJ8emPO16c9go+9ZbZCJdXycjoVBpeR65ICYnKVpG14FvfSvevkQiOO6YHcnrgYxOkOwgm41DfQ+bDsdYHFochnTay2bj8qDdptOe65I5S5Rzkt2I4GTPo/YSJc3w+A9CjH3/PrWjptFYGIMBmec0jcr20VFKiqtW6S2czdKxsSwqlYWJrt2m47e8TAbHmRkyjVkWbX8woO1pGh0/z6MxEjodKi0WF6kkP2pJBOw/vsZe7XP9+vbA6p/9jEpFxqjPaRp9VN29SyXfk8rD/cqxmZn4NHcciXG+T2XtYAB89RXt44ULccLg09pHIpHsRpYyEonkZSAvnyXDJLQE3ii8gU8ef0JmGEY6KwYmDXLPQAAygDEwqIoaDTjfdtrobfQwnZnG+9PvYzQ5CrWjYuAP0Hf7mJuaw/mR8/vqfxljYIzhYuEi0kYaX9S+wIa1AYUpGDFH0HN7CHkIP6DfDUIewuMeQh6Ccw7OOTpuB17gIWNkoCoqdFWHG7jYtDZRSBYwX53Hu9V3MTc199zah3OO+eo8bq3fguVbaAwa8EMfHBxLzSV8Uf8Co8lRGKqBzcEmLN+CwhQUM0UAwKPOIzzqPEJprLS3di/0sdxc3pbgN5WZwhuFN3C/eR+lsRJmcjOo9WvR85PpSSS0La3WWAnl4um6mCkXy2jZLSxuLMr2eUZkQpFEIpGcTPZLzd2JmL5z/tPKC1X5P8lM8zREUck5x9/6W38Lv//7v39cuyWRoFwuY3l5GWtra/jmN7+JcrmMWq2G9fV16LqOXq+HtbU1JBIJXLhwAYZhoNFoIJfLoVarYTAYAABM04TjOC/51bxe+L4PxhhM0wTnHN1uF8lkEvl8HsvLy/h3/+7fIZ/P72lS0jQNpVLpiUab2dlZfPTRR2g0GuCcw/M8uK4LRVGi9DtxIQ8AnudB0zTYto2HDx9GpsilpSUAiNK3ngXOOa5fv457W79CTk5O4vbt2wDosy4IAnS73W2pmyMjIwjDECsrKxgbG4vSvFZWVqJUsMXFReTzeczNzW3b1vz8PG7durUrBUam1x2evdpTvOdfVnsyxp6YygjQZ1O5XH7ifh3XeoaRiUXH+9khOXnI/iF5Eq9S/5iensbCwgImJiawsrKCZrOJRqOxK1G02WyCMRYZ/Kf3GxpcIpG8UF6lz5MTw1HVq0dVvB4HTxs+3jBIHStQFJq33yfFbzodq7EdJzZrCaWxuNU0Uv3uw9IbbwAALt+/f7yv76TCOal+63VqXxGNAtBx2DnvzsdBQPPpeqzSVlVSZNfrpOJut+n412rUR22bbh0nTsGrVIDbt6kPiRiUJ10THlSlfRAOmmxXLsfvm1u3tsemCBYWyBg3Nxcpvff8jBw2yr75Ju3Dl1+SmXAwoDYUzoWJCWrfv/pXgV/5lYMl60lOF4eI2VlKp4FCAZfFcpLXFxmdIBlieZmMVn/2Z3R6FeXSG2/QOej+/afX6cNjFjgOncofPYrLLlGiCZ+8MBNJdjMckhwE20soUXo5DpXG/T61Z61Gp/tslsqiMKRyRJRmjQYdCzGuQatFx4pzEnin0/RWHxmhcmJjg4KAXXf72BMifc4waMyL8XHqO/PzZFY7TEl0lJJkfj4OrL53D/j8c+proq1WV+mSZWKC9jmVote9szzcK8VOsLBAry+ZpHZ+lvFFdm4nmaRjtLpK+yfMj+fOxcHOz9I+z4q8Npe8TshS5tmR73mJ5PAcd0qt5PVmubmMX77wy7jbuIt6v44SKyFEiCUskenqkCY6abzbDgePUtTCMITCFChcQWPQwE/Xf4pvTH0DZ7Jn0HN7uDx2Gedz5+GF3p4GsOnsNGZyM7i1fgsqU9FxOtBVHVOZKRQSBaSMFD57/Bm6bhdgQN/tww5sbFqbCMIAmqJF5jld1WFqJkzVhKZoaNpNdJ0u6v06JlITmF+fx9XJq88lYYxzjutfXce9TdLyuYELTdFQ6VYw8AcIwxC2b0fPa4oGBgZd1VHtV9F1u/iL5/4iljaXMJYa22b0Gzbm7Ux7WdhYgK7oyJk5bKxtgIUMM5M7tFqqifJUGeXi6dP2McZw7cI15BN53Fq/BQBRMprgNLfPYXgVEopkjSw5Dch+LnnRTGensbCxgIn0BFZaK2jaTTQGjV0Jo027CQaGyfRktNxROQn9/LWJHeKcY3R0FP/oH/0j/N7v/d7L3h3JCSMIAqysrGAwGGB5eRm9Xg+JRAKDwQC6riOVSiGbzSKRSODy5cvgnMP3fQRBANu24TgO/K1fuIThSXJwgiCA7/vQNA2KokDTNCwvL2NzcxPdbhcffvgh1K0hVp9mUtqZDKYoCh4+fIhKpQLf9+H7PsKhX0iDIADnHIqigHMeLcM5R6vVQqPRAAB8//vfB3A8H/jz8/O4d+8ewjDE0tIS1tfX4XkeOuKXSFA/ymQyqNVqmJ6eptF2Oh2MjIzg0qVLGBkZQbfbRbPZxPpWckCpVML8/DyuXr0KTdN2GfUsy0K9Xt+WKAY8Pb1OQuzXnqqqgjGG0dFRAC+nPQ+Tyvgi1iOQiUXH+9khOXnI/iF5Eq9S/5idncWNrRSWYrGI9fV13LlzB4VCAdlsNqpJxPOJRAKmaWJ2v6HBJRLJC+VV+jw5MRzW0COuC5634vVJPG34+HPnSGXdbtPjXC5OlQPi+I31dVKjbm6SGlhRYjW3SKhT1djktYPvf+c7AIDL3/3u8b6+k8hw3IxlxYl/B/3OSczHeWx6BGg9ikJq55UVUoSPjdHxdxwy0Ak1dxjSNFUlFXkySevJ58lgBjw56U1cPx5knqe1xUGS7faKTanXtxtVATLGbSm99/2M3MsoW6nQ+hyHlKKpFL1XvvUtaZ6T7M9wouFTYna+XywCto3L4+P7x+xIXg9kdIJkiEqF/obDYgHgO9+hc9B3v7t/na5pdEoG6FbT6LTW6ZB4GKCPEMui0/XYGPnjff/wSXenBTHGwJOe931q47t36VQ/NUVv15ERSpVrtYCf/ISOq+9T2zebdCvKKVWlP12nY+U4dOwfP6bpoi9kMrHoW/STsTEySP75n9NpIwhouQ8/pHnff5+MY2JcjGKRQq9LpaOHWO8MrP7yS2qDZJL6V69Hr6HXo79cji4dpqbilLy5uYOXY45DzyWTRxtf5EnbmZ6mNrZtOm6WBfzarwFvvHG8Id+HRV6bS14nZCnz7Mj3vERyeA5x+XyglFrJ602lW0GlX8G57Dk87jzGL/u/DABYwMJTl1WgQGGk+wpBF2DSPPdk3MBFGIYwFANdp4vVzirG0+PImlkktSQ451hpr+CPPv+jPQ1gm9Ym+m4f46lxVHt0oXJl4grGU+MIeICu08Xn65/D9u0o/cQPfQQ8gK7oUJgCQzWQ1JKwPRsMDJZnQYECMKDjdBDyEE7gYLm5/FzSsOar87i3eQ8hD7G0uYRqr0pGQ+6j0q3A8iw4gQMGhpCHYGBIG2mAk54s5CEeth4il8jB1MzI6LfTmGf5Fur9+rYENWhA22mjf7cPTdHw3tfe22ZQnC3MPhfT4OsCYwxzU3O4Onl1TwPnaW+fg/IqJBTJGllyGpD9XPKimS3M4sbqlqYvU8R6bx136ndQSBSQNbPoOl007Wb0fEJLwFRNzBaOfiF1Evr5C6kcvv3tbx/JRGAYBnK5HM6fP49vfetb+LVf+zWkUqnnsIeS04pIk/rpT3+KdrsNz/Ng2zZs20az2cTGxgYMw4CmaThz5gzee+89ZDIZtLcEZevr63AcB5xzNBoNeJ4HRVEQPOnXN8kuGGMIwxDJZBLJZBK+76NWq2F0dBSDwQCff/450uk0+v0+dF2Hoii4ffs2fvazn+E3f/M3oev6rmQwzjkePXqE1dVVrK2todVqodfrRea5MAzhOE6UQCemBUEAy7JQq9WQSqUi491e7DTrHcRk5Pt+lO4lzHMA8NZbb8GyLKysrKDb7YJzDsuykEwm0Wq1oCgKxsfH8a1vfQsTExPR+hqNBu7cuYNqtRqlhS0vL0dmumGjXrVa3WbufFp6nWQ7+7WnaPdPPvnkpbfnQVIZX+R6ZGKRRCKRnAw0TcPc3Bxu3rwZXfxWq1U0m83IOMcYi86DACU8H8Z0LZFIJK8dBzX0POsyx8XTho9njJSprRYphRkjg934OPC1r5EqdnOT5tnYIEXvl1/G6mxVjRPoDmPykjwZke4nlNzDHFYVL+YNAlovY3Tftkl9ZBhxkqAwRoptuC4ppD/7DDh7lhTb77xDt3/6p6QKFzEfuRz1mxs3YqXz/PyB0uCeytOS7YZjU5aWSFU+3EYrK3GUiVB678deRtlLl+hP8LJjTCSvB8OJhk+L2RGK471idiSvFzI6QTKEZQEPH9Kp8LBlkqrSadk049O3rtPHRadDp2cRGGuaNG+3K0uxZ8X347EEPI/a2TTJoJVIxGG+pkkGMGHKazToODMWj01w6RKVW+029QURDlyv0zKuSx8NhQJ58xsNWlZso9OhBLuNDeDHP6Z9Eml4o6N0uuh24zJnZob267CXF8OB1ZUKfTxNT9O+WBaVeIzFBk0xpsZnnwF/4S/EKXm3bx+8HEsmqdSyLHruMOOLPK3sE6fWt9+Ow7XlqVUiOTiylJFIJC+Dw1w+PymlVnIysDwLD9sPyWgUumA4+HdvmqIhZ+TQ9bqUssaAIAykie4pBDxA3+8jRIiV1gps30YxU8REagKLG4vIJ/IoZop7GsCqvSqWm8tRUlsukYMf+viq9RXWOmuoD+rYtDfRtttwAgccZDgLwxBBGEBhCiyfDGpJLUn74vYRckrHSxtpXMxdRDARoNKtbDPQ7ZeKdxhTlR/6UbrZ0uYS1nuk5SskCkjraax319FxOnADFxwchkLf4TEwqIoKXdUBDrTdNtY6a0hpqcjot58xT7DSWkExU8Tl0ctwAxeqouLaxWvHdFRPFpqioTRWei4GytPAy0gokkgkEsnzR1M0zE3N4ebaTVwe3dL09apo2s3IOMfAonoDAMpT5VNvPn8hr/769esvYjMSyaEQaVKLi4tYXFyEYRgIwxDr6+uwbRuJRAK6rkeJZRsbG1hcXMRf/at/FcViEW+++SY+/vhj9Hq9yNQlkqgYY/uariS7GTau5XK5yOS2sbGBjY0NfPXVV1AUBWEYgjGGkZERTExMYH19HQ8ePMCv//qvo9lsRrGgg8EAn376aZQONhgMtqXPcc7BOY+MeyI1cHhav9/H6uoqVlZW8Ed/9EdRnwCwy6w3zH4JecJsd/PmTdy6dQtBEODhw4dIp9O4evUqCoUCqtUqgiDA8vIy1tfX4bouisUiTNNELpfDxYsXt5nnAGB8fByFQgHNZhO1Wg0zMzOoVCqYnZ3d06i3Mylmv/Q6yXb2Mz4WCgXouh71K9me25GJRRKJRHJyKJfLaLVaWFxcRKlUwszMDGq12rZkW1ErlUollHcODS6RSCSSmKeZgJ4HBxk+njFS7V66RPEa6TSp395+G/ilX6Jl5ueBjz4CLl4ks12rRel0wkjnuruNUpKjIYxz4v4ww+a2Z123WJ9ImlNVOvaZTGyKE6r9ZhNYW6PEwv/hfyC1su+TsrzbJRW4qpIC/NIl4PPPY3OmbT81De6ZTGjDsSmLi7RvlkV9Op0mtXe3S9M/+4wU2vfvU2zKfjEJL9P0KjlZ7JVouFfMTr1Oj2Ut/fojoxMkQzQacQKZ58UJdAfB98ksxXnsdR8ZoeniVJ7JUDcSBq6NDTmewXGg6/TWFMG9s7NkJnn8mKZxDnzxBZUCvk8lsW3H5jvDoPurq3F5PDwuQrtNy6bTsfGu36eSRQQIu26coLaxQesIAlq32D/TjFPwCgXgrbfo77BjFQwHVvd6tF7TpI8vgEqfTIbG0Wg2aT96PSr3zpyhMRYWF6m0++ILmt5q0X6dOUOXFJZFy4p1ihLxN3+TTKYHLbV2puWJ9e38iB3ejjD4ydJNIjkYspSRSCQvi4NePgN7p9RKTg6NQQP1fh2VXgVe4AGgFDkG9lQjXBAGCHmIjJ6BHdrgnGMQDl7Ebr/WcHD4gQ+LWwjCACkjhfFwHNV+FZvWJmYLs1jcWNxmAOOc46eVn6Lar0JVVHSdLlSmwlANfLTyEXpuD5xTipvlWfBDn4xzPAQH6fQ8TsdXZSpc34XjO5TwxhgM1QAHR9tu4yfrP4GpmWBg+PaFbwOg1Lhb67f2TMW7sXoDc1NzKBdj7R6wt+HO9m1YngU3dFHtVeGHPpJaErV+DWvdNfS9PhJaArZnk4FONWBoBiZSE0gbaVi+hZbdQtfpouN08KjzCI86jzBbmN3XmDecCBNNRwG2b8MP/VMvapccPy8joUgikUgkL4ZysYyW3cLixiJKYyXM5GZQ69e2DXiQ0LY0fWMllIvyQkpWWpJTi0iTWl1dxc9+9jO89957CMMQDx48iIxUwkxlGAZ0Xcfjx4+jeRljKBQKSKVSWFtbA0CpiUEQwPf9yJQleTqinRRFAUApJ57nodPpRM/lcjkMBgP0ej3U63W0221cunQJDx48wB//8R/DcRxcvnwZ9+/fx927d9FoNAAAnU4H9XodlmVtM8oNb3f4OInnRULdvXv38N5778GyLARBgDAM8cMf/hD37m1Fq1sW6vX6NvE4ANy8eROtVgvf/va38fnnn0dmu8XFRQDPK24AAQAASURBVDQaDWxubmJjYwOZTAapVArVahWNRiMyDzLGYNs21tbWYJomXNfF1atX92y/bDaLZrMZmflc18Xy8jJc14VlWahWqwCAK1eu7Er+2i+9TrKdJ7VnvV6PHsv23I5MLJJIJJKTA2MM165dQz6fj0zlMzuGBjdNE+VyedsgAhKJRHJi4ZxUmLduHU+y1vPmMMPHKwqlziUSZJwbvqaZm6NlPvqI2uDePVL39vukAu73pVr7uBAGuf3a81lNdMMMJ8+pKj22bYoECcPYSMc58NVX1IfW10m19PgxKa1tm5TUuk7zfvEFxaJMT9PzO1/LXmlwz5LivrxMfXFpCfjzP6d9mZ4mxfuDB6Tw7HbpsWmS4vvePeBXf5XiT27d2v/9+jJMr5KTxV6JhnvF7CST9Nn7Kpw3JM+GjE6QDBEEdNjFqfIwiNNwJkOn3VaL1gOQgDiXo4+PwSAeC0HybDAWG+SE2TEMqczN58nkNTpKZjCRnMY5lVDCky+S5XSdjpkoo0T4LxAHOPs+Hbf1dSpVxHgUIrFQ9BnPo2VE+SfGN1BVWt40Ka2uVqPb996j5Q46VsFwYLVl0elIpBmmUtQHm01Knet24+S9Xg/4yU/IKHj9OhnsHIfm45z6aLVKj7/2NTLSffklTROnwocPD1dqDaflbf1cgytXdl/a3LmzfTvLy7Kck0gOiixlJBLJy+Kgl8/7pdRKTg4BD7DWXYMTOAh4nB530BQ5O7SRNbIY0UbAwWH7dmTakmxHAWn1QoRRMpzPyeiWT+bxZeNLvDPxDh60HuBx9zF6bg8a02BoBtY6a2g7bUpm4xx+6MPyyYAnjGUb1gY834MbunADN0oD5JxD/APomAdbF0AKU8A4g83JsJZQE+i6XSw3lzGRnsD1r66Dc46lJg20v1cqHgDcXLuJlt3CtQuU6Laf4W5xYxGNQQMqVCw3l9G0m8iaWQBAvV9Hz+3BDVw4gQNd0TFijmA0NYqcmcNkehI9t4ee24PlUYqeF3pYaa1geWQZbuDC8i1Ue1tas4kruxK/7tTvoNqrIoccFK5E6XUSyXEiE4okEonk5MIYw7UL15BP5CPz/kxuh6ZPNVGeKu8aXOC0Is9uklOJSJMKggCffvop2u12lCCVTCahqirCMIwMMwCZklKpFH7yk5+Ac45cLoelpSX0+32Ypgld18E5jy7mAEgT3SFQVTUy0KmqCs45er0eGGNIp9PodruwbRu+78OyLHQ6HfR6PUxNTaHZbCKTyaBer8P3fWxubiKVSmEwGCAI4gvsJx2Pnc8JE+Tdu3dx584djI+Pw3Vd/PEf/3HUX5aWllCtVrctt7KyEpmBFhYWcO/eveh5y7Lw+PFjbGxsoNPpIAgCdLtd/OhHPwKAaJ8dx4HjOPA8GmUnDEM8fvwYX375JS5evLjr5NXdSg4wtn6dNQwDla3hQuv1OjjnKBQK28xzwP7pdafZ8LUfsj2PjkwskkgkkpMDYwxzc3O4evUqlpeXUalUos/z6elpzM7OShO0RCI5HXBO6tCtgVVgWc83Wes4OK7h4zUN+Bt/g5SwCwtkUFpbI5VutUrrBEgJfFREW53271OEQW4vpT1jpJjm/HjbSxjohHKcMVJ+WxbFowDUdwYD6iNffkmPh9PrLIuW8zxScNfrpLienSW1+fOKBXn8mIx4d+/G0SyVCvVNy4oV6JZFCvgwpH1xHNrfjz9+dd6vkpPJQRIN/9f/9WXvpeQ4kdEJki08LzZOHeV0zRh1mTCk8iyfj8OEDYNO0TtPcYdJuZPsjSgHxPgAgwG1tUicU9U4pU3TqP11nZ7zfToGQRCXNo4TjycwHDLc7dL4BKoaLwvEhjnTpHUrCj03bKgzDLp1HJqWStHHys2btMz09MHHKhgOrA6CeP0ArbNapbLKcei1Db8e2wZu3ybTWipFz3e7tM/iD6BUunabxvRot+kjcWaGTomH+RllOC2Pc7qk2fFzDcbHaXqzefTtSCSnHVnKSCSSl8VBLp/lT1EnH9u30ff6UVrZYQgQUFJYyDGRmYDKVKiKCoRk0pLsDUP8naimaGCMYeAOkNASGE2O4k+X/xSb9iaK6SJSRgpNqwk3dMEYw8ZgA17oIWtk4QYuKv0K0k4aVkCay4E3IF0eOMAAjWlkmAsDKFAi8x4AqFDBQKEHQRgADJH57kHzAa5duIb/78H/BwA4O3IWS5tL21LxAGCltRKZgBY3FpEzc2jZLdzb3Bosf4fhbuAN4AUeflz5Mdp2G2PJMbi+i47TQctuwQu8KBXP4x46TgeFRCHqTxkjAxVqZNYEgI7TQaW7pTXr18HBUUgUtpnnAGA8NY5CooCm3aT2UBRUuhVpoJM8F2RCkUQikZxcGGOYm5rD1cmru9J2p7PTmC3MSlP0ELIlJKcSkSa1traGVquFIAjAGIOiKHjzzTeRyWTQ6/VQqVSgKAosy4KiKFAUBWEYYnV1Fa1WC9VqFRsbG5HxzrZtGIYB13UjQ57kYLiuG5logiCAZVngnCOVSsFxHNi2Dc45DMNAMpmE67poNpuwbRuFQgFvvPEGVldXMTo6imKxCNM0sbKygkQigampKdRqNXQ6negYCnam0olpiqJA0zQoioLPP/8cv/ALvwDDMPCDH/wA77//Pu7fv4/1LaFXoVBANptFt9tFs9mMpieTSTx69Ag/93M/h+Xl5Shlrt1uo9/vo9lswvd9JJNJOI4TJZmJ9vB9H47jIJ1O08g5S0u4ffs23n333Wi+RqOBZrMJxliUfjc9PY2VlZVoPQCl1O3FXul1kt3sbB/ZngdHJhZJJBLJyUPTNJRKpVNvEpdIJKcM348VG3fvUspVNkvKT6HcFBx3stZxcJzDxzMG/PzP02t/8ICUvUFAqmJdjxW8z4L8PiVug/1S5hQlVscfpr32M9wJ01wySUrITofU0CIepd8n1fjGBimWNjepD3keMDISx9+4Lk1zXdpGpUIq6clJih0RHHcsiIgy8X3ad+FWEAmJQRBHyYQh7b/r0vyOQ7EpjL0a71fJyUYmGp4eZHSCZAsR0BuGhw+PFV55y6LSM52m07NILWOM1i9O048fS/PcszAcAByGcamgqvR8t0vtbJpxqVMoUOkBULlhmlQSCzMjEKe7mWac7Cb6QxhSWS2MZpzH9zMZ+gjhnE4fzWacdgdQSSZMdcLUls9TGdRuxx8rBxmrYDiwWlUpWU701UaD9sdx4jJL9EVdp3FFRGCxMNeIfQ4C2pd0mi41Vlbo+Uxme+rdYdi53D4/1yCbpTY76nYkktOOLGUkEsnLRl4+n24eth8iqSV3JYUdBmGkSxpJZI0s+m5fmuj2IMSQhg6M0t/AoEABYwx+4OPfL/57PO49xogxAl3RsTHYwGpnFQDghz4YGPzQhxu4SKgJ9P0+el4Ptm+DgdE2OKAyFQktgZSeQt/tY+AOAAYI7xsDo8eM7uuqTsmBnCMMQzjMwRf1L5BL5MDA0Pf6qPVrAIBCooCsmUXX6aJpN7HeI+1eaayE/2fx/8FEegIMbE/DXa1fw3p3HV2nCy/0UOlVoDAaCcQNXHihhzAkM6fCFFi+hU17E/lkHgDQc3sIEYKBReajEXMk6r/iVqTa7SRrZtG0m5F28Vn6vUTyJGRCkUQikZx8NEVDaawkzfhPQRroJKcSkSa1srISXXwI01QmkwEAZDIZpFIpAADnHK5LceOXLl2CpmnwfR+maWJ0dBS+70dJZMKcJc1zh0Mk/tXrdboA930kEglYlgXP88AYQzKZhKIo8DwPiqIgnU6j1+shDEOMjo4iCAI4joN8Po/NzU1wzqGqKpLJJFqtVrSt4bQ5znn0mDEGTdPAOYeiKDBNE/l8Hp1OB77vQ1EU2LaNR48eoVrdila/cmVbElmj0cCdO3eiPsYYw6effhoZqYrFIlRVha7rWF9fh23bkeEyCAKkUinouh4ZMDnnsG0b6XQag8EAn376KYIgQD6fjwx7Yr2JRAKmaWJ2djbavkilEyl1O9krvU6ym53tI9vzcMjEIolEIpFIJBLJawvnpDa9dYsUl0FASVW+TxEK3S6pZmdnyUT0PJK1joujDB8/bBx0XVLIttukog0C4MIFUm93uzR9r7S0wyBMXMMKc/H9yrBh7DTwpGS542iHnQp+EQ3ieXHUzWAQm+h8n+4nk3R/c3O7ec5xaB2aFhvpROyK45DxbpjjjAXxfYpuAeLEOceJ0+44jw10AL0eMU3Ew3z+OXD27KvzfpVIJCcDGZ0gAZ0qw5AO9WF/NhKBtJpG6wHoNGsYdEpOpegU2+/TKU+cfiVHYzgZTpQOmkYl0OYmTRsZAcbG4kTAVIrKj2SSShvfp1JZGOGEwS2VolthjvP9uBwTpd3w88kkbcvz4r4j1qnr8ZgAqho/Bmid2SxtDzj4WAXDgdXnzlFp3+tRv+r14iQ8z6PtqSrtVyJBlxgA9U1RXuk6Paeq8XgGtRqZ6O7dA959d3vq3WHYudw+P9dsS2o8ynYkEoksZSQSiUTy8gjCACk9Bb7177CoChm1VEXFZHoSc8U5XP/qOkI/RBiER1rnaYCDIwgpGS5rZtF1u+i7fXSdLmzPhu3baAwaUJkKN3TBwcmYCCClp6AqKgzVgKIo6DrdaH2KopCBTlGRUBNIaAnYng1N1eAF3vZ94BwKU2BoBkzVhO3b0TRd0XFv8x6uTl4FB8fm5iayZhZXJq5sS3ZrDBq4U7+Daq+Ks9mzWG4ug4Gh7bQjY92w4a5lt7DeXwcDg+3Z8LmPpJpE2khDZzrabjtKyQt5iIAHqA/qmEpPYS1Yw8CnBDtTM2GqJnRFx0xuJkp5MdQtrZmzj9Zsa7owK4n5JZLngUwokkgkEonkGAx0v/Irv3Ic+3FoGGP4sz/7s5eybcnrjzAzOVujogvjxs5RExKJBAaDAfL5PAaDAcIwjAxWmqZhenoan332Gfr9fmTI6vf78H3/Bb6akwHnHJ7nRffDMIRt20gkEpGZbWRkBL7vYzAYIAgCBEEAVVXhOA7a7XZktgvDEJ1OB47jwDAMDAYDeJ63p6lRHHORMKiqajRNVVWYpkkX8oj7zcOHD8E5R6FQ2GaeA4Dx8XEUCgWsrKzA931ks1nUajVMTk7iypUrKBQK+Pjjj2EYBlKpFCzLwmBAUfWGYcA0TWiaBsMwoGla9Lp0XYeu6xgMBlhbW0Nna0hTxhiKxSIubyUElMvlqG8uLCxgYmICKysraDabaDQau8x+e6XXSXYj2/N4kIlFEolEIpFIJJLXCs6B69dJ4QmQYvTLL0kxxjkZfxSFlGOmSWYyxo4/Weu4OMzw8e+9t904CNBrXlyk16VpFE+h65TGt7JC6lgRm3FUhpXBYRjHrmja6TPPqSrd+n7cLqI9jtrGw8uK78CGbzknhXOtRtt1XZoujJWJBKmx63VSTwsjmm3T84ZBzwt1tfh+jHMylQZBHJkCHF8syPIyxZqI1LnhqBiA+ikQ708ySX9AbBxsNoG1NXpPvArvV4lEcrKQ0QmnmpkZKmMU5WgJdGEYG5HCELh4MTZo5XKxT12cUuXYjs+OKInEMROBtcIYZhhUcqTTsdFNBPZaFpVGYhwBUcq5blziplK0PmHSE8Y5se1MhtZrGLFRpdeL90eUb74f74+q0vZtm0qsMDzcWAXDgdUffEDzNpvxa7dtKrUMg/qjSN8zDHpOlH+MUXvoOq0zl6PXUKvRa0inyWhXrwPf+hZt+7A/owyn5a2s0H42GjQ+g6DRoOmM0TghR9mORCKJkaWMRCKRSF40o8lRWL515OU559AUDRPpCfzFs38RD1oPMJGawGpnFQxMGuj2QSTAeaEHUzXRtbtY763DCz0MvAEUpiClp+CFHrUjJ4Mc5xwJPQFTNWEFFvJmnsIKQhcep3lVRSVdnqKCcRYtN7xthi0NH1NgqAbSRhoMDJZvQVd1ZPQMHN9BxyHNnBd4mMnNbDPPAcB4ahyFRAFNu4nFjUX4oY9av4aW3QKAXYa7jtsB5xx+6EcJhbqqI2NkECKEEzpknAuCyEQXhiHqgzryyTxc34WiKBgxRjBijuDcyDmcz50HACxsLGAiPYGV1gqadhONQWOX2a9pN6M2AoDprLx4kTx/ZEKRRCKRSE4zz2ygu379+guPahVJURLJURGpUKZpAgB838dHH32EVCqFs2fPRvPZWwIgkQx2+fJlXL58GYuLiwCA5eVlMMZgmiZ0XcfGxoZMnjsinPMo5U2kr4VhCMdxYJomTNOMzHJBEMDzPDiOA0VR4Ps+KpUKVFWN0t0sy0K/38dgMICqqgjDEIqiIAiCbQl04rNEPBZmOZE62Ol0UCgU8NVXX8H3fRiGERnzstl9otWzWViWRSPqdLsIgmCb2e78+fN4/Pgx0uk0Wq1WZBwEqC/quo5EIoFMJgPP8+D7Pnq9HhRFQT6fRyaTwZkzZ2AYBiYnJ5HYErKVSiWUy2UAwOzsLG5sDRdaLBaxvr6OO3fuoFAoIJvNPjG9TrIb2Z6So/I7v/M7L3sXJK8wsn9InoTsHxKJ5LiQnyfPwPw8mefCkExi1Sr9tdukTh0MSBGaTtP0VAo4f/54k7WOm4MMH6+qu42D9Tqwukq3mQy9rrt3qQ1EW4jYkyfwO9/97tP3cTg+Q9wK5fFpQiiqhZpaKO6F8voohsKd5jmhwgZIESkSAF03jrARUR1hSGpsy4qXUxQ69qkUvRe2vmeLkuvEa9gawAqNBsWOCI4rFqRSoffdYBBHtoiUPGECFIh934pq+Z0f/Sg29q2svFrvV8mpQ56zJZKTyfnz8Sly2ED33e8e7D0vTs2tFhmThCGp1aJyrdGQ6XPPCxFUyxjdTk5SyRQEVG5UKmQaE+Y2XafnPC82xglcl4xn2SyVKaIkse3YXCfKPnE/kaB1ip+QROLczjJQbDcIqFRrt2lZkZR30LEKhgOrP/iA+pd4Hf1+nDwH0OufnqZLHl2n1zGcnif2sd2mEk9RaJ5ajS4nhDHUNOkS5DAMp+UVizROw507dAkmAoi3fq5BsXj07Rw38jwvkZwu5HteIpFIno1ipgjbtyNT1XdxgO+Vt2BgYIxBV3QoTIGpmjiTPYO+20dtUIMTOM9xz19vODgCHkBTNCw0FhCCCns/9DHwB5EpLqGRTo1xBi/06I97yOgZaEwDOJlzdEVHEMY6vSAMYHkWgjCAH/rbEgY5eHTsFEYXRwpT4Ic+NEVDSkvB0Aw4gYMgpIutkIfImvto98wsmnYTLbsFVVGxMdiAoigoJAqRgS0IAzQGDTxsPYTCFPR9StPTmAZN1eCGdBGlgPpRwINIz6joSrQvqqJiRBtBzszhbPYs3ii8gdkCXYDcWN3SmmWKWO+t4079zrb0u6bdjJ4v/lIRpmpGy0okJw1ZI0tOA7KfS04DJ6Gfy6xVyalEpElduHAB97YEYSJdrNfrIZPJoNfrYTAYwHXdKJXs0qVLUBQFiUQC/X6fRg8ZGUEQBGi1WnBdF7quI5C/Uh4axugieDiFbvhxrVZDs9mEoih0sawosG07Oj6JRAJhGMLzPGxubkLXddi2DcuyEAQBfN+nkWB2CO7EY3EbhmFkYhPr6Pf7ePDgAUZHR6HrOkzTBOcc3e4+0erdLsIwjPqCqqrbzHbnzp3D3bt3wTmHYRhwXRqJRiTQjY6OwrZtNBqNyKDp+z4cx0Gr1UK9Xsfs7CzOnTsXPV8ul1EulyNDoKZpmJubw82bN6N0umq1imazGRm99kuvk+xGtqdEIpFIJBKJRHLK8P04pW1piVSZAKlBVZVUrP0+3dbrpKZ99Ag4c4aeP65krefFk4aPv3WL1LK+D3z6Kb0u34+T54YT6dptMk+5bpz+dZwIs9hpHEhLJM6J+0BschueNvw9x85Uub1MdiK2RPxxTutNJulxNku3IrIjkSDV88REvN5ud3c0i3AGALHKW6TouS7tS7sdG+iOMxbEdWlbo6Okys7n6f3Z6WxvA0Wh+UQiXSZDt5q23ej3qr1fJRKJRPJaMzMTJ3IdpaQZPtVrGp3qxscpdW5zM/asn6aw3heFKGV0nUqkiQkyy4kxNXo9Kh9EMO9wEC7n28eAGC5rEwl6ThjLdJ1uhTkvkaA+MxyoK8o2kToH0PIi+c62Y1Oa49B8i4s0PZWiZZ82VsFwYLWux0lxAL3eTic2zp09S/M0GrRN26Y/URImk7FpTpSCImA6maRtAGTaO+zPKMNpeVs/x6BapdJSGOcYo7JTPH+U7UgkEolEIpFIXh6jyVEEYYCEljhSEp3CFHTcDrSehuXWMnJmDn2/j7HkGPpuHz73n8Nev74Mp/KJZDnLt2BqJkIewg99gNNzfuCj43ciU5zClCiVreW0kNSS4IwjpadQH9TJcMZDMsWFgAcPIUIEnEx0w3BwKNgyz4EG1FcY6QTzyTz6bh9ZPRsltYU8RNfZR7u3NV3o6EKEUKAga2bBOcejziOsdlbhhz5aDpnsQoQIwgC6psNQDKS0FABATarwAg/MYeh7/cigKcxzDAyFRAHfmP4GZnIzmJueg6bQBcjc1Bxurt3E5dEtrVmviqbdjIxzDAzFTDF6vjxVjpaVSCQSiUQikTwfjqXakolbktcNkSZ19uxZ5PN5NJtNDAYDDAYD9Hq9KLHM87zIJFcoFHD27Fl88sknsG0bnU4HnU4HYRgim81GBrpQ/kp5KIRxThjjhj9PRFuK4xCGIVRVhWEYURqdSK6zLAuqqkLTNDSbTXDO0e/3I0PczqQ5sa3h7fm+v+15z/PgeR4KhUI0b61Ww8/93M9hdXUVzWYTjUYjSpYDgEajgWazCVVVMTIygk6nA13Xt5ntGGO4cOECHj16hEajEb12YQTs9/twXRfpdDoyCTLGkEwmkc/nUSgU0O12YVkWfu3Xfg1vvPHGnkatcrmMVquFxcVFlEolzMzMoFarwXXdJ6bX+b6P5eVlVCqVaN7p6WnMzs6eakPYUdtTIpFIJBKJRCKRvIYsL5PS07JIjQkAV66QSnl9nRSZYUjPdzpk3AHihK3jStZ60fg+8NOfUtrcJ59sV6ACpKJtteixMFxtbJBKd9jwdVSGE9GA2JB3mr57FMlu4vul4SQ6zuPpiQTdFxEnAKmChdJbLAdsj08ZTo8TqmzDoPuGQc8NBvRYxHUI1Xg2S2rnRoP6vYhPsW3qF0JpbVlxHxHzdLtkzDSM448FEe+vc+eAx49p/7JZUpMLR4FoP+FeEMZAIFa6C8X3i3i/+v7+KZCn+LsXiUQiOYk8fAh8/evAz352tJImCOj0mk7HxqnVVSq/DINOu6cxrPd5I9LgNI3MbGI8iUSCyiDTpOMikv88L15GjE/gOLHxTZRtrRaVKcJkl05TUtzmJq0boPWJS5EgoGWE+Uwkwom0t8FgeykIxKY+x6FpvR6Z6X7pl57+uocDq+/fB/73/52CuQHqb4UCpSoC1B8nJshc12rFy4vXkc3S67Ms2gfRltksratUImPbURhOyyuVyKhaq8Vl1eRkvB/7bUeWYxKJRCKRSCSvLpvWJjJGBn23D4UpCPjBB27j4PACDwqn5f780Z9HiWcB5ID4e8HAolvGGAIeUHLc1nRhgAt4AC/0IpMdYwxhGJL2jzPYng1TNdFxOlCYgpDTd9mcU7Kdz30gQJRsJ1LnBCIBDyHgBA5s34apmcgYGYScTHfTI9PIGllwcNiejabdRGPQiFLlAKAxaKBpN8HAMJ4ax6a1iUKigK7bRcfuYNFfRLVPv/t4gQfHo20pTAFntA9u6CJEiKyRRYZl0HE66DgdpLQURswRaIqGfCKP0mgJF/IXcDZ7FqqiojRWQrkYX4CUi2W07BYWNxZRGithJjeDWr8GN3BhqAYm05NRot/wsn7oY7m5jEq3Es07nZ3GbGFWGuwkEolEIpFInpFnrqYePHhwHPshkbxQhtOkPvjgA9y8eRMAIlOSuMgzTRMjIyPI5XL4xje+AQAIggCKoqDRaMCyLKRSKdi2DVVVo8QyaSo9HMrWr4rDKXDiVt0Sc4VhGMWgq6oK13XheV5kpnNdF5lMBuPj46jX62i329sMcuKY7jTS7UQkxnHO0el0kE6n0Wq1MDo6ilwuh9XVVQBAsVjE+vo67ty5g0KhgGw2i263G6WRnTt3Dq7rolAoAMAus10+n0c2m0U6nYbv+wjDkCLeFQW6riObzWJzcxMbGxvwPA+maSIIAliWhXQ6jbfffhuKosCyrH1NbYwxXLt2Dfl8Hre2khNmZma2zTOcXgcAt27dwq1bt6JERsHCwgJu3LiBubm5bUl3p4nDtudpbCOJRCKRSCQSieTEUKnQbb1OitRCgaI+goAMdNksKTIti8xDwkTXbpMa9riStV409+8Dt29T6lyrRa83kyEjkojfME16vbZNy/hbo8QKFfBRU+g0LVYCe972NLXT9D3Lk9pQGN+EqU3TqK08L1bOi76ZzZKRrNeLE9rEMRTmuVQqXnc+T8uJlDtNo78wJJPb2BjN9+ABTdd12qbv0/sAoP0WRr1sNlZ3T07GxryHD+PXclyxINPTwMICbadYpPbodGITHec0LQzpdRcKtP9CnS5e84UL8fqeF5yTCv3Wrd1JdwsLwI0bpFovl09n8qJEIpGcQCoVOsWIU/BhxmAUgbEAndKqVeDNN6lEtSw6lUjz3POB89hfn0yS8Wtjg0or06Ryv9fbPn8Q0DLiOIuQW2F+EylsnheXUiMj8VgUiQQZ0hoNWk+3G5cLQUDLDPefwWD7mAkA9QuRVKgodImiqmTQ6+4dzLAnmga89Rbw3/63wJ/9GbC2RolvQUDtMTNDl0dffgn88IdxGSdKwYmJOJRYvH5No5JTVSnp7tq1o5c7w2l5Ijh8x881ME0qqXaWVbIck0gkEolEInn1aQwaODtyFrV+DQwMKlMPZaILEYJxRilkWzVdUk/Cdu0oaU1CMDAyjnEeJckxMAQgw5sf+lCZCo+TcW44rY5zHpnp/MAHVziadhOmasb6vK1UOR9+vNyWcU6Y51SmRtvl4AjCAJZvgYHBVE0YqoG208bZ7Fm8PfY2NqwNMDCczVIfuVO/g0KigKyZRdfpRuluxUwROTOHrtNFaayEn1R+guXWMgzVQNpIo96vo+N04AQO3MAVDQLOOTSmRfuXM3PQmIa23YYXeJhIT0BXdfyFs38B70y+AwAwVRPlqTLKxe16McYYrl24hnwij1vrtwAAM7kdWrOhZQHg1vot3Fq/Fe/TFgsbC7ixegNzU3O7tiORSCQSiUQiOTjPbKC7IIQFEslrhkiT4pzDsiysra2h0+nAcRzYto1EIhEZ6M6ePYuZmRmkUimMj4/j0aNHsLbEQcI4JUxMwqQlRlmRPB1hjNur7cStSGgDKCENIOOdotBFvLhvmiYKhQKCIEC73Y7WKxDmOLHe/Yx0YRjCNE3kcjnoug5VVbGxsYGvfe1rqFQq+OCDDwAA1WoVzWYzMs4xxlAsFnHp0iV88sknOH/+PCzL2mW2a7VaUb/J5/NwHAee52FzcxOmacK2bViWhTAMYRgGRkZGkEgkkEql4DgOlpaWUCqVMD8/j6tXrz7RRDc3N4erV68+MVWOc47r16/j3r17AADLslCv17elqwHAzZs30Wq1cO3atVN5IX7Q9pRIJBKJRCKRSCSvOUJJKW6zWbodHyeTGUBq126XTHMi3arbjec9jmStF81HH5Eyu9OhP2E46nZJ2SviLBij+0Cs2DWM2Ex3WDSN4ilUNVYQizY9qiHvpBGGcVKaSI7jnI6FYVC/E0a2kRFSS+s6GSFtm9pVfE+VSgG5HPXvVAo4c4aOwdgYzf/GG6SybrdpXW+9Fff3VosU/IZB2+/1aB+G921khPp9rUbH9Z13aJ5CIY4cOUgsyEGZnSWlMwBMTdF+2XZs9LPtWM3NGL0uEfmiaXGcytmzz/f9yjlw/Tol8QF0vOr17VEpAKnTW61nU5VLJBKJ5JXBdam8ymTotHOYcomx2PPOGJVny8t0KlaU2EAnxjEYDquVHA+WRWY5Xaf2F4lurhuXwaJsHTbLiWDf4fEOdJ2OpTDPZbP0fKdDZdHICJUpZ8/SY1GCNxq0D74frz8IqMRJJOJ9EWNR5HLbx0yo14FvfhP44gsyhh3mJwxRZs3M0PbW16lNarXYxCnS5dJp2q96nbabTlNJI9otn6f0uvFx4L/5b569zBlOyztokpwsxyQSiUQikUheHwqJAtJ6Gi2lRYarkJLRDmKAY2AAB+zAhqrQd6laoEWJaJLtDLcrAyMDIhg0piFAELXhXiZGvvVPgQIGBj/0tyXPKUyh48fjQe/Bt3SAikr6PUYmOg4O+k8GO03R4HEPPbeHqfQUPjzzId4cexOpDg0Md3bkLBSmoNqromk3I+McA0MxU8Tl0cuRMTBtpDGRnsBScwkhD+H6LrzQo7RCpkBXdDDG4AQOgjBA26GB+93AheVa6Pk9mJqJM9kzOJs9i4AH+CuzfwUZM/PUZDjGGOam5nB18uoTU+U457j+1XXc29zS7vkW6v36trQ6ALj5/7P35sFxped57/OdvXd0o4FGkyBIYkhwhoMZQMNZJM2MOLLsyLFkK2XHjmTZcZKKfb2Vlziu6z9SlUTxtVN2FDu5cZWlxI5kWaorJ1K5vESOLEccSUNpOCOZ0IwxAgiCBDeggQa6gd7Pev948Z3TAEESJEESJN8fqqu7z36+cxrnPd3P8z2XT6HaruL4/odTu8cwDMMwDHO7sMqfeWjpTpMyDAPxeBwXL14MzVkAoOs6BgcH8cgjj2B8fBzVahVnz57FwsICHMeB67pYWlqC4zgUN+55G1LOhBCcRrcNuttIpsZ1J8d1oygKVFUNE9ls24bv+2FS4Pz8PFRVheM40DQtTAxUVZVi5j0vNNxJuk16ch3JZBKFQgH79++HYRiYX08fGB0dxYULF7CysoKRkREMDQ1hcXFxg9HMWheAvfDCC+H6gKvNdjKNzvd91Go11Ot1tFotOI6DzroQMRaLIZ/PI51OI5/PY3h4GJVKBaVSKUw/m52dxcjIyHXbWNM0jIyMXHO6iYkJnDlzBr7vY2ZmBqVSaUPbz83NoVAo4NChQ5ienkZPTw/Gx8evu84HmRu1J8MwDMMwDMMw9zmGsfFZxjWoKqk+z52jWIXu+I+VFVK9ptM7l6x1N3FdilwASKXbapHCV6aUVauk4LXtyOTWHbMhzVM3a3hTFFL+ZrORga7R2JhC9zDTHVXj+9Qm7Tadm55Hz1JB7/ukVJYK60yGIkKEoDZWVXpvmnSO7tkTzVco0PTT09T29Tqpm9/5TjrXJQMDwJe/TJ+J3l5atudFZjWpnK7XKW5nZIS2TwjgyScj8x9w7ViQm0XTSD196lT0uVtdpc9nby/FxUhngWw/06T5Uina72PHaJo7+XmdmCC1tu8DMzPkpuj+3mtuLvrfMT1NKvOH+LsXhmGYBwXDoABW6XmXZdR2kAYsISIve70elWTyEhyL0eW71Xr4wnvvJLI8abfpMu37UdllmlRCNBr0XprXZNkmg38ti457s0mlhjQ95nL0XK/T+EyGzFutFr0OAirBPI/MYAsLUTh2LEbzlssbg4YTCZqnv5/Ol3Y7CtbO5+m8mZ2l8my7bFVmlUpUbq7/1IVikbYln6dtlKWkTOiLxagkO3yY2ujv/b2oH4WdQNNon7azX1yOMQzDMAzD3B8UEgUIIZCxMii3yrA9G0IREL6AG7jXNNEJkClLgwYffmjEAhAao1jHt5HNbdn93g98MpH5NiAAEYjQMCcJjXaBFxrs5HEQIjI9qoq6Ib1OFSoSegK2Z8P13VBjGSAIjXeqokJXdBQSBbxz3ztxJH8EQgh818HvAgCcWTmDkd4RDGWGsNhY3GA0szS66RjJj+Dt5tvx2pXXkDEzSBkprLRWyCCHABkzA0uzENNjqHVqcHwy7Lm+i5bXQttro621YagGemO9ONx7GIpQ8P0j34/3HXnfTbW1pmgY6R3BSO81tHulCZxZOQM/8DGzMoNSvbShreeqc6ExcHp5Gj1WD8YHxm9qGxiGYRiGYRg20DEPOZvTpC5duoS5uTmsra0hnU5jaGgI+/btw/DwMFRVxcc+9jHMzs5ieXkZtm1D0zQ0m000m004jrPBLNVtAmOujWyjGyX2ydQ4b12IFwQBdF0PzXCdTgeVSgVCCCQSCaytrYWvXdeFqqpQVRW2bcNxHABkgmq326GZTi4rmUzCMAwIIeC6LgqFAizLgqZpWFpawsjICFRVDZPGpJFNYpomxsbG8OSTT+IrX/kKpqentzTb9fX14cKFC/j2t7+NTCYD13VRKpXCbY/H4ygUClAUBel0Go8++ihGRkbw5ptvolKpYHFxEUNDQ5ifn78tI5frujh9+jQAYGZmBgsLCwAQpuXVajVUKpVw+HaS7xiGYRiGYRiGYe5rikUyk/X1kYqyUolUoYODpIA9e5bUrr29ZP4SgmIOHnts55K17iazs6QeleprgJS3e/dGBkLTpAgJmeYlv/eQym4hNiqHt4OM6mi3ycyUTpMi2HEi49XD/P2KNH3J154XRWQoCrVZIgGcPx+1lWGQ8bFYpHN2fp6Om66TInv/fjqWx47Rc28vDf/mN8kg12jQMc3lNprnAHr/6KOkwF5dpc9Dq0XHsDvhrlgEjh4l9XEQkFmvp+fGsSC3ytgYmTynp+lzt28f8NprUQqe40SKdU2LEvDkOb5v3539vLousP7dC2ZmSAUPRKl8tRr9n5HDR0ZI4T06en8YcBmGYZhrUizSZdg0o/Q5VY2SxK5FtwFL12ke04zKTOmrl8OlOUuWCw9z+bQTyHaUbSzNiboejXMcGidT5roT6WT/Er5P4+PxqN8CaYDz/egYBwHddoyMAG9/O/n/C4Uo+S6VonWUy/T81ltUWi0uUgmUSFCIcDYb7UM2S8vWNDK2DQ1RWXizPydtLrOGhmi9sqx75hnglVdo+w8fpm0tlaLUvYEB2mcAePpp4Id/eAcO0C3A5RjDMAzDMMz9w1N7nsKXzn0JST0JTdHQcTsIEMDUTMADPN+Dj43fQStQoAkNmqIhpsVg+zY6Xic0bjm+s630OoZwPRdt0QYA2L4dmdu2aENpnPMDSq7z4EH4ArqqI6bHwmQ6x3doGiGgKzqSRhKORxo+VVHRcTtouA34vg9NpeO4J7UHj/U9hmqnilKjhB848gMYK9B3uNlYFqcXTgMAhjKbtHuqibGBsXDa1c4qppenwxS3tkumuIHkANJmGqqiYqo8hYbdQEJPoOW24Ac+NEVD0kjiSO8RxHS6sXl6z9P44aM7e2Pj+m64LzMrM1ior2v3rCxSZgq1Tg2VdiUcPtI7gomFCYz2j14z+Y5hGIZhGIbZmntaPX3zm9/EK6+8gm9+85tYXFxEpVJBEATI5XLI5/M4duwYnn/+eTzzzDP3cjOZh4AbpUkFQYATJ05gZmYGvu8jmUxiZWUFqqpuMHa5btQjCsAJdNtlu2ZDOZ1MmLNtO0yVkybGIAjQaDQAIEyCk8a4IAhgGAZc1w0TAxVFoVh4VQ0TBG3bhmmaCIIAAwMDePbZZ3Hx4kVcuHAhXOf+/fvx7ne/G7Ozs5ifnw9NccViEcPDw6GxTKYcSoPaZrPdE088gWeeeQZTU1N45ZVXkEqlAFD6YTweh67ryOfzePLJJ7Fv3z4IIZBKpVCpVGDbNgCEz7fK7OwsbNtGq9VCqVQCABw9ejRMyAOAcrmMycnJm06+YxiGYRiGYRiGuS8ZHgZOnqTXhQKpKCcnI3VlpxMpZmVchK5HCVs7lax1N5mfp32ZnCSlrVT11utAMhmllykKKXzlQ6q3pWq4e/x2kO0jU+hkpEetRopc1324FeBy32U7SZOcbdPx8H06H6XZsNOh9svnSVXtutSutRqZ7CoVGj84CBw8CHz3d0eKYMeh83tmhqZf/47iKtJpMuHJNEJdp89ArUbL7usjt0C3kfT48Tv7WRCC1tHTEymjX3wRuHSJYn/KZTL8pdOR4VXXqR0eeYSiRe7k53V2ltqr1SJFOUAGw67vXlAu0+evVCJlupyPv3thGIa5rxkepst0s0nvhdiYUnatMkdVo3BXGQgsL/cyYLbToUtLENAlzvOoTwIZ6svcHjJY2fOiktd1I2OdrlM7SzOkPJ7SXNcd1AtE5rtOh4ZLH38iQcdN02hZ8vJvmsCHP7zRvOW6NP7P/xy4eJFuUxoNMqllMlFfAZkMlRkXL1IpJH9GupWfk7Yqszb91IW///fJVDc9Tft38ODG8bEYlZ0//MN0Ht8LuBxjGIZhGIa5fxjpHcHBnoN4c/FN6IoOVVHheA6Z4IKrE9AUoUBAwNRMSi3TdDi2E06jKRoCBJRAxya6beHDh+3blOAXRCa5rehu0wAB1ECFL3y4vgvf8aEKFTE9Bi/wQkOjqqhoOk1oKhkk9UCHrurIqBlkzAxiegxNpwlTNeF5Hh7vfxx703sx2j8Ksf4d7vjAOEb7RzFbmcV8bT5MoCumihjODm8wlh3ffxzfKX8H5WYZAgIJI4GclUMulgMA6IqO733ke1FqlHDq8inYvo2klkTKTCGpJxHTY4hpMXz38Hfjh4/+cNhZ/04xW5mF7dlouS2U6uvavb6jyMe7tHvNMiaXJlGql0LD4Gxl9pqJdgzDMAzDMMzW3BMD3R/8wR/gd37nd/DWW29tGN5tOgKAz3zmMwAo7eiXf/mX8ZM/+ZPhOIa5m0xMTODMmTNIp9P49re/HRqwarVaaJ6TJi3f99k4dxt0f8Y3t6FMqWu326HhTU4nx2mahiAI4LouXNeFaZrh/N2GOzmtvKHtPnYSOY2qqqit97ZvGEb4fCPjpdzm7pTDa5ntXNfFpz/9abz88su4cOECKpUKcrkcnn/+eRQKBaiqGi5zq225Hebn5wEAS0tLCIIA2Wx2g3kOAPL5PLLZ7I4m3zEMwzAMwzAMw+xaNI0MNadOUYIWQCrKSoUeAKVzPfooqVPX1mi6xx7b+WStu4VtR+pRaQwEyFgXj5NytlqNlNtAZJaTw6R6WFEixXE3m1XiQlA7yWS0/n5qZ6kortdp/G12HPNAINtNmhNlhIk0sAFRrA0Qpa05DhnbPI+mkzEnvg985zvAe98bzSO/X5DPMnlwM3L44cN0rB2HzvnN3G0jqRD0uR0dJaXz/Dxtl6pGKvbLl+nzKk2Ag4N35/O6/t0Llpbo+GWzG9XaAL3PZul/zOLircfEMAzDMLsKGXzaatFlWBrerodMMEskqB8Dad7K52lZKyt0aVtbo8u9TEHLZGhaednjn6luH2mWkyHL3W3arZeUYcyyVJN9UWhaVB677sYUOyGo7CoUKAzXsihZ7nrmLU2j908/TX0dJJPUR4JlbV0yyLJtc5l3s2xVZm0VLNxuAy+/TGVmq0XGuUcfJQOe7FvhXsHlGMMwDMMwzP2Dpmg40nsEX1S/CFMz0XbblELX1UG7gAgT0fzAh67o0FRKoEOAMKFOEVS466oOP/Dhudc2gjFXIyC2bZ7rmgli/c8NXLi+C1VRoQgFtmdDUzR4ngcbNlRXhe3TsJSRQtpMY296L/oT/Wi7bZiaCQUKMlYGru9eZRjTFA0jvSM3NJEJIfBY/jEECPDthW/jbOUsDI0S6DJmBvlEHqpQMdQzBE3RML08DVVRkTSS2Jvai/ePvB/HDxyHpd2ZG5v52rp2r7GEAAGyVnaDeQ4A8vE8slYWlXYFi41FDGWGMF+bZwMdwzAMwzDMTXJXlTzz8/P48Ic/jJdffnmDMUYaVjab4+Q0U1NT+Jmf+Rl8+tOfxmc+8xns3bv37m0089Djum6YHlatVlGv16GqKhKJBBzHQbvdhu/7G27SuxPP2Ei3fYQQVyX4AdH/Al92y7o+Tib+SVOcTAOUCXW+78P3fViWteHYdE8rhAiPFUDHW66n3W5jZWUF5XIZlUoFQgj091OUe7FYvKl9u5HZTtM0vOMd70Cn08HY2Bhef/31MDGv2zy3E9uymc1Jdqlr9DC/08l3DMMwDMMwDMMwu5qxMTKMTU+TYnJoiFSUUina3x+pQN/1rjufsHWnMQxSX+/ZAywvk2lO10mZLSNTpFFO0zaqgAEySxkGTb9VO1yrbWQsh4yCcBzaBtcFzpyh9ajq1oa8hxnZHjLmJAgis6GqkjJYRqJI2m06lkKQMvj8eWBigtTQAKmfp6YoQW5ujpTD5fLVsRyVCi2jUKDPwAsv0LqvpaS+20hl+W5SOm+OfblWul8qRe17OzExDMMwzK7CdSkdDKDL8lZGrM1Ic1UsRqWVqpJRKpOhPhtWV2m5CwtUOq2uRt55uVzZz0F3KcDcGt3hy0CULNdqRWZH399YrnYf4yCgYyiHe15Uarsulb779tH4hYXtmbdutmxb/zkJt/lz0g3LLMui/hm6+2jYLXA5xjAMwzAMc//g+i5abgvP7n0Wfzb1Z/DhQ1VU0noJH55/9XfFfuCj43bgK1HH95qikXHO90NDlypUuIG7xVqZbgKQ5tGDF5oRb2JmBCIABKBCheu7aLpNqEKlFDqoZGb0yUSHAFAVumnKxXLoS/QBAB7LP4Zqu7pjhrFiqoip5Sk82vco6nYdAQLkYrmrUt5qdg17UnvwzN5nYGkWXjrw0h03qdmeveE5ZV5Du2emUGlXrpqeYRiGYRiG2T53TcGwuLiIF198EefOnQvTogDc0GDUPd1Xv/pVvPjii/j617+OQqFwV7abYWZnZ2HbNlqtFpaWlpDNZtFcF47puo5KpYJqtbrB9CWEgKqqWxq/mGvT/b9hs3lu83Tueq/qQRBAVdUwga7T6YSvpbGuezqZQicfEnm8pOmuXq9DURTMzc0hkUhACIFCoQDLsmCaJoa36ln9NhkeHsbJkycBAIVCAQsLC5icnEQ2m0UqlUKtVkNlPelgJ7dlc5Jd7Ro9zO908h3DMAzDMAzDMMyuRggyxfX0AOsd64RREJK7nbB1J5Eq3NFRUuGurdGwXI5eex6puB2HDHZAlB6naZGJyzBIZSqVxJLN7dOdYidTzFIpoLeXkufOnKH2VdWrFckMIeNoNI3aT8bNCEGK7tXVKE1QHjvfp3FLS3R8JybomGsaGd7Wv5dAoUAK7slJMtulUhRhIhMYpXnONElBLdXUzNbcbLrf7cbEMAzDMLuG2VnyrycSUZivvIRf6+dRRaESSwbO6joZoPr6qDR7+9uBN9+k8sj36XJt2/S+uyRTFFo39/N4+8iyVpawsq2FiPp62NzO3YY7RaFyzLajkkwIen/5MhnoVHX75q1bLdvuwE9b9w1cjjEMwzAMw9w/zFZm4fgODvQcQMbKYLWzipgVQ9NpwvZsBIL0pt3pZwECMtCpPnRVh6qoiGtxQAC+oILeFjYM1Qg1Z8y1UaGGCXI3iwcPIhBwPCfs1N7zPPjChyIUKEJB4AdQhAIv8CCEgKVaMDUTQ5khCAgUkgUMpgfhBd6OGcaGs8M4eXFdl5csYKG+gMmlSWStLFJmCrVODZV2JRxvaRZM1cRw9s7fSBmqseG51rmGdm99+ObpGYZhGIZhmO1zVwx0QRDgAx/4AGZnZzckTB09ehQ/+IM/iPHxcezfvx+pVApCCKytreH8+fP427/9W3zuc5/D1NRUOM/58+fxgQ98AN/4xjfuxqYzDObn1yOyl5YQBAEOHDiAs2fPotls0g2cZSGdTqPVaoUGLM/zoCgKDMNAu92G4zicRLcNpPGw2/y2OY1O0t2e8rWmaXBd96px0jTneR4cx9mwHE3TEI/Hw7S3VqsF13XDdXc6HdTrdRw+fBiHDh0CAIyNjUG7Az2oa5qG8fFxnDp1KlxXqVRCpVIJjXPSyLeT21IsFjE1NYW+vj7Mzc2hUqmgXC4j39VV6Z1IvmMYhmEYhmEYhtn1CEHpXKOjpH7eLQlbd4JuFe6TTwJvvUWJcJZFD9sm41VvL71XVTJomSbNI5XD1Wpk5FLVKEJlq3YKAlKEqyq16eHDFJWxvEymLyFIweq6tEz+bmUjQUBt43mkytY0UmOvrdGxMgyKN/F9SqOTKvwgoGNnWTR8djYywY2PA6dOUbwNQOdApRIpsGXynBw/NkbP09MP9ufjdrlXMTEMwzDMPefSJeDKFeqTYWGBSidNo0u41Gx2lzgyfFf2UZBM0mVhzx4a9s53Au9+Nw2TwbKqCly8SGGz7fZGc5bj0Hq4n8edodtIJ49b93Hcqs8IaV6Lxej12hodF2mslGVBoXBt85brXn07ks3SuXUzZdvDXJpxOcYwDMMwDHP/MF8jrd5CYwGmamIwPYhapwYhBGJ+DK7vwvZsOJ4DL+hKSBOADx9BEJmzDGEgG8tCCIGcn8NKe4XS6rzOBgMesxFLt6AKFXW7fvMJdAC8YL3De4/aWCbaqSqlz0EAChQECCgbUAgk9AQ6XgeP5x7HYHoQQogdNYxpiobxgXGcunwKh3Lrurx6CZV2JTTOSfOeHD82MAZNufM3UjIdry/Rh7nqHCrtCsrN8lXpeJV2BQIC/Yn+cD6GYRiGYRjm5rgrX5N/6lOfwquvvhqa4Pbu3YuPfexj+L7v+75rznPs2DH80A/9EH79138dn//85/HzP//zKJVKCIIAr732Gj75yU/iJ37iJ+7G5jMPOfZ6947y2fM85PN5BEGAcrkMIQT27NmDarWKer0OXdehqio6nQ50XYdhGGg0GgiCAO12+17uyn2B7/uhEXErNhsRpbHO9304jrPBRNedcKnrOnzfh6Io8DwvNOvJdDdpdASATqcDwzBgWRb6+vqwf/9+jKz3oj4yMoIxKQ67A4yNjaFarWJ6ehojIyMYGhrC4uIibNuGYRjo7++HZVk7ui33KvmOYRiGYRiGYRjmvkGmaz3ICVvd5qnDh0k1Oj9PKt5Wi9TcmQwwOAgMDJDqNBYjtfaVK0CjQarhWIyU2wC99zxadjpNz0FA42Vkipyu0wG+8Q1SEedywMrKRsPX9WJaHhakInurdpDRJrLNg4DaTkbPmCap7pNJUmDX65Hae34+OrfHxsgEOT1Nw4aGgMXFSKnd30/Kb4DOkyAA/viPr45HmZoiQ+b4+IOR0Hi7cEwMwzDMQ8vcHF1yLStKhbMsKodqtShkV16+5SVcVemy29NDhh9dB773e4Hv+i66rL70Eo378z+PAnvX1mhZ0jufSlEZNzNDl+pO5x41wgNGd1nabZrrLnfkcF2P+qPYXMK1WtFDBgdvNm8NDFAY9unTV5dbQUDnl65TWXa9sm1kJOr34GGFyzGGYRiGYZj7B5kyttRYgg8fffE+Ml0BSJkpmJqJtfYays0yGk4DruciQABd1aEIBaqihqYnH6QVKyaL6E/2Y7m5jIvVizi/eh62b8P1OY1uK5RAgaZolBa3Ke1vuwQIQvOdgICqqABI45cwEtAUDS2nhZbbQsfrIK7HsT+zH/sy+wDcGcPYWGEM1XYV08vTGOkdwVBmCIuNRdgepRP2J/phaeu6vN4RjBXuzo3Ubk7HYxiGYRiGedC4Kwa63/qt3wJAxpdCoYCvfOUrOHjw4Lbn/8Ef/EE88cQTeP7557G8vIwgCPBbv/VbbKBj7grGeveO8nlxcRHxeByqqiKfz0MIgXQ6Tb3XrKfOpdNprKyswPM85HI5LC4uol6vwzCM0KTFiXRXI9tkK/Pctdpr83Df90MTnqqqUFUVmqbBNE00m01omham0SmKAsdx0Gq1YBgGOp0OFEVBKpWCaZqIx+MYHByEoigwTRNjY2MYGxu7Kg1vJxFC4Pjx4+jp6cHp06cBAENDQxum2eltuVfJdwzDMAzDMAzDMMwuYyvz1MICKXGlCjseJzXpU0+R2S2ZJLXvygpNI5Pimk1SA8v0Ocui155HKlXTpJiMTodU5YZBau9cjgxdQUDLAsi4B5BJ72FFUa49Tqb4SXW+42w8DkJQ27pdYhBVJZPb/v0b1dhCAMePkyJ//XsJbPpeAqZJKYWVCvDaazSs1QKWljYqtgEyZFartMyH2UR3q+l+/N0LwzDMfY80tbXbdJnWNLp0BwG9bjSikicI6DIbj9OjWKTLQk8PJc9J8xxAJVUiAbzwAqXTnTtHfRrU61SyDQ3RZcW2gY9+lC7VQXC1CYu5ea71895Ww2U/EYpC5ZhpRmVbu03nRywGnDlDxw2IzFuGQX1VzM7S8K3KrYMHKeXw3Dl6vVXZNjbG/RkAXI4xDMMwDMPcT8iUsY5LvYBU2hXE9BhysRwyZgYtt4WkniRzVosMd67vQhEKTNWErupI6klkY1n0xnohhEDKSCEfy+Pp4tOIa3H8x2/8Ryw1l9B0muh43NvIZnzhw/ZtSo67jaQ+mTAXIIAf+FCgIKbHoCkaHN8h06OiwFANLDYXcerKKViahbpdvyOGMSEEju8/jh6rB6cXTgMAhjKbdHmqibGBMYwV7qxGsJvdnI7HMAzDMAzzoHHHK6i5uTlMTk6GxeRv/uZv3pR5TnL48GH8xm/8Bn7qp34KAPCd73wHc3Nz2L9//45uL8NsplgsYmpqCn19fZibm8Pq6ip834e33i1oNpuFaZqwLAuxWAxDQ0NYWFiApmnodDqoVqsQQkDTtHAeNs9tjRDimslz18P3fQghwpRL+VpRFOi6DgCIxWLodDpwHAdKl+hMURS0220oioK+vj7k83nUajXUajXs27cPxWIR4+Pj+OAHP3jXDGNCCIyPj2N0dBSzs7OYn58PE+iKxSKGh4d3fFvuRfIdwzAMwzAMwzAMs8voNk/97d9G6XLSeLW2RsrdWIxMcEtLwPLyRhWwNGtJBThAKvFWi9Sn8TgNq9VoOiFo/kaDxpsmKVhjMVKFOw6tV1Ei5fHDhkyXA6hdZdKcbD9FobbzvKidFCVqW1WNjkujQeMSCeDsWeDrX49U/N3xKePjwOgoKbbn5yOldrFIMRxvvklxNr5Pz6XSRtX43FykPp6epnNqfPwuN9wu42bS/TgmhmEY5oEhnaZn2ZeA79O//VyOUscAKqGkwU1RotLrwgUqhd7/fjLQyeSziYmrE8n276eHqgL5PPU/4Di0rh/5EeAv/5Iu/wsLnER3O3SnzwkRlU9blahyWteNxrfbUWKgLKHrdTr+6fRG81YsRqXYdsqtIKC0up6eq8s2NoBFcDnGMAzDMAxzf1BMFTG1PIWUkYKAQMtpQVd1ZK1sOE3LbcHxHJiqiZSewmpnlXRiig5Ls5CL5SCEgOM7iGkxrHXW8Ej2EaSMFJaaS3g0/yjWLq/B8z04nhMmpTGE4zmAABQo8OHftImue3oBunFSFRUiIG1goAZQoIQGO8lKawXfLn0b2Vj2jhnGhBAYHxjHaP8oZiuzmK/Nhwl0xVQRw9nhe2JM263peAzDMAzDMA8ad7zSO3XqFAAyDMViMXzwgx+85WX96I/+KH7hF34B7XYbAPDqq6+ygY654wwPD+PkyfWI7EIBpVIJ8/Pz8DwPrVYLrVYLsVgMAJBOp1Gv17GwsAAAcBwnTJzTNA26rqPRaKDDv05ehTS9dXMzRkM5rzTQAQjNczJ1ThrAuhPoNE1DOp2Gqqo4cuQIbNtGvV7Hvn378L3f+72IxWJ49tln70namqZpGBkZwcjIyB1f171IvmMYhmEYhmEYhmF2IUKQUrRcpjiLfJ5SzGo1Mrf19dGj0wFeeYVUwPU6TRMEpDjtNtR5XpR+JgQpuW07Mn+ZZpSa5nm0zliMlpfPk3nO9+mh6w+v4lsIaidFofaTyvogoPZWlKjdu1Xd0mgnDXWOEym2s1lSEM/PAy+/fHVKnKaRcnjz9xKuG6XTzcyQEl+uA6BzpdkkV4DvA48+Skr/0dGHW8G93XQ/jolhGIZ5oBgaivoIME269MrSSJZJBoUrhGG+rktlj+9TvwJf+xrwrW8B3/3dVIadPUvTb5VIZllktMpkaHohKKWu1QK+8hW6XK+sRH0ZMDdH989Wso+C7mGb29TzKFlOVaNyV5bFsRiVBbkc8MgjwGOP0fHzPDqe3/oWnRPz83T8kkmgt5eWV6vRubH+cyRGRujcet/7Hu5y60ZwOcYwDMMwDHN/MJwdxsmLJxE34kibadTtOhYbi1huLiNtpeH6LjpuB3W7Dl3VsdpZhRd4GIgPoC/Rh5SZgiY0XKldwXx9Hj1mD/b37Me3Fr6FudU5CCEQ1+LYl9mH+do8/MBHy2nBg3evd33X4PgONEWDH/hhgtzNIo1xQggYqgFd0cNxqlChqAraTht+4COhJ2CqJvrj/QgQYF9mH4rJ4h01jGmKhpHeEYz03nld3nbYrel4DMMwDMMwDxp3/Cv0UqkEgAq8Q4cOhQaWWyEej+Pw4cN44403NiybYXaCmZkZAMAh2bXjOpqmYXx8HKdOncKhQ4dQqVSwtrYGAGi1WgiCAKqqoq+vD77v4/LlyxBCoNlsotFohMYtTdPQarWgqip0XQ+NdQyhqioURYHnebeUROd5HlRVDZPnuofLhMB0Oo1SqQQhBNrtNhzHQa1Wg2VZMAwDFy5cgKIoyOfzeOyxxxCLxWCaJoaHh695fjxI3Ivku/sR13U3tE+9Xkcul8Pzzz/P7cNcxcPwv4O5dfj8YK4Hnx8Mw+wU/P+EuSUmJijuoq+PTFC1GimD221Kpbt4kZLnVlZI4dtqkRo7n6dok0aDDHhSJQwAvo+ZgwcBAIcuXIiUvYZB65HRHLUaqYk9j9anaRTHUa+T8ti2N6qUHwbkD+Hd8SVyuFRtdzpRQp+cXqryNY3azvOi9lMUUl3rOimxbyYlbnaWltNqkWp7ZYWSBeX3vqkUbcP8PJ0Hmkaq8NnZq814dxrXvXaKnqbd/f+R20n34+8WHlr4ms0wDyb79tGj1YqMco4D9PfTZ35x8RBcly7lsr8AmVpWrVIJlEqROe6P/ohMVO9+N5nothsAq6rAf/7PwH/4D8Bf/EVk4pJ9HTA3hwwAlgG+MvS3uy1lieZ5VN7K/iJknwOqSkatnh4qk558koZLQxwAXL5M88zN0bIMg6YfHKTll8vA5CSdB9IEdi/KrfuNe1WO3cp1/galLMMwuxiu7RmGYW4PTdEwPjCOi6sX0Rfvg6gIGLaBC+oFBO0AfuDD9WQHY0DH60BTNOiqDl3RkbNyaLktpE2KBLc9G+cq57DWWUPTaUJTNDSdJoIgQI/VAwBwfRe+d/NJaw8yQRDcVjKfAoW0fOt/XuDBD3yoQkXTaUIRCgzVoOPhNuEFHp7ofwKmZiKuxWFp1kNlGJP1w/ih3ZeOdy9wffehb4MHDa6RmYcBPs+Zh4EH4Ty/45VEvV4PXyeTydteXvcyGo3GbS+PYSRf/OIXAWz9gR4bG0O1WsX09DSefvpptNttVCoVCCFCU1ylUkGr1UK73Ua9Xker1YLrutB1HbZtw+v65UzTNLiue1MJaw860vjm+z6CINhgprtRO8nxcj4hBHRdh+u6YcqcEGLD/6NsNotGowHXdVGv19HT0wNVVXHgwAEUi8XwPBgbG4Omadc9Px407mby3f1EEASYmJjA6dOnYdt2OHxpaQkAcO7cOYyPj3NCH7OBh+l/B3Pz8PnBXA8+PxiG2Sn4/wlz02yVLgZQWpmMu5idjZS8nQ4Ny2bJSHXpEqmxm81IWbz+ncgX3/MeAMCh//bfSDW8nhwPVSXzXatFxrx2m9ShsRipxhWF1MKrq5FJ7GH6TkUqsz0vUmorCr2Xam3ZHopCx1C2k3zfrdaWy2u1aLhUWm83JW5+np4XF+n88DyKTnEcOhfkdpkmnR9vvknDjhy5e4ruIKD9OX2a1MbdTE0BJ08C4+P44smTAO7B/8hrpfsxDzV8zWaYB5PhYXo0m2R6sywqdV54gT7zn/nModDIpihRAp3j0MMwgDfeAPbsodJpeRn4y7+k0gjYWKJtTiTrvrSrKvB//9/A//V/Ab/8y5Ru9p3vsIFuu8iv/LtLUBnwK/s3kNPIUk2Ol/1NyGkti/qP6Okhs+M73kGBvRcu0HBVpWO+skLHtF6nUsuygHPn6FwaGaHyOZulaRYXyUQ3P8/lxXa52+XYzVznt1nKckoew+xiuLZnGIa5fcYKY1huLuO1K6/hidoT8AIPn1I/hbpdhypUAJSSJo1wukJJdEEQQFM1rLRWAADz9Xm4nguhUApavVqHqqiwNAv9iX7k43kcyh3CV+e+CsdzOIVunQBkVAwQQIESDtsuAqQDVLCu41N1OL4DAQEfPmzPhqqo0BUdhWQBa501BEGA1fYqHut7DGkzjZcOvPRQmaW664fdlo53NwmCABOlCZxeOA3b23hDNLU8hZMXT2J8YPyhMFU+aHCNzDwM8HnOPAw8COf5Ha8u8/l8+HonEuO6l9Hb23vby2OY7SCEwPHjx9HT04PTp09jeHgY586dQzabxdLSElZXV7G8vAzLstDpdOC6bmjiMgwDQRBACIFYLAYAG8w3DMLkOM/zQhOcTKDbrslQUajXGmO9C1dpyFNVFZ7noVqthuY8TdPQbDYRi8WgqipUVUVPTw/279+P5557LkzKHBkZwdjYzsa/M/cnQRDgxIkTOHPmDABKn1xaWoJt24jH41BVFbZt49SpU6hWqzh+/DjfpDMMwzAMwzAMc3/SnS4mv4c7epQUugApgOfnSf27uhqZ2aTCW9OiCBXbjhSdXWnxoXpYCEo/UxTgwAEy5TUatG7bpjS7ffuAK1do2nabFMXAw2Gik3Emuk5tpGnU/o5D41WVFPYyUQ6gdvG8q1PopGlOqrljMUqNU9Wbjy2R32tdukRq/VyOVNtraxuPSaNB689kaB3f+Q7w0ks71jzXJAiAEyeA9Xt4tFrA0lIU29HfT8NPnaJtTCTu/DYxDMMwDy2aBrztbXQZmp8Hvv1tKmmkJ16WUUDkiVfV6CHLplKJlpXPk4Hm6aeBJ56ISjRge4lki4vA299OpcCFC7TuB72kuh3kMepuoyCIyiuZGChLMFmymSaNl4ZJWZ5pGhnnMhlg/37gn/5TKo8mJig1UAh6fustKrPqdTLMAZHxrlSiMm7fPjJPVipRecY/P97/3EwpW60Cx4+ziY5hGIZhmAcTIQTetf9d+J+T/5Peg0xYAKAqKlyfEuiCIECAAKpQ4Qc+mk4TF1YvQEDA9V24vouW24Ku6kgbadS9OhRQ8pmhGuiN96JhN5CLU2pd023es33erQTrf9tBQJDpTiiIaaSTlClziqeg43bg+z40RSNjnABWWiswNRMpPQUhBNJmGkf7jj6U5rGHnSAIcOL8CZxZWdfnuS0sNZbCBLr+BN0Qnbp8CtV2Fcf3sz6PYRiGYZib544b6Pbt2weAiptz587h8uXL2Lt37y0ta25uDrOzs+H7wcHBHdlGhtkOQgiMj49jdHQUZ8+exRe+8AWcP38exWIRjUYD586dg+M4aDabUFUVruui3W5DVVXE43EIIWDbNoQQ0G7Uk/dDRHfynEzpk0a3m1mGNM9JA1273Q5Nec1mE6ZpwjAMxONx6LqOZrMJ13XheR56e3shhEChUIBlWTBNE2NjY5wkxoRMTEzgzJkz8H0fMzMzKJVK4Tk6tK5EmJ6exqFDhzA9PY2enh6Mj4/fwy1mGIZhGIZhGIa5RWS62NISqTez2auV2ZZF6k3HiUxerktGJJlqJh9ApCSWmCZNaxi0rGQSKBQo8U5VSQncbJI6uF4nY5aMR5GpdVJ1DkTruV+RxjZpCpTvAWofVaXhySS189oajeuOO+k2FsqoEyCKPpEKfNum14YRmRc97+ZiSwyD5lmhXpyxsEDDAFJzS6V4tUrrW1sjpe/cHG3/nf5ebGKCFMe+T+dUqbRR9T43R+fboUNRezAMwzDMHWRsjC6L0hAzORl527t98N2lla7TZdU06XllhS6vlkWX02ZzY4kGbC+RbH6ePPB/93f3T/qcLGNc9+6ut/sYbTUuCGibZKkmt1WWuKpKRkWASo4goDLIMKgU+dCHyDzneVcHQCtK1NeBTCRcXaVp+vvpGO7ZQyY7ICrF5DNz/3Izpez0NBky+ecohmEYhmEeVM5Vz2F8YByX/u4Smk4TPVYPMkYGgQjQtJtoOk3U7BoaTgNNtwlN1eApHlpuC6qiomE34PleaNZyPAcpM4WMmYEPH2udNeRiOZQapdCIx0T4WO/8fhvtIiCuejZVE0k9CU3V0HAbcBwHXkDHI6bH6FmLIabHYLs2aqghn8jj0tolKEK53uqYB5SJ0gTOrJyBH/iYWZlBqV7acP7NVedQSBZwKHcI08vT6LF6MD4wfu82mGEYhmGY+5I77uJ58cUXYZpmmLj127/92/jd3/3dW1rWv//3/z58res6XnzxxZ3YRIa5KTRNw5EjRzAyMoKJiQmcPn0ab775JvL5PFZWVpBMJtHpdGBZFoIggO/7cF0X6XQajuPA9304jnNTBrEHHdd1oarqVW0izWvdw4UQYaJf92tpSjRNM0wD6zYtmqaJXC6HVCoFAMjlclhYWIDnecjlctB1HXv27MFLL72E4eHhHTE5uq6L2dlZzM/Pw7ZtGIaBYrG4Y8tn7g6u6+L0+q/XMzMzWFhYAABks1mkUqkw5VAOl/8bRkdH+TgzDMMwDMMwDHP/sTm+Ih4n1ebqKql35+c3JsGZJiXOOQ6wvExqblUl1a9UE8v7eqlC1nVS9yoKqYsLBUqZM01SAafTZLqybVKOttv06HRoOcqmH89V9f5OpOs2uQEbTXSJBLWL3LdYjIbXapFiW6bJ1Wo0znWjaBsgiq7pjkORbZlOk0nxZmJLikXgK1+hY9do0HGPx2l4KkVGv2aT1PuOQ6pw16VptpNwdzu47tUKdIDcBKkUtVGlsnF4u313jH0MwzDMQ4sQlBK1ugp87nNUBsnyxffptedFqXOKQpfQdju6hMvyp1aj+ZvXCEW4USJZqwVcvEiX8N2eVibLobtd4m1OnZPvZd8N3d57z4uSAxWFjo1h0Ps9e6hMO3eOjpem0fEZGQHe/356CLF1APToKJkgHScqhzsdKpFzOZrmzBk61kJEqWTF4t1pI+bOcLOl7MgIGe5GR7mUZRiGYRjmwWS+Nh92zK6pGvam9mIgOQAAqLarmFyaREyPoWE3AAB+4JOGTGjw4cPzPXiBBxEIxNU4mm4TcSOOHqsHbbeNptvEWmcNLaeFhtMA++ciZJLczRIggAIFpmZCCAFDM6AqKgzfgOd7EBBI6Ank4jlYqoVH849iubWMMytn4LouYloMju+ECYPMw4Pruzi9cBoAMLMyg4X6uj7PyiJlplDr1FBpV8LhI70jmFiYwGj/KKUZMgzDMAzDbJM7XjnE43G8973vxZ/92Z8BAH7v934Pzz33HD70oQ/d1HI+/vGP4+Mf/3hoqHnPe96DZDK549vLMNulO5HuU5/6FADAtm309/fD8zyoqoorV66gWq2i1WqFCWvyNUNIE5x3k12dKooSJv3J/wumaULXdSQSCXieB9d1KfZd02CaJjzPQ6PRgK7rMAwjNNslk0kUCgUcO3YMIzsg4gqCIDRX2pt+gZ6amsLJkycxPj7OCXf3CbOzs7BtG61WC6X1X6+PHj2K/Hr3vktLS3DXu74tlUphIt3s7OyOnE8MwzAMwzAMwzB3FRlboeuROnNgIBpfLpPhanmZ1MIyXc73KVrF82gZUmms62S0arWiZfg+KYATCVKJXr5MyxkYIHXx6ipFKfT1RYpix4lS2rrT1aRSVEaSSAPZ/fLdi1SFd0ecyPeGQfuXTFLbXLxIx8T3o30Xgp5lAqDr0rB2m5YvlykV+qZJqm/HoXbtdKJjBmwvtuTgQTouly7R8XIcOieWlugckGa0eBzIZGhbGw2KxdlOwt3tsJUC/ejRq1MUJydpvNy+O23sYxiGYR56hADe9z4yu1y+TMOCgC5b0iAnf06Q5YBt03yOQw/pfzcMurRuxY0SycplulQ3GpHxa7ciy6O7XdZ1t0n3a9nngdw2GeQrzXO6TmWbEFT+djpUurkulWDpNJW3rRaVRG++SemEWwVAHz4chf2m0zS8WqV5ZcpdqUT9UBQKtD7TBIaH70oTMXeImy1l13+O4lKWYRiGYZgHFtujm6QgCCAg0JfogypUtN02VKEipsUghEDdrqPjdsJpfeGHnbUrQqFO2iHCVLO224alW2i6TXi+h47XgR/4YeIas73UOWCj0U6BAghAV3RYqgVTM5G20lhuLqPjdaCrOlShIq7H4fs+4lYcC/UFNN0mDNWAKlS03BbSZhq6qt/J3WN2IbOVWdiejZbbQqm+rs/rO4p8PLohKjfLmFyaRKlewlBmKJxvpJdviBiGYRiG2T53Jev4Ix/5CBSFbkY8z8OP//iP4yd/8icxPT19w3nffPNNfOhDH8LP/MzPAECYNvWRj3zkTm82w2wLTdMwPDyMRx55BL29vVAUBUEQoNVqQdM0JJNJBEGARqOBSqUCz/M4fW4d2VYAtmyTayXSqaoaGu9UVYVhGIjFYkgmk9i/fz+KxSLy+Tw0TUM6nUY2mw3NdgBgGAaEEOjp6UEqlYLneRgcHLxpE99WBEGAEydO4NSpU6Hp6sKFC5iZmcGFCxfQbrdh2zZOnTqFl19+mc+F+4D59V+vl5aWEAQBstlsaJ6TaJqGbDaLIAiwuLi4YT6GYRiGYRiGYZj7imKRFLqrq2SSq9VIrbuyQqreRoMUna5L07VapNjtVmfLKA5pduvuXEYaw1otUhTLZcrIlT17KFaj2STDWKsVqcdlkll3HInrRgawbkOZqkYK53vNZqW1VIN3J/UBkUJbVSPjoRzn+2T2isdpX3U9UmLncsDgYBRnA9B42aZyPboeqdB1ndq90aD1bje2JAiAr30tSgeUx93z6Fyp1Ugt3mzSeLncXI62405H3WylQN90D498noYHQWTG5Ht4hmEY5g4TBGSYOneOfOeyHJAGuXY78rdrWtQ/gSylbDsqFdptel8ub1xHuby9RDJZwu12fD8KL+42r90LZHmWSFBJlkpFpZcsu+QxGxoC9u+P5pNlmDQ+9veT6e3UKeDllyNjpCyTUimab98+et/XR+vUdZqmUqFSKwioj4VDh2i6sTFOIbvfudlSdv3nKC5lGYZhGIZ5YNEVHRdXL8L2bLi+i/naPKrtKirtCi6uXUTbbaPWqUGBAl3VoSs6vMALp1cVNTRz2Z6NlJmC67touk1UWhUAgKqQBs0P/PtWwyXW/+7VuhX5JxRoigZd1WFoBo70HsEjPY+gP9EPS7PQY/UgY2YoVVAo4bEQEOgxe5AyU/B8D4PpQXj+7Wv4mPuL+dq6Pq+xhAABslZ2g3kOAPLxPLJWFgECLDYWN8zHMAzDMAyzXe7K1+hPPvkkfu3Xfg2/8Ru/QTccvo8//MM/xB/+4R/isccew/j4OA4cOIBkMgkhBNbW1nD+/Hm8/vrrmJmZARAZ54QQ+MVf/EUcO3bsbmw6w9yQIAhQrVbx6quvotVqYW1tDb7vQ9d11Ot1AICu63AcJ0ye49Qxwvf90Fzr+374OZfDgiDYkNa3+YsKacATQsA0TWiahv3796Ovrw9zc3NIJBKoVquIxWIoFovh8lRVRTqdRqlUQrPZRF9fHwYHB2Fsp5f1GzAxMYEzZ87A933MzMygVCpt2O65uTkUCgUcOnQI09PT6Onpwfj4+G2vl7lzyBRB+ZxKpbacLpVKoVKpXDU9wzAMwzAMwzDMfcXwMPD//X9kmksmgStXSMGp66TIbTbJJKWqQCxGit9WiwxS0tRWr0dRIb5PJjddj97bNr2XDyGAY8dI+el5tDzTpPU7Ds3XbNKzVAXLyA+ZgicEzSNNXe12pAy/l8IH+R2QokTqaU2LTIGyXWRqnjQBym2Ox6mtL1yIzGqOExnwADLaxWKk6BYiUl+rKo3r3n/ZnopCxykWA3p7tx9bMjEBnDlDqu+pqSjmRlGi5ZtmZJhbXiaF7+Agjd+B716ui9z3bgX6VqRSpD6XbcP38AzDMMwdJAiAEyfoEprJ0OXX92m4qkZGMXlZarUi373vk+mq06FhsRiVDYpCKVTZLF3WajW6tAHXTyTL56MUs938U5UsK2XbyGHX6gdx875cq/yT7dzd3t3zbzWfNDpms8Ajj1D7N5tU5lQqUVvG49S+QUBmRtumcstxqOSTZVIQ0Llw6BAwPR2VUbJMkuXV4CCtp1Qi050MGE6laFsOHYpSx0ZGyEDH3N/cbCm7eXqGYRiGYZgHiSAIcGHtAs5Vz2Gf2Ac/8DGzMoOYFoOpmbA9G17gYbWzio7bQdJIoj/Rj4bTgB/4MFQDTacJ27MhIGCoBtJGGo7voON2sNpZpWFmGq7nwvGc+0bPFxrmBL32A3+DgU4mwsnUPT/wNwy/2XVtNe9Vhj0BCEVAV3QkjAQKiQL64n3QVA2P5B6BDx+LjUVYqoWhzBBURYXne1AVFWkzjVK9hKbbRF+iD4PpQRjqHf4emdl1yMRJ+Zwyr6HPM1OotCtXTc8wDMMwDLNd7lo/dL/+67+Oy5cv45Of/GR4sxEEASYnJ/HWW29tOY80nUjjXBAE+LEf+zF89KMfvVubzTDXRaaNXblyZcPwRqMBgJLOVlZW0G634XneBqPYg478zN4IOY2qqvA8D8r6L4VCiDA1rrvN5P8PmSInhICmadA0Dfl8HolEAt/zPd+Dubk52LaNv/7rv8bKygoMw0AymQzXW6/X0el00NfXh2eeeQZCCBRv1Mv6DXBdF6dPnwYAzMzMYGFhAQCQzWaRSqVQq9VQqVTC4SMjI5iYmMDo6Cg07hZ01yKNlfK5Jn+93oQcvnl6hmEYhmEYhmGY+5atlMXS8KUopPKVyuZmk1TBrRYpvKW62fOiaeSyZOJcPk8qclWN4lI0LTK+yaS1bnOW7280gXWnzuk6rSOTIXVyu31vzXNAtH65jek0PaTJT8bJtNuRslqq2gcHSS1dq5FavlwmxbbcV8uK1PUrK7Qsx6HlyXtSGWEjDXztdrTeeJyWc/QoTXuj2BLXBda/90C1StvY00PrFmKjWa/RoG32PIpNKRRo+G1+93JD5H5vVqBvRg6Xohi+h2cYhmHuINJ/7vvUN0GpRJdM+ZA+eoCepWlMljnyvWHQtIkEXYKDgEooaZwTgi6510ski8Woj4LdTPc+y3JUhvbKS7csMSXSFCeNd3IZm5Hz3MhgtxnZL8HQEL2XxjhpahsYoPHFIpVsqholyyWTdFyyWXoIAaz/TISRETLipdNUMs3N0fEsl6lUHhmhku2tt2h5ySSl22kaTW+adJzHxna3IZLZHjdbym6enmEYhmEY5kFiojSBhtOAIhQ4ngMv8NB222i59N2x67mRUUwI2J6NttdGLpYDEBm+2m4bEIClWWg4DehCR8fvQEBAFSrWOmvQFA0JIwHbs6FAgY8tbiZ2EeF+BwIBAqhCDY1yAYLodRAAAZndbsU8tx0ERJjilzJSMDUTuVgOj/c/jiO9R3Bp7RJMzcSzxWfxxtIbaLttxPQYkkaXhs+uo+N10BfvwzN71jV8qTv8PTKz65CmSflc61xDn7c+fPP0DMMwDMMw2+WuOjb++3//73j66afxq7/6q2i321f12rHZINNttIvFYvit3/ot/NzP/dzd3GTmIeJnf/Znb3oemTYmjXFzc3Nhylmn04Hv+/A8LzSHSaOXty4ik+awB5HtmOe6TXYydU5+7hVFge/7Gwy0ch5N06DrOjRNg2VZ8DwPyWQShw4dChMtFxcXoaoqHn30UczPz6Ner6PZbMIwDNi2jSAIcPDgQRSLRcRiMZimieHr9LK+nfNjdnYWtm2j1WqhVCoBAI4ePYp8PooTL5fLmJycRKlUwtD6L62zs7MYkd2EMruOYrGIqampMNmwUqmgXC6Hx7Wvrw/lchmVSgVCCPT394fzMcytXFuYhwc+P5jrwecHwzA7Bf8/YW6a2VlS+C4uAjMzkZrX90mprKqk2Lx0iabP5cg8p6qkJO50IsMcQK89D/B9/OzHPhaZ4qQxznWBI0douvFx4EtfovlsO1oWQPOZZmTUk+poz9toFpMGtJ4eYG2NjFz3GqnmlmbBPXtIYS3V7u02bWunQ9sfj5N5Lp+n7Y/HI2W9YdAxsSzaX9el+Wo1Gt9qRYl/lkXLDwJqD8ehaTWNltnXRyru/v7txZbMztJxkSZJVQUOH6bjvrQUmffabRqfSETbsd2Eu9ulWKRkvK0U6JJyOTRs/mwuF6ndGeYew9dshnkw6fafz8xQidVuA3/5lz+Lcjm6fG7+SaW7/wFNo8uqZdGluK+PLt8HDtC0tk0lQn8/XXqXliihanERePlluswND9NyikUqC2SfCLuRbpObDBuWfTc4Du2H7K+hO72vux2liW7zMjcjU/7kayGuNufJPhvW1sgI2dtLx1BRqJ1Nk45PJgM88QQd73iclmtZwN69kYlOGuYmJ8lIOTREpd3qKpXVhQKZ6zanC5ommfRisej5h36Ilsf9M94fbOc6f5OlLNZ/juJSlmF2IVzbMwzD3B6u7+L0wmmoQsVKawVfTX4VQRBAdVR0vA78wIfru/ACLzRwaYqGwA+Qj+WRsTJYbCwiaSQRBAE6XgdxPY6m24QqVGTMDOLJOEzNhO/7GEwNYnZlFiutlTtmNNtpNqfMpcwUXN8NE+k6XgeO54RmwK3260bGOpkyt1UKnTTu6Yoemub6En1wPAfZWBYAkLEyyCfyWG2vIhfLwdRNzNfnUe/U0XSaMFQDtreu4cseRDFZREyPwVRNDGfv8PfIu5CHvX4opoqYWp5CX6IPc9U5VNoVlJtl5ONdustmGZV2BQIC/Yn+cD7m/uBhP8eZhwM+z5mHgQfhPL/rX6n/3M/9HH74h38Y/+W//Bd86lOfwtzc3FXTdBtv9u/fj3/yT/4JfvqnfxoF2VMxw+wCNqeNeZ6HVCoF13WRy+XQaDQwPz8fplCpqgrf9xGPxyGEwOrqKlRVDY12DxKb0+cURQnfbzbWyWmDIIBhGHAcB4qiQNM0uK4Lz/MQBEForJMmRFVVYZomenp6YFkWVFVFLBaDqqpYWlrC+Pg4Tp06hUPrXa2WSqVw3ZqmQQiBQqEQjh8bG7vtFLj5+flwXaurq9A0DYuLi1hZWUEmk0E+n0c+n0c2m0WlUsHi4iKGhoYwPz/PBrpdzPDwME6ePAkAKBQKWFhYwOTk5FXJgnK8ZVk3NGTuNK7rYnZ2FvPz87BtG4ZhoFgsYnh4mNMNGYZhGIZhGIa5OebnSY2ZyZCK17ZJZd2NNM11OqQInpsjRbGMB5Gq4+70NYAMV7pOit/+fjJeZbPAsWPAuXORQcvzorS5TIZeN5u0bBn1IdXUQKSctm1adiJBKmVpXJNpePcSqQDv6SFz3LPPkrr60iXaJ2mIA6KEudVV2odajYx0rRZNl0pFRjshqO3l/kukyty2I9OjTKKLxegYKgptyzvesb3YkvXvPbC0RNPu30/LTiRoWfIc8H1ab7tNZkF5/two4W4nGB4G1u/hr6lAl8bFQmFnjH2uS+fu/HzkYOh2KjAMwzAPNd3+8/l5ujzKAFdpjgOi0kcizVxC0GV7YIBKg95eCo/1PFqW/GkhCKismJ+ny1AsBpw/T+OmpujyOD4OPP44zSfLDRnsu1uRJaVMlJOGN9k2cpru6WXbdRvjuvt32Lz87hJIlpfdRrwgoJIHIPObnF6WWZkMvVdVKj2yWSo34nF6ZLNUcg0O0rz5fDTN4iKZ6PJ52j6ZHlgqbUwXVBTqt+DQIXr97LNRiDDz4HAvStnrwWUuwzAMwzD3itnKLGzPRsNuYKW1Aku14PgO4kYcVkCdhnm+h0qbiiNVqHADF47voO228Xj6cTTdJq7UriBtpZHQE7A0C0EQYE9qD9puFPwgILBQX8CqvQpd0dERnW11Gr8bCBBAgYKEkYAiFMT1OGzPhud5sDRqp24T3VYoUBCs/3UjsN4JfhBp+7oNd9K4pykaNEWDruho2A0c7TuKfDyPtc4aFhuLGMoMIR/Pww98HMqta/hQCpejKRoEBArJQjh+bGAMmsIF58PGcHYYJy+u6/OSBSzUFzC5NImslUXKTKHWqYWf+UKyAEuzdtRs6fouZiuzmK/Nw/ZsGKqBYqqI4ewwn48MwzAM84BxT67s/f39+MhHPoKPfOQjuHz5Ml577TUsLS2hUqkgCAJks1n09/fjmWeewd69e+/FJjLMDdmcNiaEwEsvvYR2u42LFy+G6XKu68K2bSQSCaiqip6eHmSzWZw9exarq6sQQqDdbt93JrrutDj57G0hSOtOlOuerjtRTib46boe3nRLw6EQAoqiQFVVaJoGwzBgWRZ6enpw8OBBZLNZrKyswHVdZLPUg41t2xgbG0O1WsX09DRGRkYwNDSExcXF0FzU398Pa70n9pGREYyt97J+O0akTqeDixcv4vTp01heXkYul0O5XAYALCws4OzZs9i3bx+SySQqlQrsdWGb3S1wY3YdmqZtacisVCqhce5OGDK3QxAEmJiYwOnTp686j6ampnDy5EmMj49jbGzsqtRXhmEYhmEYhmGYLZH3Fo5Dau3BQTJIra6SglLTSCW8dy/wxhs0vNOh+WT8h+terUaWKm2AVL+WRQrMeJwMWZoGXLxIyuN2OzKIGQYtDyAT3WaltKrSwzCidDuA1KUADWu17myb3QgZWxIEwL59tE2rq8Db3077+o1vkHr63LlIEV6tUhupKrWt69JypDEtm6Vpi8XI6Dg/T/vfbUBMp2ndvk/HKRaj5crYml/5FVLSbwd5bsjnAwfodalEy8vlIjNfvU6q3v5+Wvd2Eu52Ak0jd8CpU9dWoAtB2ybH36qxLwiAiQkyQm7+bqfbqbAdcyLDMAzzwNLtP6/X6VIsBHnjpbdd9guwOYnOMCKjmGkCjz0WGbKSSSoJajWaZ2WFpj92jIafPk2XPkUhc1ZfH5VE1SqVdzJA+H5AUaJtNQwqaYCNJjpVjcqo7st6909vcvqtzHSqGh0P2e+BptElXpryZLhuJkPt7TiRUa+nh0xt58+TyU6WYY88QqXA5rZOpej4yBJiaIj2bXqayqahISoPu9MFZbjw3SqrmLvP3SxlrweXuQzDMAzD3Gvma3QjNb08DS/wkI/nUW1X0XAayFpZmJoJgIxza501eAHp1TpeB1fqVxBcCTCQHEBfvA+e7yEXz0FA4GDPQezL7IPne1jtrKLcLOPK2hUAQDFZxFpnDYqjXNdwthtxfOoZJabFoAgFuqJDUzTE9TjqNqW9+YG/wSSnChWGYsANXHi+t2USnSpUKEIBBK3DD6hdus1zhmYgbaZhaRb64n3QFR0XVi8gCAIUk5QMNpQegqEZmF6exkjvCIYyQ1hsLIYmpf5Ef2j4G+kdwViBb3geRjRFw/jAOE5dPhWZLeslVNqV0Dh3J8yWQRBgojSB0wunYXubtHfLUzh58STGB8YxVmDtHcMwDMM8KNxza/zevXs3mOQajQbOnj2LVqsVGpAU2d0fw+wiZNrY0tJSaPzs6+sDAOzZswflchnNZhPlchmtdaFWoVBAsVhEMplEPB7HzMwMVldXEQRBOM39hKqqoflNpsxdqxceaYJTFAW2TfHrvu8jCIJwnOd5YbqcNBRalgVFUeB5HhRFQbFYxIEDB5DL5QAAuq4jk8mEiXQAYBgGhBA4fvw4enp6wqTAoaGhDdtkmibGxsZC89zp06dv2YgUBAEmJydx7tw5AGQSXFpagu/7UFUV6XQaAHDu3Dk0Gg3E4/EwnVA+3y04rezmuVVD5p0kCAKcOHECZ86cAQC0Wi0sLS1t2CYAOHXqFKrVKo4fP8438gzDMAzDMAzD3Bh5jyqfGw2KGCgUNk63uEhK4VqNFNz1emT0Aq5WgXtepK5MJGheRSGFt22TEvnsWVITB0E0DCC1cLVK00qkOlrXo3V2K6q740dkVMm9QK5fqqY7HVK9F4uRqU7TSFXfatG+yHa0bZpeKr1bLdrHdpv2O5+PYlLSaYqoAEhZ7zhRWxhGdDxkuuA730mq2yNHaJrtxEtsPjfqdWB0lNZ38SINy+VoO4OAlP66TtMcP3731LVjY3S+3EkFehAAJ04A6/fkaLXoGHavAyD1c7V6d/efYRiG2VV0+89bLbo8lst0WZCXeflQ1asDfBMJuuT/w39Il53ZWSq/MhlKpUul6DJ84QJd7l9/ncxd3f0dzs5SqVAsAleuRMuXhrPdHK7QbXiTCXRANEy2kyz75DjZnjLkV5oUPY/a3XU3ptSpKpU0MkhXhvbK9cgQ5FiMLvnVKs1nmvTQNJomk6F1SIOdpkVloOfRsV9dpWPZatHx8zxaxrveRSXy+k9a2PSTFkyTyhY2LT3Y3I1S9npwmcswDMMwzG5AmlikacYLPMSNOHrjvciYGTScBhp2A4pYT08LAqhCDY1da501xPU4jvYdxcGegyg3y0iZKRzNH4WpmSimyCz32uXXsNRYghACK80VeL5HhrFdfI+0Fb7vQ1HpZklXdST0BAzVQLlZhirUsG3cgL5HFxDQFA0xIwbHc9ByWqT560qX0xSNOr0XChQocAM3bF8B6gxfUzT0xnphqiaEEKjZNbg1F6udVfi+jx6rB4dyh2BqJt61/13osXpweuE0AGAos0nDp5oYGxhjk9JDzlhhDNV29a6ZLYMgwInzJ3BmZV1757aw1FjasD4AOHX5FKrtKo7vZ+0dwzAMwzwI7JhTot1uX2U6kYaR7fD5z38ev/M7v4NvfOMbG5K4stksPvCBD+Bf/It/gce32xsyw9wFNqeHpVKpcJw0iTWbTWiaFprLVldXkUwm0el0oCgKenp6kEgk4HkeXNeF67r3RQy8vBFQVRW6rofmNk3TYNv2hiQ6uT/SXCfT5bqnEULAMIzQbKbrOizLQrvdhmEYMAwD9Xodvb29eO6555BKpaBpGjLrQrqpqSkIIdDb24tSqYR4PI6//uu/Do1hH/zgB3HhwoVrGsZ2wog0MTGBWq0WmiFXVlYQBAFc14VpmlhZWUE6nUYsFsPCwgLy+Xy43GKxeIeO1EY4rezWuVlD5t1ov4mJCZw5cwa+72NmZgalUmnD/4+5ubkwFW96eho9PT0YHx+/49vFMAzDMAzDMMx9TrFIsQJ9fcDcHEUdlMuk3JaUyzS8ViMlpWlGBjmZgCbNc/J7PvkcBGTKu3yZlJ/pNCkx83lSJCsKKYmbTVIXKwo9Wi1SLUv1dHfMiK7TQyqspWq6t5dUnY5zdaTL3UJGmAQBKeBbLdoeVaU0uv/9v0kRW6+TarvVilTa8TiprtfWNqbKyYS6Z58lY+OZM8DMDB2H7sQ+uZxmk94bBiUH7t9Pyxgfp+04fXp78RJbnRvLy7Qfe/bQeSHV+5kM8NRTtL53vevuqmqFICXvnVSgT0xQu/s+tX2ptPH8mpuLokGmp2lb+J6cYRjmoaTbf+66ZERZWdlYIuk6PcsSRj7H45QW19NDyWbf+Q6VDAcO0CW+0aDLzNQUTXv2LF2aLYsu164b9VUgf5LxPPLLx+NRcO9uZavgYVkayvGyTwWZGCcEvZYhxXL+VIr2WfZRsLISBfzK8kqWULFYZJ6TIcuxGC3fdalck8a8WIyOBQC8+Sa1f7tNJe7KCk1TLNKwixdp/nqd+j0QgsqpV1+lUgqgcmF09Mb9GjAPLnejlL0eXOYyDMMwDLMbMFS6kVJAxX/bbUNXdViaBcd30HAaqLaraLrNMH2q43Xgd3wYmoHeWC8yVgZXalegCAX/6PF/hPGB8VDL4/ou/vjbf4xys4z5+jxWWivo+B0k9AQszUKpUdoykW03IUD7YmjUVq7vQhUqAgTQVR2qosLUTLi+C0uz0HSaYXsCgB/4aNkt6KoOXdGhQoXrk25REQpURQ3X4cOHppK+LtQMChWGasDxHLiei0CQJrDttuH4DnRFhz1vw/EcvDD0AoQQGB8Yx2j/KGYrs5ivzYcmpWKqiOHs8G0niTH3P0IIHN9//K6ZLSdKEzizcgZ+4GNmZQal+sbP/lx1Lky8m16eRo/Vg/GB8dtaJ8MwDMMw954dqTqDIMBjjz2GCxcuhMOOHj2KiYmJG6bHOY6Df/yP/zH+5E/+JFxWNysrK/jEJz6BP/qjP8LP//zP46Mf/Sgn0jG7gs3pYbVaDQCdw9PT0yiVSjBNE51OB0EQwHEc1Go1tFotFItFVCoVCCHgui50XYe+/kulI39p2+V0p88ZhgHTNFGv1yGECG9O5OdZCBGayeQ4z/PCG2v5HI/HceDAAWiaBs/zsG/fPtRqNZimGRrpOp0O4vE44vE4FhcXUalUwhS7iYkJCCGQz+fRXBeHTU1NwTAMjI+P413veteWN063a0RyXRenT59GPp/H8vIyms0mLMuC53lwHAe+78P3fVQqFSiKgnQ6Dd/3oes6TNPE8PDwnTpMIZxWdvsIITA+Po7R0dF7nuAnzzkAmJmZwcJ6ykA2m0UqlUKtVkOlUgmHj4yMYGJiAqOjo5wyyDAMwzAMwzDM9RkeJtMUQMrIhQVgcpJS01IpMs1VqOffUIldqdBrXY/MblKJ3B3tIc1vjQaZyRoNGt7XRwrnF16gdQ8NkWlMJpk1GpEyWRrhpDLa88gol82SMjmZpPGGQQrjRoMUzKurkZHtbiP3e22NlNRTU7R9s7MUA6OqtK+dTrSfjkNtbVmRElyytkbq68uXSaW9skLtfugQHYtKhdrEsmi+VovU15ZF7aOqtPyjR28uXuL55298brRapPAeGKDjaJp0Tt1tpEHwTijQXTdSM8/MRMl/mz8jcvjICCmRR0dZ9c4wDPMQIv3n+TxdwsvlyOPu+1FQrPSxS0OXfK5W6VlegqUxq16ny8rly+TFl5cf06RlV6tk7pLmvOVlKot6euh1p0PlWK22scy418jwXlm2yZ8pfJ/2DYjaDoj6a5DBxLpObRkENJ00Iqrqxv4VMpkoRU6Wl0FAbSbNhZVKlERXLFIJkMnQ5b7djkrZRIKmq9VonZUKlUQAlVkrK5Epr16n8dLUJ/f5yhXg5ZfJOKVpVD6MjNyNFmd2I3eylL0eXOYyDMMwDLNbKKaKmFqeQm+8F7PVWdieDc/3sOAuwNRMNO0m1jpr6LgdOL4DBFFqWtNpYr42j0KigMf7H0d/on+Dlg0AZiu0zMXmItY6a2i7baTNNMy4iQAB1jpraLrNe9gC10ca4QQEdEWHF3hwfRd1pw5N0eB4DnRVD9uk43UAgdAcJ41xHjwoAS3LCzz4Ad1oKUKBrugwVAOGaqDjduD6LkzNRMftwNIsxLQY2m4bNbsGQzEAAdTtOlyfeiYJtABtr42/Xfhb/Pe//e/48JMfxvjAODRFw0jvCEZ6+YaH2Zq7ZbZ0fTc06c2szGChvq69s7JImSnUOjVU2pVw+EjvCCYWJjDaP8pmT4ZhGIa5z9mRK/nf/M3fYG5uLnyfTCbxP/7H/9iW0e2nfuqn8NnPfjZ8fy3Dhud5+M//+T9jdnYWf/qnf8rGDuaeUywWMTU1hb6+PszNzaFSqaBcLqPVaoUGrHK5jMq6qEyms126dAntdhsDAwPQdT1MXbMsC0EQwPM8+L4fGst2I9KwJl/LbfV9f8P77unl8M3JczK5Thro8vk8stksCoUCRkZGUCqV4DgOCoUCvvWtb+HSpUuYn5+HoiiIxWJIJpNw17sF9X0fe/bsweXLl7dtDNsJI9Ls7Cxs24Zt2+Gww4cPo9VqYW1tDUEQoNPpoNFoQAiBRCKBXC6HcrmM7//+778rhiZOK9s5NE3DyMgIRu7hr9fynJP/bwAyrue7EiHK5TImJydRKpXCtLzZ2dl7ut0MwzAMwzAMw9wHaBqpNU+dIkMWQLED0pgFkKKzUIiUwZ1OpHSW0SAyJU7ee3armBsNMrTFYqSELpdpXT/+45RgdukSJZdduEAqTWnE637oOinIhaBlqGqkbG42ySzmOJSOVi7TOruV1veCTofUr8kk8La3RalvFy9GpkAZoyJjaup1mleqvg0jSrA7f56OQ71Oy+zpIWW+NLBZVrTuep3WXa/T8T14EPjCF+jY3my8xHbODTl+bOzeqmnvhAJ9dpaOW6tF+w+QGXFzSuPkJI2XkSGzs6yEZxiGeQiRfRNcvEgli+9Hvnlp2lKUyDgmDWDyJ9ZmMzK6DQ5Gnvx8HsjlaL61NTLSOQ6VE7KfglyOyq12m9bZalF5pao0Pgii/gh2E93lSHfinKZF5jgg6qfB98n0ZhjUrr4fpckpysZ+CYKA2rTdjvp+kAl28nh0OjSNppFpSBoRe3qoxPK8qP+CgQFatxBUjsnSYHWV+iJot+nYSLNcp0PPpknrOn+eygMhOM2LuZq7babkMpdhGIZhmN3CcHYYJy+eRH+iH2kzDdd3MV+bhxu4SBtpSozzOvAC6rw9QAAFChJGIjR31Z06anYNxVTxKtPLfG0eALDcXEaAAIZqQFd19Jg9WLPXkNASO2qgU6HCw87ceEnzm4CAodF2GzDIZBhQR+8yPU5RFLieC9uzIdb//MCHJjQgAAIEsF0bwfqfgIAqVCiKAsdzYGkWGelMA0IIqFARGAFiegyBH6Djd2DBQtNtwvbWe4UJyJjXcloQQqCQKODMyhl8/q3PY7WziuP7uUN3ZnvcabOlNNK23BZK9XXtXd9R5ONd2rtmGZNLkyjVS2ES3mxllg2gDMMwDHOfsyPqhT/90z8FEJnffuVXfgWPPvroDef767/+a3zyk5/cUBRfyzAkDTl/8Rd/gX/7b/8t/s2/+Te3vd0MczsMDw/j5HqXn4VCAQsLC3jzzTexuLgIXdexsLCAarUKwzCgaRpSqRTq9ToURUG1WkW73UY6nUYikUBvby/Onj0L13Xh+374vDnJ7V6jaVpohpPbpChKuM26rsMwDLTbbdi2HX5u5bTd+yF795GGst7eXgwODsL3ffT39+P9738/9u7diwMHDuCP/uiP8LWvfQ2u6yKXy2FtbQ2e58F1XVTXuwjt6emB4zi4cuXKhm2+kTFsJ4xI8/P0xcrS0hJ6enqg6zoSiQRSqdSG7ZVGQcuyIIRAKpXC2NjYDh6hreG0sgeP7nMuCAJks9kN5yyA0IxaqVSwuLiIoaEhzM/Ps4GOYRiGYRiGYZgbMzZGkRzT06SEHBqiaJPuZDLLIsWvNHvJlDMZ/SFEZJgTIlIky+8BbZvUxvv3k2HuAx8gdfI/+kfA5z9PqmNFidTF0mAGRCpzz6NtSaXIKJdOA+fOUTTI00/Tcnt6SLVer9M+yWVJM93dxnHImPb5z9N2BgGZz2TbyfbMZiO1txCREl5RaJ8LBdrvAweiZLuVFWqDI0eAxx8ndevqKinIBwZI1S2jbnwf+PrXSdV/M/ESP/qj2zs35Dx34XuPu876PTmWluj4ZbMbVcUAvc9mqQ0XF6md5udZWcwwDPMQommUznTiBJU9s7MbPf2uS9PI/gc6HSp/pG8+HqdyRtPo0jI3R5f7d76TQnwnJ+myHYtF5Vg8TpdzmZYG0LJl3wSJBK3btiPz2G4w0XVrKFU1MsdpGrWJ50WJcK4b7YNM2Wu1aLwsG+VPUrJfgtVVKgltO+qbwHU3toc8NqkUtXc2S6l1sRg9Ow4l+MmSxzBo3sVFKsmCgLan24CUSkXGuXicjI2JBJnrZPvPzHCaF3Pv4TKXYRiGYZjdgqZoGB8YR8ttoZgswg98XKldoRS6+gIc34HAeufuAtCFDku3oCoqDNXAgewBLDWWMF+b39L0Is1eUscW02JwAzKaZa0sdE3fsX1RoAACQBC9lklvt7o8IQRM1UTCSAAA+hJ9aDkttNwWOujAD3y03BZc3w3T+7rxAx8QgBIoEIoAAto+VSHznCIUxPU4DJWS5SzNQsbMoJAsIKEnUG1XMb08jbSRRsfrwHd8KIJ6PlE1FfAo0a7jdlBpVXC5dhk9Vg/eKr+FHqsH4wPjt7z/DLNTSCPtUmMJAQJkrewG8xwA5ON5ZK0sKu0KFhuLGMoMYb42zwY6hmEYhrnP2bEEOmmUyefz+JVf+ZVtzffv/t2/C1/LG5LnnnsO/+pf/SscO3YMPT09mJ6exsc+9jF87GMfC6f7f/6f/wc/+qM/yiYA5p6iaRrGx8dx6tQpHFrvVfvMmTOo1WrwPA+rq6sQQmB4eBiWZaFWq+HAgQNQFAWzs7PodDrwPA+xWAye5yGTyYSmsCAIoGkaPM8LU+nuJt0JcopCN96qqkIIAU3T4Lruhm01DAOKoiAej4cpbNI4J1Pp/C5hmly+oihQFAXJZBK6rmP//v145plnoGkastksDh8+jBMnTsDzPOzbtw+zs7OhGU1VVSSTSVy6dAkAmcT6+voA3JwxbCeMSLZtb3h+9NFHoWkaLl68CADI5XJhW66srAAADh48iKNHj96VXnU4rezBY/M5l5IqiE2kUilUKpWrpmcYhmEYhmEYhrkuQgDHj5Nae71DljBeQGKaFI+xuhopmoHIoCUT57o7BZLRKjJ5Thq6crlI3T0+TkawuTlSYV64QOpMqXw2TVI+t9v03nVJRb6yQkpjmb524ACpmnM5Guc4NN/mbbrbyDiUxUV67u2l7fb9KCLF92n/8nlqM9um/XZdmqZQoPkGBui4TE6SUruvL2oPVaXpCoVo3YZB7WnbZK6TcTQ3Ey9x7tz2zo2xMXo8iL0Jy3tr+XyNe3KkUpE5snt6hmEY5qEjlaJL96VL9Nq2qRxqNqksMYyo7wGALutBQCXCoUP02rJo+t5eCpJd/zkEmkaXc9Ok975P05smDZeXKUWJ1iNLIV2PtmGnkSWATInbDjIRD4hCjWWJqevR8jSNnqtVahdptpPloq5HpkCZKCf7e/B9Gm6a1DbNJo0DqIQKAiofczl6H4tR8t93fRcdn/PnyezmeWSYMwwyG62u0jLi8Wgfmk1aZ7MZbf/wMC1X12m5lgW89RaneTG7Ay5zGYZhGIbZTYwVxlBtV3Fl7Qoq7Qr2pPZgqbmEltuCIhSoQqXkOaEgG8uG6XECAjEtBlM1UbNrW5peDJVuAnqsHgBkHPM8Dw2nAUVQ+tpOIZPdFKFABAK6osPxnTA5L8D2b8gUKFAVFaqiIm2lkbEy6DF7oAoVg+lBzK3Ooe220XbaqNt1BAjgBZHmUBGk00MQmeh83w+3QbZrXIujN96LuB6Hrup4ov8JPLXnKUyVp6AKFTEthotrF+EHPhqtBjRFgyKU0BioCz187fgO1jprmK/Po9woX5UGyDD3Cmmklc8p8xraOzOFSrty1fQMwzAMw9y/3HYlWqlUMDU1FSZJffjDH0YymbzhfGfPnsXXvva10EgjhMAP/MAP4HOf+xwV6us8+eST+L3f+z288MIL+PCHPwwhBHzfx2/8xm/gE5/4xO1uPsPcFmNjY6hWq5iensbIyAhs24bjOKhUKojH48jlcqEZac+ePQDIqOR5HjzPQ7vdhqqqaLVaAADLsqCqKlRVha7raDabcF03THm7m0hzm6Io0DQNmqZBUZQNZjhN02CaJjKZDDRNg2EYqFQqiMVicBwHnfUuNV3XRafTge/74bwyiW3fvn1Ip9PI5/NwHCc0bU1MTMB1XZw5cwZBEIRtpOt6uDxpUtyzZw8uXrwITdPwwgsv3JQxbCeMSMb6r6vyuV6v44knnsCePXtQLpexuroK13XRbDYxMDCAo0ePYt++fTDlL9p3GE4re/DYfM7VarUtp5PDN0/PMAzDMAzDMAxzQ4QgM9voKKl45+ejlLFikdS/09PAV75CERqqGhnapNJZVaOoEPleVUk1LFXLySQphBcWKDlNCFIT798PnD1L0xUKtE7HIVNXoUDmr2qVtml5mZabSACHD5PSHADe/37gW98idbNlkanu0iWa516qPGU0TKsVRTu026TudhzaZ8MgdXg6TcY/y4riZI4do+kff5yOQzxOcTKXL5Oq+xr3iOFwwyCVt6bderzEjc6NBzk2Rd5by+fttHf3M8MwDPPQsbBAl8/VVTJmtdtUumgaXUJluWRZ9CwT6fJ54LHHaP5HH6VLS6lE5YEkk6H5LSsyq8mfk2RJVq9HJi7LovHJJA2TJrNuY91OIJPYfP/qZV9vXd2BxZoWlXiJBJnZ+vtpm6tVKptke2katUW9TiWWqkZtGwSRGU+a9DSNltfXR6WUbdM0CQpwwJEjdKz27gWeeor6BfjKV2icYdB6Gg2afm2NhheL1K6XL1NfA/E4lVGeF7V9Pk8GyHw+MtotLHCaF7M74DKXYRiGYZjdhBACx/cfR8bM4GzlLFRFRcpIoe20KYFuXUOajWXRF++jRDVFgaEaWOuswdIttJzWlqaXYqqIqeUpHO49jInSBNpuG47nYLWziqXmEtpue0f3RRGU6iaT45IiibpTR8frbL891k14iqB9zJgZHOw5iLfvfTsKyQJKjRLSZhqLjUVUWhXE9Bhsz8ZaZw2+4sMPfOiKDl3R4fouhBCUUhe4EBBkyjPTEEIgbaTJoGdm0J/oh+u7MFUTo/2j8HwPX7vwNSSMBOqdOkzNBALADVyoQkWP1QMv8OD4DvzAh+d7cH0Xa501LDWXUEgWNqQBMsy9Qhpp5XOtcw3t3frwzdMzDMMwDHP/cttKhu985zsAEJrgfuiHfmhb8/3FX/zFhvemaeL3f//3N5jnuvnQhz6E//W//hc+/elPAwA+//nP4w/+4A+gyl8XmNum0Wjgq1/9Ki5duoSlpSX09vZi7969eOc734lsNnuvN29XIoTA8ePH0dPTg9OnT0NRFORyOXieB9/3kUgkoOs6BgcHsXfvXnznO9/B6uoqMpkMKpUKfN+HruuwLAvtdhue50HX9dB4ZppmmEJ3t5EpeLquIxaLIZFIIJPJ4NKlS2i32xBCwDAMJBIJaJqGZDKJdruNeDyOVCoF27axtrYGRVHQbrehKAps24bruqF5Lp/PI51OY//+/RgbG8Nbb70VGt08z8OXvvQl5HI5zMzMYGFhAUIIDA0NhelyU1NTWF1dxcWLFxEEAWzbvupcvZExbCeMSMViEVNTU+jr68Pc3BwqlQrK5TLy+TwKhQIKhQLK5TLK5TKEECgWi+F8dwNOK3vwuN45JymXy6hUKhBCoL+/P5yPYRiGYRiGYRjmptA0UvBupeIdGSFV8epqlALnOKR6lrEfchkADTdNmqe/n+bJ5aKUNcnCArBvH81fr9P8Q0OkMq5USHWuKJSmtrJCiuRslkx3cjsPHyZltecBTz4JfP3rtKzeXjKqra1FBra7jeeRmtx1aX/Sadp/y6Jnx6F9bDZpP2UiXSJBKu+hIWrHD3+Y2mZ6GjhxgsadO0fpfXJ6qSYHaF1CUNvPzlJbyO9BbiVe4nrnxoNMsQhMTVF7z81R+5TLV6f3dbe3nI9hGIZ5KLFtuiTkcsAjj1BfAZcuUQklTWzSTCcvtYODwHPPUUDs6CiVAxcu0LjunzHyeSqFZD8FAC2zWqXXly/TeyCaTlGifg5kEK4XhRLsCNIEp+tR/wqy7NoqoFZRIqOb3A/52jCiEONEIgrsjcep5Gk0qDTq76dpFhej0kqWUa5Ly4/HaRlBQCXY4cM0T6NBj/37aV3HjgHPPruxX4DuEkCWaqVStNxkMjIrCkElmDy+ug7s2UPnQHdAMMBpXszugctchmEYhmF2G0IIvK34Nvz4kz+OP5/+c3xz/ptY66whJmIwVAO2Z0NXdKiKiqyVhR/4WGmvwPM92J4dms2AjaaXocwQVlorKDfLiGkxnFk5Az/wISDg+i467vaNbdfd/i7Tm6Zo0BQNukLpbJqiwfGdDQlxAJntEOCqdDoBupGyNAtHeo/gkd5HYCgGnh96Hi8OvYgvzHwBTbsJXdXRdOgmcLWzCkM1Ql2vJjSkrTQ6bge2b1MbqQp0lYx1CSOB4ewwslYW1XYVvu8jF8uhL96Htw++HZqi4cT5E0gZKQgINJwGBAQMzYAOHYZqwNRMrHZWISAQ1+Joe21YmoUAAcqNMgBsSANkmHuFNNL2JfowV51DpV1BuVlGPt6lvWuWUWlXICDQn+gP52MYhmEY5v7mtg10MzMz4WvTNPHCCy9sa76/+Zu/CV8LIfC93/u9KGz+xWATv/ALvxAa6BqNBl5//XU899xzt7DVDwZjY2P49re/DQD47d/+bfzLf/kvb2k5V65cwa/92q/h85//PBqNxlXjTdPE+9//fvzmb/4mDh8+fFvb/CAihMD4+DhGR0ehaRpOnz5N8eZBgHw+j2effRaqquLixYsol8tIJpOhkcwwDDiOg3a7jU6ng3a7HZqbfN8PDWy+78Pb6V8vr0N38lw+n0csFoNt21heXobrulBVFYqiwPM8tFotGIaBVCoVJsWtrq4iFovh0UcfRafTwdzcXLhc27ahqipM0wzbqFgsoq+vDwsLC6HRzTTNcDmlUgkAcPTo0Q0GoUajgdXVVdRqNcRiMei6jnK5fNX/kusZw3bCiDQ8PIyTJ08CAAqFAhYWFjA5OYlsNhua/SqVSjjesiyYponh4eEdO2bXg9PKHjx2+znHMAzDMAzDMMxDgqYBH/gAKcA9L1IwA5EyWlFI9RwE9Dw+vlE1vFVsgbxvd11SNg8NUXocQMu5dAm4eJHUz51OZMRTFFJPj43RdK+9Rs/tNq1TKqfl9mnaxmF3E9clJTVA+ytV8zKtXggy+cnYlnSaVNhHj9L4sbFIzT08DLzyCrXJ8jIpWkslUnJbFu1/u00mw8ceo2GxGClh1ztx4niJm2B4GFi/J0ehQIbPyUlq31SK2mz9nhyFArW3adJ8DMMwzENJ92VUCGBggIxaCwtkuKrV6LlSIRPW/v10CdF18qkXi8DLL29talHV6NIkL/sAGbcsi14LEZUdQtA6ajUqB2o1Kjd2uhxSFFqPbUfL7i7DZEqenFb2rypEVKZpGrVZT09kUpP9JiwuRvNUq1QuApGxrtWi8dK8KNdn21EYsuxjIJGI0v9k6blv39V9BHSXAOk0GSAXF6kMVtWNZkWZEmiaUSqgNPJthsstZrfAZS7DMAzDMLuVuB7H+MA4MlYGpy6dwkp7BRkjg8XmInRFR1+iDykjhctrlwEAHa+DlttCxshsML0EQYCJ0gROL5xGw25gob4AUzUhhAiT7QAAAsAO3CMJCGiKBlM1EdNiEAol0Lm+SylwEBumVaFCCAGhCHieBw/ehvGGamBvam9onnvvI+9FLpbDZ978DGzPxv6e/UgYCbSdNq7UrqDSrsBUTaSMFEzNRMJIYLWzSgl+voCu6mEynYCAqZkYSA4gH89jIDmASruCtJlGIVnAUmMJzw89j5MXTyJuxJE201ioL6DlttB227Qs3w+T/izNgud7UKCEqXQ+6MasOw2QYe4Vw9lhnLy4rr1LFrBQX8Dk0iSyVhYpM4Vap4ZKuxKOtzQLpmpiOMs3QAzDMAxzv7N13NtNsLq6CgAbUpVuRBAE+NrXvgYhRJis9d73vveG8z399NNIJBLh+zNnztzCFj8YLC4uYnJy8raX81d/9Vd44okn8KlPfWpL8xwAdDodfO5zn8NTTz2Fz372s7e9zgcVTdPw7LPPYmRkBM899xwKhQKCIEClUoHnebh48SIA4MKFC6iud/2Zy+WQy+Wwd+/e0ADW6XSQTqeRzWZDM0w6nYZpmtdMaNxpVFWFpmlQVRW1Wg2rq6tot9toNBpw13/dkylyg4OD6O3tRblcRrVahed5cF0XjUYDi4uLGBwcxPDwMAqFAgzDCE2BlmWhUCggm81CX//lVpoHbdvG6uoqXNfF0tISgiBANpvdYGqT7RePx+mLjHYb7XY7/J/UzfWMYcPDwzAMA7FYLDTeTU5O4o033sD58+fxxhtvhJ+1axmRNE3D+Pg4AODQoUMYGBiAEAKVSgUXLlwIzXcDAwM4dOgQADLAatpte5i3hfzf3NfXF25XuVzeMA2nld1f7PZzjmEYhmEYhmGYh4j3vQ946imKH+jtJaW0opC6WcacCEHKZKkGb7dJBX2t2ILN6uFuc5cQpGh+7jlaXyZDzwMDwNNPUyrb6CgwMUHTz8yQ8lNRKInuB34AeP55mk/XI+X13UQqwz0vUrRLpXerFUXI+D4p2/v7Ka5m715Szo+MkIFOoqqkxj53jtoiHicjY6lEprpajdpbmgWDAHj722m+vj7aBqnE74bjJbZG08gICgCHDtG5J9vwwoWozQYGaDyw0fDIMAzDPHTIy6e87Far5P0fHiZjyp49UTpZLkeXc10HXnwROH6cygDDoLJA9kMwOQm88QZw/jy9t20qa3p6qByTaW7ShCb7J9i3j4anUlQaSK++TH3bKWTynBDRdslLoTTHyW2Tgbtym2W5IkuiPXuo3HzXu4BHH6V2O3qUyhMZtitNiYpC64zFqCSSywJoXCIRlWFynzUtCuO9XgpcdwkwNETrlSa95eWNyXN9fbQNphmZ85rNqK8JCZdbzG6Cy1yGYRiGYXYrMvFpIDmAgdQAYloMPbEeDKYHYekWFuoLmFmZwVJzCavtVdTtOgBgMDMYml4O9hzEifMncOryKdiejXw8Dz/wcWHtAlJGCnE9DgVKaFTTod/2ditCIYMeBDRVQ9bKoi/eh6yVRdJIQhEKVEE3JgECQACqUElPKwBlXdorQGa3pJHEYGYQj/Y+ig8/8WH0J/rx2pXXYHs2Wm4Ll2uXUbNriOtx7O/Zjz2pPTA0AwECmJoJUzVRSBSQNtIwVCPcV1M1kTSTyJjUy4imaEiZ6xq+dbOb7dnQFI2MjGYGfYk+ZGNZAIDjO2g5LbS9NgQEYloMuqrD9m3E9Tg0hQrGrEXTd6cBMsy9Qp7PAHAodwgDyQEICFTaFVxYvRAmzw0kB3Aot669GxgLz2eGYRiGYe5fbvtq3p1ktF2zxRtvvIFqtQohol403v3ud99wPiEEHnnkkTB1bWVl5Sa39sHA8zz80i/9UmhkulVOnz6Nf/gP/+FVxrnBwUHs3bsXpVIJFy5cgL/eLWO9XseP/diPYc+ePXjxxRdva90PKtdKhQKA5eVlNBoNXL5Mvd3s3bsXQ0ND0HUdTz/9NL785S/jwoULcBwnbHPLsqAoCqrVKmKxGHzfh6IoCIJgw2OnUVUV8Xgcuq6HKXMA4LougiCApmnQNA2e52FpaQmmacLzPNi2jWazCdM0YRgGVldXceXKFei6TlHw66Y8TdNgGAZ6e3sBAJn1bj67jW71eh2apoVpcdJc100mk4FlWbAsC61WC81m86r/Czcyhkkj0qlTp0KjUalUQqVSCRO85LzpdBrT09M4dOgQXnnlFRSLRQwPD0PTNIyNjaFarWJ6ehojIyMYGhrC4uIibNuGYRjo7++Htd7d68jICMa6hW53GE4rezDZzeccwzAMwzAMwzAPEboOfPCDpH7u7QXOniUlt+9HamhVJVVyPk/RHDIZ7VqxBcUiMDW1dcyKpDv64JlnaDnPPkvqzelpUjK3WmQiA0hlLedPJMhUd/o0qafvROzK9ZAxJLFYlC7nOLTtvh9tUzpN+yfV9gcPAu94B6lUu75XxcQETd/fD7z5Ju13LEbPQRCl9PX1UUzK0aPA930f8OlPR23I8RIbcV1gdhaYn6dzyTDovBwepuM0Nkbuh+lpMjQODVHbymn7+6PYn82GR4ZhGOahY6tUp7feostuoRAllyWTdLl+/HHyzb/vfVEa2/g4cOpUZFoplehSLS/XBw7Q6yCgEFtpTnNdeqgqzTs8DHzrW9G26TqVIQCta6dKIpn6ZppU2pgmlSbd4zYb92S/Bt2lUiZDfS8MD5P5T1IqUbny+ON0uV7vtxK1Gl2Cl5ejxDe5Hs+Lgn9lmQrQOhYX6fWNUuBkCVAq0eU+laJyQG7vwEBkJurtpeUGAU0r+zd44437o9y6UTnEPJhwmcswDMMwzG6kOymqmCyi2qpivj6PmBYDAqDaqW5IPtMUMqsdKx4DQKaXv1v6O5xZOQM/8DGzMoNSvYS6XYeAQM2uoek0YWkWMlYGjueg3CzDs6PUtFtBU7XQ/JaP5RHTY/DhYygzBNuzsdxahggEBAQZ6EBGOkWQNlAIAQSkW4sbcSSNJPak9uD7j3w/giDAa1de27A/chm1Tg2lxvr7AGh7baBNyzEUA5ZuoeW2oCpquH0CArlYDgCQMTNYbNBNkjS7yeexwhiWm8s4WzmLfel9aDktrLZX0XSbYaqe53touS1YqoWMmUHH60AVKkZ6KeZbGiJvF9d3MVuZxXxtHrZnw1ANFFNFDGeH2eTEbIuxwhiq7Sqml6cx0juCocwQFhuL4fnUn+iHpa1r73pHMFbgGyCGYRiGeRC47UpRJkcBlFS2HU6cOLHhfbFYxMjIyLbm7TbR1Ov1bc1zv+O6Lur1Oubm5vD1r38d//W//ld8q/vXrVug0+lcZZ579tln8Xu/93t4+umnw2HT09P4xV/8RfzVX/1VuC0/8iM/gpmZmQ1pgAxxLTPWwsIC1tbWwvbu6enB0NAQADIs6rqOxx57DMvLy6GxtN1uQ9d19Pb2wvd9+L6PVCqFZrOJVqtFsee2veMGOiEEYrEYDMPA4cOHUS6X0Wq10Gq1oCgKbNsOTXy6roemuCAIkEwm0Ww24bouXNeFpmk4c+YM4vE46vU6XNcN90XTtDB9Lp/PX2V0a7fbyGQy4f+VbrOuJJ/Pw3EcqKqKVCqFIAhw8eJFJBKJmzKGXc+IpOs6HMfB4uIiSqUSCoUChBCYmprC1NQUTp48ifHxcYyNjeH48ePo6enB6dOnASA8xhLTNDE2NoaxsbENBuI7zXZNgoVCgdPK7iOEELv2nGMYhmEYhmEY5iFjfBxYXSUl+MgIGbHOniW1sG1HSXSVChm5stnrxxZspTK/GXPX/Dw9Ly3RNmSzG813q6s0n2kC9XqkHL9bJjqZBgfQuisVUqPm85HZ0POAxx6j8dKw9cEP0vtuXJeMgDLVTqbqxWK0vHY7ijtZWaGUPk2jaW+kxBeC2ulhipcIAjIknj59dfTM1BSdl+Pj1BbHj1Oczvo9OTbdk8M0abrNhkeGYRjmoWM7BrhCIbrsKgolrnVfdm9kannmGUqImp+n0iiRIBNZENDlamSEhk1Pkyf/woUo4U3TqBSSl6udKInSaSpTEokokDiTodKr04nWIUOJpalNboM02SUSFCL8Yz9GJaHc3xdeAL7+dSqZggC4coXMXmtrVP602xuNgapK8zabNCyfp5JyYIDebzcFTggqAZJJ6udBTru6GvXdkEzSdgOUKOg4ZIxcWaEyb7eXWzdTDnGJ8+Ahz3EucxmGYRiG2U3IpKhTl0+FSVDfLn0bq51VQABpI42224alWehL9CFtpnE4dxi6qmOkdwSP9z2OT79BnYnNrMxgob5AyxUaBjODWGoswfVdKEJBQk8gm84iCAIYioFyu3zL250xMhCKQM7KwdRNmJqJlJmCJjT48GGqJlpBK0yaUxU1NMGpigpFKHB8BwJkpBtMD2K0fxSj/aP442//8VX7k7WySJkprHZWsdRcgud7oSGv1qlRR/0iQNNuwgs82J4NIQQs30LSSiIby0JX6Ptnmb7Vn1jvrH7d9CaEwHcd/C6Um2X85Zm/RDaWhSIUoA04noPVzip0RUdcj8PSLDgB3Zgdyh1CwkjAVE0MZ2+v15AgCDBRmsDphdOhcVIytTyFkxdPYnxgHGMF1kox10cIgeP7j6PH6sHphdMAgKHMJu2damJsYIzPJ4ZhGIZ5gLjtr+BlglQQBJidnd3WPF/60pfCeYQQeNe73rXt9dld39TH4/Gb2NL7F32zMGYH+IM/+AOcPXs2fD86OoovfelLV6V8jYyM4M/+7M/w9/7e3wuNjwsLC/j4xz+OX/7lX97x7XoQ2MqM9Y1vfAOKokBRFMRiMeTz+dCwNDg4CICMdHv27MHMzAx6enqQzWahKAoGBwexsrKCer0OVVXx+uuvY21tLTRWOo6zIYluJwx1lmWhr68Pa2trdKNsWajVanBdF6qqwrIs6pXGMEIjpWEYYdpVpVIJt6PdbiMIAjiOA03Tws+tYRi4cuUKhoeHMTk5eZXRra+vD+l0GrZtY25uDpVKBeVyGfkuwVulUoFpmqjX6xgaGgqT+m7GGOa6bvi/y/d9nD9/HolEAnv37oWiKJienkapVIKu6ygWizAMA2fPng0TvgDg1KlTqFarOH78OMbHxzE6OorZ2VnMz8+HaWDdaXX3Ak4rezARQuzac45hGIZhGIZhmIeIzSrL/n5gz54o/c11ycCVywGDg5HpDdg6tmA7KvPrqY3l94fyeXOqveuSQjuZpOXJCBKZRHc3jHS+T22STJICVVFIVd6dNrdv343VqbOzUdre4iKZBd/xDtqH1dWo7RcXo1gb26b5OF5iI0EAnDgBnDlD71stMmF2twdA52W1Suf8+DgwOsrxLAzDMMwNud3L7nZMLU88QYG8zWZkHuvGNKl0Wlwkr700jRkGPUt/v+veXjmkKLSuWIyChzMZWv78PJUlMnS3e3ogWmd3Ep1hkP//yBF6yO2bnaXpJydp+m5TXq0WGQOlORCg9nUcmtZxyGxXLpMJD9h+CpwQtE0//dPAF75A8124QKVXLEYll+zb4LHHaD8WF2keGQi8W8utWymHWD/44CH72uAyl2EYhmGY3cTmpKh96X14Y/ENXK5dhoBA2kyHqWOFRAGPZB/BeJFMVGdWzsD2bLTcFkp1+s76aN9RLDYWUW6W4fs+XN+F4zvQVR29sV4s6AtYbi3f1jYrioJCooB8PI+G00BCTyBjZgAAffE+eJ6HcquMptOkFLogALrq6yAIoCuUDpfQE0gYCWStLGYrs1vuTz4eaeoUKDh15RSSRhKu7wIB4MGD53noeNSZvUyecwMXlmZhpbWCjJnB1PIUtWOyAEuzrjK9CSHwI4//CPLxPD43+TnMVGbQF+/DUnMJtmfD0izEtBgURYGAwP7Mfrxz3zvpOA6M3VY6XBAEOHH+BM6s0E1Ly21hqbG0ITEMAE5dPoVqu4rj+4+z6Ym5LkIIjA+MY7R/lBMNGYZhGOYh4bav7IcPHw5fV6tVfPOb38SxY8euOX2lUsGXvvQlCCFCg81LL7207fVduHAhfL3Z7MVsn9///d/f8P4//If/cM321HUd/+k//SeMj4+Hx+x3fud38Eu/9EsP1A3GzMwMAIRGq1tlq1SoPXv2QFEUqKqK5eVluK6LgwcPYnBwMGxDIQSy2Szy+TwURYGmaRgYGMChQ4cQBAGmp6exsrKCY8eOYXl5GTMzM9A0Da1WC57nwXVdeJ4Hx3E2fL5uFkVR4DgOHnnkEaRSKXzrW9+C67qIx+PwfR+WZcHzPLTbbWiahkQigWq1GhoEs9lsaJhTVTVMqYvH42g2m6FJS1VVaJqGdruNTqdzldHtPe95D958802oqopCoYCFhQVMTk4im81uSJfLZrNIJpPQdR179+7Fk08+ieXl5Rsaw4IgwMTEBE6fPh0acxVFwf79+1EulzE3NwdVVQHQ/7lGo4HV1dUNqY1zc3PhNk9PT6Onpwfj4+PQNA0jIyPbTta8G3Ba2Z1jp/533A678ZxjiN1wfjC7Fz4/mOvB5wfDMDsF/z9h7hqbVZZHjgDf+Q5w/jxFcOTzmFlXZR8yzRsbw25HZW4YG583p9pLtadMbPN9GibNc563UdW904Y6qSqXUSu9vWR8y2ZJdV0sksJ6z54bq1O3StuTyuZCIZrujTdIJb+4SG05P0/t9pDHS2z4HzkxQWpx3wdmZsi02X3s5+Yi0+b0NLXb+Dgdn5ERejDMbcDXbIZ5sNlsgOt0ZtYDcaPP/I0uu9s1tUiD2VbjX3mFLnM9PZTo5vtUUsViZG7zvMhId6soCpnTEgnaJ8Ogkiufp3Kk29TWnT4nyzDPo3lyOZpmvR/Kq5LRgoCMcqUSrQ+g+WT6myyJKhXap2SSyst2OzLydTq3ngJ37Bgl6k1PU+nbbm9drgYBcPQobavj7O5y61bLIebG3I/XeS5zGebWuR8/8wzDMLsZ+X/1+CMbk6Ke3fssvMBDuVHGamcVAgJH8kfw4tCLeCT3SGh6ma/Rd6hLjSUECJC1ssjH81hprQCgtDdTM+E7PvzAx/nqedTsGlRFveVtFhDIWlk8kn0EYwNjSBpJLLeWQ2NOykihVC/B1Ex03A68wIMPH0qghJotHz7gA5ZmIW2lUevUsDe195r7081o/ygu1S7hSu0KLcv3oSgKbUdzGW23DU3RwuQ9VVHhei5UoUJAoJAshGl/W5neZBJdLpbDZ//us7i0dgn7Mvvg+i7WOmvwfA+GauCxvsfwSPYRCCEw0juCscLt9RoyUZrAmZUz8AMfMyszKNVLYWofAMxV58Jtn16eRo/Vg/GB8dta592C64d7i6ZoGOkdwUgv3wDdKfgcZx4G+DxnHgYehPP8tg10zz77LEzTDA0oH/3oR/GZz3zmmtP/t//239ButzeYM9773vdua12XL19GqVQK583JX06Ym+LMmTN44403wvdDQ0M3PAZPPvkknn32Wbz66qsAgIsXL+L06dN429vedke39W7yxS9+EcDOfKA3p0LF43G8/vrryGaz0HUdyWQSsVhsw+egXC6jWq0il8vhqaeeQr1ex8GDB1EoFGAYBl566SXUajX8z//5P0Oz2pUrV+A4DlqtFjqdDlzXRbVahe/78GSXmTeJpmnQNA3VahWqqiIWiyGVSmFlZQWtVguu66LT6YSfeTl9s9lET08PcrkcgiBAq9VCEARIJBJIJpMoFosol8tQVRV9fX3o7++HrutwHGdLo9uxY8egaRpOnToVHpNSqXTNdLnLly9D13UkEokwFU+y2RgWBAFOnDiBM+tdaLZaLSwtLW0w3eXzebz66qvo7e3F2toaTNNEb28vDMPYYOBbWFgIt3liYgKjo6O7NvGL08ruDDv5v4N58ODzg7kefH4w14PPD4Zhdgr+f8LcdbpVli+9tEHB/cVXXwWEwKH3vvfGxrDtxKxcS21cLAJTUxTxMTdHqulymVTbAMWgzMyQGljXaZhUOgtBsS2eFxnqVJXU1TuBjCPRNFquZdE+qipFfDz1FPDP/lkUvXIjbpS2J0mlqB02T/+Qx0uE/yMPHIjOs5kZchQAZEhMpciEWalEw0dGSGE+OvpAtw9zd+FrNsM8+HRfdv/f//eLcF3g0UcP3fRl90amluuNLxapPEunyTQnjWeKQpd/x6Gy5HZMdJZFyxAiKnEyGXo0m8DycmSgk0l1siRrt2kaTaNxqVRUkm2VjKYotD75k5jjUOpdNhttz8hIlDgny79UChgYoPLwmWduLQXuZstVz9vd5Zbrcjl0J+HrPMM8XPBnnmEYZmeR/1d/9md/dsukqKP5o9dNirI9e8NzyqTvUDNmBgv1BaSMFFZaK/ADH6vtVShCge3bt9x5PQDE1BjeVnwb3rnvnYjrcdiejYQR6dnW2nQzpgoVmqJBBAKKiMxzqlCpA3vfQQBKokuZKQQIrrk/3Qgh8Gjvo7BdG37gQxEKHN9Bf6IfxWQRpXoJDaeBrJVFj9WDmB5D1srC1Ez0J/phaesavuuY3oQQeFvxbRjtH8X/OvO/8PVLX0fbbWMwPYiMmUE+kYcqVJiqibGBMYwVbq9Dd9d3Q/PkzMoMFup0c5K1skiZKdQ6NVTalXD4SO8IJhYmMNo/el8kiHH9wDzo8DnOPAzwec48DDwI5/ltV4aGYeAf/IN/gM9+9rMAgM9+9rP4nu/5HvzTf/pPr5r29ddfx7/+1/96QzrW2NgY9u/fv611/dVf/RUASo4SQuDxxx+/3c2/L/jyl7981bBPfOIT+OQnP3lLy/s//+f/bHj/9//+39/WfO973/tCAx0A/O///b8fKAPdnUCmQg0PD6PT6eDKlStYXFzEwsIClpaW0N/fj71796LZbIamsEKhgEQigVwuhw9+8INXGZri8Tg+97nPYXFxEc76L4yqqiKXy2Fqagr1eh3tdvuWt9kwjNAQ12w2AVByZLvdhud5iMfjUBQFnueFSXSu60LTNDQaDRw8eBC6riMIAiSTSWiahnQ6jaeeegpDQ0Oo1+sol8tbGvw2G93GxsZQrVYxPT2NkZERDA0NYXFxcct0ufe85z14/vnnce7cuRsawyYmJnDmzBn4vo+ZmRmUSiV4nod6vR4a/wzDgKqqaDQaaDabGBsbg2maOHDgQLiccrmMyclJlEqlMM1tdnZ216eAcVoZwzAMwzAMwzAMc9fQNFIFA6QyDoIoNW07JrpbMXcNDwMnT9LrQoFUvpOTkfp3dZXiNFSVokgcJ0qhM01SbSsKPVSVtllOczsIQepsw6B1GQYtc2WF0uaGhii17+MfBx57bHuK6hul7Unk8M3TSx72eInZWTq3Wi06NwCKipGmS4BMmJOTNF6q42dnH942YxiGYW4J2beA61KJcbdNVMPDVI7oOpno1taozNF1ugzK7bodFIVS4OJxKq18n/ZxZYX2MZOhdbgulVq2TeYyIaLySFFom/r76flGyWiKQsuWpV4sBrz4Io2r12ldKys0bzJJAcC5HJnoLOvWU+Buplzd7eUWl0MMwzAMwzDMbiUIAti+jZfPvxwmuBVTRTw/9Py2jFGGamx4rnXou9J8PI+zlbMAgLSZxkpzBSvtFRiqgbbTRse79U7VFEVB02nicO4w3n3w3RsMf4ZqYKG+gN5Yb5Q+F9B3z9JI5wUeVEWFoRoQQsD1XfTH+6GrOlShbrk/m6nbdWRjWezL7ENciyNhJJC1sljrrCFlpuD4DiqtCjJm5qq0vZsxvemqjg88+gG8b+R9V+3n9YyNN8tsZRa2Z6PltlCq003L0b6jG9L3ys0yJpcmUaqXMJQZCufjVDGGYRiGYRhGsiM/xfzqr/4q/uRP/gQA3bD883/+z/HVr34VP/ETP4HBwUGUy2V84QtfwH/8j/9xQ/qcEAI//dM/ve31fOITnwhfx2Kxh8b88dJLL1017MSJE7e8vNdff33D+7FtdqW4ebpXXnnllrfhfsF13dtO6gqCAG+++SYuX76M6elpaJoGVVWxtraG1dVVzM7OIpvNIpvNYmBgIHTkjo2NbbmOkZER7Nu3D4VCAaZpYmFhIUxC0zQNpmnesoFOCAFVVaHrOkqlUvjadV0IIZBMJmGaJjRNoy8nbBvtdhuO44TjFhcXEY/Hkclk8Mwzz8CyLLz00ksbPq/bbVchBI4fP46enh6cXu/2cmhT952bTXc3Moa5rhsua2ZmBvPz86hUKrBtO9zXZrOJ2rqwTNM0CCHw1FNPXXU88vk8stksKpUKFhcXMTQ0hPn5+YfmfxPDMAzDMAzDMAzDXJcgILXzN78JXLkSRY38+Z+TcnrPHuDYsRsrlW9WbaxppGQ+dQqQPZ+VShSZsd6BEXI5UlqnUqQcF4JS5qSC3HVJye37UezJ7SAjWGIxWm8uBxw8GEW9TE1RG/X3UyxLENCwkydpX67VRjdK2wPofaVC8/f3R/MxEdLUubREbZ/NbmxDgN5ns9SWi4ukGp+fZ8U4wzAMsy12qiy6XTQNeMc7gP/xP+hStrpKpYI0rW03BPdaSCObuq69dBy6hNbrQLVK5rW1tajEkn0tyn4KHIfMbD091C779pGp60bJaGtr9ByPU/u1WrQdsvQBaD89j7Zl/37a1vFx4Nlnb9/AuNvNcduByyGGYRiGYRhmtxEEASZKE6h2qnA9F38+/edwfReaoiFjZrAnvQfHisduaPIqpoqYWp5CX6IPc9U5VNoVlJtl5ON57Evvw7nqOcT0GDzQDYrru7A9SqBToMDHzXespikaOm4HXzz7RfQl+jBWGAtNXI7n4A//9g/R8TpouS0oQkEA+v5ZCEFmOgHAB3RFR1yPww987E3vhed7GOwZvOb+SMrNMirtCgQEiskiLM3CSwdeuspI5vrujpneNEXDSO/IHTOrzdfopmWpsYQAAbJWdsM+A2SKzFpZVNoVLDYWMZQZwnxtng10DMMwDMMwTMiOGOieeuop/OIv/iJ+93d/N0yX++QnP3lVQppMjgOo2D9y5Aj+2T/7Z9tax5e//GW88sor4fwvym4DmZvm7/7u7za8367Z58iRIxvenzlzZse2abcRBAEmJiZw+vRp2La9YdzU1BROnjyJ8fHx0LR1veWcOHECZ86cQaFQwOLiImZnZyGEQDqdBoDwM5PNZnH48OHQBHYtY6OmaRgfH8epU6c2xF/ato21tTWYpglVVeG67k3vt6ZpUBQFruvC933E43FUq1WoqopsNgvTNFEul0MDneM4aLVaG9Yv09oKhQIsy4JpmhiWPc13rWe7CWhCCIyPj2N0dPS2zYwAJcTZto1Wq4WFhQWUSiUkk0nkcjk4jkO99qyb6ADAsix0Oh04jhOm3XWTSqVCA55sB4ZhGIZhGIZhGIZ56AkC4MtfpsfFi6Rilqnuk5MUeXL2LHD+PClwX3ppZ9XiY2Ok0p6eJkXv0BCpfGUkyDPP0LpffZWU2a4LXLhA83SnzgVBpAK/he9aAETmuUSCzHmFArB3L5nobJvGyyQ6Of23v00pdAAZAatV4Pjxq9voRml7tVpkGiwUooiVTd/VPPTI73Pkcyq19XSpFLXn5ukZhmEY5jrc67JoM9/3fcDXvw5cukRlkBBUanSb36Sx7WaJx6nEicf/f/buPLyt6zwT+HsX7ARJcAEILZQE0ZBNUwK8KXazUEkaL3GcpEljp22cpa2naZIuadonaTwTN53J0mniNl1Sp2mzNJ4mUyedpM5ux5JiW44pyyEtm5YomhIlUyC4gQtA7PfMH4cACe6UuGB5f3r4QPfi3osL4BA85+D77ie7PU1N8s+n1Srz/S9elK+HYcx2S2a+ZoLZLF+LZFI+fmMjsGOHTHxbqTKa2w388IdyG7sdiMWA48dlF3Bul0hRgCuukN1DiwV45zs3p/JfKWB3iIiIiIiKiRACh88exuFzh2GkDBgw0D3cjawhK7NVW6rxUuQlnIucQyQewaHdh5aM4fO5fDh2Qc6heqo8GIwOonu4Gy6rC1XmKsRSMQxGB2HWzGiwN2AyOQmTZoKqqFCgIJFN5BPcVkOBArNmRpW5CgICHQMdGE+Mo31XOwDgm89/E6FoCCbNJBPlAFg1KyyaBVkhB2OGMKApGhQoMGkmVFmqYNEsMGvmZZ+P0+LEVHIKkUQkf79Vl8f2uRbOCW900tt6SmVTBbdOy+KDFqfFiUgismB7IiIiIiJgnRLoAOCzn/0snn/+eTz66KP5hKD5coMUIQScTie++c1vrjrx5d57783vqygKfu3Xfm29Tr3i9Pf3Fyw3NTWtaj+Px1OwfPbsWRiGAfVyL0dZZOYmvQFAPB7H8PBwPmnLPXO5yo6ODoyPj6O9vX3JAXhXVxfOnDkDwzDQ29uL8fFxAMDk5CQMw8gn0rlcLoyNjaG7uxv79+9HKpXCz3/+8yUTxAKBAMbHx9HT0wO/34/m5maEw2GoqppPbJuYmEB2jd9wKooCwzAQi8WgKAocDgfMZjNSqRTsdjuqqqoQj8fz1dlUVc0/Zq4iXU1NDbZt27ZiJb21WkvS3XJCM5fQHB4extjYGLLZLBwOB4aGhjA5OZn/7Mpms4jH4/n3PZ1OI527JOwcudfCbDYX3BIRERERERFVtM5O4Ac/kAldw8Myynb7dnnf+fOyEpvLJZPUpqdlmZFrrlm/x1cUmXBWWytLvUxMAImETIIzDFmmpK1NRnV3d8v1ui6ruU1Py20URa7T9dkSKZdSiU5RZCS31SojyW02GR0eicgIdadTRh7nztHhkFH00ahMemtpkYmAtbWyTMpcq6m2pyizxwFkciEjxQvl5nNytzPzPQvk1s/fnoiIaBlb3S2az2QC7roL+M//lN2EaFQmnCUSsqujaXL9Wrs9JpP806hpsuvj8ciKc4A89sCAfL65P5+Tk3I7u10u5yrH5ZLrtm0rTCRcrjKaxyOryp09K/fVdXksdolWj90hIiIiIiomnYOd+MGZH2AwNogdxg5kRRbnJ87nY0dtug0umwtpI43pM9OotdbiGu/iAyld1RFsCqJjoAMtdXJAEI6GEUlEEElEYDfZ0WBryCfnxTNxWAwLNEVDMpOECjVfnW41clXj+if64TA7YAgDPaM9qLXWAgCeCz8Hi2bBaHwUwGzVubSRhqZqMGkmWDQLoqkoMkYGZtWM3TW7MZmahNfpXfH5ADKJz1Plyd8faAqsuaJcsTFr5oLbqeTig5bc+vnbExEREREB65hAZzab8f3vfx/33HMPvvGNbwDAgqSiXGLKjh078NBDDy1ZYWu+L3zhC/jFL36RT8wzmUx429vetl6nXlGEEAjnLs84w+VyrWrf2tpa6Lqer2yWSqUQDofh9XrX/Ty30vykt3A4XJAQ2t/fD4/Hg5aWFvT09KC2thbB+cFLADKZDDo7OwEAvb29GBwcBADs3bsXDocDL7/8MsLhMDKZDEZGRvLV3tLpNM6dOwdg6Wp3iqKgvb0dtbW1+cfYtWsXrFYr6urq8PzzzyObzWJ6ehpCiFVXo8tms0gmkzCZTLDb7Ugmk1BVFVVVVYhEIti9ezdcLhfOnTuHaDQKh8OBeDyOeDwOq9UKt9uNG264IZ/ktlwlva2SqxCXSCQQiURQW1uL4eFhTExMAADsdjusVitisRji8TgMw0AymYQQAslkEtlsFpqmAQBGRkYQiUSgKEo+sbLcfh+IiIiIiIiI1iyTAR5+WCZyhcOy1EguIltRZqPDY7HZdQ8/DOzfv/lRzDffDFx3nSzD4vXKCO6XXgJCIXkuuepxqiqjuYVYeyU6IWQplVRKJs4B8ngTE7IsyvDwbLU7s1mWbTGb5fLMfBL8fqCrSyb9zX+NVqq253bLSPLccYpsrqYoeL0yebKxEejvl5H2IyOF0fkjI7Ola2bmgcB5ICIiWkGxdosCAXmNgf5++efOYpEV6SIRmQhnGPLaAWu5fkCu67RtmzxGLjHO5ZL/D4Xk/ZOT8pgWi3wck0ku514Xp1Ne42BkRBbkbWiQiXcrVUbbswcYHZXn7HbLbleu4C+7RCtjd4iIiIiIikXGyODhnocRjoURjobhMTzygvJGGrqqy6S5+DRi6ZhMqIOCh3sexn7P/iWTxAKeAMYT4+gZ7YG/3o/mmmYMxYaQyqZg1sxwO9w4O3YWvxz8JcyqGUklCUVRYDfZYQgDiqEgI1Y3L6xAQZ2lDqqiIpFJoHesF/56P569+CyEIpAxMohn4khmklCgoMpUBU3VkMqmkBVZiKxA1sjKCniaghpLDUyaCQqUfBW51Twfqy4HQP56PwKe0h8AeZ1enB49jUZHI/rH+xFJRDAyPYIG++ygZWR6BJFEBAoUuB3u/H5ERERERDnr+tWL2WzG17/+dbzvfe/DF7/4RfzkJz/JV2dSFAXXXnst7rzzTnzgAx9AVe6Sgyt44okn8Gd/9mcAZhPw3va2t6Fh/qUFaVWmpqYWVCWrzgXurILT6UQkd6lGANFodN3OrRgIIRZNenO5XHA6nZiamkIkEsmv9/v96OrqQltb24Iqa319fUilUojH4/mkxdbW1nzb9fl8GB4exuHDhzExMQGXy4VEIoHnnnsOTqdzxWp3iqIgGAyira0NfX19CIVCaG5uRiwWg8vlwunTp3Hq1ClEo1FMT0+vKonOMAxks1k0NjbmE/rq6upgs9mQTCYxOjqKxsZGXHHFFYhEIgiFQojFYrDZbGhpaUFjYyPcbjcsFgsCgUBB0t9myWQy+dcjVz1ubiW/XIW4WCyWr7aXS6rzer35z6Z4PI7JyUlkMpl8hb10Oo0nn3wSzc3N+bYAyOqMVqsVFosFPt/CcvdEREREREREFaWnB+jrkxHhFy/K8h81NTI6OhdVHYnIBLKBAaC+XpYL6ekBWlvX5xyEAI4cAc6ckcvV1bNJbGazPJ9sFjh+HLjiCuBNb5IJajU1sxHdoZCMZjeZZEmT8XFZoiUelz9rkU7L566q8vj9/bPnMDkp76+pkdHidXXytqZGnt/QkIyst9uBn/0MeP3rCyPq51bbm5nXQnNz4eNbLDJKPBAoLOVCks8HHDsm/+/xyMTF7m4Z8e90ylIruTlRj0dG31sscj8iIqJlFEO3aD4hgKNHZTdk1y6Z5JfJALt3zyaYDQ7KP3+5IrwrURSZDGc2y9vc9QdaW2UCVjgsE63SafknVlFmrytgtcoqfMmk7BYpiuzWpNPy9bDZ5HYrVUaLRmVSl80mn4/dXrxdokxGtotQaLZ76vXKrsVWVcVjd4iIiIiIikXPaA/6In1IZ9O4OHURbaINmqJhW9U2WE1WJNIJRBIRTCQnMDA1gHp7Pc5GzqJntAetjYsPpBRFQfuudtRaa9E52AkAaK6ZHTAIIRDLxOAwOxD0BHE8dDyfjKaruqwSlzFgwFj23HPV6sLTYdyx/Q5MZaYQjobRXNOMiYS8uHvWyCKaisJuskNVVNhNduiqjkQmgVQ2hUQmAUMYUBUVuqrDbpZXJ9nXsC+fILjS8wEAi2ZBoCmAgGfz4/dyMkYGfZE+hKZC+dfT6/TC5/KtuSKez+XDsQty0OKp8mAwOoju4W64rC44LU5MJafyFfg8VR5YdSssmiWfdEhEREREBKxzAl3OoUOHcOjQIQDA+Pg4kskk6uvrFyQYrUYmk8GXv/zlgnWvetWr1uM0K1IsFluwzmQyrXr/+dsudrxSlkqlYDKZlkx6A2TVse7uboTDYTTPfPPW19eXr7qWEwqFAADDw8MQQsDlci1I/EwkEshmsxBC5KvORSKRfOLcaqrd6boOv98Pv9+PTCaDZDKJn//856itrUVNTQ0URUE2m80/zkoMw8D09DTcbjdisRgURYGu69A0rSD5Utd11NXVweVyob6+Htu2bYPNZsPb3/52+P3+S/p9vxxCCHR1daGzszOfEJczt5JfU1MTTp8+DV2XkxtjY2PQdR0ulyufPBeNRhGPx1FbW4t4PI5MJgNVVQGgoIKjoij59wcAAoHApj9vIiIiIiIioqLz7LMyKjgSkaVEzGYZkZ0bM2/fLiPHX3xR3j82JqOdn312/SLFu7pk8pxhAL29Mmp77rxIf7+M/G1pkdsdPAi8610yWv3FF2XUdjwuI78dDpnUZrfLshxCyKj3TGZ1JVnmbhONyuecK7UyNSWXARmFXF0t109PyxIfU1Py/+fOyXN45BEZaR0MFkZ+K4pc19ZWfNHYpUDX5evX0SHbBCDbTCQyGymuKLNtBpCvP19TIiJaQTF0i+bLdZOEkN0dRZHnk07L5LNoVHYdLlyYrei2GrlEvHhcdptcrtnqZRMyThRVVfIxUim5jc0mu1u1tTLpLnfNg2hUVp+rqVlbZTRVBQ4ckF0tn092r4qpSySEfP07O2cr6uWcPi0T2OZ38zYLu0NEREREVCyeDT2LjJFBJBFBIpOAoigwaSZsr94uN7ABNdYavDjyIhKZBMbiY3A73Hg29OySCXTAzMXqm4Joc7ctSOoaT4zjgPsAkpkkQtEQVEVFKis77QICmWxmxeQ5ADBgwAQTplJTODV6Cm2eNkQSEQzFhpDIyHngjJGBgMC2qm0YiY8gnonDbrLDYXIgnoljMjmJZCYJVVVh023QVR2eKg9e3fzqVT+fS01SWy9CCHSFu9A52Jl/HXNOj57GsQvHEGwKrim5T1d1BJuC6BjoQEudHJSEo2FEEpF84pwCBZ4qT/7+QFNgy14DIiIiIipOG947rK2tvaz9c4l4tD7S6fSCdWtJoLNYLAXL09PTl31OOcFgMJ+kNJemaUsOlD7+8Y/j3nvvXfHYX/ziF5e9/+abb8YHPvABHD16FKdPn1426a2hoQEulwuRSARDQ0Nobm5GKBTCo48+WrBdNBpFOp2Gpmlobm5e8Byy2SwuXLgAq9WKwcFBqKqKqqoq2Gy2ggpnc6vd/fCHP8STTz656OuRSCRgs9nyr6HNZsPu3bvR29uLoaEhmEwmpNPpFZPofu/3fg8AYLVaoSgKMpkMTCYTFEWBEALj4+OYnp6G0+lEdXV1PoFMVVUcPHgQrav4Rnc170cuKW01hBA4cuQIzsxcVT4ejyMSiUAIAUVRoGkaVFXFwMAAzGYz0uk0LBYLqqurMTk5iYmJCWiaBqvVikQikW/XTU1NGB8fx+joKJ577jnU19ejsbER27Ztg9lshsVigaqqGB0dhdlsxrFjx3Asd3nOS3gei1nv14qPsXGP8cUvfrEsngcfY30f4wMf+MCGP8Zq8DGK+zHmL5fq8+BjrO9jrObz43IfY63K5THKzVaPo0rhPa/0x1jL50kxPw8+Rok9Ru7iM1NT+OKb3yyjoefMKX0xVwpk717c/ItfoGVqSkaKz7lozVoseB5CyChtIYBkEjdPTqJFiIXlM2bmXOD3y0jmtjYZqf6a1wBPPCHP++WXAUXBF6+5Rh7v4EGZlJd7nJl5lpt/8hO0vPRS4XnkPodzczGqKiPjIxEZJT4wIB9jYgKw2/HF9na5nM3K29pa+bpkMoCq4uaBAbRMT8to644OWRGvvb0wulrX5fOZd6GnJV+reYq6XW3AYxR8RgYC8jXt6QH8fnwxVyFQCPka50rpjI4CZjNudjhwub2SUnqt+Bib9xiXq1ieBx+jvB6j3GzmOGp0VFZBa2qS3YxTp25GVVULzp+f/RtUVSV/xsZkN2WlbtHlvOeZzGzB2t5e2R1SFFmJzumU3ZITJ4CbbvoihFj6egE/+cnNeOmlwsdQFNnVsdnkn1S7vfBxAfmntbpabnfzzV+Eqso/r7kkrGx2tpKdx3Mz0umWS66M9vrXA//8z7Ov1QsvrO21Wq3Vvh/zCyTH48Dw8GyC38y1NRft5m3mZ0ksJs/J5ZotmCwEYBg3o7GxJV+l0O+X3adLeYyllMpnIuf6+Bh8DD4Gvx/kY/Ax+BiVaFPHUdOjaM40oynbhFajFS/WvIiGHYXxe1XmKlSZqjCWHcNUcgpuhxvh6NIDqeXecyEE1CtUmOvNEBCYSE6gwdYATdEQTUVhqAZSIrXk/jkfgPz8VwwFalqFckFBzXANnIYTmqoBzUCmNgO72Q5N0eAwO2DRLRiMDmIqOQVd1WHSTFCgICuyUCGr03mrvNjv3o+9dXtX13Z3b+3vhxACR84dwZmxmTi+TBzDseF8cp/b4cbwkWEMYACPaI/AYXas+jECngDGE+PoGe2Bv96P5ppmDMWGCo5t1eWgZeLxCRwzH8MxHFtwnNU8j9VYz8+SpfoP5fKZyMfgY8xfX+rPg4/Bx1jMaud/iv158DH4GKt5jMUer1TGUby8wir9+Mc/xm233bYhx37Pe96Dr33taxty7Pk0TVuwbrHB7VLmJ18ZxspXVlmtTO7bszVYLCHwcuQql+VunU7nots5nU5EIpEF28+VmxzI3cbj8YL7R0ZGkMlkEIvFkEwmYbfb4fV60dLSgt27d+e3mVvtTgiBVCq1IJExFovlq+cZhgGr1QpN06BpGqqrq2G1WpFKpfLvn6qqBZMXQoj8fbn12Ww2X6VNCJGvQufxeJBMJmE2m+F2u2Gd+abM7/cjsNZvytZJV1cXzpw5A8Mw0Nvbi3A4jJ07dxZso+s6zGYzUqkUVFWFpmlobGzE5OQkEokEotFovnqcoiiorq5GY2NjPtnOarVC13U0NTXlP9yHh4ehKAqsVmv+dSAiIiIi2kzFMI4iIlrRZpfPSKVyUb6z0dqtrQvLlHR3y+j0XEJfX5+MBL7yShnZPDYmo9lzFeLmJlEZxuLlWEwmGQGuKHK7VEqWc8ndZxiyolyu9EpuW7N5NnkuJ5uV55+bf5uclFH4drss+9HTI5PsgsH1fPUql6LISPXaWplZkIvon7+N1Sp/NrtdExHRutnKcdRW//no65NdkHh8Nkkv100SQnYvmprkeS5XeU5VZdcl1+XKdWcMAxgakoltFy8Ce/fK7XMJcpomuze6LrtGijJbAS9H02bvM5vLpzLaWgokb2U3z+GQ70EiUdgdqq6WiYkWi3x9t6JKHhERERFtna0dRy3R8Vyn/mjKSEHP6khlUjAMA9XmajjMDlxRfwV6RnsQioaQzCaRzix8PsrMSSgz/8TMP0BWrptOT8OsmeUF4FUNUAGrboXL6sJ0ehrbqrdBURRMJCeQSCeQNtLIiixMmgluuxtXu6+G1+lFsClYMpXUusJdODN2BoYw0DvWi3A0nH9NAKB/vB97sntg1sxIZVPQMlo+6W0liqKgfVc7aq216BzsBAA01zQXbGPRLAg0BXDMvHjiHBERERFVNkWsVI6KABRfAt1f/MVf4JOf/GR++a//+q/xp3/6pyvuNzY2hvr6+oJ1mUxm0cS6xXg8HgwNDeWXf/GLX+AVr3jFKs+60AsvvIC2trb8stVqXVMyH7D6K9WsVq4C3fnz53Hu3Dm4XC7s379/wXYnT55EJBLB7t270dzcjH379qG9vb1gm56eHhw5cgTxeBzPPPMMhBBobW3NV7Tr6elBb28vent7MT09jR07duSP5fF4Vv1YnZ2d6OjoKEgey/1aCyHw1FNPYWJiAolEAsmkLO9ut9sXJPRlMpmCRDmLxYIdO3bA4XDA5/PBYrFg7969BecGyKqEgUAAgcDqS6qvp0wmgwcffBCpVAo9PT35in0ulwtOpzNfyQ+QFeX8fj/MZjMA4NFHH0U6nUZfXx/i8Tjq6upQVVWF6upq6LqOaDSKWCwGj8eD6667DtFoFHv27IHH44HZbIbX64XP58sn3hERERHR5ps/rnj++edx9dVXb+EZbaxiHEcRES3w4IPAj38so6d7e2UE9FVXyWS0nGgUePFFmVzW0iJLbtx6K/Cud13+4x89Cpw+DZw/D5w7J8tnLDK/g5MnZdT17t0yiW7fPplA1dMDHD4MvPQS8JOfyMS16moZbZ5MykjnbFYm4eWCQLJZGV1cVTW7zmyW66JRGSmuafLHZpOPmUzK/+eS7Twe+RgNDfK1GxqSZWAsFmDnTnmM6moZkd7UJJP9LBbgt36r+CLES10mIzMMQqHZsjBeL+Dz8bUmorLAcdTmjaO2uls033LdpAsXgLNnZVenu1t2hXLXAsjl86vqbNJbLokunZb75CrJ1dcD27fLbsuhQ7JrEw7Lxx0fl8cGZOJeba3sgnk8s9c3UBTghhtkvvqhQ7LLI4Q8954euW8iIV/TudXb5lZGm1+kd6tlMrItpFLyOeQKIS9WRa9YunnsDhEREREV4jhqE8dRXQ/ixy/9GEOxIfSO9cKkmnBV41WoMs8OpKKpKF4cfhFpI42Wuha4HW7cuvdWvCuw9oHU0XNHcXr0NM5PnMe58XOotdTCZXOhK9yFcCwMYQi8MPwC4pl4QSKYAgWqokIIAUVRoKs60tk0BATMmhk23YYqcxUO7T6EG7bfgInEBACg2lqN4wPHEY6F4TA5UGWuQsbIYDI5iWgyirHEGGy6DXvr9kJXddyy9xa868C7tiQub60yRgYPPvcgUtkUekZ7MBidieOzuuC0ODGVnEIkMRPHV9UEf70fFs2C3zrwW2tOEMwYGfRF+hCaCuUr0HmdXvhcvpJJNiQiIiIqd8U4jmJPscI4HAtLXqdSKdhstlXtP//KMIsd71I988wzW/4L4fV6cfr0aTQ2NqK/vx+RSAQjIyP5pDdAVoWLRCJQFAVutzu/33w+nw/HjskrmXg8HgwODqK7uzuf2HXmzBkMDg7mK8Y5HA6YTKaCxwKWr3aXyWTQ2dkJAOjt7V00eUxRlIJqeLqu5yc0NE2DYRgwDCNfhc4wDCiKgng8jmg0im3btsHj8eDAgQO48cYbMTw8jFQqVTQJZH19fUilUojH4wjPXC51bqIisLCSHwC88pWvxPnz59HX1weXywVVVZFMJqFpGoQQ+cpzHo8HTU1NcDgcqKurwzvf+U4mzBERERFR0SiGcRQR0QLXXgs8+qiMCLZaZYmTXIS21SojniMRGYlrswF1dTKa/Npr1+fxc3MnuVunc/HtnM7Z85i7vc8HHDsG7NkjI5gBGe2dzcrzzJVCmZiQ0dy5qy+bzbP/N5lkFHk2OxtlDsjbVEreV10tq8lpmoycn5iQ68NhGcGeTAI1NTIi3O2Wx9y7Fzh1avHKebR+dF2+pnxdiYjK0maOo7a6WzTfUt2kbFZ2PwBgeHg2KS5XMW5+d0bTZivHzS36m83KYrtOp/x/d7d8rna7TBqbmpLPWwj5OIkEsGPH7HUNAJlMZ7XKBDKfb/Yx5xaKBWa7QjnFXBltucp/OcsVSN4K7A4RERER0VybOo7adi0ePfsoXDYXrJoV8Wwc58bPwWV1wapbkcgkEElEkDJSsOk21NnqYFJNuHbbpQ2kUtlUwW21tRrbnNvQP9EPBQoGpgYABVAVFVkxW6o7V30ud5MxMvkKdBkjI6vJGVl4qjyw6lZUOasgFIGskUVTlZx3jsQjGIwOwqSakMgkkDSScJgdqLHUwKbbsMe1B+9se2dJJM8BQF+kD6lsCvFMHOHoTBxfYysa7HPi+KZH0D3cjXA0nK8e1xfpg79+bYMPXdXhr/eveT8iIiIiqmzMAlmlgwcP4vDhwxty7KZcIM4msFgs0HW9oKz69PT0qhPopqamCpZra2vX8/S23EpJb3OrmXk8HlitVlgsFvhy3+DNoes6gsEgOjo60NLSAgAIh8OIRCKIRCKYnp6Goiiorq6GEAKJRAI7duxYUA0w95rnqqblboHVJY8dP34cExMT+ap0mUwG6XQamqYhk8lAUZR8Ah0AZLNZCCGgaVo+4U7XdVx77bVobW29/Bd5nYVCIQDA8PAwhBBwuVwLkhAbGhrgcrkQiUQwNDSE5uZmjIyM4M1vfjOeeuopDA8Po7u7GyMjI1BVFWazGXV1dVBVFR6PJ//+BQIBJs8RERERERERrcTvl9HOPT2y/MjLL8sqbvG4jAhPp+WP1Srv13WZrLZe0bm5uZPc7bz5rLzc+vnb6zoQDAIPPyyjmlMpua2qyoQ2i0VGZVdXy8S3WEzul07L5wfIfRRFRofPLdtiGPJ56/psyZGrr5bJcydPyttYTCbPWSwyca6xUe67Y4dcDodlhPnQkIyuDoUY2UxERFSktrpbNN9S3aSREZkEl07L80unZVckk5GJcKnUbJU5IQq7NpnM7HKuK2Qyya6SoshuSyQijxeNyueZe2yzWb4mgNzW45FV+ACZCDf3KxlFkV20trbSq4w281UWhofl6+dyFSbPAXLZ5WI3j4iIiIjIX++Hz+VDz2gPtldvx8tTL2MyOYl4Og6TZkI6m0baSMOqW7HduR26qmOPa88lJ1KZNXPB7VRyCiPTIzCEAatuha7qMKtmpJU0DGEUVKGbm1A3lyEMGMKAw+xAS50c5OQS/DoGOvLrFCgwYCCajCIrsnCqTjTYGtDqbkWjoxE37bgJJs10Sc9rK4SmZuL4YsMQEHBZXQXJcwDQYG+Ay+pCJBHBUGwIzTXNCE2FmAhHRERERJuiSL9GKD51dXU4dOjQVp/Guti5cyfOnj2bX56cnER9ff2K+42Pjxck3uWSi8rJSklvgKzittqkqkAggPHxcfT09MDv96O5uRlDQ0NIpVL5ynJCCPT390PXdVit1oL9V6p2t5rkMb/fj7Nnz8JisSCdTueT5gCZLJdLoMtRFAVCiHyVuoGBAbzjHe9AIBC4tBd1g82vzOdc4qryi1Xyy70/mqahqakJiUQi//6YzWa43e78e+L3+4v2NSAiIiIiIiIqKroO3HEH8OCDMkI4Fzkdj8vo6lxEtcslk8M8Hrn9ekU8e73A6dPy2P398rFHRhaW+IhE5LnNzLlgzpwLAgHgyBF5v80G1NfL51JfL0uuVFfL7Xp75f2x2Gy1udw8Sy6BLvcaKMpsFHpNjTy/171OJss1Nc2WpJm5yBG83tlz83hkAh2wdOU8IiIiKjpb3S2ab6lu0sSEvH9qSlaFA+R5TUzIBLVcdyM7ExtqGDKZDpjtugCyq5Prqhw8KCvqDQ3J/Xftksl5uUpzV14pHyOdlo/hdstEQkAmjS31lUwpVka73ALJRERERESVRFd13OG/Aw8+9yAEBBRFQSQeQTwThyEMmDQTqi3VcNlcaHQ0wuPw4A7/HdDVSxtIeZ1enB49jUZHI/rH+xFJRJDIyIHRVGoKAgJV5ipMpaagQMkn0Bkw8stz1wOyWp2AwJX1V0JVVPjr/Qh45CBnPDGOntEe+Ov9aK5pxlBsCKlsCmbNDLfDDas+E6s2Z59SMb+an9OyRByfxSmrCM7bnoiIiIhoozGBrgLt3bu3IIFucHAQe/bsWXG/XIWzHK/XC5OpdK5wslrLJb2tNalKURS0t7ejtrYWnZ2dAIDmZll6PJvN4umnn4aiKPD7/TAMAy+++CIGBwdXXe1ufvKYw+FAOBzGxMQEMpkMdF1Hc3MzTCYTstksVFVFNpvNb7+cUqm0Nr8y3/wqiTmLVfJb7v3JsVgsCAQCCAQC+cRDIiIiIiIiIlpBMAiMjwOPPSYjw+vqZMR0NjubgGazyaSw171Obr9efD7g2DH5f48HGBwEurtnK75NTc1Gbns8MlLbYpH75SgK0NoKjI7KH1UFamvldvG4LB9SVSWfm8kk12WzMgJ8MXPnFKxWYGxMrrvuOhlp3tkJ2O3ydQLkY2Yy8tg7dsif3DGWqpxHRERERWkru0XzLdVNmpqSyVrhsEyas9lk12lsTCbLzb1GACCT5rJzCi3kuimKIvdTFJnoZrXKSmpz98t93ejxFHaRANnVCgTkTzl9JXO5BZKJiIiIiCpNsCmI8cQ4Hjv7GEyqCXW2OkwmJ5E1stBUDdWWath0G3ZU78Dr9rwOwabgJT+Wz+XDsQtyoOSp8mAwOoi+SB8MYSCeiWM8Pg5N0QAhK8bNlUuam5s8BwCaosmL4dtcuGHbDQg2BfNxZ+272lFrrUXnYCcAoLlmXqyaZkGgKYCAp/Ri1Rar5reY3Pr52xMRERERbbTSyJChdXXFFVfg0UcfzS+fOnUKN91004r7nTp1qmC5tbV13c+tGKx3UpWiKAgGg2hra0NfXx9CoVA+GW/btm24ePEiFEVBb2/vmqvd5ZLBTCYTxsbGMDg4iKampgXnYLVa85XWstksstnFy8fnmEwmmEwmCCGwfft2vPDCC+jq6kJwI7+1vURerxenT59GY2Mj+vv7EYlEMDIyUlCJb7lKfsu9P16vFz6fr2SSCYmIiIiIiIiKhqIAhw7JCOoTJ4CLF2U0diYjo6lraoDt24Frr13/CGldl5HnHR3AzJwKwmGZNJdLnFMUGbWduz8QWFjqxWIBdu6USXG/+IUsz1JbKyPdq6rkz+ioLOOSO6YoDJQoYBgyClpVZcKdpsnj/u7vAm1twM9+BjzyiIyiz2Rk5PrevbNV6ICVK+cRERFR0dnKbtF8S3WTpqdlUl8yKRPpsll53QGnU3Y/VLUwgW4xQsjuUzoNbNsmq9wdOgSEQvKYZrPstuSuWdDXt/h95fiVzHoUSCYiIiIiqiSKouDQ7kNw2Vw4cfEELk5dxERyAhkjA13VUWOpwXbndly77drLTjTTVR3BpiA6BjrQUicHSkPRIUTTUUSTUUylppDMJGHWzfnKdCvJiix2Vu1Eg6MBiqIUnJ+iKAg2BdHmbkNfpA+hqVC+Ap3X6YXP5bvkanpbbbFqfiPTI2iwz4njmx5BJBGBAgVuhzu/HxERERHRZijNnjZdlptuugn/9E//lF8+ceIE3ve+962433PPPVewfPDgwXU/t2KxEUlVuq7D7/fD7/fn1wkhcPTo0Uuuduf1enHq1ClMTExgbGwMQghYrVYYhoFsNgtN06CqKqxWa776nK7rEELAmPdNp6IoUFUVZrMZ1dXVyGQyAIBMJoNMJoOuri60tbUVXTKZz+fDsZnLpXo8HgwODqK7uxsul2vVlfyAxd8fIiIiIiIiIroMiiIjtNvaNj9COhCQpV56egC/X5Y+GRqafXy3W5ZEAeT98+ZcAMhzPHUKiEaBREKeq80mo8cTCRkdXlUl16fTMiFuZj6lgKrK18JkAhwOuW0mI6PoT5+ejZ5//etnXyO7XZaEOXVKRrWvtnIeERERFaWt7BbNt1g36cUXgZdekolzsZg83+lpmdw3Pr50kV1AdnXm/uS6Ob29wO/8jnyMxfj9S99XbtajQDIRERERUaXZzESzgCeA8cQ4ekZ74K/3w6pbceLiCaQzaShQoKs6HCbHigl0KlQICOiqDrfDDUMY6BrsQpu7bcG56qoOf70f/vryGRgtVs2ve7gbLqsLTosTU8kpRBKR/P1W3QqLZoHPxcEPEREREW2O4sqEoU3xhje8AYqiQMxcEfvhhx/GP/zDP6y43w9/+MOC5de+9rUbcn7FZKOTqi632p3P58O3vvUtjI+Pw+l04uWXX8bw8HC+glw6nUYqlUIymcS2bdsQDocxPT0NXdfzVeiEEBBCQFVV2Gw21NfXI5VKweVywWKxYHJyEoZhIJlMoq+vr+gSzHRdRzAYREdHR75S31or+RERERERERHRBtL1zY+QVhSgvV1WjJuZc8G8ORdYLDKCfKlSLz4f8K1vyahxpxN4+WVgeFgmwplMMuo9EpFJcbmkOlWV+woxe0xVlVHQ9fUyEl3X5U8mI7fr65OvzXpVziMiIqKitRXdovkW6yYdOAAMDMjrAdhsskJeMjlbQDceX/xYmiaPl0v4ymYX7+ZUOnbziIiIiIgu3WYkmimKgvZd7ai11qJzsBPbndvxnPYcTLoJ1ZZqDMWGEEvHoKs6MkYGAqJwf8zOL1s0C1xWF0biI0hn00hmk+iL9JVVotxSFqvmF46GEUlE8olzChR4qjz5+wNNgZKtuEdEREREpYc9zwrU1NSE6667Ds888wwA4Pz58/jRj36E2267bcl9Tp48iaeffjq/XF9fj/b29g0/10qwXtXuhBAFCXa5BMl0Op1PknM4HLDb7bBYLBgZGclXmTOZTPkqdRaLBQBgt9tRU1ODZDKJ9MylRUOhUNEl0AEyIW58fPySK/kRERERERERURlaz1IvcxPicsvptLwVQkaa55LnMhkZPW4yyUpyiiLvm5lzgaLI7ScnZVmXUGg2snw9KucRERERrWB+N+nCBeAXv5gtugvIqmjZ7GxXBpAJdYBc1nVZjFfT5LLZLJPugMW7OZWO3TwiIiIiouI2t+Jdz2gPOi52IJaOIWtkYUlakMwmkTWyyCpZzM2fUxUVqqJCV3VYNAs0VYPNZIMBA2PxMQBAaCpUEQl0wMJqfs01zRiKDeWrB7odblj1mTi+ej8CHg5+iIiIiGjzMIGuQv3Jn/wJfvM3fzO//NGPfhSvetWr4HQ6F2ybTqfxx3/8x/mELAC45557WMFrnV1Ktbu+vj54PB4MDw+jt7cXTqcTe/fuRTabRTabhaZpiEQiGBwcRDQahcPhgKqqcLlcsFqtiEQiSKfTcDgcAIBEIoGpqSlYLBaYTCY4HA5kMhnY7XYAQCqV2pDnfrkut5IfEREREREREZWxSy310tcny4AMDwO9vbIK3d69MpI8m5WlWZxOYGREJs1ZLDKKPJWS0eNms7w/kZA/U1NyG6t1Ngq9oUFun7MelfOIiIiIVinXTQKAX/kV4PnngePHgepq2R2ZmgJiMdmVEWL2OgG5bk91taxOl0jMXiMgl2Q3v5tT6djNIyIiIiIqDbqqQ1d13Lj9RlSZqnD84nHUWGqgKiqmklMwYMAwjHz8ma7qMGtmaKoGBQpMmgkAoEKFIeQAKZWtnMHR/Gp+ANBcMy+OT7Mg0BRAwMM4PiIiIiLaXMyAKgFHjhxZsO7cuXMFyy+99NKC7WpraxEMBhc95p133om//Mu/xKlTpwDICnO33HIL/vEf/xHXXHNNfrve3l788R//MR577LH8urq6Ovzpn/7pJT0XWl+hUAiKoqC6uhr19fVIJpOoqamBEALRaBTxeByJRAKGYUBVVZhMJtTW1iKZTMLpdCKRSCCdTiORSEDTtHzSnc1mQ01NDRKJBFwuF2w2GwDAbDZv8TNe2npV8iMiIiIiIiIiAiBLpiiKjAyvr5eR4aoqk+OyWVmBTlFmy7TkIsZNJnlrGDJqPJ2W22ua3MYkAyiwbZtcN3++ZT0r5xERERGtwmLdnunp2S6NpsnbuV2QbBaIRmcTvcxm+WMYS3dzKh27eUREREREpSE0NROTZ6lGva0eyWwSuqojno5DMzRAQT45zhAGBIRMnlNNsOpWpI00aiw10BQNAGDWKmtwNLeaX1+kD6GpUL4Cndfphc/lg65y8ENEREREm4+90BLw2te+dsVtHnjgATzwwAMF69rb2xdNvgMATdPwH//xH7jpppsQi8UAAE899RSuvfZa7NixA9u3b8fQ0BD6+/th5C4VObPfN7/5TdTX11/6E6J1k6sIl06n4XK5sH37dkxNTaGvrw/pdBqapsFutyOZTGJ8fByRSAR2ux319fUYHx9HXV0dDMPIH8dsNqO2thZOpxOpVApWqxUulwtutxsA4PV6t+y5rtalVPIjIiIiIiIiIlogVzIld2uxFN6fixY3mWQEeS5CPJuViXa5ZLpsVq6vrZXbpFKyst3+/XL9UvMtl1o5j4iIiGiNFuv25KrOKcpsF0ZV5TpNk//PdX9yyXOplEzAW6mbU+nYzSMiIiIiKm65inFpIw2XzYVqSzUuTl1EOBaGIQxoqgYNGrJCzv0ahgGzyQxVUZHOpmHSTLCb7WhwNAAAvM7KHBzpqg5/vR/+eg5+iIiIiKg4qFt9ArR19u/fj+985zuoq6srWP/yyy/j6aefxtmzZwuS5+x2O77yla/g5ptv3uxTpSXkKsLlbnt6ejA5OYmGhgY0NDRA13UoioJYLJb//8jICFRVhdvthtlshs1mg6ZpSKVS+fd7cnISmqbB4/GgqakJVqsVFosFPp9vy54rEREREREREdGmMptlhHgoBIyMAPE4YLXKiGddBxwOuU2uKl08LivM1dXJW0WR65JJ+f90GpiaAtxu4MABuY3FIkuNEBEREW2hxbo9NTUyUc5qldcE0PXZ6wfML7abSMjbqip2c4iIiIiIqPTlKsblbkfiI0hkE9hZvRNW3Tq7oQAEBAxhYCo5hYnkBIQQqLfVo8ZSg0Z7IyyaBT4XB0dERERERMWACXQV7pZbbsHJkydx9913w+FwLLqN2WzGW97yFpw4cQLvfve7N/kMaTm5inCNjY0YHx/HxYsXMTU1la8eODo6iqmpKcRiMUxPT0NV5a/8wMAAUqkUnE4nqquroWkadF2H1WqFyWRCbW0ttm/fjqamJrS0tAAAAoEAdJ1FK4mIiIiIiIioQni9wMsvy2hwAAiHgZ4eYHQUGB+XkeXhMBCNyqhyIYDJSXm7Y4eMNs9kZKS5yQTY7TJ57rrrgJn5FgQCMhqdiIiIaAst1u25eBGYnpbXAhBCJsslkzKpTtdnk+eEkNcVcLtlF+j66+Ux2M0hIiIiIqJSlasY1+hoxHhiHJOJSaQyKcQzceiKDlVRYQgDWZFF1sjKW5GFruiw6BbU2ergrfKiwdGAQFMAusrBERERERFRMWDPvAQIITb0+Nu2bcO//du/4Z/+6Z/w+OOP48KFCxgZGYHL5cL27dvxqle9Ci6Xa0PPoRj09vYCQD5hrBT4fD4cO3YM2WwWmUwGAHDmzBlks1noug5N02AYBqqqqpBMJvMJcDabDZOTk/mkyaamJtjtdlgsFhiGgZ07d+LAgQOwWuUVc/x+PwKBwNY8ySJRiu2DNgfbBi2H7YOWw/ZBy2H7IKL1ws8TKiYl1x6bm2UZFpMJyGZlwlw8DjidsrxKNCoT5NJpGTXucMiocodDJthVV8vtNE3+X9eBtrbZ5Dm/X0aW05YpuTZJZY3tkaiyFNvv/FLdHl2XleZUtbD6nMUi/+/xyGsENDTIinVXXCH3YTeHqFCx/c4T0cbi7zwR0frais9Vn8uHYxeOISuyyBgZQAEmkhOIpWMwqSakjTQMxcgnxqmKClVRUWOtQYOtAY2ORjTXNOOqhqsQ8HBwRCtj/4HKHds4VQK2c6oE5dDOmUBHeQ6HA7feeutWn8aW+elPfwqgtH6hdV1HMBjEww8/jPr6eqRSKQwPD0MIAZvNBovFAkVRsG3bNsRiMVy8eBFVVVXYsWMH4vE4vF4vFEVBPB6HMvPNp8fjgd/vh6IosFgsCAQCCAQC+fsrVSm2D9ocbBu0HLYPWg7bBy2H7YOI1gs/T6iYlFx7PH9elmPp6ZFJcFar/DGbZWS5zSZLrUQiMqrc4QB27gT27JER52Njcl2u9IrHA+zdKyPOAwH5U+HzLVut5NoklTW2R6LKUmy/88t1eyYnZdJcTc1sNTpdl92cXbuAujp5jFxXJxhkN4dovmL7nSeijcXfeSKi9bUVn6u6qiPYFMTDpx9Gvb0eqWwKw2IYKlTomg6XyYVUNoV0Ng1FUZDKpmA32dFob4SiKnCYHHjbVW9DsClY8TF3tDrsP1C5YxunSsB2TpWgHNo5E+iISlwgEMCRI0egKAqsVivqZr6prK+vh6ZpqK6uzlees1gsmJ6eRjweR11dHVwuF/x+P7LZLCYnJ1FfX4/m5mZYLBZ4vV74fL78vkREREREREREFSUUAnbsAM6dk8tNTTIyfHJSJtDlKsuFw8DwsIwkb2iQVeeuvVZuMzICTE/L6PIrrwS2bQN8vtmkOiIiIqIisFy3p6ZGdmfSaVlkN5UCGhtnq895vcC+fcCrXy0T6NjNISIiIiKichDwBHDk3BEoUGDVraiz1wECMGkmxNIxmDUzVEVFIpPAdHoamqLBpJkQ9ATx9qvejmu812z1UyAiIiIionn4FQZRiVMUBa2trRgdHcXY2Bg0TUNdXR3q6+vz25hMJuzYsQM7d+5Ef38/7HY7amtr0dDQgH379jFZjoiIiIiIiIhovlRKlk5pagJGR2WVOV2fLbOS43DIanRXXQXU1spI8j17ZMkWr5cJc0RERFT0VtPtEQK4eFEW2t25U14f4OqrgbvvZleHiIiIiIjKj6IoaG1oxej0KMbiY9BUDXW2OtTb6iGEQDQVRSqbQp1NDpymUlPw1/vhr/fDgLHFZ09ERERERIvh1xlEZcBisWDnzp3IZrN4/vnnoes6GhoaoOs6ampq0NDQAE3TcPLkSaiqiqamJjQ3N2Pfvn1ob2/f6tMnIiIiIiIiIio+ZrO8tVhk9HhNjYwqn5gAMhkZKV5TAwwOynU2myzFsm8fwPkWIiIiKiGr7fbU1sp1u3cDzc28TgAREREREZU3i27BzpqdyIosnh96Hrqio8HeAF3VUWOpQYO9AZqq4WT4JBRFVqoDALNm3uIzJyIiIiKixahbfQJEdPm8Xi8AwOPxoKamBna7HW63G36/Hx6PB5qmYWRkBJFIBIqiwO12F+xHRERERERERETz5OZNGhtlSZaJCUDTAL8faG2Vt5om1ysKMDPfAs63EBERUYlht4eIiIiIiGghr3MmJq/KgxpLDexmO9wON/z1fniqPNBUDSPTI4gkIlCgwO1wF+xHRERERETFhdcEJCoDPp8Px44dAyCT6AYHB9Hd3Y3q6moYhoGhoSGMj48jmUyipqYGvb29cDgceNWrXoVMJgOdlwclIiIiIiIiIirk8wEz8y3weGSlue5uwOUCnE4gEgF6emQkud0OpFLAzp3Ab/7m1p43ERER0Rot1+2x2YBTp4CLF4FsVq6rqwP275f7ERERERERlSufy4djF2Zi8qo8CEVDePrlp6EoCtLZNCaTk8gYGTjMDuyq2QWTZoJFs8Dn4mCJiIiIiKgYMWuGqAzouo5gMIiOjg60tLQAAE6dOoW+vj5ks1lMT09jenoaZrMZ6XQaoVAI27dvx5e+9CXYbDbcdNNNeOMb3wiTybTFz4SIiIiIiIiIqEjoOhAMAh0dwMx8C8JhYGwM6OwEQiHAMACLRZZkOXdO3n/XXXK/X/1VYPt2GVnOixcRERFREVus2zM4ONvlyWblOk0DEgmZTPfss8DUFPDBDwJm81adORERERER0cbRVR3BpiCefvlpWHUrRqdHMTA5gFg6hlQ2hazIQggBq25FOptGOpvG7f7boSnaVp86EREREREtgpEbRGUiEAhgfHwcp0+fhhACVVVVMAwDoVAI09PTMJlMSCaTmJiYgNlsRiqVwvT0NLxeL15++WU89dRTuOuuu9DW1oazZ88iFAohlUrBbDbD6/XC5/OxUh0RERERERERVZZAABgfl5Xm/H5ZYe7hh4HRUcBqBVQViMWACxcARQHcbiAeBx59FDhzBnjd62Q5l7Y2WbVucFBWqjObAa+XyXVERERUNOZ2e1pagN5eWXDXbAamp2WXxzBk96e2FkgmgW9+E/jZz4C3vAXYtUteV4BdHCIiIiIiKicH3Adw+OxhnBs/h4yRQdpII5qKImNkYBgGNFVD2kjj1MgphGNh2E121Nvq8Xrf66EoylafPhERERERzaEIIcRWnwRVphdeeAFtbW355eeffx5XX331Fp5R6RNC4D/+4z/wox/9COl0Gi+99BKGhoYghMDk5CSSySR0XYfZbM4nw9XX1+Oqq66CyWSC3W5HfX099uzZs2AAbzabEQwGEQgEOLgnIiIioqJRaeOKSnu+RERFQQigq0uWYHnySeC55+S6cFhGkmcycjtt5qrCZrOMKtc04NprZTT5hQtAfb1Mwps7r2I2y3IvgUDheiIiog1UaeOKSnu+lyPX7fnSl2SFOcMAzp+XXZ4cRZE/ZjNQVSX/v2MHcPDgbFeHXRwiIiIiKjeVNq6otOe7nM7BTjz98tM4PnAcj559FNFUFKlsCmkjjayRhYCAqqiwalaZPGevxw7nDrw3+F7c1XYX4+yIiIiIqGIV47iC1/4jKiPZbBbxeByveMUr0NHRgampKZjNZkxPT0PTNNjtdqTTaaRSKaTTaWiahsHBQaTTaVRVVcFkMsHn88EwjHyVOrPZDLfbDQDo6OjA+Pg42tvbObgnIiIiIiIiosqgKDICvKUF+MEPgOpqoL9fVpJTVcBuB2w2YGICSCRkOZZUSlac+9nPgCuvBJqagJdfltvU1cmo8pn5FnR0yHIv7e2MMCciIqItpSiy65JMAh6PvG5APC6vC6Cq8ieTkV2dZFLeV1UFnDsnq89NTAAHDshjsYtDRERERESlLmNk0DnYCQMGXhx5Ua4UQDqbhgEDiqJAEQqEEEhkEzKhTgjYTXb8+/P/jkZHI16353WMsyMiIiIiKhJMoCMqI319fUilUkilUhgbG0NVVRXq6+tx+vRpaJoGXdcRj8eRSCSgaRqqqqoQjUYRiUSQSCRgs9lw7tw5nD17tqAKXX9/PzweD1paWtDT04Pa2loEg8GtfbJERERERERERJvpySdlZLjTKSPHLRbA4ZBR41NTcr3JJEu0ZLNym2QSGBiQ0eS6LqPO9+yRUeT9/TIyvaUF6OmRVes430JERERb7OjR2esExGKFleYAWZUuFgOiUbldNCq7OS+/DExPy6Q6r5ddHCIiIiIiKn19kT6ksimcnziPweggBASyIgtN1WBVrQCArMgilU3BEAbSSGMiNYGR6RHoio7Hzz+Oens9gk3BrX0iREREREQEAFC3+gSIaP2EQiEAwPDwMOLxOOx2O2KxGAzDgK7ryGazMJlMqK6uht1uh81mQ01NDYQQSKVSGB8fx+joKLLZLFRVRXNzM1wuF4QQGBwcRG9vLwCgq6sLmUxmK58qEREREREREdHmOnVK3obDgBAyga6qSibLJRLyPo9HJtJpmowot9mASAQYG5Pb5RLwXC55jMFBYGa+BV1dMumOiIiIaAvlujznz8vuitksk+kAWYhX02R3RtdlUl02K7fLdY+iUXZxiIiIiIioPISmZCxe91A3DBgwDANpIw1VUWHSTNBUDWbNDKtuhUWzQBEKDGFgIjmBSDKC8xPn0TXYhYzBQRERERERUTFgAh1RGUmlUvnbbDYLq9WK6elpAIBhGBBCwGw2w2azFaxTVRWqqiKdTiORSMDr9cLj8WD37t3Yv38/WltbAQDhcBiJRALJZBJ9fX1b8ySJiIiIiIiIiLZCPC5v02l5q+vyNpGYjS63WACrVZZmyWZltHkuqtzhALZvl0l3+/cDM/MtCIflMZJJgPMtREREtMVyXZ7craLMdnVyiXKGIdcriuwSmc1y2+3bAbdb/p9dHCIiIiIiKnWprIzFm0xOFixrqgZDGAAAq26F3WSHRbfArJuhKRoy2QySmSTG4mNIZpPoi3BQRERERERUDJhAR1RGzDPfUJrNZmiahkQiAUVRAADpmeAuk8mUrx6nqmrBNrn7q6qqCirMNTQ05CvRDQ0NAZitdkdEREREREREVBFmLkgEk0nezly0CEIUrk8kZFS5qspkO5NpNrkOmC3B0tAwW4luZr4FnG8hIiKiLZbr8uSqzs1cuxEm0+x1BNJpeY0ARZntAuW+anI42MUhIiIiIqLyYNZkLJ6magCAtCEHRYZh5NebNBOyIgsAUKBAVVRoqgYBgWgqCmC2kh0REREREW0tfatPgIjWj9frxenTp9HY2AibzYaJiQmoqgpFUZDJZCCEwPT0NIQQUBQFiqIgnU5D12c/CpxOJwAUrMutj0QiBVXulpLJZNDX14dQKIRUKgWz2Qyv1wufz7fguEREREREREREJeHKK4HjxwGPR0aBx+PA1NRsdHk6LZeTSRkxbrPJdULIyPNIZLZ8SzYLaBrgdMr1uXmWZeZbiIiIiDZDrstTXy+ryKXT8voAZvNsklwyOVtsV9dlF2fm6yXoOmC3b14XJ5ORFe5CIfk4ZjPg9QI+32zBYCIiIiIiokvhdXpxevQ0vFXefBU5QxgwhAFVUWHWzMhkM8gaWWSNLAzIxDqbLq9MYtHkRdVyles2UsbIoC/Sh9BUCKlsCmbNDK/TC5/LB13l4IiIiIiICGACHVFZ8fl8OHbsGABg7969GB4eRiwWQzqdhmEYiEblVW1sNhtMJhNSqRTS6TRUVUUqlUI2m4Vt5tKiNTU1BceempoCUFjlbj4hBLq6utDZ2bkgwe706dM4duwYgsEgAoFAQdU7IiIiIiIiIqKi194OPPSQ/H9dHTA4KMuqmM0yWjuXLKcoMjluelpGl+fmUIQAJiZkYt3TTwM7dwKTk/K+3DaLzLcQERERbaZcl8flktXkolF5jYDpaZmQlkzKbo9hyC5P7nbXLrl/Tc1s5bmN7OIIAXR1AZ2dCxP0Tp8Gjh0DgkEgEJhN/CMiIiIiIloLn8uHYxeOYW/dXjw7+Cxi6RjimTgMw0BcxJHKpqCqKrKGrEAnhICu6bDqVgDAjpodAGYr2W0EIQS6wl3oHOxckKh3evQ0jl04hmBTEAEP4/WIiIiIiNStPgEiWj+6riMYDAIA/H4/WlpaYLVaYTKZ8hXnstksYrEYJicn8wl1qVQKQghomobBwUEMDg6ioaEhf9yRkRFEIhEoigK32w1AVrubSwiBI0eOoKOjA6lUCvF4HOfPn0dvby/Onz+PRCKBVCqFjo4OHD16FEKIzXlRiIiIiIiIiIjWg9UKvOEN8v9+P9DUJKOxk0lZliWRkP83DBnRHY3K29x9kYi8tVhkqZSTJ2V0NwDMzLdg3nwLERER0WbLdXmqqmTXpKpKrk8kZovtGrKoArJZWZS3pkbuZzLJ7lEkIm83qosjBHDkCNDRIZPn4nHg/Hmgt1feJhJyfUcHcPSo3J6IiIiIiGitdFVHsCkIT5UHvlofqsxVMKtmKIqCtJFGIpNAIp1AxsggK7KAAuiKjonkBDRVw5X1VwKQlew2ghACR84dQcdAB1LZFOKZOM5PnEfvWC/OT5xHIpNAKptCx0AHjvYzXo+IiIiIiBXoiMpMIBDA+Pg4enp68MpXvhI1NTX45S9/ibGxMdTU1GB8fByJRAKArCKnaRri8ThsNhuqq6uRSqUQDofx05/+FFdeeSWi0SgikQgAwOPxwGq1wmKxwOfzFTxuV1cXzpw5A8Mw0Nvbi3A4XDDo7u/vh8fjQUtLC3p6elBbW5tP9iMiIiIiIiIiKgnveAcQCgHPPANceSVQXQ2cOiXv03UZKZ7JyKhtRQFUVUaWZzLA8LAs19LdLaPLc6VYvF4ZcW6xAPPmW4iIiIi2Qq7LE4nIArqGIZPnUinZrVHV2aQ0XZfLPT3Anj2zXSOPZ+O6OF1dwJkz8rx6e4FwuDBJrr9fPn5Lizyv2lpZjY6IiIiIiGitAp4AxhPjGJgcwHRmGtlsFpFEBIYwICAHIgICEICiKFAVFSbNhDpbHV6eehn73fvhc23MvG9XuAtnxs7AEAZ6x3oRjobz5wQA/eP98FR50FLXgp7RHtRaaxFsCm7IuRARERERlQJWoCMqM4qioL29HQcPHoTFYkFbWxsOHTqE5uZm6LoOm82G2tpaOBwOaJoGTdNQX18Pq9WKVCoFs9kMu92Oixcv4rnnnstXnmtqakJLSwsAmaSn67P5t5lMBp2dnQCA3t5eDA4OQggBl8uF5uZmuFwuCCEwODiI3t5eADLhLpPJbPrrQ0RERERERER0yVQV+MM/BO64Q0aEW62y5IrTCdhs8n7DkP83m2XynKbJhDmTSR4jFgPGx2UUek2NTLTLZoFAQEagExEREW2xXJfnNa+R3RNNk90bm00mxKmqXGe1Ag6HTKybmpI/iiIL9c58pbTuXZxMBpj5Sgq9vcDgoEyec7mA5mZ5K4RcP/OVFLq65H5ERERERERrpSgK2ne14+1XvR3Xe6+Hy+aCWTOjylQFXdWhKAoUKNBVHZqiISuyqDZXw+fyIRwNw6bboKvrP++bMTLoHOwEAPSO9WIwOggBAZfVheaaZrisLggIDEYH0Ts2E6832IWMwcEREREREVUuRmQQlSFFURAMBtHW1oa+vj6EQiHceOON+OpXv4qhoSHEYjEkEgmYTCa4XC5YrVYMDw8jlUrBbrfD4XDAarVCCIGdO3fC6/XCarUCAPx+PwKBQMHj9fX1IZVKIR6PIxwOAwBaW1vR0NCQ32ZkZATd3d0Ih8Nobm7O7+f3+zfpVSEiIiIiIiIiWgeqCtx1F3D77cB99wFVVTI6e2xMRpXX1cko8bExWYlO02TZk7o6WYHO6ZQJdLlts1l5jHnzLURERERbyTBkItzv/R7w3e/K7o6uywQ1TZNJaum03LaqShbV1TTg2mtlUh0A+P3r38Xp65MJe/G4rDwHAK2twJyvpDAyIov+hsMyqS63H7+SIiIiIiKiS6EoCq7xXoMrG67EdHoav3j5FxiYGoCiKgAAXdFh0kzQVR0OkwNVliqMTI9gv3s/4uk4MkZm3ZPo+iJ9SGVTiGfiCEdn4vUaW9FgnxOvNz2C7uFuhKNhNNc05/fz13NwRERERESViQl0RGVM13X4/X74/X709PTglltuQSwWw5EjRxCPx7Fjxw7U1dWhpqYG9fX16O7uxokTJzA9PQ232w1d12G322G1WmGxWBAIBBAIBKAoSsHjhEIhAMDw8HC+8tzc5DkAaGhogMvlQiQSwdDQEJqbmxEKhZhAR0RERERERESl6eJFYN8+GZVtscgo81QKmJiQCXLAbBW6eFyWY7Fagfp6WY1uelr+BALAzp3yfiIiIqIikUtUy2ZlcpzHI39UVSbORSIyQW18XHZjctcQiEbl/wMB+bPeXZyZr6QwPDxbeW7eV1JoaJDrIxFgaEh210IhJtAREREREdHluTB5Afs9+7Gndg/+q+e/MDI9ghpLDRxmB2y6DVWWKsRSMQzFhmBSTWiuaUbKSG1I0lpoaiZeLzacrzw3N3kOABrsDXBZXYgkIhiKDaG5phmhqRAT6IiIiIioYjGBjqhC5JLcRkdH4XQ60dzcjP379xdsc+DAAQghcOHCBZhMJtTX16O6uhqHDh2Cz+eDri/+kZFKpQpunU7nots5nU5EIpEF2xMRERERERERlZz50dt1dbLsisUiI8VzkeSJBBCLyYpzZrNMntu+HZiclFHcO3fOlm8hIiIiKhKLdXWuvLJwm2wWePJJmUinqrJi3Z49wDvfKZPpNkLuq6Xc7RJfScHplAl087cnIiIiIiK6VLmktbHEGHZU78DVjVejqaoJE8mJfJW5GksNBqODmEhOYHh6eMOS1lLZVMGt07JEvJ7FiUgismB7IiIiIqJKxAQ6ogqx2iS3mpoaTExMwOv1oqWlBXv27FmxSpzZbC64nZqaWnS73Pr52xMRERERERERlZzFordz/9c0eZtIyKpz09PytrFRlkTJZuX9Vqu85RwJERERFZnVJKppmqzuBgDbtgEtLbJK3UYlzwGz3abc7RJfSeXXz9+eiIiIiIjoUs1PQqux1sBT5YGnylOwXTwTx0RyYkOT1syaueB2KrlEvN7M+vnbExERERFVInWrT4CINsdGJrl5vV4AQGNjIxRFQSQSwcjISME2IyMjiEQiUBQFbre7YD8iIiIiIiIiopKzWPR2TY38v9MpK9BNT8vSJ8BsUl0sJtcpCjAzRwLOkRAREVGRKdZEtVy3qbFRdqciEWDeV1IYGWF3i4iIiIiI1l8xJa15nTPxeo5GKFAQSUQwMj0vXm96BJFEBAoUuB3ugv2IiIiIiCoRE+iIZvT29qK3t3erT2PDbGSSm8/ng9lshs1mg8cjr6jT3d2NkydP4ty5czh58iS6u7sBAB6PB1arFRaLBT6fbz2f4oYq9/ZBl45tg5bD9kHLYfug5bB9ENF64ecJFZOya4+LRW8riiy5YjIB1dVAMgmEw8DEBJBOAwMDchmQ5VmsVsBiAUpojqSclF2bpJLG9khUWUrhd75YE9V8PpmkZ7PJ7hQAdHcDJ08C587J25mvpNjdoqJRCr/zRLR++DtPRLS+iulztZiS1nwuH8yaGTbdlq+A1z3cjZPhkzg3fg4nwyfRPTwTr1flgVW3wqJZ4HNxcFSMiqmdE20EtnGqBGznVAnKoZ3rW30CRMXipz/9KQCgpaVli89kY/h8Phw7dgyATGIbHBxEd3c3XC4XnE4npqamEJm5Ivpak9x0XUcwGERHR0f+9QuHw4hEIvljKooCj8eTvz8QCEDXS+cjqNzbB106tg1aDtsHLYftg5bD9kFE64WfJ1RMyq49+nzAzFwLPB5gcBA4dQrIZGTCXColfxRF/kxOyip027YBTU1A7nUIBGTSHW26smuTVNLYHokqSyn8zi/W1enuBlwuWWx3amq20O5mJqrpOhAMAh0ds92pcFieS+58FEWeE7tbVCxK4XeeiNYPf+eJiNZXMX2u+lw+HLswE39X5cFgdBDdw91wWV1wWpyYSk4hkojk79/IpDVd1RFsCqJjoAMtdTPxetEwIolI/hwUKPBUefL3B5oC0FUOjopRMbVzoo3ANk6VgO2cKkE5tHP2hokqxEYnuQUCAYyPj6Onpwd+vx/Nzc0YGhpCKpWC2WyG2+2G1WoFAPj9fgQCgQ14lkREREREREREm2Sp6G1dl0l08bisQtfUJCPKs1lg507gwAG5DAB+v4zoJiIiIioyxZyoFggA4+NAT4/sTjU3A0ND8toFZrOshsfuFhHjBQEOAAEAAElEQVQRERERrbdiS1oLeAIYT4yjZ7QH/no/mmuaMRQbQiqbglkzw+1ww6rPxOvV+xHwcHBERERERJWNCXREFWQjk9wURUF7eztqa2vR2dkJAGhubi7YxmKxIBAIIBAIQFGUdXteRERERERERERbYqnoba9XRpbH4zKyHJDR5X6/XLZY5L6BwOz9REREREWmWBPVFAVobwdqa4GZr6Qw7yspdreIiIiIiGhDFFPSmqIoaN/VjlprLToHOwEAzTXz4vU0CwJNAQQ8jNcjIiIiImICHVEF2egkN0VREAwG0dbWhr6+PoRCoXxyntfrhc/nW3VFOyIiIiIiIiKiordS9HY2C0xOAvX1cr3FIpPrfL7NKc9CREREdBmKOVFNUWSFvLY2oK8PCIVmE/vY3SIiIiIioo1SbElriqIg2BREm7sNfZE+hKZC+WQ+r9MLn8u3YRXwiIiIiIhKDXvGRBVmM5LcdF2H3++H3+9fp7MmIiIiIiIiIipSjN4mIiKiMlbsXR1dl9Xv+JUUERERERFtlmJMWtNVHf56P/z1HBwRERERES2FkRtEFYpJbkRERERERERE64jR20RERFTG2NUhIiIiIiIqxKQ1IiIiIqLSom71CRAREREREREREREREREREREREREREREREREREW0EVqAjokVlMhn09fUhFAohlUrBbDbD6/XC5/NB1/nRQURERERERES0JpkM0NcHhEJAKgWYzYDXC/h8sqQLERERUYlh94aIiIiIiAjIGBn0RfoQmgohlU3BrJnhdXrhc/mgqxwcEREREREVC0UIIbb6JKgyvfDCC2hra8svP//887j66qu38IwIAIQQ6OrqQmdnJ1Kp1IL7zWYzgsEgAoEAFEXZgjMkIiIiIppVaeOKSnu+RERlQQigqwvo7JSR5fOZzUAwCAQCAOdaiIhoE1TauKLSnu9mYPeGiIiIiCpNpY0rKu35XiohBLrCXegc7EQqu0icnWZGsCmIgIdxdkRERERUeYpxXMHLWxBRnhACR44cwZkzZwAA8Xgcw8PD+Qp0brcbANDR0YHx8XG0t7dzcE9EREREREREtBQhgCNHgJm5FsTjwPDwbImWmbkWdHQA4+NAezujzImIiKiosXtDREREREQ0E2d37gjOjM3E2WXiGI4N5yvQuR0zcXYDHRhPjKN9F+PsiIiIiIi2GhPoiCivq6sLZ86cgWEY6O3tRTgcxtwilf39/fB4PGhpaUFPTw9qa2sRDAa37oSJiIiIiIiIiIpZV5eMLjcMoLcXCIdl1HlOfz/g8QAtLUBPD1BbK8u1EBERERUpdm+IiIiIiIiArnAXzoydgSEM9I71IhwNQ2BOnN14PzxVHrTUtaBntAe11loEm4Jbd8JERERERMQEOiKSMpkMOjs7AQC9vb0YHBwEALhcLjidTkxNTSESieTX+/1+dHV1oa2tDbq+/EdJJpNBX18fQqFQvpqd1+uFz+dbcV8iIiIiIiIiopKUyQCdnUA2Cxw/Drz8svx/TY0szaJpwMQEMDPXAr9fRqS3tQGcLyEiIqIilOveADJ5LteNcbkApxOYmgIikdV1bzIZoK8PCIVmq9d5vYDPx64QEREREREVt4yRQedgJwCgd6wXg9GZODurC06LE1PJKUQSkfx6f70fXYNdaHO3QVf1/DH6In0ITYXyVeu8Ti98Ll9+GyIiIiIiWl/saRMRAKCvrw+pVArxeBzhcBgA0NraioaGhvw2IyMj6O7uRjgcRnNzc34/v9+/6DGFEOjq6kJnZydSqVTBfadPn8axY8cQDAYRCARYop6IiIiIiIiIystLL8mfvj55K4SMCrfbgWhURoa7XDLKPBwGZuZa0Ncno82JiIiIikxfn0x2i8dl9wUAWluBOV8lYWQE6O5eunsjhEyq6+yUx5rr9Gng2DFZsS4QAPjVERERERERFaO+SB9S2RTimTjC0Zk4u8ZWNNjnxNlNj6B7uBvhaBjNNc35/a6ouwJd4S50DnYilZ0XTzd6GscuHEOwKYiAh/F0RERERETrTd3qEyCi4hAKhQAAw8PDEELA5XIVJM8BQENDA1wuF4QQGBoaKthvPiEEjhw5go6Ojnxi3vnz59Hb24vz588jkUgglUqho6MDR48ehRBi0eMQEREREREREZUcIYAf/Qg4e1YmyGUysvpcPA6MjcnlTEbeF4vJ7WfmWrDEXAsRERHRVst1U4aHZffF5SpMngPkssu1ePdGCODIEaCjYzYR7/x5Wc3u/HkgkZDrOzqAo0fl9kRERERERMUmNDUTZxcbhoCAy+oqSJ4DgAZ7A1xWFwQEhmJycHRx8iKOnDuCjoGOfALe+Ynz6B3rxfmJ80hkEkhlU+gY6MDRfsbTERERERGtN1agIyIAyFeIy906nc5Ft3M6nYhEIgu2n6+rqwtnzpyBYRjo7e1FOBwuGNT39/fD4/GgpaUFPT09qK2tRTAYXMdnRERERERERES0Rbq6gHPnZNT38LBMmrPZgPFxef/YGFBdDTQ2zkaKb9sm71tiroWIiIhoq+W6KbnbJb5KgtMprxMwf/uuLuDMGcAwZNJcOFyYJNffD3g8QEsL0NMD1NbKanRERERERETFJFc5LnfrtCwRZ2dxIpKI5Lc7NXoKqqLCEAZ6x3oRjoYhMCeebrwfnioPWupa0DPag1prLYJNwY19MkREREREFYQV6IgIAGA2mwtup6amFt0ut37+9nNlMhl0dnYCAHp7ezE4OJivatfc3JyvYjc4OIje3l4AMuEuk8ms63MiIiIiIiIiItp0mQzQ2Qnoukyei8dlZLimAXV1gN0ulycm5P2JhIww1zS5/yJzLURERETFINdNyd0u8VVSfv3c7XNdJEAmzw0Ozlaxa26erVo3OCjvB2TCHb86IiIiIiKiYmPWzAW3U8kl4uxm1ps1M7Iii3Pj5wAAvWO9GIwO5qvXNdc056vVDUYH0Ts2E0832IWMwUEREREREdF6YQIdEQEAvF4vAKCxsRGKoiASiWBkZKRgm5GREUQiESiKArfbXbDfXH19fUilUojH4wiHwwCA1tZW7N+/H7t378b+/fvR2toKAAiHw0gkEkgmk+jr69vIp0hEREREREREtPH6+mSZFYsFmJwErFZZPsVmk+u2bwdy8ynDw0A0Ksuw5BLoFplrISIiIioGuW5KYyOgKPIaAPO+SsLIiFyvKMDMV0nweme7SPG4rDwHAK2twP79wO7d8nbmqyOEw/IaA8mk3I+IiIiIiKiYeJ0zcXaORihQEElEMDI9L85uegSRRAQKFLgdbozERuAwORDPxBGOzsTTNbZiv2c/dtfuxn7PfrQ2zsTTRcNIZBJIZpPoi3BQRERERES0XphAR0QAAJ/PB7PZDJvNBo/HAwDo7u7GyZMnce7cOZw8eRLd3d0AAI/HA6vVCovFAp/Pt+BYoVAIADA8PJyvPNfQ0FCwTUNDQ74S3dDQUMF+REREREREREQlKze/IYSMHHc6ZZR57r6BARkNHo8D4+PytrpaRolbLMAicy1ERERExcDnk9XkbDZg5qskdHcDJ08C587J25mvkuDxyOsI5Lo3uS7S8PBs5bl5Xx2hoWG2Et3MV0fgV0dERERERFRsfC4fzJoZNt0GT9VMnN1wN06GT+Lc+DmcDJ9E9/BMnF2VB1bdiun0NBrsDRiODecrzzXY58XT2RvyleiGYjPxdFMcFBERERERrRd9q0+AqFh86lOfQjqdhslkwr333rvVp7PpdF1HMBhER0cHWlpaAMjqcJFIBJFIBACgKAo8Hk/+/kAgAF1f+DGSSqUKbp1O56KP6XQ6EYlEFmxfjCq9fdDS2DZoOWwftBy2D1oO2wcRrRd+nlAxqZj2mJvfyGRmI8Dr6uS6yUlgelr+GIZMsLPZZIJdJgMEAsAicy20MSqmTVJJYHskqiyl+juv60AwCHR0ADNfFSEclhXnZr5KgqLI5Lnc/bnuTa6LlLtd4qsjOJ3yWPO3Jyplpfo7T0SXhr/zRETrqxg/V3VVR7ApiI6BDrTUzcTZRcOIJCKIJGbi7KDAU+XJ37+rZhdUVUUqOxNPZ1kins7iRCQRyW+Xu6XyVoztnGg9sY1TJWA7p0pQDu1cEUKIrT4JqkwvvPAC2tra8svPP/88rr766i07H4fDgenpadjtdsRisS07j60khMDRo0fR09MDAEgkEhgaGkIqlYLZbIbb7YbVagUA+P1+tLe3Q1GUBcc5evQoTp8+jfPnz+PcuXNwuVzYv3//gu1OnjyJSCSC3bt3o7m5Gfv27UN7e/vGPslLxPZBS2HboOWwfdBy2D5oOWwfq1ds44qNVmnPly4fP0+omFRMezx6FDh9Gjh/Hjh7VibLORzyvkxGJtFls8DoqFzndssEu+uvB/7oj2TUOW2KimmTVBLYHmkzVdq4ohifbyn/zgshuzszXyUhkZDV4lIpWZ3O7ZaV5wDA7wfa22X3Zm4X6dw5eZ2BRb46wsmTMoFu926guRnYt08eg6iUlfLvPBGtHX/nicpTMY4rNlIxPd9i/VwVQuBo/1H0jM7E2WUSGIoNIZVNwayZ4Xa4YdVn4uzq/YAAesZ6cH7iPM6Nn4PL6sJ+zyLxdOGTiCQi2F27G801zdhXvw/tuzkoKnfF2s6J1gvbOFUCtnOqBGtt58U0rshRt/TRiaioKIqC9vZ2HDx4EGazGVarFc3NzWhpaUFzczOsVissFgsOHjy4ZPIcAHi9XgBAY2MjFEVBJBLByMhIwTYjIyOIRCJQFAVut7tgPyIiIiIiIiKikpWb32hsBFQVsNuB2lpZekXXZbKczQZo2uzynj3AbbcxeY6IiIiKnqLIhLaDB2XCnNUqE91aWuSt1QpYLPL+XPIcUNhFUhSZJDfvqyOMjMj1iiIT8ebuR0REREREVEwURUH7rnYc3H4QZs0Mq25Fc00zWupa0FzTDKtuhUWz4OD2g2jf1Y5t1dsAAI2ORihQEElEMDI9L55uegSRRAQKFLgdM/F0Tg6KiIiIiIjWi77VJ0BExUVRFASDQbS1taGvrw+hUChfgc7r9cLn80HXl//o8Pl8OHbsGADA4/FgcHAQ3d3dcLlccDqdmJqaQiQSyd+fS8zz+Xwb/vyIiIiIiIiIiDaUzwfMzIvA4wEGB4HxcaCmRlagGx4GpqaA6mpg507ghhtkkt3evVt62kRERESrpShAMAi0tQF9fUAoNFuBzuuV3aH5XyUt1kXq7paV6JxO2T2a+eoIHs9sIh6/OiIiIiIiomKlKAqCTUG0udvQF+lDaCqUr0DndXrhc/mgq3Jw5HP5cOzCTDxdlQeD0UF0D3fDZXXBaXFiKjmFSCKSvz+XgOdzcVBERERERLRemEBHRIvSdR1+vx9+v/+S9g0Gg+jo6EBLSwsAIBwOIxKJ5BPnFEWBx+PJ3x8IBFZMzCMiIiIiIiIiKnq6LiPKOzpkKRYACIeBiQn5f7sdcDhkZHhLi6xSFwgsjDInIiIiKnK6Dvj98mc12y7WRYpEZhPnFGW2iwSwi0RERERERKVBV3X46/3w1y89ONJVHcGmIDoGOtBSNxNPFw0jkojkE+cUKPBUefL3B5oC+QQ8IiIiIiK6fOxdE9GGCAQCGB8fR09PD/x+P5qbmzE0NJSvZud2u2G1WgEAfr8fgUBgi8+YiIiIiIiIiGidBAKy6lxPj4wob24GhoZmS7O43bKsCiDv57wIERERVQB2kYiIiIiIqJIFPAGMJ8bRM9oDf70fzTXNGIoN5avWuR1uWPWZeLp6PwIeDoqIiIiIiNYTE+iIZgghtvoUyoqiKGhvb0dtbS06OzsBAM3NzQXbWCwWBAIBBAIBKIqyBWe5emwftBS2DVoO2wcth+2DlsP2QUTrhZ8nVEwqqj0qCtDeDtTWAjPzIpg3LwKLRUaFBwJye9p0FdUmqeixPRJVlkr9nWcXiSpVpf7OE1Uq/s4TEa2vcvpcVRQF7bvaUWutRedgJwCguWZePJ1mQaApgICn+OPpaP2UUzsnWgzbOFUCtnOqBOXQzplARzQjm81u9SmUHUVREAwG0dbWhr6+PoRCoXwFOq/XC5/PB10vjY8htg9aCtsGLYftg5bD9kHLYfsgovXCzxMqJhXXHhUFCAaBtjagrw8IhWbLq3i9gM8HlMi8SLmquDZJRY3tkaiyVPLvPLtIVIkq+XeeqBLxd56IaH2V2+eqoigINgXR5m5DX6QPoalQvgKd1+mFz+WDrnJQVGnKrZ0Tzcc2TpWA7ZwqQTm0c/a0iWjD6boOv98Pv9+/1adCRERERERERLS5dB3w++UPEREREQFgF4mIiIiIiCqbrurw1/vhr+egiIiIiIhos6hbfQJEREREREREREREREREREREREREREREREREREQbgQl0RERERERERERERERERERERERERERERERERERUlphAR0REREREREREREREREREREREREREREREREREZYkJdEREREREREREREREREREREREREREREREREREVJb0rT4BqlzJZLJgube3d4vORDIMI3/7wgsvbOm5UPFh+6ClsG3Qctg+aDlsH7Qcto/Vmz+OmD/OKDfFNo6i4sfPEyombI9UbNgmqZiwPdJm4jhq68dR/J0nqiz8nSeqLPydJypPHEdt3TiKn6tUCdjOqdyxjVMlYDunSrDWdl6M4yhFCCG2+iSoMn3ve9/DW9/61q0+DSIiIiIiKiPf/e538Za3vGWrT2PDcBxFRERERETrjeMoIiIiIiKiteE4ioiIiIiIaG2KYRylbumjExERERERERERERERERERERERERERERERERERbRAm0BERERERERERERERERERERERERERERERERERUVlShBBiq0+CKtP4+DiOHj2aX965cycsFssWnhEREREREZWaZDKJCxcu5Jfb29tRW1u7dSe0wTiOIiIiIiKiy8VxFMdRRERERES0NhxHcRxFRERERERrU4zjKCbQERERERERERERERERERERERERERERERERERFRWVK3+gSIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIg2AhPoiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIioLDGBjoiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyhIT6IiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIqCwxgY6IiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiMoSE+iIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKgsMYGOiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjKEhPoiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIioLDGBjoiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyhIT6IiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIqCzpW30CRFstEongySefxMDAAMbGxuB2u7Fjxw68+tWvht1u3+rTo3XW19eHZ599FhcvXkQikcC2bdvg8/lw4403QlUvL6f4xIkTOH36NC5evAhd17Ft2za0tbWhtbX1so6bSqXwxBNPoL+/H+FwGNXV1di+fTte8YpXoKmp6bKOXUoMw8CZM2fw3HPPIRwOY2JiAg6HA263G9dffz38fv9lHZ9to/Rls1n09PTg5MmTGBoawsTEBCwWC2pra3HVVVchGAzC4XBc8vHZRmgpbBu0HLYPItpqIyMjePbZZ9Hf349IJAIAqKurw759+3Dw4EFYLJYtPkOqFJx/oY2w0XMFRMVkI8cWRLR52CciqhylOC9IRIVK8feY8/tEVE44fqJyV4p9DSo/jMmkSsC4UqLLU3ZtXBBVqFOnTom3vOUtwmw2CwALfqqqqsR73/teEQqFtvpUK9qzzz5b8L4MDw9f0nG+//3vixtvvHHR9xqA2L59u7jvvvtEMplc03Gz2ay4//77hc/nW/LYgUBAPPjgg2s+5/HxcfGhD31IuFyuRY+raZq4+eabRUdHx5qPXSpGR0fFAw88IN785jcLp9O55GsMQOzZs0d84QtfEKlUak2PwbZR2oaGhsQXvvAFcdtttwm73b5sG7Hb7eI3fuM3xIsvvrimx2AbKW8XLlwQ27ZtK3h9jh8/vqp92TZK1+HDh5f9vFjNz//7f/9v2cdg+yCirZLJZMSPfvQj8fu///vLflYAEFarVdxzzz2ir69vVcc+e/bsZX9+/s3f/M3GvgBUdDj/Qutto+YK7rvvvsv+jItEIhv/AlBRKeWxBRFtLvaJiIpDKf/t3sh5QaJywdgCzu8TUXng+ImKVSX3Nai8MCaTKgHjSomkSouPXQ0m0FFF+trXviZsNtuqvgRxu93iscce2+pTrlif//znL2vgaRiG+OAHP7jqL72uvfZa0d/fv6pjj4yMiNe85jWrPvZv/uZvrvqPxPHjx0Vzc/OqjmsymcT999+/ptelFAwMDCw5Gbbcz8GDB8WFCxdWPD7bRun75S9/eUltRNd18fd///crHp9tpPxNTk6KAwcOLHhdVhogsG2Uvo0MlGH7IKKtdvvtt6/5M83pdIqHHnpoxWMzgY7WivMvtN42cq6ACXR0KUp1bEFEm4t9IqLiUap/uzdyXpConDC2YOXjcn6fiIodx09UzCq1r0HlhTGZVAkYV0okVVp87GoxgY4qzo9+9COhaVrBL5eqqmL37t3iFa94hdixY8eCX77q6mpx6tSprT71inPu3Dnhdrsva+D58Y9/fMH7abFYxJVXXimuv/56UV9fv+D+YDAopqenlz1uKpUShw4dWrStBINB0dbWtuhVC37v935vxXO+cOGCaGpqWrCvx+MRBw8eFC0tLULX9QX3//u///uaXptit1RwrsPhENdcc434lV/5FbFnz55Ft7n66qvF+Pj4ssdn2yh9jz/++KLvv9PpFNdcc4246aabxO7du5ccDH3pS19a9vhsI+Utk8mIW2+9ddG2sdIAgW2j9G1koAzbBxFttfb29gW/r6qqiiuuuEL8yq/8iggEAsJisSzYRtd18aMf/WjZYzOBjtaC8y+0ETZyroAJdHQpSnFsQUSbi30iouJSin+7N3JekKicMLaA8/tEVPo4fqJiVql9DSo/jMmkSsC4UqLKi49dCybQUUUZGhoStbW1Bb9Ut912mzh9+nTBds8884w4ePBgwXYHDhwQhmFs0ZlXhkQiIQYGBsRjjz0mPvaxjwmXy7XgQ3AtA89HHnlkwf5/+qd/KkZHR/PbGIYhvvOd7ywY4H7oQx9a9tj33nvvggHEv/zLvxSUqo7FYuKv/uqvFkzufPvb31722K961asKtr/iiivEo48+WrDNwMCAuPvuuwu2s9vt4vz586t+fYrd3MFafX29+PCHPyx+/vOfi2w2W7BdX1+feN/73rfgvf6DP/iDJY/NtlEe5g50mpqaxEc/+lFx7NixBZ/V0WhU/PM///OCz5SqqioxNDS06LHZRsrf+9///kUHBysNENg2ysP8QJkbb7xRHD58eE0/i/VJ2D6IqBjkEuhUVRVvectbxIMPPrjgi4zp6WnxwAMPLBgfNzU1iVgstuSx53+hsnv37jV/fq7myoRU+jj/QhtlI+cK5ifQvf/971/zZ1w6nd7ol4CKTCmOLYho87BPRFR8SvFv90bOCxKVMsYWSJzfJ6JywfETFRv2NahcMSaTKgHjSokqLz52LZhARxXlz/7szwp+mV7/+tcX/NLNNTExIa666qqC7f/zP/9zk8+4cnz1q19d8oP6UgeeN9xwQ8G+n/jEJ5bc9uTJk8Jqtea3tVgsIhQKLbrtyMiIsNls+W0VRVkwCT3Xl7/85YLzCAQCS277gx/8oGDbpqYmMTAwsOT273rXuwq2/8M//MMlty01Z8+eFTabTXzyk58Uk5OTK27/kY98pOC1MJvNYmRkZNFt2TbKw+OPPy6cTqf43Oc+t6qrq584cWLBVUP+7u/+btFt2UbK2//+3/+74LnP72wvN0Bg2ygP8wNlbr/99nU5LtsHERWD9vZ28cY3vlGcPHlyxW2feeaZBf2jv//7v19y+/kJdFdfffV6njqVEc6/0EbZyLmC+Ql0f/3Xf73ep09lqNTGFkS0udgnIio+pfa3eyPnBYlKGWMLJM7vE1E54fiJign7GlTOGJNJlYBxpVTpKi0+dq2YQEcVI5VKibq6uvwvkqqq4oUXXlh2n4cffrjgl++Vr3zlJp1t5VnvgeeJEycK9mtubhaJRGLZfeZ39u+9995Ft/v85z9fsN073/nOFc/n+uuvL9jnkUceWXS7O+64o2C7Bx54YNnjDg4OCofDkd/ebreLiYmJFc+nFExNTYkzZ86sevtYLLagLOy3vvWtBduxbZSPcDi85isjzr+64t13371gG7aR8vbtb39bKIqSf9533XWXeM1rXrOqAQLbRvnYiEAZtg8iKhbPPvvsmrb//d///YLPgVtvvXXJbZlAR6vB+RfaSBs1VyAEE+jo0pTa2IKINg/7RETFqdT+dm/kvCBRKWNsgcT5fSIqFxw/UbFhX4PKGWMyqRIwrpQqWSXGx66VCqIKceTIEYyNjeWXX/nKV6K1tXXZfW6//XZ4vd788lNPPYXR0dENO0daP9/5zncKlt/znvfAYrEsu8/v/u7vFiw//PDDqzr2Pffcs+L5/M7v/M6Kx45Go/jpT3+aX7Zarbj77ruXPa7H48Gb3vSm/PL09DR+9rOfrXg+paCqqgotLS2r3t5ut+Pmm28uWHfy5MkF27FtlA+3242dO3euaZ+DBw8WLIfD4QXbsI2Ur6effhp33303hBAAgJtuuglf+9rXoCjKqvZn26DlsH0QUbG45ppr1rT9W9/61oLlxfrQRGvB+RfaSBs1V0BUTDZybEFEm4d9IqLKUYrzgkRUqBR/jzm/T0TlhOMnKnel2Neg8sWYTKoEjCulSlWJ8bGXggl0VDEee+yxguU3vvGNK+6jKApuu+22/LJhGHjkkUfW/dwIuPXWW3H48OEFPx6P55KOdynv95VXXom9e/fml5977jmEQqGCbWKxGDo6OvLLVVVVePWrX73isW+//faC5Z/85CcLtnnyySeRTCbzy+3t7bDb7ety7Eqxa9euguWRkZEF27BtVDbDMAqWa2pqFmzDNlKezp49ize/+c2Ix+MAgD179uB73/serFbrqo/BtkHLYfsgolK1mj400Vpw/oWKDT/nqNRs1NiCiDYX+0RElaMU5wWJSh1jCzi/T0TlheMnKjbsaxAVKteYTKK5yjWulCpHpcbHXgom0FHFeOaZZwqWA4HAqvabv92TTz65budEs5qamnDo0KEFP2v54M7JZrP45S9/mV9WFAUHDhxY1b7ztzt27FjBcmdnJzKZTH65tbUVJpNpxePu3LkTLpcrv3z69OkFAwm20cuXTqcLlnVdL1hm26jctpHz3HPPFSzfeOONBctsI+XZRsbHx3H77bdjaGgIAFBbW4sf/OAHaGxsXPUx2DbKs22sF7YPtg+iUrZSH5porfj3hYoNP+eolGzk2IKINhf7RESVoVTnBYlKHWML2NcgovLCzzQqNuxrEBUq15hMornKNa6UKkMlx8deCibQUcV44YUXCpb9fv+q9tu3b1/B8pkzZ9btnGhjvPTSSwVXW9u+ffuqrrYGrPx+X2o7WuzYvb2963Jsv99fUF71pZdeypdfrTRnz54tWJ7/x59to3LbBgCEQiE89NBD+eWqqiq8+93vLtiGbaT82kg6ncbb3vY2vPjiiwAAk8mEb3/727jqqqvWdBy2jfJrG+uJ7YPtg6iUrdSHJlorzr9QseHnHJWSjRxbENHmYp+IqDKU6rwgEc0q1d9jzu8TUTnh+InKWan2NYjmKteYTKKcco4rpfJX6fGxl4IJdFQRUqkUBgcHC9Y1NTWtat/5pbdfeumldTsv2hj9/f0Fy6t9r4GV3+9iPLbVakV1dXV+OR6P4+LFi6s+r3JhGMaCq0kFg8GC5WJ8/zby2Gwbsy5evIg3velNmJyczK/727/9WzQ0NBRsV4zv40YeuxLayD333IPDhw/nl//pn/4Jr3/969d8nGJ8/zby2JXQNtZTMb6HG3lstg+i8nL06NGC5fl9aKK14PwLFZvVzBUQFZON7P8T0eZhn4iochTj3N1qjk1Es0r195jz+0RULjh+onJXjP2B1RybKKecYzKJgPKPK6XyV+nxsZdCX3kTotIXDocLrpplMpngcDhWte/8P4Lnz59f13Oj9Td/YmVu+c6VrPR+F/OxJyYmCo69ffv2Ve9fDn7yk58gHA7nl81mM17zmtcUbFPM799GHrsS24ZhGJiYmEB3dze+973v4Utf+lJ+kKOqKj7zmc/gd37ndxbsV8zv40Yeu1zbyP/8n/8TX//61/PLH/3oRxd931ejmN+/jTx2ubaN+aanp/HLX/4Sk5OTUBQFDocD1dXV2L1796rKhRfze7iRx66U9kFUztLpNP7v//2/Beve8IY3rGn/5557DpFIBIqiwGazwel0Yvfu3bBaret9ulQCOP9CxWY1cwVLGRkZwdNPP414PJ5vy3V1ddi5c2fB1fqJ5irmsQURbR72iYhKRzH/7Wa/gGhzlOrvMef3iahccPxE5a6Y+wPLHZsop5xjMqkyVVpcKZU3xsdeGibQUUWIRCIFy3OvqLWS+dumUimk0+lVfWlCW2M93+9oNFoWx64En/70pwuWb7/99gV/ZEv1/WPbWJsdO3ZgYGBg0ftuuukmfPazn10yYLJU30e2kYX+z//5P/jEJz6RX37729+Oz3zmM5d8vFJ9/9g2Vufw4cO49tprF6zXdR379+/HnXfeife///2ora1ddP9SfQ/ZPojo61//Ol5++eX8ssViwa//+q+vev+enh4EAoEF61VVxb59+/C2t70NH/jAB7Bt27Z1OV8qfpx/oWKzmrmCpfzVX/0V/uqv/mrBervdjle+8pX4rd/6LbzrXe+Cpmnrcq5UHop5bEFEm4d9IqLSUcx/u9kvINocpfp7zM8IIioXHD9RuWN/gEpdOcdkUuWpxLhSKl+Mj7106mUfgagExGKxguW1DJQX23b+8ai4rOf7Pf9YpXrscveNb3wDTzzxRMG6P//zP1+wXam+f2wb6+PDH/4wvvWtby1bbaBU30e2kUKPP/44fvu3fzu/fPDgQXzjG9+4rCoRpfr+sW1cnkwmg1/+8pf48z//c+zbtw/f/va3F92uVN9Dtg+iyjY2NoaPf/zjBet+93d/F263+7KPbRgGXnzxRXzqU5/ClVdeiX/8x3+87GNSaeD8CxWT1c4VrNX09DQeeeQRvPe978V1112HkydPXvYxqfwVw9iCiDYP+0REpa8Y/nazX0C0OUr195ifEURULjh+onLH/gCVsnKPySTKKee4UipPjI+9PEygo4qQTqcLltfyi2exWBasm56evuxzoo2znu/3/Pe6VI9dzs6fP48//MM/LFj3vve9DzfccMOCbUv1/WPbWB9/8zd/g927d+OOO+7Aiy++uOg2pfo+so3M6unpwVvf+lakUikAwK5du/Bf//VfsNlsl3XcUn3/2DbWz9DQEO6880586UtfWnBfqb6HbB9Ele2ee+7B8PBwfrmxsRGf/OQn1/1xpqam8KEPfQj33nvvuh+big/nX6hYrGWu4HJ0dXWhvb0dHR0d63pcKm9bNbYgos3DPhFReSnHeUEimlWqv8f8jCCicsHxE5U79geoVFVCTCZRTjnHlVL5YXzs5bdx/bKPQFQCNE0rWFbV1eeOCiEWrDMM47LPiTbOer7f89/rjT52JpPZkGOXq1Qqhbvuugvj4+P5dXv27MH999+/6PZsG5XRNh566CEkk0mMj48jHA7j7Nmz+N73vodTp05BCIHvf//7OHz4MP7jP/4Db3zjGwv2ZRsp7TYSi8Vw++23Y2xsDIAs3/yDH/wAHo/nso/NtlHabWO+hoYG/MEf/AHa2trg9/vR2NiI+vp61NfXI5VKIRwO49lnn8U3v/lN/Od//md+PyEEPvShD+HgwYO45ppr8uvZPsqrfRCtpx//+Me47bbbNuTY73nPe/C1r33tkvb9u7/7u4LPNwD453/+Z9TX1y+7n91ux3/7b/8NBw4cwL59++DxePKfn4ZhYGRkBM899xy+/e1v48EHHyz4jPn0pz+NG2+8EXfcccclnTOVBs6/UDFY61xBTmtrKz72sY/h6quvxt69e/OfbzU1NZienkZ/fz+eeuop/Mu//AuOHz+e3y8SieAd73gHXnjhBVRVVW3U06IiVUpjCyLaPOwTERWvUvrbzX4B0eYo1d9jzu8TUbng+InKXan2NaiyVUpMJlWeSowrpfLC+Nj1aeNMoKOKMD+rNpvNrnrfXIbuXGvJfKXNt57v9/z3eqOPPTU1tSHHLle///u/j1/84hf5Zbvdjoceegi1tbWLbs+2URlt46abblqw7tOf/jS+8IUv4CMf+QiEEIjFYrjzzjvx7LPPwu/357djGyntNjI8PIze3t788gc/+EEMDw/jyJEjy+43d8IHAE6cOIFoNAoAqK2tRTAYZNtY5NilrK2tDX/3d3+36H0mkwk+nw8+nw+//uu/jh//+Md4+9vfnr96SSaTwUc+8hE89thj+X3YPsqrfRCVu8OHD+MjH/lIwbqPfvSjeOtb37rivm63e9Er7ufs3LkTO3fuxO23344PfvCDeOMb31hQ5e6P/uiPmEBX5jj/QsVgrXMFOXfeeSfuvPPORe+rrq7G/v37sX//ftxzzz341Kc+hf/xP/5H/v7z58/j/vvvxyc+8Yl1eQ5UOkppbEFEm4d9IqLiVUp/u9kvINocpfp7zPl9IioXHD9RuSvVvgZVtkqJyaTKU4lxpVReGB+7Pm2cCXRUERwOR8HyYgPopcwvG7nY8ai4rOf7Pf9YG33suZPc63nscvTZz34WX/nKV/LLqqrim9/8Jq677rol92HbqIy2sRhVVfHhD38YAwMD+PznPw9AXo3h4x//OL797W/nt2MbKa828pnPfAaf+cxn1rzf+9///vz/29vbceTIEbaNRY5dKW699Vb8wz/8A377t387v+7o0aMYGhqC2+0GwM+OxY5NRMXpxRdfxNvf/vaCq1O/4x3vuKS/lyu5/vrr8a1vfQuvf/3r8+vOnj2LEydOLNtnp9LG+RfaapcyV7BWiqLgv//3/44zZ87g3/7t3/LrH3roISbQ0bK2emxBRJuHfSKi8rDVf7vZLyDaHKX6e8z5fSIqFxw/Ubkr1b4GVa5KiskkAso/rpTKG+NjLw0T6KgiVFVVFSznrhS4GpOTkwXLmqYtOB4Vl/V8v+dfNaNUj11u/v3f/x0f//jHC9Z94QtfwJvf/OZl9yvV949tY/185CMfwf33358v6/vwww8jGo3mX+NSfR/ZRjZeqb5/bBvr4z3veQ/+7M/+DKOjowBkKfAnn3wSv/ZrvwagdN9Dtg+ijXfw4EEcPnx4Q47d1NS0pu1DoRBuu+02RCKR/LpXvvKV+Ld/+zcoirLepwcAeN3rXodgMIjOzs78up///OdMoCtjnH+hrXSpcwWX6k/+5E8KEuief/55RCIRuFyuDXk8Kg9bObYgos3DPhFR+SjXeUEimlWqv8f8jCCicsHxE5U79geolFRaTCbRXOUaV0q0WpXUxplARxWhqakJJpMpn4Uai8WQzWahadqK+46MjBQse73eDTlHWj87d+4sWJ7/4bmcld7vjT723NKq63nscvJf//VfeM973pPvqALAJz7xCXzoQx9acV+2jfJuG6vh9Xqxd+/e/OuZSqVw4sQJtLe3A2AbWezYJLFtVHbbUFUVN9xwA3784x/n14XD4fz/2T4qu30QLaeurg6HDh3a6tPAyMgIfvVXfxX9/f35dYFAAA8//DCsVuuGPvaNN95YkEA39/OTyg/nX2irXM5cwaUKBAKw2WyIx+P5deFwmAl0tKytHFsQ0eZhn4iofJTrvCARzSrV32PO7xNRueD4icpdqfY1qPJUYkwm0VzlGldKtFqV1MbVyz4CUQnQNA27du3KLwshMDQ0tKp95wf3zT0OFae9e/cWLA8ODq5635Xe72I8diKRKPhjoqoqduzYserzKiWPPPII7rzzTmQymfy6j3zkI/jkJz+5qv2L8f3byGNXUttYi8bGxoLluX8PivF93Mhjl1sb2b17N4QQa/7JDXRzjh8/nr/vyJEjAIrz/dvIY5db21gPdXV1BctjY2P5/xfje7iRx2b7ICotExMTuOWWW9Dd3Z1fd9VVV+GRRx7ZlCSP5T4/qfxw/oW2wuXOFVyO+Z+j/Iyj1diqsQURbR72iYjKSznOCxLRrFL9Peb8PhGVC46fqNwVY39gNcemylKpMZlE85VjXCmVF8bHrk8bZwIdVYwrrriiYPnUqVOr2m/+dq2tret2TrQxtm3bBrvdnl/u6+tDKpVa1b4rvd+X2o4A4PTp0xty7NOnTxdc+WPv3r2wWCyrPq9S8cQTT+Ctb30rkslkft2HP/xhfO5zn1v1Mdg2yrNtrFUikShYVtXZ7hDbCNvIUtg22DZisVjBcnV1df7/bB9sH0TFKhaL4Y1vfCOeffbZ/LqrrroKjz322ILJ3408h7nmfn5SeeL8C22m9ZgruBz8jKNLsVVjCyLaXOwTEZWPcpwXJKJZpfp7zPl9IionHD9ROSvVvgZVjkqOySSarxzjSolWq5LaOBPoqGLcdNNNBcsnTpxY1X7PPfdcwfLBgwfX7ZxoYyiKghtvvDG/nMlkFryPSzl58mTB8vz3OxAIFPyB6OrqKrjyxlIuXLiASCSSX96+fTu2bdtWsA3b6NKeeuop3H777Ziens6v++hHP4r7779/Tcdh2yi/trFWQghcuHChYJ3H48n/n22EbWQpbBtsG319fQXLc19rtg+2D6JiFIvF8KY3vQnHjh3Lr9u/fz+OHDmCpqamTTuP5T4/qTzx7wttlvWaK7hUo6OjBVftBwCv17spj02lbavGFkS0udgnIiof5TgvSESzSvX3mH0NIion/EyjclaqfQ2qDJUek0k0V7nGlRKtViW1cSbQUcW4+eabC5YffvjhFfcRQuDHP/5xwbrXvva163petDEu5f3u6enBSy+9lF/esWMHWlpaCraxWCx4zWtek1+emJjA448/vuKxf/jDHxYsL9aObrrpJjidzvzyz372s4LByeUcu5T9/Oc/x80331wQlPYXf/EX+OxnP3tJx2PbqGwnTpzAyMhIftlkMiEQCBRswzZCS2HbqFwXL17E888/n19WFAWvetWrCrZh+yCiYjI5OYlbbrkFR44cya+77rrrcPjwYbjd7k07j0QiseAz69WvfvWmPT5tDc6/0GZY77mCS/HII48UXLW/tbUV9fX1m/b4VJq2cmxBRJuLfSKi8lCu84JEVKgUf485v09E5YTjJyp3pdjXoPLHmEyiQuUaV0q0FpXSxplARxXjhhtuKMgGf+KJJ/DCCy8su88Pf/hDXLx4Mb8cCASwd+/eDTtHWj9vetObCpa/+tWvFpSZXsyXv/zlguW3v/3tqzr2Aw88sOL5/Ou//uuKx9Z1Hbfcckt+OZFI4Otf//qyxx0aGir4A6XrOt785jeveD6l4pFHHsFtt92GaDSaX3f//ffjvvvuu+Rjsm2Uh2QyWRAQvlr/63/9r4Ll1772tQVfLgFsI7Q0to3yMDw8vOZ9Pv/5zxcER7/iFa9YkIDC9kFExSISieANb3gDnnzyyfy6V7/61XjssccuK7FjbGwM2Wx2Tft8+ctfxvj4eH5527ZtuO666y75HKg0cP6FNtpGzBUMDQ2taXvDMBZcgZV9ospTimMLIto87BMRFZ9S/Nu9UfOCRFSoFH+POb9PROWE4ycqd6XY16DyxphMKmeMKyW6dBXTxgVRBfn0pz8tAOR/fvVXf1Wk0+lFt52cnBRXX311wfYPPPDAJp8x7dq1q+A9GB4eXvW+N998c8G+991335LbPv/888Jqtea3VRRFdHd3L7ptNBoV9fX1Bdv+7Gc/W/LY//qv/1pwHjt27Fiy3T311FMF23q9XjEwMLDksd/97ncXbP/Od75zyW1Lzfe//31hsVjyz01VVfHlL395XY7NtlH6IpGIACB+4zd+Q5w6dWpV+/zt3/5twWsCQDz22GOLbss2Ulna29sLXovjx48vuS3bRum77777xKtf/WrxyCOPCMMwVtz++9//vtA0reA1+e53v7votmwfRLTVhoeHRTAYLPg9vfXWW8X09PRlH/urX/2qOHDggPjOd74jMpnMitsfP35cVFVVFZzL3/7t3172eVBp4PwLbZSNmit43eteJ9773vcu2R+b72Mf+1hBm7XZbCIUCl32eVBpKcWxBRFtLvaJiIpLKf7t3sh5QaJyxNgCzu8TUeni+IlKQaX1Nag8MSaTyh3jSokWKvf42LViAh1VlImJiYJfPgDiTW96kzhz5kzBds8++6y48cYbC7ZraWkRyWRyi868/IVCIXH48OEFPx6PZ8EXU/O3WSpA6fHHHxeKohTs/9GPflREIpH8NoZhiO9+97sLHufd7373suf7qU99qmD7qqoq8ZWvfKXgwzkWi4nPfe5zQtf1gm2/8pWvLHvsN7zhDQXbX3nlleLw4cMF2wwMDIj3ve99BduZzeZVd/hKwfw/2B/4wAcWbSOr+ZmPbaP05QY6uY7UHXfcIb7xjW+IkZGRBduePHlywRdCAMRdd9215PHZRirLWgYIbBul77777ss/v3379om//Mu/FCdOnFgQNBMOh8W999674LW+5ZZbljw22wcRbbWvfvWrBb+n+/btEz/96U8vqQ89f5w199g7duwQH/vYx8QTTzyxIJlufHxcfO5zn1uQPHfgwAERj8c38+WgLcT5F9ooGzVXMPe4hw4dEv/4j/8ozp49u+DxX3jhBfHrv/7rC8aXn/70pzfnBaCiUqpjCyLaPOwTERWXUv3bvZHzgkSlirEFszi/T0TlguMnKibsa1A5Y0wmlTvGlRItVAnxsWvBBDqqOI888siCqwWqqip2794tXvGKV4idO3cu+GPocDhEV1fXVp96WZsf6LmWn69+9atLHvcTn/jEgu0tFou46qqrxPXXX79g8gWAaG1tFZOTk8uebyaTEa973esW7FtdXS2uueYasX//fuFwOBbcf/fdd6/4WgwMDIimpqYF+zY1NYmDBw+KK664YsEfBgDiX//1X9f6she1+X+wL+dnMWwbpW3uQGf+5/m2bdvEddddJ2644QbhdrsX3e7aa/8/e3ceX1ddJ/7/dZM0Sfeke4EWKCVQKLRsUtZCcUNkE1AURkUWtfp1HZ356agz48LMoIA64ooCgyjgAiqLIrK2hRZKy1a6702TLkmbNOu99/z++Nx7m5ulTdIsTfJ65pHHvefc8znnc25O2rzv+bw/75Oj6urqfR7Da2Tg6EiAEEVeG31d04EyTb+HDh0alZSURGeeeWZUUlLSIhAEopKSklY/UGnK60NSbzqQuKr5d/M4q619FxYWRkcddVR0xhlnRMcdd1yLeBuIxo8fH61atap33hT1Gj9/UXfors8K2trvqFGjohNOOCGaNWtWdOihh7a6zZVXXtmuCibqf/pqbCGpZ/k3kXTw6Kv/d3fn54JSX+XYgr38fF9Sf2L8pIOFf2uoP3NMpvo7x5VKLQ2E8bEdYQKdBqS77747Gjx4cLv+yBs1alT0+OOP93aX+73uCjyTyWT06U9/ut37OuGEE6I1a9a0q8/bt2/vUEBxxRVXRHV1de3a90svvRRNnjy5XfvNzc2Nbr755nbtty/p7mDNa6Nvq6qqikaMGNGp6+HSSy+Nqqqq9nsMr5GBo6MBgtdG3/af//mfnfq3453vfGe0c+fO/e7f60NSb+rOBLp77rmnU/s55ZRTovXr1/fOG6Je5+cv6mrd9VlBax/U7+87Jycn+tKXvhQlEoleejfU2/pybCGpZ/k3kXRw6Mv/d3fn54JSX+TYgmx+vi+pPzF+0sHAvzXUnzkmU/2d40qllgbK+Nj2MoFOA9ayZcuiSy+9NMrPz2/1F27IkCHRtddeG23evLm3uzogdFfgmfaXv/wlOv3009vcx8SJE6N/+7d/6/A/solEIvre974XTZkypc19T58+Pbrrrrs6/J5UVlZGn/rUp6Li4uJW95uTkxNdcMEF0YIFCzq8776gu4O1NK+NvmvPnj3R3XffHV1xxRVtvhdN35NzzjkneuSRRzp8HK+R/q+jAUKa10bfFI/Ho0ceeST68Ic/3GYVkabvx1lnnRX9+c9/7vBxvD4k9YbuTKCLoih69tlno0984hP7/Dco/T1z5szonnvuMbFEfv6iLtVdnxVUVVVFd955Z3TxxRfv96ba4MGDo6uuuip69dVXe+ld0MGir8cWknqWfxNJva+v/9/dnZ8LSn2NYwta8vN9Sf2J8ZN6m39rqD9zTKYGAseVStkG0vjY9ohFURQhDWA7d+5k3rx5bN68mYqKCsaMGcOkSZM455xzGDp0aG93T11szZo1LF68mC1btlBbW8vEiROZMmUKZ555Jjk5OQe075deeonly5dTWlpKTk4OhxxyCCeccALHH3/8Ae23oaGB559/nvXr11NWVsbw4cM55JBDmDVrFhMnTjygfWsvr42+LYoi1q5dy5tvvsmmTZvYvXs3iUSCUaNGceihh3LWWWdRXFx8QMfwGlFbvDb6to0bN7Js2TLWrVvH7t27qa+vZ9SoURxyyCGcffbZjB49+oD27/Uhqb/aunUry5YtY82aNezatYuamhqKioqYMGECZ555Joccckhvd1EHGT9/UV+RSCRYuXIlb731Flu2bKGqqoooihg7dixHHHEEZ511FoWFhb3dTR2E+nJsIann+DeRdPDoy/93d9fngpKy9cXfYz/fl9SfGD+pv+uLf2tIHeV1rt7muFLpwPW3a9wEOkmSJEmSJEmSJEmSJEmSJEmSJElSv+S0pJIkSZIkSZIkSZIkSZIkSZIkSZKkfskEOkmSJEmSJEmSJEmSJEmSJEmSJElSv2QCnSRJkiRJkiRJkiRJkiRJkiRJkiSpXzKBTpIkSZIkSZIkSZIkSZIkSZIkSZLUL5lAJ0mSJEmSJEmSJEmSJEmSJEmSJEnql0ygkyRJkiRJkiRJkiRJkiRJkiRJkiT1SybQSZIkSZIkSZIkSZIkSZIkSZIkSZL6JRPoJEmSJEmSJEmSJEmSJEmSJEmSJEn9kgl0kiRJkiRJkiRJkiRJkiRJkiRJkqR+yQQ6SZIkSZIkSZIkSZIkSZIkSZIkSVK/ZAKdJEmSJEmSJEmSJEmSJEmSJEmSJKlfMoFOkiRJkiRJkiRJkiRJkiRJkiRJktQvmUAnSZIkSZIkSZIkSZIkSZIkSZIkSeqXTKCTJEmSJEmSJEmSJEmSJEmSJEmSJPVLJtBJkiRJkiRJkiRJkiRJkiRJkiRJkvolE+gkSZIkSZIkSZIkSZIkSZIkSZIkSf2SCXSSJEmSJEmSJEmSJEmSJEmSJEmSpH7JBDpJkiRJkiRJkiRJkiRJkiRJkiRJUr9kAp0kSZIkSZIkSZIkSZIkSZIkSZIkqV8ygU6SJEmSJEmSJEmSJEmSJEmSJEmS1C+ZQCdJkiRJkiRJkiRJkiRJkiRJkiRJ6pdMoJMkSZIkSZIkSZIkSZIkSZIkSZIk9Usm0EmSJEmSJEmSJEmSJEmSJEmSJEmS+iUT6CRJ0kHr6aefJhaLZb4/+tGP9naXJEmSJKnLGftIkiRJUs8yDpMkSZIkdVQURbz22mv89re/5dZbb+Vb3/oWP/jBD/j1r3/Nk08+SUVFRW93UZK0DybQSZLUTxxxxBFZN/pisRjTp08niqJO7e+KK65osb9YLMa6deu6tuMHYNq0aVl9+9vf/tah9qeeempW+y9/+csdav+1r30tq/2PfvSjDrWXJEmS1HEDMfZJu+uuuxzgmdLaddD0e8iQIYwdO5bjjjuOK664gu985zu89dZbvd1tSZIkqU8yDmvZ1wcffLBT+3v99ddb3V9b8d26dev2GfvEYjEKCgoYMWIEkydP5owzzuCmm27id7/7HY2NjQdw5pIkSeqrmv/93tm/s7tqP+oayWSSQw89tEU8cOedd/Z21waE1atXM3fuXMaOHcuJJ57IBz/4Qb74xS/yta99jc9+9rNce+21vP3tb2f06NEcc8wxfP7zn+fll1/u7W5LkpoxgU6SpH7sjTfe4LHHHutwu/Xr1/Pwww93Q4+61pw5c7KWn3nmmXa3raqqYsmSJZ1uD/Dss89mLZ9//vlZy00/rDjiiCM6tG9JkiRJ7dffYx91XG1tLdu3b2fZsmX84Q9/4Ktf/SrTpk1jzpw5LF68uLe7J0mSJPV5Az0Ou+WWWzrV7rbbbuvinkBDQwNVVVVs3LiRF154gZ///OdcddVVlJSUcP/993f58SRJkiT1vOeee44tW7a0WN/Rv/mbT9Jx3nnndVEP+6fKykq+8IUvcNxxx/HjH/+YHTt27HP7KIpYsWIFt99+O6eeeiqzZs3qFzFwd7NKvKSeYgKdJEn9XGdu4P3gBz8gkUh0Q2+61oEk0M2bN6/FOS5evJg9e/a0q31DQwMLFy7MLI8fP57jjjuu3ceXJEmS1LX6c+yjrvPUU08xa9Ys7rnnnt7uiiRJktTnDeQ4bNGiRR2emHHbtm3cd9993dSjltatW8fVV1/NF7/4xR47piRJkqTu0Vai3D/+8Q+2bdvWw70ZGNavX88ZZ5zBbbfdRkNDQ9ZreXl5HHHEEZxxxhmcdNJJTJw4sdV9vPjii1x22WU90FtJUnvk9XYHJElS93r66ad5+eWXOeWUU9q1fXV1dZ8p7X7++ecTi8WIoggINytra2sZPHjwfts2rx4HEI/HmT9/Pu94xzv2237hwoXU1dVllp2NR5IkSepd/Tn20f795je/YcKECUCY3bOmpoYdO3awbNkyHn/88awK5I2NjXzkIx8hLy+PD33oQ73UY0mSJKnvG+hx2He/+11mz57d7u1/8pOfZN1b6ozx48fz29/+NmtdQ0MDu3fvZs2aNTz55JM88cQTmXtnALfeeiuHH344n/nMZw7o2JIkSZJ6RyKR4Pe///0+X/vEJz7Rw73q35YvX86cOXNaVP078cQT+cIXvsBll13GyJEjs17bvHkz9913Hz/96U9ZvXp1T3ZXktROVqCTJKkfGjduHMXFxZnljswA+stf/pJdu3YBMGrUKMaNG9fl/esqo0aNYsaMGZnlhoYGXnjhhXa1bS2BDtpfxa55+/PPP79d7SRJkiR1nYES+2j/Zs2axXnnncd5553H+eefz0UXXcSHP/xhbr75Zl555RUee+wxxo4dm9Vm7ty5bNy4sZd6LEmSJPVNAz0OO/bYYzPPH3nkEZYtW9audg0NDdxxxx2Z5WnTpnXq+IWFhZnYJ/39zne+kyuvvJIvf/nL/PWvf2XRokVMnjw5q92XvvQlysvLO3VMSZIkSb3rH//4R9bf8+973/uyXm+rOp06p66ujquuuioreS4nJ4f//u//ZvHixXzkIx9pkTwHcOihh/KlL32JlStX8uCDD3LYYYf1ZLclSe1gAp0kSf3Q4MGDs2aV+d3vfse6dev22y6ZTPLDH/4ws/zJT36yXdXcetOcOXOyltuTAFdbW8uiRYsyy01nRm0rsa655557LmvZBDpJkiSp5w2k2EcH5t3vfjfPPPMMhYWFmXW7du3iRz/6US/2SpIkSep7BnocdtNNNzF06FAgVL/+7ne/2652v/3tb9m6dSsAw4YN46abbuq2Pp5yyik8+uijDBo0KLOuoaGBu+++u9uOKUmSJKn7NE+Qu/nmm5kyZUpm+dlnn6W0tLSnu9VvffnLX+a1117LLOfm5nLPPffw5S9/mdzc3P22j8ViXHnllSxdupQLL7ywO7sqSeogE+gkSeqn/t//+3/k5+cDoVT7bbfdtt82f/nLX1i1ahUABQUFfPrTn+7WPnaFziTQvfDCCzQ0NABh5pfrrrsu89rChQupr6/fZ/tEIsH8+fMzy4cccgglJSUd6bYkSZKkLjJQYh8duGnTpvH//t//y1r361//miiKeqlHkiRJUt80kOOw4uLirPtKv/71rzOJcfvy/e9/P/P8Yx/7GEVFRd3RvYzjjz+e9773vVnr2juJpCRJkqSDR2NjI3/84x8zyzNnzqSkpISrrroqsy6ZTPLggw/2Rvf6ndWrV7eYfPFzn/sc11xzTYf3NWrUKP785z/zL//yL13VPUnSAcrr7Q5IkqTuMXHiRK6++mruueceAO68807+/d//neLi4jbbNL3Bec011zBhwoROH7+iooLnn3+eLVu2sGPHDoqKipgwYQJnnnnmAe23uXPPPZe8vDzi8TiwNzkufeO2NU1vEJ5zzjnMnj07s1xfX8+LL77Iueee22b7pUuXsnv37syy1eckSZKk3jNQYp+e1J3n9Nprr/HKK6+wZcsWBg0axLhx4zj11FOZNm1aF/V+36688kpuueWWzPKmTZvYvn07Y8eO7ZHjS5IkSf3BQI/DPve5z3HHHXeQTCapr6/nBz/4Ad/5znfa3P6ZZ55h8eLFQKhc8LnPfa5dE0IeqDPPPDNroO3mzZu7/ZiSJElSMpnkpZdeYvny5ZSXl5NIJBg1ahTTpk3jbW97W1al5P1paGhgxYoVrFq1is2bN1NVVUUikWDo0KGMGjWKkpISZsyY0SerW7fXE088wc6dOzPL6cS597///fz3f/93Zv3999/PZz7zmR7v37p161i4cCFlZWVUV1czZswYJk2axDnnnJOp3n2gXnjhBV599VV27tzJ+PHjOeGEEzj11FPb3D6RSPDss8+ycuVKduzYwdixYznjjDM4/vjj93us733veySTyczy4Ycfzje/+c1O9z03N5f/+q//2u92URTxyiuv8Oabb1JWVkYymWTcuHEcffTRnH766e2qfNfbKioqeOqpp9i4cSN1dXWMHz+es88+m6lTp/Z21yQpwwQ6SZL6sS9+8YuZm5d79uzhxz/+MV/5ylda3Xbp0qU8/fTTmeUvfOELnTrmc889xze+8Q2effZZEolEi9djsRinnnoq//Zv/8Yll1zSqWM0NXz4cE477TQWLFgAQF1dHQsXLuTss89us03TBLpzzz2X448/njFjxrB9+3Yg3MjcVwJd8xk6mybQ/fu//zv/8R//0aLN+vXricVibe7TigeSJElS5w2E2KcndNc5RVHE3Xffzc0338yKFSta3eboo4/mxhtvZPPmzVmVGZ566inOO++8Dp9LW44++ugW67Zs2WICnSRJktRBAzkOO+qoo7j00kszyWk/+clP+MpXvsKwYcNa3f7222/PPH/f+97HkUce2SMJdCNHjsxarqmp6fZjSpIkaeDauXMn3/rWt7j33nvZtm1bq9sMGzaMG264gX/9139l/Pjxbe7re9/7Hr/5zW947bXXaGho2Odxhw4dyqWXXso3v/lNpkyZkvVaY2Mjhx12GOXl5Zl1S5cu5cQTT2z3eZ122mm89NJLmeUlS5Ywc+bMzPLYsWPZvHlzuxMDd+zYwSGHHJI5r4kTJ7Jhwwby8lof0n///fdnLacT6E4++WSOOuooVq9eDcCCBQvYuHEjkyZNanU/H/3oR7n77rtbrH/mmWfaHNN2+OGHs27duhbrk8kk99xzD7fccgtvvvlmq23z8/O58MIL+eY3v8kJJ5zQ6jZt9S19b+j+++/nq1/9auYcmzr22GP5n//5Hy6++OLMukQiwfe//31uvfXWVicQmTVrFj/5yU+YMWNGq/2orq5u8R7NnTu3WxM0q6qq+J//+R9+8YtftFndvLi4mGuuuYavf/3r+72f1fRn2dbPr7Pt2vo5LVmyhG984xs8+uijmSIITZ177rn88Ic/bPX37rzzzms1Pr777rtbvV4BZs+enfUZgyR1RE5vd0CSJHWfE088kbe//e2Z5R/+8IfU19e3um3Tm3fvfve72zXjSlONjY187GMf49xzz+Wpp55q9cYlhIGTixYt4tJLL+Xiiy+murq6Q8dpzZw5c7KW93XTsbGxkRdeeCGzfO655xKLxbIS5ponyDW3rwQ6SZIkST1voMQ+3aU7z2nnzp2ce+65XHfddW0mzwGsXLmSL3/5y1nJc92htdlO27pWJEmSJLVtoMdhX/ziFzPPKyoquPPOO1vdbs2aNfzpT39qtV13q6yszFoePXp0jx1bkiRJA8vDDz/MUUcdxW233dZm8hyEBKXbb7+dk046KWv8VnN//OMfefnll/ebPAdhQo/77ruP4447LqsCM8CgQYP4p3/6p6x16YlA2mP58uVZyXOnnXYaM2bM4PTTT8+s27ZtG3/+85/bvc97770367yuv/76NpPn6uvrefjhhzPLM2bMyJooMJ1MByEeeuCBB9rdj84qLS1l1qxZXHfddW0mz0GoHvjwww8zc+ZMvvGNb3ToGLt37+byyy/n6quvbjV5DuCtt97i0ksv5d577wXC5PZnnHEGX/ziF9usvv3CCy9w9tln8/LLL7f6+rx587ImHsnLy+OjH/1oh/reEfPnz+foo4/mW9/6VpvJcxBizv/93//lqKOO6tC11t1qa2v59Kc/zcknn8yf/vSnVpPnIIy1PPvss3nuued6uIeS1JIJdJIk9XNNZ/HcunUr//d//9dim/Lycn7zm99klv/5n/+5Q8dobGzkoosu4le/+lXW+pycHEpKSjjjjDOYNm1ai2D/L3/5C7Nnz6aqqqpDx2uuIwl0ixYtygS6o0eP5rjjjgPIqmiwYMGCNgM6gOeffz7zfPLkyS1mL5IkSZLU8wZC7NMduvOcKioqOPvss7NiKAizjh533HGceeaZTJs2rd2zsnaF1m7c72uWW0mSJEltG8hx2FlnncXb3va2zPJtt93WamLfD37wA5LJJABnn3121kDb7rZ06dKs5baqLEiSJEkH4s477+SKK67ImsAhFosxdepUzjjjDE499VTGjRuX1aa0tJR3v/vdrFy5st3HmTRpEqeeeiqzZs3i6KOPblEBur6+nve///0sXrw4a/3111+ftXzfffe1OSlHc81jnBtuuAGAG2+8MWv9L3/5y3btD8iKbXJyclrsq6nHHnuMXbt2ZZbf//73Z73eNIEO4Le//W27+9EZGzZs4IwzzmDRokVZ6wcPHsz06dOZNWsWRx55ZNZryWSS//zP/+Smm25q93H+6Z/+iYceeiizfMghhzBr1iymTp2atV0URXzyk5/kiSeeaNGvI488klmzZjF58uSsNtXV1XzoQx9qdWxg8wSvGTNmtLh2u8rjjz/OBRdcQFlZWdb6UaNGcfLJJ3Paaae1OHZVVRWXX355q7F3b/jQhz7Ej370I6IoAqCwsJDjjz+e008/nQkTJmRtW1VVxdVXX01FRUVvdFWSMkygkySpn3v3u9+dSRKDUOI+HbSk3XHHHZlZQWfMmMEFF1zQoWN85Stf4YknnsgsFxQU8I1vfIPS0lKWL1/O/PnzefPNN9m2bRvf/e53sz7AWLx4MXPnzu3MqWWceeaZFBYWZpbnz5+/zxlN0s4555xM+fHZs2dn1u/Zs6fNmWaWLVuWNeCyefW5j370ozz11FM89dRTWesLCwsz61v7liRJknRgBkLs0x2685xuvPFGli1bllkePnw4t99+O9u2beONN95g3rx5vPnmm1RVVfHoo49y9dVXtznLaldpPqNtcXExhx12WLceU5IkSeqvBnoc1rSa3Pr163nwwQezXq+qqsoaHNuT1ef27NnD448/nrXuPe95T48dX5IkSQPDggUL+MQnPpFJSBsyZAjf/va3KS8vZ+XKlcyfP59FixZRVlbGK6+8kvU36a5du1pUh2vqyCOP5Etf+hKPP/44u3btYsOGDSxatIgFCxawYsUKdu3axdNPP82JJ56YaROPx/nyl7+ctZ9p06ZxxhlnZJZLS0uzYoy2RFHEr3/968zykCFDuPrqqwG4+uqrGT58eOa1xx9/nNLS0v3uc/HixVkTXVx00UUtEryauv/++7OWmyfMnXzyyRx11FGZ5ZdeeqnNim3/+q//ylNPPZU1wQnAEUcc0eZ4tqYJefF4nKuvvpr169dn1k2cOJG7776b7du389prr7FgwQLWrFnDunXruOmmmzLj8gB+/vOft1m5u7ndu3cD8Pa3v53nn3+ezZs3s2DBAlauXMnixYuZNGlSZtvq6mre+c53Zt7/f/qnf+KNN95gzZo1LFiwgPXr1/P3v/+dESNGZNqsWLGCP/zhDy2O2/weUtNJU7rSxo0bueaaa6irq8usO/XUU3nqqafYtm0bL7/8MgsXLqSsrIwXX3wxqzBAIpHgpptu4vXXX++WvnVEOml2ypQp3HnnnWzbto3XX3+dF154gdLSUh5//PGsSuhbtmzhpz/9adY+br/9dp566iluu+22rPWzZs1q87psWuVekjoskiRJ/cLhhx8eAREQHX744Vmv/eIXv8i8BkR/+tOfMq/V1dVF48ePz7x2zz33tLlfIFq7dm3W66+88koUi8UyrxcUFER///vf99nXhQsXRiNGjMja79/+9rcW2z311FNZ23zkIx9pc5/nn39+1rYvvPBCq9tdeOGFmW1uvfXWzPpkMhmNHj0689p///d/t9r+Jz/5SdZx7rrrrjb71HS7oUOHtrmdJEmSpPYbyLHPr371q3bHSO3Rnef00EMPZW1TXFwcvfLKK/vt00c+8pGsdk899VSr2+3v59WWOXPmZLW7+uqr29VOkiRJGsiMw/Zu96tf/SrzWjwej4444ojMayeffHJW29tuuy3z2tFHHx0lEok299vW8deuXZu1XfP3vy1f+tKXstodc8wxWceXJElS/9X87+yu+m7+93p9fX3W38Pjxo2LXnvttX32LZlMRu9///v3+/f6qlWr2n2+O3fujCZMmJDZX25ubrRjx46sbZrHLR/84Af3u99nnnkmq81HP/rRrNc//vGPZ71+880373efn/rUp7LaPPLII21uu2fPnmjo0KGZbWfMmNHqdv/6r/+atc/vfOc7++xD8xjj+OOP32+/oyiKbr/99qx2Rx55ZLRhw4Z9tvnpT3+a1WbYsGHRzp07W2zX/N7QoEGDoh//+Mdt7vcPf/hDi+tz1KhR0eOPP95mm1tvvTVr+2uuuabFNscff3zWNj/60Y/2eX6dddlll2Ud56KLLorq6+vb3D6RSETXXHNNVpszzzyz1W07Ez+2t13zn1NOTk70b//2b1FdXV2b+33ggQfadb01j9EvuuiidvddkjrCCnSSJA0A1157bVZJ71tuuSXz/L777suUAj/00EMzM+W016233po1m+hXvvKV/c4eetppp/Gd73wna933vve9Dh23uTlz5mQtP/PMMy22SSQSzJs3L7N8zjnnZJ7HYrGs5aaV6ppqXqq96QwvkiRJknrXQIh9ulJ3ntPNN9+ctfzDH/6QmTNndr6zXeCOO+7gH//4R9a6z3zmM73UG0mSJKl/GMhxWG5ublZMsXjx4kzMkUwm+eEPf5h57fOf/zw5Od0/RCeRSPC1r30t6+eQm5vLz372sx45viRJkgaO++67j3Xr1mWWf/3rXzN9+vR9tonFYtx6663k5eVl1jWtcpbWtKra/hQXF/OhD30os5xIJLKqvAF84AMfyKpW/dBDD2WqnLXl3nvvzVq+4YYbspZvuummrOWm1adbU19fn1X97YgjjuDd7353m9s/8sgj7NmzJ7PcvPpc2vvf//6s5eZV67pCIpFoUfXrV7/6VVYluNbcdNNNXHnllZnl6urqFhXIWnPnnXfyiU98os3XL7rooqxrCODFF1/kXe96V5ttLrnkkqzlRYsWtdhm586dWcujRo3ab187atWqVfzpT3/KLI8ePZq7776b/Pz8Ntvk5OTws5/9LKta4fz581tUzOtpd955J9/85jcpKChoc5vLL7+coUOHZpaXLVtGVVVVT3RPklrlp2OSJA0ABQUFfOpTn8osP/fccyxcuBCA73//+5n1n/nMZxg0aFC791tfX88DDzyQdZzPfvaz7Wp74403UlxcnFn+61//Snl5ebuP3Vx7EuiWLFmS+fBj+PDhnHTSSVmvz549O/N83rx5JJPJFvtomkA3ZcoUDj/88E73WZIkSVLXGgixT1fpznN6/fXXefHFFzPLJSUlXHPNNV3Q686pr6/nP//zP/n0pz+dtf6KK67gjDPO6KVeSZIkSf3DQI/DbrjhBkaOHJlZ/u53vwvAww8/zJo1a4AwIPIjH/lIlxyvrq6Op59+OvP91FNP8Ze//IU777yTz3/+8xxxxBF861vfymyfm5vLL37xC84999wuOb4kSZKUdscdd2Sen3baabz97W9vV7tDDz2Uk08+ObPc2hivjjr66KOzlrdt25a1PGzYsKxEs9raWn73u9+1ub/6+noefPDBzPKxxx7LWWedlbXNySefnHUeK1as4Pnnn29znw899FBWgtaNN964z0kumicWtpVAd9JJJzF16tTM8tKlS1m+fHmb++2M5557LitZctasWVnj7Pbly1/+ctby//3f/+23zf4S8/Lz8znssMOy1jV9D1pz5JFHZr3fza8RgIqKiqzloqKi/fS04+69996sMYk33ngjo0eP3m+7IUOGtLjP1Z73sjsdccQR+90mLy+PY489NrOcTCbZuHFjN/ZKkvbNBDpJkgaIuXPnMnjw4MzyLbfcwlNPPZWZcWfYsGF8/OMf79A+Fy5cSH19fWZ5zpw5WTcJ9yU/P5+LLrooa938+fM7dPym3va2tzF8+PDMcmsJcE2ryp155pnk5uZmvd60mlxlZSWvvvpq1uvr169nw4YNrW4vSZIk6eDQ32OfrtKd5/T3v/8967WOVpnojBdeeCEzgPSvf/0rv//97/nhD3/IjTfeyGGHHcY3vvGNrMoV06ZN45e//GW390uSJEkaCAZyHDZ8+HBuvPHGzPJjjz3GG2+8kVWdYe7cuQwZMqRLjldWVsb555+f+Z4zZw4XX3wxN9xwA7fffjubNm3KbHvooYfy6KOP8tGPfrRLji1JkqS+6Te/+Q1PPfVUh7/Hjx/f5j53797Nyy+/nFlubzJVWtPEm7Vr17Y6yXlroiiivLycV199lSeeeIKHHnqI+++/n8WLF2dtV1NT06Lt9ddfn7V8zz33tHmcP//5z1RWVrbZNq15Fbp93Xdo+tqgQYPa3CeESm2PPvpoZnnGjBmUlJS0uX3z5LrWqvodiKYTzkOoKtZep512Wlay27Jly1okqnVG04qC7ZGTk5MVl+3atWu/bWKxWIf7tT8H8l6+733vy1qeN29el/SpuzWd4AbI+t2SpJ5mAp0kSQPEmDFj+PCHP5xZ/uMf/8i//Mu/ZJabz5DZHi+99FLW8syZMzvUvvn2TT9Y6ai8vDzOOeeczPKuXbtYsmRJ1jZNE+ham2nzxBNPzArYms9w1LQ9wPnnn9/p/kqSJEnqHv099ukq3XlOzQemnnbaaR3ad2d88IMfzAwgffe7382VV17JZz7zGX7xi1+wffv2rG3f8Y538NxzzzFixIhu75ckSZI0EAz0OOwzn/kMeXl5meUbbrghc0+peYW+njBu3Di+853vsGzZMt75znf26LElSZJ08Jk1axbnnXdeh78LCwvb3OcLL7yQlfT23e9+l1gs1u7vptWmk8lkmwk1URSxYMECvvCFL3D22WczcuRIxo8fz4wZM3jnO9/J5ZdfztVXX83Pf/7z/b4PZ555ZlYlrGeffZb169e3um3Tyl6DBg3Kinea+tCHPsTQoUMzyw8++CDV1dUtttu0aVPW5IOXX375PhMUH374Yerq6jLLbVWfa+v1+++/f5/bd1RXxmdRFLVIeOyMpu97Z9q0lrTZE4leTd/L3NxcTjjhhHa3nTJlSlaBgddee42GhoYu7V93aH4/ri/0WVL/ZQKdJEkDyOc///nMzCiJRIJFixYBIRj77Gc/2+H9NS9l3p6y3E0dfvjhWcvl5eUd7kNTc+bMyVpumgAXRVHWDC6tJdDl5ORkJeE1T5gzgU6SJEnqG/p77NMVuvOctm7dmvXa1KlTO9a5bjJp0iR+9KMf8dhjjzF69Oje7o4kSZLUrwzkOGzSpElZA1ZfeOGFzPNrr712nwNju0MymeSDH/xg1sBKSZIkqSs1rXzcFaqqqlqsu//++ykpKeHMM8/ktttuY968ea1u1xFNq75FUZSVKJe2Y8cOHnvssczyxRdfzLhx41rd3/Dhw/nABz6QWa6urs5KDky76667shK2PvGJT+yzn80T4PaXQHfSSSdx9NFHZ5aXLVvGa6+9ts82HXEwxmf7SvDsbJtRo0ZlLXdFpbymGhoa2L17d2Z53LhxWdXc9ycWizF58uTMcjKZZMeOHV3ax+7Q0WqBktSdTKCTJGkAOeaYY7joootarL/yyis7HNhCyyCxo8FO8xt3Bxp0Nk+ga5rw9sYbb2QCxsLCwjYrIMyePTvzvHnJ9KbLRx99NIceeugB9VeSJElS9+jvsU9X6M5zal7xrTcqveXn5zNu3DhOO+00brjhBh588EFWrVrF3Llzyc3N7fH+SJIkSf3dQI/DvvjFL7ZYF4vF+MIXvtClxzn88MOJoijr+4033sh6f7Zv384ll1zSauULSZIkqSvs3LmzS/cXRVHmeSKR4LrrruPqq69m1apVrW5fVFTEjBkzuPDCC7n++ut5z3ve067jfPjDH86qHt1aAt39999PY2NjZvmGG27Y5z5vuummrOVf/vKXWctRFHHXXXdllo855ph9TtpeWVnJX//616x1xxxzzH6r+q1cubLFeXSVvhafdVbzyU/eeuutLt3/gb6P0Hfey6bSk+1I0sEgb/+bSJKk/uSLX/wif/nLX1qs64ymH15Ax4Od5ts3319HzZw5k9GjR2cS5Z599lmiKCIWi2Ul073tbW+joKCg1X2cd955mefbtm1j2bJlTJs2jfLycpYvX555zepzkiRJ0sGtP8c+XaE7zymRSBzQvjtj7dq1nRqUK0mSJKnrDOQ47JRTTmH27Nk888wzmXUXXnghxx13XLceF+C4447jnnvu4Yorrsic52uvvcY111zDQw895GBFSZIkdbmmCWYQksyuueaaTu9vwoQJmeff/OY3sxLOAEaPHs11113Hu9/9bk455RSKioqyXr/rrrt49NFH93uccePG8d73vpeHHnoIgBUrVvDCCy8wa9aszDZNk+oOO+ww3vWud+1zn6effjonnngir776KgDz5s1jxYoVlJSUAGH82urVqzPb76/63B//+EcaGhr2ey77c//99/Otb33rgPcDfS8+66zTTjuNf/zjH5nl+fPnd+n+D/R9bK3NwfpeStLBygp0kiQNMOeddx4nn3xyZvmcc85psxrb/hQXF2ctNy0x3h7Nt29eBr2jYrFYVgW5nTt38vrrrwPZ1ejOPffcNvcxc+ZMRo4cmVlO3+hsXo3OBDpJkiTp4NafY5+u0J3n1LzinFUPJEmSpIFhoMdhzavNdTZ5sDMuv/xy/u3f/i1r3Z/+9Ce++tWv9lgfJEmSNHA0//t69OjRnHfeeZ3+LiwsBML9hNtuuy1r3+973/tYvXo1t9xyCxdccEGL5LmOuv7667OW77nnnszzVatW8cILL2SWr7vuOnJy9j/U/sYbb8xa/tWvfpV53rQi3eDBg/nIRz6yz311VeW4VatW8fLLL3fJvvpifNYZ55xzTtbykiVLurTa4oG+j621OVjfS0k6WJlAJ0nSAPSNb3yDCy64gAsuuICvfe1rnd7PuHHjspbXrVvXofbNtx8zZkyn+5I2Z86crOXWEuD2lUCXk5OTFQynE++aJuBBdqU6SZIkSQen/hz7HKjuPKfRo0dnvbZhw4YO7VuSJElS3zWQ47CLL76Yq666igsuuIBrr722xT2r7vYf//EfXHzxxVnrbr75Zu67774e7YckSZL6v7Fjx2Ytr1q1qkv2+9BDD2UlCE2fPp3f/OY3WZOhH6gLL7yQQw45JLN8//33Zyq+Na0+F4vF+NjHPtaufV577bUMHjw4s3zPPfeQSCSoqqrid7/7XWb9+9///hZJVE3t2LGDJ598MrN80kkn8dRTT7X7e+7cuVn766pkvL4Yn3XG2WefTV5eXma5sbGRO++8s8v2X1BQkDUJZXl5OTU1Ne1uH0VR1j23nJycfSbQJRKJznVUkvoxE+gkSRqALrnkEv7+97/z97//nXe84x2d3k/zWUNfeumlDrV/5ZVXspZPOeWUTvcl7YILLshafvbZZ1m5ciVbtmwBIC8vjzPPPHOf+2haxa61BLpp06YxYcKEA+6rJEmSpO7Vn2OfA9Wd53TCCSdkvbZ06dIO9k6SJElSXzWQ47BYLMYDDzzA3//+96yBtz0lFotx7733cuyxx2atv/7661m0aFGP90eSJEn916mnnpq1/Pzzz5NMJg94vytWrMha/uAHP0h+fv4B77ep3NzcrCpwO3fu5C9/+QsA9957b2b9BRdcwBFHHNGufRYVFXHVVVdllrds2cLjjz/O/fffn5Ug9clPfnKf+/n9739PPB7PLH/gAx/oUCW/5vt/4IEH2tX//TnQ+GzJkiVZy00rlx9MRo4cmfVzBPjf//1famtru+wYTd/LZDLZInbdl1WrVlFVVZVZPv744ykoKMjaZtCgQZnnXdlvSeovTKCTJEmdduqpp1JYWJhZfuaZZ9ixY0e72tbV1fHII49krdtfYlt7HHvssVmzBD377LNZyW8nn3wyQ4cO3ec+mibQbd68mVdeeYVXX301s+78889vV19yc3Pb221JkiRJB7GDMfY5UN15Ts1vpP75z38+gJ5KkiRJGoj6YxzWE0aMGMHDDz+cVaGjrq6Oyy67LDPZpCRJknSgJk+ezJFHHplZLisr409/+tMB77esrCxrub0JbB31sY99jFgsllm+5557mD9/PmvWrMmsu+GGGzq0zxtvvDFr+Ze//CW//OUvM8szZ87k9NNP3+c+mleMu+yyyzrUh+nTpzN16tTM8vr163nhhReytmlaYa29zj777Kzl3//+9+1uu2DBAjZv3pxZPvbYYxk9enSH+9BTvvjFL2Ytb9iwga985SsHtM/vfve7mecH8l42rWYIcNZZZ7XYpmksWFlZmZWQeTDrzHUpSZ1hAp0kSeq0wsJCPvCBD2SWGxsb+Z//+Z92tb3jjjvYtWtXZvntb397l1V1a5rgVlZWxs9+9rPM8rnnnrvf9ieffHJWufTvfOc7WbMktTeBruk+6uvru2SmJUmSJEk972CNfQ5Ed57Te97znqyJS55++mkWLly43/3W1taydu3advVBkiRJUv/WH+OwnlJSUsKvf/1rcnL2DgnasmULl156qRUIJEmS1GU+/OEPZy3/y7/8S1Z1rPaIoogFCxZklouLi7Neb+8kEM0T7/Zn6tSpWWPIHn30UW677bbM8ujRozucvHb22Wczbdq0zPKf/vSnrHP7xCc+sc/2ZWVlPPPMM5nladOmccwxx3SoD9Ay6a55Ul7T8WzQvipl5557LlOmTMksv/LKKzz22GPt6s9//dd/ZS1fe+217WrXW0455RQuueSSrHXf//73+fWvf93hfdXU1HDdddfxpS99KbPuwx/+cFasduedd7J169b97quqqoof/ehHWetaey8nTZqUeZ5IJFi6dOl+971+/fr9btPdOnNdSlJnmEAnSZIOyOc+97msGXluvfXWFrN6NrdgwQK+/vWvZ637whe+0GV9mjNnTtZy04Ga55xzzn7b5+bmZs3Q8oc//CHzPBaLZVWo25emHxzE4/F2DRiVJEmSdHA6GGOfA9Vd5zRs2DA+9KEPZa27+uqrWbduXav7jKKIv/zlL5x88slZFcQlSZIkDWz9MQ7rKRdddBH/8R//kbXupZde4mMf+1gv9UiSJEn9zWc/+1mGDx+eWV6xYgWXX345lZWV7Wr/8ssvc9555/Htb387s+7UU0/N2ubee+/dZwWthoYGvva1r/H//X//X8c6D1x//fWZ542NjVnVva699loKCgo6vM+mVeia9nv48OFcc801+2z74IMPkkgkMsuXX355h4/fWrsHHngga9L3ESNGZFWAW7duXVaFuNbk5OTw2c9+NmvdjTfemFWxrzU//OEPsyoTDhkyZL+JhAeDX/ziFxxyyCGZ5SiK+PCHP8z3vve9dk+g/9hjjzFz5kzuuuuurPVTpkzh0ksvzSzv3r2ba665hrq6ujb3lUgkuOGGG7J+Tm9729tarUDXvPr6nXfeuc9+/u53v+Okk07a5zY94YgjjshKLFy8eLFJdJK6hQl0kiTpgMycOTPrxmM8Hufyyy/nq1/9aovZfSorK7nlllt4xzvewZ49ezLrP/CBD3DhhRd2WZ8uuOCCVtfHYrF2JdABnHfeeZnnTQPf6dOnM3bs2Hbto3m1u49//OOsWrUqa111dXWLmX4kSZIkHXwOxthn69atPP300x3+rq6u7vZz+va3v511A3bt2rWccMIJfOpTn+KBBx7giSee4De/+Q3//M//zLHHHsvFF1/MW2+91WXvjSRJkqS+72CMw/qSr371q1xxxRVZ6377299mDVCWJEmSOqu4uJif/vSnWeuefPJJTjjhBO644w62b9/eos22bdv42c9+xgUXXMCpp57aYlK9d7/73YwaNSqzvHTpUq666io2btyYtd2ePXv4v//7P0444QS+9a1vEUVRh/t/5ZVXMnLkyFZfu+GGGzq8PwjVxVpLvLv22msZNmzYPts2Hz/W0Qp4abNmzcqqwL1lyxaef/75rG2ajmlLJpN8+MMfblEFbceOHfzxj3/MLM+dO5fTTz89s7x582bOOOMMfvnLX1JTU5PVdt26ddx000185jOfyVr/ve99L+ve0cFq7Nix3HfffQwePDizLplM8s///M+ccsop/PrXv2b37t0t2m3ZsoWf//znnH766bznPe9h5cqVre7/+9//PkVFRZnlf/zjH8yaNYu///3vLRL0XnjhBebMmcMDDzyQWVdQUMDPfvazVvfdPFHzJz/5CT/+8Y+zEjoTiQSPP/44F1xwAVdddRUVFRVtvxk9ZMSIEcyYMSOzXFlZyfXXX59VXR7Ce9ze6oeS1Jq83u6AJEnq+77zne+wePFinnrqKSDMyvOd73yH//qv/2Lq1KmMGTOGyspKVq5cSWNjY1bbGTNmtBnQddbhhx/OkUceydq1a7PWT58+neLi4nbto60qc+eff367+/Hxj3+cH/zgB5nZgV599VWOPvpoSkpKGDt2LLt372bZsmXE43E+8IEPtHu/kiRJknrHwRb7/PWvf+Wvf/1rh9u98sorzJw5E+i+c0rfXLz00kszs2ZWV1dzxx13cMcdd7TaJjc3l/Hjx7Nly5bMukGDBnX4/CRJkiT1HwdbHNaXxGIx7rrrLpYvX87rr7+eWf+1r32N448/vtMDciVJkqS0D37wg6xcuZJvfOMbmXWbNm3iU5/6FJ/+9KeZMmUKY8eOJYoiSktL2bBhwz73N2zYML7+9a/zuc99LrPuoYce4uGHH6akpIQxY8awfft21q9fn1Wxq6ioqN2V79IGDx7MBz/4QX7yk59krT/99NOZPn16h/aVNnr0aN73vvfxm9/8Jmv9/qqubd68mXnz5mWWDzvssBbV+NorJyeHSy65JCsWuv/++7OS5ubOnZuVHPePf/yDww47jGOPPZaioiJ27NjBihUrmDRpUqaiXV5eHvfddx+zZ89m06ZNAJSXl3P99dfz6U9/mqlTpzJs2DDKysparUx33XXX9Ynqc2mzZ8/m6aef5pJLLsmawGXJkiVce+21DBo0iEmTJjF+/Hjq6urYunUrpaWl7dr3pEmT+L//+z+uuOIKGhoagJAs+o53vINRo0Zx5JFHkpuby/r161tMHpOTk8OPf/zjrGSzps444wwuvPDCTJJZFEXMnTuXr3zlK0ydOhWAVatWZf2+dOb3pzvMnTs3q4rjb37zG37/+98zbdo0hg0bxtatW1m9ejWzZ88esBPlSDpwVqCTJEkHLD8/n8cee6xFElgymWTFihXMnz+fN998s8WNywsvvJDnnnuOESNGdHmf5syZ02Jd84pw+3LKKae0OvNPRxLojjnmGG6++eYW61esWMG8efN47bXXsmZ3kSRJknRwOxhjnwPVnef0zne+k8cee4wjjjhiv/04/vjjef7553nHO96Rtb6t2V8lSZIkDQz9MQ7rScOGDeOhhx7KmmAyiiKuvfZaXn311V7smSRJkvqLr3/96zzwwAMtPs+PoojVq1fzwgsv8OKLL7aaPJeTk8O0adOy1n32s5/lYx/7WIt9LV++nHnz5rF8+fJM8lxBQQH/8R//wXe/+91O9f36669v17oD2ecZZ5zBiSeeuM82DzzwQFYVvUsvvZRYLNbpPjSfLON3v/tdZgJ4gLe//e3MnTs3a5tEIsEbb7zBvHnzeOutt1pUQgOYMmUK8+bN44QTTshaX1tby2uvvcaCBQtaJM/l5OTwla98hTvvvLPT59Nb3va2t7Fw4UKuuuqqFj+PxsZG1qxZw4IFC3jllVfaTJ57+9vfziOPPNJi/Xvf+14effTRrIqLADt37uTll19m4cKFLZLnhg0bxu9//3uuu+66ffb7rrvu4uijj85aV1lZyUsvvcRLL72UlSw3Z86cgyY2/NjHPsZ73/verHUNDQ0sXbqUefPmsXr16l7qmaT+xAQ6SZLUJQoKCvjtb3/L3/72N8466yxyclr/MyMWi3HKKafwhz/8gUcffZThw4d3S38uuOCCFus6kkCXl5fHWWedlbUuFot1aB8AX/rSl7jvvvs4/PDD29ymabl3SZIkSQe3gy326QrdeU7nnXceb7zxBnfccQdvf/vbOeSQQxg0aBAjR45k6tSpXHPNNTz44IO8+uqrzJo1K+sGLoRZLyVJkiQNbP0xDutJRx11FL/97W/Jzc3NrNuzZw+XXHIJ27Zt68WeSZIkqb+46qqrWL9+Pd/+9rczVa7akv67/b//+79Zv349t9xyS4tt7rzzTn7+858zceLEVvcxePBgrr32Wl577TW+/vWvZ/2t2xGnnnpqVnLb0KFDufrqqzu1r7TmST7tqbp2//33Zy0faLXoCy64IGsykfLy8kxV77Qf/ehHfP/732fs2LFt7mfIkCEt1k2ePJnFixfzox/9qEWSVlP5+flcfPHFLF68mG9/+9sHlBDYmyZPnswDDzzAokWL+MhHPsKECRP2uX1ubi6nnXYa3/jGN1i+fDlPPPEE73nPe1rd9oILLmDVqlX88z//8z5/DkVFRcydO5dVq1a169oYN24cL774Ih/72MfIy8trdZsZM2bw+9//nieffJJJkybtd589IScnhz/+8Y987Wtf22c839p1KUntFYuapqxLkiR1ke3bt/P8889TWlpKRUUFI0aMYOLEiZx55pltfrjRnyUSCRYuXMiSJUuoqKhg8ODBjBkzhuOPP54TTzyxzWBVkiRJ0sGtP8Y+vXlOF110EY8++igAI0aMoKKios3BsZIkSZIGpv4Yh0mSJEn9yZYtW1i4cCHl5eXs3LmTeDxOUVERRx99NKeffnq7J8+Lx+M899xzvPbaa+zevZshQ4Zw5JFHMmfOnBYV7w4GURRx/PHHs2zZMgBGjRrF5s2bKSws7OWeta2+vp758+fzxhtvsGvXLoYNG8a4ceM48cQTmTZt2n7v0axcuZKXX36ZsrIyampqGD16NJMmTeKcc85h2LBhPXQWPSeKIl599VVWrVqVub5zcnIYOXIkU6ZM4YwzzujUtZlMJlm0aBHLly+nvLycZDLJ2LFjKSkp4fTTT+/02MLt27fzzDPPsG7dOhKJBBMmTGDWrFmUlJR0an89pbq6mueff57ly5dTXV3NyJEjGT9+PCeddNJ+k3QlaV9MoJMkSZIkSZIk9bpkMslhhx1GaWkpAHPmzOHJJ5/s5V5JkiRJkiRJkiTt36OPPspFF12UWf7CF77A9773vV7skSRJasqpeyVJkiRJkiRJve53v/tdJnkO4JJLLunF3kiSJEmSJEmSJLXfrbfemnkei8X4+Mc/3ou9kSRJzVmBTpIkSZIkSZLU5e677z4mT57MrFmzyMvL2+e2f/vb37j66qupqKgAYPjw4WzatIkRI0b0RFclSZIkSZIkSZI67dVXX2XGjBmZ5Tlz5vDkk0/2Yo8kSVJz+x61IEmSJEmSJElSJ9x333088sgjDBs2jDPOOIOTTjqJY489ljFjxjB48GB27drFW2+9xWOPPca8efOy2t56660mz0mSJEmSJEmSpD7he9/7XtbyJz/5yV7qiSRJaosV6CRJkiRJkiRJXe69730vjzzySIfbff7zn+fWW2/thh5JkiRJkiRJkiR1rdLSUo444ggaGhoAmDBhAhs2bGDQoEG93DNJktRUTm93QJIkSZIkSZKkSZMmce+995o8J0mSJEmSJEmS+oz//d//zSTPAVx//fUmz0mSdBCyAp0kSZIkSZIkqctt3ryZBQsW8NJLL/HKK69QWlrKzp072bFjBwBFRUVMnDiR008/nQsuuIDLLruMvLy8Xu61JEmSJEmSJElS+9TU1DB58uTMvY+cnBzWrl3L5MmTe7lnkiSpORPoJEmSJEmSJEmSJEmSJEmSJEmSJEn9Uk5vd0CSJEmSJEmSJEmSJEmSJEmSJEmSpO5gAp0kSZIkSZIkSZIkSZIkSZIkSZIkqV8ygU6SJEmSJEmSJEmSJEmSJEmSJEmS1C+ZQCdJkiRJkiRJkiRJkiRJkiRJkiRJ6pdMoJMkSZIkSZIkSZIkSZIkSZIkSZIk9Usm0EmSJEmSJEmSJEmSJEmSJEmSJEmS+iUT6CRJkiRJkiRJkiRJkiRJkiRJkiRJ/ZIJdJIkSZIkSZIkSZIkSZIkSZIkSZKkfskEOkmSJEmSJEmSJEmSJEmSJEmSJElSv2QCnSRJkiRJkiRJkiRJkiRJkiRJkiSpXzKBTpIkSZIkSZIkSZIkSZIkSZIkSZLUL5lAJ0mSJEmSJEmSJEmSJEmSJEmSJEnql0ygkyRJkiRJkiRJkiRJkiRJkiRJkiT1SybQSZIkSZIkSZIkSZIkSZIkSZIkSZL6JRPoJEmSJEmSJEmSJEmSJEmSJEmSJEn9kgl0kiRJkiRJkiRJkiRJkiRJkiRJkqR+yQQ6SZIkSZIkSZIkSZIkSZIkSZIkSVK/ZAKdJEmSJEmSJEmSJEmSJEmSJEmSJKlfMoFOkiRJkiRJkiRJkiRJkiRJkiRJktQvmUAnSZIkSZIkSZIkSZIkSZIkSZIkSeqXTKCTJEmSJEmSJEmSJEmSJEmSJEmSJPVLJtBJkiRJkiRJkiRJkiRJkiRJkiRJkvolE+gkSZIkSZIkSZIkSZIkSZIkSZIkSf2SCXSSJEmSJEmSJEmSJEmSJEmSJEmSpH7JBDpJkiRJkiRJkiRJkiRJkiRJkiRJUr9kAp0kSZIkSZIkSZIkSZIkSZIkSZIkqV8ygU6SJEmSJEmSJEmSJEmSJEmSJEmS1C+ZQCdJkiRJkiRJkiRJkiRJkiRJkiRJ6pdMoJMkSZIkSZIkSZIkSZIkSZIkSZIk9Usm0EmSJEmSJEmSJEmSJEmSJEmSJEmS+iUT6CRJkiRJkiRJkiRJkiRJkiRJkiRJ/ZIJdJIkSZIkSZIkSZIkSZIkSZIkSZKkfskEOkmSJEmSJEmSJEmSJEmSJEmSJElSv2QCnSRJkiRJkiRJkiRJkiRJkiRJkiSpXzKBTpIkSZIkSZIkSZIkSZIkSZIkSZLUL5lAJ0mSJEmSJEmSJEmSJEmSJEmSJEnql0ygkyRJkiRJkiRJkiRJkiRJkiRJkiT1SybQSZIkSZIkSZIkSZIkSZIkSZIkSZL6JRPoJEmSJEmSJEmSJEmSJEmSJEmSJEn9kgl0kiRJkiRJkiRJkiRJkiRJkiRJkqR+yQQ6SZIkSZIkSZIkSZIkSZIkSZIkSVK/ZAKdJEmSJEmSJEmSJEmSJEmSJEmSJKlfyuvtDmjgqqys5JlnnsksT5o0iYKCgl7skSRJkqS+pr6+no0bN2aWZ8+eTVFRUe91qJsZR0mSJEk6UMZRxlGSJEmSOsY4yjhKkiRJUsccjHGUCXTqNc888wyXXXZZb3dDkiRJUj/y0EMPcemll/Z2N7qNcZQkSZKkrmYcJUmSJEkdYxwlSZIkSR1zMMRROb16dEmSJEmSJEmSJEmSJEmSJEmSJEmSuokJdJIkSZIkSZIkSZIkSZIkSZIkSZKkfimvtzuggWvSpElZyw899BBTp07tpd5IkiRJ6otWrVrFZZddllluHmf0N8ZRkiRJkg6UcZRxlCRJkqSOMY4yjpIkSZLUMQdjHGUCnXpNQUFB1vLUqVM5/vjje6k3kiRJkvqD5nFGf2McJUmSJKmrGUdJkiRJUscYR0mSJElSxxwMcVROb3dAkiRJkiRJkiRJkiRJkiRJkiRJkqTuYAKdJEmSJEmSJEmSJEmSJEmSJEmSJKlfMoFOkiRJkiRJkiRJkiRJkiRJkiRJktQv5fV2B6R+Iw6sAUqBBiAfmAhMwd80SZIkSTpQyThUr4HaUkg2QE4+DJ4Iw6ZAjkGXJEmSpP4vTpw1rKGUUhpoIJ98JjKRKUwhz5tRkiRJkgYwh+5JkiRJ2h9jA6mJVatWATB16tT2N4qApcASQvTd1HJgPjATmAHEDriLGqA6dW1KPcBrUwcrr00drLw21R91+3UdRVC5FCqWhMS5pqqWw/b5UDwTimZAzKDrYOW/f2oPrxO1l9eK2sPrRO3hdaLe0tFrLyJiKUtZwhIamt2MWs5y5jOfmcxkBjOIeTNK7eC/fzoYeB2qt3kN6mDgdSi1X1u/Lw7dk/o3/6+UBiZ/9yV1FxPopCb+9re/AR34DzcCngZWppZrgW3sncZmXGr9QqASmI2RuDqlw9em1EO8NnWw8trUwcprU/1Rt17XUQTlT0NVKuhK1ELdNkg0QG4+FKaCrh0LoaESxs02ie4g5b9/ag+vE7WX14raw+tE7eF1ot7SkWsvIuJpnmZl6mZULbVsY1umAt241M2ohSykkkpmM9skOu2X//7pYOB1qN7mNaiDgdeh1H6t/b44dE/q//y/UhqY/N2X1F1MoJMOxFJCBJ4EVgFlhMg8bT0wHpgKrACKCFPaSJIkSZL2r3JpSJ6LklC1CuqaBV171kPheBg+FapWQH5RqEYnSZIkSf3EUpaykpUkSbKKVZRRRtQkLlrPesYznqlMZQUrKKKImd6MkiRJkjQAOHRPkiRJUkeYQCd1VpxQ+x1CBL419bwYGA5UARVN1pcQovbp+Ju3P3FgDVDK3imBJgJT8L2TJEmSBopkHCqWhOdVq6AuFVzlF0PecIhXQUPF3vUjSqBiKYycDjkGDuqHknGoXgO1pZBsgJx8GDwRhk3xmpckSeqn4sRZkroZtYpVbE3ddCqmmOEMp4oqKqjIrC+hhKUsZTrTyfOGSq+IE2cNayilNFMlcCITmcIUfyaSJElSFzqYhu451E2SJEnqG/z7XIK9UewewjQ0z7D/KHYNIeKtJUxfA3AcMKbJNtuBN1OvT27SrqQL+96fRIRPKpYQ3tumlgPzCdMAzQBiPdkxSZIkST2uek1IEkrUhspzURIGTwByIFEDOQVQOA5qt4bXh07e226EQZf6kSgK1RgrloTfiaaqlsP2+aHyYtEMiBksS5Ik9SdrWEMDDdRSSxllJEkygQnkkEMNNRRQwDjGsZWtlFHG5NTNqDWsocSbUT0qImIpS1nCEhqa3eRaznLmM5+ZzGQGM4h5k0uSJElqt7aG9cXp/aF7DnWTJEmS+hYT6DSwNY9i05HscvYfxZamHrel9lNMdgROarmYMJ1NOSESL8UEutZEwNPAytRyLeG9TU/LMy61fiFQCczGTxYkSZKk/qw2FXTVlkP9jpA4FMtpuV1deajEVVsGww4P7UygU38RRVD+NFSlguVELdRtg0QD5OaHJFKAHQuhoRLGzTaJTpIkqR8pTd2MKqecHeyggQZyaBkXlVNOPvmUUcbhHE4ppSbQ9aCIiKd5mpWpm1y11LKNbZkKdONSN7kWspBKKpnNbJPoJEmSpP3Y37C+NcAgIEnvDN1zqJskSZLU95hAp4GrtSi2MbV+A/uPYhuaPQ5v4zjDCVF48+2VbSnhZ5EEVhGm/omavL4eGA9MBVYARYTkRkmSJEn9U7IhJA9VrYaGHZA/CpKN0FgFUQJiuTBoBOQMCq9XrQ5V6JpX6JL6ssqlIXkuSkLVqlBtsWmwvGc9FI6H4VOhagXkF4VqdJIkSeoXGmggImI1q9nBDkYxikYaqaKKBAlyyWUEIxjEIHawg9WsZjKTW1RAU/daylJWspIkSVaxijLKiJr83b6e9YxnPFOZygpWUEQRM73JJUmSJLWpPcP66oBNhEp0ufT80D2HukmSJEl9jwl0Grhai2InpV7bwP6j2Pxmj1VtHKeq2Xb5bWw3kMUJ0wVB+FlsTT0vJnyKUUX4JCO9voTw85uO/4pJkiRJ/VVOPtRsgvjucMexdis0VJB1+7FhJyTqw7bx3WH7Ecf2Vo+lrpWMQ8WS8LxqFdSlguL8YsgbDvGq8DuRXj+iBCqWwsjpkGOwLEmS1B/kk88mNrGb3QBsZSsVVGQlZ+1kJ/XUk08+u9nNJjZxLMZFPSVOnCWpm1yrWMXW1M2sYooZznCqqKKCisz6EkpYylKmM508b3JJkiRJrWrPsL4GwrCx3an1o9rYV3cM3XOomyRJktQ3+fe4BqbmUewWoBo4jFBlria1TSK1TWtR7ERCPfixhKi8AthOdi347an1MWA0IZofAjxBiMYnAlPwN3EN4VONWsJ7BHAcLd/LN1OvT27SrqSH+ihJkiQpWzIO1WsgvgeIoOwZGDwRhk3pmuSdgrFQsxEGDYc96yBRC4wMyUO5hZCoC8lDjbsgdzAMOzIk0BWMPfBjp8+ttjRUtMvJ79pzk9qjek24/hK1qcpzwMjjoKBJsFy/HXa9GV4fOnlvuxEGy5IkSX1RnDhrWEMppTTQwBa28DqvM5ShrGMdtdQykpEUU0whhdRRRwUV7GIXgxnMkRzJJjYxltbjoub7zyefiUxkClNM5uqkNayhgQZqqaUsdZPrOI5jTJObXNvZzpu8SRllTE7d5FrDGkq8ySVJkiS10J5hfQ3AHkKi2lDCsLIcQmW68U321XTo3rjUuold0EeHukmSJEl9k3dCNDClo9gaYBmwExgPczfODa8PIUTea4Fd7J3CpmkUOwWYn3o+nlAT/u/srQufIPyGjQUKCAl4MUKkXJNqtzy1j5nAjNTrA1Fp6nEboZhEMdmfKJBaLiZ8qlFO+GShlAHzqcLcuXN7uwtSq7w2dbDy2tTBymtT/UIUQeXSUBkr2cDc94wM66uWh+/t86F4JhTNgFgXBjlRFKrNNVSGJLZkPCxH0X6bdugYlUthx8tQuyUk50VxiOXBoJEw+BAYfUrXn9sA4L9/nVCbCpbrUsFyfnF28hyE5fziVCW68pBEV1vaZxPovE7UXl4rag+vE7WH14l6S/NrLyJiKUtZwhIaaMis38IWyigjTpw66kiSpJ56KqkkjzzixKmnPlORLkmSXexiEYvYzOZMgtyRHMkbvNFi/wDLWc585jOTmcxgBrEBe7Oqc0pTN7m2sY2IiGKKs5LnAMYwhmKKqaCCcsqZzGRKKe3VBDr//dPBwOtQvc1rUAcDr0OppTaG9bEx9ftST0iq2w7UAUWp7Vel1h0BHEkY+leR2ud4oJAwhG9KK8eMp45bmtrX/ubFd6ib1HP8v1IamPzdl9RdTKDTwFRKiF5fIkTOQwgR8k5C4lsuMIIQOW8H5hGi73tT2w4BTgHOAt4CKoE3CBFvIrXvGGFqm7XAocDhqcfN7I2001PbLEztYzb7TqLraLR+sGp+Hq8SPvWoTb0+vI12wwnvcfrebkMb20mSJEnqHlEE5U9D1UpINMKu10K1q0RdqAo37CgYOR12LAyJbuNmdz7RrH4bDJkEO14CciARh8ZyiBohSkIsB2KDIGcw5OVAwy4YfXRo19lzK3sqfFevg5r1obpXshFyBoXKdkMmh2p49RUw/jyT6NS9kqmgN5F6zGsjWM4bHhLo0tslDZYlSZL6koiIp3malaykgQbe4A1Ws5p66tnDHiIiaqmljjoaaaSOOuLESZIkhxwGMYhccqmnnmUsYzSjeZRHmchE8shjBCOooopCCjmMw6ijjm1sy1SgG5e6WbWQhVRSyWxmdzqJri9UuOvqPqYTEtOPw9u4yTWc4VRQ0WJ7SZIkSdmaD+sbRKjkto0wfC+ZWpdPGDpWThjKlwQaCYlz2wlJczmpx6mpfc8ge4hdRJgTfwkth6EtB54jJMKNTO07PVQvPcQt3cahbr2vvwyrlCRJUvfyb0MNTA2EinHpcZU1wHqgaeGCnYTIagPwGiGpLh19xwhJb3cRkuzihCltalPfiSbb5xGi92paJsetZ2+UvoIwJc7MVvq7v2i9r1Sxa+s8SoGthGp/ScL70Jqq1GN+s0dJkiRJPaNyKexaDjtfgh0vQnwPWYFU1SrY9jyMPh2SScgvCtXoOiPZAIMPhcZnoXZzqDZHBFGTWUtijZCoheQeGDQ6bN/Z5KGKJbD5z7BjEVSthkR1qHKXPlbNRti9AoYfFc47vwhGndS5Y0ntkZMKenNTj/Gq1rdLr09vl2OwLEmS1JcsZSnLWc5LvMQLvEAllSRIEBHRSGOm6lySJBERueRmXo8RYxCDiFJfwxlOAQXUUEMllZltq6iiiCKWs5z8ZjdX1rOe8YxnKlNZwQqKKGJmqzer2tZWBT04eCrcdVcf0+9n+rGK1v9uT69vvr0kSZKkbOlhfaXASsJwsSThbk36jlR96jFGGJqXJCTRDU2t30WoRHciYWgfhMpvM5ocJwKeTh0DwpC/banjDyIkzJUThgWOT7WPEYbqrUltMyjVtrUoIEEYdliW6l+6j3EctNuV+suwSkmSJPUM/xbXwJQDbCQkue1mb9LWEELUXAfsIVSXq0tt30iIlGOp7wJCtN2QWm5sdoz09jmp/SYIv3GTU23rCRFxIrV9CSGam07LqW6epvVovTNV7HrLvs5jD+G9GEJIKmwgTAEztkn77YQpeWLsPeeJ3d1pSZIkSRnJOOxYDGVPwq7XQ9W5ZByi+N4q3LFBEK+G7fMgvhtyC0JFupxOfPyQkw97NsCetRCvDcfJ3CJNieJATqhIt2dt2H7ktM6d26aHYevTqeNVk30rlpCYF68NCXvxGhg0EopO6Ny5Se0xeCJULYfCsbBnfagyV78dCsbs3aZ+e1hPDArH7W0nSZKkPiFOnMUs5kme5GVeZje7aaCBROrmUTpRLl1xrrkYsUwyWA45RERsYhNDGMIe9gBQQw2DGUwFFUREjGc8oxlNAQXUU0+ceOZ4JZSwlKVMZ3q7q7E1raAHUEttt1W466zu7ONEJrKc5YxlLOtZTwUVbGc7Y9j7d/t2tlNBBTFimWNN9CaXJEmS1KocYC3wMmFYX7SPbSPC0Ls4YSha0yS1N4HDCEP1TqZlAtVSwjC2JLCKkOiWPlYZISluBGFI4TLC0LVJhGFrQwnJWUWp7StSr49J7WNTqs3G1DFHE+aWXwvciwldXaW/DKuUJElSz3GUlwameOq7kJDIFhF+GwaxdxqZjeyNrBOt7KN5whyECKt51J4kJIjVEyL8owmJe0MIVenWEhLxJqW2X0NIpkvbV7QO7a9i19v2dR5JwpQ7w1LfuwnTv0wh1LKvInzSAOFcCwlJiFN6qO+SJEmSoHoN7FiwN6EtXgXJRvYGQqnHnEEQRWH77fNh7FkwomTf+25NwVgofRwaKyBqoPVbpKlbo1EybLf1cTjy2o4fa/cK2Ppkk+S51oLA1PHj1eHctj4Jk6+CouM6fjypPYZNCb9DAIXjoW4r7HoT8oshb3j4HWyo2Pt6biHkFIR2kiRJ6hPWsIb5zGcpS9nJTmqpJWoS+6ST59rSdNt0pboKKihM1ViooYYqqtjDnkwCXowYh3EYMWIMYQjVVLOWtexiF5NSN6vWsIYS2hfHLWUpK1lJkiSrWEUZZVn96ooKdweqO/s4hSnMJ/zdPp7xbGUrb/ImxRQznOFUUUVF6ibXeMZTSCEFFDDFm1ySJElSq+LAc4ThYvtKnktLEobxDU61rSYMK9sN7GDvkLzmx1iSer6KkNwGUAzUpF5PJ8JtIgxfq0wdZz1hTvjc1LqcVB/eJAzbqwC2pPaTnm+/gpDQNYwwNNGErq7RX4ZVSpIkqeeYQKeBaRDh6q9LLdcSIqYYIbpN12BvOZnnvrUVtaenu9lNiNpGp44zgpAMth14CTibUH8+fU9yX9F608Sy9PqjgL8CO1PHyydUaZtC7/62t+c8KgmfWowARhLOayd7E+di7I1oIUzD479gkiRJUs+pXg+7lkG8DhoqQxJdpiJcpgQdUA/JBOQNg91vhXadSaBr3APV6yCZnvVkX6KwXfW60K6jtr8Iu5dDIn07c18SYbuqt0K7rkigS8ZDUl5taah0l5MfqogNm2KFu4EsJw+KZ8KOhTA8FQzXlYWkuYYmwXLh+L2vF8/wmpEkSepD1rOel3gpkzzXVqW59oqIaKSRAgoYwhAaaCCPPKqoIkkyk9D1Oq+TRx6DGMQoRlFAAdvZzku8xNmcTSml7UqgixNnSeoG0CpWsTV1A6h58lh6fXsq3MWJs4Y1lFKaqRA3kYlMYUq7q+J1dx+byiOPmcxkIQuZmrqJVUYZFakvCEmL6QQ9gBnM6NS5SJIkSQPBHkICWkcio0STxzh7K5BVptY1T1hbk9qmlpB0BXAcYSjbi8ChhKGEtantxxCqzuUQ7liVp56Ten0cofLZGsLwNwjD4WBv8t0YYDEmdHWVjg6rLCEk3E3HIYeSJEkDmX8LamBKEGq0v05IomskRE3p6WPSj10pmTrWWsJUNzmERL4CQiRdTpiypumEk21F62OabLMdeINQ9700ta8GQrQNoV78fHq39nt7zmMCoaZ6FXAEMIqQTDecvTXVC1PblhDORZIkSVLP2flSqDhXtwPiu9ln0BRvhLqdkDc0tDvkHR0/3sb7IaqHqO1qC1mieEii23g/jD2tY8fa9myo5hW183ZslITGqtBu6nUdO1bWfiKoXAo7X4aaLdC4K5xHLA8GjYQhh8CoU6BoBsScg3RAKpoRElarVoRE1KGToa4cEg2Qmw+F40LlOYDhJWF7SZIk9Rkv8iLb2U4ddTTQ0GX73clOYsSop544cRppJEmS3ewmhxyqqaaQQmLE2MQmBjGIoQyljDI2sand1dHWsIYGGqillrLUDaDjOI4xTW4AbWc7b/ImZZQxmcmZds0T9CIilrKUJSxp8V4sZznzmc9MZjKDGcQ6cLOrK/vYlhnMoJJKVrCCEkqYzGTKKc8kAI5jXKYqYAklzPAmlyRJktSme9j/VIetqSYMxYsTEqdihCF1gwhJVW8SEq3OBTam2mwj3O0qJgxjK0u1b0x95xMq2w0jDGWbkHp8kzAUsDh1rGJCpbt/EJLidrE34W4IcEhqm0ral9AVJwy3K2VvMuDBMIf+waS9wyrfTL0+uUm7Tkz7KUmSpH7Cv6c1MOWnHqsJkWl9ajlq9tjVkoSoLZcQ6dYSkuoGE6rSbWLv9DQQomBoGa03NZpQ83074dODHEId+yJCct7hhGlxerP2e3vOYyxwDCFK3UOoQjeUvRXnIJzPDHovEVCSJEkayGq3QEMVNJTTropwDWXQUBTadcaOl0NltnYHaFHYfsfLHT9W5Vup5Ln23pJNQJQb2nVWFEHZU+G7ZiMkakNSXpSAWC4MGgHVq0NVvfoKGH+eSXQDUSwG42ZDfhFULAnrhk7O3ianIFSeM9FSkiSpz1nGMmqpZQ+dqKTdhoiIXewijzzqqaeBBpIkSZAgSZJBDMpUpkuSJEaM3eymiiqGMpSNbCQn62ZV20pTN4C2sY2IiGKKsxLTAMYwhmKKqaCCcsqZzOQWFe4iIp7maVayEoBaatnGtqwENICFLGQHOziMw9jK1nZVqOuqPu5LjBizmU0RRZlqd5PJ/ru9gAJmpL46kgAoSZIkDTRL6NzQvUbCXZ70sLzdhASr1wnD6MYB81LbrSHM454eMjg89bgr9ViV6sMwwgDb9N2jOGHIWzpxbkRq3+mIbmRq/7sIQ/gmAdMI8/zH2H9CV0RIqluS6ntTB8Mc+geT9gxHbPqzKie856WYQCdJkjSQmUCngWksIdLcQYg2O1Lz/UCljzWIEMlWsbcCXh6hVnuSkOS3hhCBpyPi4bS0iZCIt4cQ6cVSbdMR/UpCpH4KIVosoudrvzc0e2ztPCB8qpCermckYQqeI3EaHUmSJOlgEBsEtetpfwCVDNvHBnXueLWl7a8+lxbFQ7uOilfS8duxUapdJ1UsgS2PQO1WqN8GDTshURcS+WI5kDsY8otD1b9ETUigGnVS54+nvisWg+KZMHI6VK8J13iyAXLyYfBEGDYFcgyWJUmS+qKd7GQ3u7t8v3Hi1FJLI4000EAiNdwzIiJOnIiIWmqBkPwVJ06SJDvZSTnlxGlfLJauFJd+HN7GDaDhDKeCihbbpy1lKStZSZIkq1hFGWVETWK09azPVHGbz3wmpb7S9lWhrqv6uD8xYsxkJtOZzhrWUEppuxL8JEmSJGXbtf9N2pRMfecQhqkNJQyn20lIfisENhPuCK0lDLOLCMP2SG0DLadbzE09pv+iH05IymokzA0/mZActwvYQhgCNx44s0lb2HdCVwQ8DalpRcJwwG3srUA3LrW+N+fQP5i0dzhi+mfVfHtJkiQNTH5Kr4EpDrxGiH47U/P9QDQQInAI0XouIZluLWHqm6MIyWMAKwjRdR4hSt5FmIJmF+EcYql2pYRkwFhqX6Sep6P6CmARodpdAa3Xfu9O+c0eq9rYLr2+kPApwjGEaF+SJElS74viIZGrIxI1HU+CS0s20vHZTpKpdh2Uk5+qQNcBUTK064xkHDb/GerKoK4cajZBvDq8FssNVejYBY3VoVJdLBa2LzrBRKmBLCcPRpSEb0mSJPUL8dRXV4uIqKaaiIhks7iq6XKSJFHqK0aMaqpZznL+yB95hVcYzGCO5VhmM5tCClscJz914yf9uItdlFHGLnYRJ04eeYxkJLtSQ2Cbbw/hPUhXbVvFKrayFYBiihnOcKqoYic7WcpScshhHONYwxrixEmQaFGhrpJKZjM7k0TX/JhVbdykSq9vrY8dkUceJakvSZIkSR3XFQlO9anvGGGoXEQYIjiWkIB2WGpdI1Cdev4WYQje9tS63ak2owgJcbB3SF86qkhHDYMJQ91KCMMB09XnmibPpbWV0LWUkDyXBFYRhgg2nfpxfeoYUwlDCovo+Tn0DyYdHY7YfHtJkiQNTI660sD0IiES7fp7kvsXEaaISU9hk64Yl673XkpIgssnJJLFgRpgQ6r9BEJ9eAgR3luEyD2RapNM7auSvdPMpKPpzYSqbk1rv/eEiYQ68mMJ0XwFoc9N66ZvT62PsXfKnIk92EdJkiRJ+7bjpZ5tF3UiEa6z7fKL6FSyXn5Rx48FsHtFqCSWbITq1VC/KyTJxXL2xopREhprIFkPBaOgem1oV3Rc546Z1fV4/61k1p/PTZIkSf3OOtZ1274T+5hBMp0411QDDexgB9VU8wzPsJKV5JDDkzzJ/dzPu3gXl3M561iXqa5WlvoqpphXeIXVrGY84xmWuZFFpqLcKEZxGqcBMLHJDaA1rKGBBmqppYwyAI7jOMY0uYn0Kq+yilVASLiroYZqqjPV5NaznvGMZypTWcEKiihiZmoo6UQmspzljGUs61lPBRVsZ3vW/reznQoqiBHLJONN9CaVJEmS1Cvqu3BfVanvfEIy267UYy1haN3o1ON24HVCQl0tYbjeHkIi3FD2zo8/hraHuJWmnncmoSsOqWlFQvLc1tTzYkLCXVXqmOn1JYSEu56eQ/9g4nBESZIkdcZA/ftZA91fCRFvT1efaypq8lhPiMZzCdH4NkIEXph6LUmY1iYH2JRql8feyC9OmI4mXXs+N/V6Y2pdbWo/o1LtN9KzCXRTgPmp5+MJ0fybtIzy068PSi1vIkS4+YTodQr+qyVJkiT1lqrVPduuoZMJdJ1pN2wqbHu2g42i0K4zKhaHRK9dK6FuW3iek5OqgpeaaSWWA8kk1DWE7YqOC+0OJIEuiqByKVQsCcllTVUth+3zoXgmFM0ICX19SX8+N0mSJPVblVT22rGbJ9A1rVa3iU1UUEEOORRRRDnlrGAFD/EQs5lNDjlASNJLJ8jtYhcJEmxK3cjKIy9TXS+XXBppZAMbOIETmMKUzHFLU8NMt7GNiIhiirOS2xIkqKaaIQxhK1vZwx6GMpRccpnMZKqoooKKTOW6EkpYylKmM5088pjCFOanblKNZzxb2cqbvJlV4a4idZNqPOMppJACCrL62JPixFnDmkySYj75TGQiU5hCnjfJJEmSNAB0x3C+BqCcMDxvN2FI3WDCnPa7CMPqGlLra1JtkqnvstTjKYThbk2HuBUSKtylo4fOJnStYe8Qv7LU+uNaaftm6vXJqXU9PYf+waSjwxGb/6wkSZI0MPkpuwam1fRu8lxr6oGdhJrv+UAdIXKvIETnYwiJdZWEvqcr2aXHBSYJiXOD2VuJLl3Jrp4QFZYRkujS1ex6Sh6hZvxCQh15Un2pYG+kmv5koIBQIXASpCYTDZYTot6ZwAz2VteTJEmS1DMaK3u2XaJi/9t0VbuCMfvfpivb1ZZB3Q6oWQfJOogSkIha2TAWkutq1kHh+NCus6IIyp+GqpVhOVEbkvcSDZCbD4WpW7U7FkJDJYyb3XcSzfrzuUmSJKlf28Wu3u5CC400EidOPfXEiLGTnQxiEMMZzg52kE8+k5iUSe6KEaOCCiIiKqmkhhoSJIiIiBEjjzzGMY4xjKGMMt7G27ISwRpSN7rSj+mqcmnb2U6cOHnkUU89gxnMRCYymckcwRGZbd7kTcooY3JqKOka1lBCCXnkMZOZLGQhU1M3qcoooyL1BRAjlqlgBzCDGT2erBYRsZSlLGFJ5r1IW85y5jOfmcxkBjOIeZNMkiRJ6pQGQqLVVsLQsxhhPvt8YCRhiB6EoXl5qdcaCMPbSgkV62KEhKz0ELgZqcc4IaGtLtWmDniDMFQvndC1A6gmDO9bk3o8m73V67YRhgQWk508R2q5ONWXckISXSkDN4GuvcMRm/+sHDAtSZI0sPn3oAamGkhNenlwqSNEy6sIyW/DCJF5HaFqXCNhOpR0Xfn0/bM4IXrOISTV5TbZZyy1XUSYMqeCMJVOT5tBSP5bQYjcJxOi+QbC+YwlJPatJ0SuY1LL6dfT0+4sTO1nNibRSZIkST2qYf+bdGm7+p5rV/ZM5w7V2XYkoHolNFax7+A0gigetqteBZzfyeMRqrNVrQxV7qpWQV0ZNK04sWd9SNIbPhWqVkB+UajY1hf053OTJElSv9ZIJytvd7OIKKtvDTTQSCN11PEP/sHZnE0uuURErGUtCRLsZCe72U1+6iuXXBIkMgl2a1nLGZxBLbWZhDiAfPKzHquoyupLOskwnaQ3mMEMY1hWgtsYxlBMMRVUUE45k5lMKaWUpIaSzmAGlVSyghWUUMJkJlNOeSYJcBzjKKQQCBXsZmSGwPaMiIineZqVhElBaqllG9uy+gewkIVUUslsZptEJ0mSJB2gKPWdJNypqSEMvRucWtdImAe+iL0JcCcBEyAVPcDRqX3cS7gbNgjYRBiUW8veufKLCEP2KgnDAYcTKsodCTwPrEztM32HK3takb2Gp/aTvvPW2Ttw/cX+hiOOY+/PqgR6ONKTJEnSwcgEOg1MMbLG0h1UygiReLqPccJvarqiXAEwJLVcSEiuI7WcIETfidS26Ug/fY9zECFqHNr9p9FCjJD0VgQsSa2b3OT1jYQKfEcQzuElsn9G6cS6qYSot4gwjYwkSZIkHajdr/dsu2Qj1G6l/TO7xKG2NLTr1PHiULEkPK9aBXVbw/P8YsgbDvEqaKjYu35ECVQshZHTIecg/+io+bnVlkK8GmK5kJMPyYZQ4S9Khm360rlJkiRJB4mIiHrqiVJf1VRzAiewkY0kSFCV+ooRI4cchjGMiIgccogRo4Ya9rCHBhqooYYneZJCCmmggbLU12hGs571bGMbC1hADTU00MBOdtJII9VUEyNGMcUAjGRkVh+HM5wKKlpUtINQYW42symiiCWpm1STs25SQQEFzEh99XRy2lKWspKVJEmyilWUUUbU5CbZetZnKuStYAVFFDHTm2SSJElSl0sCewhD7GKEIWzx1PoqYDFwDDAdOJWQzLYo1baWvcl4uwmV50YR5rvfQhgOOJkwHK4CGJHavi61bi17hwtmTyuyV3p9frPHgWp/wxEhDLWckfp2GhJJkiQ5UkgDU+7+N+k1cVpGwTmE39Z01bkEIYKuTz3mpNY1sndqnPR3PLU+HdmTet4bYoSkt+mEOvSlhPPJISTPvQ1YTUgihFB3Pj2FTwWQGstJCbA0tR//FZMkSZJ0oBJ7erZd3TZIdrBtck9o1xnVa0IiWaI2VGdLNITKdjWbw/qc/JBMF8sLrw+dvLfdiJLOHbOnpM8tXgu734L6nVA4DvKGhNdz8qCxGqrXQuMuGDIpxJF94dwkSZKkg0wDDeSQwypWMYhBVFBBHXXsZjcREfnkEydOBRXkkksOOZmKcYUUsoQlbGADJakvgAQJVrOaJEnWsY4tbCFJknzyGcQgdrGLWmpJkGAoQ2mkkUEMYgxjsvqWrlzXvKJdWowYM5nJdKazhjWUUpqp8DaRiUxhSlZVu54SJ55J6lvFKramboYVU8xwhlNFFRVUZNaXUMJSljKd6b3SX0mSJGkgaGz2vJaQiFUFbAYWAr9KvV5AGIpXnHpMD0vcQKg2l0eobjeYMDyuOrVtHmE++Q3snSe/MfV6jFChrmnUs50wfC4GqRrVMLELzrWva2s4Yj7h/ZmCwwslSZK0l38bamBqYzqRVUetAmDq6qk92Jl2SLI3cS5OSDhLJ8elk+nSE1Em2BtRx1LbxlLrdxJqv/d2AmGcMG3OW4RPGKoI0X8ue5PnjqPlpwBvpl5PTxWzBhgg4x1XrUpdm1MPsmtTA57Xpg5WXps6WHltqj9atecoAKYOXd3LPelDdnWycl1n29WWhsc9W6HyNajZCsmakEhHBMQgNx9yhsCQCVB4GIw4MrTroiSzbvv3r7YUogh2LIL6bZA7BHILQiJdlAiV6AaNSK3bFrYbd06XnluPiddB+TMhUTBRC7mDYcSxMG425BX2du+6hP9Pqr28VtQeXidqD68T9Zb0tUcfvPTqqKOcckYwgl3sYgc7qKGGBAlyyc1UTktXo8sjj0LC36vFFBMnToIEr/Iq9dRTQAHDGc5qVrOLXSRTX9VUkySZ2V8++dRRx1rWMp3p5Da52bWd7VRQQYwYRRTxBm+wnvUsYAGDGcyxHMtsZlNIIXnkZSXw9bY1rKGBBmqppSx1k+w4jstKENzOdt7kTcooy1TOW8OaAzoH//3TwcDrUL3Na1AHA69Dqf2OSv2+rO6F35eIUCmujr1JbLlAISH5LZH6HgaMTb2e/tR+O2H++B2ExLexhMp0TeeUrycM6xvN3jnz36Tl3PMA41P7LiAkh/VFcbo+2S2PMIzw4Ij01JX8v1IamPzdl9RdTKDTwFTd+uq/vetvAEy94yD9DzdBmJImnQAYtbJNlNquqXQFuzjh3OuAZ2g9Au2OCDUtCTwIPJHqQ1o5oV59PeGThBnQbOLQsFxM+DSgnJBEV8qAiXr/9rfUtekfgzrIeG3qYOW1qYOV16b6o79tfxcAU4fe0cs96UMql/Vsu2QDJBKw+RGoXg5Runx5E/F6oBoaKyARwdBPhHYHKpX09bc/LwQipl44smuTvpINULMpJMdFhGpztaUhwSxKQiwnJJrlDQ/P67eF7Yf1odvKySRsfBBKn4BkXfZrOxfBhgdh4jtg0lWQk9M7fewi/j+p9vJaUXt4nag9vE7UW9LXXl9MoAOooIJXeZUkSWKpm1b11ANkltPPY8TYxS5ixKinns1sJoccCikkIsqsr6eeIQyhgQbixLOS5wAGM5gCCmiggaUsJUYsq0JbREQllTzEQyRJciRHZvqyiEU8yIO8g3dwFVeRw8Hzd3MpYcKTbWwjIqKY4hbV9cYwhmKKqaCCcsqZzGRKKT2gBDr//dPBwOtQvc1rUAcDr0Op/d6V+n254yD4fYnYOwwP9s5x30AY2jeKkDD3JmG43cTU+ggoIgx920QYljeEMIwuN7XPUYTkuEbCMLmKJscYz94wcgZ9b/BvBCwFlhDeq6aWA/MJ1eRm0GZ9BA1A/l8pDUz+7kvqLn3tb2ipa7SRQNdntJY4ty9JQlQdB9YBr6fWpS0H5hEi8ipCYtqu1PZ5wEjgEOAU4HhC9biOJtglgduBxanlGkI1uUZgD3sj/82EaXJOgBb3L4cTPhVIR9BdMJZTkiRJknpcQ8X+t+nKdjn5sOUxqF4GUXwfG0YQNUD1m2H7oi927niwN+lry1+hYQfEjw373/I8lP0D1t8Ph7zrwJO+YrlQsxHIgdrN0FgFOYPC+pzcUGUvvick1Q0aDvmjQgJdrLdLs7dTMgnLb4eKVDAdr4G6Mkg2hvMsnBBi8c1/DudY8pk+n0QnSZKkg19ERB11bb7W1vMKKsgllzzyqKU281qcODnksJOdJFM3sPLII0aMKPW1m90MZzgTmchWtmaqzqX3vZnNmX0OZSjrWEcjjQxiEBOYAMCf+TOllPIZPtNmEl2cOGtYQymlNNBAPvlMZCJTmEJeN9xab0jd7Eo/Dmd4q9sNZzgVVLTYXpIkSVLvS893n2DvULhc9g7PW0P4KH8HYdjdSEKiXCy1TVlq+5Gp7SYT5pTfTJiPvgA4HDiUMJyuhJBk1pdEwNPAytRyLbCNvcMPx6XWLwQqgdmYRCdJkqSuZwKdBqbmFdoGgoiQtDaEEInuYG+EPZkQua8kRPG5hLrwidTzMYSo/QXCNDjDgd20nmDX1hQwDxKS55LAitT+0/dN61LHHZTqz0bgZeC0ZvuoSj3mN3uUJEmSpL4k6uRAx862yx0ektb2mTzX9DjxsP0J/9654yWTsPw22PoPqCmHmrUQnxReK38WcofBkCNDIljNFjjms51P+ko2hu/aTdBQmVpZACQhEQ9V58iBKBFer90MBaNCm75g44MheS5KQtUKqG8aTBOS5gpGwfAS2PlS2P7wD/RadyVJkqT9SZDIJMmlRUQkWrl5l65QFyNGggR72MMudjGRiQAcwiHkk89GNlJLbaYK3WY2kyCRab+BDYxnPCWU8BIv8SAP8gE+0OJYS1nKy7zMFrawi13EiZNHHiMZySEcwimcwgxmZFXZO1D5qZtd6ceqzM2wbOn1zbeXJEmSdPBJkj23fYKQKFZAGK63BdhKGCqX/sQ/ThjaNyz1+lLCnPaTU9usS7V5B3AufS+5bClhaGISWEVIGmxaQ2A9eyvsrSAMUZzZoz2UJEnSQGACnQam5P436ZfiwHbCVC1DCO9DDiGijgj/IuwhROyJJq8XEKrCDSIkrY1K7atpgt1oQqReAZxHdpReBzyRer6CkLwHIRFvGCGZbnvquA2ptksIyXjp+3/bU/uOsXfKmYmdfickSZIkqRd1dlaXTrbb+hQkazrWJlkT2o05uePH2/AAbPwLVC6FeCUh4EzdBk3Wh+9dO2FPETTWwOCJcMTVHT8OQCwvVJRr2BGS5RINkKxsZcMcyM2Hhu2pCnR94COxeB2UpoLpqhVQnwqm84ZD3jCIV0O8KrV+JYw4Brb+HQ69FPIKe63bkiRJar9ccltNHOvvoqxhkq2L0/oEINvZTh55jGAE4xlPAw28zusMYhDb2MZudgNQQAGFFFJHHbXUsp711FLLTGbye35PMcXEiJFPPhOYwAY28CzPsp71bGc7O9hBggS55DKGMYxmNOtYRwUVnMd5XZZEN5GJLGc5YxnLetZTQQXb2c4YxmSdcwUVxIgxLnWTbKI3ySRJkqQ+pz71nRaDTG3sGGH++RpgAmG43hagGjgeOJJQgW4X8Cx9q0JbnDAUEELy3NbU82LC8MEqwrDA9PoSQsLddBzgLEmSpK7l35camPrIRPPdIk6oHpcgROBJQoJbnOzpb2LsjbKrU4+DUm02sTexLZZaHklIcttDmALmpCbHfCZ1jBpCshzA0exNhDuSECWXEX426US/vxEi4XSUDGGqmULCpwRTOn76kiRJkjTgrL8b2jFANVsU2k3/Yseaxetgza+hYhEkavZx3Cgk11UsgjXD4bDLOpf0laiDxl2QjELyHPFwyHTlOZKhelssmZoEJoLG3aHdgUrGoXpNqAKXbICc/JAMOGwK5HTBR27lz0CyDuI1qcpzwPCjoXDc3m3qyqFqZUiii9fubXfIuw78+JIkSep2gxlMdeYmjPYnmfoqp5xccmmggSqqqKaaGDF2spNcchnLWPLIIyJiMIOJE2c729nMZhppZDCD+Sk/ZRKTyCOPPexhFauopZYd7GAnO6mjLlPBrpBCRjGK7WxnD3soooiTsm6Edd4UpjCf+QCMZzxb2cqbvEkxxQxnOFVUUZG6STae8RRSSAEFTPEmmSRJktTnRWRPnRgjDJvbRJgbfzghYW596vUthKSzNwmJaOcShs8d7IOA1xDm1K8lDA8EOA6aTBsShgq+mXp9cpN2JT3UR0mSJA0MB/vfzuoFFRUVzJs3j82bN7Nz507GjRvHYYcdxjnnnMOQIUN6u3tdY+BN5pmtkZDolh7HmK4211TE3gS69HbpKXDS0Xpu6rXa1P7qCNHun4AT2PsvzFupx3Tt9WHAYKCcvVXsxgKVqe2SqWNsAUY0OWa6TjuE6nT+CyZJkiSpT0qXAe9Mu06o3tBz7bb+A3Ys2E/yXFoEiVrYMT+0O+w9HT/e7jchNgiiBERxiMUgtzD1FidTrxES0aJ42C6WF9pxUcePBxBFobpexZKQONdU1XLYPh+KZ0LRjNCfztqdCqbrUsF03jDIHRyS5qIExHLDcroaXd1WGHZkaGcCnSRJUp8wlKEm0HVCPfVsYxtJklRTTQMNNKZmz8wnnwoqiBMnSZIcchjEIBpTX6WUMoxhNNCQSbzbyEZ2sIM97KGe+hYV8mqoYXfqq556RjKSEziBvC64UZVHHjOZyUIWMjV1E6yMMipSXwAxYoxnfOb1GczokmNLkiRJOrikI5E4Yb77JHAIUJpaFxHmuB8HzCMMAZwPzCQMpTtYK9KVph63Ec6hmOzkOVLLxYQ59ssJSXSlmEAnSZKkruUn68pYvnw5//Iv/8Jjjz1GQ0NDi9eHDRvGlVdeyc0338yECRN6oYddaKAn0EWERLf2bNfW+iQh8S29XE+YCiYfWESoHjc0dZw3CVXk0nXoc9lbc725OCHBbnTq8ZDUPscRKs9BiIxntKP/kiRJknRQ6uEEumRtz7Ur/Ts0VtL+80uG7Uv/3rkEuobK0M8oAcRCclsmqa3JzDBR6nmUCNs3VHb8WOn9lD8dqr4lE1CzGfash2Q95BTAsMNh8KGwY2E4xrjZnU+iS6Te/0RD2H88B3YvD+ujZKiylzsYko3h9URDdrsD1d0V9iRJkkQRRZRl5t9XR+xhDw00kCCRlfDWQAN11JFDTmZdREScOACDGEQVVSRIECNGAw2UU04ddcSJZ6rONZckyXa2s4IVDGEIK1jBcRzX4X7HibOGNZRSSgMN5JPPBCZwFEexmtWUUMJkJlNOeeb1cYyjMHWTrIQSZniTTJIkSerXcgh3N2qAjYRBvvmE+epLCUMfC4DNhESzhYR562fTPUl0cUI1uFLCUMB8YCLtr37X0OxxeBvbDSck0DXfXpIkSeoqjnYRAHfffTef/OQnqa1te5BVdXU1d911F48++ii//e1vOf/883uwh12sM+MUlS1JeB/T34nU43ZCNboHgDNT21YSEua2EiL7GCHarWJvBbqmkXGc8EnAOPZWnIMQ+c/g4J4yR5IkSZL2q7MBTSfbRZ0MgjvTruxvtCxxvj/JVLtOyC2EeB1ZwWmUPn7TRMWITBn1eF1o1xmVS2H3CqjZGJLk6spCclkUhUS5Xa9C4XgY/bawLr8oVKPr1LkNTp1SLTRWQbIScnJDYlv6eDl5IZEvJxcG1aZOc3DnjpfWUxX2JEmSxHjGs5zlvd2NPiud8NZcI41ZSXBNt2mkkYiIBAlyyKGaavawhyj11Xz7pvtopJGd7GQZy1jEolYT6FpLkJvIRI7kSN7gDZawhIZmw0CXs5xBDGIkI6mhBoDJTM7apoACZqS+WkvwkyRJktQ/RITKcjnsneN+ECFZLiIM+K0ChgC7gNMJc9GvAIoI1egORNNkuXpgA2E44Ej2zrUPsJz2V7/Lb/ZY1cZ2Vc22y29jO0mSJKmzTKATjz/+ONdffz2JxN6ybDk5OUyePJnx48ezefNmNm3alHmtvLycyy67jIULF3LMMcf0RpcPXBtjAOfeMbdn+9GXpaPzJCFyThKS4dI5mG+lluuBHalvgDpCjfmm1etiwM7UPgoJ1ecGA6cCR9L6tDX7m9qmGrgfWEJI2htCiNg/QKhs1x51wDOpc6lN9elYwnQ9nRxr2Vlz53pt6uDktamDldemDlZem+qP5h5+R293oQ/q7KwunW3X0YS2A2hXV0Zr/dz3dRKl2nVCog5yC8Jjpr9Rs8e0ZLPtOygZh52vhCpw2xekkufqQgIbOWH/OXkh2a2xCsacEarSjZzeuYptI46F0r9C/c5UkmACkk3OKX3nnBgkc6GhAhp2hnad1bTCXpSAmk2wZwMk6sP7NvRwGNJFFfaaSlW7m3vF8SFpr+yZ7q1219PV9azm1+X8m0rt4XWi9vA6UW9JX3s/5+e93JO+rbVEt/29lkx9QahWV0ttVvLc/o5XRx3llPMIj3AIh7RIkHuZl9nCFnaxizhx8shjBCOooopCCpnIRDazmQ1soJ56CijgcA7nUA6lkUaO4AiSJFnOcmqpZTCDOZZjmc1sCilsM0FvClPII2+/r6ft69+/9u5DOlD+P6ze5jWog4HXodR+dwyg35d0dJKe3z5JSKrLY29yXT5hON4LhAS3s4ClhKFtG+h4tbgo1f5lYAthvvx1hKS2wanvYUAxYQ78cal27al+N5GQcDcWWJ/q91up84in+pVMrc9tsu+J++ivBg7/r5QGJn/3JXUXP+Ee4LZt28YHP/jBrOS5Cy+8kNtvv52SkpLMupdffpm5c+eycOFCAHbv3s373/9+lixZQqwvzjbedBJ6dU76/cshRMX1hEi2gZA49wYhEk9H8jvYG82nK9Y1FyMkrVUSpq35JC2T3dLR+hJa1mlfDjwHvAq8kupTUwuBu4GLgH8me1qcppLAg8ATqf40tSj12juAqwjnL0mSJEkd0oMJbT0t0TwQ6+Z2+UUhGS6Ks/9APwrbJepCu46qXgNVq2HnYqhZD4012fsmljqPPSGxbmch5A4J7UaUtLHTfRhzFrz0WYjvYm/Z99akguzGSqheG9p1VqbC3gbY8XLYZ9PjVq2EQUUw+pQDr7AHPV/trr8fT5Ik9Tlb2drbXRiQ4sSppZZtbMtUn2uvJElqqOElXuIQDslKkKukkgYaqKOOKqpIkCCXXBIk2MUu8sijnnpymt1cWslKiijiMA5jHvOYzGQmMYnBhOrS61nPb/gNQxhCDTU00pjVfjnLmce8fb4+n/nMZOY+K9hFRCxlaZtV8tqzD0mSJEldIz20LqLJfHqE+e7rCXPBT0ptt4Iw1G4kcDswqtm+9lctLgKeSn1vTO17M2E+/BzCEL3a1LFHAmMIc9kfRfuq301JHT89z/5aYHVqH4WE4Xk1qWMdTRiKWJBqJ0mSJHUlE+gGuFtuuYXKysrM8gUXXMDDDz/MoEGDsrY75ZRTeOKJJ5g1axbLli0D4NVXX+Whhx7i8ssv78kud408WiZfqWMiwhQwECL0dJQeJ0TmSUIVuFhqXSOtJ80132cS2EaIqm8GhrO38tu5hGlzVqb2tZkwLU09IWo+DJhHiOQLCVH7ztS2uYTKdgB/SG3zfVom0SUJnyQsTi3XAGWp/g8CJqTW/5mQIPgZ2k6i21+VPEmSJEnqET2YsBftL/Dr4nbDpkL99va3jxJQvyO066iaTVCxFPash8bqVNIeEDV5n2KpALExCXvWQd7w0K4zCXR71kLjrlRSXjuSAxP1oSrcnrWQf0LHj5eusFe1AipfC8dOv6+xvL3n21gBOxaFRMQDqbDXtNodQKIW6rZBogFy86EwNcdsV1W7683jJRNQszlcO8n68L4NOxwGd0M1P0mS1KdUU93bXRiw6qknkfpqS4xYq8l1CRLsYAfLWEYuucSJs5nNxIhRQAF11FFDDUmSxIjRSCO55GYS24ooYihDMxXjICTJbWBDphJdnDgJEuSTz1jGspzllFHGGMZQRx1rWEMddRRSyBSmUEABO9jBeMYziUlsZ3umety4VP2GhSykkkpmM7tFAlxExNM8zUrC38vpBMOO7COtv1ew6+/nJ0mSpINXelheHlD+/7P378FxZPl9J/rJRz2BAlAgQAB8gE0SzenhcIac6dF4R7LE0aymJdua1VqOCWm9G96wr64ltyNsR1xH2CFH2H84vBH2vQrfa4c79saGZUdI4ZV37LtajfWY6ZHULWnaEqd7huzpZvOJJkESb6BQKNQ7K/P+8TsnM6vwLoAgQJ5PRbFQmXke+ahinZO/7++rXvuQMLlriLDtk0io3QJRuNoxJPztA+DbwOeBE0QhbNeB3wZmVbll9XcLEc55SIhdGrlz5ACratu4+90lNg6JcxHh3q+rOnOqjQVVn6363E8kCPyfNqnLYDAYDAaDwWDYC+Y35gtMs9nk3/7bfxu+t22bf/Wv/tU68Zymr6+Pf/Ev/gVf/epXw2W/8iu/cjQFdEmMgG4/0EK5znuL+l5ilUhct9NYSB8RxE0iYjntxf5d4H9FRvTHEYHbCu0xhG8hvvFZxPHOo13ctgL0AOOqvv8X8A862v+6qttHRuNzqh6dAmcKGEHS57yrtv+5jjq2c8nbKqWPwWAwGAwGg8FgMOw7NjsflHWW2y2bWX0/pXLFj8BvsnOxny9OYMWPgF3OZ6xNivNcqypitaAlgjnLJrS69z0R1Fkt2a7yQMrx5d21BfD4GyLU27EbRiDbP/4G5LsQ0K1Nqn18DI0ieKtgp0VcRgCWI2IzvyxdqjzZm8Peyg0RlwU+lO5BbY62fS0/hPQI5CZE1LdXt7tn0d7qHag8guV3RSQXb2/trrQx+Pn9cfMzGAwGg8FwJKlRe9ZdeGHx8dc5tXWylTNdlSq3uIWNTZkyNnbobJcgQYoUDg4NGqHLnaMeAH30hctWWGGVVVKkeMQjZpmlTJkcOQC+z/epU6dKlT/kDwFIkgz78iEfAvASLzHLLLe4RZ58uP4hDxlhhAkmuMMdBhjgSoc3xA1ucJe7+Pjc4x5zzLXtf7yOj/iIIkUGGGgTkJ3lLB/y4XPrYGcc+gwGg8FgMBgMhwGd895GBGgFIpGcjbi76dnvQK1fAXqBYUQYV0Tc695BRG+/rcrMAdOIOK6pnjWime0WEgq3ijjFLRK5311Cwv12erfA6ng1GAwGg8FgMBgOAiOge4F56623WF5eDt//yI/8CBcvXtyyzF/6S3+JsbExZmZmAPiv//W/srS0xLFjx7Ysd+jwtt/EsANayAh5ozjMePziVnGaehQcvwcZIKPtu4ggLoGI5maBW6re/lj92lGwoN4vqjocJD1NGhHl1YAy4j53Bvgd4G8jMwSo9W+qv28gswIg7nbaL74KPFCvn0XS8vyMWq/7/pbqO2q7eEofldCea8jsxFXMTIDBYDAYDAaDwWB4yuxUgLUP5awUMpDrplwXFK6LaG03+J6U2y2l++CtQasSubFpxzl9rCxbhHWBJ9t5a1KuGxb+GIJdigNpSrluKD8SsVezJOK5wBfxnJMFJy2Oc6D2axWaqyK2Kz/avYAufg5K96A2K38n8+La55WgUYiW910Q979u3e6eRXsbufkFSH2+J25zjYI40LWqe3PzMxgMBoPBcGTxu3aLNuwHWwnktkML8OrUQydBHx8bGweHFClcXFq0sLBo0cLDI0mSJk0CAo5xjCpVFlnEx6dEiQYN0qSxsBhnnCJF7nOfaaZZYy10xYtfOw0aWFjc4ha99HKCE7zES/TTT4kSBQrMIr91L3CBG9zgEpdCtzQPj+tcB+Ae98Jt8+TJkWurY555bGwsLL7AF0JB4C1u8W/5tyRJcopT1Kh17WB3GNlPhz6DwWAwGAwGg2GvaHGch4TolZHQuDIS3vZJYBAJpasioXvLiPCtHxHQDaq6/guS474PEc9VkTA4F7nroH0KmkShgg0k/M5R6+8DA8AMGwvoPCQU7wISRreGiP2GiULyKmr5qNrufeDTmABng8FgMBgMBsP+Yn5fvsD8wR/8Qdv7v/gX/+K2ZSzL4i/8hb/Ar/7qrwLg+z5vvvkmP//zP/9U+vjUMPcr9oftYhS3u+9oxZ5+bPsAGXXPIyNuCxlpW8iou4yMmI+r9wEiRtNOdzrNTgY4RSRuW0JEeGsQJnX9j8D/Tf39tlr+kEg8l1PteoiQLoXMJswhbnTjqtxPqu1vIOI5H7hHlNJH8xBxsJtAUvAMQEeST4PBYDAYDAaDwWDYZ3TWkW7K7baI253ZndvlFFXlATsXmGl8VW6X1BfBrynBnro9HbRod+rTNuyWbOfXpFw3lB8Q2aHrgaV26tPLITrgljiZlR90115lSgn/6vJ0s5Aeg0RvtE1zDbwyeBXlwteUcrtlbVKcAFtV5QQH9F+E1FC0TX0Rijdlfc94VK4bt7tn0Z5282sWRZRopyI3P1u7+dVl+726+RkMBoPBYDAYDhwXlzTpULymRXEBAS1a+Pjh3yDiOh+fFi1sbBIkOMYxSpRYYYUKFerUSZCgjz766eclXmKOOTw81lijRi0U/fn4ODi0aFFHfldqwZaHxyijjDACwCKL3OQmc8wxjvzWnWSSCyq0dZJJGjSoUmVO3SC7yEWGiH4vL7DAW7xFiRIv8RIBAe/zPjlyJEnSoME00wQE3OIWderUqNGihYNDhgznOc8FLmzqgneY2Y1D31HcP4PBYDAYDAbD0cNHRHP6ToEWyiWQO0J63QkkxO2J2k7f1XgLcZFbQoR2RSRsTrvZzcXqSiChfPrOhIOE3zlquQe8i+Sz/xHW312aVPVoN7uzSPicrcpqsZ4Os9N9342j3U7xVL0zRPnwx4BzG/TbYDAYDAaDwfD8YX7zvcC8++67be8vX768o3Kd233nO985egK6BDJqNOyN7QRy28Uw2sgotLXBtjpVTg8yel5DRscuMvrWo+csIpB7ourTMaF6dmAFEdLZqq6UqmcJOAkqoaZwC5kRmFb1bxb0WVd9eIII7G4hAjovVt89UAk6Ia+2K6n69fILiODuEubb2GAwGAwGg8FgMDwfOD0HW66xdoDlLGg1lWhODYiDACwlmCOQ97JCtmt5dJ3FJ3TWiw2+LV1XrM6g44/dOvJpmquqvL6FbbeL50C9t2W9X2svtxuqM/JaW5C6kvl2MRvI+2ReOcPNi6itOtOdwOyg26s8jtz8miW5FjZz82uWIje/ymMjoDMYDAaD4QXDOFQdXVzcUCAXbPBo0WKAAcqUsWNJN7SwrqpuVFapkiIVCu20w9wUU+TJ84hHzDNPQICnMlsmSODi0kcfq6zSVA/NCissshgK6IYYIk+eAgXmmWeccWaYCQV0M8jv5QUWCAjIk28TzwHUqOHhERDwgAcALLPMCCMEBHzMx/TQQ4kSCyyQIcMww6RJU6NGkSILLLDIIj/Cj6xzwTvM7MahDzZ2+TMYDAaDwWAwGJ4W+haBFtQlkVC7d5AwOR1O5yJ3FhJqeRURkd1FwvJWVF3ZWH0BkeAuTZRr31Vt1YmEdVXgd1UbrwKXie5kqBl61Aw9g8ArG+xLEwmtm0dy2m/maNcNARKmd531KSdvI8frSke/DQaDwWAwGAzPH2bG9gXmww8/bHt/4cLOhhuf+MQn2t7fvXt33/p0YPQhLmKGZ0vQ8dqJi4y+M8hovEYkXksjI/qTalv9Xsf5aRe7MpEZQJXIDMBT204CbyKzBw8RYV051o7uWzzhv051U0ZG7WW1XKfLqRI52F2EtnuMi8BNtX48Vs7Ex22PSQFkMBgMBoPBYHhu0Lk6uynXBZa9fQKUzcrtFje7/Tb7WS7YKCPLdviq3K4bUwK2oH1ZsMXBtaC7g4+IuSpTtA1It+y3FZXrhkSfvDppVVcLvDVwYyI6b02WY6ntYuV2g69uT7fUq5OF6py4tQUeWC4k+mU5hWg7vxsnxQ3ac3Mbb+fmREC31/bKD2U//LqI5dwMZMbWH0tvDbyqbBc0pZzBYDAYDIYXChs7FE4ZjhZp0vTQQ5Fi2/K4gM7Dw1EPvQ5EkKVd47SDnHaoa9JklVWyZFlkkUkmKVOmTj10c8uRo189EiQoUmSZ5VDM5+ExxRSf4lNhv3LkKFCgoUJFG7GQ0c5lWbLMMUeRIh4eFhYPeUiKVOi8liSJi4uHxxJLlCmzyCIlSqRJ4+FRoUKJEi4uGTJUqXKHO/TTzyUutbngHWZ24tC3ncvfYcPDY5JJZpihQYMkScYY4xznjOjPYDAYDAaD4Yii75Q8RsKqfEQY5yEhVknkLlMvcBzJA38feEQkgNPpAmusF5lptOMcyN2ClmqnieSi/2PgARJS9yVVn65Lv240Q99EBHb3EMe8MSSM788hYYF7IUAc93SUa1W1pcPPjqvl1xAh4VWMiM5gMBgMBoPhecXMfr6gNBoNZmdn25aNjo7uqOzIyEjb+/v37+9bvw6MTyKjRcPe0CPFLmMBQ5GbTlnTWXcAVNT7eGypjo+Mj9Qd9YzXreuvq2VJVcZDRG+rqv6P1fpbyHVRIxLaJWL1qvjBsC8eMpugBXSd6XLy0JGgU97neXrpcp5HTAogg8FgMBgMBsPzhpUQsUw35brBdjZ32N6u3G6xuvxR3m251ACUdzsoDaTcbkkOKrGcQzQw9IG40DAu5lPCxeTg7tsCyF+B4gcd18o2+2q5Uq4bes5IeTsl4jjfEwe2uGtaqyLLnbRsZyWk3G6xk+o1AfUCVGch0zEvVZuV5XYKsmfay3XbnqNevdLG2+nlertu29OufC2d5cdpF8+Beq8y97T24OZnMBgMBoPBYDhwbGxy5OihJ3RY0w5wWjxXVw8taAtiv+Xr1FlkkdvcZoUVqlTDbfV2Pj4LLLDMcliHj4+DQ5p06GpnY4fvW7RCEdwKK219LiG/dZMk217jfydIhE5qo4y2lZ1llgIFVlghSZIhhsiQwcXFwqJGjQUW8PCoUcPBYY01EioRjIWFh0cffdznPgMMtLngHWZ24tC3ncvfYSEg4AY3uM71NhElwG1u8w7vcIUrXOayccg0GAwGg8FgOGIESNhUExG06dtCLSR3PUiIW1EtKyNisSqR4E6H5GmRnE2Uf17PdmvxnA7t0+taiOBtWpWvAAPAZyEcfejX+Ay9D7wHfEQkatM59pcRkd9XgK/RfjdmN9xAxHM+ItCbo/1uy0NgBJgA7qh+X+myLYPBYDAYDAbD4cYI6F5Q5ubmCGIZ0hOJBD09PTsqOzTUfkNgampqX/t2IPwY8G26F34Z9oeASKi2ERmgBxlVW7S7wGkRnGaQSMCGqrOGjLz1DEGRSEznqL+zyMg4GVumZwS0YE6vaxHNGOg6KoijIewsXY5eXthge8N6TAogg8FgMBgMBsPziBV06QjX5SDW7oFWefvtNiq3WxL9tA/edoKlynVBsjNryVMsl8iJsMqzINhuHy0RBTpJKdcNJ78KU/9JuaDtRAFpi7Dt5Fe7ay97CrKnoVWVPjdLkRNbS2W3aTXAcmR9ok+VObX7tjJjsHpLHOcaSyJM9D3wa/Jqu2CnpS/WmgjLgkDKdUNmDEq3IT0sLm+NAtQXIRW7DuqLshwL0sejct2gXfls7ebnQ3MNEjERXXONMJ+vvQc3P4PBYDAYDEca4z53dKlQoUiRgAAfv00g16JFlSpLLOHjtwnofHxa6rHIYug416SJjU2TJhUqVKkCIrarUm27VipU6FM3pxIkWGU1FNRpsV3cRWyRRQoUsLA4rm6sjBH91h1jjFvcokiRJZYICEiTDvtapEiFCsssU6MWus81aLDAAgUK1KmH4rkECTJkaNIkSZIWrVBAt8QSGTI84lG4j4edToe+3CY3ALdy+TsMBAS8xVvcVTfdqlRZYCF0oNPXxjWuscIKV7lqRHQGg8FgMBgMRxAPCZGzkeBgHwmpSiBObiVEQJZEBG8VojA5HwmdaxIJ5xyi3Pit2HKNHXuuETnaWcA3gE8jbnK3gWFErFYAFpFwv99HHOfqqi86dK8K9CPhf99AwgL/DrsX0XlIznaQEEFtOZFHQvhKqj96+QVEcHcJE1xtMBgMBoPB8DxifuO9oBQKhbb3fX07D9Dp3LbRaNBsNkkkusyE/yyYeNYdeE7QI9K93N/dTDyXQEbNOl6zhYzuIRqxFxHv9zTybaaFdvG6teOcHskHatsAGbVnkdQ3II5wnYn9PWRk7qq/PSIxn34OqO23SpcTp9SxXZcJ7Q8UD5hEZiO0eG0MOMfT/Z/EpAAyGAwGg8FgMDyP+JsNhJ5SOTuz/Tb7Vc7J0JWAzumyj97awZVzsvJEz6lsZMtubVKmC0Z+XARVrTUIdjDwtmxw+6RcN/Sek2erooRkQOCD3xJBmxa2OUkRPGZPQu95KdNNWw9/AxorQACVRyIUtBx5Bi152knoGZf+1Oa6a0u3t/iO/J0eEXe74k1I5sHNifOc3uf0SOSw12172XFx83NS8vSbUJuBZqebXzPaxkpIOYPBYDAYDC8U/qY3SQyHGR+fMmUcHGrU8EIPhmh9QECVapvATouRAoI2xzkPDwcnFNa1aBEQ4CCu4FqAZmEREFBRD089dF0ODjY2NfV4wANKlCioMcwII6HL3CMe8ZCHJEkyzDDTTLPCCr30Ms00CyyQIIGLS5EiZco0aIT7PMssJzhBjRrLLFOkSJMmAQENGri4JEgQEGBj4+FRpYqDQ5kyCyywyOLBnrgu6XTtK21yA3Arl7/9xMNjkklmmAnFb2OMcY5zbcLJTm5wg7vcxcfnHveYY65N+PmQh4wwwgQT3OEOAwxwxdx0MxgMBoPBYDj02KwPv9O54zUVIKWWryKitIRa7hEJ3uK58Fuqbg8RzTmqLh2256q/XSRcK622qSHhfMeAj5FwrguAmqFnBBGr3URyqD9GwvWWkBA9LdizkJCxZVX+XeDrwM/t8vhMIqFuVSTsDOAitHlKL6r+zAHjsXKHy0/aYDAYDAaDwbAfGAHdC0q53J55fjfit422LZfLDAwM7LVbB8e3kNGWt92Ghk1xiUbGTyNBqhbE6ZQ4DfWqU9nomMSKeuqRfbOjHp3+Rv+tR/t1ZCScBk4joraWqqNMJA7UMwFe7L0T68sA8AHwJjKKnkNmAOLpcjpH3CqhPcdVHTXgbQ5WmLZTAkTE9h4iNCwix8JF0vycAF4FLrP/zm8mBZDBYDAYDAaD4XnF8rt0oOsyuDaoHGA5PWDaTV/1QKsLmit0Jdhrruy+rUSfiAqdtHKF07dwrVgXdOYW5QZnp7t3FatMiSOcVxQ3uC0H3w64PeIGV5mC5MXdt2e7MPhZ2TcnA8vviajMUvtkq8F4Mg+Dr0rfBq9IuW4IAqjPQWOV8LgFnhIL6vMZQKMo2wV7uFVtu5C/AkvXIKeyKtXmZP+0cA5LxHN6ff5y9/vWczpy83P7wFvdxM1PiR61m1/P6W730GAwGAwGg8FwwGjhnBbIdaLFbvpvIHzv4WFh0VQ3tbRALkECB4ceesiSpUWLAQYoUw7FafpRpRoK9/QyF5cMGRIkSJJkiqmw/RFGSJPmz/gzTnOa+9wP+3qTm7zP+6FjWlxUpYV7uq0WLRo0SJMmS5YMGVZZxcOjRQsfHxs73CYgoEWLJs1wfUDANNN8yIe8yZs7FoA9K8YY4za3GWaYhzykQIFFFhmK3QDczuVvPwgIuMEN3uM9ppmmSDF0G+ynnxOc4FVe5TKX1znHeXhcVzfd7nGPWXVzLU+eHLlQaKmXX+ACN7jBJS4dynNiMBgMBoPBYIiIj0b0HQqdE96PLdc56GtqWZVoJj5+lyX+quuJi+fiqQUzSPjYMBKqNYQ4zdUQ4dtx4HuIYO0KcI3I92AauI/c+VglEs/1IuF8OmRvCRHSfQL4NvAzav1OmVGvC6rPedpD+VDv80gY2jwiopvBCOgMBoPBYDAYnkfMbOcLSrPZrjLajYAulUqtW1apVPYsoLty5Qq2vd5k23EcLGtjZc4v//Iv84/+0T/atu433nijfcEx4BcJR3yvffM1Ju7vzZbujdff2HL9c9eGHiXvtY0N4hxf++ZrTDyYELFZAhkNN4l84bWALouMol1kFJ1BxHQWvPG3NtkP1d5rv/8aE8MTktbmJbVuGhkt14iEelnaZxd0+p0GvPFX35D3KWSEH6iyNWAcXlt4jYmbE+sFXyDtLhCN0uOxoreRtDtX4I13tjkfr73GxMQez/m/eSOaJdH76SJivgq8VnqNiakJmTnRMZsO0IfMZDxQ+/UlNr0m1n0Gd7Ifu0wB9Eb/GzJ78q+Rc7KTNnZJV/th2jBtmDZMG6YN04Zp41C18bxxoOOo4uttb18b+iYTPffZC1ue8+LrT78N1HW1pxa6uHaD3Qvh3nj4OjLY2bitLT8frZ1lPZE24jht7e3oM5jMbalnW98GgAXTObj9xu4/535cbLVVGxGvDX2TiVwXmWDsBCR6oNnLG/f+6tZtDH+biWNVSPRKuS5449//Jng/Cq3Pi1NZZxtD32Ki9yFyC9yG5BD0jkPhezCwMwHdhteuVwY/A8GP8Nqn6kz0PAC/rhzZzkDmpIjpchdg4HJ3bbTq0AzA+yyvjVaY6F1RLoS+COssS/YpaIlbm98SYd/aJPStv2W9o8/g+cvieFe6I3X0jENtXoRsThLSx0X0CBvu264+551ufhaRq57lilDQdsDpa3Pze+PX3gTr2ztro0uel//PTRumDdOGacO0cbBtPG8c6Diqg/04H6+/sfXv3W++9k3uT+xtHGXa2B4tevvFN36xTXCm0QKmb732Le5O3G1bZ2NjYYWucw5O6ESXJcsIIwwyiI/PAAP81Bs/ha8eum79APij1/6IyYlJXFyOcYx++vk8nycgCB3mppjiAQ8YYYRjHGOKqdC9DOCTb3wydLS7whVc3HC/WrT449f+mDsTd6hQwcEhR45++smRo0CBaaYBQkGhj0+TJg0aoejuf37jfw73Xx+Da1wLj8vga4N8ceKLGwrAdsrT+Aye4xzvKL+MEUZIvpFkjTWqVLGx8fFp0WKccVxc/Nd8ChPtLn+7FQhutB9l9WjSZOa1GWYnZsPrp48+7nOfBzygQIEv8aW2YzjJJA0aVKkyp266vfzGy2F/euhhiCHq1AGYY46B1waYnJjkwh7Chp+X/wdNG6YN04Zpw7Rh2jAc7Diq81f8N197jft7Hkdtfc6fpzYmJybQd060m5tDlON9sztUWhz3Sx1taAGdDp/7fdVGGhHI9avtBpBQsl5EPFdS63XI12VgBXGky7/xBmlglPbc+C4S+vXwtddITkywgIjnlpDwMYA/QER4M2ydq15fV2tI2KGDCOMSSMhe32uvkYqdjxwS/qZS4YWvW/G8fF+ZNkwbpg3ThmnDtGHaMG0cljYOAiOge0FxnPbM7hsNcDcjCNbfBPL9LrPgx/C83dvBdQoBd8z6+DrDbtlP17nO4EpbLasTOcppURfISLZHlakgI/sKMlLWgjtdJk5cCJdE3NTio90zwIfISF6PnuNudKg+tVR5/THSaXp0H3Wfm8hswDyR6CwDnFfvP0ZG5o+BKVV3SvXjJCLKK6s6NxK37dXxTbvLFVn/eWgQpfeZR8SFBaL0Q5bal7zazzVVT56NZyfiqYx2uh+7TQHUIko/tIGAzmAwGAwGg+F55EDHUYZ9pNsBVbcD2Z3c5tun9uwM7YOoHRfsogwiROrGgS7owpLediA5KCKs0GVvowFNIGIzV7m12V266wXqOrEc5VqohWVqXxM9kByAVhMcF1LHZH11brMad4bbAy1HhGvp4zDS4Ypmp8SdbeCy6k8XBJ6IAi3l3kcgQkM7Ka9+UwRzLU/W2ymoPoHyow0FdDvCsuD4VTlmS++Js12rJn1p+fI+2wuDn9vbvkGHm19a2muuEE5MWHE3v89Bdlzc/Kx3um/TYDAYDAbDjnmW46gWLe5whxlmQrcvw7OjW5GWxt7hOEaLrCByi9PvffzQrc7CokWLChXGGCNHDoAECRo0sLFDUZuuR/89yCAnOIGHxzjjtGjh4eHjc5vblClzhjPUqPEe77WJ/uaZ57N8tu14xPctICBBAhubBAlcXGrUmGKKUUZZYqltH3TZKlUaNLCw2gR58X3V6x0cPDyucY0lljjFKWaZDUV+B+lQ5+ExyWT4OU2SJE+eaaaZYIJppkNhoN4XC4skSWxsbnObIYbaXP5uc5t3eIcrXOlKIFijRolS6PQ3yyxTTIXtZ8iQJ0+TJhUq9NJLP/3hPtzkJqusUqFCQECe/Lpj6eKG9bfUvMUMMxsK6DY6RofZRdBgMBgMBsPeMfejjgZx5zkdJqcJ2Fw8FyB3PTYb4eh1PhKyl0YEZ1o814eEb23Xt6uI0O53iMK89B0zGwmts9U2VUSAN4uE382q5b+O5HiPE8tVz2Xa79xYHa+bHYOSek12vBoMBoPBYDAYni+sYCM1lOG553vf+x6vvvpq+P7UqVM8evRoR2Wr1SrZbLZt2ezsLCMjI7vqw4cffsilS5fC9+l0eldCPth5ppp1TCDipb3r/l5s4p7s3aB910FGw3Wi+EOXaFSvR8i6nQziIphFhFst9bqm1teJBF5arNVUdWuhW796/hjwRVVuDvg94BEiHqvF2tf16NmEHDIqb6p9SBC5suWRUfwSIuaqqu0SiGd9L5EgbJH1Ajbdv9Oq3Lj6O06SjUf9OyUA3kLS9LSAJ8BDIhHfaeB9RLzmIUK+tdjx0DMtejbERsRsf4F2N70Ecp4qRMLCne7Hm8jn9B4i4DuJHLui6pOr2l5T/T+BfLbPAl/Z1dEwbISHuABul7LJYDAYDIZnTOe44oMPPuBTn/rUM+zR0+WZjqP+wx4CC/9qF4OGg2zved43gP/YB63S9tt14uTg51Z3V+aPfg6e/BYEtZ2XsdJw8r+DH/uPu2sL4BufgdIPdl8u92n46vu7K/Pk92Dqf4fCh1B5oFzhgnYxnqUGs3YCsi9B/hKM/zyc/Knd9/Hmr8DK96F0H2qzkBgAJyWOZoEnbSXzys1tBdKjkDsPA5+Fi/+P3bfXie+J41t1RoRgdhIyY+KsZu9xUHD/38Hc70NlBsofi/tcegxsSxwaLRv8AGoz0KpCz1nIjsHIfwvn/3r37QYBrNyA5fegMg3NYnQsE/2QPQGDr+5dQKfbmn9bHO+CFlSeQPmhnC8nBT1nxHnOUm5+x6/uvU2DwWAwGHaIGUcd4DhKERBwgxtc53qbcO4X+cWu6zRsjxZ1bUZc2NYN2jkuXocWg7m4Yf1NmqEgKd62FsTph4NDDz2MMspn+AwnOIGLS44c3+JbfMzHAKGzm64jT55jHCNJkhOc4CIXQ7GVhcUDHoRiPO2clydPjhwlStzkJmus4eNjY3OMY3yBL7DGGh4ej3nMAgtMMcUqqyRJkiFDkiT99LPAAsssU6FCk2YoonNwQqc5Hx8PDxubpHr00UeePA4O/fRziUv00stDHoaublqcNcoon+JTfIEv7Mmhbis2+5zqdZNMsswyDRrUqbPKaugAlyPHCiu4uHyCTzDOOIsshv0/znHSiOP1BS5wlas73gcPj/+F/4U73GGWWaaZpkYtFDN6eDRpkibNCU6QIkWCBFe40nYOmzSpU8fBCY91kSIeHi4u/fSzxhpPeMIJTjDBBGc5y1diN930MXqP95hmel35E5zgVV59aufI8OJgRJoGg+EwYsZRBzeOMr8iDh4dDuYiYWT6rkcCCSM7C3wO+Igol7wOFcshojod2jelyk8gArifAv6njvY84B8goWlTSJjecSRETue213nq59QzhYSJnUAEdAtE4UzHQf3ahguIUE9fR3eQELkq8K7q40Xac7gvAjdVmR9SdX1J1WUwGAwGg8Fg6J7DOI4yM0svKD09PW3vG42dZ7ncKDtMZ33d8O677x7cB6IfI57bD/Yqv7URcVWAjK7jwiw9Ek6ovxvqfQ8yOl5CRsZOrFxLvfrIt9soImhD1V9APOJbsW3jsaBDyKi6RiTQ0sRnZ1xVblX1T7vUxUV28XQ+8ZQ0ZVV/Tj0TRNdi3GluChHyjQC3iASGKeBlRPR3DfG2j4/6d8oNZIbgETI7sEL7+byBHOM+IhFdL3K+EkTufNNq/UvIbMV15POVRMSCt9XyYeS8PWJjp72N9kMftwRy7maRcxpnVj216G8OmfHQ5Q+j4OuwC9O0M+F11huVbJWyyWAwGAwGwzPhQMdRhiNMl+5u3ZSzEMe1lh6o7aAN2+n+t2Vy4ODKuRnInIaVjwBLBGaBGmCG7nC+CKLspIjAMqekXDdkRmSs5ObAn4LqrCyL971VE8c525btdLn9wHbF7a1bx7etaKrBuF8jdGTLdg74gPq8rPdr7eW6IQhg/i0o3ZX3yT7w69BqgJOEZL+cz6Vr4jK4V0Fb3PGucB16xuUZZz/c/DrxaiLcW70l4kMnA32vSF/c9PblDQaDwWB4ATjocVRAwFu8xV3kd0iVKgssGAe6A0AL3DrFa1bs0S3ajU0LxuLuag4OadJkyLDGGs0NMwxGfdFlPTyqVFljjRQpLnIRgAUWSJLEwaFChRq1sIyFFYrXjnOcMcbopz8U2ZUokSJFnToPeUiOHF/iSwwzHPahRo33eZ8aNVKkqFLFwQmdx1xcUqSYZTZ0WhtkMBRNBQSsshqK5eKiwLh4LiAIHc6aNMmSDR3TFlnkJjdxcUmQICCgh56wjkkmeY/3+C7f5X/gf+DH+fFNz183wpv457RFiyc84SEPqVMnRYpxxqlR4wlPQsHYMsvh31pMlyfPIx4xz3xb/Q95yAgjTDDBHe4wwABXuLKDKw3ucIdJJmnSZJppKlTIkCFNOhTQ1ahRocJd7tJLL3Xq1KhhY9OixQor+PjUqVOlygwz4fWlmVWPFCnOcAaAZOwmZ0DAH6rHIx5RpUqJUigi7KOP+9znAQ8oUOBLfOmZiegOu/jqsPfvWbKVkHWvTo4Gg8Fg2BvmftSLg0MkoNPOdHngrwD/BgnRKiDhb6tISFsZCSWrIGFbOv98AhHedeIiYrk5VWYNCenrnMEuIqFpdaI7VitEQjjNQyTEbgIJhxuA8Nf2OSTUCbXNLCKWyyOhezqkUK9Pq308t0G/DQaDwWAwGAxHnxd79u0Fpre3t+19pVLZcdnV1fZgJcdx1tV36BnYePG98/cAmLg/cXB9eZFpEY1ANVp45qqnTm+jlzeRUWoaGTnrtDNVaLv/GSCjaB8ZjWsXOCdWT4v20XRBPX0ip7MW7U57WqAXF8rV1DItotNGCwnVd+2IZxMJ5rSYLwcMIiKqQPVvhcgB74FUde/CPUjAxIMJWfbHSMobn/ZR/07wgO8jMwY/iO0nRCK+NdXvJ0TueXnVx0C9z8T6+QgR132ApB0CEWDVVZ3X1TGIm1feVX1/VdXZuR9jiHiwiIj5AuS8a7Gko56ryPmtIudtCHGu0w51J1Qbz1rwdRSEaXFnQpBj2pmyCdpEj/fuq+/NCfO9aThc3Ltnrk3D4cRcm4bnkXvl8wBM9Nx/xj0xbM7mwZr7Xs7tEfc1vy5OYopNrxPLlu3dbhPztLbfZL/KZcYQMVddhGtBQ0RZWigY6H9aIiD0G/I+M9ZdF/Ofg9k3IWjKsQyaUF8UsZnliNgraKn1CXm1XCl32EmobDdOGhkAtcBb496KDDomhirgact5S20XK9cNKzdEPBf4ULoHtTnaJgXKDyE9ArkJcY1LDkD+SvftgYji8leg/9LTc/PT+D48+jrMvBkJDjXL34Wpr8PYV+D010RwecQxv6kMO8FcJ4adYK4Tw0Fwgxvc5S4+Pve4xxxzZO6pJAvm0nuqbOUup13i6tS7cqHTTnO6rBbpafc17cC2mQueLhcXnIEIa1ZY4SM+4jSnKVHiHveYZpo69dDlDQjFZQ0aVKliY/M2b3OHOwwyCMA886yqbJIBAQ0aPOEJq/dE8MUEZMmSJk2LFjVqODhMMcUIkpyjn37ucY9eelljDQsLD4+TnCRHLhTH+fihoEULFOP7pvdZH58WLdZYC53qVlnFwwud1YoUw+OZIUMvvbzP+xQpMsAAn+sIxd2L8OYGN7jDHR7xiHd5lxVW2s7bda7j4zPAAAUKeHihQBOgTJkcOQICllhiiCHOcS50+StQYJZZQBzobnCDS1zakVjqe3wPD49llilSpEWLAQZCcVuSJAEBCyxQoxbu+21uhyLEBo3QCVGLNHvoIUcuFMA5OJQoscYaq6wSEDBGNJ69znV+m99mltnQdbBGLXQuzJAhTz4URQ4wwGf57Jb7tt//Dx92hzwjDtuarQTn2skR4BrXWGFlV06Om2F+CxoOA+Y6NBh2znn1eblvPi/7js5133nnRIfYVRDXuZeAe0iI1wpRuJYOowMJL0ohYXEX2dzF7RXgu0g4XV0tKyLhXjokz1NtN5AQsFUkNCxgvQBuVtVxAQnPukQUfngFCXXSV84cUZggqq2R2PrLmMDqw4T5v9JgeDExn32DwfC0ML/zXlBGR0dJJBKhm1y5XKbVauE4zrZlFxcX296PjXUZCPYsKW+8+Fs/+S0AJt4w/+EeGHq0qx3hQEbSLjLathGRVB8i0qohI3MVX0dCbRN3ldPz5FVVl4pZxCIaZaO2n0MEaSVEKFRCXO7WVLspta0WwlWJRGSWqlun3YHIdU7Xb6k+6PQ8Krk+LpEQbAQRlqWRUX8TmRFoEKbP+daf/xZYMHFnQva5BvwpMtsQd9bbiZvZpHo+Vu2U1H7GRXz12LHW6YRWOupcU+s85DPlqP0dV/XeJ5otQdWl90kLG31kNqSm+qBnL1D78Buqjl4itzstTPRUfVpMV1bHsYkI//R1cx85xwXgSzwbcVpcmNZCjv0UO3fjOyhuqD76yIxXRzzpRimbvvWO+t40A5Wjz2F3R9wl3/qWuTYNhxNzbRqeR761+JMATPS88Yx7YtgUv0uRWTflnDQkj0Gz1LZ40+skCGR7p0tnrKa2BN9NwKutyu2S7DisfAiNgoiggs6sLCBudJasbyxD8aaU64a+C+BkoVWBRD/UF8QZzbLlGfjydFKQGJDtnMzTcYzbb3rOiNjPTsm59z2ozvCtWxfAspjI3pX98T1Zb6fASki5bvA9cYEDJZ5Tt9KTeXHu80pyXvXyvgtQuCHCt/0QuD1NNz8Q8dzt/zcUvifvvYoIBP2mCFTTo/Kb/sk3RMR34e8ceRGd+U1l2AnmOjHshAO5Tnzv6QupDYcWD4/rXAfgHvdCAc3It0awsY2A7iljY28ojtNirybNrsRzIGKwBg189YjXHRfGaIFRJ3GBWScNGpQpM8UUPn7oaFahEorV4u3p/ZljLhQMneUs/fRTokSRIiVKVKnSSy/Xuc6XvvUlEcpNTBEQsMIKLVqklefDJJOkSZMjxworzDOPi8sJTmBhhc57WpAVEITOcfrYa9e8Bo02F0B9jIoUQwFZnXq4jYcXOvwlSdKkSZUqZcoEBDzkIf8b/xv/mn8dlt+L8MbD4/t8nzvc4Qf8IBSpgbjvNWlSokSdOrPMkiRJmjR99OHihiLAMmUKFBhQjwQJKlRIkeI4x5lTj3HGw2N8YdNw4og55gB4whPq1OmhBxc3PB4WFmnSeHg0abLKKg4OdeokSeLiYmFRpIiPj4tLhQof8AHDDJMgEZZNk+YkJ1lmmZvcZIIJHvIQB4ff5DdZYol55nnMY+rUSaiHFs2tsRb26Rt8g0/z6S1Fgvv5//Bhd8jrdDl8zGOmmApdDs9whpOc3Fdx2FFjI8F5/PtuL06Om2HGDM8O48QYYa5Dg2Hn/KT6vLxhPi8Hho+EkthEIXIrSBiXFrbF7yQ5SKhJTr3/BJuHm1wF/ldVR4+q9zGR6M1TTx1610DCy44jwryhWF2LiKvcHKDvyEwSifcuq/rvqGXjiCAwnk9c36W6oLbfKc9ZqM2hxPxfaTC8mJjPvsFgeFqY32gvKI7jcObMmVChHQQB8/PzOxLDzc3Ntb0/c6bL4KVnyer2mxgOAJ2+Ji46AxlZ+kRCOgsRa2nxmU5d48bK+7E6tRsciNgqqbZPICNlBxl5a8HYlNp2AREz5YhS2hxTy3xEoBVP4q777BM523Xe59TvO53vtOiriYi+Tsb6e0ct1/sVxOrSIjQLGbl/gFzPHqhEoNu7mT1GxIgl9dTCOy3iq6njp8+DFsl5apsEMgsSTz+kRW0jSLqhOVVXWfVPHyN9HlB1LKnXvKo7PnsRJ56qSL+HSOinhY76/OhrIKPq1umQBmCbZJdPhxvIeZ0C3kNmZeL7s50b30HggYrjEPGcTs20Wcqm88A3iZwX38bMAB1VjoI7osFgMBgMhr0RdCmg66Zc71nlyuawM5c3R7bvPbv9phsW11lVdimgcxLbb9bJ2iRUpqC50uautyGBL9tVpqTcwMXdtwdK+NQHjVUJtg+xwFKDCr3c7ZPt94unGeyfPQXZ09CqQiIn+9dYhcBTzu6zasxky/pEnypzqrv21iZlH1pV5TwH9F+EVOwWe31RBI+1OegZj8odBUHio6+LeC7wxT2vvkzboLM6A6lByF2A5Xdl+zM/98y6azAYDC8MQSAOqIXrypk2Ruk2LL4jTqUDl8W11PBcMslk6A6mRTAXubihaMqw/1hYuLj4+Hht2RAJXbP2UneS5DpxGIgbXZMmAcG6dfHy2sGsRSu8JrRgpqEeVaosskiValjnRmghX40aT3jCfe6TJcsqq9jYobjJxSVFiiZNbGyWWaaPPpIkWWSRLFl66aVGjVvcCo+TFmId5zjzzNOkSZlyKNBLkAj74OOTIhU6pGmxoRYM+vg4SFLXJEnq1Ne56gUEZMgwwAA1alSoUKfOPPP00ssHfMBNbvIZPgPsTXgzqR6PeRyKDXX/A4JQwFel2nZumzRxcGipR5UqHl4oUtMCRM0cc6RIMcccZzjDDDM7EtABFChQUzfBatRYZrlt/1ZYCdc3aJAgQS+9nOAEadJUqVKkSJly6J6nRXP6POnjX6IUnts73MHBYZppvst3adFikUUCAvrpJ0+eNGlq1ChQoEiRJzzhGMf4mI+5wx0u0uV4eJc8DYe8/US7HE4xxXu8t87l8C53GWCAV3mVgGBfxGFHic0E53nyGzo5nuc83+SbLLGEj/9Ci6+OGsaJ0WAwGI4eHpJv+/+HhIINIOIzmyiPfTyvvaPWfQYJ4/LYOIzIBUaRfOpZJDRQhwHqkDWIQs2aiHBvkHbxHOp9HglrmkcEcjNEIWgWItgbIAqN6kx9mELCYnYaGmNCbQwGg8FgMBiOJmbm6AXm5ZdfDgV0ALdu3dqRgO7WrVtt7y9ePJhJ732ltv0mhgNAC7D0SFqjxU8BMvJuIUKsBpGgK+7ypsvE70F6iNBuDRk5N4mEYUngNDJi/zTi8Z6Mbb+IfDumkJG3HuVq97k4FpFTXZ2NYzb1/mhRmhadaWe3OSI3tmVEcBbfRz2KttV2OqVPBZlBeIi4m2mx33ZuZg9VeS0+yyDCp97YNgvqOEAkSgSZSdD7VI3th6OemoJaX1dP3fcmcqxbRDGuS4hDXAYR9unZi0lEkDePCLr6gGGic22pbRpEDnhO7Lho0Zx2yrOAbyDn/CD/9/OA7yMCuh8g50Q7De7Uje8g0MeyCmid9GYpm24hM00W8DLSz9uYGaCjSNwdEeT8L9CeZguevTuiwWAwGAyGPdKdo0JX5Yauws3/5+7KeCUp1w2pIXEyC7ztt9XYbrtwaqcs/qm4wAXxQZ1F+w8kPZhryXa1eSnXjYBubRIyoyLgqs2Ku1yiT1zFghZYjriL+U3lcPYJ2X6voi8d7L/8HlSmoVmU42u54oSXPQGDr+4t2L/3nDy9CpQfRo5+gS91ehVEJKgysWROQu95KdMN1Rl5rS0AgTjPdV4DqSFZ3ijIeesZl3KHXUDn1WDmTfm7dAfqS/K3mwO3F7w1+YzVl4C7cp3MfhtO/gy4XTo/GgwGg2F7ggDm34KSmnRpVeX/oVYDnCSk1aTL0jVxmD1+1YjonlNmkN8hCyyEghMtwDE8fbQ722Yitv3Axt7QSU63uZWATr/GnfK02Ee7h00xxTLL65znNsPDo0iR61xngIHQPa1KFYiEWFq0t8QSM8xQo0aKFGXK1KhxilNh/x0cBhlkhRWmmKKHHo5xLHT3CghIk6ZOHYAeejjBCcqU8fFp0SJBIhR4gTi7aYe5Bo1Q0AVy3lxcsmQZUjcpSpRC17MSJWxsvsk3+Qyf2bXw5gIXuMENLnEJF5fHPOYRjyiph4eHi0uDRujW1qCBhxfur3YJ1A55AQF16mHZNdaYZZYatdD9LEGCRRa5z33GGV8nHNmMIYYoUAiFj1og10NP6P6mXfO0ANHHZ4wxTqoMniVKjDLKQx5SpYqLS44cffQxyigODjY297nPPPO8xEukSfM+75Mjx21u4+GxxhqrrJIhw0u8RG/s5mI//XzER6HA7zjH+R7fOxABnYfHN/gGc8ztq0PeVu3txjlrO5dDfe0XKPBdvht+HvU1+iKwmeB8KHajcpFFbnKTW9xihhksLBo0GFFZZo346vCzF7dQg8FgMDw7LCTE6RYS3jSO5KWvImFPKaK7JQESpjWAhOY12DyX+iQSWjSLhKn0IeFeNaK89GkkrMxDBHIDqi9zqg9anNeP5NIvEIX5df7atpBwpkvs3THOhNoYDAaDwWAwHF1ejNk2w4Z88Ytf5Hd/93fD9++99x4//uM/vm25999/v+39F77whX3v21Nn7Vl3wABEoiqPjUV0dSJRVCu2nUaLqDSd9w1byAi1TCSuG0NGzTYiDLpCJPz6kHaThLTqn46L3Oh+thbQ2Ww+0tViNz1TEHeuayICsT61bJbIfU6TJBLgDSMzACtEIkELETXp1DjbuZlpB0bt6OfQLp5D9adzf8pI2h9b7U+D9hRCFoSJNJeQz1k8JZAfOwadYsKi2vdrqq6G2qdVVeegWjYQ648+BtrdTzvO9SMpimrIzEgReIIIDD9GhGwHqfudVM9HyPFbQvYx/j/wbtz4nhYqnhQVT0qe9SmbjiHXwQJy7PW1YCMzZduJNw2HjxvId4aPCFXnaP8ufYgIWSeQz84AB++OaDAYDAaDYR84QAFdY1G5s+00QFWJphqL22+6Eb1nYDElIqKdYqek3G5ZfEeC39t+MNlg6QFh0LHvAfg1KTfxN3bfXnVGAundfhGueQ0RmnkVJTSzwc0CKVnv9sn2exF9BQHM/aE8K49kf5ulSLCX6IO1+7D2AOoFGPlSd8H+tiuOOys/gOSgtOGp7CdBAEETrKSIBpODUiZ/uXvnO+3601Kvbm7j7dycCOj0dp1uQYeR+bflOvMqynkOyL0cCTNABIGluyKi86pRuRM/efD9NRgMhs14ms6nz4KVG/LdG/hQuqccUGO/IcoPIT0CuQkRQCcH5P9Gw3OHFsjUqVOgwAorFCkyvi7XveFpoEVpGwnPthPW6YD9zURrWjClRXobrd9K8LaZIMDGxsXFxqZBgyc82bAeLdzz8det9/FZZpkmTSwsqlRDxzR9TWoXuCpVSpQICEiRwsamRo0MmVB0t91x0QKfDBlatLCxcXBCIYR2cIsLDbUgUPfJ7xh/2tht5ydHjjTpUATVTz8f8zGwO+HNHHPh52+SSS5wgYc8xMOjRo0iRQCyZNsc9HSfdb+1k56NTYIEJUo0aYYugJ3neJnlUBS5yiqPecwrvLLu+G7EMMOhSBFE1Fin3ia+jF+LDg4uLn3hzUcRqaRJkyIVCh2TJHFwGGYYEPGW3vcSJaaZJiAgS5YFFtpEnDb2OiFwr3oss0yJEsc5Hp6PTrQArUyZgIC3eXtP7mF3uMMkkzRp8oQn1Kg9FYe8bp2zOl0OV1klTTp0OXRwQlEmwBOekCUbXqMvAp2C8zz5ts8wwDGOUabMAgv4+OTIcYc7lCgZ8dURYS9uoQaDwWB4duhQt4p6f4MoHC2DhGXpsK08Ek5UAH4b+Cu0O8HFmVFlPomEIS0j4WudIWw6p/oQUALei/VFM6ueSSR0CfX3RriqP3v5lWVCbQwGg8FgMBiOLkfwrqNhv3jttdf4x//4H4fvv/GNb/D3//7f37JMEAT83u/9XtuynYjuDh31Z92B5wQthuoWBxGoWUTOchrtcOYTCc0629pJ2y4iRtLiqjwiQjuOiHvyROlfHiKiK30vp4hcK1pAV2N9/GhAJOzbzPAgLpjrLK+FgrPI8dCzCvF9Uwn3w7q0wYF28HNV36xYHwps7mam75eliY79Gu0zEFpY14y1peNRbeSYxV30WojQTdddUU8toNNCwyRyPnQ/tYBujSgtj04d9Fi101BtvKr6qFMILas2fWS2xEYEXoPqFURM95Hq+7Ja/u8RkVcVuSZeQa6Fp5V4/xEwhVxfS0SzRj6RYHM7N76DoDMFU5b1KZv0eS0jwk8LOX42MuOznXjTcLjwQCXllRm9WfV3HvlslZDvEr38AjILeNDuiAaDwWAwGI4WK++DrwcLOyEQcdbK+3DqL+6+vdGfgsn/nZ0PUC3ZbPSndt/W2gN5belBoCUOcEA4OLIc8NWgruWBE0TldovfEDHZ6j2ozUCrJsKylrY/t9UuNaDWlO16z+xN9FW4DtO/DdVZcdtrLKt2lWDPyYhLm9+EVkWC/Qc/2317lqXqa4iwwLJln+00uD0iLEjm956Yw1a3yh316pU23k4v19vZm91iP0Ss3pJXLcxwc+3iOZD31VnZv9os9J6VckdRQKcFNl4ZCGDu7aMtsDEcfZ430dezQDufFq6v/z+sdFuE6Pkre3M+PWh8T/YHlHhOTa4k8/I97ZWU46la3ncBCjeg/5K5bp5DtDhihhkWWSRLlh56nqojmiGiU5S1WzZyltNoF6vN1luxx2YCu80Efr56LLHECiuhs5jGVg8tDNnoetKOW1ooqMvHHRD131pg1KBBjhxZsqywgoMTlp1jDheX05xmXj2SJEN3OR8/FHj5+FSphmLAIPbQ6Hr1vm50DGw95ontt14X3++dCG+GGCJPngIF5plnnHFmmOECF1hllYCAeeapUydNGhc3dNDT4j/dTx8/FCZq4ZyHF4rK6tRxcUPnvrh4K0OGs5zlMY9D4Vonne5mt7lNhgyrrJIggYdHlSp16qGATjuY6X466hE/3nq9g0MPPeTUY4ghLCzKlDnFKT7kQ6pUcXBIkyZBggYNKlRo0sTGJkOGAgUGGNiVQKlTgKZFaLfVY6fuYZ3H6C3eokAhdFBMktyTQ95GDnOjjPKIR0wyCezOOeuRepQoscoqLVr4+KHLoYcXujWuqod2RnxRBHT6WtCvOdYnvnnM41CgusACyyzTQ0/4/WHEV4ebvbqFGgwGg+HZYSNhVzq0SbvDrdLuYdBCQolcJATrCSJ2ewkJKep0fNPpOjy1zQ8ThdDp7UaREKX31TodirbS0RcbCXGxVL8C1YbH3t3mOtnPUJun0T+DwWAwGAwGw9aY31kvMD/0Qz/EyMgIc3OiFvqTP/kTPvzwQz71qU9tWuZ3fud3mJ6eDt9fvnyZ8+fPP/W+Gg4pexHPxdns/odPJObZ6B5np5hso3hJGxECuYiwahhxavsy8KWOtsvAHyIisDlEPFZXZfUswEYiPr18s+Nh0d7PzvIN1TbIyD6+r1bHq0e7x7xuV9ftdNT3BJmV+H312kBG6RVk1J1S+zmDHKc0MutRVOvrsb4naHfic4lEfC1ELKVjCz0iJz29zwlktkAL1UqIqK2h+lMjcrjTrnQt1Qdf1f0XkBQ9IAK7NJHgMaWe0f3AKDXRMuI+Nwncpt2B7rvA14GvAF+Djvuxe2cKSZVUJBKC6uMaP3ee+ruIzChN7XM/tkOfuwTRTM5obH2AHL8nRNdPIrZe35/fSrxpOFxMIp+/KtHn6CLtzoOLiBvkHJHL5UG7IxoMBoPBYDhaLH8XHBtaOw2gs8C2pVw3ZMfVeGkXgj0rkHK7piVB/m1tWZv8rdoK9KCpC+wkrE1B8X2oLYl4DkRwGAQiIghUdhIvAbwPfS9D385cDNbhe/DkGyLEqs1D9bGI9eyEPP2muJx5a1H7T74BA5/efbC/74lYIncBagsihnKzYCXAtqDnjAj0WhURJeYuiMiym7ZAxCyl25AeFsefRgHqi5CK/fitL8pyrEiAlhnbfVsb8TQFNi0VZuCr68PtzM9LtNwrRdu11ruJHGo6BTZaZFO6fXQFNoajzfMo+noWBAHMvyVObSDfTbUFcQJ1ktH38dI1aKzA8atH43iuTcp10aoqgTPQf3H9/zvFm7K+Zzwq162LrOHQMsYY3+bboWBpjjlWWOE0p59xzwzboQVyW+GF2QLXo8tuJbLTgrAWrbbtLCxSpEiSbHP9ivdtI1FaJy4uTZqhiC6+TPdPi6RWWMHCCt3dHBw+wSfIkaNIke/zfapUKVIMHeY+xafop59HPKJBg1VWw/1aYw0Hh4BgQ4c5vR+d4kCNFtZp6tRD4UyKFFWqlCnzJm/yPu9ToRKu30h4o5cXKKwT6vTRR4FCeD5r1ELBILSLEXW/K1SwsalSDd3v4kJGLWLbDZu5mz3kIWnSLLGEh0eKFB5eeG61KE63GxBgY1OJ+XI4ONSph99FDg4ZMpznPBe5yJx63OAGq6zi4pIgQUDAmgqL1oLKJk0KFMiTZ4218HivqYeFFS4bCW/qyf69xVvcVRk1q1TDfZhiakfuYZsdo9vcZpZZFlmkTp1BBtvEc7Azh7ytHOa+zbd5xCNOcpIaNeaZb7t2txJvTTEVuhyusoqF1eZymCRJnXp4nelzNbXFzcKNRH57cfF71sSPBUCJ9sQ3LVo84hE1apQoYWPTQw/99DPOuBFfHQH26hZqMBgMhmeDg4T8uMidjgZRaJoO5bKJwup0HvkmEq71LpL7vPOb/DYSepIgCj2qAp8GOiNXbxDlvE8hIUs3Y2Wb6pkCThGFPK0Cvw4dv+qk7XeQfOCX2X3+vv0ItQnUfl1/Cv0zGAwGg8FgMGyNmSl6gbFtm7/7d/8uv/zLvwyA7/v8vb/39/jd3/1dXHf9pVEqlfgH/+AftC37W3/rbx1IXw3PKXrkrF3KNkILjDYjHrsYdCz3kW+5fmSk7iKj+EuI41hnvafUsjKRKEy7rllsHfO4Xaym7udG+6lnEhJEwrc4cRe3NWTk3BmvmUEEgrq/FUSI9Vg9K4jnPaqNGuJ25qi6VhFBmzYx0C6NqVj78WOtj4eFHNcUIn67gQis7ql2tKjPVvVUVbkmkYudFkq6yCxG/LpoqLobyAzBSWR2QFMncrPTX1uZjuOn989CZmfWkBmIJnLMTyCzGN9AhIR/h/0V0RXUs0E0o6Md+bQDXQs5Ntrdb0WVOUjGgFvIdbOEHLc0UcqmGjLDo68fncZJf442Em9mMWKrw8yMel1AznceOpLyyvs8cj3OIzN7M5hzajAYDAaDYXNqCyLw2o2gLWhJuW5YuR6JyHaK70m5oc/trlzquPQ1TI4SSHC8FcuYEhfYWYhzW+r4JhVu194wLPwxNAvKBa5jPwMIB0RWS7Zb+GM4+z92197qHRXw34TqE2kz0S9uOU5a3jcK0CzK+tQxWPtYyg2sz9i/JVpY4NdkR3rPQmZU2gEYfBXwxTWNAPy6HOduhQW950TMAuJqV5sV0UKnE5Be76TBTkm5vXAQAhtHDYK1G6K3tvF2ernezukcPB9iNhLY+E1ZXp46ugKbZ4lxTdsbz6vo61mwckOOY+ArpzblpqkpP5Tv5dwElO6I82n+yjPq7C6oqkmXmpp0SebbxXMg75N55UQ3LyK66owR0D2HaJerBAlatKiqhxa4GI4uWtizlYANREy2mdBNu4fF63RxSZNmjDF8fFzcdSK8uCBuq3ZTpAgI1gn9tGhN70ONWiiOqlGjjz5OcYpP82lAhJ/HOc5jHrPMMoMMkiNHlSoJEgwxxBhjeHiU1U2CgIAiRdKk14nh4vuxGVogVqZMkyarrIbCPx+fMmXy5PmYj5lhhllmKVKkRYsBBjasUwtyOoU6JzkZisYCglBkliJFmnR4DHV/teNbkyY1alSo0KKFhxeK2fS2yywDkCaNhUWSJKus8jIvs0A0Do6Ly5o0+QE/YJLJsH4fnxSp0GFNOxDGBWYtWqGQTjvq6X1YZZUllgARwtnYlCjh43OTm8www4d8yBJL4fVVokSCRHht1MObhyI+fMxjHBxGGQ1d9ho0yJBhkEESJPgc0bj7Bje4y118fO5xjznmQjHxFFPbuodtJMDTDnArrITiwTr1deKrnbBV/Q4OU0xhYfFdvktAwHGOh5+F7cRbWlyqXQ5TpEKXQ/1ZzJAJ+z/HHGOMheU6+7mZyG83Ln6HjTHGuM1thhnmIQ8pUGCRxVBctcgiK6xQokSNGoMMMsYYn+WzoVDTiK8ON3t1CzUYDAbDs0GH3vUg4UQ65EmHeiWIwrV0uFkVCcmqILM888BpJDRFu6wdV3XehvDXewEJS+oUoqm0d2SQkC+d7x3aZpHCXz4B8ADJ/e2o/nS2DXANCc/aKIRwK/YaahMAb4H61bn//TMYDAaDwWAwbI25G/6C87f/9t/mV37lV1hakgnzb3/72/zlv/yX+Zf/8l8yMTERbvf973+f119/nQ8//DBcNjExwV//63/9wPu8L2wm1jIcLDo1zWaxjlpYthVbub45yEj9GCLCOoMIsIrAH7F+hFlARqG3Y/XG7z9u1tZOxHOt2N+d/UwiswKoV+1S1ila0y5lcVc3R+3baWQ/QWYL1kDdkxMB4V1kVqGOHBMb8Y1fRMRQiVh9OtZVj8wttU2gyultUK8p5H+TIjJyXyUSz+kylnrVaX9Qr1qEpwVzVUR0pftTVn1Oqj78SWyfiuqp0wk1iFIYadaQtEI1ZCZlUbWXim0zq8p8ksiN7ufYP+pE5mx52wABAABJREFU13qTyCFPCwnj17jeDw9i9yGfDh4ibptRbdrAh8jnoBcRRC4QzXbp86vR14kW0WXV8gpyDawi4s1HGLHVYaXR8bpxUl5ZXmD99gaDwWAwGAwb4aShpQc1OyGQ7bVwarfM/5GIq3aD35ByE39jd+UGLsPMt8QRLRSz+RDEB5ax/bYc+a08EM8Csgu8GpQfqLbiduWd+VyR9YEHlYdSrhsK35M6GkqwZyeh5yVIxAZZiX5Y/UiJ6ZZFJFL43u4FdJ3CgtQxcc5zVABp3yl59Zv7IyywXRFcLF0TEQaISKNRiIRzWJFIAyB/eW9CooMS2PS9Ig6O6RE5Pl5JjpeuH+S9V1L7OBqVOypsJLDxlWtPeeroCmyeBcY1bX94XkVfB43vybUI6jhKwPk6cbNe3ncBCjeg/9LhF3rqz1dLvbqbTLq4OfX/bqO9nOG5YoopxhjjDndCpy8tpNlOeGV49ri4tNSjk+3OnxbDBQShsKezvBaWxV3EbGwSJGjQoEkzrGO3WFg0aIRiTd2ObsvHD5fXqYdiLO0WN8hgWFeRYujmVafOIos4ODziUShc0WKguChQC662c8rbCO18psVrcVGbPraLLPJtvk2dOh4eWbI84hFNmowxxjDDYX2LLFKggIUVOp2NMRa21U8/ZcrhcYgL9fQx1NdBXDwZd4HTyxIk6KWXHDkGGMDBoY8+ihRZZjkUKMbFTze4wW1u8y7v8mf8WdguiAPeCittQj4bu81VK96HLFl8fGrUmGY6vJ604DFJkjJlWrR4wAMyZHjMYx7wgBat8NpwccmSJU2aGrXwOOvjU6bMHHM0aITnKEOGk5zExeUsZ0PRi4fHda4DcI97odBMX/NaMLOVe9hGAjx9jCpUWGIpPEcrrPCEJ5zkZHiMtnPI26r+EiXmmCNDJnT2+wSfCEWm+hrbTLzV6XJYp84Tnqw7d/o69/AoUKCPvnWfi81EfkmSO3Lx2y/22wHvHOd4B0l8M8IIs8xyk5vkyZMjxy1uMcMMNWqkSJEjt06AZcRXh5tO98/duoUaDAaD4dkQIKFM8VA1HS5kEeVG1+/13QsPcV87DjykPfwNtWwYCTlaiZX5U6I87jqnuq/q8ZBQuCH1Xucr1/nL55Hc8cdUnxeQ0KWOmTseAiPABHAHEfBd2cUx2WuozQ0kjM9H8tPvd/8MBoPBYDAYDFtzyO8yGp42fX19/MZv/AY/9VM/RaslE8r/5b/8F37nd36H8fFxRkZGmJ6e5tGjR23lenp6+M//+T+TTCafRbf3ziZX/utvvH6w/TDsr9NXnPjIO6n+fogIqTYbYeoUOHqErfu3H4JLK/YaH/WmkBmBYWSkP4SMjuvqqYR0r/9/XxchkxZj6bocxCXspVidvURirTVkNmAWGI1tU0ZmDXRanoaqT79aql7dVk5tq2M2E0RpevRsRZ5IEJdVf5fV01b76hMJ8PRx1cfEQoRxJ1TbNbVsSW3Xr/bnIXLuUqrefrW+qdqajpVfUvsPIuzyY+Vc1feWqvcj4GXgTeBnVB37QZrofELkvKdnjvQsk57V0dvuV/udBMhszHXahVAtJAXTIu0zX6i+auGjFncmgBy8/uR1WX8SOY5l5FjXVZmpp7Qfhr2T7HjdLCFrqWO7I/Jf/+uvm//TDYcTc20ankdeP/PGs+6CYVviWTB2W26XpIaU4Ks9OHLz60Q50HW6suyUwvfZ/aCtpcrtkoFLIiZrxG8J62fnYM8CKwFur5Trhrk3AV8EhoHeRwdsbfPtg68GsIHazmlJud266wFU5+S1WZJ9cXPt4jmQ926viOeaJRFp6XK7YRNhwes/Pdy+3X4KCwYui1CtdEdEGD3jIiyLC9q0kDN3oXvho+agBDbHr8LU11VUwSDUl6Td6qycK29NiecQoaKbEfe541f3tn8HxSYCm9e/VFICm/zRFdgcNC+ga9pT+e39PIu+DhrtRtqqqu9IoP9i+2+C+qI4htbm5Htbl9tHl7ancp3YavLEUa/eJpMuernezj4iky6GXTHDDKc4xQMeACIKyJLlT17/k1AoYTi8aDev7dzeNsLFJUEiFI9pAYCDg4+Pox5aOKddvlxchhmmhx7SpBlmmCLFXQvQtHNd/KFFezY2/+n1/8RlLjPCCFNMhc6IOXI0aISCOSAU/VSohO5ZLVoUKWJj4+Dg4YXiOb0/Pj4JElhYbQK0naKd3vT+ODikSIXOaJNMhtsuskiGDL30UqTId/gO5znf5g4G8hlMkyZFinOI47R20VtkEYjEjQ0aWFjhZ1Ufw/j+eHih85sWRLZokSFDP/1tIr4mTY5xjPOcD93o9PH9Ht/j9/l9PuADatTw1EOv18K2Fq02AWS8XV2fFr9pJz697jjHQ5FgkiQ99LDIIj5+6DxnY4eiwFFGQ0EWiGPfE54QEIQCKS2WTJCgjz7y5BlmmBFG+CpfDbebZDIU8c0h/+9f5CJDr8v/+yc5uaUAbTMBnhZXBQThMu2gd5/7BARkyGzrkLdd/be4RUDAAgu0aDHKaChC1N8TW4m3TnGKIkVcXDw8atRw1SNBgibN8JynSYeudac41faZ2ErkB2zr4rcfPC0HPBeXK1zhGteYQBLbzDFHQT2KFEOnPhubNGlOcSo8/prdiq/MfP3B0en+uZlT5GZuoc8z5jo0GHbOG+bzsu5OxEGgw7G0cE4TsHFucN1HT5VbJXJqyyEhKNqZTYcNFlRdett4XT4STuciIWUpolCxOFUklKms1n9IlL+9s201c8cFJITqEjsPpN5LqI0H6lenhAfqfuxn/55HzP+VBsOLifnsGwyGp8WL/LvKoPiJn/gJfvVXf5Vf+qVfolqtAuD7Pg8ePODBgwfrth8cHOQ//If/wGc+85kD7qnhuaRzdB2nM/1MN2QRH/SdjDDnELesFCIE8okc1yzaRV+7wSVyYdOpeQKilDkZYCK2vQd8TCSm0u5scXMBHS8JIr6Lf5uvIgImnQLIRkbhLSLRmI/Ee2p3t7raLp6ap4doNO+qfnbeY9DHpo4cMwcZ0TuqHRcR9DXVNlkiVzotkHPUsiRwDmLJHmVG4z1klsMGBtX2J5Dz6iMiOUvtcwMR0On9LKp67Fjfs0TitJTqR0X1fwmZPXkb+En2hxzt7oEQXdedLoP6XAdsnqJoLwTAW6ASU8pxXUCOTQk5xylEpJgCLqo+6WvfRa4vfW77kOOm+9qLHOsAOa4QCRgNh48xxHFzGDnnBURAGY9dX1TLLQjvk48dYB8NBoPBYDDsE92I57oslxndfpt1BF2WA+rL7H7gGKhyuyTRC71nlXBCD6BidbZhi/Ck9+x6EdpOKdwQEV7c/tlNiwhGDyrdhHKcU0I6KyHl9oWneBu+U1jQKIoQr1kUAablittdY6V9u70ICyxLBEHJgUj8osUYYb9S4jy3V/etgxTYuGkY+wo8+YYI/4I7IjSpL4hA0LLkeKZHIPeylBn9CSl3FDgkApvnAuOatj+Ya3L/6HQjTebXC+pTQ7J8P9xID5LMmLg6pofls9UoyHXReZ001KSLFrBmzKTL84gW4IwwwgMesKweWqBiONxs5f5mY4dCpq220UInjRYppUnTQw81aqHAw8aml15GGcXGpkGDPPmuHAu1gC7e7nbodjrFnS4uBQqUKQOEr9oNDkTApgVydepkyTLGGKOMcoMbrLG2o7bjbSZJMsAANnYoLtLivn76Q8GhFh1pQVMPPRQosMRSKJzTn0MtzLnM5VDc1aLFaU7zIR+GQg0twoqLDuMuc7qc7rcWUjk4oXPbAAMMMYSLG4rcHJzQ9Uw74E0yyX/lv/IxH1OlSolSuC0Qiqu0WC0gCNvSYsYWLWz10MuHGCJLNuybh8cTnmBhhU6YVarhdQyRIC4u8NP00x+6ndnYoQhPi5j66CNDhlOc4st8uU24NYP8v7/AAgHBOucw2FqAtqkAT9VxmtPMMsskkyRJEhBQocJDHpIlu61D3nb1V6jg43OXu9Sp4+LSpMkii20udpuJt3x8+uhjjrnQxU9/L+jPm77GPDzq1MmRC88HbC/y00LRrVz89srTdsC7zGVWWOEOd7jABcYZZ575NjHrKqsssRQK6Dp5EcVXR4UxxrjNbYYZ5iEPKVBgkcW274Kt3EINBoPBICSJ0vsdFPFQt042ypsfD4Uqq9fjatsKEo50HAnT89U280i4WA4J7Wsi4VujiEPdEhLGNg6cQsKTikThS/1I3u+PiPJ9L6nyF1kfBnNTta/vEEzCjj1r9xJqM4mcv6pqn6fQP4PBYDAYDAbD1hgBnQGAv/bX/hpf+MIX+If/8B/yu7/7uzQa6zNxZbNZfvZnf5Z//s//OSdOnHgGvdxH9sNRzLA/bHcudCL/brCRkeRL6v12I8xZRAwUxMprtzItEtssSd12KX6001srVl8GEXKdR0bselT/MvB14DEi9tKiKp1WRwvQWqp/DpI2R4vGqoh4STuFadc3J1ZW36esqb9dJJ1NVtWxgsxapIlmXzJETnRNIB5vmlH15oHTql4tkqsSOZhp5zpf1WsTOZvlIJbIUuhVy2aR459TdWjBoQ28CxxT/S6o9gK1nUtkthGo46X3SR8vfRyayOxKWh3P/RLQ6XRGG80abTa7ZMXK7Sc3EPGcj7gw3idy5isixyBFdB0EiGgRRAin0zXpOOG6WqYFdGtE7no6FrPvKeyHYX84B7yj/h5BPmc3WZ/aSq9PI9fHuYPtpsFgMBgMhiOG20Nka72TW7hqW7enu/b8Ll07uikXtESgtHpbBFJ+3IVOo6ym7YS4fOUuSLlu8EpqPBw7noFuSw2UQzGd2sZic5eb7ciMyFgwkRPRh7cmTzcmANTLsGQ7XW7XbSlhQWpYhGalSagebxcblu6JWCI1CIPDUbm9YFkiCOq/JGKW6oycRzspdfee2x+HqIMW2Jz+GlSmYfbbsi+pYfCK4lBoO+D2y/JGUcRzp7+29308KJ5ngc1BYlzT9g9zTe4fm7iRrmM/3UgPit5zsKgmXdIj8tkq3lz/mdPrnbSIuHvNpMvziBZyzDBDgQJNmiRIUKPWJowwHD5sbLJkqVAJBUqd52wrYUinSFI7hWnhUZo0OXJYWCRIYGNTpkyFSihyCggoU+5KbKkFW0HsofsBIlBbVjd6eukNRVEeHi4uT3jCCU6E67UASu9XkybDDDPIIAUK1KlTpYqHxwAD9NLLZS4zwACPeMQKK2GfNiK+j1oI1kcf5zlPjRoLLODhkSVLggQtWuHny8EhQQIfnxo1eumljz766SdHLhT2pNWNiwtc4DKR47QW2GjhmXZh06K1+LHTQrUUKRIkwj40aITXSZIkFSphf7Wwycbe0AHvIQ/5iI+oUaNEiSbN8BpJkWKZ5VCM6eOHbny96qHFWIss0qDBIIMMMECePOc5H7oDPuABr/IqyyyzxBI+PsMMkyZNlWrofKevSe1KlyRJkyYNGuExTJEiQ4Yxxvgkn8TFpZ9+TnKSz/G5de5jnYKy3CZZJDcToG0nwHNw+CJfZJnl8Fj7+GEftnPI265+F5deesmQoUKFAgVGGKFIsU1At5l4S58zDy/8LtDXS1w8qh0p9ecwLnzrFPkFBIwwgo1NhQopUhznOHPq0enitx88bQc8C4urXGWAgVAsqPcjR47b3A5FxVmyLLFkxFdHiHOc4x11Y3KEEWaZ5SY314lA9frO70qDwWAwRCEbOn/3QYrotrrLEfeD7cyj30JCT+4j4UU6r3tGLW8ioWHHkJAVnbPbQvbziXp/TNW3goQxnac9PzuICE+HNZWIwtg6Zu4YUsu1C944MMPOBWp7CbX5jlquZhafSv8MBoPBYDAYDFtj7n4bQl555RV+8zd/k+XlZb7zne/w5MkTCoUCQ0NDnD59mh/90R+lp6fLgLbDhrkneThQcYWbOs3txYFOO5ulYsu2G2EuqlctqtLObUki0ZdK6t+Gg3ybxt3D4v2I74cT295Wr8doH+UuIIK6IiLs8pHRtBaCaVc6Vz2XaRdbrSEzAk5su14i57VltW5V1ZWK9b8Z294jSluUQVzfelUfaqqOJUSAhdqPTwD/jXr/A+AakVBNi6oyar12lUsRudNtdq85iZy/UURQd1Ytuwp8CXGMe4TMkqwSzbho5zvtsJdC0g7FrwvtnldV/WwhMzD7iUUkGGzFltm0z2rpa+5p4AHXVVvvEAnp9HXRRI5dQ/XhZeQ4DasydSLXwCUi0Z0ywgid/Dyi2Z8EcOYp7Y9h77jAFeRzqkWpc8h3pJ7Ns5AZPb3+MubXo8FgMBgMhq1Z+xjcDDR3EdzuZqTcYcdyIGhCz0si/iIQQVYQm2SwbBG1OUnZLvCkXDe4vWqsoAeVtqpfDyIseR/PthLQLnjbDfnPiQArmZdA/lYV1h7E3tck2N9viDgwOSiOd/nP7b6t3nOw8B2o3FZCiBZUH8uYwnZF7GOp/fMbUJmC/k/vn7DAdkXI8rTELActsLEsGPiMiDOaRbBtOUe2ukZtR67DzIm9u+sdNM+zwOYgMa5p+4e5JvePTjfSzQTgevl+uJEeFLYrgu2la+LqCPLZahQi4RxW5PoI4oBqBKvPJWOM8SZvMs00ZcrUqIXiCeNAd7hxcEKxDLBO+LWVGAwIncu0OEY7z1lYobtaDz0EBJQohQK9Fi1mmAkd5MqUu3Kg045NHl7oDKfFOQ4O44zTQ08oxLrFLUqUyJEjS5ZJJkOR3wMeUKQIRM522sUMxHHOwgrbSZKkn35e4iVOcILv8B2SJKlR27S/8X3UTnwjjPAVvsIjHnGHO9jYTDGFj0+SJFmypEmH9aZJ06RJnTolSmTIhI5zIKKvy+oRF3cNM8xjHnOGMzzhCUWKuLikSePgUFEPfb61wO8Up8iom14L6pEgQZ48VapMMUWJUngtTagHtDvgvcu7Yb+1u9lxjociMy3k085/AUF4vHuJxn9aAHiMY7ykHq/xGg0azDFHnjy99PI9vkc//aH4ysMLj6F2E9NUqIQOafqYpUnTTz+nOc2n+TR/ib9EkiRjjHGOcxu6nXUKyrTQrJPNBGg7EeCd5jSf5JO8z/thP21s8uS3dcjbrv5++pllljx5llmmQoU11vDCm8pbi7eaNLGwyJDBxQ0/K/pa0t8nNjYubnhdxd0gtchvnnmWWQ4/d53MMUeKFHPMcYYzoYvfXjkoBzwLiytc4RKXmGSSGWZo0GCCCRIk6Kef+9w34qsjiIvLFa5wjWvhd+EccxTUA7Z2CzUYDAaD3AloEOXkPsjZpnj++3j6RJ3bvTP8Sd+18JGQrCdEueB1zvkqIogbRcL5ehEBmkOU672l6qirbR4hYW+bOb4FSJ7vAlGe+I3IqW30MdzNsdxLqE1ne0+jfwaDwWAwGAyGrTEzDYZ1DA4O8tWvfvVZd+Pp0mXyd8M+Y7N+BL2fOERpXrRfew+bjzDLiJhoSfVLi920aG6j+6AuIhYaQIRDZQjv+WiTAJd2UVRD1Z9TfVpExGY6Dc2ken1FtTtFJLxyVDsOMsPQJBJ9aVqx7S1V75Aq04htq8vViP430I5wa0RiKS0MtIkc4ubVvur7QgnaRWkAlxAXvWlE2KbTAw2obUeR86NT77RUu/FYzzX1tNSxygE/DHwlts0FtX/vqbaKRG5+S2p/4sK1zn6miK4/vc1+zjw0ketKiya1mK4TPcvlItdpl0YamzKJzCj9AHGfCxBxnBaGZtTfS8g5mQU+jZy7EUQgWUHOhxZserS7ETaQ6yyHzEidUs/nHQ85vjNEAsQxJH3UYf+ldRmZkbyDfJbGkc+33o/jRG6CF9T2BoPBYDAYDFsRNMXtqlliZ4NvW7YPuvwBHGwesLrv5fymuMllT4rYy3LByUYiOi2ea1XAScl2gde9S97AFVj4YyXAs4AWeJWYaC5Q++HLey3wG7jSXXt9F0SgVrojQqvqNDRXRXCjRW1+U4RZ2ZOyrPdsd+Ia2wU3K2KC1JCICerLrMtIkzom62tzcOwLR0dYcNACm5UbUL4Px14VN8eVH6j6tANdHwx8GvpfgfI9WBkUYcdR4HkW2BwkxjVt/zDX5P6h3UjTw1B+qP4vWFwv7GwUELHZ8ajcUWDgMjRW5P/VvgvymarNy3e+k5T9cdSkS+6CbG94LhlnnA/5MBTfaDezBAkTEH7IyZBhiCHKlKlT33V5LYQJCEJxnHYKa9LEwQmvgTp1KlTahFE2NiCCns2EelsJ63x8GjRC8Z4WvQUEZMmSJ08//W37GxBwilOhuEeLGhZZJEuWMmVy5GjRop9+aupRpUqCBClSodhrgAHWWAMgS5YWrS1FgPF12lXuC3yBf8g/5N/x7yhSZIYZ6tTJkmWMsTbx2BprlCnTpMkxjtFHH0mSnOXsOnGXh9cmzJlmmiJFChRo0SJFCgcHC6vtvMWd6PR51PucI0eTJlX10J9x7TyWIcMSS2TJ8mW+3OaAN800AFWqgIhM4gIu7bCnxVJaCGlh0UtvKMrto48qVdKksbCYYIKrXAXgbd6mQoUppggIGGSQV3il7ZhXqFCjFrrTubgkSJAlG4oxNSc5ySlO8dP8NF9pu2m3MWOMcZvbDDPMQx6G19VO3cN2IsCzsBhkkHHGsbFxcEiTZoyxbR3ytqt/iCHucx8PLxTmzTATOlVuJ95aZDEUp1pY9NBDP/00aYbCuQQJihRp0SJLlhw5FsPsr4Sf5/vcZ5FFBhmkSTMU4GqRYIIEiyxyn/uMM94miNwLnQ54ABe5uO4c3uTmvjjgubhcUA/NIINGfLWPdH4XbieE3Q8uc5kVVrjDHS5wgXHGmWc+bH8rt1CDwWAwRKFQEIWE7VfYXacsP16fFrSBhAjptnVue13Wjv2thXUOEmq0oMpqAV0SCWFqqnU1JIzsvKpH76uPhIItIeFLvUjY0maOb8eIwvR6YZO0DdHyZMfrTtku1OaY6uc9tV96W7ujvafVP4PBYDAYDAbD5pjZIsOLiUnLcTjQI2I9au62Dth4JkCLz5rIiLxftZMhcsWKjzD7EKFTCklzox3TdN889exMmaPFeQ0iMZoWselt4g50KfV6HBF+6bQxOhVOQdUXICK1U8gsgE6vM4WI7rRrWFmt08eiTnRsG2pfFonc5CrISLtOJMrTbnUqJrMtFZBetogIp9JI6pxVIqGhq17j4jcLEQE2VD2Dan8vqvXTwLeB06pfNeABMsORVu+12DGjyieATnMDC0ntc4n1IiYf+BPVNy34K9GewqdEJATMqtcTbEw3Qqmy6vs8cu5bbDyzoZ3cksgxKG9SX7fMIILGSdVWAzmn+tqsqTb1dbuInKMxREA3hJwXl3bBpJ4B07NXSeT6PYnMbD3PiR0D4Abi7Nf5/8ptxOnvCjJzdlgNHizEyXEAVOJQ1D3NiBSyD4d5PwwGg8FgMBweEnmiDBw7FNDhqXJdEHSZIaebcpYrz1YNEn3gtkRMhh0JzPChlRYxW6sGiX4p0w1jr8HdfwN2gmiQ1lJ9jw80UX1ISLtjr3XXnu3Cya/Cg18XIaBlK3FXVd7bCdnvZB5Sw+Kac/Kr3YnafE/EgOkREXtZNqQGZZ3livAQZHl9UcRfXlXKHQUR3UEKbHwPCtfl79I9aCxCdgySF0Wg55WU49GirO+7AIUb0H/paBzL511gc1AY17T9w1yT+0fvOVh8R/5Oj0BtVlwQk/n27y+93kmDndo/N9KnjWXB8auQHIi+p3s6Jl3slDjPHTV3UMOumGSSlnpoEUNcmGM4vAwwwBBDbeKM3aBFV51ug9plbpVVqlQJCKhRaxPZaWGPdqzrxMYmSRIbmxatNpc5jRbOQfs1p93nsmQZYggXN+zjAgv004+Ly0u8BEQCvjx5JplkkUXGGOMsZ0PhjhZXWVgUKYauX1pwdYIT/Cl/umMnPRubGjUucQmAVVYBqFELxYABAfPMh8KhDJlweYMGOXKMMdYm7goIuM513uO9UDTn4THDDI94xAwz4XmLH08taNRCp4AgFLTpcwHQS294HrWDWOc1sRG6vIMTblenTkrdiEmRars2tChTl61Ro0IlFHelSJEgwZnwZuj2Dmsv8zLv8R6DDIZCRO2wps+Hdjw7znHGGSdDJhTobcc5zvEO8v/+CCO7dg/bqQBvhRWOcYzP8TnWWOMsZxlhZFth0Hb1OzjkyFGhEgrhlllmjjmKFLd1GdTnNU+eGWZCkVwqlvWzTp1VVkmRIk9+3fWSJMljHoefh1lmKVBo+0xpZ7okSVZZ5TGP24SSe0E74C2wQEBAnnzb8QcRGubJU6DAPPOMM75vDnhgxFf7RUDADW5wnevrBJa3uc07vMMVrqwTmu4HFhZXucoAA6Gj4XjHjcnN3EINBoPhRSd2h4Ag9tRhXdC9iE6Hvum6AqK7OzpXuA5jiucnt5FwriaRC10CCUvTd4lAwtMKSEiUFvytqTq0K9sCEso1v0H/FlW5VSRPuL5DspHjWw64C3wSCZMqsLlbnUWUR363M3ebhdoESGjWDbXNKdWnO+q5jBzHIeDhU+yfwWAwGAwGg2FzjkCUhMHwFDD3JA8HLjJKDOjebSs+Zxp0/N1ARuWzarsZ1U4/IuoJaB9hfhJ4G0kDU0ZG3Fqc5sTqjYvnWshIf4bIMz7urIf6W6fQCVT7I2rdOOLypdPQlIhG1B+p+keJhF3aEa+hnj2qfylE3BSoOmpEbnM12oVSVfXUsypaEGjHXuP7qvelqY5nhXa3NIhEYXNqey0qLCKzKKfVPvQBZ9W2f17Vf1+Vn0ZmO6qqvHY3yyBiLFeV3ewei6vWxdc3gGvq+KRUffOqnRRyvmpq/1KqX0ng8x1170Uo1aeOgT4eWURoqB0AtQBxTdXdr7bv22Q/u6UKPFJtrhKJ9bLItVNVfdDXQ4DM1vSq7Upqmz7VR32d9RCJ/yzV91eRc36F5/eXRgC8hcy8gRybBdqd20CuvxVk5uyw3uPZSoR6VJz0DAaDwWAwHB56zirhhbftpoIn2/ec7a49y95+m30r50P2tDgyueoHuxUTsjkqs4mt3GSCFmRP0fUkhJOC3pciN7E2NrgVHvjQc0bKdUv+irjlzP2BCOaSg+JCF7REnJfoUw50p2Dky927mK1Nilte9jQUbwG2iL7cWFYWb02ceqwEZMchaEi5o+CGdZACm7VJETm1quLUB9B/cX1bxZuyXos3jsqxfN4FNgeFcU3bP8w1uX/Yrvw/snQNchJoTm1OiX5j4U/pkWh9/vLREP9qLEv2sf+SfO9WZ+Q7207Kd37vuaO1P4au+B7fo48+ppkOxVIZMtu6cRmePSus8AEfUKW6Tpy2U7SYSqOFT9rtSzuHaQGDFr1p9zkHh+YGN9C0g5WLS4NG6GzYuY0WHsSFdBkyVKlSo9bmnGVh8Rk+Q4YMM8xwkpOhoMvHZ5ZZRhkNxVlVqqF7loNDhQo2NilSJElSphy6h9Wohfu0EwICXNzQwa5P3TBJk6ZJk2WWcXDaxEfzzLPMMhZWKKDpi91oCQj4Q/V4xCOqVEMB4DLLLLIYisRSpEJ3OwcnFJRVqeLhkSRJj3oMMICDQ4sWK6yQIkWaNAkS+PihI1+VKic4wUlOcpe75MlzhSuAuLlpx0IHBw+PIkWSJHFxqVELRY5xNzwLi2WWARHGaZFXH32cUg/Ndg5rSZJ8kk/yR/wRefLUqYeCxTJlLCwyZBhhJBRD/QQ/ER7r7XBxucKVHbuHtWgxwADf4Ts0aGBjs8wy/fTvSIDXQw+DDPLz/PyOnLR2KvDro48SJerUSZMmRy50TNzKZVCLVW3s0PlRf/a1K6KPzyCSWEY70sUFasMM84hH5MjxgAdUqdJPP3nypElTo0aBAkWKZMhwlrM85jHDDO/oHG3HdiJMTY4cBQrrtt8PjPhq7wQEvMVb3FU3OKtUWWChTYQIcI1rrLDCVa4+FRHdFa5wiUsH7oBnMBgMRxmbKFe3DvfS6Jzp3TjRaSc5nyhUSwvpdE51GxGKtYjCw3RYXZ1IZId6r0dAOsQNIkGdvqOiQ8K08M5T2zeRcCQdTtWHiPJWkRAlCwmjO0e749txJPSphYTvnFV1z7K5W92IKpOiu9zgnaE208B3VfvnkXCqZSQsTvexH7iFhN4dR8Lsnlb/DAaDwWAwGAwbY2YdDAbDs0ML1LoVz0G7sK1zhsBHRqUekRBMC5X+FElLEx9h/hDwn1V/cqpvPjLa1uYJcb957UUfH/HH54+TyGg4TSSAS6i/tYjOV8v03P4dZDQ8qdYNq/LLRGI4V9VRIXKoO04k2HkAfKj2WzuD6dQ0ltoffUz0sdPOfD1q/6u0EyBCqmOqH2lVp+5THREJ9SFiPRAf+nnEfe2HVP1fol3g9t8Dv050fgqq7UAdFy0+G1bH66vs7n+uM4gw8vtEMw26zzW1TUu1lVP79QrEknLuXSg1rvo8qvavhhzjJHJMPCJ3wD61Xfya2C8Wic57XbUxxnrXwJvqVd93XkJcD0HOZY7oHGSJzn8KOW4nkc/EBXiuEzveQK4JH7nW52j//nmIXLMTyOd6ANS98MPLRiJUg8FgMBgMht3S9wlxFtvxbdpAtu/7RHftOenuxpTOzoL82rCTIhwrP4DmCjhZCervFJjV5qBVEVFU9lT3ApT6AvS8DCsfEN2ujmd1gWigp549L0u5brEsGPkSpPKw9B5Up6FZFEc4yxVHvexJGPzc3txyqpK5XkRleREKpkfXt1WblWX1BXDHpZwRfbWjj2VtAQiUQ2C7CwCpIVneKIgosecIHcsXQWBzEBjXtP3DXJP7y8BlEW6X7sh3Us+4fE+1GiLkTB+P/s/OXZDtjyK2K/t3FL53DfvOHCJwL1MOhVPaLcwI6A43rdijm3MVF7B1ug1qIZ2vHpvVr4U5G7nLVaiQJUuDRuj0Fm/bwSFJMhRaaae2JEkqVChTZkpN/seFSzY2P8PP0EdfKGrIkuVjPiZLlj/gD1hiCQcnFMVlyLDCCi1aoYBshhl66SVJkimmNtzHTlGG3kaLtYoUATjDGRwc1lgLj5sWS+njo13wbGzWWMPFbXNgu851fpvfZpZZFligQCEUtRYphn+3aFGlyjGOkUec0nvppUCBJs3wnDRpkiTJMMMEBHzER6ELXw89ODi8zMuMMx6Kr+aZx8bmAhe4wQ0ucQkXl0/xKb7Nt6lRo0iRJk1q6iZWXHykj7erHilS4X67uCRJ0k8/JznJec6H7m2wMwe3M5yhl16aNDnFqfC6c3FJkGCU0dBZ7/N8nq/xtQ2v283YiXtYihSPeUyTJjZ2+B0K8j16i1uc4hSjjG4pwNPt7VSEsxOBH0CePAkSrLBCP/3r3Ao3ExplyHCa08wzT44cDRqkSIXXfJJk6DyYJImDwylObehk+KzYToSp0cs7t98vjPhqb9zgBne5i4/PPe4xx1zb9/NDHoafozvcYYCBUOy737i4XFAPg8FgMGyNzst9DAnPWUVCVXRYWDx3+mZ0utRZSNiQRXSLRYvnUOv0/6iDwEuqH5NEYjctmmvG+mHFlus+uUTiPz1yScX2oareP6I9nA0kXK5OlFs+g4R2pVkfVpVCwpT+G0TIpmbmmGNjtzq9/jJ7C6LWoTYVJBwwh4QR3WHjMKJTSGjfGSRE7Gn3z2AwGAwGg8HQjvltZTAYnh16JLxVMn6Hdu/5znVpolQ42lVNo2cImrH3LWQ0vYSIzOJcQJyzqogwDSK3sbhYTovSdHof7fymxXAQpdwZRGYw0kQpf8pqu8+rbc6p9dqBroII2Vrq71tEAquqqkP72KeR0Xcf4ufuIoKz+6qMTtfTJJq92GjWRDuI6eU6PZCeMfGRGZhBomO+RuQQl0bc1Z4gojk9S2OrfkwhTnudsYBXENHZH6h2BlU78VRCGWT24MvsXoB0Dvii6luZyDUwHmCbJbqWzgE/3NHPvQqlTqtnFRHbrarlui+67bTa3z61v6d3ua/7QT9yTVaR49KDiBdPEIkFU8Bj5BieZb2rmp6R2siN73nBA5XYUq6JWfV3Z0oovfwCch1dwvzyMhgMBoPB8PxTXxBnsd0QNLsXfWVOQO0Ju8urakm5XbelBCiDr0J9GRrL4NcgNRht462BX4fkEAx+XgRm3QpQvCrU58HpFXcxv0l0C7pjf2xXtqvPS7m9cBBuOb4abLfUa6IfMiPyjNOqioBOb+c3OBIcpMCm81i6G7sA4Oak7aN2LOHFEdg8TYxr2v5irsn9w7Lg+FVIDkDhuizr6Qh/slPyHbkX4bbB8IxZZpkVVvDxsbBo0NjQVcxwuGjQoE6dCpWuygcEJElSp77hOthcbKNFWgl100k7mcXXN2lSoRI6V1lYbU5zOXKhKMfDo0IFC4sECTJkGGaYE5wIhUvaSewCF3iVV7GwQlGDh8ev8Wt8wAehiGyFFYDQPUv3K006dEnz8ZliigqVcDstNooLDDuPS5IkKVLhsTvFKZIkQ4FeiRKrrIYOeSCCRxubHDlatKhQYZpp3uRNbGz+L/4vllhijjmmmaZGjQQJXFxatKhTbzt+LVqhu1gvvXh4NGhQoxaKmurU8fBYYil0TKtSxcHhNKf5EX4k7OMii9zkJnPMhY5Zk0xygQtc5Sr/B/9H6K5XpkyDBi1a4XELCEiQwMEJncwGGAivFQuLPHle5VVOc5orXGkTEe3UYe0VXqFIMfzOOsvZtvOUIcNP8BN8ja/tylVQn/Ot3MMCAj7mYxIkOMtZatTanLGGGaZChQc8YIQRPs/n1zlnxa/jy7vM8ridwK9Bg2mmyZOnhx7q1KlSDYWwW7kMjjHGKU6xwgrLLIf7o0W6jnrMM4+FxXnOc4pToYsjwAILnOY07/EeOXKk1KOiHkD4+UuSZJVVXuZlFthDkp0YOxFhLrIYOlpqJ7P4PuwnRny1ezy88LN3j3vMqhuZnd8Denmn2NdgMBgMzwYdrhYg4Ug6J3pnKNxWd0js2LYQ5aq3kBAlFwlz0SFmcVc6LVqbJMrV3WC9IC/+qu9i6NckUW76uMhOO96hXktI2E0eCaGqIaE3RdWHs2q7v6rWzxDlPh9DQr1c1UYRCeG6gAjtNnKrg/3LDb6bMKJRJMxsGvjCAfXPYDAYDAaDwRBhZjkMLyYmqefhoHMU3YlOoaNH5ZvFdun1nUI8GxnJJ5FRuBbrlRCh0DTwESLsQrX13yGj6AQi+lojEq8laKdJ5CNvq/daEJUgSp+TIZohyMb6OY+kk0kjrmV6n3+g+rKACOgyqq4EkXtalWgmo4mIrT6p6nhMJPbTx8xW5fWMRKeITqcU0veBdeqehnrtRcRUeiZEiwPLat2CKr/cUecxRNg3h4z6O//XsRBXujzwHnJOiuqYush5Ogl8ju4EWa4q20CO1Z+pPjuxbSy1D19ARI2fjfVzP4RS59SzQpQuSAs947NBTmx/z7NebLhXtMDSIhJBziDXpJ55qiDHKUF0zZwhSmsEcj38FeATwB8hAs8qcp2+glzLXZh5HCkmkWuqCmHy04sQu0cojn831frxWDlzH89gMBgMBsPzzsKfiIPYbgg8Kffy/3337Y1+BQrf7a7cbtECFBfo/yRUnohgor5MmK3ESkD2jLi0uZm9CVDqc9BYBDerxnadmU8gGhAj2zWXpNx+8DTdcrQrn6NevY0z14fL9Xbduvk9Cw5KYPMiHEsjsNk7xjVtfzHX5P5yEMJtg+EZMsQQT3gCSOC6hxc6d+1WfGI4WJo0WWOtzQFsN2gXNS3O6lwXF5l1ol3jsmSpUVsnoNNiOS2ci4vntPucgxOKfLSbl4ODj0+DRptTF0CKFJfVo1PY5uKSJcsccwwxxLJ6xF2LtGgnRy4U353mNA0a3OIWffSF7nFa9BWoR3wftECsh55QaDrOOD4+efIssBAeOxubBIlQ1KcdvKpUmWaaFVZCId27vIuHxyKLBAT000+ePGnSuLjUqYfH2sKiqB5DDFGjFh6/DBlSpHBw6KMPFzc81/Fj9Uk+2SbwG2KIPPnQiW6ccWaY4QIXSJPmNV7jt/gtXFxucYsSpfBcASRIkCXLMY6RJctJTtJLL3XqpEhxhjOc5CQOzobisZ04rFlYjDLKj/KjoZtfkyZVqmTI8AqvcJWroUitG7ZyD4sLje9yd0NnrOMc5wxneMITsmTbBHjbXcc76dtmAr8WLf6MPyNBghatUOR5hjNtwqPNXAa1gPESlyhS5B73mGeeLFnSpKlSpUIFB4cJJrjEJdKk21wEGzQ4xSnucpcllhhllH76WWU1FOH10UeRIsss00cfpzjV9XdYJzsVYer1adKkSLXtw/OEh3fkHPAmmaRBgyrV0N3xIhfXiSA3E/saDAaD4eDRQjOd+7yJhLG5bCxi26oehygXus4VfwIR5dWR3OFJJGxIO8pl1PoKElKkxXoptUz/jxcQ5XOPO+LFQ9QsVU4v02F8OpxOu9rtBO34ttn/ThYSujRAFPK1mVvdfuUG320Y0eeRcK0iEn73tPtnMBgMBoPBYIg4nDM3BoPhxcDqeO1cpx3WtHhOj7KJrUuqZQ2iNDL6HmIGEUZl1Psa4nam09k0gd8jEtBB5IjWg4yk7xI5qmkHNx1jpp3g9GyFTvGjR/9aAKj75SCj3yYyKr6PjIDj9y2aRDMeq6pcRi2rEQmv9H7WWO/i97ijzYBIEAeRo5w+TloopWc/4vvjq2XDiIjqnOqvg8yeLCCucxlELKfPW7zuRXWMq0TCuDgWctwvITMKm6UI6pbLyDm1EXHcB8ixryHX0HnVdoL1qXv2QyjlqnYbqr33iK5DfY4sRJT3OVXHlT3u80ZkEKHlPCL+05+pCpFwUs+U9SIzNGeR43OW6HycRdwb/6OqI0P0GXsI/Ibq//M8izOjXheQc5in/ZpAvc8josl55LzOYAR0BoPBYDAYnn+Wv8/WNuMb4atyXZA7B3YG/F24QtgZKbdbtABl8c9E+NRcgVaZ9tvTDVnunIcg2JsApTYPQUu52ulbyVZ76tZAvfE98Mrg90m5w45280sPQ/mhCHjqi5CK/bCuLyphjyViM13uqHBQApsX4ViCEdjsB8Y1bX8x1+T+8zSF2wbDM2SQQdZYC12GtOgJaBOGGJ4/WrRC97e4wA0IhWObXQNaUObgkCZNQECDRptgzsUlTTpcrp3dXNxQ5OXjkyDRJiTqpZdRRkmR4ixndyT60A52I4zwA36Ag0OWbNu+adGbhUU//ZQoUaGCj0+adChA08JRLUTSwjctNtNOa1mynECcw6eY4gQnKFEiR44mzVBoB+JYF3fZy5AhS5YP+ZAcOW5zmyZNypRZZZUMGV7iJXrpDc9VjRqPeRz2AWCJpbC/PfRQo0aLFj30cJKTHOc4Y4zh4zPIIAUKrLDCCU5wilPrjmOOHAUKoaApLmz6Gl9jhhne5V2+yBdZZJFppmnSJEGCE5xgiCGKFOmnnx/jx9aJcLcTj23nsBZ3cLvEJa5yddcitJ3S6R7m4fHr/DoODne4s6kz1hxzjDLKn+PPscoqE0yEgrb9EC9tJvCbY47znKeHHr7P97GwdiU8igsYf5gfZphh7nGPKlUaNEiQYJRRJpjgZV7GwuIyl9v2RTtKnuc8q6zSoIGLyyCDbfvQpMkxjnGe86GwdT/YqQgzLs7t3IfngYCAG9zgOtfXiRNvc5t3eIcrXOlKxPm0mVE3OBdYICAgT77tGoatxb4Gg8FgOHj0r70mEkJUVct0ONd2ees1WsBmq2cGOAX8j8DrwP8H+D+R8K8mEh6UVWXqRHm667E6skShdHHhmw6Zs2PLLSSfeDzEb01tG//f0kbymLdU/RDlB08iYXQvw478dZ92KFonuw0jWkDCiCaQc/G0+2cwGAwGg8FgiDiQ31m+72PbJouiwWDooIWM/jaKrdTioiZRahor9rQRwVavWj+DjNT1yD2JCOAcRDhmI85aHjKToF3oPu5o1wJ+DLgGPFL1ZWN90Q5wLpKK5zhRapwisISMcj21b2XEVU0LjJZVnXpk/xhx7dK4RK5mgeqrjseMp+lB7VNF1ROfjZiNHSNHtTVEJLRLqGeZSOgWEM10NIlc9wbVflqIh7yO9ZtT2w6r49FU63tj/VhDhEMJIqHgVg5c26UI6pbO1EKfVc84m6Xu2S+hlBbxWcjMxxNEbFZXbZ9BnOcc1ov49osx1fYKch0mkfOnr189qzWv+jmBzCT9eGxfAuAtRFgKcn0uEM3iqDhMrql2rvJ8iugaHa+5TbbLIddF5/YGg8FgMBgMzzP1ndy63MdytiNChfIDoowjW6G2t3eay7SD/s/A3B9Ke6lj4GTExclvgp2A9Kg4z5UfiICp/zPdtQNAAF4VGstE++Ztcle8BY0lSOY7VxxOtJsfiONVbRaKN6X/bk7c0rQrVnpERD17cfN7VhyEwOZFOZYaI7DpHuOa9nQw16TBYNiGZZZxcEIHsoAgFNMZDj9x17fdEhBQprxhHRZWKKTcyIEORASjrxV9/djYoSCj82/dZpIk/fTTS28oTsuQYZpp6tRxcTnFKU5wgq+wM2fuSSZp0uQ0p7nGNZZYopdeeugJt6lTZ5FF+ulnkEEqVFhhhT76GGWU+9zHxQ1dzWrUwmMREIRucwn1aNDg83weENHHKU7xgAf00MMQQ2TJssxyKDBzcZlnnibN0MnrHvcYYYRHPGKFlbBN3QdNhgwDDFCgQJEiAQFp0iRJMsBAKPwLCKhS5TjHSZEK+6kFeAkSHOMYefIbCmdKiCu0FjTFhU02Nn+Hv8PX+Tpv8ibH1SNOhgw/w8/wl/nLPODBrp2vtnJY0+zFwW0vdOOMlSfPKU49FWFPp8Dvbd6mQoUpproWHsUFjJ/gE5zhzKYCxo1cBMcY4za3Oc5xjnGMFi2OcxwbGw8PFxdfPRwcRhgJy+0XuxFhbrQPR52AgLd4i7vqRmmVKgsstO0/wDWuscLKUxWhdkOneDe3yQ3OrcS+BoPBYDhY4qPGOhJqFM89Dzu/G2DHttUhbycQgdoZ4JNE4WkgIUDaiU6X0fnWUeWGkVAsHSbnqmUz6qld6XRImq4j7nKnwwNBwvMGiQSCw0ioXxEJc+pDwp528z/T0wpF66TbMKIWB9M/g8FgMBgMBkPEgQjoxsfH+YVf+AV+4Rd+gVOn1mdbMxgMLzA+Gwvo4mI5iL6tdCqbFDJqHiISr2mvee2oFi+n0SN5PfruvG/pI6l1foAIoRYQAZwWn/WrNgrqORHrY1Jtn1LbN4nS7QwiQrOC6msGcfJ6jIz4NVowuIrMGGiTgc4+6n3QaXnuIrMTJVBJGWVmoRprX1NDXNP0aFwfU0u1Z6u60sjsw2nEhezH1DLtyPYJovRG/YiATp8HVy2bVct06pxn5cDVbWqh/RJKdYr4xqHjnuTmIr794hzwDnIMisA9RCyXRc5rFbnmHCLxXFqV09xArjVflZ+j/fp8CIyo8neQ/b3yFPblWZPseC1tsl2pY7v9SfJpMBgMBoPBcLhpNbffZr/LpYagtgCt1e23d3pk+27bK74PThZ6zsDSe+I2RyBCk8CD6hMRLg1+TsR1xfdFQNUNAdAsQqAHittt35T+HAH9XOjmt3QNcpKZntqcCL202AtLBF96/V7c/J41T1Ng86IdS8PeMK5pBoPBcODMMUeaNB6eEc0dQTYTt+2UJMnQtSyOFrZtVr8WlC2zHPYjLpazsUmph65Du7D5+AQE68RtFhYpUgwzTIkSM8zwJm/uSHw1wwwBAe/yLg0anOJUKGDTwp0TnOAJTyhQYJJJXuIlmjRJkuQYx8iSZY21cF/0MdBub/o9iCNcH32c5CQg4g0Li1FGQ1e4AQZC562AgI/5OPys6TqzZBlnnI/5OBSDaOFcgQIDDGBh0UsvDg4ZMqGLXY0aKVLY2FSphqK8M5whT54yZfrpD491lWrolLbCCossrhN/FShgYYUim05hk43Nz/Fz/Aw/w9u8zS1uUaVKhgyv8ApXudomTupGOLaZw9p+Obh1y2F3xtoP4dFeBYznOMc7SPKUEUaYZZZ55te59NnYjDBCmjQpUpxj/5KnHGYR5kFwgxvc5S4+Pve4xxxzbU6iD3kYOvDd4Q4DDHDlEN0o7RTvlja5wbmV2NdgMBgMzwaL9lAxnYMdJMQn7ka3GTpvvYuE8rhI6NqvA98D7hOFjbXUa496xvPjW0hudQ8JczqtnnGqROFjus81tVw71MXz7ev9WVPPvth+O6ouHUJ4V/VJh6YdFkwYkcFgMBgMBsPR4UB+R05PT/NP/+k/5Z/9s3/GT//0T/NLv/RL/ORP/uRBNG0wGA47Duud1SASdXV+SyURsVI/4vrVq5Y9RlLhJImc6MqqvK53VT0BdX+pXbwG8HVkZsBHBEDLRLMM2rnOVeVdRPA2jozME8goPgEqiaWwm/uri6qukqo7jp4x0Cl6fCL3sCVgSm2XUe2nVR09yDGz1bY5tbyi6kiqfelBZkniQsR+xBntZeC/pf18fIyIqFDbjahnHD0rclgcuHabWmg/Zzi6FfHtF65q/xrww8i1fw85Rw3kuh1FxG8vq/5ejvXJA3UvTMppoWYeuaa0c6JefgER3F3icM1a7QdjwG3kGD5E9nuRdnfCRbXcInLm278knwaDwWAwGAy7pDMn6W7K7RK7y+Cobsu1yuL8ZifATyix2SZYiWjbVnn3bfmeuDZZFrTq4uLkN0Q4hwO0wHIh0S/rLQsKN0So0o0gxfegWWLn58EStzG/e5eMA2XgMjRWoHRHhGU941Cbh1YDnCSkj4tbGkDugmxv2BhzLA27xbimGQwGw4GhBUZ7cTIzHE1sbBIkSJJsczvTdArINkKL4eLbaMHXEEOha9oSS6F4LkkSH586dRIkQkFZliweHkssUafOec7zMR8DcJvbvMM7XOHKhqKXBg0e85gFxDm8SpUaNQICHBwCAh7xiDXWCAiYY44qVYYZJiCgSDEUEup9sdRDHwfdpt7nvjBsNhJvpEgxyCD99DPKKEWKeHisssoQQ9jYrLGGg8MYY0wwwUu8xCyzlClTUw8tiFtjjRy5UFxYo0aaND300KJFhgwNGri4jDBCihRJkgQETDBBkiQNGowyGooUGzRCB7VOYROwI2FTmjQ/qR5Pi06HtWfNYXfG2i/h0V4EjC4uV7jCNa4xgSRHmWOOgnro+rWAC8Qxbr8FkYdVhPm08fBC0eA97jGrboh2fs718gtc4AY3uMSlQ3M8tIvhMMM85CEFCl2JfQ0Gg8HwbOh0ndO/2C0k3Ke5wXZ6vd5W51MHCXW5gYSxFGjP854EjqlyafU3wEdIOJrOa9+P5F7vzLW+pupaVuUcJJRtVfVPpwyM59S31d8ravmo+ruJhLrpu1yzSLjaryMhUE8rR/luMWFEBoPBYDAYDEeHA52pabVa/NZv/Ra/9Vu/xUsvvcTf/Jt/k7/xN/4Gw8OdChaDwfBC4dDuBKdFdQ4yEg/U31osp4VGerQO4iuvR946TU0DGX1rwZlOk2Or+hzgR2Lt1oA31d93EFEaiDioFxmFr6rtmkgqnRnEWSyhypwAPlDvHdX3FUTQp2cQBtR+rCJCpYVYH1pIWh8/9j7uxhfQnk7IVvt1TLWdRFL7vE3ke28jo/C8Op41Va+DiOYSqo5c7FhbavtXVX1XaP8f40VJnfM0Zjh2K+LbTy4j1+MdZBbrDOJCp4V8x4lmyy6o7TWTRO6Dc2rZRdYfi5tq/Xis3OG4/7p/aDc/ENHoLLLfnWJCvT6NfF/sX5JPg8FgMBgMhsOLnd5+m/0s5/SA3wTbJhrQdA6cYgMq2xaBmdOzaZWbsjYpgjmvAsWPoLEMmRFwe6NtvDUoPxThW/a0/P5fm+xOpFJfVOI8u2OFDZYNQaelu9q3+uLu23oWWBYcvypCxMJ1WdbTYdVtp8QtbeCybG/YGHMsDQaDwWA4tFhYLLK4Zyczw7NhO4HbVvj4rLG2qcAnLhrbqI34+vg2Li4ZMrzMy/TTT4kSH/FR6FanBTs+PjY2SZLU1UM71/XSS5Uq97hHkmQokrjGNVZY4SpX29p2cHjEIxwcSpTw8MiQwcbGxaVJkxVWqFOnRYsUKcqUOcc5xhnnIz4KRYT6mOr9sbHD9xYWrnqsssoss1zk4jrRR5EiJzkZir/ucIdllllhBYBBBumll376AcI+9NJLhQoNGiyxFLra1aiFzl02Nsc5jo3NFa7QT38olJtmmoAg/DvOCis0aTLEEIsshn05SGHTUeawO2Ptt/CoWwHjZS6zwgp3uMMFLjDOOPPMhwK24xxvcym83Hajb385bCLMp80kkzRoUKUaimQvcnHdNXCTm8wxFzrzTTJ5aI7RRi6GN7nZtdjXYDAYDAePDn+Li+egXYwW31aHlTlqmauW1ZFQse8jObhnkRz1dSR8zEfC4rRwLoGEFOl88kmikDSH9pCgRdWfHiSE5mMiIV5DtaFDArV7XibWzyYSrqfDCNdUuy4ShpNCQvgaqu8rSNjes57xNmFEBoPBYDAYDEeHA5mVTSQSNJtNLBWcEQQBH3/8Mb/8y7/MP/kn/4Sf/dmf5Rd/8Re5evXqQXTHYDAcJrRATKNH8Dr9zACR8GwUETIFyAhymEj8cxJxoSsQjdTryMg67nCn6/WQ0eiXY22/jYz042lwXiYSRQ0hzltzqm7tSHcH+BSRCx1EKXkc9aod9RKqb2XgJeAU7a5sFWR03xnrqct3xkei+pIDdc9NjumIqncAmEbEelXkW99T63qALOKal1Z90cLAM+qY6pmOzvsrT0NY5vFsnNm24lnMcDzN42AhM0cDRG5yHTGVpJDz3ZmmaUa9LiDXZp728416n0eOybyqe4bnT0AXd/PTn7s5ZL/19WAh14ReH3fzMxgMBoPBYDhwugv47KrcQQvo7AS0qhBYGwjKIBpcAYEt27UqUm63VGcgCGD5XWgsgpMVUVJ9GYIWWA4k+sTpq7Eo2w3/eSnXjYCuNi0uUX7c4lz9SA/82Ht9nlpgZ6TcUcGyIH9FXPrWJuVY+Q2wk5AZg95z3bn3vYiYY2kwPBt8z3zmDAbDliRJUqW6ztHL8PzjqMdez712ZNN19qjHEEP0088ww9jYfMzHzDGHhYWNTZ166DrXpImNTZo0AQElShQphmKkhzwMxV13uMMAA1zhStiHJk08PNKkKVKkTp3jHA9dwgICPDzKlEO3uxw5znCGl3iJxzwOhU7atc7GDvsKIjDTQlMXlwYNJpnky3x5W9HHXe4yyywBASlS9NBDgkQobBlhhGGGKVEiQ4YmTapUWWCBZuwxwAD99GNjM8QQV7iCg0OLFn/Gn5EgQYtWeE7jopOAgHnmWWSR4xwnIOA0p2nROnBhE0CNGm/zNre4RZUqGTK8witc5WrYj8PEYXfGOizCIwuLq1xlgIHQDW2840ZfihSX1cP837N/zKgbpQssEBCQJ992fQIMMUSePAUKzDPPOOPMMHNoBHSHxcXQYDAYDLtnozs1cRGdDifTOLSHp2jnOZ2GUIepPUZCknQe9jQSguYT5YrvR0LOcki4XV3Vn0XCizYKoeoFBhEBnq/qXoj9rfdJu+fpNIKWWu8hIUdZ1V6Pqn9F1fk9onCcO0gI1JWNDtwBYsKIDAaDwWAwGI4OB/IbbGZmhl/7tV/j3//7f8+NGzcA/v/s/WtwXOl534v+1qWvQONG4sYLZghyMBdzBtBI8iXyEWVZ44mdI3vv5MyZKp3EqbItOZo6ZftDKnVc5cqnZKeSSnSSSvbUqWTLkhKfipXZKVdK2TnOjLY8I1tMREkjUuNwhiSIGV5xJRpAA33vtc6H533X6saFBJogAJLPrwvV3Wu973rftdC4POt9/s8/EtNVq1W++c1v8s1vfpOnn36aL3/5y/z6r/863d3dezE1RWlh8uQkAKeunrpHS2XXsNF5s8OaLT1jy9ekECHbz5nX1iHtNhLF20ja+sBbml3trCjPN8dII6Ke5t+CH5jnWTOPHLHwCyTCt3cG6oggbRmJzDuA64hYyDXHDczr5uKHDiJS84jFds37L5jta7TcLZg8ZT6bH52KBXD2+mXMeZ8gFlt9AvhjRPBlz2nVXC/XnMugaR+Y9tsVUsHuCstCc97nYUMh1ktmnIkt5vGg2cs7HHt1HRxznNPsTKhXXfcs6+JMVsxnM3Uq3p7fpP2jRrOb3xjy87NdNz9lT5icNJ/NU/o3XTlY6GdTeRSZXDsJwKmOq/s8E+VA4Hmbbr7n52SLftsiCKC2xEbx3IaG0i41cI92W3WvQvEmlOfl//d6Udzmmpevq4sisgMoz0n7zjYT5upr4GfEzS5i/VK4S7TkHIbSvr7W3nj7ietD1xiTc5I8q38n7wNzLdsSbT5E6P9UynZ4oJ+TMISlC+L6GKy7+VG4BAtnRdSqro8HHv19ojxoZsxN+vUOdCcn5f/jq6c0jjrItOs+B5AmHbmpBQTUWxat7n5s6z7X7M5mH1WqpEjRSy/P8AwAnXRSpkydOqusUqZMiRJFiri4VKlG4rCAgF56GZocIkOGlVMr5MlHn9UxxrjABU5zOhJN+Ph4eNziFgEBHh5r5mFf2/MLCalRI0sWz3hdLLBAgkT0HiBLlrR5ANSps8hidPyAgA/5MBr/bqIPK1LNkSMkpEyZYxyLxvPweIEXuM51MuZRpUqDBius4OHRSSeD5jHAAGc4Qy+9VKkyyywnOUknnbzLu8DmzlMgTnTWTS9LlkEGozZ7IWwKCHiDN3iLtyhTbtn3A37AG7zBS7zEK7wSiRf3E/t3ePTUwRCobcVBEh45OEwwwWlOM8UU00xHDnTDDDPKqAqedsB2/xe0bqL22QqI15MjR578hvYHhYPkYqjEaEyiKNvnpPl5ufqY/rzYqDIkrldvRWc0vbc0iJ3eGubLpukVkPSWXkSUlkDS4LqR1LKaeW/rvSeRtK8+c+wRpF67w8YUqiEkhe0j4DNICtzbSIpNs4guhaS8Ncx2Wxu/ZrbXiMVzWeCIme8ScTrcGJJqdZr9F6NpGtGDQ/9WKsrjif7sK4ryoNiT/xv7+vr43d/9XX73d3+XH//4x3z1q1/lj//4j1lcXIzahGHIBx98wO/93u/x+7//+7z66qv8nb/zd/jkJz+5F1NUFADefPlNAE69rn9w94zmovkQR/ll4ggYROhzG/hl4CXgR4jD2Qyx21wnEm1OI5F0EommrZAtYd67wNOIiGiK2B2rZJ5r5rlz3VxdJBKfI3ZzcxBh2nUz7yIS4YfmHOw5hk1trVd9HSnn8wtNY6zQKqgzArk3P2s+m//2lJyHvbOBuUad5rpY7N2Of2/mkabV1S5ttp8A/u9I1G6v5XYcz3ZLWBYid0mumPclpOxQ890DzDhLiHvaXucc7cUdjv24Dj4y3+3mVCbXPZsc3jdXzGez/1TL9g3tHzXux81P2RPefNN8NjWIVg4Y+tlUHkXeXHgZgFMdr+/zTJQDgZ+j1RVNuPvnxDH92iCsQXVeHOC21b5h2tfu3XYDLhRviNNcfUVc4JI94kTnpaFRFne72hI4LqQOiYCu3aREvxNIGhe69XVZm5/t9Hxp768PZh8e9O+ksl30s6Jshwf2OQlDmHsbCuZGTqMk4upGFbwkpM2NnDvnoLoEA2dURHeA0d8nyoNmmeUW0ZDl5Tfl/+PXT2kc9ahyN4FUs0DOiiubBXVu08Pua9CInN4aNLjDnaj9MY7xHu9RoUKdeuR85+JGjmllytSo8QRP8Ck+BfLrjydOPcECC1zkIrPMRm5WU0xFrkkBAUmSrLJKihQVKqwRF+6oUo3Ow8WN5mC3Ne+z80qRIkGCFKnoWq2ySo1adC0axHHe3UQfVrASEnKNa/j4G1zWMmQ4xCFWWSUgIEGCJEkSJHBwSJOmTJksWT7P5/kFfiGa1zu8Q5Ei17l+V+epPvpwcBhhhAwZuujiBCf2TNgUEPDP+eeRyK9IkVlmqVEjQYIhhgD4Ft9imml+h9/ZdxGd/Tv82qnXDoxAbSsOmvDIx2fMPJT22e7/gtZF0z4XKGzazm5f3/6goC6GBxONSRRl+7xsfl5ef0x/XtaX4LApdnZ788oBTa9rSFpZiKSqrRfZgaSe1Ymd6FJIypJ1m+sw+5KIkK0DSb3rZvMUqhAR5t1B0pzsMWtmnxXmBeZYPpL6Z93wAjPPADgOPAscM9sWkBrvs8RpOs3pf/uFphE9OPRvpaI8nujPvqIoD4o9L7zwsY99jH/1r/4VX/nKV/iTP/kTvva1r/Htb3+bMAwjV7piscjXv/51vv71rzMxMcGXv/xlvvCFL5DNZu9xdEVRHkpsCRmL27R9CRGMHQEOA98GvoMIvMqIWKeBOMHZCDqJRJm9xJF3s+97H/CcGWeaOILOmGfrDNfsZmfpbTpe1rzvM/NziN3rrBgvNMfrNMez99ID5DfwDK3RcrZprhWzrfkcgqZrZUWBLrHQcD1D5jgLwKI5VsLMud/st0Kqp7c4xlbshrDsAiIaC4BJ4utnuUYswruM3GWY2OE875e9uMPxMFyHYcQJr9/MJw+moGrMgtnuEIv+hvdqgvtAu25+iqIoiqIojzLJw+D4OxOoOb70a4fSHNQ3T1raknpB+u2UsC5fXhoaFSCERHcslABxnSvPAQ54GbkOYX2rI96dngmY+66I8SLssjHEVVIMjitj9Uy0N56iKIqyPZYuiHguDKAwCeV1N3LWrkF6EHKnoHBZxNa9E/s0WUVR9psGDXz8+3IyUx4cDs4D+97UqW/5vXdwIke2unmsb+fhkSBBnTo1agQEkfBuhRVK0UKUuJ/d4AZFiiRJUqceidVCQnx8atSomMchDrUI8A5zmF56yZNnjjlGGGGa6UiYY13sOumMXOI66IjmaR3oypQjB7k69Uh40UFH5KZnz6FOnQSJaG5Vqjg4eHi4uHh49EX+FncXfTRo8H2+j4PDGGM0aPA+7zPDTORetsgiDk4kfCtSJEMmmkcfffTTzxBDGwQjO3WeqlNnkEFOcIKXWqpfPlje4A3e5V0CAi5zmUUWWz5X00zTRx9jjPFDfsgbvMGrvLpn87sXB02gth4VHj3eDDPMJS7RTz/XuEaePAssbHCizJPHwWHALJQOH8CFUnUxVBRFebQIN3m9XigXIClrPpIy5iPCuB4k5cyuYHQh6U8FJO3NiutqSMpZH5K29FeQ9LAjps1mKVQvmD5vr5uTPWaDuL59hdg9z4rrrHveIPCL5rXlMJKulzfzGKE1/W8/0TQiRVEURVGUg8++/T+WTCZ59dVXefXVV7l16xZf+9rX+MY3vsHVq1ejNmEYcv78eX77t3+bv/t3/y5/62/9LX77t3+b06dP79e0FUXZbYJNtll3tRXiiH6ZuBxOBXGjA/F5D8w2KyizArExs89GokNIlH6bOPqvNo37DPADJPqeRu4IzBELgUBcwQJznF4kQn8WuUMwi5TPWSB2z0ubsRuIQM9rmmvdzOk6cRQ/aPqtmLbr73Q0iO8auMhv8Yzp18wFRIh11FyjZeROh73DkDBzPYoIt3rZuSDrfoVl9aZ+k4iYEDOXHHL9803bx8x5nWbv/3o9yDscD8t1GAXOmteDZj4XERdDF3iP2H1wkLh81OgeznG/2Kmbn6IoiqIoyqNM53GY93YooPOkXzvkfwiBDZa2Q0Pa53+487HchIj9GmUR0YUNqC1DUGt1oHOTck6NEiS6pF87DL0El//fxAGgDaA3S/B1Tbu69FMURVEeDEEd8ufldWESyuaGTbJX3FTrBajm4+1dY5C/AN2njVOooiiPGylSACqge8ywwhkXlyRJatRaxHrWSc46ywXrFsuskKxBIxKTBebRoEGRIje4wUd8RIEC5znPIot00UWRImusReNWqRISkiRJhgxLLPEjfsSTPNkyphV/rReLAZHr3RGOcJOb1KjRQUckJMuRY445KqYyZJIkJUrReXXTjY8fuc9ZZ7yQMHKys9cjQYI0aXrp5QhHNlyXrUQfRzjCbW7j4DDJ5Ab3siWWcHEZZZQZZqJrGRBQp06FCr30cpSjXOEKvfQyYRbOHgbnqTJl3uItAC5zORJI5sjRSSerrFKgwB3ucIUrPM3TfJtv82v82ga3vv3iYRCoqfDo8WWUUc6ahdJBBplhhotcpJfeSKhrf98MMkiaNClSjB7ghVJ1MVQURXm0WVd+L1plqCHpTgEiRCub/Qmzr998TZp9AZJm1gv8LPCUOc6vcvcUqr8ErhKnrUGcomfn1jDjNoAirfXkk+b5KGzi6S7pVPmmY1Y3abOfaBqRoiiKoijKweVA3L07evQof/AHf8Af/MEf8N3vfpevfvWr/Mf/+B8pFouEofwrv7Kywuuvv87rr7/Oz/3cz/HlL3+ZV155hWRy7248K4ryAGgunE/Ta9c8dyCCsxLi625L4cwiwjFbFqdCXJomZdqtAb9MayT9nnlOrnsGEYO9YV73mfGuIEKhZgc5Bymj8xQifvq/mj4l4GeAD5C7ABlEDLdo2vnInYKiaesj/vLNZXA+hTjsWXe9gFjsZ6kT36HoQYRxn1q3/7x5PYmIAHOIuK1ZkDWHXOf7EWTdj7BsyrQtId9PEGfAZuOJBUSkNUsszpti/+4wPIg7HA/LdfCR7/U5RDCKmY8VvFrnucGm/eMckP80FEVRFEVRlD2jZwKc/4AEadtJEnbASbXvmlaeY2PQdC/qpt8OCRuQPQ6laRFJOACOiOYaRdPIEaeh0LY/Js/t4CXA74Z6kdaKJM2vw3ib40GiR/opiqIoD4bVKQiqIpIumxs53c9BqulGTmUBli/K/o6RuF+XpswoyuPIGGP8CX+y39NQtuB+hI1WDBYQbDiOgxOJx3z8De1C89jKAa9Bgxq1yLXNCr2sYKhBgypVrnOdBg2mmSZNOhLPpUlzmMN00skssyyzTIUKdeqkSPEBH/AET7QIkO4m/rJOcRUqdNMduetVqUZiIR+fLFka5nGHO/yIHzHLLAssUKRImnSLM511ybPnZ133Bhmkn35e5MVNr/1moo+QkHd4Z1P3smYnwCmmWGGFTjrJkSNNmjJlVlnl+3yfRRb5FJ/iAhc4zWl8/IfCeeod3qFMmSJFFlkE4CmeiuYCMMccV7jCHe5EDobv8A4v8/KezfNePCwCNRUePX74+EwwwTnOccoshK4X6jo4DDIY7R9n/EB8XhVFUZTHB+vg1kzYtN2m49WQdLYKcc36brM/QFLLrLhuAEnDe5E4XWmMuI76ZilUm6Wt+UiK2yqSYhQQpwbarwytK0s+Ui9+M2xJi83S/xRFURRFURTlbrj7PYH1fPrTn+Yb3/gGMzMz/Jt/82/4uZ/7OQAcxyEMQ8Iw5L/9t//Gr//6r3P06FH+3t/7e0xOTu7zrBVFaZutigNal7U6EuWmiEvOFIijaYjFZDayLiIR9A1iQRKICMmKfOx6UfPaVRqwhfrHkLsBjhnPOtI5ZrstqfM3TJ+XENHTECKuS5qx7pg5WTe5O2a7dcRzaC2D81lEgJQw87HXwN4tqJr3rtmfMO0/23SMrQRZzwNPmufnzPZZ5I5HxfRrFyssO2OuxRnz/m5rAtPmeR45t15aRWOY971m/9y6fo8KD9N1GEe+r1Z4+Unks5xAPlufXLd/fB/mqCiKoiiKouwvfoe4se0ELy392iFoQLhDAV1Yl347xU2KIC7VL7Gal4WOJyF5SIRryUPy3svK/lS/tHfbXLpdugC5k+BlwHEBD5yECOVw5dlJmO2utOsclX6KoijKg6FkbsiUzY2cZG+reA7kfdLcyLGC7dKjdkNLUZTtcpjDkbOW8miRJEmWLGnSeOs8Eay7WZ06ZcobRHaOeTRobOqiZUVz1vmtWXjn4JAhwxBDkUNbDz2kSbPGGj4+P8VP8QIvMMoopznNAAN4eFSoUKRIgULkFgf3Fn81aHCc4zRokCNHL71kyZIkiYtLmjQ99NBBBylSVKkSELDAAh/yIQUKhIR4eJEbXUhIhQpl86hQIUmSJ3iCoxxllNEdiZOse9lP89MkSZImzQgjnOIUGTKAiF3WWKOTTvrpJ0OGgIAMGfrpJyDgMpf5S/6SMmWmzMLZKKORg98ggwBc5CLv8R4f8RHv8R4XuQjsn/PUB3wQnWNISI5ci3gOYIABcuQICZlhpqXfQcMK1M5whpd4iTOcYYwxFSMp+8o444wxhovLGGN8kk/yJE9yhCM8yZN8kk+27B/XhVJFURRlj3CJ0+wc4lr0TtM+s8JAQJyq5yNiumWkNrxPnJbkIil1w0ha2lEkde+nkZSwu3kBb5a2dtQcp8OMkzRfTtP7rBkDREyXQmrnL6w7/r3S/xRFURRFURTlbhzYO4wdHR0cOXKE4eFhfN+n0WjgOPG/3mEYcufOHf7ZP/tnfOUrX+EXfuEXeO211/jVX/1VPG8z42ZFUQ4km5W/gVgsVzdtGkjUbkvjgETJ1aZtdr9r9n0IfBVxkwuRSHvEfKWRSHv92tUriDDph8DTSDQ/Y46dQERvGdP2E6a9JWnGmTHz6mWjA10fsQPdjBl/FniH2LntFHCJWDBVbhrDnl/a7AdxvWvOT92JIMs60Y3Q6oS3F1TXPee2aJdD5rm+/aPCw3QdHOROWA9xuShrbtFvnlOIcM6Wm1IURVEURVEeL8LAOKDZpdd74Uv7MLh3082InN/2oF9mGAqX4NAnobYElUVolCHVF7eprUKjIuK5Q58Ex5F+7VCahWSffDWKEIbg+hDYKitO/N5x4ral2XsdeXsEdXFMKk2L25KblHPpHJVxFUVRHkcCc0OmYZ79LW7k+Dmo5uN2waN2Q0tRlO3yLu/u9xSUB0SdOi5ui8DNYgVyHt6mIrnm9luJKxs0omPZNq6pjWsd26pUmWGGGjXWWCNJkkMcikReAJ100kMPyyxHgr5llilTxsXlPd6L3JO2En8lSXKMY3zIhyyxRIYMWbIsshi50R3jGFe4QpUqOXL00EONGiEhCRI8zdPc5jZlynTSSYIEJUo0aJAmTQcdDDY9Ps/ntxRLlSnzDu/wAR9QokSGDM/wDGc4s6l7WYkS3XSzyCIZMlSpssDCBlGjdTq7ylV66GGa6Ui0ddCdp6yjXM3E4Z10btquk04KFKJ2tp+iKPfGCnV76OG8WSgdibx4hBQpxs1jM4G0oiiKojwIrDAOYrFc8z67HbOvk9htrll8t4ikxQ0jaWg9SLreaeDTSIrbdv7DXZ+21g2sIO5zzTXoG8R15T3TJmW25czcksBFJMUth9S+z5vjD7J1+p+iKIqiKIqibMWBy3aZnJzka1/7Gv/23/5bbt++vWF/GDbdyDaCuiAI+M53vsN3vvMdhoaG+K3f+i2++MUvcuzYsT2bt6IobeAQR8WbrQ/aaBnzHDZtt9ucde2t8UDVHLuMlMqxdwhuIDmcJxGBz/rfgi7wO8AbwFtm24l1bTLA5xDxXPNdh2Hg28Q5onNIlJ5sOs9pxO2tE7lT8KeIa5fN3WyY7Z1I1J80c7Tn2WGOZR33nkfuCFiBnj335ueDKshKrnsubNGusK5dm+YNB5aH7To4wARyh2wK+E/IZ/tp5Gdgu3fMFEVRFEVRlD3EJw6Wdtpvh5RugeOD60GwDQGd60n70q2djwUiVturfp2jsHBWLkvXMyIsq69CvSjissBUeOk8IUIzPwNuSvq1iwMkuqG+DPjgZ6FREsGhdZ2rl4CatNuN3KwwFBe7/PmNgo/CJbkGvRPQMy7CPUVRlMcJ6yrqmef6Fjdy7Hbbrl03UkVRHnqmmabe1v/iym7QLD7bbazL3Hp3OYAECbroYoABVlllltloLlZclyBBkiQVKlSpbjnP5u12zGasgM9uXy+ccnDopZdZZqlQwcPDwSEgoEYtcp67m/hrmGEucYlP8AmucY2b3KSTTlKk8PAICZliimWWyZAhRYpllsmRw8GhTp1VVsmR4xCHaNCgi65IYOjh0UUXGTIc4xif5bNMMLHpNX+DN3iLtyi3VJ+EH/AD3uANXuIlXuEVxszDXqMf82MCAlZYwcNrcRAsU6ZIkRo1ypTpoYeb3GwRl40zzhJLXOYyY4wxwghzzEWiuwEGSJtql/vhPGVd9hKm6uEqq5u2s9ttu0xUNVRRlO3g4Gwq1E2SZJhhRhlVp0RFURRlz7G16W0Km00rqxA70dma8EFTeyuY6yCu2/4csYAOpA77vRzn1mNXFSpmjCWzzYrlfDOPhnkOkNrdGURsZ1eWRoAu0y9PLJxzkFS5U+b9Zul/iqIoiqIoirIVB+J/x2KxyH/4D/+BP/zDP+R73/seEAvlrEguDENSqRR//a//dX7zN3+TyclJ/sW/+Be8//770XHCMGR6epp/8A/+Af/oH/0jqlWt6qooBxofiYBtNLweGy07W+y3kX2zK10zjaZ2DhLdV4Dvm21f3GJeLvAq8GuIM9wHiGNcBngGuTOQ3qSfdXFLmLFL5iuHCOJWERFUcxmdpDnudeRuQcHM8QRyByFA7g5Yl6+jpn8VOAJ8CrlzMEXsHvewCLKGEae9fuAacqdjgVa3vAWz3QEGmvo9Sjys18FHPnMd5v2ZfZyLoiiKoiiKcne8Lmgsttdvp5RnIawZl7RtENSlfblN1zSv495tdquf64tw7M45yJml2fIsUZUX11Q/SQ/G+3vH23drywxKXJjsgkpajpM9LqK1sAGOJ2K34jUIPGln+7VLGMLc21C4Iu8bJSjPi4OSl4S0CUjunIPqEgycURGdoiiPF9aNNN0Pa9fEZa6yAKmmGzmVBdmOE//ebNeNVFGUh55ppgk2XeBQHnZCQurUCc1jPUmSODgUKW7YnyVLL71kybLMMvPMbxDGbYV1tHNxSZIkTZokSVxcqlSZZZZRRlucj3rpjebQQQd99OHjkyDBkzx5T/HXKKN8j+9xgxtkyHCIQ6yxRokSLi4BAWus0UEcZ3XRxZM8SYYMFSrUqdNBR4vA60meJCDAx6ebbo5ylBd5cVPnpoCAf84/j1wdixSZZZYaNRIkGGIIgG/xLaaZ5nf4ncixb4GF6HtVoUKCBMMMt4gNV1nlfd6PXPNq1FhgIdp/0J2nnuEZfsAPGGSQaaYpUGCOOQaiRSWYY44CBRyc6Ho9wzN7Ok9FeVTw8VuEuoqiKIqy34RNX3Vi9zabmpdAartbAV0aEad1I7Xhy0g6Ug2pU98JvIiI03b6n60V600Dd4AsRGUbPCRlztaNb5jx+8x8AtP/iOn3jJnjHJIqlzTzbBb47W3pCkVRFEVRFOVhZ18FdGfPnuUP//APeeONN1hdlWpnYRjiOA6O4xCGIWEY8uyzz/LFL36RX//1X6evrw+Az372s3zpS1/iv/yX/8JXvvIVvvOd7wBE/RqN7S0yKEozr73+2n5P4fEiQKLbe60dW5HceqyAzgrsNjuOda5zEAFbAommLwH/FPh/3WXcNPCy+doO1xFR02Uk0k+br6SZR8ZsX0LOu4HcefhzYpe4WWJhWx9yR+AovHbrNWn7PFL+x4rt5omFe/b+/MMiyBoFzprXg8AMcBHoRa5Hgbh80CByLVOm36PEQ34dXntNf28qBxP9bCoHFf1sKo8irz3x+n5PQbkXiTTbzMXc2G/HeFBbAydsieO2/Jw4IdTXpF87+ClwEhDuoIiSk5B+7dAzLsKxwmXInQQvLQKKRgW8FHQ8Admj4g6XG5P27dL7Isx8G5K9Mk6jBJX5pvdlEWgENXGiS/bJufW+2P6YSxdEPBcGsHIZVq8axzsj2PMy0HkSusbkGiR7RFS4S+jfSWW76GdF2Q4P5HNi3UhBBNPlGVi+KL+b/Zw4z1Xz8X4vff9upMoDRX+fKA+aeeY33f76axpH7QUu7raFae2wmTjSM49OOiPRlnVpsw50yaaKhjsVWDZosMIKM8zQSy8NGiyyiGdiqhVWmGKKk5yM+swxR0hImjS99OLiUn6t3NLmbuIvH58sWWaZ5TCHyZNvEQZa57YMGTw8KlQYZ5xf5BejYyywwEUuEhLyIi+yyionOMEgg9tybnqDN3iXdwkIuMxlFllsESZOM00ffYwxxg/5IW/wBq/y6o6u7b04yM5TZzjDG7wBQB993OEOV7jCDDN00skqqxTMAuQhDpExjzP7XB1R/w4r+41+BpWDgH4OFWX7vK4/L3elWUTXQFLkPCSdrllQl0UEcs+aNtOmTRG4gaSnDW1jvDpS732aWNw2jKSrfZvYSW4GSXMqmfF989o6z4Gk9PlIDe9TwF9BRHNHzLk0l65oIGlUh8y43zXjjnJA3ESUXUf/VirK44n+7CuK8qDY8/8ZZ2dn+cY3vsHXvvY1Ll++DLS6zVkBXCaT4ZVXXuGLX/win/rUp7Y83q/8yq/wK7/yK7z33nv803/6T/nmN7+pznOK8rBg1wQ3E8dtF+tBv9X6p0Ps/W7L7KwikfkbwP8TmgpM3h/TwDHgI/N+CBE8rRCXz+kEfoK4zBURgVQJifStWGqFVhFdCvhpWvNJPzJtSsSiO3s3ot+0zXCwBVk+MAGcQ+5+gJxLvml+DjJHu3+cR+9uh14HRVEURVEU5UHTrkNYO/0aaxDWxclsO4ShuNA11nY+FkDmGDgXxMVuW8GlA44v/drBcaD/0+I8N/0WBGXZ7pmaqmsfQWkGhl+SdvfjztY1JoKLwmXIHIXSTaitiKDNTYhwLqiJOCNzVBzqOk9Iv3YI6pA/L9+T+bNQmAQa4GVjwV5tWRzpqgtw+FOQvwDdp9t32VMURXnY2MqNtJqPhXO76UaqKMpDTy1KGVT2g/1w/3Nw6KSTE5xocaez4iUHhxIlqlRZM4+divzq1PHxGWGELrq4xjXq1PHwaNBgkklWWSVHrkU4NcwwY4xRo8Zf469FYr57ib/q1ClSZJBB3uM9XFz6kKK3Pj5LLOHhUaNGnTqDDJIhQ4NGJOw7zGF66SVPnjvcYYQRjnN8WwKuMmXe4i0ALnOZO9wBIEeuRRxmRWNP8zTf5tv8Gr9GmjSHOYyPj4NDmjQODtNMkyVLmjRlyhQp4uPj4eHgkCDB4ZbKlAebNGle4iW+xbcYY4wrXOEOdyiYB8hn7xCHeIqnAPgcn4ucBxVFURRFUZSHm81WRxwkjcwzrz1EoNZnXs8g6Wwd5n0RSWdzEBe660ja0mdodaELgQvAeSRVrZlLpu1fIkK9BuJuVyZOc0oh4jobLdt0vmPA00j9eBf4VeA0sUivYua0iLjSBcQpepeQ2uUTtOeapyiKoiiKojw+7MmqbaPR4Fvf+hZ/+Id/yJ/+6Z/SaDQ2Fc2FYcgLL7zAF7/4Rf7m3/ybdHd3b3uM559/nm984xv843/8j/mX//Jf8q//9b9+UKejKMp2sYIv6xS3Gbb0zWY4d9nXzFYOdSBRdy8SkRcRwVkJicKXgH8PfHEbY2yHKjLnIcSD3kV+y/Y1tVlB7k44xNH6McRZrvkYa2a+a2auC4iAqvk4eeSORbcZ07rYXULuctQ4+IKsceT7cBm5AzKClBCyYsABiNbuxkz7+2Gr8kf7XYZor6+DoiiKoiiK8njhtOnu1k6/+io7r5ISmn5tMHgGpv9/4KQgLN+7vZMSd7jBNqvshyHMvyNCsr6PQ/GWONAFFeMw9ISI2WrLMP9dGDjTvojO9eHo5+GjP5JxHUfEGY2SOMS5CUh0ietRql/EGkc/375IY3VKnPSW3hPRHqEcNwzEgc7LgN8JlTlxp/O7oee09GtXtKcoivIw0uxG2jUGHSNQnoNGVQTV6QERHsP9u5EqiqIoBxYHBxcX2CjUq1DhKlfppJMiRerUCQgiZ7cGDQIC6tTvKrJ0cFpc1oDofYIET/IkAIss8n2+T4YMAQFFiuTJs8pqdBwrnHJw+Bv8DX6JX9r2uU4xRY0axznOB3yAi8sww3SaCpXTTHOHO8wzj4PDYQ5Tp84CCww2LW7lyJEnT9Wk2VY3pNtuzju8E4ncFlkE4CmeYoCBqM0cc5ForEQp6vcyL5Mhw3GOM8ccOXJUqeLgUDQPe42S5uHhcYxjZMhsuPYXuMB5zm+Y+yUucZazTDCxqYvfXvAKrzDNND/khzzN05QoMcMMNWokSDDEUHROn+ATvMIrD2wudeoHzqVPURRFURTlUWWrFZkEkjaXNV81JAWpG0k760REaYtIKl2IpJPZOuy3gPeBq8CnkdQqD3gbuGLGKAHztKY3LZv3S0jqXMYcL2nGDYAuMx8PSXc7DHyM2GnOpkY55vVTZtwAScPbbFyQ2uVLwBlURKcoiqIoiqJszp7cnTx69Cjz8/NAq9ucfd/R0cGrr77Kl770JX76p3/6vsYaGhriH/7Df8gf/MEf3N+kFUW5P6z3O0j0WmOjiO5eOZWueXY26buezY7lmq+UeZ9EIucG4kKXAN5h9wR09nxTSLRuhW3LiHDLJ74bsGDaZmkV2HUjdyj6EAHdonm9TCygm0dEcgXkzsGieX3djP0E4mF/FbljcZAFWQ5y16IHKU0E8d0QSwqZ3/2UCLpX+aP9LkO0V9dBURRFURRFeTwJ3Hu32a1+bkoEV9sW0YVGDJa6d9PNyI1Bqk+EC+G9qrA48r906pD0a4elC1C4InMuXIHVq0bQ1hDBYX0F6kURVBQuQ7JHnIrapXdCRBqz3xHBXLJPXOjseIkuEbZlj8HgZ+9vrNI0FG+KIC4MIaxCZYHWa+qIQMRNyrkne6SfCugURXmccBwRSCd7xLkTRETXjJsS57me8ftzI1UU5aFnP0Q0Ssx68dlu4+MTEuLgRC5yISElSswzT40aZfMICSMRnRXfNTvU7QQXlxVWovef4TPc4hY3uUkXXRzmMFWqZMnuinBqmmkAFligl16e5EmGGGKZ5UgE2EEHHh6LLLLEUrS/WUBnndCSZkEtGS2s3Z0P+ACAWWYJCcmRaxHPAQwwwAwzFCgwwwwnOMEHfMDLvMwwwxzjGEssscgiSZL000/DPDzzmGMOB4cTnCBBghvc4C3eIkmSIYa4wQ2mmAKIvsdWHGbnc45zLLHEGc7s+c+/i8vv8Du8wRuRY98JTrS0yZDhc3yOV3glEoDuJgddZKgoiqIoivIo4iFpda55nSROlQuJ67FngeNIOplHXIe9gqTQ+Ug63QyylJJFxG/TwE3TtxMRqIXAJFLPvTmi+dAcs0pc23wASYFaRdLiisR176tm25OIS91WqVEXkBS4YItxrxHXkb+MpF9N3OO6KYqiKIqiKI8neyKgm5ubiwRzzW5zL774Il/60pf4whe+QGdn566Omclk7t1IUZQHRwaJwG20mkei352sAza4t1DobsI6B1rWfnwk4m8ggjbAFKrcHYYRMVY/EpkvA0cRgZrlvxOX7ckiIrZms83DyJ2KDuSuQIjcUQiROxwFxEFtBTm//4HcQThEfK2uIHcCXkTOfxYR8h1UQZaD3LU4zYNxhwu5d/kj2P8yRA/6OiiKoiiKoiiPL26bSXHt9GuUxQEt2K6luCPtG9twj9uiOwO/CB/9+22MF0oMOfDZ9v7nD+oilAhDmD8LhUmgAV5WnIYaZXGeK89DdQEOfwryF6D7dPuucI4Dg5+BVC8s/giKt2WMsA6OD4luyB6FvhfvX6TRKEHxhojz6pLYSt2KA10RDTqevA4qIhwp3pR+iqIojxuOI6LlbuPEWZqGwAiMM8PQOdr+735FUR4prEOX8ujh4ODj4+JGrm8WK6KzznRWXGcd5erU8fA2dZhbP4Y9XjNWjGdxcfkUn+J7fI8llmjQIEWKHDk8POrUSZHil/iltoRT6x3juulm0DwADnGIS1yiRIk8eYoUWWWVerQYJ+K7PHkcnEhsNszwtsa3jnLWrW+rn6tOOilQiNrZfqOMcpaznOY0yywzySRzzJElS5o0JUoUKeLhcYhDrLJKkSL99Eff12/zbW5wg6McpUyZOeZavi/XuMYgg5ziFJe5TA89TOxDyq6Ly6u8yq/xa7zDO3zAB5QokSHDMzzDGc6Qjips7i4hIW/zNlfMgtxBFBkqiqIoiqI8ioTE4jkPSUfrpNX5rQdxfVtBUs/SwG0kla8PSUsqIiK3BpKuVDLHWQW+j6QyLSFucCBCu1Vi0d48sZudTdmrAmuIAK+XOEUrNOOXEGHeEPBTwP+DjalRdeJa5JNmXMzxcuZ88k3bxxDB3elNjqUoiqIoiqIoe/o/YhiG5HI5vvCFL/ClL32Jj33sY3s5vKIoe4mPRMGB+bI+781rfK5pV2drIdw28h+3xEGi9GYaTfuAbRa33B6jiJMZSFmbGeAirRH7DbPfigvriGjO4iF3Bq4hdy7sPEuIw1yIRP0N5A5DGbnjERBfS0ybHwLPAyeAn6NVNHYQBVk+chdjt40LHrYyRA/qOiiKoiiKoiiPMe26LrTZz00gAd+9rMSRdm6ivXFAhAo44HrbEO2Zdjim3w5ZnYJGBZbeE3e5MBT3t3oJagURtHkZEZStXAa/G3qMsOJ+HNr2SqRRWRBhXhjI60ZFHO5cP76sjbI44HkpyByDsGZc6hRFUR5TXF9+x6sTp6IoW9BF135PQXmAWCFbg0YkpmrQwMGJBG4hYSSgW9/3buI5F7dFXGTbOjiR+K6ZVVbpooscOSpUCAjooityT/spfoqnebotwdJ6xzjrJGc5zGGucpU6ddKkcXGZZhoXlyxZChTIkwdgkEHSpEmRYpTRbY1v3fMSJKJz3Qy73baz/Xx8JpjgHOf4K/wV+ulnkklKlKhSjVz6kubRoMEAA9ziFlWqeHhc5zoODj/gB4SEDDBAH33kyEXnN2NSdscY4wIXOM1p/H1aiEuT5mXz2CsucIErXCEgYJLJyDHQclBEhoqiKIqiKI8arvmyYrlOpG57ElmlySOpUAGSumZTz6pIilIWSUsrmOMkzHvbPoHUk19B0tJWkLS1BiKIyyKpWKvm2MtmX9YcI4XUoi8haW5PmPl0m2M9idSE3yqNbYpY0GdTvgbNXIvm+ANm3yxxffkpNPVKURRFURRF2cie3bH9mZ/5Gb74xS/y6quvks1m92pYRVH2iwISiYe0Or5ZkkiEnULK2dgoeqfYdb7N+too3LLaNI+MGTcNvMXmorI6O3MC8xHh1TlEjAUSmVvPe5C7Aw5yJ+C6OWaeVhFd2hzLQe4SQKsILwfcQe4qNMx5Fs2zu+5a3DJj/l8QZ7XHDS1DpCiKoiiKoijiGLZX/bJHAVecysL1geBmY5iaqNmjOx8LINkHC38BfgqqNkjaClfaLfwFPPt7Ox+rNC2Oa6tTUF8VIZnj0xqEOXLeiS5YvSoubaXp3RFW7IVIIwxh7RrUi8Zprg5B2bjP2aXzUPYXr0G6/8HNRVEURVEU5RFgp05fysPDete5ZkJCXPOwLmzNQiLHPOzrrYR0WznQOTj00BO9n2eeS1yiQIERky6aMI8kSXLkaNBo2/lrmGEucYl++rnGNfLkWWCBw2Zxy8MjR44iRXLk6KCDIkXq1LnO9WjOVjzVoEEPPXyP70XuZMMMM8ropoKzZ3iGH/ADBhlkmmkKFJhjLnI0A5hjjgIFHByGGIr6WcYZZ4klLnOZp3maJ3iCOeai8atUuc1tQkJq1JhmOupboMAss2TIRN/zp3ma53k+arPAAhe5yCyzHOUos8zyx/wxgwze8/weBerUOW8W5CaZjMSEvfQeWJGhoiiKoijKo4ItaTiApJx1I+lQi0jqk4ekj6UQB7kSkkJXMfsTZr+tj19peh2a10tImlrC7G8g9dwTwEdI6pWDpGnViFPaHHPsDCJsc5A0Ng8RzznErnRb+VPb/8znzDlVYNNoZtac4ywi0ptGBXSKoiiKoijKRvbkbmRvby/pdJp/9+/+HR//+Md54YUX2jrOn/7pn/JP/sk/AaCjo4NvfetbuzlNRVF2kwARndloej0erUKxdrmb6M6W0VlDIvSGae+Z1zVE6PahaX8JcZAbN+8vmHNoxraZMO3Wz30cuWtwGYnCR5AI3grwDpnj1s2+BOJzb/3sq2Zu/cR3BlaRa1UFFszxGk1tbV/rQFdF7kRUzHg3Eee7x/GuwPoyRADP0SpYXECcArUMkaIoiqIoivKo0ijvXb/MoLiw1Za2Owh4aenXDoWrUM2LwCsKEB3zZV3wwvgrDKV94Sr0Pr/5MbecagmK16EyD5U7MoZrgkLHg9AsBwd12e9loHhD+u0GQf3BOtAlD4tAsF4w4rmquNA59nqa6+cYB7/airRPHr7XkRVFURRFUR5bNnMeUx4PfPxIRBcQtIjgrHPd3URsQZOjd3NfDw8QceZHfESBAlNMscwyLi4XuUiJEoc4FB3/ClfooYeP83FCwh07f40yylnOAuIgN8MMF7m4QRzVRRcOTiRsG2GEOnWSJBlggBQpbnKTChXmmWeFFerU8fHpppsjHOHjfJxxxluuzRnO8AZvANBHH3e4wxWuMMMMnXSyymrkineIQ2TM40xTZUkHhzOcoYeeSOhlxYYNGnyf75MgEbkJFijg4ZEkSZ48JUqsskqDBkMMscYaDRrR9+Mwh+mhhw/5kO/wHbrpZpllxsxi0yUucZazTDCx4fweBaaYokqVEiVmzYLcczwXiSyhVWRor/0UU9E1UhRFURRFUXaOXQlxEdFcEehCaoovmjZ1ZIUkQZwG55nnmmlXbnrfQFLQAiQdzabZrRLXdg8QYdwCsZNdxfTHtHHM9hBJXVsFhpAa54Nm/yCSEpeCLf2pbfrhVTNenxmnQJw212XOb8G0G2Fjyp+iKIqiKIqiwB4J6PL5PO+88w4AS0tLbR9nfHyct99+GwDHcZiammJ0dKt/nRVF2XeCe+wzhevv2u5+scI5zFgusWhv2Iw9iUT8A6bNH5n2Y8gdgnliAZwte3MOEcqdoVVE55htPcTOZyO0Mkoc3b+LiPzWGRbQAxxD7i4MIdF+HSm/0zBjryFleTqJ80Gtq1/FtJ1B7hxc3/oSPdLYMkTzyPXppVU8h3nfi3wf5pDvl5YhUhRFURRFUR4lGm0uE7bTLzUIXmpnDnReSvq1w/SfgudDdQ35p98BEiZOCwHfxFs1eR9UIJmWfiP/087GqixAeQHqaxDUjCubZ8RrYezY1ijJ9voalOel3/0QhrB0AfLnRdTWTOESLJyF3gnoGTditzZxPKgtyzHChhElOsZ5ziyR2+1hQ9rVV4yLoKIoiqIoirIZa6zt9xSUfcKK3gLz2Gr/do5hXeo88+iggwQJrnOdkJBFFgkIKFCgTJk0aQICfPzIAS9Pnh/wA8qUSZHakfOXj88EE5zjHKc4BcAss+TNw85xnHHSpLnJTY6bR/O5TDHFIotUqXKNaxQoRCK0Lrq4ylU+4iPy5PkMn4lEZmnSvMRLfItvMcYYV7jCHe5QMA87/iEO8RRPAfA5PkeadMt5ODhMMMFpTjPFFNNMU6XKLLOc5CQddPAdvsMiiwwwQJYsIG5+Dg6LLOLgcJSj1KixwAKDDEbnZ535euihRo3b3MbFjQSEQNsugAcd69g3zzwhIb30tojnQESGvfSSJ88cc4wwwjTTKqBTFEVRFEW5D8wqCCApbh2IWK1ivtJIupmP1HIfRFKiOpDUtTob3ePcpi/P7MshgrWy2RaY947pY7eBpLW5xGl6nabNspmHa8Z/Ckx0IfXqt4pOkuacVsz7GTam2llnuqRpdxOa/KgVRVEURVEUJWZPBHQAYRji3E8SDzA8PMzJkye5evUqAD/+8Y9VQKcoDyu25IyNpO+9Trg5zb/FQti0mKstlm+jerttmFZh2TWz3R7Diq7CdW0GkQj+MiJ0m9hkvAngNOJkNk0swBsGngT+V+BHiENcBnE/qyECuEHkLsN7iKf8x4lL9thzLCF3LtYQwdz68W1O5TJy12CFx5PquufcFu1yyHVa315RFEVRFEVRHgWCNl0v2umX7BWBlZsWsdq9cNNAKP3aoXQLnKRxfzM4oRF/2fduHNeFDWlfurXzscKGcbsLRUBnA0Y3CW5CtgW1JpEZpv19uI6EIcy9DYUrcpziTVi7Ls5wXgo6noDsUbhzDqpLMHCmfRFd8bo5lzQEd0yRlqy5fqFcNzeA2poIBd0MOAnppyiKoiiKomxKLVoMUR437iWQc3FJkaJGLRK5bYYVWTk4uLjkyDHOOKc4Fbm/ddHFHe5QpkxAQIoUHl4kuqtSjcSct7hFluyOnb/GGWeJJS5zmTHGGGGEOeaoUo0EYlaw9gv8Asc4xgwz0f48eT7gA4oUmWc+cnULCXFwyJChl15q1ChSpIcePsbHovFf4RWmmeaH/JCneZoSJWaYoUaNBAmGGCJDBoBP8Ale4ZUtz8XHZ8w8AN7hHdZY48/5c+aZJ0uWFCkWWaRBgzXWSJjHGmvc4AZDDLHMciSgu8lNbnMbgGXzyJHDxQXgGtcYZJBTnOIyl3fsAnjQqZqFNfuc22JBLkeOPPkN7RVFURRFUZT2sWVb0ki6U9D0XEfS5az7nE2dC037NUQU55j21n3ObTq+KVtInVgkFyCCtTpS+71CnNJmX6fM8dPETnQeUgf+ONCN1LwfQurIX0Zq0q9PaO4HbiCpXR8hKXPdSK30tJl/HkmRywAnEAFd/7aunqIoiqIoivK4sWcCuvsVz1mGhoYiAd3s7OyuHFNRlH0gAO4gEXb5Lu3sr47N1hk9JAq3JgMNxIvetrU+9YmmMT2kjE2f2d9LXCbnDvAhschqFYmq+5ra5JFSNiAOZRcQodxmv01902b9+uN5M+8ngB8g4jkrjnMQ4V4CcULLA99GhHog0f6cOVf7VTT7E4gIr4jcobCOdHlzzo8jyXXPhS3aFda1S27RTlEURVEURVEeRrYjZNutfrU8uB7iyObdXTzm2Hau9GsbxwjmTDAY1mkJIlv2GVe1dmgWzdlxgwbUi0ZkFhjRoT1+YFad7yNpeukCrFwWkdqdH0FtiZZzK1yBRA8c+riI3JI94kbXDrVl8z0z3xMaMnfHNe56gXHdc+LzdX3ppyiKoiiKomyKCugeX+rUcXA2dZ8DImcyD48ixXu61Hl4dNLJYQ6TIcMLvICHxwd8wAor0WctRYqAgCrVyIGuYR4r5nGTm9zgxo4EdA4OZzhDDz2c5zwAI4y0tEmRYtw8HBye5unoWvwv/C/MM88ss9zmNmXKJEjg40eiuTXWIkHdt/gWz/N85JLn4vI7/A5v8AZv8RYAJzjRMn6GDJ/jc7zCK5FwbTtUqXKTm8wzD0CRIte4Fl3/MuXI6Q5ghRVucStyWGvQ4H3ep0iRAgWyZPHwGGSQEUYoUCBPnhmzwDjGGBe4sCMXwINO0iys2efCFgtydvv69oqiKIqiKEr71IlrrTeI0+SSSOqah9R7x+zPIsK2rOljBW8Qi+jsMZpWO6L3btProulvhXPWeS5smlfRzCEkrrd/CbiNuNPVkVS8buAIUmd+nLuv5FQQ0Z1v+re5CqYoiqIoiqI8hjx0d2RXV1ej18vLmqCjKA81NirefO1QourmSHy9iM5HhGOBaVskLqNjo/UUEmHXiO8C+ECXef0cEqUDfABcRXzdbcQ/SKun+wJwERG92XXBKTaK5EAi9PUOdP2I8xxIeRzrDGfL7dQQIV8dcbvrNNufMOcxQ1yyx+Z9bubgZ/fZ65Dg8WQYuevSj1zPPPI9PNzUZsFsd4CBpn6KoiiKoiiK8qgQ3q1qyS73K88aVzlMnGItwZuDFvPebnIz0q8dskfhzvfXCfXWB0jNYroGNNak306pr4lTXnnOHCuAsAaNdUnRYWAEZzURt9XXNhxqWwR1WPwxFC7D0nviMNcoynZ7DV1fxrvzA2iUwU1B92nZvuPxqjLf1Q9l/m5Sxgnr5vo64PjgebKtUQK/W/opiqIoiqIom1KitN9TUPaJkJA69S0FdCEhVapb7ofYfc7i4zPMME/yJGOMERAwxRQDDLDMMgssUKVKlmyLQKlCJXKgK1OmRo3r7NxJ2sFhgglOc5oppphmOnKYG2aYUUY3FYRd5jJTTFGjxm1uU6JEN9300kuaNGXK5MmzzDK3uMUhDvEhH3KZyzzHc9FxXFxe5VX+Gn+Nb/JNznOeIkWyZJlggld5lU46d3xeHh43uIGHR4ECDRr00EOWLGnSlChRoECZciTwu851uukmS5brXOcGN2jQiI53nON8ik/hmUXIBRa4yEVmmY2Ehzt1ATzIDDPMJS7RTz/XuEaePAssRCJDkGuQJ4+Dw4BZkBvWBTlFURRFUZRdwQrWbG15K2RzkbQy6063Quw25yKpc2UkDa25Xr1d1WmYdlYcZ93pPCQNro6I8cKmY9q+NdPG7guRmvFVJN2vB0nZmjXH60LS9j5C0rg+Q1yH/jiSbmdK/1FABHS2Vr09Z9ec41Omn6IoiqIoiqKs56ES0K2srPD+++9HbnadnTu/Aa4oygFj63XBOOIOtmjnIBF+go3Oc0kksj4FvIiI2O6Y55Lpl0Yi8cGm8bLEEXQ/bChQeRhxrcsjUf2IOWbz+laIONOdR6L+Zr6L+M+XkYgfJMq3JXzsXYkVYqe5ZxC/+kFEQHfDjGnnHJrzb87Z9IiFgb1Nrx83RoGz5rW9fhdpdR7MN+1PI6LL0b2dpqIoiqIoiqI8WO4WeO1yv8odI6CzwQrGzQzjbGYSQEO7HOuK6Ktyp70p9n8Orn6DjaK5rQihWpB+OyXRJQIzXJm/64ObMAIzI5pzfHkf1KVdokf6tcPqlHwVb0DxNlQXxSGuWRxXX4NwUVzwkr3gZaVPVxtJmF4mdpcDOScvacrFmu+d40HDBLqOK9u8THvnpyiKoiiK8higArrHm/AecYrd7+JuKqRzcXFwcM1jjTVucIOf5Wc5znHGGOMiF7nBDa5ylQoV0qTx8VljjYAAF5c0aRwcypSZY45hhlmJKjzuHB+fMfPYDu/yLnXq5MlTpkySJE/yZIvYrZtu3ud9ypRZZJEBBniXd1sEdCEhF7jAec7ToMHzPB/ta9Dgf+d/Z4KJyAFvu9SoUaceiflCQrrpjkReIMLDSSZxcOiggwYNChS4znXmmMPBwccnR44sWZ7l2Ug8B3CYw/TSS548c8wxwgjTTD8yArpRRjlrFuQGGWSGGS5ykV56yZGLXPjs/jRpUqQY1QU5RVEURVGUXcOK1OwKglmloA5cIXZ7y5ivVSStLYuknNma9SGSvuaZY1l3OSuQSzXtd8xr6zpnSvFFojbrQGfFdyGSppVD0uZKxCK4DJLOVTN9eoCPmTkdBf6C1pr49aa+CTP2IpLud5SNKXuKoiiKoiiKAg+RgK5SqfDlL3+ZalX+tXUch6effnqfZ6Uoyl2xEfHdci6tR/tmbWxkfbfjV82XFZ7ZaD0B9CECOru2lkAi5SISRQMsEwvo6oiAyrq3pYjFdHXkN2Y3cucgTxxpN0fcIfA2cucBJNKfJ3agWzHvr5v5WhGfXUMtmHOxdxfKZo5/iQgAl8z4aeSOgS2hUzfHb5htGdO/A7kz0Oy49jjhAxPAOeSzAFK6KE8snHOQz4DdP85D9NdRURRFURRFUbbDege4nfTbaRdfXNKaHeHCcPPXYBzhitKvHTwbVO5AQEdo+u2Q7AjUV0VU5qYgKIlQznFjx7nQLPe6aWlXX5V+7bB2A4rXYe0aVO+IoM1NGLGeJ9fO8cQBrnpH2nkZ6deOgK7zKaj+MaQHobYix3Vc8NLxeI2ynKfrm3ZL0k9RFEVRFEXZlBq1ezdSHlnuJqDz8UmRokYtci5rxjEPEHFYQECSJGus8T2+xy/yi4wxRhdd5MlTNwtfJUrMMtviBLfMMiVKODiRkK2LNgt9bIM69RaHurOcpUCBZZYJCemgg5CQOeZo0MDDI0OGDjrIk6dAgQEGmCV2Kg8JeZu3uWIW4EqUmGc+csCzYrdznGOJJc5wZtsiOt88ypRJkaJBg1lmmWceHz9yEsyQoU6dFCk66GCIIY5whICAPvrIk2eJJY5whGMc2zBOjhx58lTNwmL1EUrp9fGZYIJznOOUWXCbZZa8eYB8pgcZjPaPM76pY6GiKIqiKIpyf6whaWX1pm1Fs91BUskSSGpU0uwvIaltPnEqnnWRC5FUtASSomZd7mDj6ox93exWZ93xrFivgtQ/p2keVjRn3ewc4FvA82aON80+O1eH2DXPpiaG5rzXTPtnt3W1FEVRFEVRlMeNXbsj+Ru/8Rvbavf7v//7HDp0aEfHLpVKvPvuuywtLeE4DmEYksvl+Pmf//l2pqooyl5xrxxNDylvU0SEYuuxPvBschxbqiZoerbe8yHiPteFOMRB/Nsugwin7HjNdwt8s901z9eIneEsM+YrBTxhtiWb9l9AxHMB4jQ3u27utxFnuYBYDHeYWBRXRiJ9W77HRcR2tlxOgdhpzp6TXf+z52/b5hDx3HFz3o8r48i1vow4BY4g3wMrahxArj1m//jeT1FRFEVRFEVRHiztiOfa7Jd9AmrLJk6xQaGtUmLfN9mHO4hYK/vEZke7Nwv/vY1OjvQb+Z931i0zLM9+BtykOLE5oYgCQxuUAqEr+/2sKZs63MYcEfFceQGqy0acFwIV4+JnloXD0Ij4HKguQXle+rVDx3HjcOeBlyL6XoUmOLeugXa/60n7juPtjacoiqIoivIYsJkwSnl8cHC2FNE1C+TqLYtVsi9BgjRpAoJIZFenToMGt7nNVa7yi/wixzjGCiv4+ISE1KhRokSKVOSoVqFCjRoJEvj4FChsKvC6X5od4prFYXPMMcMMCyywxhohIQkSLX2XWWaRRWrUNr1mF7jAFa4QEDDJJLPMtrS7xrVInHWZy/TQwwQT25p3QMBxjnOb23h4VKhQoNByfPs9SZpFwUMcop9+TnGKgIAZZkiR4hCH6KV3U/FegQJAdIxkywLjw8844yyxxGUuM8YYI4wwx1yLyDFtFuTGGGNcF+QURVEURVF2HStWs45xdSSFzKa/WVFcAkklOwocQdzgVs0xlky/gLgevq3nDpKaljP7VthYN986xNWQ1LYsca1763RXMGP3EqfL5ZEa87eAQ8CHSKpXP/AT4tRAGz15xCmDNpXOrkD9BPjCdi+aoiiKoiiK8lixawK6r3/96zjO1lXcQlNh/L//93YSm+L+juPgOA6/93u/RzabbetYiqLsEXdzngOJpkeQCPwGEr1v5xg20obYE76KRMgeIm5LIcI06y7XjQjfrD981Yw7tG6sIhJV15Hov4q41tk7AR4Sxa8S3wWwuZB14Lx5PUlcLqfXnGsBie7XiKP3oplDzrS1XvZ3iO9YWI/5pJlP2mwvmvPsQ36bZ4jvcKyZa3QSONY0x8cRBzgD9BB/f9YbQKQQ4dw4bZlsKIqiKIqiKMrBJgFtVbZP3LvJerzmSh92qXKzf7Kb94VN/XbI4o+5d/C5nobp1wapXhH8hTURz+E2iQWB0AEnkP1eByT72hsHoJKHal6c4Bpl4zxnqsm4HgQN4wpXMg54VWlfyd/z0JtSXYTuZ2Hhv4GfE1dA6yQYmuVnN2lc6bIyp96PST9FURRFURRlU+7mQKY8+ri4BASbfg6qVPHwKG9SYdLHZ4ghXLMYVqbMAguRiK5OnXd5FxDxVzfdrLEWifKs0Mu61lkRnoNDkiRddBHsOI66O3dziGsWABYpUqNGjhyheTg4uLiUKEXtAAbNIl+dOufNAs8kk8yYBbheesmRo0CBPPlo+xhjXOACpzm9LYezJEmOcpSQkDXWSJIkS5YVViKHPHuNq1QZYoif4WfooYcTnCBLlg/5kA46+DE/ZoklFljgMIejMRZYIE8eBydyyxt+xBbvHBzOcIYeeqLv18i6BbkUKcbNY7sOgYqiKIqiKMrOaHaOa3Zqg1hwZtPT8kjK2TCSmnaH2JmuiqSe2baheZ2gVchmU/hsKUX73mJd4ZrHBXgSqbtv6QbeR1IBF5F66O8CL5j3mDkFZg7Nteptup9dCcvDujIliqIoiqIoiiLsmoDuQWOd58Iw5POf/zx//+///f2ekvIIMnlyEoBTV0/t80weAxxENNaHROdLxP7vW7W3eEjUnEGi3Tpx9N5FLKQbIS5/cxhxh6sg0XOaWMx204xtBW2eOfYy4kKXNMe3pXDSSBmcPOIwN2rGmDLHKZntAM+ZsS2ziAudPdfAzMEK6DKmv70OVWAFJkcmwYdTpVPintYw8wjNPPuQOxAV0z8LPAWcNu3sHB9XHGACuR5TwDSxA90wcn0emr+IB4vJSfN785T+3lQOFvrZVA4q+tlUHkUm104CcKrj6j7PRNmSZBdUF9rrt1MqdyDRLW5o0fKsx2RxFMKQU50fmnjHLNmGgbSv3Nn5WADFm8b9bQeEgfTbKZV5yByHpfdFyBaaJeLALj874sjmOPJVL0LmmPRrh6ACYR0aFXGgc7zYIS40TnD21IOaOOKFdenX1nhV6P04FK5CfQ1Sh+W8qktGvOdCskfOs1GE1IC0D9oRZ26O/p1Utot+VpTtoJ8TZTvo50R50GzlQHZyUuKoq6c0jnqUCQlxcQkJNwjWQkIqVDb9fGTIROI5EEGdhxc50AGssAJAggSHOcwCCyRI4OGRIkVAgIdHg0b03sUlQYJ++lmdXGWSyV37/Xc3h7gGDWaYoU4dF5cyZa5xjQyZaI5VqgQEZMni4LDCCi/yIgBTTFGlSokSs2YB7jme2yBQu8hFZpmNRFtTTDHG2Ia51qkzxRTTTFOlyiyz/ISf0EMPHXRwhzsUKeLj4+AQEDDPPA0a9NHHIQ5Rp84v88uMMUadOn/EH1GlyiCDzDDDRS5uEPiBiALTpEmRYvQRXLxzcJhggtOcbrnGSZIMM8wooy2iRv07rOw3+hlUDgL6OVSU7XPS/Lxc1Z+XexI2PdvX68seukgt+DKSttfs5JYx+63ozX75xM5zSSQlrdHUz23q5yMpeNZ1zjHPLlLnvFk8h3nfiYjlCoiAbhZxk+tGxH0OIp7rbJpL0hxz1exfM31/gqTtaZrYw4/+rVSUxxP92VcU5UGxq/8HWpe4+22zGa7rMjExwWuvvcZv/MZv3NXtTlHa5c2X3wTg1Ov6B/eBYyPWGfNcQqLmetN+iAVwIBG8i0TBLhId2+32eKHZP4AI3N4jdn8rmvZdxHcA0mDWGIUScXSfXjff5nlsxrR5njdtemkVz4G4zdnyN8Y4gFtN462ZeVunvACow5sffxMScOq/nopFg9YMomLGK5g+VkhoizqOo1G/xQfGzJeyK7z5pvm9qYGKcsDQz6ZyUNHPpvIo8ubCywCc6nh9n2fyMGGXKdvp1wZ+R3sCOr+jjcFCEVo5dvlVlmPfnH8JgFMd/x/TzpEvx5H27TpzBGV27kAXmH477WYqodSWRKzmOEa817wEbQLXRhVqy/K+XYGZlxbxXFgFHHGDq6+Z6+vK2GFgXOIcCCvS3kvf68ib4ybBdeHQz4qTXXkWvJR8WRolObf0gLRzXem3S+jfSWW76GdF2Q76OVG2g35OlAfNVg50L78pcdTrpzSOOshYcVc7+Obh4EQCMSByiXNx8fAicZ39rNj2SyxFDnYWK8h0ccmSBUScNsII00xziEOUKEXObratg0MnnWTI0E03xznO1TevMsvsrvz+u5dDXI4c5zlPnXp0nlWqkaCvTp0aNTw8kiRxcfHxI4HZtFmAm2eekJBeelvEcwCHOUwvveTJM8dcdE2aBXQhIRe4wHnOR98PO5ef8JPo+5AiRZ06Dg5p0pQpExKSJEmGDAkSzDATCfV8fCaY4BznOIVcz1lmyZuH/d4NMhjtH2d8W+54Dys+PmPmcTf077Cy3+hnUDkI6OdQUbbPy+bn5XX9eWkL6yAXEAvZbK32ApK2ZoVvSUREZ2vDlxGBmhXU2VS9XNN2u82m99kxK0377Dab8rYdZpEUPNu/C0kLtPXpHTPXOSTtDqAHca+rA+tXaC4BZ5E67OO0vfKm7CH6t1JRHk/0Z19RlAfFrt2V/bM/+7NNt4dhyGc/+9lI8PaVr3yFiYmJbR/X9326urp48sknyeVy9+6gKMrDQYhEqM2e6QniiNpFRGTeun4ZJAquIq5r1jkugUS/DSRq7iT2ms+bvr2IiK5k9g8hEb7t30Hs6FYGBs1YNvr3zLzmkTsHz5g2U4ggy0bc9nmzX1lJM+9lM6b9LVw0X2WzvUYsossS551mgH5EeFgz59Ft2vim75Bp9xEi4Hthk3koiqIoiqIoirKPtCkWa7ef2+b9lHb7OY6IqpyKiLsct2mfeR0Gxk0tacR2beLuZJn1fvu5sPQTcXsL6xA0V4Ax52BFba4Rzi29B4OfbW+OCXv9vSbHO7OsHX0UTDKtYyu0NPfbIZlhWPkA6isimsseBRyor8q5uj74ORnT8aBekDllhtsbT1EURVEU5TFgKwGdcvDx8EiTJiSkGFVo3D7WQa5hHuv3ZcnSQQfLLFOh0tKmSpWQEMfEGQFBtD9BggwZBhkEIEmSYxzjQz5kmWUOc5gsWRZZpE4dH58++ihSpESJAQY4xrHIwW43uJdDXIYMpzjF+7xPSEiCBC4uSZJ4eCRI0EEHDRq4uHTQwXM8x3WuM8ZYJHazz7lNF+Bke578hvYgP4tv8zZXuAJAiRLzzFOlSoFCi/NcSMhhDpMiFR23SpUKFVxc6tQZYiiaH4ggboklLnOZMcYYYYQ55iL3tQEGSJvKnWOMMc74rl1/RVEURVEURdkJdqWhSCx0A0nfc5F0t0OIS1wdWXmoAteJ68UnidPqLiDiuxKx0xzm2brT2bIgCXOsEBHeNbvQrRK7yNn/+AfBRBginFsids9bXwKyueb8HCLce8bMa57YgW7AtD9njncGFdEpiqIoiqI8TuyagO7MmTN33R+GIY7j8LGPfYxPf/rTuzWsoigPM1YUZqNnK1KzeX9J4qjX/rayIrbDpn1XU7+M6WP7HTGvq03PIIK6BSTqxrStAzebjr3cNF6VuHxOBonA02ZsB3GeGzNj0PRc2OScu81+W4LHQ4R/vWaMZURgVzHH7kEEcfa8D5l2JdPfGBHgmPnUEUe7XuBFM9+fIGVzFEVRFEVRFEV5PPHavP3TVj8H3DR4GagVjOiqMxbOJbrkub4q4isvK+3bXZ5s122tnX6NCqxdB+qxUA4X3Ka5BybIDU0llrVr0q8dnAT4WRGz1WgSJtrAOYTQhdC46XkpcQ102hQVdo7CtT8Whz2/E0q3oVEWsaGXEBFdZV6uXfYo1IxLXedoe+MpiqIoiqIoygHFx2eQQU5ykgQJrnKVGWYos30n62bhXECAax4JEmTJRsdeYYWb3KREiQoSO4SENGhEAjrrJmcd0XLk+BSfAmCYYS5xiU/ySZZYYpFFeuiJnM4AVllliSX66eeTfBIH567uZ3XqTDHFNNORAGyYYUYZ3bTfvRzillnmKEe5zW0qVPDw6KQTD48MGRwcMmRYZRUPjyMc4TjHIwe5pFl4s8+FTRfg4u3r2wNc4AJXuEJAwCSTzDIbCVxnmWWFlUgomSbNIIORA6GHRxddzDJLkSI+Psc41uJw5+BwhjP00BO58VmHOkuKFOPm4WiKrqIoiqIoirKP2FIv1pHObXqumK8UsRudT+xYZ+vhV82XrRNvUwBBVjBqxI50Fs+0ryN14XuRFLwyks5XRVLd+ky7FxEnOZC0uPS68W3KYNK0d82YK8Ax4DIiwGuewzVEmHfK7O9B0+oURVEURVEeJ3ZNQHc3Pv3pT0cOdD09PXsxpKIoDwMB4py2TGsUnUF+O3WZ7R6t5WFWkBI0aeBpRIxWIHaasxH7PPDTpn8D+D4SMR9Got9VM07KHHfatLOitLKZ2ypxxN1FLNBb7zg3jPi89yPRthXqxWuEQtmM3wUsIiV90sTleFbNGCnkToGN8jHvPzRt68SCwRwwYs6jbq6PFeFdAE6zR7/xFUVRFEVRFEU5cITBvdvsVr/UgAi8/E5w8+JAFzaIBHKOJ85sOE3iOk/6tUP6CCz/D1jn6HB3XOm3U8oz0FiDRl0c6AjM6q8rAsEwAMeI58I6NGrgFqVfO7geJPugtiziuEbVHDtEgmW79OyClxTxXLJX+t0365e1m5M7w/ZNFBVFURRFURTlIaCTTp7lWV7hFapU+d/43yhTjtzNtuMsaAVvtq19TpIkQ4Y0aerU6aGHWWapUaNOnQaN6Nm62FkBXoYMPj4ZMnwWcboeZZSznAXgGZ5hmmlWWaVIkSTJaL4nOMEww2TIkCJFjdqmc77ABc5zvsW9DeASlzjLWSaY2CAAu5dDXJ06Dg699LLKKmnSdNKJj08vvdG51RGX72GGcXCi41mRYD/9XOMaefIssNAi0ltggTx5HBwGjKfEMMPR+FbUNskkM0iM1ksvOXIUKLDCSvQ9S5GiQIETnGg5z046yZLdMD+Lg8MEE5zm9I4EiIqiKIqiKIqyHwTIrf7mFQe7MmBr0tu69r1IGluJOKWuCqwh6Wkl4tr00OpCZ4V4ZTPmYfO8YvpZAV4NSYc7atqfAFOuAr6NpNqBpOOVkZTDBJJ2VzTHypl52P+67epML63phXb7GJpWpyiKoiiK8rixJ//3vf3223sxjKIoDxsJ89VBLKALiUvQ1Mz+ABGilRGxWIBE4CNIlF00zwPEZWPGkWg+R+znfhIRlr2LCOx+llZx2w8Qt7Z5M1azqK/5TkEB+e3Zg5SjsQUsR8GsUcqYM8BFNkbhvYjIrd+cVxK5m2DL8tiSOSBiwueIf1unzJxdYgHgqJmHvWuwYMadNdcIYKppv6IoiqIoiqIojxehra6xE9WTY/rtkPQgpA6L6MvPQVgzAjozdmASDK1TmuNA+rD0a4fcGMx9e4en5kq/nVK4JO5rpTkjYrOERlDXJDILQ6ivQfqQ9GuH1GG5NuVZcPy4dGrYFKg6rnGl88XNL90v/dphdUq+D5U5KEyKW2BnvxHtNUTo6LjiQlcvQPIZab86BV0acCqKoiiKoiiPBglT0TBDhkUW+YiP6KWXGjXy5CMnuYC44EjjHgU9rJCuQYM11ggJucrVaKwiRUqUcHDw8KJjW/GWh0eSJB10kCHDGGOREMvHZ4IJznEucp1rdlfz8XFwGGQw2j/OeCS6s4SEvM3bXOEKACVKzDMfCcCsKO0c51hiiTOcieZ3L4c4O9cGDVKk6KWXoxwlQ4ZhhvHx6aabGWZYZpkUqZbjNYsEBxlkhhkucrFFAJc3VTYHGSRNmhQpRhG37CmmqFKlRIlZZgF4juciAV6VKg4Oa6wB0E03ffSRIkUXXdH8pplmhZUN81uPj8+YeSiKoiiKoijKQWT9kopNiUsgqWgl4nryReAGkurmI+l8VXOMEpJat74co02588xzDUl5SyFpgkmzz/a36XK9SDrdIPB5M94YIqb7c9O/WTTXvPKVRJZRCsATxPXzn6M1PVDT6hRFURRFUR5vtHCCoij7g4uUgnkCiYZvIJFxwexLI+KxHiQCXyQW1SWBO0hEu0zsDpcx/TNm3xPAceAM8A4SOV9HIudeNjrDjQA/Nu0qpt0sEnlbAZ1rxksjjnU3gF8w/X3E0/0cmDVI6Z8ndsdzgGfN8eYQh7x+87pKLLILERe7BFJax9JnrsVS0/tOoLupzWFzfnlz3BEzV430FUVRFEVRFOXxxE2zc8uw0PTbIX4Gel8QEVZ9DUJfhFdWXOZnwEnGgqxEDnpekO3t4CVkno01tneODrgp6bdTaiYJNKwhS7o2SDSucA7xewLTrqnfTvEykD0Oyx+Iw1wYiOAQzHiOEbWFst/xIHtM+rVDaVqO6XeL811QhWTPxnaNsoj2/C5pX5pWAZ2iKIqiKIryyBASUqNGiRIzzHCJS9ziFnPMASJm8/Ai0VxA0PIeYuFbs3tZaB6BeSyzjItLSIiHh4tLjRoeHhnkf3or1kuSJCTExeVpnmaCCaaYigRa44yzxBKXucwYY4wwwhxzLeK3tKncOMbYpgK6C1zgClcICJhkskWEB3CNa5EI7zKX6aGHCSaAezvEddPNJJPRNbHndZrTDCLFVBZYYJnlTR3kthIJ5s3DHne9SNAK96aZBmCeeUJCeultca/rpptOOumjjyJF8uQ5xCH66Iuu8QILrLCy6fwURVEURVEU5WHFafrykBUO6whXR2rQQ1zfr4HUpLfcrZSIFcbZ2vk+ks7mIaltfYgLnU3760JS/o4BnwUTbUi/p4G/QOrXF5EUu+axPSSd0Ja4yJj5bpYeqGl1iqIoiqIojze7IqC7fv16y/uRkZEtWiqKohjsmmE/IoK7hfxGao7Gs0jUWkYiZutOZwv72yjditsyxMK3HBLh2nI4659zm8ypOTIPTNuymYvXtN1HIu41pCRN86+8cUTcdhmJrEeIxXFJxCXP5q4+Z45bazpGA/i+OZ8x8/59pJSOC1xBnO1C4rI8CTZG+zkk0l9/3oqiKIqiKIqiPH6k+mnLgS7Vv/OxMsMi+ur7BMy9A7VVcI3TXIiI15yEOLb5HdIue1z6tYOXEKe0RgUJru6FL+3bEdD5HVBdEhc2IHKec1yzzTrRmevsuNLe79j5WBBfEz8LTgpcW7PVEdEcRkCHK/v9bGu/nWLdAYMapPogc0zmXls25+lDolu2l25Ku+Z+iqIoiqIoivKQYQVuzUIx6xR3iUssssgccyyxRJUqDRq4SDxgxVl189js2EmSNGhQoxaNERCwyio+fuRkFxBE7nMN8+ikEw+vZfsAAzzLs7i4TDMdibscHM5whh56OM95AEZoXa9PkWLcPJqFffYcbL9JJplhBmCDw5vdfpKT/Ff+K4ss0qCBh8cii3TTvalD3DLLzDKLh0cffbi4zDHHNNOUKN3TQQ7aEwlaqmaRzD7n1i0SHuYwV7lKBx2kSBESMs00ISFJktuan6IoiqIoiqI8rFjxnBW72bS2UtO+GpK2ZlcDAu694uQQi+hsvwxSJ/6nkDS9ZWJnu26kxvyLSPqdjVrqZi4vAN8zbXNmfJvOZ+eJOUbZjLVZeiBoWp2iKIqiKMrjzK4I6J588kkcUwHbcRzq9dZFgtHR3b957DgOV69e3fXjKoqyR1jB22Ekyj4GfIhE4TYqryJuayBiMR8RyNnIeQFwm46ZRKJi3xzrFPBM077m580MAObNXAIzhi1xY8voWCOBGiKea5h2U4gYzp7XGcQ577zZtl5TnEIi/XFzjCmklI0V2R0BbptjTSIudg3zZe9O2DsBZXPtPFqx57f+vBVFURRFURRFefxIbLVE+AD6dY7CwlnoPg2rH8HKRaitiGMaiCsdroi9sk9IOy8t/drBy0HqkIzRsFVP1osFnfjZS0HqsPTbKYleEeo5TQGY47a+B3HXA9keVKVfO2RHoDQDmaNQnoP6KhDKObhpCMpGOBjI9cwchfKs9GsH1wSOnnlurEFuFDKDre2W3mtt52rAqSiKoiiKojychJukfDZo4OCQJ0+dOiusUKYcuceFhKRIkSWLh8cqqy3ucyCCtgwZ+uijRo055nBwNoyXIEGFSnRsB4cUKUDEayBCvX76SZFimWU+5EOe5MlIDNY85gQTnOY0U0wxzXQkLhtmmFFGI9HfeqaYokqVEiVmmQXgOZ5rcWlbYIH/wf/gfd5nmmkcHKpUIwe5Ndb4gA84ylEGGWSOuRaHOHstDnOYBRZIkmTFPOz8t3KQs/vbFQkmzSKZfS6sWyT08DjOca5xjS66or4lSlzn+rbmpyiKoiiKoigPGyGxCM2m33WZ9wFxCl5zJrBjtm1HcOaaY1SaxrNlEH8JOElrutwwMMrGhOYp4tr0l8y2HLEjnmeObVZQOISkza2yeXogaFqdoiiKoijK48yu3tUNw83rSnz00Uc4jrPl/nawgj1F2U1ee/21/Z7C40U3sfCsAlwzr/uQcjNZYkFdHyKYswX3rYgtS1xOZtnsy5r3PwG+YI45jETR/WacvDles3PbRXP8ZvGczam0JXE6kQi7jETTOeDdpvMAidAngNNsFMetj/Z9xGmu2Qc+BN6hxcXutbnX5BgnzdxDcx6+uUbNLJg2DuJ4Z89fUR4Ar72mvzeVg4l+NpWDin42lUeR1554fb+noNyLhq3EsUMHukZp52O5PvSMw4f/DghE6OWWee3U/xfCAEIXPF+2E0DhMpz4W9KvHRIdkD0GlQURroUNcbsLmhJYXU8EfI4nosDsUem343PzxEEvqGzc57hyfhu2J6VfOxSvi5tc4TL4nZAyx3ccGctLgW++p36nuMSlh6Rf19jWx92KzDAULkG6H9auQTUv1zXVFDhXFmQ7DqQH4n67hP6dVLaLflaU7aCfE2U76OdE2S9ef03jqINMQECVKmusUaVKQNCyLyAgizhAlylv6O/i0kknQwwxzzwubovIzrrTpUnj4VGiRJ165H7n41OnTj/iCl6hwgorkejsJjd5Jqog2YqPz5h53I3m33/TTAMwzzwhIb30tojnAA5xiCJFFlggJCRHjstcpkCBJEn66adIkWtcY5BBPsEnmGc+EvF9kk9ynevMMsvzPM8IIy377+Yg13zd2hEJDjPMJS7RTz/XuEaePAsstJxjmjQ+Pg4OT/IkEDvwbXd+ys7Rv8PKfqOfQeUgoJ9DRdk+r+vPywMhMF8ektqWAlaQlLQOJKWvF0lbqxEL6lxikRxsXIEKiGvV29S2OpJqNwP8MtwjahGmzfM8Us/+CWCIje5108At4nS+PJunB2pa3cOH/q1UlMcT/dlXFOVBsadl0XZL9LabQjxFUfYJ6/X+EXAdiWI7iUvaJBBPdfs+j0TkPnHkDrGArIxE6g3z7Jg+NmofBc6a14NIJH4RifBzSPQ82dTXlqex5gU219SW0PGRuwJLYIpxbmQzcdx2uJuLXQP4vmkzZt6/b87Hnke+6TzTyJ2N3TcCVRRFURRFURTlYaEdIdz99AtDKN6Eyh1wQsAHpwY4Iv7Cl+2VO1C6GbvTtUPXM3DnB9B5Epb/EoKaONrJRIjc5xplcBOQOwnJPum3YxzpWy80uc65Mn/rOocbG97Z9rR5P6w0LeLAtY+Mi/sQpAeNo1/DCAK7xHWuUZTzyx6Tfu0I6Kx7IMg45RlYvgjJXvBzct7VfLzfS4ugsF33QEVRFEVRFEU5oFg3OOtEtt45rkyZWWZJkKBMuUVgZ9vXqLHGGossbjh+ggQeHgkSuLjUqRMQ0KARHatKlT76KFMmT55llsmQ4QQnuMnNSFy3G1g3O/ucY6Nj901uRmLBeeZZZJEOOqJrc41rDDDAkzzJTW6SJbvBIe55nuen+WmKFKlR27aD3Hq2KxK0jDLKWbNIOMggM8xwkYuRQK5AgTx5BhhgmGFcXBwcXuAFPOKCKNudn6IoiqIoiqI8TFhnuJR5riDpehliQd0R4CqtjnQesnQRNB3HaXoNsWOdTe3zkVS9JaSu/HYc6KrrnruRlLjBde1KiKhuEUk77DLb16cHalqdoiiKoijK482uCejuJWpT0ZuiKC1Ykdp1RARmy7qsmf2jSLkYWyrmDlLWZg2J0h1EcJdEIvGk2b5q9q0hbnM/AV4wx5gAzgGnzBizxOVmII7eE8TReaZprg1iUZ3Njcw3vd5N7uZidwS4bdpMbnIeDhLl2/McZ4/l0oqiKIqiKIqiHCyalzC3i60mstNudbj9n8FNiliutgyNqoi93IQIvxpFoA6JbnFou/2fofeF9lzoBs7A9Teg4wmoLoqYLDCVURxPXNkIReyVHoTsE+BnpN9OcTzoOAblOTMG4jxH2LQy7MROdG5G2jttOtAFVbmGqSEjRnTlGqX6Wtv5HeBlpJ3jxHPbKa4PvRNw5xzkTEBZnhXRXLUp4EwPxvt7x9t3D1QURVEURXkMSJGiwiYOxsqBwMMjINggkLP7fPOw4jaLdahrmEczDk7UZ4016tRbxFYOTnTsNGlq1ChSjFzqQkIcnA3HfZAkSbY8Fyi07G/Q4AY3KFNmhRU8PDrooJtuRhiJBGizzDLEED/Dz7DCCic5SUCwwSGuTn1HDnL3i4/PBBOc4xynzOLZLLPkzQPk+zLEEKc4RUjIEY7QQ8+ezE9RFEVRFEVR9psQKCICtDRxylwJEaI9iwjTyrQ6zdkUvq0yg60DXYgI1QYQ8dxfImmAzVxCauNPIKluNopKrntujVZiCqbPUTPPETO+ptUpiqIoiqIozezK/35/9md/dtf9QbDTJC1FUR5pXCQq7kfEYB4ihnOAOSRyXkEi8yQiHLtuXlcQwVqaOOK1nu9p82xFeL20usONE5ewGUMi5TliYVrB7G/2lu+ClkKbBTM3K9qz4r/NqLNR/LZVuZyt2MzFLgTeuct5DCDXArN/fJtjKYqiKIqiKIryaNLufZl2+q1chtUpCGvilOakINVt3Mp8Edg1yvJVWxGB2+qH0q/nuZ2P56dh+CW4+S3oGIH6mgjpwrrMwQrp/E7ZDzD0Oem3UzKD4sbWcQxWKxA0RIwX1sWFznHA8aFeAteI7ZK90q8dXLMc7KdENJfohvSQiBLDuoyV6BanuNqytGvu1w4941BdgsJlcbHrGBHBYKMKXhLSA7HDX25M2iuKoiiKoihbkiSpAroDiouLh0doHuux21zcDfucpofd3yzES5Gigw6yZEmRihztmo/ZoMEqq9Sp4+NTphyJ61xcAoLIvS5NGgeHJElWWOEpnmKe+V27FsMMc4lL9NPPNa6RJ88CCxzmMAALLLDEEgUKVKjQRx9ddNFDD0WKpEgxwACz5jHCCL30cpzjm7rE7dRBbjcYZ5wllrjMZcYYY4QR5piLBHIDDJA2i2tjjHGGM+oypyiKoiiKojwU3E3Atl1sPfkycY15DxGaeearF0mB8xGnuuaUObfpOM3uc6Fp32Ge18wYY4g4b57WdDeQ2vhLwBlzjGFEXNcPXEOEcAtgohVhARH4rRI73C0BJ5D0wjtoWp2iKIqiKIoi7IqA7syZNqp2K4ry+GJ93ruIy7n4wA1EDHYTEYQ1R/erxH7xDfPssbEcjYNEu11sFLY5SHTdA5w320aa9t9sOqYtmbNixkuY8a04zzPn4RFH8JYQuGDGWF/4f6tyOTvhXucBcn3G72MMRVEURVEURVEeHdY+2rt++XdF3FXNi0jOS0L30yJgs9RXYfl92V9dFFFW/t32BHQAx/5vMPsOLF0QsVyiS4R0YcOI5zrkuXgTOkalfTv0vggz34bOUZl3bQVwwcsat7uGCAS9FCRy0HlSxGy9L7Y3XmYYCpcg3Q9r10Qklz0qwjZLZUG248h1tP3axXHEnS/ZA/nzsq1jXcDppsR5rmdc2iuKoiiKoijKQ0hAQJ06wSZu3VYUlyRJSBi5zVlCQgICEiSi1xYHhypVfPzIja5OvcVhrkyZNGkqVGjQoEaNBg0cHNKkI0FXDz14eHTRxTLLLLJIF10c4xjVDQtQ7TPKKGc5C8Agg8www0Uu0ksvOXJ8wAdMM02ZMgBrrEXi0AUWouPMMkuKFLPM8gRPMM30nork7oaDwxnO0EMP583i2si6xbUUKcbNQ8VziqIoiqIoysPC/Yrnmo9TR2rb18zzEfP6JvAE8AFx/fsASYtzmvo345t93ea1FeYdQpzufriuzzViZ7jLSFrcBFKn/qxpMwjMABcRoVwOSe37EBHWdTY9DwNXTb/jwMmmuWpanaIoiqIoyuOLug8rirL3JJBSLkNIqZck8GngPyOCsMNAFnGPq5n2/Ug5GFvqpgOJgh1iB7oQiYJdREAHEjk34yDR9Wk2usO5SEmaD834NTNejTiKb5i2CXOsw+vGCIG3gSvm/XbL5eyUu53HTl3uFEVRFEVRFEXZY9qtB9rmMl5tce/6lYwNeK0AhCKcaxbPQbytuijt0gNxv3ZY/omIuhLdUFmEwFZEMYFioyRvM8PSbvkn0PexnY/TNSbiucJleS7eEjEgEH0/XR/8HnGf8xLQeaJV8LYTOkdhwSwLpwfFaW75orja+TmoF0SoaPd7aTm/ztH2xrM4DvROQPdpcRMsTUNQFTFgZliO72rAqSiKoiiKsh3Ufe5gs5VIKiSkQYMSpRbnuPVY4Zw9TpJk9LpGjQKFSEhnH/bYRYrR++bjV6mSIcNzPEeCRLS9Ro1DHOIkJyM3ut3Cx2eCCc5xjlOm8uUss+TNY5llAOrUCQlxccmRI0+eBo1I5JcgwQILXOUqI4zsqshvN3BwmGCC05xmiimmmY4c6IYZZpRRfF1cUxRFURRFUR5TrIDOpuEVEaGadaGrEovmbPvm52asI10CEboliN3hrNOdSyyCKyApfzOm3xhSu/40kv42gaTa2Tr9s6Z93rwuIKmCPYgTXT+yojZuxl02bT6BiAI1rU5RFEVRFOXxRf8PVBRl77GObiPAS2bbeSQifgL4ESIuC5Foto5E31Ukcs4jTnAL5n0aiazziNgtA/SZMbYq9O8j0fb6PMYJRPC2Rlz+xkb+njm29anvBF4w2ywXEPFcAEwiUfp2yuW0y1bnoSiKoiiKoijKAWaPBXRBfW/7radWMCI24wjnZXavJGpQh1vfguq8CMj8HNTqgBcXWnEcI9rLQHVO2vc8v3MRmOvD0c/DR38EYQiOa5z2Sua9I+eW7IVUv4jajn6+fbGZ64uQ7c45yJll4fKsjGmFczgyjt3fO7574jbXF/FfuwJARVEURVEUhRq1/Z6Cchc2c58DEdDVqVOkGDnVrcfFxcNrcZmzDnJp0mTJkiCBg0OJEiustIjx1gvnHBxcXAICeunlOMepU8fHJzAPD49BU9VxmPtwnt6EccZZYonLXGaMMUYYYY45qlRxcJhjjjXWqFChSpUlllr6L7JIhQpJkqywwk1u8gzP7OocdwsfnzHzUBRFURRFURQlJkBS5hzztYqk7S0j6Xkpsw02X+lymp4dJEUuab4OIal2a8jyzXNI3XrLAiLYm4XIK3oKSYkbR1IJLyNOcmkkBW8GcaDrQ1IGryPph3XgI1rT9FwkTU+jAEVRFEVRlMcbFdApirL31JGyLsmm9+eRyLmCRLVJ5DdUitgb3rbtQSLzJcThLWH215AI+SgicOtCIuVbbM+ZbRjxbP8k8F0kYs8i0b4tr+MgJXY6kLI0SeAG8JYZ8xziPX+VuCzOdsvlKIqiKIqiKIqiPAhcXwqBtNNvp2QGJVbzcxBch+JtEc55qbhNeU4c51xX2tl+7bByWVzSghqUbov7XLLPuLH5IrBrlEXkVrwFyUOw+qH063lu5+P1TkB1CWa/A25CxqqtxOLARJeI6LLHYPCz0v5+6BmX8QqXRcjWMSLXr1EFLynufV5a2ubGpL2iKIqiKIpyYNjKuUw5GNzt+xMQUKO2ZZuQkBo1HBwSJHBxcXBIkeIIR0iQoJtuHBzucAcfP2ofEra439kxAgKSJFk1jz76KFAgTx4Xl0EGSZMmRYpR2nOerlPf0n3tDGfooYfznAdgxKStZslylat00EGRInXqVKjQSy9p0pQpR051GTKc4AQ3uUk//TuegzrAKYqiKIqiKMr+YaOURtN7K5izNej9pjY2pc4K5jzznEDS58aQ2vdrSD17u6+XVvEc5r2tqz+HiOimzTEc4NOIuO4tpM5+aI4LIpSrAkOmfTeapqfsH3VE/DmNfC63k7aqKIqiKMrecd9/j7/73e/uxjza4tOf/vS+ja0oyn0QIsI3G2FPIdFCCYl0XeBn2VhmpoGUh+kgjrptJJ4g9mJPAHeAE4gLnOUScBZxfBtno3nDqNn/PFKe5goilnOR35bWp34AKYuzavb3m+dZM0aACPx6gJ/a5Dy2KpejKIqiKIqiKIryIEj2QWn13u0267dTel+EmbcgrEEYyHNlQcRljidCs7Bh9ifk2fGlXzvk34WwDtVFqC1D0IBkj4jLwDyH4tgW1qRdekD6tSOgcxwY/AykeuHOj0S0V1uWOTg+JLohexT6XhQxm9Oma2DzeANn5Jzy52Vbx0hrGzclznO7MZ6iKIqiKIqiKBF3E9iFhJGDnRXEJUmSIkUnnQwwwFGOcp3r+Pj0088ss5GrnIcXOc7VqUcOczlyVKlyiUsc5Sgg7nSDDHIKcZ4eZ3zHQrOQkAtc4DznqVJt2XeJS5zlLBNMMM44pzndInBLkWKIIXx8ChQoUdrR2O3MwdmwiKcoiqIoiqIoyoNmfQRk368iojUXScvzm/YlzXZbl96KhZ43r48iqXEnzDGmkTr0m5FDRG82WrDPIfAOko73caSW/ntITX6bQtiHpOilgSfMdk3TU/aSEBFpnod1Ee+901YVRVEURdk77ltA95nPfAZnH5JzHMehXq/v+biKouwCDiKGu2neT5vneSSS2KrMzCgSXZSRaNxG4nXkt1mfeQ3wjNn/50i0nEKi46OIS9wScIbWaMRHopRzwF8xY15FxHHWgS6DRPcpcw4DSFReNedRR8R3d4j959efx1blchRFURRFURRFeUwI9rZf38/Crevt9dspXWPgZaFRhEQPVObEQc1x5SsM5MtLyf5GURzbutoMikqzEvsVb0GjImOHdSgvyziOC34nuEkZq3gLUgPSr10cR5zluk+L+11pGoKqjJEZhs7R9tz7Dsp4iqIoiqIoiqLck2ZxXUCAg0ONGhUquLj8HD/H8zzPN/gGvfSywgpJkmTI0EUXVaoEBLi4JEmyyCJ16oSEdNJJlSpHOEKSJAMMkEacp8cYY5ydOU+HhLzN21zhCgAlSswzH7m/DTAAwDnOscQSn+JTLf2XWGKIIT7kQ3LkSJlH0TwA0qQjEeEKKzzFU8wz3/YcznBGRXSKoiiKoiiKssdsVUIkRNLkrOuch9S570TS47Lm+SkkJa6GuMBlkXS/MSQFz65UFbYYx25Prnu+gNTBD8xxZpE6/T7iQlc0rzvMvixwHE3TU/aOEHgbTMQrn895Yge6AbN9q7RVRVEURVH2jl3LrgnDrSvwKYqibCBASsG8BfwEiWRtwcqtysx0AYOIQG3RHKOTWNy2hkTgg8AHSLTR/KvpCuIK93GzvQcRzDUzbvpdRkR4TyIRtI1mqsBt079GLP7DvF5D7ha4iNDvJhKRN7NVuRxFURRFURRFUZQHgeftbb/0EPhdUF0BJwlOAzDCORCnNicpK0N+l7S/H6p5qJcgqEOwJEK5ZmoFEZzhQr0o7XcD1xfhX7viv4M+nqIoiqIoiqI85liHuK1wcCInutA8KlS4xS2e4Rle4iXe4A0yZFhgAYAsWY5wZMOx6tRZZpk6dRwcXNzIcQ4gRYpx89ipsOwCF7jCFQICJplkltkWAeA1rjHIICc5yf/J/8l3+S5DxHHah3zIMsvc4Q4lShzjGN10s8IKDRp4eHTRxTLLLLJIF10c41iLy9x253CKU1zmMj30MLFhEU9RFEVRFEVRlP0iRJZ1AvOcInacG0Nq4T+NpNnlkTr4I4gj3DAifOsHrpn9C7TW118w2x1isdEwUsv+vHk/CcyY1xlEyFcjThmcN31vAkfMfk3TU/aCZpHnJCLkbE5bvYaktJ5C0lJ72Ji2qiiKoijK3rArAjoVzymKsinuuvdB03OIiOA+RIRnM4jPeoBECJuxgkTZCUTY5pivitm2jIjWLpnjd5h+PrEzXR74gWmXAk7T+pvQQUp89BBH39bDvQF834zVaOrTi0TbRcSzvmT2Z2mNyC1blctRFEVRFEVRFOUxwWHrOp736tcGhcm967c6BZkhyI3B2ocQNiBhKp/Y1VVcaFQhqEHuaWm/OtWeMCx1GCqLMk5QQQZxwfWIrnPQMAI6R0R8lUXppyiKoiiKoigPGB+ferRAoTxs3E2oFq57gDjRVamyxBK3uQ3IZ6D5WI2WBaaYBg1cXDrooIsu+ujjBCdIkmSYYUYZjY61E+rUOW8WvCaZZMakm/bSS44cBQrkyTPNNNe5TpIkCRLkyHGHO1Spcoc7NGhwiEPc4AazzHKIQ/TR1zJWjRqHOMRJTkZudDuZg90+xhgXuMBpTrd1zoqiKIqiKIqi7D7huq86kpq3CnyECIOW2VywNgqcNe8HkTTBi8QpdwXTx+5PI2l9o8CUOUYJESUBPIekHc4Qi/pKSGqhjVIWzLE0TU950Gwl8lz/+bbbxxDB3fq0VUVRFEVR9ob7/vv7t//2396NeSiK8jjhIOK6KhI1rCGRRBYpt1FFSsj0N/VZQMR2BUTQNo+Ukskhke1KU9+K+QoRP3jrHV81YwHcMuNNsdGX3UFKfJw2+6dN31ngJBL9/9i0e464HE4GichvIlG6jX5sRG7PY7NyOYqiKIqiKIqiKA+K0u2961cyNt21JfAykPTB86G+JuI1xwW/Exo18BLSzvZrS0DXD401IIQwBKyQLiFjhYEI9cIGEhiGEBSln6IoiqIoiqI8YLrp5g539nsaShs4TY9wiwIodrttExJGgsnv831+i9/iBCf4ET8iR45llilTpkCBHLnoOAUKlCkDkCNHmjQ/z8/zEi/d93lMMUWVKiVKzJp00+d4jsNNXg8LLPAX/AWLLDLCCHPMschiNMcVVphjjgwZOuiIznuIIerU8fEJzMPDY9Asig2bBbDtzuEiF5lllhFT2XKKKcY2LOIpiqIoiqIoirJX2HKQLrR4cwfAEpIqFyIiujyS6lcxbZoFaz6SincOIp/tWdPHCuccYocugHHTz6w6MU+cCthAUvOmiev4h0g9fSuiW0ZWhTRNT3nQbCXyXO+weNHsH2nqpxGvoiiKouw99y2g+9rXvrYb81AU5VEk2GK7jap94LZ5fR3oNF8rSNmZUeIyHItIRNuFROCrSJRhS3VcRMRxZSQS9xFv9oz5Kpuxi+b4K4jQ7QZbRyK+2Wf3v2P6X0ei7l5aI53DiHPdsmlXRiL1HwPPcPdyOYqiKIqiKIqiPEbYgKWdfm0QlO/dZrf6BVUo3oTKAnhZ8EIRtHlpEbg5jgjbkl2AA5V5ad/ZZmDkJsDxgIa4zgWBEc3VYwFdGMhYrodUb3Gln6IoiqIoiqI8YLZyG1MOBvcSxzVobLnf9rfP9ntt+1ih2F/lr/Kf+E900kmKFGXK3ORm5PRWo0aVKg0apEnTSSdJkvxV/uqunOO0STedZ56QkF56W4RrIE5wVaqEhFznenTOI4xEwr955ilSpEEDD48ppuiiix56Igc5F5dBBkmTJkWKUbMAtp05HOYwvfSSJ88cc4wwwjTTKqBTFEVRFEVRlB3immezMkJonu3rrSOczbF18oN12wIkFS6BpPstmfcVNhesjZs2l5FUvBFgDhEeJU37tGk7ZtpD7GRXQdIHl5DUvBARLDWQFbc1JJ3QnmeB2CEvg4iVMsDPIytF6vyl7BbrRZ7rU0ohTnPNI5/7EdNPI15FURRF2Xv0/0BFUfYeG4k7iBOcjWTziACt27y2ojmQaLbT7L+OlIo5TRxt3ELEdWtIxJxEhHXd5tkeYw0Rt1XMmNd3MO/quufcuv0ecBwpFZIjvhOx3DTOVuVyFEVRFEVRFEV5fHBT4orWTr92cNoUi7XTz/GgeEOe6wVxfkv2QLJPRHSNMjSKUF2SNqlDIqBzvPbmWLoJmWGo3EFEcklwTZAVhvHroG46+NK+dLO98RRFURRFURRlB1SjBQXlIOLiti1ytOI5gGBdRckKFWaZ5S3ewsXlOMe5ylW66KJMmQoVqlRbnOt8fLrowsPjeZ7nWZ69r3Oz2M+gfc5tWNwS97cECRo0KFGik06OcYzneb7lfH/AD/Dw6KCDIkVucYsVVqL9gwxyyiyAjTOObxbAtjMHuz1PfkN7RVEURVEURVG2jxXMQatwzr53aRXRbVYf31n3fr3ozh63jKTRdQF3gA+BI2xeV94BziCpf+fNNuvEZUkhqXTjTXNImvGnzRhZRBhXMNvXzLYCIqhbQkR9DpLK14mk8S0AJ4C/QJzwJtaNoyjtcq+UUpq25zdpryiKoijK3qKyDUVR9h4rLAuQ6NZGostIlPAiIpDrQiKHJOIYt2i+ckh03Vyqo4xE0baMTsO8LxFHJZ3EdwGskcLKDuadXPdc2KTNMeAvzet+cw4JpJzO3crlKIqiKIqiKIry+OBkkQof7fRrg8RhqMy012+nBDUI67FYjhAS3ZAeiNuU5+QLB7wMhLX2BIUAtRUR5yW6oL4CoSPjhdWmsqpJqC6DE0q7ZJ/0UxRFURRFUZQHTJ36vRsp+8Z64dt67uY+FxJu6mAXElKhwjLL/B/8H/j4dNPNMstUqLSI6EJCXFxSpEiTJiQkS5bf5Dcj8dn9kjSLWva5sMni1jLLlM3DwSFLlj76Wto8z/Pc4ha3uU2aNAMMkCDBMMMkSTLAAGmzADbGGONNC2DbmUPz9vXtFUVRFEVRFEXZPpuJ3ZqjCw9J2fPM9jJSg/5uznTry45YJzu7vYC4u7nAEFvXlXcQ4dppxBFumtiBbhhJB1wfCQ0D3zZzBJhBRHI2Wmggte7riLAug4jqDpu+IZKO2GXO26YMnjPHOYOK6JT7Yzsppc3b17dXFEVRFGVvUQGdojQxeXISgFNXT92jpXLfBIhgDiQKzTRt+0skWu4gjqgvIkK0fiTi7Vp3PCtKSyHRRoC4zDVH8KvmvdPUfv1x7sYwcMnM4RoSXS/QKuS7Y+bdj7jfOYhQbrCpzWblcu7B5KT5bJ7Sz6ZysNDPpnJQ0c+mclDRz6byKDK5dhKAUx1X93kmDxFusHG1cbv92iE7BKt/ee92m/XbKY4vX40yeCkIA6gtM3mnE9wkp7pnxYHOTYLjQqMkojanzVtUiS4T4w1CbQmCUER5TkYc6BxHVke9GriOtHNMP+XAoX8nle2inxVlO+jnRNkO+jlRHjRbOWidnJQ46uopjaP2k7sJ5HbSv/k4ISEBAWXKvM/7eHjUqeOZR4kSLi5JkpEIz8XFw+MYx/gYH8ONqkXeP8MMc4lL9NPPNa6RJ88CC+Qmpfpk6lSKRRYpUowEfGnSdNPdchwHh2d4hgoVAHx8DnEocpwDSJFi3DyaHfq2msPhpgW2BRbIk8fBYYCBqJ/yaKN/h5X9Rj+DykFAP4eKsn1Omp+Xq/rzsm1c85U0Xw6xI1sHkuZWROrZB8RCutD0u9uqVMJ81ZH69oeQuvInTd+71ZX3zf6xbZzDCCK0SyBLa2XzlTPnkjDzrCMpeZ6Zz5A5r1Wg14x5DbiOpPGdAi4jjngT25iHsn8c9L+V20kpXTDbHWCgqZ+iKFtz0H/2FUV5eFEBnaI08ebLbwJw6nX9g/vAqSHub3b9bA35jZQwr2tIlHACieCt1/ot4CM2luroQyLgkLhUzrI5fhKJnItItGw94hPAEzuY8yhw1rweREraXESi7JyZU97sfwa5I7ACfMLM527lcu7Bm2+az6b+M6gcMPSzqRxU9LOpHFT0s6k8iry58DIApzpe3+eZPEQ43t728zv2sF8A2eNQmgbfitQc3vxwFIBT4x8CDiR6ZFfYgOwx7r4Mexc6nhDxnZcSUVzQAC8JuOD6ENTl2IlOcD1p5ySkn3Lg0L+TynbRz4qyHfRzomwH/Zwo+8XLb0oc9fopjaMeZjYT4IXmUabMTW7i4LDGGilS+PgkSJAiRYJE5GDn4dFDD6OM8jRP8xN+wvM8vysudKOMctYsbg0yyAwzXOQiJ948gYvL4qlFbnADgBw5QkLq1FvEbZZVVumjjxFGyJChiy5OcIIkSYYZZpTRTee81Rx66SVHjgIF8maBbZBB0qRJkWKU0fs+f+Vgo3+Hlf1GP4PKQUA/h4qyfV42Py+v68/LtrApeS4ilssh6XWdwFHgKUTIUwb+DXATWakJm543IzTHbhA72dmUvTngO8CzSEred2k7VS7iujnGZTNOBkn7S5o5ZJrOI4GkHB4idsXrN+fdnNo3Y449BlxAHPE0kfrgctD/Vu4kpXSQOHVVI15FuTsH/WdfUZSHl135v290NP5T7jgOV6+2Vkv8jd/4jd0YpgXHcfjqV7+668dVFGWXcIhLvDR7tjfTIC4P00A82RNIhPsuEs3WkGi207TZqlRHHxJZYI7hI2K5ACkngzm+h0QmXcAx87VdfKTkzDliZ7xZMxcb5TjEZWpc4GW0TI2iKIqiKIqiKOto102gzX61pb3r5yZFELf2kfR30+B3xvtDIHUI6qsQlCE9IO3dZHtzzB4TwV6jBIkc1AqAa0R0yHOjKuK5RE5EdtljRrSnKIqiKIqiKIryYLDiujXWKFCgSBEXlxQpjnCEn+FnCAnx8QkImGGGkJAKFRwcpphibFt+DHfHx2eCCc5xLnKLm2WWhnnkyZMli4NDDz1c5zpJkuTJb+kQN8QQadJ8hs9sOsc6daaYYpppqlRJkqSXXm5zu2UOefMAcbgbZDDaP874rggIFUVRFEVRFOVxwiF2kHOQtLkASat7Ekmzex74JHCEWNhWAr6O1InPIyl2m5U9tKI8H1mxqpv3KWDJHD8JTCH188cQZ66zSPrceNMxtss0kt73oXk/aL5WkFRCD0kDnEVSBLsQ8d6SOe/n2OgEdtG0HzHbptieG56ibMZOU0pBfhY04lUURVGU/WFX/gZ/9NFHOI5DGIY4zsZ/cb/+9a9vur1d7DgqoFOUA4yHlMsIiaPq9aVpXOS3kIdE1FUkss0jpTd+jPioY/reAJ5GRHRztJbqWEZKyWSbjo05vmOO7yNRejdSSuckOy/lMY5E2JeRyHnEzKVqjj1gzhtz/AzwTtP++y2royiKoiiKoijKw4+zWYWRB9ivmkcCr53090y/HZIZhsIl6H0RVj+C4k0RrvGs7HeA0i0R0KWHoffj4DjSrx06R+WrUYznGwbiRGcd6FxfhHSJbsgehc6T0udhI6jD6pS4+wVVER1mhuVcXA0yFUVRFEVRFOWg4OGRIkWWLFWqeHiUKQPQiRQY6aabIxyJ+tSokSfPHHOM8P9n71+D5ErP+07wd05e614J1AXVDRQa1ehiE0KziqRIaigPQclq05bGY3lXHnvGCiscOx/kXo1lRzgk+YMthjYUdoRGMSM73BEbHq3tCMYGwxw7xit7tUvqAtIrOAiySRSbDTYKheouAI26orKqsqrydi774XnfPCezrpl1Lzy/jERmnvPezsmDrHzyff7vf5hZZg9FQAciRlthhUkmGWWUYYZZZpmQkFd4hYtcZIIJPDyGGSZNuiWHuJCQCSa4xz0qVLbsm2GGFCle4zWGGWaBhZrAboABsmaC7VVepY02vsk3a/t3c7hTFEVRFEVRlBcdm5kbT82zIjqbcvcc+DHgbwG3iNLp7iPCswEk/S6LzCgVTTuNQjo31p993DR1nsfqvW/un0TS9O4iKXe3aE5EVzHlh5CUQgdJu7vQUK7T9N2NpBv6SFpho7d2n9meR1L+hhGR3mEK6DxElDeLpgy+KDSTUjpqyiuKoiiKcjLo9zFFUY4GK44LiZabaSRouFs8JNr9yNRPAZcQodwPkAjjCrBI/VId1mc+ifi3x8eQMG3mgE+b+uM0/ynoIJF8L3DPbBtuKJNGhHOPgUcN+w66rI6iKIqiKIqiKGefZBeUF1qr1wqOC04CwiYEdE5C6jVL5wgs/hkUn0KyTdzm/E0RtQFUVkXslb4g+4tPIP1G64I2NwkXPimCskQbLL8jQjrHrLHqmmAwnYMLnxa3ugvjZ0twFoawMgH5e3KccQoPYOkO5Mahd0zEiIqiKIqiKIqiAOJqBpEb3FG0v13bDg4pUri4JEiQJs066wQEVKni4/OYx3UCui66yJOvCc8aBWgHHectbtFLL/fM5FaKFAD99AMwwghVqrzMy0wx1bRDXEjIbW7zkIcAFCmyyGKdQO4a13jKUz7gA65xjeGGCbY0adpo4zGPedQwwfaAB9zhDuOMM8ZY7b1VFEVRFEVRlBcdK5LbDrvevYOk0b0P/N+QtLck8A6SinfflLOzQmlTx66ZH18330XEaQGRmK6CpMo9M69TiFgojzi+2XS90PQ93sTxpc1jxrTTg6QRrhKtp9+DiNU2zWvfjG2nWbUuIqc9Yo8HJQQmkJTCxjY1ZfB8s5+U0gzy3uv7ryiKoigny6FlC4Xh7hMPe+1XFOWcESDf9K0f/HbsFAkEQBWJdFNm2ywikOtFhGm9iJ98fKmOz5h988DriBvdY6CMRCBXkSVtEhxsKQ8HiWZvsnW5mEvIsj3TpmwREfrFlxOB1pfVURRFURRFURTlHNDqzzEt1ssMgvsA/N2mUeM4IjzLDDbfl5uEZDuU5iHTB5Vl8DapBYZB2YjdsrK/NA8XP3swQVvvGFRWRDyWHYLVH8L6I/BL0k/nq9BzExIp6BqV8meFMISF21CQJFT8IpQWwa+Iq17WBJnP78o5GLilIjpFURRFURRFMTg4BDtOUh0cF5eAYIuIzsGhRIkCBSpUakI6D4811uimm0c8optukiTpoYdVVgERkcUfDwsHh3HGuclNppnmP/AfCAn5GB9jiCGucY0/48/qXOp2cogbZZSxhkm2CSZ4yEMCgpoAL35eZpipCfBCQi5xiV56a+1f4hJPeMK0mWDbToAHcJe7rLDCLW6piE5RFEVRFEVR9kFIJIQLESHX3wf+aySt7gdIalsZEZ61Ial1PpK25yEpb765WxxTrorMXpWIZrFsf5gyAN8xZTJIyt1+Z4WGzJj7gRkknfBl6h3jloA101e3eZ4BCju0abenGx5bwbrNPUOOcR5Z/78MPGVr2qKmDJ5fdkspVQdCRVEURTk9HMrf49/8zd/cdf+f/umfHkY3iqKcJQKiZV7iy9BYHCQ6TJl9RaIlcWzZBBI9rCOR63NTZgDxux5j61IdbwCfRZaUqSLRZ5zDXMojiUTj8Yj8HhIBBcAUEhXHj30GGASum2PopblldRRFURRFURRFOft4a8dbLzcGz78NThXCnSzCYzgJcDJSr1kCTwRz2UFYeVfaylwEx/wElb4oAi/HhfIS9L4BXlHqtSqicxzo/4KI8Za+AUEpEpYBeAVY+T5celPKnSWB2cqEiOfCAApTcozxIHNjRs5113UoTEK6V9zoFEVRFEVRFEU5cvFcmjQVKltEdD4+JUqkSVOlSokSISEBAZtsMs88SZIssQRQE5xd4AKf4TMADDF0JONOkmSUUTroAOAWt2r7Gl3qGh3iMmQYM7e4eM3Dq9WZYoo55gDIkaOLLgoUyJOvbR9llBVW+Dl+ruZid497TDO9LwHeJJP00su4TrApiqIoiqIoyp7LJtpv7j6STucg6W1riPCsgKT4+aatMuLelkDS+qwDnXWxswSIOCgkWiu/0tBf0mxfQURlFUSsNwT8efaXvDyCOLeBpNzNIY55OcRJrgDGNxuumPHnzGvrgNcXa2/JbLcpiJjxNEuj29wT4ANgGUkPLCFixHbT10MkTbBVJz7l7LBdSqmiKIqiKKeHYxHQ3bp1a9f9iqKcQ2yUbCPs7Ughn0I2mrYRvWO2DyBRMIjT3ENERDeMRJFtiBBtu6U67PIux7mUh0fkwT0FZh5wa8Rut48ikXQzy+ooiqIoiqIoinL2CSrHW2/gFjz532Fzc58VXBG9DbTwe876NIRVaB+GtQdAAtqGwDXrd/a8DtV1KC3ItvZhCCtSr7vFqaQwhMVvQnUVLn4aNp/CxmPwy5DIQMdVaH9Z9i9+6+y4tAUe5O/J88IUlEwwmc5BskuEgZV8tL17FPIT4rZ3EEc/RVEURVEURXlBsA5yrZAkSRttuLiUKOE3TIY5OLTTjofHBhuUKdcEYRtssMwyU0zhIYucJEhQpcpjHvMGbzBSmyA7Phpd6maZrTnADTHECCM1wVucaaapUKFIkXnmAbjBDfpiaapLLHGf+8wzXxPmTTPNKKMtCfAmmOAmN7cdj6IoiqIoiqIognV/c5D0vQBZ4z5A0vBSSFqdFc9ZMZyLCN8sWSIhnV1HPxlr085eWZFdvC2bDrhB5Ib3/0VS+sbZew38pCl3F0kTBFnPPk8knHMQcd2IKXfFHOcs8G1zHtKxY+0ELpnjykDT0VcI3EbOoT22e0hK4HOiVMkCcg7azBjztO7EpyiKoiiKohwO+v1LUZSjwX66+Gwf5brIki926ZqgYV+KaDkYEDHdHBJZzgGvIAK562zPSSzlMY1E2kUw84Nwg63L2Nw3+4dj9XTJEUVRFEVRFEV5gXD3LnKY9S79NKR6kalCF3ZNEDXriqZ6pF6zFGflsbwobmjtV6HtkrjfAWQvQVePlPPWpFxyWF63KqCLu7StPhDnO28VAh/cBGw+E6e7ntfPlkvb+rSIJv2icZ4Dem5AJhZklpdg9b7s7xiO6rV6LhVFURRFURTlBcHFrXNRaxYHhwyZbYVzje1b9zkHBxeXKtU6sZmDwwUu0Ecf88zzWT67ozDMw2tK3NYK1qVudJ+TV7NIHLjIIiEhOXJ14jmAPvrIkSNPngUWGGaYWWYZZfTAAjxFURRFURRFUbbixB5dMEt3RMK4ktkWX/M+LnyLt1ElEtnZclW2zjZt15ad2aoiaXMukvr3OiJ2WwFusbuIbsyUmwReRYRvM0jKYQa4CryMCOX+nDmup4gbXJ56lz4HSe+7ZraP0XwS9QQinguQNfYfAh8irn4b5lgziPtckSgVcsPU/8js05RBRVEURVGU40cFdIoS46233zrpIZwPXCTKSyORoo9Eg1Uk8ox7tccjbIcocm5DXNvidCICuhXE83wTiYAtDxDP9nH2Xp7mKBzqTJ4oi+Y4ctAwPyivc0h0voCI6GbZMxp+6y29NpXTiV6bymlFr03ltKLXpnIeeevq2yc9hLNHsgOqi63Va5VUNyQ7obqXi50j5VLdrfVjXfJ885jugbZB3vorDeX8ogjobLmWXfmMS1sQwLP/CGvvQ+iLu52bhKoH5eewOQPrj+Clnzs7Lm1WjFgyQWayR0SBa5MQeuAkReiY7JZzWVoQEd1BxIgnjP6dVPaLXivKftDrRNkPep0oJ8Xbb2kcddKEhAcS0AEEBCTMLTQ3B4eQkA02mGWWgIAqVZIkaw50bbTRQw8XuICHVxPWLbHEG7xBkSIeXp0gLiRkggnucY8K9fHTAx5whzuMM84YY/s6rsP8/LPjsY9dWyb4qG3Pk99S/qACPOXson+HlZNGr0HlNKDXoaLsn7f1/8u+iafmJZD0PZuWZwmR9DnrUmcd5fxtylVNOZveFzSUoaE8sXLEHquIqG0SeAlZN38S6EXS/XY7ni8g69V/AxH/gaT7hYh4bQ54E/g/A//cbLuIpCDOm75TiPNcm9nfB3xil363wwPjny3iuTlEGOch59CeG5sy2WMe25FUxzVzfwo8QQV0+0H/VirKi4n+31cU5ag4sUyhSqXC3bt3+f73v8/Dhw9ZXV1lfX2djo4OcrkcV69e5Sd+4if49Kc/TSaTOalhKorSCglzbyeKBl0kWrQ+7zaqts/jUXMCcZxrzA1dRyJgFxHTOcBjIgHcgCm32/I0IbIMzD2gMT+zGQHedlQaHrefH5Tt+W3KK4qiKIqiKIryYpC9BMUPW6vXCgvflLqJH0VLi+5GwpXyC9+El77UXF9u2rRhHr3C9uXsdlvO1muW9WnwSjD7/xEnNkJw2yAsQ7UsDnRuOwSbsPoeuCm49BfOhktbTYxYhnIeKivirBenNCfbwxCyQ/X1FEVRFEVRFEXZEcfcWsXFpZ121lmvOdFZAZ11n/PwCMzkV5JkTSw3wABXuMIQ8h1+nXUWWCBNmmGGqVCpc1cLCbnNbR7yEIAiRRZZrDnQDZgJsrvcZYUVbnHrwOLAZkiTrnsssH0caLc3lj+oAE9RFEVRFEVRlHri4rZgm21xbNoeiMDMJUpli7vJZYlc5xqd6rYjHpFYAZ9rnlcR4RmIgGwCuMnOycwh8E1gFfg0Ij57zFYHulXgXyMCuavAO0gKoRX+eYj7Ww74lCn3A3YX7zUyjZyfIhj/bBHJFUz/LnKuMsj5zCLnuAsR0G2acVfNMSiKoiiKoijHy7EL6D788EP+6T/9p3zta19jZWVlz/KdnZ38rb/1t/i7f/fv8tprrx39ABVFOTjWdzxLJJ5LmG2bRFF0GvkUst7ortmeQoRyG4hoLmGeLyHRYzdR1PlhrN8ZYJCdl6cJgdtg5hclkl2kOQHebqQbHnfIE61tbyyvKIqiKIqiKMqLQftLsqhGUzhSrxXW3ofiU/A99g5yHClXfCr1mhXQtQ1B4QFk+2FjBkpLsPhfwN8UYZebhkQ7+CVxgMsORPVaoTgL+XdgfQrCQPoJG4OxVXBc6bcwCZmL0PPx0y+gc9MijCvOQmVJxp/sgGpBXPachDgFehty3MVZ6LreuhhRURRFURRFUV4gAnNrFesoZx3orGguQYIkyZoTXUhIkiQ+Pi4uOXJ8jI/RTjt99JEkSQ89zDLLGmsssrjFXW2CCR7ykICAKaaYZ77mZgcwwwyDDHKd60wySS+9jDeVAnowhhjiAQ/op58ZZsiTZ4mlOhe5JZbIk68JCG09OLgAT1EURVEURVGUndlJOGf3xV3otsMK3+zs0n6jKD9W1zXbXCRNrte8ngeGzfNpdnZjm0DS/QLgkalnUw9DJGWwBIwgaX9XEJHaBaL0xIzZ5iHr9pfN+PYS7zUyax4XTd85orUr7WMa8R2omHF1xM5FSOSgt7bPPhVFURRFUZTD41gFdL/zO7/Dl7/8ZUqlEmEYfTV3nK3JW3Z/oVDg7bff5l/+y3/JP/7H/5jf+I3fwHXdLeUVRTlFVJCIsIRE2FUij/dus61I5A2fNfU6kCi1hIjlimZfCYlay0gEWzJt9iNRaBciSsuz+/I08Wh6EomoN4lc8dqBV03d/fjDNzKEuNj1I5F53hxHX6zMktnuEAn2WswTPVN4yC8ds0SCxSHkl4sT80JVFEVRFEVRlBPCdZEvwl4TlRKmXgtU1qD4TJzM9uzTk3LFWanXLJ0jsHQHgkBc09beB3wRdbkpCKrGIS0BPa+DkwY3I/VaoboOqz8S8ZxXgMAXYV4iK+0GZRHr+RURnSXbZUzV9db6ixN44mRXnI3EgW1DcizuIQQ6bUMw90cQminX4pzcHURY5zjRzHe6G0IPNp/C4E8dvG9FURRFURTlULCuY8r5IkGCNGmyZoLLx6eTTkqU8PGpUq0J7AICqiaNMk2aTjopUKCf/ro2u+lmjbUt7moeHve4B8AUU8yZibAcObrookCBPPna9lFGmWCCm9wkeUwTMCOMcIc7AAwyyBxz3Of+ljHa/VmyZMgwgsSBBxXgKYePh8c008wyW3M6HGKIEUaO7bpSFEVRFEVRjgffPKaQ6Qd/mzIZJNXLJxLdWTHYXgI96z5n0wTTiPNbDkmhW0BEdLNsL6DzwEREMEWUGrhdymCeKEUNM8afYGvq3n32L95rpNLw2EUkhEuZR+vSZ5+DeAdYUaFNlezeZ5+KoiiKoijK4XFsv27+vb/39/jn//yf14RxjuPUnsfFdI1YcV2lUuEf/aN/xLe//W3+3b/7dyST+sOsopxaQkT8Fl9yJoF84oSI+O1lJLr2zb4yEpmmzWsPiRw3Ym2kzX0FEbp9gv1HuDaaDoE7REK6diKR3hwSlS8BP0nzS8yMmLZBnPDmzHgaI3a73/q1t5gneiYIkfN4j+iXA8sD5HyNA2M05/anKIqiKIqiKGcZJ10vftpXHVfqtULxI/A2IdjYuyxIOW9D6jWLm4SeT8D9fwLlRUikwVuHynIk+kq0QbINSosw/ydw4zdaF5yt3ReBWRiI8M9xxdUu1RWVqRZEWOZ7Ui6oSD1+rrU+wxBWJiB/z4gBYxQeiIAwNw69Y3K8rdI+LOI8JyWCv/KibE9kwM1CUDKiSMz1kYTSnNRTFEVRFEVRTgXttLOma8qfKxwc0qRpp51uuumii3XWcXBwcfHxa+5z9rV1oqtQYYEFPDyGGKqJ5ObMLU2aq1wFIne1aaapUKFIkXnmAbjBjS3isvvcZ555hs0E2TTTNQe7oyZJknHGuctdrnMdgHnmyZubPW/WJQ9gjLGaEOugAjzl8AgJmWCCe9yrXZ+WBzzgDncYZ5wxxnB0Yk9RFEVRFOXc4BO5w8XT/azzXAdwDXiCpNhtmv0OkpK323RXXDwHkirXgaTS5dkqSGtk2uwrgomI4Abbpww+QVzn1pB0v6sN5TCv9yve2450w2MBuEiUGplCzueq2e8Snd+AKF0wZcanKIqiKIqiHC/HokL7t//23/LP/tk/w3GcOuHcj//4j/PFL36R0dFRBgcH6ejooFKpUCgUePToEd///vf5wz/8Q9bX12v1/uN//I/84i/+Il/96lePY+iKorRKgESG8QjYOtGlzfOhWLkqIoyrIFGiSyTCc00ZWy+FCNDmEXGWdTS7RCRUa4xwpxGR3ruIu1yIOMUFZkxtSHS+aPb3IOK5ZpaYSSJisLtg5v9kjHki4Zxjxm73j3F+HdhC4DYiVgR5PxeJ3i/rwHcXee9voSI6RVEURVEU5cUg1SluaM0QelKvJUKo5Nm/Yq/Z8g0UJqG6IvWr6/I8qJr2HBF9hUCyE6p5KX/xU631VVmRx5qQLCFOcHHctGwPA3Gii9drljCEhdtQMIGOXxQhoF8RsWDWBDrP70ofA7daF9FtPoa2S7D4ZyKAdFNyHATSr4M47YW+7C9+BP0/KfW6jydRVlEURVEURdmdVG39eeW8kCRJG210002GDD4+F7nIMsuEhDVRkW9uYezm47PJJh108IxnZMmSIIGLS4ECDg5rrBES1tzVZpkFYJFFQkJy5OrEcwB99JEjR548CywwzDCzzB6bgA5EELfCCpNMMsoowwyzwELNvWyAgZpj3yijjDFWq3tQAZ5yOISE3OY2D83EXpEiiyzWvYcAd7nLCivc4paK6BRFURRFUc4RdhYHovStJJFjmo+k9IVI6ldIJAqzTnPbYdt0TXsukpZXMNsbBWmNzJrHRdNWjp1FcbOIeM43x9PF9uxXvNeIhwgIJxER4YLpb8T0X0HO1bopaz0ErHAuYfruBi6bu6IoiqIoinK8HMuvyr/+679eex6GIW+++Sb/y//yv3Djxo096xaLRX7v936P3/qt36JcLhOGIV/72tf4hV/4BX7hF37hKIetKMpBcJDoNEUkjttAosFOJHpcRYRrPvAciSYfI6KzBBJ1J8z+IhJldiGfXN8Bnjb0+SESpXYhYjqIItxZU36aKJJfoj4f1CESdz0CemluiRkQQdwKEimPIiK+BepFY9aHfdSUP69MEDn9TSHva/x8zxCJCSeR66IbOef2fA0h18VpmQP1kGvoNI9RURRFURRFOf1szBxvPRLi0tYMYVXqNYtXgrk/gvQArP4ISibwchIxEVsZ/AUggM7XYP6P4fLPQzK7R+PbkGxHplttH0moroKfFle7wBOXOCcJTiB9OglTrwVWJkQ8FwZQmIJSQ6CzMQPZQei6LsLAdK+40bVCcVaa9sxark7SnEM7Ne3INjuV7W0aR/jZwxHQBR6sT0t7QUWEiG1D0DnSumOgoiiKoijKC0awYwqhchpwcZt+j6pUKVIkZW6bbJInzyabNdGci1tXx0cWUHFw8PFZYgmAHnqomluGDJe5TJ4888zX3NWsC5h97NohBbSLLvLkt5Q/LhwcbnGLXnq5xz2AmhueJUOGMXNrFF4dRIB33Hh4TDPNLLO18Q0xxAgj+xL1HbT+UTHBBA95SEDAFFPMM08Yi3dnmKmJGCeZpJdexhk/sfEqiqIoiqIoh491SrMRTRJZj/4VZN16Gz05sbtntoVsTcOLC/JcopS5LiRV0CFaf31ohzE1itx2E8XZNEMrXCvsUHa/4j1LiKTB3UNSGJeIjnseEff51DvyWb+AhHndYZ73AC8Dr4J6ap8CNBVQURRlb/SzUjlvHPl1++1vf5uZmRkcs9r2X/krf4V//+//fe31XrS1tfEbv/Eb/MRP/AQ/+7M/WxPR/eZv/qYK6BTlNJNGxGMBZlV8JBosI1FoFokMP4P4pxeAjxCR3QUiT3PrUAeyPMuaeWwzzytEkW8PIqBbQ6LW60QRbtH045v91tGu3YzF+stXzfNeRHBXbPK4HcRJrRfM/CAN84MiDBwz9/O6MKNHdPxTwJx5niNyCczHtrchTnSfpj5H9wFwB3H2O8nzFf8lpHHO+bSMUVEURVEURTk7lBaOt97qe8dXb+Gb4o62+gNxYHMT4Jq1ScPACK8SEJRk/+q70PuG1HvpS833l+yEdA7KCzFRlyOCr6ASvQbZ7yYg1Sv1miXwIH9PnhemoGQCmnQOkl3gFcS5z27vHoX8BPTcbE1w5hWh+BRSPXJ8YSCCuUSXuNEFVTnGMJRDTPWIC53XbCDbQBiKUDB/L3YODYUHsHRHRIG9Y6276ymKoiiKorwghHXpg8ppI2EmJJoV0Xl4rLJKggTLLFOmjI9PlSoODgkSOOYWd58LCHBwCAioUq27PnZy8kqbiS77WNghBdRubyx/nDg4jDPOTW42LRA7qADvOAgJmWCCe9zbIlB8wAPucIdxxncc30HrHyUeXu28TzHFnJnAy5Gjiy4KFMiTr20fZZQJJrjJTXUCVBRFURRFOUeESNqWg6TtZYDXkCT5PJLWt2y2B4hIzDN3J9ZGXGDXuM1HkvB7kHXXs6a9YWT99cbkfCvmsxHOTqK4VdP2umlzA1nbfcD0Y1kyx7If8Z4d+20wPs0ytqQZZwJJf9xEUgw9ZO1439Szjn0dpk4OSY27gqSZHcU3aRU57Ez83JQRn4cl5Fo8jemKiqIoJ42mTSvnlSP/TvTee5JsFYYhruvye7/3e/sWz8X54he/yD/8h/+Q3/zN3wTg/fff59133+WNN9441PEqinJIJImizzUi0ZQVqQ0iIrNXkL+sTxGBmzU5sAK3NtNGCYlsra95FYl4k0RR9pJ53YW4wL0D/LSpb5d+sSK+FBIdxnMm14EfEXnSV029ZnGQbwU3eXEj0mnkmIvIUjsANxBXQssScB/5hnUROSdPqXcCtL9U3EXe01sc/zetxl9CisjSQadpjIqiKIqiKMoZw4GmnSjs6iQtUJpvoa5j6jXJ2vuw8diIyEIRfQXlaH8YAJ4Rg7lQmoWNHqnXioCu+3V4fheyL0Fl1bRv+/LFsc326ziQfVkEb92vN9/X+rQIyvyinJswFLc5xwV/E9wMZAZkX2keOoajeq04wlWWIPTMW+dAogPah8F1ovMXhLD5OCoXVqVeq4QhLNwWlz0wx7oIfgUSaciaAOj5XRFADtxSEZ2iKIqiKMoulCid9BCUHXBwSJEiJGxJQPec5/j4rLJKkSIBQU0s5+CQJFl7nSCBV/MnEHFbBx1c5jIJc1tggQIFRpHY4at8lUEGmTe3i1xkhhny5Fliib7YhMsSS+TJ4+AwYCYthnZNAT1akiQZNbdmOIgA76gJCbnNbR6ayaIiRRZZrHPIA7jLXVZY4Ra36kRwB61/1EwzTYUKRYrMm4m9G9zYcp3d5z7zzNfEjdNMN/0+K4qiKIqiKEdL3PmtWVxETBQgKVEjiLDtOpI29cSUqyIitXbT3ybR2voB0YyWG9tuxXYdSOreJdNuaNr6Ktsn5y8jKYN9iCAuj6Sc2W+qIfAu8D2imbcSIl6bB/7fwFXgGpIamDdl4uK93ZzgJsyxB0ia23fMmAqIUK4DuIyI45ZMez9m+lo2fVxGUiRfNudjFA7dU1tFDjvTeG5CRKw5H9vfhryHGTQVUFEUBTRtWjnfHPkvzAsLsjq64zi89tprDA83WjHtn7feeovf+q3fIgjkq+69e/dUQKcop5X4p4td/N6L7cvE9leQyDiJRLx2GZsE4kZXQiLOEhKN+kSRtm/qedTnkw4ikc5Lh3hMzZJEIt4Xcd5o1jwuIt+kctSL5zCvPURgmUTeywWib1Ygv3wMIr+YTCKiy/EjGvNOxH8JmUKi5/gvTadhjIqiKIqiKMrZorp5vPWc2j/NVWrlF85qQURxYSiObVZc5SbBSYnAKzCrmwSelCvNSb1WGLgFj78G7VfEfa20IHc3JW5toSdObTgi/mq/DMl2qdcsRRPoFBegvCzCwO3EY6V5EdMV56HzqtRrRUDXiONAurPePc9bh6LT+mx4IysTIp4LA+Oy1xAAbcyIaLDrOhQmId0rbnSKoiiKoijKtjS6TCmnBweHNtqoUm26bkhImTJVqlSo1Nqw4rmAgCxZEiQoUsTHx8WtOdCFhGTI0E9/rc0iRcqUmWGGpzzlPd5jiCFcXD7kQzrprNW9z/0tzmAAgwySJUuGDCO7poCebloV4B0lE0zwkIcEBEwxxTzzdQ6CM8wwyCDXuc4kk/TSy3hssuig9Y+aWTOxt8giISE5cnXiOYA++siRI0+eBRYYZphZZk/V+6QoiqIoiqIcbLrARVL2AiTV6yIiGvsBIgSrICl/FSTFbw1Jok8TpQemkDQwK5zrRgR3HpIGOIyIyUbNfjvz5bB9cn4P8L4pN4Ckbd034+s0+56ZNtpNXyuIaK1i6n0APDf1XaI0LxBB2U5J1B4iugqA/6fpKyDyBqgiqW6LiCDws4iwLosI6z5txmFnkjKmv8MWsanIYSvWbe4ZInqcR66lTuA9RAyaQNJRN4mu1UE0FVBRFAU0bVo53xy5gK63t7f2/MKFCwdq6+LFi7z22mu8//77OI7D7Ozs3pUURTkZUrHnASKQs6YD1lWuyzyuI+KphHn0kYjlAhKJg0Q0DpFQDiSidU1569ceIFHgMuIh/2fAlxCxVtK0kTWPs0jknCWKhmwEb0V8jaIvZX9UGh67tinjI+89yBI8LhKl5ogcC/PAnCkzinwru8nxOfjZX0JAvgXasZymMSqKoiiKoihnD6dZ97kD1ku0gZswwrV94iakXrMUn4rzG6F5dCCVg2Q2KuOVjLtaaMp5Uq8Vklm49DPw6H+DTJ/0WVk1ormK9O8kId0DmYtQXoTL/239ePZLUJExrz+S8acvSD/VQuR2l+oW8V5lScp1DEu9Vsj0ydhxIJEVAV1xFhLt8tovGee7pHHac0SkmGkxkA08yN+T54Up4yKIOPYlu8ArQCUfbe8ehfwE9NyUMSiKoiiKoihbCA9tpQPlKPDxD/QeZcmSJImLi49f166HR4JEXXkHhwQJUqTooIM++kiSpJtuPDze4z3y5MmSxcVlhRUSJPDxmWOOXnrppJM0afLmZtu14iuAMcZOzKntPOLhcc9MFk0xxZyZFGoUMdrto4wywQQ3uUmS5IHrHwdW7Gsfu7ad2JPtefJbyiuKoiiKoijnAxeZWelEUvD+C5EbXQkRjNk0PSdWHqI0qYwpnyAS19nIqAtJxSqZ8h1me4gk6e+UnH8Z+BBxkrtkyuWBR4gwDjMuK8brNPsdotRAH0lZ/IR5DXs7wU2bsX4FEc/Z4yyb82JT3cqIkG4C+AvAzyAiwbiIbQhxujuKb/gqcohodJt7gggoQ0QIWkCukywiAC2b5wNE6/8n0FRARVFebDRtWjnvHPl1Gnecm5ub26Xk/rh48WLteSKR2KWkoignSgB8hEQYy0i0apdgsSK1RkNKm8tplzhxY/usGUEQK+Oa16F5bZeu8Yn81t9HBHRtwBUkWu2ilkfJJvVL2cQj98tEYj+lOdINj9uZSSwhyxFZd8EO5JeCNxrK3Ecie3u9THN8rn7TyLVSJPJtv0G9sPKkx6goiqIoiqKcPZLbJ6IdWb2uUVibRIKe/SSHmgCrq4UvtVua32kNy4axHCSvuGsUMhdEyJZsN+53RXFRc1xw22Q7DmRyrR0XgJuGzadQXZPxluZEUBYffGUZ/LKUra5J+e7XW+sv0SbOeqUFee9DE8j6m3IHee2kIZEWEV375daEjwDr0yL284vGeQ7ouVEvyCsvwep92d8xHNU7DIc9RVEURVEURTlGEiToprvmENeKkC4kxMXFicU9obmVKdfc6Bppp51++rnBDQAe85gHPGCddRyc2uMGGzg4ZE1653OeU6XKJ/kkadJUqJAmzQADtTKjjDK2awqo0izTTFOhQpEi82ay6AY36hzalljiPveZZ55hM1k0zTSjjB64/nGQNhN69rGw7cRetL2xvKIoiqIoinI+SCIzHqtIil0VSc+z693byCf+mDBlQkQ8ZxOS25C189dMOylEzBYSCekeIMKunZLznyOCrzYkvex7wOeAlxFx2jKyNn8JSUEDeAn4GCIamzHbk4hAyjfj2K8T3CzwdSQNLETSx/yGMpvmHLSZ8XyIpMDd2KXdw0RFDhGNTnzrREK6VeS9sx4Q1mkxJEoXvWi2v4qknGoqoKIoLyqaNq2cd9y9ixyMW7dukc1mCcOQx48fMz8/v3elXdjc3Kw97+/vP+jwFEU5KtYQv+vvAY+RKMRGwp55HDRlO4mWqLECuyXgKRIpv4dEvca8AJAIxs45Wi1t3J0uRAR8NjoeQgRxrxIJ5fqRyKfXPPab7Y4pd9nUU5rHnrd+5Hzmkfc0zmPkVwS7lEs7W0WVfUhEHyK/zID8OnFc2L4WzRhybHUlPOkxKoqiKIqiKGePRJp62+79kDL1WuDqfy+Ocs4+p8KcpDiKXf3vm++r7WVqQZqTENc0rwDlfP2j4xjXNKR828vN9wXimrb6Axj4acj2iyOcmxB3uLZL8mjd97IDUm713ebc+CyZfth8AinrxrYiLnCJdukn0S6vqyuyP9UtArpMi79ftQ2JIK7zVTlfblraSl+EVK88ZvqNeM6Rcu2XpV4rFE0gUzIBUDq31c0u0yfbCUXYF6+nKIqiKIqibKHRgUw5PQQElCkDrTkF+vg1J67G+iFhzZHOiuus0M6K6nx87nOfH/Ej/oQ/IU+eEiU22GCd9VpbVaoss1wT062zzvu8z8u8zHWuM8wwWbJkyPBZPsstbtUJ+pSDM2smfRZZJCQkR65O/AbQRx85coSELJjJIlvvoPWPgyEzsddPPw4OefIsNUzsLbFEnjwODgMM1NVTFEVRFEVRzgcOkiy/YR49JK3LR9KibLqeb+4ekmBfNY9lolSw54iga5UoSdk6f72CJNxPAu8SibtuIOuuX0XS+Sqm3AyRUO8e8J+RdMKSGedzs++zwF9E1m//KeBnEcc6gG4kPfAq8Bkzrj8CvmnGsd2s0aoZX2jOSdVsTyGCOTvTVzX7Q+CHpt5xsZPI4Q3kPL9BJOabR85Z2dQ7b8Sd+CaR93YBuT7sI8i1VULSRC8hgso15BqoEqUIaiqgoigvKpo2rZx3jnwRgY6ODn7+53+er371qwRBwFe/+lV+9Vd/teX2Hj16VHv+qU996jCGqCjKUWAd3qw7nF2GJkW0bMd9ZKmTp9RHmDay9oj81DeIItUQiXptO9aJLkAibdvXOpHz2QhwB1k+ZRWJ0BeIfNqLREvCXDflsqae0jz2fIMIJeeQ9zu+vI2NxLPIe9jB1m9ZmPJ55Log9ngcNPa5k+HHSY5RURRFURRFOXu0X4blexBW9yxaw0lJvVa49DOQuQjFOQg9drd7M8K2zAWp1yzpbhFweasiwgvNKiehB158+tEF1xWHuLYhqdcK1jUtLIuw68JnIJEVh7agCm4qEra5SXFxC9yz4ZrWOQJLd6D3JlRXoTAF5QU5nkRWnOJ8E8h2X5dyiazUa4XABDK+edzJ8TDZJc57tlygAZCiKIqiKMpOtNPOGmsnPQxlGwICNtlsSTwHIpLz8GqOc41t+/h4ePjm5uCQNFPzG2zwiEcss0yBQk0w5eOTIEGWLD30kCKFh0eJEkWKODjc5CYeHu208xIvkSbNEEOMMFJrXzlcKmbSxz527TBZ1EVXTVS5Xb1W6x8HI4xwx0zsDTLIHHPc5z45cnTRRYECefK1/Va0OaITqYqiKIqiKKcOm0bXLA6SrmdduWD32SRLSLQmftU8xr/Jbpox9SBrr2eR9fgrSPKyTR+7Ztp5gAjmVhGRWhpJyZox5TPIWv0fmbFaEVsaEUj9sRlHGnGdazdjWEFSCf8P4JNQt9zNAyTNbZx6V7r/H5KuaMWCjjmOjljdDTM+W65q6v23u5+2Q6MZkUMeSZccNvVO+SxZU2znxLeJvP8VouukQpSCWkbcDK3wcw1xTVxFUwEVRXmx0bRp5bxzLL+if/nLX+ZrX/saQRDwO7/zO/zyL/8ymUym6Xa++93vsra2huM4XLt2jZs3bx7BaBVFORTiy864yKdNgESJWWQpj7y5+0i0YkVsHpH3uq1v24uTQaJSy7qpHyJRrl3yBtP/OHAX+DzijDZl+rRR0iVEPPcaEvGOcf68yo+L+Pm+brbNE73nIO9Rjyn7HPl1Y7vFeK0IMt3weBw09lnYodxJjlFRFEVRFEU5ewzcgqf/r+bqOL7Ua4XSMxj48/DRf4CqB6FdK3RLJyKeS3ZJ+dIzSDc5fdb9OrQPiwvb+gemvQ4ggDAUpzRc8IxdeHZIyne/3tqxNbqmZfug942t5VbeFdFXaQE6hqVeswK68iK0X4Hld+QcuRlIZETE5m9KmUQWMG5x1TXoek3qtYKbhNw4PL8L/Z8Xt7n1KRHOBRURB6YuQed16H5Nzm1uTOq11J8JZKzTobdDAGS323KuBkCKoiiKoig70U23CuhOKQ4OHXTg41Ol2rSQLu5g1+j45uKSJEmCBElzK1MmJKy50BUosMEGJUpUqODg4OHh4NBHHxlkLj1NmpCQPHmqVMmTZ5BBEiR4kzcP52Qou5I2kz72sbDDZJHd3lj+oPWPgyRJxhnnLne5bib25pknb24g1/kgg7X9Y4ypaFNRFEVRFOWU4SCpVw5Rytx+ScTq2DXz90tItMa+XWc/EWsjgTh+dSMpVQEiprNpYtaBbhVJK7NeyB+ZbSGSmuUiaYeXTD9lJO1vE0k9e2z2dyPCtu8QiemWkRS1TiTFsB0RlWWQNMYnwB8iqWw3gI+b9iASBNj1/uPYtf99U64DeLb3KTs0VOQgbOfEd8VsW0TSUbOIgLBkngeIsDKHXEP2+rfOi6CpgIqivJho2rRy3jmWXzRHR0f5jd/4DX77t3+b2dlZvvzlL/NP/sk/abqdf/Nv/k3t+d/5O3/nMIeoKMpBaIyabSRsPa3t6zSRw1wSWc6kgkTDFWQZj6Spt9nQdjlqvjYPWUEiuyQSuXhEnu++aTcXqzeGRD2TwMcQT/YF045ddiZryo6a8rvhIdHXbKyNIcR9TeeL6s/3KPJ+x8/3K8CHyPtdRd6vJeqXwVkiciEcMNuGjnrgMYaQZYb6kaWM7K80p2mMiqIoiqIoytmj/ZXm64Qt1gMRi138cdj4EPLviBtbGBo3OoOTFAFWIgu9n5DyrYjMBm7B469BzyfA24TSvBFcuSKmC2MrpWQHoecNSLW3Lg5sdE1LtENxXhzbQk+OK9Uj2zmga1pQERfAtYdQeQ5tl6Tt6pocl5OAVLf0XVmGZLeUP4hDW+8YVFagMAk9H4POqyIC9CsiYMsOGNEe0DUq5VulbQgKDyDbDxszIjgsL0EmFgCVl2Q7jvRt6ymKoiiKoijb0lG3Lr1ymnBxyZKlRInN2qTU/gkJ8U163XbiO+si5+NTpkwVcSC3wjjrUme3V6ni45MmjYvLBhsEBLVxZsiwwQYf8RFttHGHOwwyqA50x8AQQzzgAf30M8MMefIssURfbLJoiSXy5HFwGDCTRUNmsuig9Y+LMcZYYYVJJhlllGGGWWCBChXSpBlggKyZSB1llLE9J1IVRVEURVGU48QsX1hLo2sU0O0minNjz5O7lNsLm64XXyc/iG3vQFLzLgI/QkRvHiJoKiNitiexbdb5zc5mdSIphTNETnkrplzK7F9E0tNcZP3+simTR4R3FURcFyKishIi4EsTic8+Ar4LvGPKBkTixBJRmpsfOzY7HofI7eww2SlN0b53L7rIYTsnvgzy3lqhpouIKxeI3qv4kke23AYixNNUQEVRXlQ0bVo57xz4V/Tf+q3f2lc5x3FIp9NUKhV+53d+B9/36ezsbKqvuICuo0MnnJTDZ+rVKQCuP7q+R0kFiD5BrBc7sdc2Kre+8FZQV0Ei03eBzyLRmI/4oFeQSDZAos145G7biy9ZA/VRMkTL6IBEvfFozwFuIcvG3DPbhhuOKYMIv+J+7I2EwIRpozEPcidP9wMyNWWuzetn6Nrc63z7SJR6Dfl1Yx64j0SwXUjkbt3qBpFfUDKIQPG4GEHeTzuGuVM4xhPmTF6byguBXpvKaUWvTeU8MrXxKgDXOx6d8EjOEPl3xLXLr7C/aUjjaJZ/B678XPP9BRVwXXEzqzwXAVZQNsKuMGo/kRWXs9y4lG9F+JXMwtCb8PQPoPtjEHhQzTNVuALA9c4PjagtJ/sdBy79jNRrBet+5qagnIfinAjb4pTmZLubgfar9fWa7ctxoOtV8NbMeU1C5kJ9uaAK6YtSznEO5tDmOCIuTPeK811l1QggPfADed3eCRc+JeI55wBBaOcILJkAKDso5231PqRz4rjnFYx4zuxPZOWcdh5eAKR/J5X9oteKsh/0OlH2g14nylHTTvu221+dkjjq0XWNo04KF7fm8OXiEtTSO5ujUTzn4hIS0k47adI4OJQo0UUXDg4bbODg1BzqypSpUKn1HxAwzzw99NSc7TbZpESJKlUWWayN/QM+AOABD7jDHcYZZ4yxLY5426Gff/tnhBHumMmiQQaZY4773CdHji66KFCoubQNMlgTPI6YyaKD1j8uHBxucYteerlnJvaGGyZSM2QYM7f9XGd7odehctLoNaicBvQ6VJT986r5//JI/79sS9ztzc7uxFPvbIpePO3Oj+23qX9J6te5b5a4cM6m+9kxPUdSrWaQVDHrLucDT5HUsTSSfmUdwZKmnTSSItiOpBW65tGmJW4Qrdcfmv1rseMNEGe4LiQ9cQARym2asgUznhTiVnfTbK+YfuPn0grnLLY/14yvuazo3dkrTXEZOfY+zq/IYT9/K7dz4mtDUv26kPO0iaT12esyg1zr9rrrRq6JblPnBU0FVJRTg35PPjk0bVo57xxYQPflL38Zp4nkHMdxCIKA3/3d3226rzAMcRyHMAz5lV/5FX75l3+56TYUZTe+/qWvA3D9bf2Duy/skjPbRc1pJCK0Ajrrbb1B5Aq3DnwaiU4vINHJA/Nol3Sx0WcJiWLifu/tREvW2CV07LIvFxGx1mDDuBxE3HaT1tzjQuA28NC8LiJLl8Rd7ADuIsvX3OJQRHRf/7q5Ns/al8G9zvdngO8R/Woyj3yzysfqDwL2sMc4Xne/JDL+u7ExnLYxnjBn9tpUzj16bSqnFb02lfPI15e+BMD1jrdPeCRniPx3IZECP0H9iiA7kZDy+e+21p+bFse50py4lnW9Cn5RhHTWOc06mQUVKdf9WuvCr8u/AAvfgvWH0H4JvB6+Pv3TQMj1C/9OxGXJrIj5OkekfKu0DcHa+8b17TkQQiULYRAdm5MwLnjrxi0ubM01zTq0tQ3A5kVpPzsAuJHbHYH07SSgbTCqdxjspLUMW10LtgE3KeLJ53ehy/ydKs2LaK4SC4Cyg9H+3JjUOyT076SyX/RaUfaDXifKftDrRDlq2mnHwdkisvrS1yWOevu6xlEnRZo0vfSSJ9+ygM46vlk3ObstQYIMGQYZpEqVgIAOOphllnba6aWXLFmSJFkwN+to5+NTokTG3EJCqlQpUKgJ8zbYoEyZKaZqzmAAd7nLCivc4tae4ib9/Ns/SZKMM85d7nLdTAbNM0/e3EDEZ29/9vkAAQAASURBVIMM1vaPMVa7Pg5a/zhxcBhnnJvcZJppZpmtOdAdhdOhXofKSaPXoHIa0OtQUfbPl8z/l7f1/8uO+EgqmxV3Na5bb4VkjbMK8df7mbXaL7bdqml3ERGoXSByc7Njso92bf54fbvm/joiDOtBjvERkoK2ERu3PVaPSMyXMPeyqZtBBFWl2PZVU9YKrL5LJIqz/dv20kQpjJXY9gtIOuN4E+doN+JpilZk+JjIre8q4i/wPpJWOcDpXL/+oOznb2Wjs14BuIJcIyCiuFXk/PhE771PJPJcM4+dyHl9QVMBFeXUoN+TTw5Nm1bOO8d2rVrxG9CU4C5OvF54WMlBiqK0TpXdvd2tj7r9r2sjyTwSjRWAN4GvIB7t67E6KSLxnEvkbe7G2t5AIpYUUWQTIpHuGBLtfWqH8SWBUXNvhgkkKg2AKeRbQfwczBB9K5hE3NfGm+zjPLLT+ba/bkyafcOIT3pckGiNKEaR9/W4GUPEkKd5jIqiKIqiKMrZoloAHHDcWDzhmsf42p9mys0x05rVQmv9tQ3B3B9BWAFvA8pPRODlJk3biENb6IubWliFzacw+FOt9bf2LvS8AX4Zlr4N/oY5JEec4ryCHOfFz0LPTSmfG2+tr84RmPkqVFcg2QnFZ1BalH7cpDjgBVURB7a/DNW8iMJacU3bzqGttLDVoc1xD8+hLQxh4TYUzCou6W5xD/QrIoZMm2ni53ehsiJudQdxoesdk3YKk9A9Ch3Dcoy2Pyu0BOgalfKKoiiKoijKjvTVrfmunCY8POaYo3wAbwUrUkuQqAnwfPyas1ySJM95zgYbFCjg45Mjx8f4GJ3Gk6CTTgoU2GADD68mxNtkExcXH58NNqhSrb1eN7dnPANghpma+GqSSXrpZVwnpw6VMcZYYYVJJhlllGGGWWChJi4bYICsmSwaZZSxhsmig9Y/bpIkGTU3RVEURVEU5Wzh77A97l4WUp/uFp+ZOqiArlH0Zl/HBW15JO0waCiTQFLMKuaxDTkeK1Sz6YQ5ZB13FxGTWRGUTTMk1p7tw0dSCduRdK8PTfvrRGv3u0QpYJ4pVzH1PNNOwYwjabZVTflOZL3/NuCv7/dk7cEEkq72GHgHSV+Lv28PkdTEy4g70CuI8OtFFDkMIb4N/UROfHlERPeB2V5E3i/r01BB0kwvIu9xYMp/Ak0FVBRF0bRp5TxzKN+D9itmU9GbopxDbNQZX5gzvlyNdaCzr+1SMZvIX1OQqA3EA7uCRK/WA91G6GnkE8t6s9ulXGyEGyKRzADylzoNXKN5gdxueIgfOoh4bs48b1yyxW4fRSLZm5y/qPOwcBCXvl6iczvcUCaDfLsa41Dc/JrmLIxRURRFURRFOVsk2s0TJ7q7qa3lArtqiSlTq9ck7cMiLKvkRYQXmGArSICTEsFcaKYgq+tQWYbirNRrlsCD/D1wXUj3Qu+PiQDLMdOa7VfEqS07IPtdF/ITIqQ7sJOZXYUl/toS7rwAzH45CYe2lQkRz4UBFKakv/iBbMxE/RUm5Zy2KkYEEd8N3JJ28vdkW0fDdeBm5Lh6xw4m1lMURVEURXkB6KFni/uccjqIC9O8FlJEXVyc2C0krLWTIEGFCiusUKBAQECFSm2/Fc/ZstZVzgryQkJKlAgIau3afZts0ksvPfQwzDAFCuTJM2cmp0YZZYIJbnLzRBzMzisODre4RS+93DOTRcMNk0UZMoyZW6MD4EHrK4qiKIqiKEozWOEY1C/ZGF8Df7tIdSeHumZwGp7bdEErUos7tiWJRHBxhzw7/m5kPf2SKW/dxew2uwa/7cv2Z8eQMI8h0Xr+mP4C00bZlLto9rUjYjgPcalLm7Idpq+KebT9JpC0wWHT78+a+gfFA76PCBfeRdzTbJ9WvAeSqhggaW0fAZ/jxRQ5jABmCUwGkfTN+8h5CYFnyPm4gJw/e229THSdDCLnx0FTARVFUTRtWjnPHPhX83/1r/7VYYxDUZSzSIYoig0a9tkI14ro4uUCIgc5yzLR8jI2Io4viWPbscvRtJl7D1GE3YaI2fqRiOYvc7jCtWkkkioSif5uQN0CsktI9DVP9G1hmp2FfJ7ZP0sUtQ4hUd2LMq/pIC59Nzm95+IsjFFRFEVRFEU5O7Rfgfz3wU2YuMdM5zmJqExoVwpByrkpqdcKm48B14i8zPRhaKYsQ+O2EIbRr5qVFWh/Rep1N7kqyfq0CPT8ooi93CQM/QykzbFc+0UoL8HqfdlvxVnr0833ZetlB6G8IAKzVDd09ovgLPTlnDoulBfFIS79upRvtb/jdGizYkQw4jmzWkuj453d3j16OGJExxERXs9NOU/FWXlP3bS4GXaOHILYUVEURVEU5cXAOoQppw8rTPN39GegJozbbnuGDFmyODi4uOTN2v4uLh4eJUossVQT0NnbCisss8wFLtTG0UZbrZ+4iM7Hr213cQnN7RKXeMXcAJZY4j73mWeel3mZeeb5Kl9lkEHSpBliiBFGVFB3QBwcxhnnJjeZZppZZmsOcvs5xwetryiKoiiKoij7xa6H35jM3rgefthQPi5IOyysgC7ev4OIzDJmewoRMW2a/rNICmHBlLH3EFiLtWVFgfHlFeOiufjx2OdxD3L7PEXkNmfP2UUzhhARWnlImmIv8Ny0ZYV3Vpz2GeAf7HAemk0RnDb3p4h4bs30Yz0HEqYdm36ZM8exiojEjlvkcNIpkEkkte8ukdPePOKeBJJWWkbew37kHFwDXkLO7UXknGWOedyKoiinGU2bVs4rB75uf+mXfukwxqEoylnDQaItFxG+2dxOe29crDO+9EqI/BXtNq/7kCVQQCLbqqkf91Qvx7ZZJ7qXkOjFRqTdSLRzGfhp5C/3YTJrHhfNMeSoF89hXueQc7KARFazbBXQhYg73T3kXMR5gCyJMs6LJc1PIufpMF0DD5uzMEZFURRFURTl9PPSz8HsNyBRBb8M+MYVLj7NZ+8JSHSA2yb1WmHjiWk/AUFZHOCSZjrPSRixHuCXZD+uuN9tPGleZFY0gVPJBE7pHGT6kEDKkOmT7ZW8iM86hqVeK4K24qwIvpI9kL4gx5nu3VrOL4kALNkt5Vvt7zgd2hrFiAA9N8z5NBymGLERNyntHEZbiqIoiqIoLygqoDu9WKHbTg6B1lkO2LZMhkzNYXCRxZpbnI9PQECKVM3drhxL0SxS5AM+IEeu1keJEq6ZFLOCvAQJ0qRrY7RCv046SZOucyjro49eeplmmj/hT+ihh1VWGTWTGQ94wB3uMM64upsdAkmSjJrbSdRXFEVRFEVRlL0IkBSnBFvXsm90n3NMWStyO6iIzok9Wie5uIDOMX10m+dlJN2v02xfN+Uypr5dsz+NCOxKZp9NfI6nF6ZNHZ8oxTAgSjmMi+HiWGc8x4yF2JgKSCqij4ixsohrWZws4jz3D4gEfJZWUwSfmHsBEXgF5vjaTX/WlW/T7C+YfZ8GrnJ8IofTlAI5hrxHk0hqX9yJ7xqSZrqOiAwvAT+OpJ+qAERRFGV3NG1aOW/o331FUVrDRQR0drkWO/dnl16xjzYqjful2212If4LyHIoVhjnmbqpWFkv1ka72X8difA8U7cHiVA/xdFEXZWGx64dynUhArrG8pYQuA08NK+LSC5p3DcdZEmUFcQHV1EURVEURVGU88PQm9A5DGuPwF2HwGerrbfBTYGbhc6rUq8VNh8DvgjxcMWRLdEu4q4wkNdhKI5nYMp5pl6TBCYA8s1jcofAKdklAjpbLmgMnJrsL6hC5gK0XYZkB1RXIfRELJjqke3Fp1LuIP3B8Tm07ShGjHGYYkRFURRFURTl0Flm+aSHoOyAg0OSJFWq2+63bm877dtgAxeXMmVKJnXRCuJcXHroIUWqzunOx6dChXnmechDLnKRRRZZZx3X3EDEfR10kCRJxdyqVEmQoIeemkgvPp48eZ7znF56qVLlGc9wcUmTZsBMPN3lLiuscEsnnhRFURRFURTl3GKFYzaaSSIpePGZKJvuZ8VzCbPNj9XbS0TX6PwWxrbZ9ECb/hd3i3OR1L8eRPjVhaTMVRFhWMWMqSvWpq1vj80sBVkTwtm27bHaepXY80RsvBtEwkIPEaN1mP5dU7YT+MC0n0EEWD9m+noHEa5Zwdr/FXGma6SVFEGb7vjYjK1s7u1ImmRnrP11cyybpkwVcax7k+MRORzk+I4Cx/TRiwj6YKsT3wWO1olPURRFUZTTjwroFEVpjTQSeTlItGaFbvHIIr6EjI1G7bIvPUhkB7Bsnuepj9AbhXe2rocI5d4A/iuOzxM23fBY2KFcoaFcumH/BBI5BsAU4hcen4OdAQYRgeAk20fYiqIoiqIoiqKcXZJZuPY/wsSvUb/KSCN2Oi+Aa/+XyDWuWapr8hiUzeygA4lUJCYjlNdVB5zQuNDF6jWDawKghHn0dgic7HZbzm0MnFrsz9+ArhFoG6wvt/Lu4fRX1/cRO7QdtxhRURRFURRFOXR2EmcpJ48V0CVJ4uHVCdLs/rgDXVxM5+AQElKmjIdXVxagjTaSJAkJyZCp9WHrlSjxhCdssMEaa1SpEhLWRHQpUjUxXUhYaysgYI01+ugjEfM1eMrTmtvhqrl1011rY4YZBhnkOteZZJJenXhSFEVRFEVRlHNH3PnNzjhVzesMkpq3gaTfNUaqdqbKit3K1KeyxcVxjVhnN1veCtnchnqJ2POQKG0wi6TaFYmc1hxEFJYF+hHRWGDauIAI3paJ0gxtdOSZY0vHnsdFeAlzT5r99ngCU87OwuQQIVjBlBlE0hqXgI8Bf7HhHPwfbO+y1kqK4LjZZ2foSrHjjIvnIHLts8568XrHwUGO76hwTB83gWmOz4lPURRFUZSzg34XUBSlNVxkaRAraksjkawVutmI2kahKaLIsw2JjGz0uoT4ss9QHz03+sVbYZ1nyqc4Xne2IcRbvN+M1UbGcQOAJbPdIVpGZSi23yNa4mQKmDPPc0gUXjD17fZRJNq056QRD432FEVRFEVRFOUs4jiRU5psYGsQhLjDJY1bXKukus3SoZvgl0U8FgKOWf/TcUzXgYiw/KJZFrS7+b7ahqDwALL9sDEjwq7yUn2Z8pJsx4HsQFSvFXbqL+7Udpj9HSfHLUZUFEVRFEVRDp2dHMyUkyVJsuYU5+LWnN7iuLgkSNREb3Z/ggRp0qRI0U47m2ySIIFnbkmS5MjVylSp0kknFSr4+LU+7bWRIEGWLEWKdQ50gbkBeHg1wVyJEhUqtX0+Pj/iR2yySYECHXTg4jLIIFe4QoECefLMmYmnUUaZYIKQsE70pxweHh7TTDPLLBUqpEkzxBAjjJDUyTtFURRFURRlGxpniA7ahk3RSyDpexvmMe7O5iJCu7gzm62TadgeXwvfkjZtWjGeR5QyGHe3yyDpcDatzTfbOxEx3BKSMrdJ5CiXNW23Iyl1/cCCafuCKZM35WbNWONiOS827pAoRTGNpBz2I+l29vgDYBVxdOsgclFLImmBBUSgNoykDD5GRIYZ4CriA9DostZqiuBN06+docvGzv06Wx3orN+BXYKzhZm9ljjo8R01SdPncTjxKYqiKIpytjiWX2gfP358JO0ODzca7CrKwXjr7bdOeghnB49omRW7jEzK7GtcOibuCZ8BriDiMpvPaJ3m2pFo00bQsDW6x5SLu9PtNL7DFpaNAHfM80EkwrvP1sjP7s8ixzsSa2PajKeILLsCcIOtIrz7Zr/5mHvrzbfqI7oQiSrvmfbiPDDjHEf9xpUj56239HNTOZ3otamcVvTaVM4jb119+6SHcAi40OA2sP96LeCV4OnXIJ2D8qII1rYlBDcl5Z7+7zD8f2rNha7jKnhrEFbBSYFXBP+J7HNcCM2xhyEk2yCsSPmOq8331TkCSyZwyg5CaQ5W7/PWn8uJU9rKnBGzmf2JLLgZqdcKO/RH2vTnFQ63v+PkPIsDd0D/Tir7Ra8VZT/odaLsB71OlKPG3SFmePut8xBHnV2so5wVs/kNE05WNBe/WQGbFZ1d5CL99POEJ6yxhoNDggRttJEgQYkSm2zi4pIlS4IEPj4JEmTI0EEHl7nMCiu1fkuUSJKkm+5aex4eG2zU3AwTJFhmmQ/5kHbaecxjnvCkdgwuLle4wuf5fG3MSyxxn/vMM8+wmXh68603GdVUwkMlJGSCCe5xb4sg8wEPuMMdxhlnjDEVLxr077By0ug1qJwG9DpUlP3z9jn+/3JQ8ZxZLrHmxmbXvLfiqgBJLytRLxpzkTS6rNnmm3J2rfxuRKSVMa+TSApehcg5btNsLxKlD1o3u4xps9P03Y0I3VxEdNVl9q8QCdKsyC0F/A9m+yqSBtcLPAd6kPS6HtPWUzMeKx7bMO2mTH0fSc0bAC6aegEilEsgKXrWdW8jdl67zJhWEZHcH5qxxt+vh2Zcnzbbe81YW0wRZBpJEbxKlGqZRVIhZ5G0yaw5n1Z0aFMUU6ZeqzSTbnnQ42sG/VupKC8m+n9fUZSj4lgEdK+88grOQVZK3wbHcfA8b++CiqIcDTbSjvuvh8inSoIoWrbReRpxnutBotEr5rWtGyBR7IrZ1m7aii8Ns272dRP5tTdylMKypKl7F3HQA4nw8kTCOevbbvePUf9JO2seF81Yc9RHjpjXOdPmAhJBzhJFjyFwG4nAQSJRu/RNmsj5rnFpG0VRFEVRFEVRtsfJQrjZWr1WmPsTKM5BZRn8EjhJEa/VifhccYbzS1LOSUi9yz/bfH/ZS6bJDARVCErStmOCrjCA0JMx+EkpF6/XDG4ScuPw/C50mcCoNC8ir0oscMoORvtzY1KvFY67v+PkPIsDFUVRFEVRXhA66GCJpb0LKseKj09IyAor+ObWiHWgCwkJCGpOdV10kSbNDW4wyCA+PlmyeHgssMAmmzXxW7y/ChUcHLLm1kcfH+fjPOEJJUrkyPERH+Hj00knXXTV6i+yyAILpEhxgQv4+BQo8JjHzDOPg1MbWzvtfJyP1/XfRx85cuTJs8ACwwwzy6wK6A6RkJDb3OahmbwrUmSRxZoD3YCZvLvLXVZY4Ra3VESnKIqiKIqiHBo2okkQua/B1tS+YJt9ZSS1r4NIXFchErYFiGNbD5K610UkvOsEPjJl0mZ7hkiUZwV1HUh6W9W04wHLiADPjsUx7Q2Y558wfYXA60j6XMaMBSSVbg24BHwPeBIbx0Uz1g1zPC+Z9tLAj5t9XwD+AHiEiONCMyZ7Di6aY3iGpCquETm+YY7RZi/nge8gorYM4rJ20BTBy0h6ZZFoXX+bCmlnNCtmrF1mjJfNvVlaSbc8jBTIVjgKTwVFURRFUV4sjvU7QxgedK0MRVFODTZytdG1XbLGLmlzIbbPCuiqZturSLRmF8UfIFoCx/q7J5BPKGsEEcZeJ8zdCsXiY7rN0QrLxkzdSSSaG0YivHgfNod21JSPU2l47GJ7upDosbE8SMT6EDkvU4iIL/7xOkMk4pskWtpGURRFURRFUZTtcdItCujSrfW39GfgrYswLqgiAVWjM4VvhG0JEUklslKvFQEdQKoXwsfGhS4RE88BOOZYPNkf+pDKtdYPQO8YVFagMAndo9AxDKUF8CuQSItTWsIETl2jUv4gHHd/x8V5FgcqiqIoiqK8IGTInPQQXmisk9x2BARUqW67P0mSDBlc3JrIyQrgMmT4MX6Mv8Hf4Bf5Rf43c5tmGh8fB4cSJULCWv+2Hbutjz6+wBf4C/wFfsgPCQgoUqRMGQ+PJEkqVEiSxMOjk04qVPDxa+51l7jES7xEQMBFLpInzworvMRLXN4mZbKLLvLka85ojQ5pysGYYIKHPCQgYIop5pmvu7ZmmGGQQa5znUkm6aWXcZ28UxRFURRFUQwu9cK2Vtm6NEhE3KrCpvnZNe2tY5uHpKPFHexcJDVuE0mJ6yFaV98123xkrfyy2ddhXmP6yAGfRNLc1pG0wiIwh6QTphCx1Tri9nbJ9DMFXDPj+dC098D0MY441H0HSdF7H3jX1PcRod0Iktp30bRxExHOjQA/NNu+C3zbnIOUuYMI1kpELnfz5vzYVMOw4TmImLCdyJ0NWk8RHDH3TaJ1/W2KphXvWUfAHkQE+Kqp0wytplseRgpks+M8Kk8FRVEURVFeLM5ERk2je50K8RTlFGCFcZb4kjUhEo2miZzpKsgSKx1me4YoYhtEotY1xJXOI1oOx/rD+0RL1DhI1DzYMKZmhGU/MmPspbnlSBwkEuxFIjKIPMYtGSQa2y4iSzc8FtieQkM5++jF+p1CfkkA+aXBLjeTj20fRc7LTc7IJ76iKIqiKIqiWOxqGq3Ua5KwhToHqVeeh+oGVAtE05nxoAqiYMKH6hoku6VeS/0tijNZ6EGiQ5zLwopxvTNTfI5ZESXRIeXctNRrBceBgVuQ7oX8PdnW0RA4uRkRe/WOmb4PwHH3d5ycV3GgoiiKoijKC0LXjilkynGwk3guvn+7Mg5O3Xvn4rLGGi4u/fRzgQu1fde4RpUqFSokSOCZm2Nutg/rYFelSoIEf5G/yJ/nzwOwzDJ3uVvrMy78S5OuOddtGp+BPvrop5/rXCcgYI450qRrTnPbOZsVzMRT2kw4pWsTT8pB8fC4ZybvpphizkzS5cjRRRcFCuTJ17aPMsoEE9zkJkmdvNsWD49ppplltubiN8QQI4zoOVMURTkk9LNWUU4XAccv+okL5EJEqBUXhAWx52UkvS4AlhDBlnVoaydKI7yKpP4tm32XgVcQcVcC+BlEjPdHpu1rpn3rUJZEhHadRKlvs6aPHJKSFxd0vWbuD4EbSNrfbuvgW/GXTb9zkRTAm6ZelShVMWXGNm/qzJvy7abtlClfQURnZUQY+BRxwztoiqA9FxXknL5jzpOd2UsQiRM/jbjVjdN8euBe6ZYfIOc9B9w3Zb5g+j/I8TXDcXgqKIqiKIry4nAsEe8XvvCFLSK4ZlhcXOT+/fs4jkNXVxef/OQnD3F0iqLsyG75qtZtzkbwNnKyS9BsIlFKGCubRKKpeeCzRJ9AbYhP+ryp5xH5wduIr41oCZVOU74tNp5mhGUL5tgcMw4b0e13ORLHlLlJ857gQ6affkTQl0d+WYh7mC+Z7Q5RhGfd+uwSNUXkfIH8AtBY/77ZPxyrdxD/c0VRFEVRFEU5dlpdPKeFek61te6caguVgOomVPMiVKvROIDY69CT8tUWXPIAvKII5pyseUzIPYwFdI5rZt1suarUaxXHEfe0npuwPg3FWQgqIsxrG4LOkcN1Sjvu/o6L8ywOVBRFURRFeQHQ5OOTxQrJ9hLSNRKYW4YMAQEhIV10kSHDBS6QIkWfmZjpp7/mDFekWOc4Z8cQxm4ZMvj49NMPiJDtMpf5gA9YYYV22hlkkDXW8PFJkKCbbuaZx8HhVV7ldV6nhx6ucY122vmAD+ikk+/xPfLkeZ/3cXFrbnYBAcss4+IyYCaehmoTT8pBmWaaChWKFJk3k3c3uFG7RgCWWOI+95lnnmEzeTfNNKM6eVdHSMgEE9zj3haXxAc84A53GGecMca2FYoqiqIoe6OftYpyujkJWwnrOAdbHdUgWvceJMXOutUVEAFZGyKUqyDipRTihOYgArkrbF2L/ueBbyLr37+HpP29Zsq+j6S9uYgobdOMpxtJo4uvn/8Q+AyS/nfPjHE/6+A3pt+5Zr9L5OwWIGmEm+Y4i4h4rpNIYJhC0gXL5nzMIyK6x8BPcrAUQcyYVsz+lxGHuxnTXwYRLFpx4qgp3wy7pVt2Iq5/M8j73WPG+GfmfKwi18JBjm+/NOOpMImIIsdb6EdRFEVRlBeDY5m1uX379oHqb25u8rnPfY733nuPjY0Nfvu3f5vPf/7zhzM4RVF2ZrffwhwkAgyQaMrmjcZd6KxbXIhEmBtIZPhpIqFcEomMrgA/DnzLlOskEuM5pv464mD3GVM+HlHtR1i2iCxHUkCWtwmBHyACu1aWI0ki0Wczc1sjSHQNErnNIVF/o9DP7s9S79Y3GzuW0NSLHyPmdY5oeZ5hU0/n4BRFURRFUZQzxTEK6I61L8QxzGtSDOdtRk5jzVJZgsA38ZkHBOBmjYDOOtAlwC/KfgcIPKl3UNykOKd1H1NAcpz9BZ6KAxVFURRFUZRdWWX1pIfwQhN3cttpP9QL7Kz4zcGhjTZcXFKkcHFJkyZJkstcps2s8viUp7TRRhddrLCCg0OSJAkStf59fDxkAZVuummnnac85RN8giGGeMADPsNnWGGFZZYpUapzuVtnnTJl+unnc3yONtr4Il9klFE8PL7CVyhTxsHhAz5giinaaSdLlhIlNtkkQYLrXCdjbiO1iSfloMyaybtFFgkJyZGrE88BNXfAPHkWWGCYYWaZVQFdjJCQ29zmofGVKFJkkcWaK5IVf97lLiuscItbKuxQFEVpEv2sVZTTi3U9s8TXsj9O9urTjnEdSWdzidzA+pFUtyLwDBExTQP/FfDTRE5wICl31xCntg4kZW4ZEUd9aPopIqmDHUiKYNJsd4iEXqNI6t/fpLl18G363YLpt8z2KYLLSBqj9QAom9fx8+TE9q8i6XprHDxF0LZ9CzmX95AUwP0IBPfLTumWFxEhWgJJp3yKnDPf9PcRItx7H0kBHTD1mz2+/dAo8ptFrr8E8h5XzLisCHQUEdzd5JiS4xVFURRFOXOcie8I7e3tfOUrX+HTn/40QRDwS7/0S7z33nuk060Y+iqKsm92i6pcok+Q7YwSrPDNPoJENCVkeZFHRK5oNmL8BBI9TSLRVcr04SGRziCy3MwbSFQVj6j2IywrmbZCJNoGiXQHzfPjWI4kadq8a/oBiSDzRFGjExsHSIRrz3Wl4bHd1F8lEiT2mO35bcoriqIoiqIoirIVN7Wz+/Ze9VrBL0Po710uTuhLvVap5MHfMMtiehDaqcfYqiWhL6Isf1PKHwbHJTI7TsIQViZg+R3YfAbVVSM8TEKqB9pfggufPnxHuOMWIyrKaeQ8fqYoiqIo55pNWnSRVg4F6/q2HQ4OLi4APn6tnHWeS5LkKldJkMDFZZHFmgPcZS7XHNwe8pALXGCBBdpow8MjRarmXOfgkCaNh0eCBAEBOXK1xPURRrhj0ipf53VmmWWddTbZJE2aChVCQq5xjSGGaKOtTgCXJMkYY3yFr+Dj00knefI1MZcVAvbQg4/PJJP8Ir94ou6IHh7TTDPLbC1hf4ghRhg5k66N1r3HPnbRtW25LrrIk99SXhEmmOAhDwkImGKKeebr/v/OMMMgg1znOpNM0ksv4+oroSiK0hT6Wasop5fGGaOTEM81SxkRMXUgaX4bSArbitk2gMw+vYMI1caR1MAfIIKoIvBtZM3+aVO3iqQktpv2PdNGCXgJEUyNIOv3zxOJyWwK4n7XwbeCt0dIGuMF03cBeS8SiONd2hybS/QeVc34bEqj9RAIkVRHe/wHTREkVmac7QWC/abMIvBH7C4a3I6d0i2fELm8bZrzYs9ZhzmmTyAiuhnEx+BSi8e3F3GR3/tIqucA8h5g2lsHPkDSJ6/E6ulsmqIoiqIo23FmfoEeGxvjb//tv83v//7vMz09zb/4F/+Cv//3//5JD0tRzi97LWUTItFfwM7iLAeJKOOJqAESdf0AibZGqY8YP49EYo+QCCwgioxfNeUdtkZUjUKxxrkp3/SXJVoypcu0O0y07El8iZqjWo7E+qtPmn6GkV8KbHQ7QLTsTqO/utUNp2LjvdTQ/py5W6/2eD1FURRFUZSD4rH/5fsU5UC0ur5mC4KlVoVwrdYrzYvj275FdKEIQ0rzexfdjlQOqiviYhdUIKiCU2XLyif2dHsbIgpL5VrrDyKRWf6e9Bmn8ACW7oir2mGLzI6aMIT5P5X75hNx7asW5L10EpDqhvVHsP4hlPMw+MWzdXyKclo5r58piqIoyrlng42THsILTYJEzfmtkZCQwExgNTrVeXgUKeLiUqRY5+B2k5tkydYEbEWK5MiRIkWSJBe4QAcdrLNOQICLSyedbLDBGmukSJEjR5EiIAK4cca5y12um7TCeDJ7kiQOTi2ZHWCMsX0JzayA7rQQEjLBBPe4t0U89oAH3OEO44wzxtipGvdepM0knH0sUNi2nN3eWF6R/3P3jK/EFFPMmQnbHDm66KJAgTz52vZRRplggpvcPJOiS0VRlJPgrH3WnjfBvdIcLq2teagcPwEinEsj6XgjSKrgc+BdJG1tERFRfRv4UyRVz0FczObNfQ5JhUshYrkV5DroNGXngTYwy5iI0CuPpNsNI9PWzYil0oir2pp5PWfai89KLkPtm71djjKMlbERS2j2m6UqwRwH1KcIvoqkA84g4kCb1veyqdeYIthIkkggGCJpjXfZmrb5APExGGdvV7rt0i1tiiXIe7dKlALQibwPPnLOBs39I+CzNJcCuV9mkeP9jhlPO3LulqkXO2bM/u8A/zXNXxN7oSkSiqIoinJ+OFN/u3/lV36F3//93wfgd3/3d1VApyhHScjW5W3i+Eg0Z4V0cRwkKhmgfrmVArIciIcs3/JBrE48YnwdWZqkmYgq3fDYODe1ZPpdRyLtdiSKuW76smXus/0SNYdJo7867N9ffQhZTmUV+bUhRM5LQBQVJpDjX0ci/ZDoFwRFURRFUZRWsb/E3+Ngv8QrymkkbHEtz5brVcFJQ9jMavMpqdcK1TzgGqFXFfB21iaGSDkcU68FwhAWbkNBHBXwi1BaBL8CiTRkB2T787tQWYGBW2dH8JK/B8/+ExTnoLwIlWXwSxAG4LiQaIN0TkSK/iake+HCJ0961IpytjnPnymKoijKuWcn8ZayPxqFbc2yV92d9oeEJEhQoUKSJJe4xKu8yiijODh1ArY22gC4yEUKFKhSpd3c4qywQoYMF7lYVw9EELfCCpNMMsoowwyzwEItWXyAAbJmkmyUUcZik2QeHhNMMMooiyxSoICLSz/9ZMlSosQmm6yzziUuMcooP+AHvMEbx5p8HhJym9s1570iRRZZrDtGgLvcZYUVbnHrzIjohhjiAQ/op58ZZsiTZ4kl+uirlVliiTx5HJzasQ7p5F2NaaapUKFIkXmzEuoNbmw5h/e5zzzzDJuJ1WmmGVVfCUVRlH1xVj5rz6vgXmkOFc8JJykk3O8Slza9sGweHxElJK8gx1BF0vmywIeIaKyMrL3/DBFClZF0PkydeCRtU+EWTBuriNArT70AbDuBU9yhLS56yiEisS4zpk1EGJYlSnUsme12TJh9jmnL9m39BRLmdS723AG+gKQifiN2jGlz7j5EhGhvmnL7+VQLgdtgIitJxYwfn/m1nLvIe3Brl3a3S7e0KZZVIoFhl+n3grm3mX4XgB9H0jBXzb79pkDulwoidlw0rzcREWKj2NG+XjTlR1roazs0RUJRFEVRzh9nSkA3NjbG0NAQs7OzzM7O8u1vf5vPfe5zJz0sRXlxsVF6Y8TsIBFRb2xbGyLo8pBowqdeQNesqMynPuq1S9JcRKKkPBLR2d/6Vk3/Nv/zArIsSk+s/T4OvkTNftnNX3235UlGgK8iEW4n8kvCIrJ0jY3gq0hE/7I5FrvEj6IoiqIoSqsc5i/xirJvjtGBLmhRmNZqvXQPOE0emxNKvVYIfXGU80sQ7pHAG3pSrrrahENeAysTInQJA1ibFEc2vxi5tCXaoPNV6B6FwqSIzHLjrfV1nAQefPQH4gRYWoDiU/DL4kTopuR68DbBWxfBj+NI+d43xEFQUZTWiH+mFKaMG2fsM3RjBrKD0HX9bH2mKIqiKC8EgaZ+HoiDiOcA/F1Xity+fZuIfdHcMmS4ylVe5mVc3C0Cttd5ne/wHQYZZJZZQkKSJOmgAx+fBAk22Kg5yV3iUq1evM9b3KKX3pozzHDDJFmGDGPmFk8Wt8nwJUqEhFzjGpe4hIuLh0eSJAEBc8wRElKmjINzoGT4VhxhJpjgIQ8JCJhiqs5lD2CGmZrL3iST9NLLOOMtje+4GWGEO9wBYJBB5pjjPve3OPrY/VmyZMjUXAwVmGUWgEUWCQnJkasTdAD00UeOHHnyLLDAMMPMMqsCOkVRlH1yFj5rz7PgXlGa5SSv7ATNC/dCJF3NR8RmjmnDprQ9QcRYF4HvIel5ZrlHssjUc9zdLUmUXogp14FMQ1cQwR1EQrQZ4CtEAqcQEVHNIOmCnabPFFGq4DKSilgyZXwz5rhXgG0vYY4rEzs/CaK17ttMnx2IaM9+uobAN5G0xU8jTm3bOdCtAt9if1PsE8iUfQBMIWmB8ch2BnGFu474GPTCjpHVECIC6ydKt7Qiv4Jp14k9dpt91mkuj7zHw4jD3hUO36EtgVw/1k/AN8fUjlw7Vui4YspcRN77xNammkZTJBRFUZSzhjqm7o8zdy6uXr3K7KwE9e+9954K6BTlpNhtztKBhoU1o+0QRdmN85b7EZUl2H5ZD7uMjW0nRNzkcsgyKA+RJVtCJALtQKLi+t8Dt1+i5iiJ+6s3S2M+cTwCO9icsqIoiqIoSj2H+Uu8opxGWnV2a7Vex3UIv87+RYKOCNs6rrfWn1cSwcle4jlL6IlAzCvtXbaRwBOXtjCExTsidsGHRDskspE4r7QIlSXo+0nIT0DPzdMvMlubhPVpEcoVP5JjSfWI45w9tkpejq/4EWQuwvoHUq/3xkmPXlHOJvYzBYx4bk6ep3OQ7AKvIP/v7Pbu0bPzmaIoiqK8EJRo4Tu1cmxs53AXmluCBGnShIR8yIfMMcebvMkX+EJdovYtbvE1vgbABS7wnOc84xlddNFJJ+usU6AAiCivzdxucWvLWMYZ5yY3mxKnNSbDX+RinTjPUqV64GT4Vh1hPLyaMHCKKeaQ726NAjO7fZRRJpjgJjeP1SWvVZIkGWecu9zlOhK3zzNP3txA3l8rEATqXAwVateTfeyia9tyXXSRJ7+lvKIoirI3Z+Gz9jwL7hVlLxpni0JOLvWrlaUV7VitCM26yLmIcO6/IOl/GSQtL4GInxxTztbJmDasX7d1e7N9+Ej6X9rs6yeamh4kckWbQsRqVtRXMm32IQK6FUQ09zzWnwsmchPseCtE4jjX3O37Y8WCKSTlsB8Rkdnxx6fYHxFNsceFfyX2P8XuEfkSTJlzAVF6ZAE5v3b7qBnDTXZex/+OeT5o6k2b8RaR85Qyx95t2rDplkXqUywDWk+B3I240LKEnLceIvEayHu+gLwXbaZOizO4dWiKhKIoinJWUMfU5jhzv8oWi8Xa84WFhRMciaK84DhEEaFdWsVG8ylkqZQV87zK1iVZEogL3HbsJCrbz7Iez0w5z/SdN/eiGZ/1FC8Bl9m63IiNhBs9yk8L00jkZaP9biT6DoiWtXGR81IAXjflpzkaJz1FURRFUc4/h/1LvKKcStzjrdfxiplhcdnfVKQLoSP1WqEwDf6muDfthzAAf0PqNcv6tLiyrbwrTlCEkOmXNkNf3OeSnVBeEGFZsgd6b0q97kMIWgJP2irOQlABNw1tQ9A5cnAxTf57Ii6s5EUs56blPUl1RmVSPbD2IyOmW4bsgNRTAZ2itMb6tPxf9ovGeQ7ouQGZ2IpI5SVYvS/7O4ajeofxmaIoiqIoB6R6KClbSqu4uLu6AO7kQGdd2ypU6hzoVlnlW3yrzu0kS5Y3eZM/4A8YZZSHPOQ5zymYm23zIhd5jdcA+Bl+hizZbceUJMmoue2H40qGP4gjjHXJK1JkHvlOd4Mbda43Syxxn/vMM19z3zuIS95xM8YYK6wwySSjjDLMMAss1J0f+543uhgqkDYTsvaxUJe6HGG3N5ZXFEVR9ua0f9aed8G9orxIWKFb0TzmzLYVZMq5nSiNcMU8ryApb9bVzab9+bGytj0XSZVrQ5y/loHPAu8j6XLPgQ+Q1EAruLKzectIuqJtd9n0mSESRlm3NZC0QZuOl0TS9C6Zdj2zzTroOYgL22XEJ+AoptinzbiLYCIruEG9f8AS4jkwDzVf853SBpNIMv1dwC7huYCICzdMXw4iWOs3+2265XGlWCbNvYS8TwHi2Fel3oEujbzPRSKx30HQFAlFURTlrKCOqc1zpv5Wr6+v8/777+M48rZ1dnbuUUNRlCPBIYpO7Keob577ZnuRKAq1wroAiW6zSDTx0g7t7+Qhusbuy3qAREd2uZOXTN0KkbOcXb7FRrBxlkwZh+gvxtBeJ+OYmSWKTC8gx9a7TbkScuzdpvwsKqBTFEVRFKU1DvuXeEXZN0las4Ru4aeOZDtUtk8Y2LNeKxRnpW51ZZ8VAki2Sb1W2HgEQQC7JI5u6S8IpF6zFGdh86mIV8IQwoqIWxrts30jblt/BOleqXcQsUsYwsqEOFUFDddN4QEs3YHcOPSOgdPiz4FF8yFYLQChuF+lGn6bSnWKQLCyLOWyA1E9RVGax37ulRaBUJzn4uI5kNfpnHGiWxAR3UE/UxRFURRFORc4LaYChITMM0+aNAkSPOMZb/AGr/P6tm4nf42/xiyzfJfvMsooiyzyjGd4eCRJ8hIv0U8/Dg6f5JOMMcY3+ea+HOb24riS4Q/iCNPokpcjVyeeA+ijjxy5A7vknRQODre4RS+9teT/4dqPZEKGDGPm1uq1eV4ZYogHPKCffmaYIU+eJZa2iCzz5HFwaoLNoVM3kasoinJ6Oe2ftS+C4F5RdqLRfe684CNpfNYZLECETgkk7c2KnypmX4gIt0KzLUW9mK1o2nORNMAOZDr6AuJwt27afU7kgGdFYC4ye7hu7nFh3KZ53m7ajXsFWBe9fjNWK9Bqp168lUAEaDfN9hGOZordzhKaX8vJNbSHeZ1DUiAXTLu7pQ2OIcn0k6ZMFvge0GnGlTXH6yBr+F/meFMsA8TVbxZJg8T0u2nu9nWvee6bMe53RnQnNEVCURRFOSuoY2rznBkBXRiG/Oqv/irlchkAx3H4+Mc/fsKjUpQXFAeJjLqJln9ZRaLETeRTuEzkU27Fc3bplQEksvxUQ7u7eYjeB95Boq1NosikcVmPJPUubJ8lWp7m22Y8o+b1j5BlQOL1Qf5SZJFlS0aaOzV17CQEHKH1T197XqrILwCXkV8EVonOb4/Z/pTIj7yVvGNFURRFURQ4ml/iFWU/OG5rM4ZOC65wiUwLHR2gXvW5iD2qq+zvIB1T/nlr/ZWfG/e5/Z7QUMqXW+jPL8LmE3Gb8woiVnPTkGiHRFac2fxNEdZ5ZRHPbT6Veq0ShrBwGwoPpd/Np7DxWJzwEhnouArtL8Pzu1BZgYFbrYvo6js+hDYURdkVK4j1zWNye0cVkl3GHbJSX09RFEVRlBeavURK8f1WDBYS4uPj4VGlyiabPOc5H/IhU0zx3/DfbHE7cXH5n/if+J/5n/lP/CfKlOmgo9b2KquUKTPOOL308i2+VTeOBzzgDncYZ7xpcdVxJMMf1BGmWZe8EiXmmadA4VBEhseFg8M449zkJtNMM8vsmRr/STLCCHe4A8Agg8wxx33ub7nG7P4sWTJkGDnQRK6iKMqLxWn/rH0RBPeKshPneaYhoF4g58ReJ5BUN48otdBit6eI1vgHSecbQqaln5kyVWSK2jVtb5hyz5D0xcbzWyRyT+slEtK9hKRDBqatDSTh3DftpJF0vIx5bUV+l5CE9NfM8Vmv6btIkvozZJp90Iw7TrNT7JWGxx1+La/5DDSW3w4HcaLpRVI2X0ZSDj2ilNAF5JymgR9y+CmWu2HP+4eI0K/d9LtG9N51I6mkm0ha6mUO7oinKRKKoijKWUAdU1vjWI798ePHTdfxfZ9iscji4iLf+973+Nf/+l/zwx/+EMdxCMOQXC7Hn/tzf+4IRqsoyp44SKSYRiLBPsQX3UaXRaLIK75MTgqJWFLANeqjhbiHqA98hEShZSTK6jTtTiL+6QPAj7H9sh4hEo2uI38BBs1YX0KiUodIZp0niursUinWk3yM1j4ldxMCPgDuIPLtMZr3QW30Pd9AItDBhnLv7lBeURRFURSlWY7il3hF2Q+hd3z1nBa/MLdazwZKiawRjsXX0IxjtieysXqtYARxTVVpRnAXo7xk3oNQxHJuCtqGxJXN4q3D6o8gqJqxVY1LXYusTMDaJGw+hufvGGe/2NgLDyHVCxc/LWK7dK+40TVL26DMzqW6oDQvx+Gtbz02bx1wpJytpyhKa7jmczZhHr0d3ELtdlvO1R9CFEVRlNNBggQ+/kkP44Ul2GXNecfcGsvZ7SEh66yTIEE77WyyyX3ukyLFl/hSndtJSMi3+BY5cvx3/He8x3s84hFlyrXE8wwZnvOc+9znCldYYqkmrrKitrvcZYUVbnFr3yK640iGP6gjzH5d8tZYY5llVlmlhx4ucakmtjuIyPC4SZJk1NyU/ZEkyTjj3OUu181E7Tzz5M0N5P+mdTkEGGNMBYmKoihNcNo/a5sV3DeWVxTldBIiAqcASQd0iUR1SSJhnU80q+PEyjlIYriPCLUuIKmET4iEbs8Q4VQPkSPcnHm0bVkRXIIoha6KiMMSpm8r2ssgKYjPTXsgKYgukox+kUgMl0FSGO0s3mumrf8H8IdmnGum72XzvNfUTSFisHlkff4niBjvOfC5WJtxGtMAd/i1vLbdlnORlMudPAAcJJXxphlLChHKDSDTYmVT5olp77BSLPfDEJJu+WnkHC4j78uFWJl1M8Y+4MfN+A7qiKcpEoqiKMpZQB1TW+NYotxXXnkF54Are4dhlPjkOA6/9mu/RibT4krviqIcDBu9Jszr1di+DBKFFImWiHGInNHsp/LHqP8EmkAitSfAd5HoK56rWSDy2/aQaHS3ZT2eI5/0V5BlUjDtfdP08yoSacZFeleRZVRc5C/DGM0TFwKCnIdFoujT+pbfNcd4i+ZyYG1U2G/Gnkf+ujX+tTsun3RFURRFUc4/rf4Sr3nryoFpNcm0lXrVvYscZr1UDxBCskNc0vDBMVN0NS2dY4RorpQjMPVaINEGuySObk9g6h0CjTq8w1xONfBg+ftQmISVd6GyCv6GbLe4KRHOPf+OEfVloOcmuE3+LJb7FMz9kbgBWvHj+oex1yVxwAoqcu7SF8BJST1FUVqjbQgKDyDbDxsz8n+svASZ2A8h5SXZjgPZgaieoiiKopwCUqRUQHeChLsEH3HHucbtPj4VKiyzjIODi0uKFO2085CH9NHHx/l4TSA1wQQPeUhAwId8yDrrNVEcwFOeUqFCH328y7u8z/vkYt4DM8zUktUnmaSXXsYZ39cxHkcy/EEdYfbjkrfIIu/zPuus8wqvUKXKBhtMMXVgkWGzeHjqIHcCjDHGCitMMskoowwzzAILdULTrEkjHmWUsZYmchVFUV5sTvNn7X4F93Z7Y3nlfGHFU8rZJyQSFFmXOSuYc832xm/1tpwVzyWRFEXrCjeCrN+/btqumu3Wfc7ebV/27ph+zdKOYOpkEcGYY+rNIkI3OwNoI/p2RLxl3ci6kbREB0k7/ASSrvg28CMkXbBA5FaXBx4j6ZNXzfZZorTLDsTF7CmSdvgl4K/FzhM0nzbYj6RiLgOPGs7zdh4ASSRl8jWiFEsQwdoC9emPVuDXaorlfhkx4wT4OCKYXEcEktYNMABeQbwV2jgcRzxNkTgaPES0sZOYU1EURWkOdUxtjWP9mxMXwTWLFeCFYchf/at/lV/7tV87rGEpSo2pV6cAuP7o+h4lX3BC5NOjF/lWCxJp2SViPCTaA4lgfSTKstHsJ5DIyka5HvB9JOp6F4kMbfRp91vP9Q0k0lkn8uGOs9uyHg7wBURG/Q2iZWLS5pg+RJagedOUa2XebQKJYgMil7v4R98M0RIsk8g5HN+72akpc22OXI+iwkEz3vts9Vu1+4/aJ1154aldm9f1c1M5Xei1qZxWzuS1qQJ+ZQ+mNl4F4HpH49TLQWn1N4QW6vktut21Wq/740YwZ4MOxzi+OeA4IvaqTQ+a/U5S6rVC3CHtqOul+2SsOJDIyHGWZplaeBncNNd75sHfFFGb40o5JyX1WmF9Wu6bT6E4C+Xn0mdcHOdtQPhc+k3nINEudbqb/EmwexQ6R0Ss1/YSFJ9BdU2EdG5SRHtBVcRz7S/Lts5rzffzAnMm/04qR0vnCCyZH0Kyg1Cag9X7TK0OQKKN6xfWjHjO7E9kRSTbqT+EKPqZouwPvU6UoyZDhlJtMiLi1SmJox5dP+w4Somzm4But/0hIS4uadJ4eFSpUja3Ntr4Ht9jhBEqVHBx+Q7foYceHvGIOeYAag5wq6wyzTQ+PnnyuLgkSPAKr9BDT80hztYbZZQJJrjJzX2LtVpJhm/m8++gjjD7ccl7xCMKFOimm2WWWWedJMlakvxBRIb7JSRkggnucW+Lm81ZcsA7S8SvQweHW9yil17ucQ+g5mZoyZBhzNz0PVAOA/0uqJwGjvM6PM2ftfsR3C+xRJ48Dk5NXD+kk1Hnkp2+xb9q/r880s/tI8UlEp0dBtYpLjbjVXOGs2vz2+2NfQZIamDW7K8iwrUfQ1IV58z2AFnjvogIq3yi1MN4fxZ7fAkiN7xXELGZjeAT5rmPCOysS55rxvEYEXTdQtLyfgD83832AiLCKxA56MXd9+ZMm6HpI0BSItNmv4+kHD4DfjU29riYbK+0wQEzlmXgszTnAeCY171g/lrQ8NdC0hHHiMR3R0USeGlqigdEfyvj6ZjtHI0jnqZIHC4hklZ7j60ufduJORUFNF5TlP2gjqmtcWZE22EYcuHCBX7913+df/AP/sFJD0c5p3z9S18H4Prb+gd3TzaQ6MlFlvIoItGVg0R4F4jEc9b/PECiiGHk09d6gE6b+1NEPFdAoiwrbLNe7iWiKH0eiUIGG8a127Ie1oFuFfH1/ojtHehWgW/RvDucRxQ1ToGZ69wapdrto0hkcJM9P42//nVzbb51XaKFu0RR37xp10bAx+mTrrzw1K5NDVSUU4Zem8pp5Uxem838Eq8C/heSry99CYDrHW+f8EgOgLfTuoFHVK9tCDIvQemeEczZacEgNjtopvQcRwRaXR9r3VEp2b79zONuOKZe0321QfsVKC1Aslvc2HD4+gfyoXB97ANqorlEh4jd2i9LvVbYeAKbj8UJrrwkQkQ3JY9OAkLj7hdUZP/6hyJw23jSvLDNTcLLfxk+/IqIHB1XhDt+UV67KUh1i0gv0y9inpf/cvNOdy8wZ/LvpHK0uEnIjcPzu9BlrovSPF9/LwuEXP+8dZ4bjPbnxvT/nQLoZ4qyP/Q6UY6aDjpYra0nH/Glr0sc9fb1MxxHnWMSJMiSJW1uAQErrFCkyAILdNPNd/kuF7nIPPM84AEhIaus0ksvN7hRS/aeZ54BBnjKU5ZZ5gIXGGKIS1xi0ExyLbHEfe4zz3wtiX2a6ZrDXZyd3NF+kp9sKhm+mc+/gzrC7OWSZ89vDz0EBKyxRh99XOBCTWB3UJHhXoSE3OY2D3kIQJEiiyzWiRDheBzwXiQar0MHh3HGuclNdQFUjgX9LqicBo77Ojytn7X7Edxbd91BBsmSJUOGEZ2MOpfsNJXxJfP/5W393D5SrODssLzU7Zr78fc1haT02TX5rcjOlnHN/qQpUzD7qogwLWe2zyHT1VkkddGu509Dfy6RCC3uSmeFfVZ4V4iNZ8P0l0BEWr4ps2xeZxH3Fvsp9C8Rwdoa4u5SJnK7C4jc73aarvPN2OeQlMx14D8hgqy/Ycok2X/aYAZJi3wFcZ9r1gPAMa9vcnKOYdatbOLrX6cIrF2/Tg+S3vk8Np6LyPmaAi4h5+++aSMuGmxm3JoicXiEwG0w0XZzYk7lxUbjNUXZG3VMbY1jiXi/8IUv1BzkmiGdTtPT08OVK1f4/Oc/z1/6S3+J9vYWkrcURTl8SkgUEBI5xBWRCLfRFQ7ENS4w9wVErGY9QJ8iS7gUzN1HPp1ttFkydxsNg0RBE0iUZ53sAiRKddl+WY+4O1w8MrRCvRnTT5PucDWmkW/2RdM2wA22Lj1y3+wfjtVrJm9zDIkWJk29YU7OJ11RFEVRlPNPM7/Eq4BfOav45eOtl2yD7EVYtW5z263laV6HIeBA5mLrIjO/hARqzTjmJUy9JmkbEkFcNQ+VZUikIdNnHPeA9EURnpUXAQe6XpXyrYoDNx9DaQmqq+L+BkZElwSMyC3wREgX+lKutCj1WiE3DpUVmP8TEcylL4gLnRXqpbqNA91lGPxpKa8oysHoHZP/d4VJEb52DIO7LJ+PHa9AdkCc5wC6RqW8oiiKopwSBhnkGc9OehjKDri4BARbtgcElChRpYqDQ0iIj09ISJkyJUrMMccUU8wyi4fHGms85zkpUlzkYq2tVVbpRNy9reNdSMgP+SHPeU6SJD3mtsoqCywwzDCzzNYJ6PbrjvY3+Zt8wAeHmgx/GI4wu7nkFSgwzDAhITPM0E03n+fz9NNf1/5+RYatMMEED3lIQMAUU8wzX+dQeBwOeEpEkiSj5qYoiqIcDafts3YvwT2I+M/+PQb5fqHCakU5fA7TfS7enoukFVaJ3NdsRrEVt9mUQyues2mJ1mHOQdLlcsCVWPluREBVod7Vbqex0NB3L5KWuGK2bSDpi22IWKrLjCGNCOQ+QkRbH5jxeMC7po4VzyWJXOeqsePYbmx2LFYkGCBplT7wb4GfJ0oF3E/aYAr4NjJ9H09jbMUDIGn2H/VfCyuWm0XO32MkzbIHObYE8n48MuWvIGK1j8zYHeAy0An8MZIGum5e55Bz0gO8hPgu7OV0pikSh0c8ZXeK5sWciqIoys6oY2prHMvf69u3bx9HN4qiHCcBEq2ARDAVsy2JRGx5JAKxS8QQK9NF5EIH8qntmfZKpn4X8mltfdL7iJaeAInk3kGEdFZkt4lES9eRJT3iy3q04g73PSSy3O9SJLPmcRH5lp+j/q8Q5nXO9LVgzoMVEu6X0+STriiKoijKi4EK+JUToVnLtHi9ZtmaMHmk9VI5KM1Dsgu8DXafykPKlRakXiv4G5DIgNeE4C+RkXrN0jkCS3eg5w2orEHhoYjlwjBy0/M3RWzWeR16borwpbPFNRkrK+ICF1aNgM6BVBLctAjcrKiuaqZMw6qUr6y01p/jwOAXIZOD5+9A8ZmI8kIPnCSkeqD9ZbjwKRHxtLCglKIoDTgODNyCdC/k78k2NyWPHSap2s2I85z+v1MURVFOGT30nPQQXmis+G2nfQmTbtkoorNCuTba8PCoUsXHx8HBw2Pd3J7xjFlm2WADHx8XlyJFJpignXY8PD7iIypUcHEpUyZPngQJOukkhXynmWOOFVYICGqis7hIrhV3tMNMhm/WESZFijx5nvCEGWb2dMmbZJICBVZZ5SIXuca1OvEcQB995MiRJ7+jyLBVPLzamKaYqjndNR7fUTrgKYqiKIqyu+DefufJmsmoUUYZ08koRTkSWp0x2wkHmU62aYUektbmEQnMHETg5BK50tlyNkWxYvY/R8Q4S8AF00c/kq5n+9vuGOLCOTdWJg10EIm0SqZsEhHJ2eVR+swYf2TKLCNT5N9DUv+qiGCrbNq/aPrYRAR5rtnXGKFax79kbOxerN4j4E+An42V3yttMI8IzPqA75ptR+EBcBiEiMDqHvIehEhKwnxs/zUih8Ix5DyvmDodwKtImuoS8KeIqK6KXEslRHjXhwjoHgEfIufoi+w+q7xXisR2zneTHI8732FTAr4JvI+ILtuA15FrLbtLvb1oJWV3JzGnoiiKshV1TG0N/RujKErr2KVdQCIO6zAHsAp1C2Ba3/UEIph7gnzLBlmaxbZXQiKY7XxEbVSTRSJSn0is5iDf3HvM9kngF4k+5Zpxh5tDoq4FJKIajJV5gPy1GWerOK3S8Ni1zTHY7fltyjfDafBJVxRFURTlxUEF/Mp5x3Fb1Oq5e5fZjs2n4K1D0Choi//niQ0oKINXkHoXPtF8f4nO5o8vdKRes7hJcV17fhf6Py/uc+uPzKGFsj91CTpfFScpxxHRi9tiAOOXkCDQNS5wSXGAS8UCsqr5WTC0QanfmruexXHkGHtuwvo0FGchqIhor21IxICtHo+iKNvT+P/O/Q9ACF0f0/93iqIoyqkmR25XEZdydDjm1uq5tyI6JxanWSe6LFlSpBhmmE02WWedIkU22WTN3K5xDQeHVXN7zGNKlEiRwsdnnXUWWSRBgm662WCDTTaZY47rXCdNutZv3B1tkkke8YgiRXx8EiRoo41XeZVRRo/EHa0ZR5gsWb7Nt7nCFR7VvAF2d8krUKCHHlZYYZ55uunedhxddJEnXxMXNjrxtco001SoUKTIvJlEvMGNLQ57R+mApyiKoiiKfJ+4xa1tBfeWDBnGzM3RyShFORMkkFQ5K45qM4/2dTz10DV3u8SmiwhwfPPaR4RlS0iKYgVJk1tHUuaypkwx1r91u7NjcYnEeC7QbsbXg6Q7Wve4LiLxXDeSiA4i1FpGUhsHkDTED8y+dfOYNeMpmT6T5tEec+P5cU15e9wlIhFdCvjPRAI62Dtt8CkiVnrM0XoA7EXcVW67tMYQuA1mqRh5395F0kqtmHHT1HGBZ0RuZVnk3Pch79skIq78wNSzQkg7k7uMCC5zSGrqJpL68Mldxr9TikSInOO4812XGcMkO6eWnkYC4GvAN5BzFuc7Zt+bwF8jOpfN0EzK7kmLORVFUc4i6pjaGi/68SuKchBC5Fu0jVLtNhtlpqnlJrJqyrab1z8A/gdTp5so+rPR0masfRsZ2758Ip9z2+de0cZ+3eF6kaU0bNRkfdXj7iogf21WkCjJ9p1ueNxOBBjf3li+FY7LJ11RFEVRFEUF/Mqxk0SmMFqp1yRhooV+DlCv8EAEXH6xYccOiZ1+UcoXHlA/RbZP2i4j01T7dfVzgKqp1wK9Y+LwVpiEnteh8xVILIsL3cXPQXZAXOcAukalfKu4GSTwDMTVDuR8hX7kQBeYpErHBqgJU++AuEkRAXZrQKYox4b9f5fskNeDt052PIqiKIqyB0mSZMhQ2pKGpBw1IeGuSdWhue22H8SdLiCoK5shw1Wu8gqv0EYbAQH3uc8aa3TSSZIkT3lKlixlyiyzTJUqHh5rrBEQkKulX8Iss5Qo0U03Vao85Sk/xU8BkTtaSMgd7jDFFD4+7bSTJUuJEqusssgiSyzxk/zkkbij7eUI008/j3nMh3zIIINc5CKPebwvl7w0aR7wgDKyyExhhwk2u92KC9MHmmCLmDWTiIssEhKSI1cnnoOjdcBTFEVRFCXCwWGccW5yk2mma4J762g7wog6wCrKGcJBHML6EXGTiwjo8sislU0LDJDZKysis+v3WyEZRA5kAZLOV0JEb2tIyp+LpCBaD4AykducTTO0bdtI0QqqrFCuA0lZtKmPCbM/it62xzePdtx2rBC52aURR7lGskRCrxS1GTo8M44AmZrfjp3SBmfM43F4AGxHo6tcnLh3QYiI5wJE8DeLHGuAvK9l5PzY984uk/kMSe3sA94hciK015gVH/rIOW1Dzn1gHm2q6R8Ab7D7zHJjisQzRFhWJHK+e4442+2VWnraCID/FXFRBDln88j1l0Jc9UDO0yzwd2leRLfflN2jFnMqiqKcZ/ZyTB0gchMdNeVfdDSiVBSldXbKvbTbUogTiRWg+URLqeSJosdhRFRWQT6VisgyHVDvmV4hWhamjIjd+pFPdrvkyDry7X0UEenZKKcx0utAvvGvIlFTEomqN8xYepC/IHNE0QBEy5hcR/7a9EJtEc8hJMrrN+XyyBIZjUtm5M25G4jVUxRFURRFOSuogF85No5RQLdfXdl29Vph84kIu3y7buZu+FIu8KReK2R6RLzWjIAuDKVeKzgODNyCdC/k78k2NyWPHf3mdUac53rHpHyrZHKQzkFlOeojMNOpVjgXeJEzlZOS8pm9pjtPIV4JFr4Ja++LSDDRBt2vy7lOZveuryiKoiiKohw7vfTitrRGt3IY7OU+5+8Sj4WEeCZVM95OggQhIZfM5FEffQQEODikSLHOOqusMs88bbTh45MnT5IkLi5VqhQo0EsvCRKss14Thlnx3RxzdS5nZcq8y7tMMklISD/9BAT4+LTRRiedLLDAJJP00FNLOD9McddejjBPeMIyy1zlKiVKvMM7dedthhkGGeQ617e45A0xxAMe0E8/M8yQJ88SS1sc4PLkcXC4yEXmmaeddr7BNw6cUN/oaNe1Q3rpUTngKYqiKIqylSRJRs1NUZSziRWEWeHYFWTWbw0RQdl0Pytyc4nW8LfPrdjNpiDadsuIgKpi2uoAfgJJy/sT0+cq0SxjSORgZ0V7GSJx3P+IOJ+tIWmERVOmn3rx2bq5O7Htg2YsmGNao174Z2fArBgujkM0c2fLJWPPbURVpjlOwgPAsp2r3CJbvQv+C5JeeQ0Rz82Z8WSRc7BKvajSXjOvEonTOpA0zLRp5wNELLdMdE2lkTRQ+74XgY8Q0eQHSPrnjX0cl02R2DTtdZlxT1I/87pbaulp42uIeC5AxrpM/bHMIuLEUeC7pvxfb7KPxpTd4xZzKoqivAjs5JgaJ4MI586CO+pxoAI6RVEORnwZmMbtKbMvhSy3YSPITSRSmEAEblZAlkWix7iHto0SrfNchmhpkM8hkaoVwAVINBWaPhaAr5q+7iMRqot8228UxoF86/8+9Utl9CCRchcSpeVNXZDoYAJZYiSJuK7cMfsGTbn729S3+7PmeEZQFEVRFEVRFGUL3t5FDrXeMVJaAK/I/gWCVfA2pV4rVFZFONbMFJuTknqt4jiQG4eu10X0Fc4DoRz3YYq+2och2weV51BdhdA40dUefXl0EuC4IurL9ku9s0IQwJOvwew3IGhwLln+Djz+Ggy9CVf+GrianK0oiqIoinKaGGJoVxc05eTZS2TXuN+60X2X7/KMZ6RIscBCTRxXpFh7z5MkqVAhJKRMmQQJkiRpMzcrgEuQoEwZFxcPj0tc4jGPGWWUWWZ5ylOmmSYkpEKFJZbqxuXg1JxZHvGIXnqPxB1tJ0eYBAmWWeazfJZHPGKeeQBy5OiiiwIF8uSZMxNso4zWueSNMMIdM8E2yCBzzHGf+1vq2zFMMIGDQx99bLIJwAMecIc7jDPOGGNN/b9rdLQ7bgc8RVEURVEURdkPcReuo6TVNSfjuEhaXDcieLqCCKDmkLTAdrMvLpgJiNblh+g4s0jaoS2TRmYCffOYQERReSQ9bxxZUz+NpOrZWcPQlE0gaX5dSPrh60jq3jDwHpLmVzT3GfPaiv3seNsQYVEK+JR5/qdImuFz0+cqkYirgswI2mOz5zg02+24IHLmw7QPkehsv5ykB8AE9a5yZnawhhWYdSP+Cr4pQ2z7MnIubVqqdZ6z5zBpHm2aaAJJC/WRlNEq8v53xPZ3I+dzEXkvl81xf4/9CehA3pt75rkV/cH+U0tPEyXgG+b5JHLdghyHTfMtmO0PgY8BfwT8FSIXo/1wkmJORVGUF4lGx9RZIvH6EPJd57T9LTpJDnwufvqnf/owxtE0juPwx3/8xyfSt6IoBhutNc5BWb91G4U45vUCkRd5jij6sa8fI9/OrSBvu4jfutB1IkuHvLTN/g+Q5WR6kGh0FImS3jd9LpjxZKmPsmz0GyCRVA/y1+T1WPtLiChunkiiPW36SCJ/ge4iy4hgyuWJhHMO0TIjIHJu/aukKIqiKIqiKNtwjAK6sMWpwFbruVnw1tm61uROBFLebVFw5q9DIg3+fscbmvLrrfUHcm5WJsSBLqiIeA0g2QabM/D4qyKwO6gDXccVEcP5RaiuQ/k5+GUz+xhK2yEioEtfgI6r0H5F6p0FggAe/K+Q/5689jahNC8Ohm4KspckpvzoD6A4C6N/V0V0iqIoiqIop4gKlZYcsZTDoVlxXBwHBxe3ViYw8ZuHxyabLLIIQIkSq6yyxBIeHhkytNOOi0uKVM2ZrkCBKlXaaOMCFyhTJkWKJEmGGGKTTYoUa/X+kD9khhm+z/f5IT+sOdeFhBQp4uPj4BASkiCBg0OZMr308pSnFCke0lncSqMjzCSTTDFFkWJNPHeDG1sc5O5zn3nm69z1RhklSZJxxrnLXa6bCbR55smbm6VChRQpAgKGGOIjPqoJBwdMyudd7rLCCre4tW8RXbMOeLavoUNJL1UURVEURVGUvbGOZ0W2ptO1KniLf1u269xD/Vr6zbRr19q3rnP9iLDsM0iK3wKSwJ1H0gc3iNLqrDjKis88M74kkiJoU/zsWv5JIgFdhsjJrhdJV2xHhFROQ3tWfJVEUgevAZ8nWvt+BBETvQQ8Q9INi6a8Z8bYBrxstl1DUgZHgH9p6vQi7mibsfNaNeO159bimH12mz3vgTknGfP4E7ud+G04KQ+AZgRmT5Fz+AB5jy8SpW/aa7wXeW+JbVslciOsIufQiiWJlc8i79Um0fnNmL6WTfkB6tNX92IaSU0txurdYKswcafU0tPEN5FztUnkoPga9WLNBUQ89xxqvzB8E/hSE/2cpJhTURTlRcQ6pp62vzunjQPP2Ny+fRvnIIlOLRCG4bH3qbwYvPX2Wyc9hLOFjZJ38hfv2GZ7BlnSI84iEuGumLY8to/CrR93xbTTmMsZEn3L7kWipGdI9Jk0+wpm+2qs3xSRRzxIBFUx9V5r6KMPierySJQwjEi17V+bMXMck2bbsCkX9yG3Oa+jpvw+eOstvTaV04lem8ppRa9N5bSi16ZyHnnr6ttH1HKr61u2Uq/V9TpbrJfs2OokthdBWeq1QuAbkZrL/sbsSvmgxeMLQ1i4DYWH8tov8tZPFcGvwEYRsmb64/ldqKyIG12rv/N0jsjd24CNx+BvyrkNfMARJzo3IeLDVCe0vQydr0qds8CTr4l4LgygMAnlZequ8eIsZC5A1ygsf1fKX/3rJzbcg6J/J5X9oteKsh/0OlH2g14nylFTpYq/zXfwt986qjhKOSysgC4g2PIeengUKBAQUKFSe599/Jposo02HBx8fDw8XFwSJChRYoUVuukmS5aQkOc8p0ix5uQ2ySR99NFGG+/zPs94RoECc8zh4dFhJuBCwppIbJNNMmR4mZepUmWJpW2Py8Njmml+7K0fo0KFb/JNhhhihJGWxZ6zzAKwyCIhITlydeIzgD76yJEjT54FFhhmuM4lb4wxVlhhkklGGWWYYRZYqAnkKlR4xjNCQqpUa31aZphhkEGuc50f8SNWWaWX3lr93Y6xGQe8QQbJkiVDhpEDp5cq+ndYOWn0GlROA3odKsr+efsF/v9iZ3fMzAcOUbrefmd+9mrfflOOz7JtJ86z25zYa+vqZp3l2hEBzCtme5ZITIQZ7xoisMsDP0TSAKeQtL9NovTA9tj4rAgrbLhXkXS+YeAjJCWvB/g2ItSLRwEOIqL6LPDjwCdj+/8y8BUi4VseEQ6FSHpht+mnHxGe/WUiQd5fB34/dm4K5hiscM6+b9Zhzp5H+z7Gz7Nrjj2DiPWaFdCdlAdAMwIzK6Iqm+2vELkRWje+EnLt/Oe33qIXOe9erE7KvK7E6sSxS666DY+tYqPQReT9ykFD5Lt3aulp4X3zaB0Cu9jqdDiAiB0L5vGaqdeMgO6kxJzK+UC/JyuKclTokoeKorSO/QSxS7rESRFF7glEPJZCIhEroBs0j0Xk2/Eq9V7sjYRES8LYsnGeIoI5zP5V5Ju2Xb7lIyRihihySm3Tn41kd/KC7qLeQz4+Dge4hQj43jFjKBFFv6tIFP4pJPJULbCiKIqiKIqinAKOU6wHFJ+1UDcw9VrBCMlIsL9p1IRx12sxYFmZEPFcGEBhShzT4se7MQPZQei6LqKwdK+40bWCm5S6K++Kw1x1TQR0oU8U3CUh0Sb7AXJjUu+045Vg9hvyvDAp7noAyS5IdooroVcw2x9C98f+/+y9eZQk2Vmf/UTkWkvWvnT1Ur1MT81MT2uqNKMZISS5JbBG2BhkC7MKG+ODOCA4LAbO4RifY5Cx4IBlwMfMxyYsIcCAPunDmANIM6ARQoPUmhl1azQ909U91V093V17Ze2ZlVt8f7z3RkRmbZlZS1d1v0+ePJEZcW/cG5GRVfHmfX/3B+PPwJH3QLROt0JFURRFURRlR8mT31UnMGVzrENbvXVd8/DwfAc6K+CaY44VVihQ8AV2rknH8/DooosYMeaYI0OGHDk8PN+VzsOjSJEoUdpp5za3mWOOOHFaaGGGGa5ylRlmKFBghhmWWPIFc7ZPto9WyDfKKEmSvMIrPM3TvnjsJCd5mZe5wAVyFQNsl7nMczzHEEMMMli1c5vF7s8uU6TWLZciRZr0mvL2fJ/jHG208QIvMM88WbIUKPjHlSJV9nlWCtzGGGOSSVxcHBye4AkiJo1ys2OsxgHPwfEFeiCCP3WXVBRFURRFUfaSBDLCY93WQFLiwo5xtWDL232ER4/c0PZKgVdo5IUIgatbAhHYNCACp0OIQO00cAwREdn55/sQgUzU1L+IpNn9FZJiZ+fhjyBpeh4irFlEhHbWja7T7K8NESvZufKvAY8hIrKXgddMnxLAfcDDpp6d+76AiL/mTb+nkPS+NtOeTX9sMcd3FPgGs39bt9fs+wIiDmo3+1sx9RtM/+YJ0gjtSFZYDBkWI3aaduoRX+2SB8Cm1CIwm0RElNZ1zjrCjSOf+Sxy7uwvKlYgt0yQPnoISQcthrYnzX6XCa4Te5we8nlaR0cI0leroTJVdP3Id/PU0v2CPa82lbZ5g3LNBH4V4XrVcqfEnIqiKIqyGTvyf8bz6k00UxTlQGOj4MoIuoREGxOh99bH3E7FEkNEZJhyl5FooZqIvoRMQ3IbOGvWFYFXkMhpEYkiI8jddT9wA4mGskiUlESmmukj8D23HuE55O4/YtqpjJSs53e8Ylkt+idTURRFURRFUfYZ9c45WGe9zDh1DWVmxutrL9ZiBHGV9uEbUZLysUr78GqqFiB9QV4vXoWs6XO8XYRfhUXIpYP1LQOQvgitZ7cpajPDxR7gmXk7PcAxS/+3qwM0i8nk50QMWFgxznNA6v7AwQ8gOylixdUZKGSCeodrmf9RURRFURRF2S2GGfaFV8reEyFCkeKGIjorjqvc7uAQI0Y77QDMMFMm9rLlrRAuLK5zcEiS5CEeIkKERRZ5lVeZZ953rANIkCBCBA+PEUZYYIEECeaZ5xVe4RSn8PBYZJHXeZ0FFihRwsOjQGGNyM0xD+vSdpKTXOMaAK/yKh/hI8SJc5SjZMkyxZTvztZj5pk/z3nmmOMc52oS0cXNQJldLvoDaeXY9ZXlt2KeeQoUyJFjkUXaaOMMZ8pc7qaY4rN8liWWOMEJPDy+yldJkarqGLdywOuhh6RJuxxggMEdSS9VFEVRFEVRlOqwwh8bXYajTCvCqgcrOrICOuu8FieYN9+6p4W32z5ETdlGRCCWQ9Lv+hABm4OI5wbYWATmIAKbs6be/0BEOtcJBINeaN+rpt9JAgHd40iK3wSSJngSEVelEYe5N1a0mUBEOo8g4r0LBCKnFuA4MIqc8y7EKS+KpBoeQVIe16s7ZPp8CUlhtI5aWfNsNHXnzf6nkHTK8OcQBZrMMTwOfCv1JXmHPQAumHX9FWXsedgpD4BaBGYNyDlpA2aQz6qH4FhbEJHdPPIZtyBiuRYkrTNn9tFu3i+YJ8hnkDfLZtOOvZZsvQ7K01eroTJVdP3Id/uppXtBg1nGzHJpg3JLFeUaNii3HlZcOod8NuME36EZdlfMqSiKoiibsW0B3bVr13aiH4qiHEQq3eLC/vAZyqecsNG1h9wBP0wQGd9CotjKiD4cmVVG+jlkipQ+JKq6AbxOIOaLIBH4W83rHHJHvxzqS8IsbbRmp69pNG2vmP2GBXTTSMTmEPhW91X081nginnfgkTu9o6/1fTxvGnrHAcqf1NRFEVRFEVR9o4EcjNdT71a2WMHulU792KNba1O1ddeogu8AtW5zyHlvILUq5WlESjloJgxznNA65nyfa1Ow/wl2d7UH9RrqWMOTV+w50FuFkqrIsRzm8GJGCc6R9bnjAgtfRHa3rD/XegWXpWldfCLpsrFcyDvM+MiTMyOQ/NJqacCOkVRFEVRlH2BFTApd4YIEV90Vol1mCtuECfZOhkya+pb1zfrAGfbsUI6F5dJJumjj0YayZL1xVpFiqyy6gvmsmRJk/bFfA4ORYoc4QhttLHAAlmyZfv38HyXtbAA0PZpnnmmmOIqV4kTJ0fOF9Zd5vIa4dooo7672jDDtNHGEENVn+c++rjMZbrpZpRR0qSZZrpM4DbNNGnSODi+mK0vNMDm4fEsz3LFDLC10MIqq76zXiONzDPPDDPEiNFJZ1kfsmR9seR1rgOQJu23tdUxhh3wLpj00v6K9NIECQbNo1aXPkVRFEVRFEXZDiUCB6jK6KbeKVvCQjkrhrP7LoTKQDC65BCkuUUJBF92CsciIkxqQNL43oA4zVVDFHgSeB5JCYwhc+unQ/u2wqwmRHgVQQRuD5jtaUR01W+2fzMi4FnP/S5CeYpfBhG02XJvRFINrSvdm4DDVdTtBR5EUg6tYOgMkiZ5DEmbPA/8PZKyuEQgjnTNui7gIeBboIbIbC1hceJG52EnR8pqEZg1U+4kCOK/UEDOeR4ZJXaQ823d6ppN308iIsTHEGGcbdf6KpTMM4e42cXM/pKIgCtq9lHLyGSf6WO3aTuNpJKGR1O3Si3dLzwIfBm5XseQz2SSoM+Y94sEbn+23lZYV8kLlIsp5xE3SJDvwn0Ef092WsypKIqiKJux7fuf48eP70Q/FEU5iFg/bIfAaS68LYwxAGAJiUruJ/gLdIXAmzxcvnK/lb8ALBP4OU8S+MOnEBHcQwRTtBSQCCpunp1INJNEopgo4gOdRyJV2+aIKZNCIgLrHW2niElQHulfNMdTAq4iU9uE+z1K4Dk9jETrQyiKoiiKoiiKUkmiHVbrcFxLtNfR2B4L6IoZ1gZRW+GaenXgVWP1XUnJ1KuRzJgss0YkGG2FUhEWhkWU50Qh1grRFigsiINaU7/Uq0dAtzQiz8wtac81QZ/jSP8dN+Q+50m5aGP9gr29xH7eJTMsHm1ev1y0WQR0tly914miKIqiKIqy4yyzvKH7mXJncXFJkPAFWmGsq9wii+TJU6Lki9Xs9gIFX5wXFulZAdtlLrPAAksskfXT+QKXOheXDBm/7Tx5ihRJkOAoR+mjj156ucENIkTK2o8QIU7cF93lzcMK7FZYYYQRX9h3nes00+wfUxddnOIUKVIsskiaNONI/D3AABe5yFnOEq0yleAUp3iO5wDopZdxxrnEJdppL2vDbk+SJEGCU6EBtotc5ApXKFHiKleZYMI/3jHGWGaZIkVcXLJkuclNjnEMEFHi67xOkiTjjOPi0kwzDTTQT3/Vx+jgMMQQZznLCCOMMeY70PXRxylOVX1OFEVRFEVRFGWn8VgrLNmu33mEwF3OCuFsBGvfF005K0jyEDFSkkBgZ9P8VghS8SaAJ6gtQTmKiMb+kMDtroCkGxbM+wYk3a7FPB8x/UshaX1hF7QoG7vfXaD6FD/XtDlQY913mrpPEKQHWrHhIiI2nEZSKfPIee1AUhoPsXNCos3Ow05Si8DMRVI7byMCw0XkPEaQz3oFER82IumZJUR09QhyjXmmnQbkPPWb1xcRQWMrgeNcDEkbbUQc67qRz+dbqO36PAUm8pX644jbYDvVp5buF84BnzCvO5B02SvIMTUj3zkrgOxEzm2DqbcZld4TlcLUQQJh6iLlwlSNthVFUZS9Qv/nKMq9ihW07QTh6Dm8rpIiInpbJJgyJIpMuRKh3Awh7Pduo+xiaF3M1DmB3GGXkLv5NOLsdhg4Gtqf/WvXYMpkCaZsORMq14JEBF2h9qxID9MPGx2D3NXbfRcIPM+vAjbXtzJKsusHkKjtLPrXWFEURVEURVEqibbWJ6CLttbRWAQqEiarr1cHrh3aqQXP1KuDpRGCIKtaXFOvRkpmaLK4CqtpyM1BYb68THZc1nseJPvK69XKyk1YeR3yi/KkBPE2iDRCJAnFLBRXpL38IuQXTJ2b+19AF2mQpRuTZWFp/XJ2vS1n6ymKoiiKoijKPUzYGS7s0mbx8MiR80Vnldh6RYrruth5oUeYIkVy5FhiiWmmfWc021acOM00EyXqi+9SpFhmmVVW8fA4zGHmmaeXXmaYIUq0zPHMNfFdlCglSuTJlzncRYhQoEA//dzgBkWKzDLLCiukSNFAA2c4Q8TEtNNMc4lLTDDhu66NMMJAlemVUaIMMcR5znPaDKBNMEHaPEDEadYBDmCQQV+MVqDgu75d5aovdLMCvBVWWGKJDBlKlGikkZvc5DCHiRBhmmkKFPxz2EgjffRxmtOc4ETNxxglyoB5KIqiKIqiKMp+YaenZkkgaXQ5AoFcERG5dCApciUkHS6HCJo8RIRkU/cazT5SBGl2OWRO+RPAVxAXugGqT40bQlL//s60UUDm1V9B0v2akFS8dsR57pipZ8U+lS5o61Fvit+DyFz8f2L6MoYIhJoRkVE16YEXTZtHkDTKeSRd0QoVrSPbEUSE1M7BmZu/VoHZfcjoZQ8ivutHPuvDplyGQETYi5xLh8Ct7BHgqwSf5eOIcO5VU79IcJ1GkfPcgKSUfgO1n9eoqXOeIHV0gupTS/cTSeBdwP9FzusVJGV2keC75CDX4v3m/T819TajFu+JSmGqoiiKouwV+/F/s6Ioe8FeT3hqp6QpIF7ZnwW+AxGvrWeGEBblrTeFjhXV9Zv3JSTqSiB37u0VdVrNdjt1Tg6ZzuJQqMw08lex1TyjYMbVgmkweggigQEkyrGMmHIZ5O4fc3yV06hcMtv7Q/U0ElAURVEURVGUcgqLW5fZyXp7SUMvLF+ltsDMkXr1UFwRIVnV7XmB8KxW3LgI4zJjkJsWIVu0ScRrXhGcCMRaoLAs+8+MQeq0cY6rg+VRcbYrrUqfow3Q0Ffu1lZYMs+MlPPyUm+/0/IgzH4Zkr1yngqL4tiX7AnKZCfNNe9A8lBQT1EURVEURdkXxDdN2VN2k7Bwbj0XQCteA8rc3SwODnnyG4rvrPubfR/eZl3m7DL8sI5xMWI4OJQoscKKL3yLECFNmm66AXExjBMvc65zcSlRIme8FcLrihSJEydPnhVWyJMnRYoxxsiSpYsukiSZZppeJMbsoot22kmTZpJJ+ulnjLGaBGSDDDLHHMMMM8AA/fQzyaTv4NZDD0kzwDbAAIOhAbYRRsiRI0OGCTPAdoYzdJkBtgYaKFHiJjeZZZYllkiT9o9hnnmWWGKWWQA66KCZZloJJtjZiWNUFEVRFEVRlLuFCCIqKhI4yhXMtjyS3pYwT1sGJHUuRTBv/cNm6RGIxpZDbdwEPomI3IaQNLutXNUc4B1I6t8LiEDqFSQlb9L0tQ9JyTtqyltXMwdJ7cOU2YhaU/yOAa8Dv46cn5tmOWqOPY4IgcL9qUwPHDbL9cR3/ZQLzCYRcdFBm5u/VoGZA3ynWV4w2+35Arn2FpBU0H7keuyj3K1sCDk/I8g5PYk4200gn5F1L7QpoUeAR6nuWlyPQUTgOYx8Plb0V01q6X7j25Fz9jwiRs0g32HrhngIERyCOMV9+xb7U+8JRVEU5aBwR//vvPDCC3zhC1/ghRdeYHJyknQ6jed5dHR00NXVxWOPPcZb3/pWHn/88TvZTUVRNsJGERvlYFqRW1gIV0TutkeALyLRZzcigHMJvOWt8xyh95aIed6H3L3nkKj+GjLNzFeQSCXsAd6F3HGvIlFKAxIBNCPRS3iKk0dC24+w1lTCTmNSGUmNmeWUOdZ2yiNr2492gmi339TT8TlFURRFURRFKadQh3ir7nr1zjBSZ73UaZj+R8oDnS1wXKlXD/llEZnVgleQerXS0Afjz4hIDSA7Ie5vkVDicGZMhGyxlLSzchN631l7WyCOchASCEbKxXNg3kfwhYHhevuZnnNw4xPy612iA1ZnYPEKZMblmApLgWA00SniwUiD1FMURVEURVH2BX30MUIdzs7KjrCecG697euVs+K6jRzqgDJXuDB587CisBUkTrUCuRgxuugiRow55siYR4ECJUrMMee7zLm4xIn7bXl4vnNcjBgFCjg45MiVCfayZJk2jyXzsP0CfIc7S4oUadK+KM8uq8XB4RznaKPNd5PrL0t9hAQJBs0jfO7GzADbFFN4eLTT7ovnQMRvbbQxzzzLLJMhwxhjfIWv8CAPcoUrjDNOiRJJkjTR5J/jMNs9RkVRFEVRFEXZL4TT8erBQ8QuCWSkqoSk1EWRlLk84viWQYQ0SUQAUzDPXkTE9CYkRe+6WX8MSeGbA24gKXJWLPM14BlT5zDlIqj1jm8IEdYMA39AuegsYdoostbVLGm2n9rk+GtJ8ZsFvmzWHULO06xpcwlx60siaYsrSApgOD1wAkmJ/AMkrbEe8d1Bmpu/VoHZEHLcYRGcLVspltuIqNlX+BwVtrG/zXCAc8hndsGs668os1Fq6X7DBX4M+ATwtFl3sqJMA+I89+2m/Gao94SiKIpyULgjArqPfOQj/Nqv/RqvvPJK2XrPk9t6x5Hbhj/+4z8GYGBggJ/8yZ/k/e9/v79NUZRt4lLu8lYPJv/Q92Cv3H/4L0zRPEsEd8pfAP49cjdsneHCbCbMiyB32DYvsAD8odn3Rh7gNo/2iNnHkmnjRmi/YY/o9yDe3dVGUrmKZWqD/qeQCLmyvKIoiqIoiqIoAV4N4rJt19vqJ/8drtd0AiJJKC5TXVDmgJuUevWwOlllO2E8U69GGvtFIOfGxHGumJGnl1or+oo2gRuF7LjUq4dYiyzdJBLUlSC/BLGQiC6/hD9Li5ssr7efiSah711w6/9CagC4IiK6wmLIadER8Vzqfnl76J9KPUVRFEVRFGVf0Ennne7CPU2EiO8IV6wYzNpMXOfiEjOPDJk1davZj91HnjwRIri4FCni4dFMM2c4g4vLIotc4YrfjofnO9KBXEOv8ZovmgMoUiRGzD+2AgW/HxEilCjh4jLFFMssU6RIlCjLLDPNNKc4RYHySVYWkRjDuibW457o4DDEEGc5ywgjjDHmO9D10ccpThFdZ4CtUtCWqhhgixDhGMeYYIIWWihRwsFhnnlucIMVVnBwaKEFD48sWY5ytOyc7dQxKoqiKIqiKMqdxArntpPuF8bOdV80+84jaWwuwQhYCUnLyyHpejGzvgVJs8shIpskIkibQ1zoSkhq3iiSqteNpPPNI0K759jalS6KpAd+F+Jq9iDibLWZqxlmn5slRteS4vcacn66zLGkkTTEJYJUxKQ5vglEQHjM1J019aOm/jK1ie8O4tz89QrM1hPBbYed3l+YsMBzN0R6e4mLuAC+B/gc8CqS1tuAfN/OEQget0K9JxRFUZSDwp7+nx4bG+N973sfn/vc53yxHASCuUpxnC1z+fJlfviHf5g/+qM/4o//+I85cuTI3nVaUe5WEsid6ir1RdUuMi0KSFS4VY6qSyC0s9PRjJr3D5v+ZKps2zHlHw6tq8YDvAOJTqMEkUycjac4ecyUq/YOPV6xXNyg3GJFOR2fUxRFURRFUZQ7S71TddY7x0+0GeLtkMmw/owklbhSvtJZrVoK1Qr1wnimXo2s3BAXusVhICJCQTdpHOiK4pLmRKCUBVwoFaDpkNRrqWN4pLEfnChEEvIs5SE7BvlGI1LMQnFF1tsyTqx+wd5ec+zbRZA4+zy0PACFjAgOS3kRKSYPyTkF6HiTlFcURVEURVH2DepwdedwcHwBlRWahd3kNnKPc3FpoIFWWn0B3gora4Rydp/rESNGM808yIPMMcctbrHEki9kW2WVr/AVmmkmT55FFn1hWYECiywyyqjvpLbEEhCI4/Lkfbe5onnYYypRIkuWOHHmmCNLlkUW/WtxmWVuc5s++vz+TjNNmjQODj30AJRtr5UoUQbMoxoqBW2L6wywHeUoX+NrAHTTTQstxIjRR5/vLOfhMcooUaIkK1L8dvoYFUVRFEVRFGWvMVMI7ti+YgRz4ZeQdLos5QK9KMHc+kUCx7SV0PrXTdkpRByXN2UcAtHdLLAAtJplh6lzHhHcnWPzIbdaXc0Gtzj+alP85pG0w3ZzfCApkI3muArI8c6bbT2Iw9xhyp3x2hGR0AzVi+8O8tz8d5PAbDN2U6S31ySBd5tnvaj3hKIoinJQ2LP7kMnJSd7+9rdz7do1PM/zxXKe55WJ6SoJl/v85z/P29/+dv7xH/+R3t7ePem3otyVxJCIpIREcdXka1YSIfgLsl4Eayb333Dqmzziyfw0Mr1MAxIdFtg82rfOdq1gxrcCqomWEwRe6CfX6ft2PLT7gMtIVGunnJlmrQ912uy7J1RPURRFURRFUZRynMjWZXasXr1zddZZL94C8TbIzoC3smVxnISUj9fpmubU6UhWT73MGDQeheXrEvckeyHSCLnZQPTV0CeitmJG3jcelXr1COiajkHjMdlXtAUKC1A0Qy1Fc26LOXBc2R5rkfaajtXe1p3AdWHgx+D1T8DY0xIPN58sLxNpEOe5Y98u5RVFURRFUZR9wwQTd7oL9ywxYrTRRoECyyyTJcsqq/72jcRvDg5RoiRIECdOmjQRImsc22xZuwyL82LEiBKlm24KFGinnRVWfJFclixFimTJAlCiRJGi32YTTSyyyA1u4OAQJ06JEh4eOXJl4j372valRIkIEdppp5FGMmRIkyZLFg+POHFGGaWPPuLEWWSRtEnr7KWXJEkSJDjFqe1+BFXTRx+XuUw33YwySpo000zTFRpgm2GGRhrpoos22nBwGGCAXnopUuRLfMlfV6LEK7zCOOOkSO2LY1QURVEURVGU/UQEEXC5SKqcFYJFCER1ELjQFc22sGNdGhHA3Ubm758iSBfMISNoEfN+xiwLZt2zwP3IHPnDiFvZ0Cb9rcbVLAq+B/wzbC7WqjbF73VzHA3ALcTl7j4kHTFvjjdrjj8sDLxijnnO9HPK7KMW8R3UNzd/gf0jWrubBGbK1qj3hKIoinJQ2JN7Is/zeM973sPIyAiO4+A4Dp7ncebMGd773vcyNDTE8ePHSaVSOI7DwsIC169f5ytf+Qqf/OQnuXz5sl/n+vXrvOc97+GLX/ziXnRdUe5OGpDIyEOi2I3uVreiSODZvp4Iz0bFHuWiOBtJFxAP8itAMxI5QrnwjtA6zyybkAg6TTnVeoB/G+Jed42djRZPIf7yIBHzOHAJmUYmRfnUMr3I1B0JU09RFEVRFEVRlHLcaH2Tfbh13NBvMrHPrtRzYyJ6isRYJwdzLZGYiNDcWJ3tQe02e04wMloLpRw4DsR7wbkGuTREjN24a+Yqzc1AcdU48fVK+VKd8ws2n5JncUXacgCvKE8nCl4B3AhEWiDWCo1HoPk+qXNQcF04/p1w5D0w+TlYeFUEg5EGaHkQes5BtE6RpKIoiqIoirKrTDNdd10Xt0yUpVSPi0srrZzmNPPMc5Ob67qarYcVs1lXN+tCV4kVrVU60UXMo512uugiT94XxE0z7TvcFSjg4REhQg89TDNNhgyttPIQDxEnTh99LLLIIzzCq7xKmjQJEkSJUjKPKFHfka5Eyd9/liyNNOLgkCTJCivEiZMk6bve3eAGIALAXno5zWkABhn0xX57wSlO8ZwZYOull3HGucQl2mkvE8A5ODzEQ9zHfSywwOM8TpEiceIc5jC3uY2Dw1WuMsEEafPYD8eoKIqiKIqiKNul3qkgK7GjRUUkXS+OCL2sw1y4jBW8eZS70blI2t1lJO2uACwTONlBIMxrMMukaSuBiPfGTbkB4CLiVrbZHfpGrmYxRIQ2jbi4haexuYyk8g1RPpd+tSl+GaDFLF3gKCL8mzV1W8w5mTNlIuYYJ8xxN5vtS4hYr1rxXT1z83vIebzAWkevjc7DfmI/Cf+U+lDvCUVRFOWgsCf3Fh//+Mf50pe+5Ivgjhw5wm//9m/zz//5P9+wzmOPPca3fdu38Yu/+It86lOf4kd/9EeZmJjA8zy+/OUv87GPfYzv+77v24vuK8rdRxGJNKy/er378JCIbqMIvcj6DnQOElXGgKuIcC6BRI5Zgmja1rOCuhISabYhEet61OIBvtNTnERN2+fBjL9JRJwmEM45SORttw+iUZ6iKIqiKIqirMeeOtDtMU5EBGTFbHXli1l51ntskQZqH1r1TL0aceMiLMyNg5eHWBtEm2B1xojaIpDogsISlLKQmwDvfqlXD24UOt4oArxIEmZegPwcfkDpmPlN4+3Q8Sg09kPHUH1CyztNNAmH3y1PRVEURVEU5UCQJ3+nu3BPEiHCcY7zBt7Ada7zGq9VLUYMu7y5uMSJ++5uYRwcXFxfuGZFdC4uESKc4hRnOEMnnXyRL/qudHnyLLFEkqTvXDfNNEWKtNFGihRLLPF1fB299DLMML30ssQSAAUKJEiQMymRq6wSI0aWLBEiNNBAE00ssOD3tZ12PDwKFIgS5TjHaaPNd6HroYckMinHAAMMMrit818rUaIMMcR5zvsCt80EcC4u7+bdDIU8Kjw8PsfnGGaYAQbop59JJsmR2xfHqCiKoiiKoij7BZuCF0XS9zIE8+IXCNL6bMpelEAMVyIQrS2YdatIup9NQcwTuNDZUa2YeZ8jSN2bRcRkK4gr298C38jWaXRhVzMPcbOzorkM4vZmUwWtQOc8InI7FzqmIbZO8Ws1xz6NpCq2mmM6hggIu03ZZfNMIwK8FJIGmTLr2hGBXLXiu15qm5vfnocrNZ6H/cBBF/4pAeo9oSiKohwU9iRb6Fd+5VcAcaLr7e3l7//+7zl58mTV9d/73vfyhje8gbe+9a3MzMzgeR6/8iu/ogI6RamXZURY5iARUz14SAS8mYnBVmORMcQBbwGJ/gpI1GYdGCrdDhLInXMUuaPuYmPulAf4IBJpDpu2+5FoPxyRWmOAAVNeURRFURRFUZS1uHWKxeqtt5dEWyAzRvWiNk/KR1vqay/RsXWZnarX0Afjz0Apb+LGScgnIRIPBICZ2yKei7ZIuZWb0PvO+voI0DYIuTlxsms8Ciu3YHlURIqRBDQdF+c5JwKpASmvKIqiKIqiKHtAA3VMSqFsGweHJppopJFxxn3xWbXkyLHAAhEivsitkggRYsQoUizb7uLi4HCYwwB00MEEExQoECHii+6iRH2nOA+POHHaaed+7idPnq/j6wBYZJFWWumll1d5lSJF8uSZZ54iRZZZxsVlnnkyZGijjS66cHBoo40IEVpooYMObnKTRhrppptOOn2xGkCCBIPmsZ5gcLcZZJA55uoWwDk4nOMcbbRxgQsA9NNfVuZOH6OiKIqiKIpSHS5bp5wpteOElg6SxlZChnLiiPDNpuyF58q3jnO2fo5yRzrrQOetU9cmJ9s586eB64gz2yoinruOiMueRtIZh6heLHUREY2VkDn8JygfeRslmOd+GJmzf8hsqybF7wYiArJCOetrftT0fcKUs9NlphCx0GnknE0jQrmo2Vat+O4Qtc3Nv53zsFPU4yB3kIV/ylrUe0JRFEU5KOz6/57R0VEuXbqE48ityy/90i/VJJ6z3H///XzoQx/iB3/wBwF49dVXGR0d5fjx4zvaX0U5ENhIYLve7JuJ37Yi7D5X668WDiIiO4xEn0sV+3HNM075ryIeIrqzwro6DQp2FQeJ1trAjM9RMT4nQsBBdGoURVEURVEURdmMWCtkb1Nb0OJIvVpxnPpiI6fOG/r5r4GXE6e2tTtlTWc8T8rPfw2OfWvt7TmVs5PsYr3GfhH7uTGgGLjneSmINovzXMEMMUabxQkuOy716sVxoOccxNsgfQGa+uUZxk1A+6CI5+r93BRFURRFURSlRtpp5xrX6qqrAp/6sY5wN7jBGGMUfS+E6llhhSaayGwwE6V1qrO45uHgECPGLW7RSis3uMEqq5QoETcDW3Hi9NKLg0OKFDlyZMni4lKkyAM8wHGOM8AAceJc5jKrrNJOO620cohDzDNPgQJjjJEly01uMs6475zXSivdfkqmuCH2088jPEIjjbTQwklOEidOH32c4hTRO5i2thMCOAeHIYY4y1lGGGGMMV+Atx+OUVEURVEURamOZgj5KSvbxTrKhd/HEWFcCUlxy5j3EbOuFCrrIeIo15SJmmXRbLdLK8YLt1kkEOZFzf6vA28025ZDdVoQ4VS1YqkCQWreVUToBmvdruz6AURodtb0pZoUv27ESa4LeN7sb9q8H0Cc815BxIDNwHGz725EYHfSnJdRahPfWb+Aaubm3+552C7bcZDbD8I/ZWdR7wlFURTlILDrvxCfP38eEPe5hoYGvuu7vqvufX3P93wPP/ZjP0Y2K7eNX/rSl1RApxxMtiNc2ynsNDLbIRz1Vns8NgrvQSKaw0g0fA25U84gf5maEd9z6xdfQCLQPDLtTMq83o84yLGdpfapVRRFURRFURRFEdrfCIuv1FjJkXq14sTAy25dbr169TD3Emstt+38nZ55XTlbiWvq1UF2mmCosloipl6NrNwQF7rFYXF8c80wiJeH3KyI1+w6x4VSAZoOSb2WbViIOw60D0HrWVgaERFfKQduXPrTfErEeoqiKIqiKIqyh3RQpxv0DhAlSsH3DziYRIj4YrhqcXCIEmWOOXrp3dB9LizAWm//RYqssgpAjJgvlvPw/Lr2tRVlRYmSJEk33SyyyA1uMMkkjTRSpIiDQ4IEJzhBhAhFir5D3AQTrLBCjBhHOcoYYwwwQB99XOYy3XQzyijzzHOEIwyYlMpOOnmBF/x9d9BBCy0c5SgttBAl6p9DF5c++kiS5B28w9/HfmGnBHBRogyYh6IoiqIoinLwOMzdLaDby7RBF0lRa0JS13LI3PVJRMzWbvozTTAqFRbP2ZGrIpK6VzT1c0jqnt0vBEIwQvVLBA52BfMsmfbSYCIumDHbGqleLDVCkGo4YdadQcRtlmngktneH6pnI4WtUvz6gT8x63oREdolysVpMSTN0TPHEwEeQ4RyXzT9u0Ft4rta5ubfifNQL9txkKtG+DeDXAuvI5/HNbPfATT1cr+i3hOKoijKQWDX7yMmJuS2zHEcTp8+TTKZ3KLGxjQ2NnL//ffz0ksvle1bUXaKq/ddBeD0a6e3KLlNas1brGQnouidGDNNEkTay8gx2b6Fc0G9ivUNSLRjiSBRYQMSSVl/9zmz3u43aso0IdHQfo+EokjEtgPjc1evmmvz9C5fm3eSerzclTvOPXFtKgcSvTaV/Ypem8rdyNXl+wA43fTazu646y1w40+oLXhypF6tRGNrp0Wstl495BfBCw9DwtoZSsKBX0nK5xepi1JWxGxeDefScaVerWTGoPEoLI5AwcwdGktxdbYFPI/TbZMQbZBjKSwDESmfGduegE65K9D/k0q16LWiVINeJ0o16HWi7DbumokzhPuuShz12umN4ygrsKq33RZaSJOuSXy234gSJU++pmPw8ChRYp554sTLXOIs1bj7ubg000yOHBEizDDju8RFiPj7cXB85zgHhx56eJiHfdFXiRIddDDLLLe5TTPNJEiQJUuRIh4eGTI00kgDDRziEA6O3+9TnOI5ngOgl17GGecSl2innRQp5plnggkiROiggwgRllkmSZJGGllkkTRpHBx66SVJkgQJvKseV7m6L//+qQDu4FOgUJUIUv8PK3cavQaV/YBeh4qylsYN1t9nvi+vHfDvi0swOlTP3PXV4hA4rRUQoVcCmc8+i4iU2oB5ApGcHZ1yQ/XiZn+limUMSf/LImmDUQIXurAIzz5LoX7cNm0kkNSwApISWItL2phZTpk22ykXjWHetyPitUlEyDPG2lS+zVL8hhABmL3qJsz+Zs1yDhHAdZvjPAncNO2MI8K7asR3OQLx3TcQuHRtxU6eh1rZjoPcZsI/j+AcTgDdV6+yCEyfPs0ngWNs7Gqn3HnUe0LZKfQ+WVGU3WLX/w8tLQWz+jU3N297f+F9LC8vb3t/ihLmM+/+DACnn9rlf7h3eqzSZa3ZQa04BNOEZJHpUFwkkgsL6SrzPiOhcvbPQwmJ0sbNelu+YPZtI3ornisi07Rs10HvAPGZz5hr8268GdyOl7tyx7mrr03lQKPXprJf0WtTuRv5zPS7ATjd9NTO7ri4KEKrwvpuAesSbZB6teIkaq+znXp45t7W3uDaeTzDwVN45hXHFK0zmIw0UHMQ6LimXo2UzE29VwAccYDD4zOvDwJwuu0zgOevl3KhevXieTB3EdIX1u5r8TJMPycOdW2D4lan7Ev0/6RSLXqtKNWg14lSDXqdKLuNFVyVKgY03v0ZiaOeOr1+HOXikiLFIovrCsC2wsEhT772Du8jrPhwI/Gcax62jBUbWoFbzjw2EsuFXeTWI0KEXnrJkGGaad9prtJ9zgroYsRIkMDBYZFF3sJb6KWXEiXGGSdBgjbaiBEra9czjwwZkiSJm/RUu4wSZYghznOe0yZlc4IJ0uYB4nSYJ08XXUwzTZw4C+Zhj7WXXr/+IIP87Wf+FtC/f8rO4uFxkYtc4MKav12XucxzPMcQQwwyiIOj/4eVO45eg8p+QK9DRVnLRgmt7zbfl6cO8PfFATMdx9qUup0iSjAi5CAitRagk8AhrRFJu7Pz3S8hrn/5iv7ZkatwX0tmfaNZl0AEdCACGSsGw+zLpgJaFzsrsOtHUg97ECHZfcCrVO+SlqtYpjYol0KEY5Xlq2UQEckNm770mz7a6XD6kWNKI+e5hKQ7JpHzOcxa8V34uZ747k+oPlVur85DJdU4yKXZWBS5kfDPQ87ZBHIOE8DAZz6DC1w6fZopRJS3nqudsr/YQe8J5R5F75MVRdktdl1A19UVzGewE45x4X10dnZue3+KckfYD8IvO3VNvVPYNAKHkcg3AtxCpijJIpFLeAoZO0Zro2E7bY2NxKLIFCPW6z1BEKnHzP5bkWjbGBhwhGCKG+Xgsh0vd0VRFEVRFOXuZnUGoh01Cug6pF6tJLphdWzrcuvVq4doShzhnIgRkJlhSNcJ4rSSDaAIykY3GvbaguQhcCNQrDYAdMCNSr1aceOwchMKixBphNIqlEKJu15J3jsuuAkpt3ITWh6svS1/nx5MPguLJrAoZiA7BcUcROKQNIHFzHnIzUHPORXRKYqiKIqiKHuCg1OXA1yUKClSvgisHipFeweNKFGaaWaeeQoU1mx3cIgQ8QVoVkDn4FCkiItLnDjNNLNEeVxp62yEi0sbbRzhCA4OyyxTpMgSS74jnhXqeXgUKODi0kADKVLkyfN1fB0AjTQywgjjjDPFFHnyNNFEjBhFikSIUKLEMsussMICC3h49NHn92eQQeaYY5hhBhign34mmfSdvR7ncW5wgwkmeANvoJ9+ppjyt/fQQ9L4FwwwwCCDvqudouwUHh7P8ixXzKBfhsya6xDgPOeZY45znLuT3VUURVEUZR9T79SFB4FwOp1X8Xo7+4TA2S5G4CDXhIiSUgTucB2IYGsSEdSBpO1lkNS9gikb7pudK9/2OTw/PqZNOxJkp4x0Qn3Jh/ZVQlIFe0w/QObR7yEQmFXjkhavWG40veZiRbla0w0dJF2tjUAw5iLH0I6kuS2Z11HEde0GgfPaFcRxr1J857Gx+A6qT5Wr5jwUTZ8mTBtWPFmg/gTyzRzkLNOI6956osiNhH83CZzsphCnP/vrxgxBSuF6rnaKoiiKoijVsOsCumPHjgHgeR7Xrl3j1q1bHDlypK59jY6OMjIy4r8/evTojvRRUQ4cdpqY7Yx9hqPbteOOW/ME8F3m9ReB15GoN4NE143ILxqeaWOV8kg5Q+BA1wq8QBBdFsy2JgIP9ykkmuswz1uIX7lysNmOl7uiKIqiKIpyd1NYBs9aUlcp+vKyUq9WYq2119lOvbZBmPg7cGNQtMOTBSiZYM+DsoDPNUOMbYP1tdf+CIx9GpwoeFW4UDhRebY/UntbiW5YeR1iKVi+LmK2WKvZpwPJXsilIT8vDnfNJ0VAV68YEcR5bvGKiPMWr0K2IrBYHpV2U6dhcRjibeJGpyiKoiiKoii7TJRoXQK6GDHaaGOZZRY3TAPcmBIlX+h1UEmQIE6cKNE1Ajrr+mZfF333bsHFpZVW+unnOMeZYooixarOhxXmvYW38E18E7e5zcu8TN48SpTK2rfkybPMMiVKNNDAEY5whjMUKPAhPsQCC6RIcZObTDFFzDzsfhMkOMpR0qSZYIJTnCrr0znO0UYbF0zKZr+ffii8gTfwBE+wwgp58mu2J0gwaB4bufIpyna4yEWucIUSJa5ylQkmyr5zo4z6TojDDNNG253rrKIoiqIo+5qDPRXI1qyXqredyC0sxIsg6XVFJAUvjgiOlhGnszeYMi7wKJKmdR3K/Mtt+p5NLXSQNMBVRNwVMeuySMofBEI5kM8vQuCE1wSsmH7YddZ5DiQtzGYB1+KS1gdcRkR4o6beNGsFXGnT355QvVpxkHS1s0j62h+YdsYQB79uJJ1xI+e1CeScJFlffNdmtleK76pJldvsPHiIIO0VJLXTQZwIx4FrwB9SvdNdJRs5yIXpMuvXE0WuJ/wrmn7a/c4TiC+tc6LLxq52iqIoiqIo1bDr9w1vf/vbSSQS5HJyO/urv/qr/Pqv/3pd+/rlX/5l/3UsFuPtb3/7TnRRUfaenZo6pl5KiIDNTj1TK3EoG9NYRCLWHMFx2eljbJRu8cz6OSTiOYRESTdMnQTBVDZxJHJcNfXiSNQZQyKh8rE/5aCxXS93RVEURVEU5e4mkoDCSsilbQuciJSPHIC5SdsfERHXyjIy5GPn/SxWFDTzdHoliLfXJ2gDaD0LsWYo5aoU0MUg2iz19julAqQvyOvFq5A1AUS8XRz7Cosi2LPrWwYgfVGOzd1mYFEqwNIIZMbk3LpxaOiD5lPb37eiKIqiKIpyVzDHXF31YsR4mIeZZ54ppurax0EWz1mBV4kSceLkyJU56oVd3zy8sm3WCe5NvIkTnOBJnmSYYeaYq1pAlyBBkiTXuc6X+TIZMn4fHBxixHznuAgRYsRYZdV3kBtggBd5kTOcKdu3h1cmXgv3ZytRm4PDEEOc5SwjjDDGmO/s1Ucfpzjliw03267cee7Gz6hAwRd3XuUq42Zwr512UqRYZJE0aX/9AANc5OKa74SiKIqiKApIStvdSglJrytRf9peGHsnZUeY7N1kHEmvy5nlceB+JPXqlilzxPRhAUnNakZS9KwArtEsYwSuZS7ilLZo3i8ROKbZlEBMP5rNeyvoc8x6u58Ikvp3NHQctbjFnQLfV7vXHMMl1qad2e1JJC2xHxGmjRG4mfWZ/W11Nx41z1PIdTqDnJ+tnNcOAW8x28LiuzgivIsj52UVSaezo4XVpMptdB7azPHfRgSM9vpIm/aazfFX63RXyUYOcmGKZvuEWWaR8/VW1hf+XUGOP49cl6tIqqi9Do8gQshJ1ne1UxRFURRFqYZd/wW2sbGRd7/73fzFX/wFAL/5m7/Jm9/8Zr77u7+7pv38zu/8Dr/zO7+D48ht2jd+4zfS3Ny84/1VlD3BRqj1EicQqlXmV1aLjU7rGT9tQKKU60i0af2xbU6rR/BrRth/3U5NYyOdAiKcW0Cibiu4W0WmqLHT1KTM/ldD9Q+Zuhr9HFy26+WuKIqiKIqi3N3kFswLt2KDnUfTozygcSvq1UAsRe0znTimXh3EmqH1YXFK8/IVjnPhWUhccFwRY7WekXr1ttd4AlZn2Po4zfbGE/W1tzoFjcdg9gURsEUS4CaAkhnBXYFIUtpx45BfgNT9Uq8elkZEvFbMGOc55FwlQoHF6jTMX5LtTf1BvZY6AwvPE9e79AVpO8ziZZh+Thzu2gbFdU9RFEVRFEW5Z5lhpq56iyxymctM+D+e14aDQyONzDNfV/07jYtLhAiNNOLikiVLrmJgzcNb4zxn63bSyUlOAnCIQxznOEssrdnHenWjROmgAxeXG9xghhnfzc8KfWzbnnlYAZ+HxyKLzDHnf3YjjNBLL1NMcZWrpEhxH/dRNI+IeUwyySKLPMiD9NLLCCMMrDMYEiXKgHmsx1bblTuHh8dFLnKBC2uuxctc5jmeY4ihA+kSOMIIOXJkyPjX/hnO0BUa9JtmmktcYoIJ3yExR44EB2AiJEVRFEVR9pT6oqiDhx2pMVMp1pUCaEeUrFOcFak1Ial4DUga1jeYdZjXIGIl6wQ2iqRwJQnmuI+G9rGKiJhWTFuNBHPi2xTAylG7FYIRqRiBi5il0mu9Vre4KOKedh5xawNJL0sTCOccAjc3z/T5T1ibtnkZEaENsbUbW73Oa1MEQr0V5PzPmv41mnqNiCjxGuK+dsys3yxVbqPzMELwXbLnOoWI5bqAF6nN6a6S9RzkLNb57nXk2loh8EsAcb47a9ZBIPx7CbmWcgSfYRvBdRNDhKB51ne1UxRFURRFqYbKLLRd4YMf/CCu6+I4DsVikX/zb/4N73//+xkeHt6y7te+9jW++7u/mx/+4R8GwPM8HMfhgx/84G53W1F2j9jWRbZkuw52buhZCzEk8ikiArY0gTe7SxAN2+lQSqGl3eYiEekR4DAilDtjlg4ijhtEPMPbzPIBJFoCifz6kMjvc8DTZjnMWo97Zf9Syy8KHhL1huspiqIoiqIodzfFrAjH1rjPhWfoCK8uSPlilpqJJKjd6tup3+0u0Q2xFmg+aZzKHHHQcyJANPTake3NJ6V8oru+9rwiJLtkX05k87JORMolu6RerZRy0HhU+usAyUPQdCI4pninvG84JNtjLVK+UohWLRkTIGRNYBFvLxfPgbyPm8AiO1ler1Y8DyafhZnzgXBv+QYsXJVlMSvrZ87D5OekvKIoiqIoinLPssxyXfWKFLnFLbLUEd8gArokSSJscf9/B3HMYz1cM3jl4RE3j2oFRQ4OffTR6w8qwRGO0Ebbpu5eDg5x4vTSyxnO0E8/hzlMG21lfQ2/DvfTLvPkuclNX9w3xhgODi200EknKVK00koHHXTTTQcdtNJKihSddNJMM5NM8tf8NU/zNJ/jcwwzTEEHwA40Hh7P8iznOe8LzW5wg6tc5QY3fJHoec7zOT534Bwkx8zg3RRTeHi0014mngPooot22vHwmDSDfnpdK4qiKIqyHpXCqrsJh2C++xLl6Xb1YtPxIgTOcUmzrQcRYS0h7mtPAO8wzyeQFMCcKRNFBFaN5mnnvk+YZbvZn4u4ptk0rzbTbhwR29kRN+tGl0RS/5Jmv72mzC3gH4C/B76KzK8O5W5xp7Y49kFEOOWa5ePACSQd8YR5P2D6s4KIx+xc7zeAq2aZJXBj+xybfx7VOK+F14fLj5l9P48IBu1xziLpc7NmXdJsf96U32pEq/I8PIp8Jm3IsTcRfLangZNmv+PIOQBxuqvl7tyKG7tNG2nTZw9J4byGnO9FYBkRW9rjyyECPvtdOI2ki3rI55QmcE9sJRDQHTWv1zu3iqIoiqIo1bLrDnQAjzzyCD/7sz/Lhz70IRzHoVQq8fu///v8/u//Pg899BBDQ0OcOHGC5uZmHMdhYWGB69ev8/zzz3P1qtyiWeGc4zj8+I//OI899thedF1Rdh7ri36N+j3nC1RnGsAGZez0MzYqrxY7TU0KiUZySBTXQSCss8dkp44JG0PkzDJBIJg6bdZPE3iSt5j6HRXtNxP4cp9HoryV0PZapoNR7jy1/KKQRqNeRVEURVGUe41IHJwogTPbVpSkfCS+ddFKilnqEtDVI9bzqzuQGhB3tNw84Bm3MhNEeSZwi7dKOWcbcyB5wOokxDuMcMzOReqts4xIudWp+kZs3bgcR/N9kF+E0mq5cC9hAr1SHuJdUs4xbnT1YIV3RbOMbhBYRFOQSwfl6hXszV2ExSvglWDxqnG9C52o5VFI9kLqNCwOQ7xN3OgURVEURVEUpUZWWa3bhSpOnKMcZYUVFvdp+qmL67u6OTi+4CxChAQJGmigk04iRMiax1Zim7BDnGWaaVpppZdeVlihQAEHhxIlHBxcXOLEcXFpoon7uZ9OOmmkkV56ucIVVln1+2v7HiOGi0uJEnnzsP1fZtkva53G8uRpp50jHKGZZuaZp0CBKFFaaeUwh/kaX+MiF+mggy66aKABOPjuZApc5CJXuEKJEle5ygQTZdfpKKP00stpTjPMMG20MVST/8OdxV7ndpnaYNAvRYo0ab/cQRMKKoqiKIqyN+zHu92t0vSqqQ+S8lagPK3PY/vHHHaiayYQ0h0yz5PAd1GeLDyEuIB93NRfRtIIu02dJfM+gqTyzSMCqG4kfa+ApPYtIHOiTxCkDRZNfxKm3DwinGowz6VQP64iQrwOAkc0kNS/rZKbHeAckkJ4wazrryiTIBAUeojzW8XIDqNU78a2mfNamMWKclaseBMRy4GkPY5W9GU29H7SlN9KSFh5HiYQ4VkeOfcuIpJ8CBGhOUiq5iVT1p6zzZzuKjmFpGlC4CB3ieDzzpp1q8j5X0Kuj2tmm3UFjCAjwQPI+blK4AnRQeBGGEW8GmD9c6soiqIoilIteyKgA/jFX/xFbt26xcc+9jEcxwxeeB6XLl3ilVdeWbeOZ2bptsI5z/P43u/9Xj784Q/vVbcVZecJ5yXWi82b3Ch63iqqtlPO2P5Um49qy6aRKMtGMVNIFB01fSuYcva9daGz5duRaLgZidAzyFQzK4h3dysSic+bfUXNuttIFDuFREjWBS+HREI2YjqPTGFyropzodw5tvOLgqIoiqIoinL3E2mEUi0BlCOxR6SxjsbqFafVWW91ChqPwewL0HBEHNKKWXEz80oilos0QCQJbgIKS9DygNSrh5Ub4tAXaxEhXQmz72jQXqlgXP9cKeflpV6tNPTB4mVo6IGVDtl/oseIIRFHOq8kAkHHhYbeoF49WOGdFU4WNggs7Hpbrh7BXqkA6QvyevEqZMfldbxdBHqFRRHp2fUtA5C+CK1njdOgoiiKoiiKcq/RSD3xiQjBEiRwcX1hWS11U6R4kAcZY2zfCujC7nhWGGeFYUWKNNBAN93MMFMmSNsMD48SJV7ndSaY4DCHmWeeJZb8fVrBnotLhAgurr++k04e53GaaKKFFk5ykh56aKCBCBFWWKFEiSJFX1Bn31tBHoiIaIQRnuZpLnGJBRZ897sVVriP+8oc8jw8XuRFZpihk07y5JlhhqtcJU6cHjMAdp7zzDHHOc6piO4AUaDABZPOe5WrjCMxYzvtpEixyCJp0v76AQa4yEXOcnZT18T9RNwM3tnlRn937HpbTq9jRVEURVHWI7l1kT3HI0iBqwV7t+MiKXN2H6XQttoivo3bKZr9dyFpeGmk3/cjAqf17iyjiBAqj5z3C4jgKc7aee/zZt+D5lhWkTnR55A0wCgijCqatl1TJ2L23Y4IvOyxW5Fdqyn7KOKUBiKmGqzh2IcQMeAI4tZmUwn7EHHYn5hyV8DcdUt/UkhaWjq0fgBxYzvL+uesD5njvxsRv1nntbD/8rRZ7xCkM/YhaZGvm3OyYM5FG4FrYJbAKc9FPsebVDcaGT4Pf4KkXd5GxI+9wNdDKAqX/rabfk4i52mM6gV0UdPeeQLR4xhyTkrm+Kx4rge5RtpMP8PnOmr6/DXknM4in8uoqZ9FPkvr5bDRuVUURVEURamWPf3F9X/9r//Fm970Jn7mZ36GbDbrC+ksYcFceOl5Hg0NDfzKr/wKP/IjP7KXXVbuMT7w1Ad2vxErMNuGeQARNo+ibdS+0Vii9Ux3CCLX9crafdhtNm91FYnWHCQ6yZilMU0gSTBljo1242adZ8qdQiKxdyGOfM+a/dw0249QHpFNI5HREhKxTSIRbHgCw1qmgzlgfOADe3Bt7jXb+UVB2Tfcldemcleg16ayX9FrU7kb+cDxp3Znx8leKNXo8FbKSL1acetM2Kq3XikHjUfFySw3I+KxWCvkF8AriltbrAXy85CbldeNR+t3Tcub+SWLy+DEREQWawYcEbF5JYiExIrFZdmen6+9reZTMG3mnEz2iphsdZIPnMsbkdmqiMwcR7ZbkWDzVvNnboAV7CW7xf0tlxZXv0QosFidlvU4kOwJ6tXK0oh8BsWMcZ4DWs+sbWv+kmxv6g/qtVQ75Hhvo/8nlWrRa0WpBr1OlGrQ60TZbXrpZZTRNeuf+sDmcVSSJEc4QoYMc8zV1KaDQ5d5xIgRIVKzCG8vsE5wnnlYYVuUqC8CzJFjmWWKFIkSpUTJL+uGBtrCx+fhMc00n+NzvIW3cIUrjDHGMstEiNBBBxEiNNBAgQIxYnTQQYkSadJc5zrv5J2c4hTv4l18ha/QTjujjPp9LFFildWy47FCoEUW6aCDKaa4xjUWWOAylylRYp55v39docGQl3iJ29wGIEuWWWbppdcXDe6GO5n+/ds7RhghR44MGSaQWPIMZ8qugWmmucQlJpig3/g/jDDCQNXpq3eWPvq4zGW66WaUUdKk11zn00yTJo2D44tC3/OB9xyYY1TuTvRvobIf0OtQUdaykYDuqTv8fbHCr3AaHWw+l76NWqxwKYqk0pU2KF8P4X4AzCDCtQQiYrqJiOiGWSsuO0WQvtWDiOZK5rVNcYyG+usic+IngbeZbX9vjuk4kuJ1nSBl0AroDpvtIGKxNCIkAxFxRZGUwA5EODcYOq5qiSKphpV3l8PmmDMEznO95lhWzHnqMduqcWPbyHmtUpBntydNG6cQ97WCWbdq+tJKkBIHkhI5iRx/A3ION/diLydq2h0gcHI7Rrl4zpIyfbWjj7WOQg4iYr9h017S7M+mljYjKaDNoT7NsNb5rgX4XrOfP0DSWTHLBDDzgQ+QQs71RudWUZS7D71PVhRlt9jzKct+5Ed+hG//9m/nf/7P/8nHP/5xRkfXDhpZIR3A8ePH+Xf/7t/xQz/0Q/T21pEEpyj7jSYkIpxDIoVaCU9JY6eOqZzexgk9K8dEbX0bZVZG9+vtw0bBXmh/aYLpZJbNskjg3V45mb/12w5PoWOpJrKcMW22IOduCRFe1TsdjHLn2c4vCvVSYP3phk6h14miKIqiKMp+I94NpdWty4UprUq9WlmdMUKyGpJKHVfq1YMbFwFZ832QX5R+u1FIVMznWcpDvEvKOU59rmkgoq94O2TGpB03YfblBceCA9FG6UupCLG2+gR7bhTah2DmPKTMnJPZCRGw5ewNvhHP2e3tg/U7tFUK9jK3YfqL4njnJuR4vAJEm6Hh8PYEe5kxczxTgCfnNCyeA3kfbzdOdJMiosuMqYBOURRFURTlHuV+7ucFXqhJwObgcJzjvJW3kiDBl/iS79BWDS4uAwxwhjN8gS9wi1v1dN0Xt+0WVjgXfm/bbaed4xznAR7gaZ4mRowsWV88Fyfu98+K6QoU/H0WKfI6r/sixAwZXFwSJFhggTbaAIgSxcNjlllWWSVOnAUWuMlNHuRBQJzyWmgB8F3nwv13Qg+7zu7nKleJEMHDw8UlT55JJgHooIMUKeaZ50VeBEQIaIV+RzlKK613hTtZJQUKjDDCGGPkyBEnTh99nOLUgT2mzRhDYskppvDwaKe9TFgG0EUX7bSTJs0kk/TTzxhjB0ZcdopTPGcG/XrpZZxxLnFpjcue3Z4kSYIEp/Zpquu9do0qiqIoyn6jxpGhHWcjMRwEKXsWFxGE5RCxTzjFzjHbo6H9WfHcTmLbipi25gjmpD+OpM8lkTS7MJeRtK2zyLz5EKRvTbI2fcuhPH3L3qk+B5xBxE9504dDyDmxKYJ5YAoRihWAdwBfRERUVpR3Evgudj59y4zsMIm4m62yvjhvAjmuCeS8beTGtp7z2gRyjkKjYL4HAIjQLIqcZ+vUl0Suh3kCB0DrQGd9CjJIqqT9fCrZKA3OiuXsqOJGvvSLFeVqHYV0gHOIx8EF0/8O5Dw3mmc7cNQ8HTZ3vjuDXAPngQeBq1R/bhVFURRFUarljtw79PT08MEPfpAPfvCD3Lp1iy9/+ctMTU2RTqfxPI/29nZ6enp4/PHHOXLkyJ3oonK3s1mku9vkCaKxemhEIokiEjFZAZuNriOhpY3EbfRtneCazH6KSPSUpzw6t/WsY1zYhc7ux/Y/j0RrywSOddbLPWH2EW4ngkRNcwROY9VElstIVN4G3EA8yh9mrVtZ5RQlG00Ho9x5tvOLQq14yC9CF1g7XY79RWiI+qYwUhRFURRFUXaH9Hkjaqs2UdST8unzwA/X1pYTo/YbQcfUqwPrmtbQAysd4gCX6AmO14nKOs8cU0NvUK8eIg0i6oo2Q2FJ9pnogGJW2nFcEZZlxuW4os1SPtJQX3ttg5Cbg8VhEY419YuYrJgT97tkj7QHkBqQ8vViBXvTX4JIAlZnIT9HedDvQCwHzSflnNYr2LOCwqJZRlPrl4umREBny9XrHKgoiqIoiqIceI5whEYaWdwwXW0tceIc4xhnOMMoozTRxDzVu0O7uAwzTIIEs8zWLYJzcXfVuW6jfjk4xIjRTjunOc2n+TRFipTMQFbYfc4K2qJEy0SGESI4OBzmsH/+EiR8MWGECI00kiRJlixp0swzTwMNnOQkN7lJt0kv7aKLIkXaaGOccTw8IkRwcX3RnO2f7fsCCyyz7LvKzTNPjhxddDHNNHPM4eCQJs0CC3h4NNLIipl58zEe4w28wT+e/eZOVq+4yMPjIhe5wAVyFYM1l7nMczzHEEMMMug7+t0N2GO1yxTrx5IpUqRJryl/EIgSZYghznOe02ZQb4IJ0uYB8t21TooAgwzuOzHavXqNKoqiKMp+o5756HcK69hVCi3DjnNWrJZAXLWaEGHaYeCrSEpbCUmVs+Xy5nXB1N9JAV24T3aefZvulwGuELiYZRARmxVaWdezFwlS/mpN36p0dwNxO8uZtqzbWhZxw7PTSKYJUvsOm/32sjvJzDnk2F5DUgs7kPOxSHC+rEht2pTrZ3M3tkrntX5EDBY+t9ZJccCUx7R3DBGM2ajAQa75ldD7tlD5o6z1T9gqDW4WSbXsBkaR8z3N2jRLK4y010I9o5AOknJ3Fvi4WZdDPvtTyLFXut9t5nxX77lVFEVRFEWpljv+i+SRI0fKRHLLy8u89tprZDIZCoUCpVIJ13U32YOi1EGcOzddjYNEYPUK+KJIFGDd3Oy0KGFHOSt+s2U8gm+7fR9DIuT0Bn0J/+bvVby2HuH9SISbRxzhbPRvy9vpUKyAz/bLRjHhqW22in4WkOhuFomiTkLF5IybT1Gi7E/2Iur1gGeRX4Vg41+Ezpu+nENFdIqiKIqiKPuB+csicirWkDDmRqVerSQ6xeHNW8/ie92GpHyis/a2YK1rWnYcVieNyC0FhUURYDnGqW07rmkALQ/C7Jchdb8RdmWhsAKxUNJefhGKq9JOakDabnmwvvYcB3rOQbwN0hdkXVN/eRk3IUK2tkEpvx1aH4Hxz8LyKCS7INok57SUBzcGyUMQbZDtiW4pXw/WATBiloUNkqDteluuXudARVEURVEU5cDTRRcttJAhU5WLnINDAw2+wCZGjHjNc8CL4OoCF5hjrm4BXWnHfRG2xorh4sTpppuTnCRJkhgxCubh4VGi5AtvHJx1z22CBKc5zW1u8xIvAdBAQ83nwwrpOuhgllly5Iiah4tLiRIZMr4LnRXvddJJP/2+eHKCCaaZpscMSvTTT4ECDg6NNLLAAiuscJjDnOVsWR/2izvZdsRFHh7P8ixXzGBNhgxTTPkCPHteznOeGWY4ylHGGb8r3L/sd9guNxLU2vWV5Q8KgwwyxxzDDDPAAP30M8lk2WecNIN+AwwwuM9SXWu5RueY4xznVESnKIqiKLvEnZgT385Jb8VndmlFTWEnOStUawQeQ4RKDcBDBPPOzyFpSauUu8/ZtuyzMura6tjDaXn2TsRm1hZDSztt5AQiYnrFHF94/6MEojh7zCVqS9+y7m5TZh/tiGhwnEA0ZV36VghEdPMEqZv1up9VSxy4adrG9K0yXdJ6IdgUxZvAZiNklc5rEAgCLQnkPIXnco8jgrhryDXSiHwGC5SL+SaQ89VtyofPTTVpcK3Aq2YfPWZ/l1jrKgjlroLb8YeOmvrWTe86ch1Wiudgc+e7es+toiiKoihKtezYL8zZbJZcrvyH8paWlqrrf+pTn+LXfu3X+OIXv0ipFIQG7e3tvOc97+E//If/wMMPP7xT3VXudRq5MwI6B4kQWpDIx4rO6sVO/xJ+H/Zkt8I5O25otyUJhG3rRSleqM5G7bYgLnAgEdgkck5tnwpmvW3HQ6KdpFl/lCCytn3bLPq5hERV3WZ/G/152WyKEmX/sRdR70XkV4MSgbf7Rr8IDZu+DNXRjqIoiqIoirKzFDME9thVitpwTL0aiTZCpBFK1bs6EGmUevVgXdNmzkPKzNeZnRBxWy40n2eyN9her2saiJjtxickpmrsg8wUrM5IW25MhGZeSY6poQdijeI+13OuvvZARHHtQ9B6FpZGIDMmTmxuXJz0mk/VfzyVzH9VPoumEzD7vLjf4RlRZAEyt0Sc2PGYHNf8V6VvtWKdA5PdIsbLpWF1GhKh2V1Wp81n6IjTnq2nKIqiKIqi3JM8wAMkSJAkyTLLW4q3IkSIEqUXcaGOEydPfo3D2kY4OJTMI0sWD69ugUe9wrvtsswyBQoc5jDv4l18lI/yGq/5/bECujz5sr7a7S4uMWIc4hAnOUmGDEMMcY1rAKyyiofnu8k5OMSJ00orCRIssMD93M8UUwAkSdJNNyOM0EwzWbIUKfriN+vSFydOiRIeHp10cj/3c4ITgAgaAV/QaIWSvfSSI+dv76KLB3lw3c/sTruTbVdcdJGLXOEKJUpc5SoTTJRdY6OM0kMPDTTwHM9xzDwsB9n9q48+LnOZbroZZZQ0aaaZpis0U+g006RJ4+D457KvLv+HO4eDwznO0UYbF8ygX3/FoF+CBIPmsd8+w2quUeugN8wwbbQxpAOKiqIoirIrJHZ5//YuxIrh7HzwjQRzxNvUtziBK52LDLO0IfPNLyGOc18HvMPUeQpJTbLpenbue4sXatc+bbqfTeOz5e3SCS3d0OsS5SK6iOmfTQtcQYRUabP+CGsFVOOm/oDp81nga2ZdNelblel5KURMOG5ez5p+2BRBmyY5a+ps1/1sKwqIwPHLiNBs3PShExHyWXe8NCLqa0Dm9L9JuS/AeoSd10YQMaEVsfUhYrLKUbA+xCHucURAN2va7wiVWUJSMLtNOYfyc1NtGtwR8/oEcIjqXQW3gz2+7Trf1XNuFUVRFEVRqmVH7iM8z+Ohhx7ixo0b/rozZ85w8eLFLd3j8vk8//bf/lv+7M/+zN9XmNnZWT760Y/yB3/wB/zoj/4oH/7wh9WRTtk+zQTRwF7isdalrZKNnN8sRSSyiyCRXamiTgMS5TWa9XnglqmXRCLmuNkeRSLiZWoT8rmmHUsSiXrtWGXc7NuK8yKmvO1nA/DIOm1uFv00mr7eQqYo2WCi/02nKFH2J7sZ9RYIhHlXCX752ewXoYumLxppK4qiKIqi3FnireusXC+5yivfvm69LWh5EKa+IOK7Unbr8m4cYq31O7SBOK/l5mBxGFoGxKEtOymOe5G4iK8iZkgxNSDl6yWahL53wc3/Kw5s2WnwivIsBUmn4qrXJaf00D+VetvFjcrxteySM0KpIC53jiPOevFOcbdzIvI5lXJynNFm2e44kL4owr5aBXzrOQfOX1rrHGi3b9c5UFEURVEURTnwLLBAH33MMuu7lW0lTGukkSwSl6wYv4Ow0MTF9d+HBXP2vYfHKqtEifriLrveYt3S7oTL3FaUKDHFlH/sZzjDMzzj99nD88Vr9r09NrsuTpx38k7exbsAEcHNMMPrvO6Xy5KlRAkXlyhRf78nOMFRjvoCtSJFHuERbnMbB8d3nitS9MVwESJ4eL547xSnys63dZADOMYxGmmkhRZf4NdJJyus8Dqvs8TSuuflTruTbUdcVKDgC6qucpVxMyjTTjspUiyySJo0X+WrvoBshBFfqHjQ3b9OcYrnkFiyl17GGecSl9Ycv92eJEmCBKe25f9wZ3BwGGKIs5xlhBHGGDsQLoLVXqN2/QADXOQiZzm7L49HURRFUQ46uy2gg2DqRiuMiyLpb9ZBzo4UFQiEc1YMN0/gqjaPuInFkPSmxxA3sBVT16YJ2vS+8Fz5VkgXCb2HIO0uZ/Zh73qtO1m+YlvE7LfJ9CkJZooOeZ0xx3SGtUKmS4iwyorlWoDvpfr0rcr0vEXgGPBaaH/zBGlZEbPPGCKe2in3s0o8JP3rApJmuGDazSHnz4oKd+JaiyLpZtWMgp0CExmIw90YIphbQc5hzvT9JHLOGyg/N7WkwfWa5y3gCap3FdwO4ePrNf3YjvNdLedWURRFURSlWnbk17y//du/ZXR01H/f3NzMJz7xiaqEbj/4gz/In/7pn/rvHWf9H7qLxSL/43/8D0ZGRvjzP//zDcspSlVUb464s9iI+hQyjcgigQgOgqllCL0vVbzPIYI3CKI6u28ozx21EbON8NuQCN+K26wrXK3jox7lAjoryrO/FkQQkWIrQbTfgER8UeABJFreaGxvvehnGPEf3+4UJcr+ZTei3hHkO5BBfvGB6n4RGtnhfiiKoiiKoii10/IApF9k7SwjG8064og4quWB2tvqeAJu/L/iHlYNTlQEdB1P1N6Wvw9HHN7ibSIAAxHRhXET4jzXNijlt8PRfw0Tfw9LV6ChFwqtkJuBUhHciAjPoknIzULzfVL+ILA0IiK5YkZc/BwHut681hVu/pJst+d4aaR2Ud9eOwcqiqIoiqIodwUttBAnToRImXAt7A5XouQLsfLkeZ3XOcQhbnDDL2fLRogQI+a/X2XVF8JZEReI01OGjC/cszg4uLh+2f0oolthxXeAe4zHSJAgSpQ8+TLBXOXSCtySJHmMx4BAaBYhQpYsyyz7zn723JYokSNHE02+GCYsVDvKUdpo4za3iRAhSdIX4NnzaT+HRhppp32NqMY6yBUp0ksvJznJu3gXxznOszxLhgw3ubkv3cm2Ky4aYYQcOTJkmDCDNWc4U3aML/GS725XoMAKKyyySIsZ1D3I7l9RogwxxHnOc9r4O0wwQdo8QK5de3wAgwweaGFWlCgD5nEQqOYanWaaS1xiggnfWW+EkQNzjIqiKIpykEjtUTsOkqpk0+dsCt2iWRYod4xrMGVWkVQkO2/8S8BhAoczW7ZkyoQFc1Ys54S2Wee5cNqgFcaVCFLybN2S6bd1yoshwrlWU+aQOQYPSR30EHFdOFUK874dSbWbRFKmxghSt7a6yykgaYjDiABsEhGq9SBpgdeQNL8MQXpj3hzvIfPcSfczi4ekGF4x72eQ1MZZ5LwmTVszSApmyqxzkHO9ANwPJiLdWaLIHPPnCY497CAXZXNnuFrS4CaBNxEIPTuozlVwO2x0fLvtfKcoiqIoilILO3Lv8ed//udAIH77qZ/6KR58cOtZ2J9++mk+9rGPlYnhKh3oLI7j4Hkef/mXf8kv/MIv8PM///Pb7rdyD3PrDrXrItHfO5Fv37NINLlqtof92WFNLqjvt26FeAXz3k53YyO8BEF03YJEo4umzP1IRBQx7UaA29TmQJdnbc5q1rRr17cgvw7Yfnimb52s7y++FTs9RYlybzBmllPINdhObb8IKYqiKIqiKHeOQ98ENz4hYjUvHLDYocqK3w+cqAiVDn1T7W2lTkCszbQTYfMAKSLlYm1Sbzs4jgiyWs+KoCszJmIwNw4NfeJctlPiq4WXoO0NUFqFmS9BYRncmDxB3NPwoPMJ6c/CS9K3/U7G3PRnzU1/vL1cPAfyPt4uIrfspIjoMmP1ueLtpXOgoiiKoiiKcuBpp50FFuigg2WWyZHzHdKseK1AARCBVxNNFCiQI8cNblCgQNQ8rFtanLgvnitS9IV39nWMGF108QAPcI1rjDPOEkv+duu4Zln1B6nKuZPiuhIlnud5QIRF/fSTJcsqq2sEhYAvqnNxaaSRYxzzt/fRx9M8zRhjviNflixFiv45LVL0l2OM8Tqv807e6dd/hmfoMI8ZZsiT913rAPLkcXBIkCBGjDnmeJDysfKNHOQOgjvZdsVFY2awZoopPDzaaS+rW6TIIos00sgEEyyz7IsZ++m/K9y/BhlkjjmGGWaAAfrpZ5JJ352thx6Sxv9hgAEGd8T/QamWra5RCJwk06SZZJJ++hljTAV0iqIoirILRLYusi3svPMlJP3ORdLcHGRu+DyB+C0snGtBUowWgZsETmoO8FUk7egagctcgUD8Rmi/4RGunFmG3fCsC17Yta4RSYdbME/bv4jZ1hJ6bee3j4X227HBuUiZftt+5DYoFybs7pZBBFsFs20C+Csk9SpC4GLXYfrUas7JOxBRH+yc+5nlIiKeKyEuba8QnHvrvmZd/qx48igiMptFzuVRqjsX9TCI+C4MI8deizNcrWlwU2b/9yGixmpcBbfLdo5PURRFURRlL9gxBzorcOvq6uKnfuqnqqr3X/7Lf/FfW+Hcm9/8Zv7Tf/pPPPbYY7S1tTE8PMxv//Zv89u//dt+uf/6X/8r3/M938PAgP4YqdTJ8tZFdgUrfIMgWplDokg7LUylhtRGwnbZRBBB2kh51dRLmv12m9dWQDdhynWFttuvz9PAF2s8jiISYbUiwrlZsy5u1uWQaKeZwF+8aNat5y9eDTpFiVIPlb/wbDRNVT2/CCmKoiiKoii7S+o+SHSDNwYFO7RlqQycXBEvxbulXq0kD0N+XhzfSlXcDLoJyC9IvZ3AjYoYqx5BVzWUCuJy57rieNd6VkRfXh4JNEvgxET8FW+TcumLUm6/u6fZz6toltENbvqjKRHQ2XLVfM7rsdfOgYqiKIqiKMqBJk2aFlqYZZYkSaJEcXEpUMDD893SrIgtTpwOOmijjcMcZpJJ8uSZYMIXiYUFdFmyODi+qMzFpZlmOuigk07y5FlmmQwZXzzm4VGkWCa68ypiLOuWd6cEdB4er/EaT/M0L/MyXXQxzTQrrFCgsMbFzzrqRYnSSSf3cZ8vrOqnn5d5mRVWKFFihRWKFIkRI0qUAgWyZIkQIU6cZZa5xCVfBGZFMnHivnitQMF/v8giSywRMwOARYpMMkk77f7xbOYgdxDcybYrLsqZQRe7TFUM1kwz7YtFs2RJkqSPPvrp5wQn/DIH2f3LweEc52ijzXfz66/wf0iQYNA8wgJRZffZ6hq1WCfJyvKKoiiKouws07u4b3uXlURS2ayArhFJx8siKUN2bnkraLNiKyu4ck1968I2Y/aVMfUKSGpcM5LWlzRL63A2bfYB5emCTsV7KybMAF9nXr+EzJWfMPuwqXlWgOcQpCdGkDQ96wBXyaJZxkPLAuJ0tp7YKkK5u1vOnJsxs60JcaO7TuDstoqkE3abvp005Xba/QzT9wvm9VVkfn77+R5GPBdypk8OklZpRYZ5xBfgPgI3ut3AAc4BbaG+VusMV28aXInqXAV3gu0cn6IoiqIoyl6w7V/W0+k0ly9fxnEcHMfhfe97H83NzVvWe+211/iHf/gHX3jnOA7f+q3fyic/+Ulc1/XLPfLII/zmb/4mb3vb23jf+96H4ziUSiU+9KEP8dGPfnS73VfuVXZzvG899zgIolQbXXUgUZiNnm2djaKCCCK4G0CiuDyB8M5O52KnxkkgUSfItDKriHDuSdP+KSRCzQGjBC52tWAj8bx52qi3BfnLcjh0LFv5i1eLTlGi1Eq8Yrm4Qbn1fhFSFEVRFEVR7iz5NHS/HW7/JRRNAOTZmUcsDjguEIVIo5TPp9ff32ZM/j1QglgTFJaCfeOGCtm2HSnnFKXe0X9ez9HtLUsjIhgrZiA7AW4E+r6x3KltdRrmL8l2KwhbGtk9Ud9O4Zqb94hZFja46bfrbTl3Gzf9e+kcqCiKoiiKohx42mlnkklfNNdAgy+Gs05qdluCBE000UknpznNKqvMM0+ePAUKuLi00oqHR8k8rCAuXL+VVgCaaCJBggiRMkc5W9/2wxIh4gvLHByyZP2+VbKe8G4nWWCBa1zjBjfIkSNChDbaytzjwgK6KFFaaOEYx+in3z/WEUYomocVu8SIESfunxcQ17scOd8VcIQRznCGG9ygjz6GGSZChAYaSJL0HeRSpBhn3N+3h0eGDF/ki2XuabCxg9x+dyfbrrio0nVvsWKwZp55QASnHh6NNNJMc5lI8G5w/3JwGGKIs5xlhBHGGPM/4z76OMWpA+Ood7ex1TVq2chJUlEURVGUnWUjsddOYIVRVixn3eUcxHWsYNr3CNILC4hYLovMN2/3Y6YnJIuI4jrMvpaRVLyo2VcUEdK1mterZnsxtK+wWK+SuKk/ZsqkkJS5G6Z8yjwbzf5dJJVwEUnfy5ljmKbcrWwaEVk5SMqdh6Tl/SFr5x2/DDxnztecKXsVmfvenqs5s69GAoHiESRdcQlxeDsEvMn0azfcz0ZM3zOmbwBnkfRCO1VnxpQJuwsmkHMQQdIbATPlye7gID4CZ9lYrLjeuTkoaXD1Hp+iKIqiKMpesO37kFdffRXAF8F927d9W1X1/vIv/7LsfSKR4Ld+67fKxHNhvvu7v5u/+qu/4o/+6I8A+NSnPsVHPvIRIpHdNu2+d1heXubzn/88N2/eZGpqis7OTo4cOcLXf/3X097evvUOFGGzsUI7zcslU26FIAcTAsFZWIRnX9vI+jDB9DIe4v3uIOK6pFm3jESh1s/9hKlnnd++keDb/xOU54SG29/smKx4L4aI5tpC/X0zElXutLhNpyhRaqUP+RWnGxGLptn6FyFbT1EURVEURbmzlHLQ+SZYvAqLLxsRnQclO8TlgmvmBo1EIfWglK/HWWz6CxBJQqloBHlJiDaCV8APdJwoFEwQVyqCm5R6B0FAlxG3ALJTgAfx9nLxHMj7eLu4tGUnRUSXGdv/ArqGPli8DMluWB6V/q9OrxUH5sxNf7InqLdddts5UFEURVEURTnwdNHlC2LCbmdQLkCzArBOOjnKUR7kQU6ax21ucx/3cZGLTDDBAgskSJAkScE8AN9BLUrUdzlrpNFvIyzY8/B8QZ11b7PlIkTooAMXl2mmKVHy3ev2kgIFrnKVGWZIkaKZZlZYoZNOWmllmmny5IkRo9vMKpklSy+9HOWoL2x5kRdpoYXb3CZPniRJeuldI8CbYII8eTw8WmjhRV7kDGcYY4yjHOU61wE4xCF66WWBBd/Jr402rnOdHDkaaKCJJiaZ9I9lKwe5/e5Otl1xUR99XOYy3XQzyihp0kwz7bvYFSiwxBIZMjg4vnufFYJa7hb3ryhRBsxD2R9sdY3C5k6SiqIoiqLsLI27tF8HSZdLIal3cSTlrRlJE3oMEXnNEaTFeaasFdV5SPpd2LUsgqTEuUjK3hKSLtdqyq2a9S2IcK8ZSW/Lmu0Rc8xF89720273TJ0m4H7gi4hTWhwR9MXMM4KIw1bM/pqRtLpZ8/oSkl6YQgRWdjrKXtOfa6H+ZMy+w2l/RcR9rtPUswK1duAY4jo3ao41GqqTRMSFe5HOZ0bDMKNhtCPnbNasbzHrs+a9dRq8iZyHXtPfBISmPKmdzVz8wgnbUWpzhjtoaXC1Hp+iKIqiKMpesG0B3dWrV/3XiUSCt73tbVXV+9u//Vv/teM4fNM3fRO9vb2b1IAf+7Ef8wV0y8vLPP/887z5zW+uo9d3B4ODg3z1q18F4Fd/9Vf56Z/+6br2c/v2bX72Z3+WT33qUywvL6/Znkgk+Bf/4l/wS7/0S9x///3b6vO+IU7g+rZX2AhzBYlUFhCfcOvdbqPs9TSkVjAXQyKbGBJpRZFo+2UkOrcRZhNBdL2V81uBYCqbCiOHsnWV26JI9BtBossGZNqY4wRT6OyGuE2nKFFq4RQyBRLI92CczX8R2olfQRRFURRFUZSdwY2D60L31wNFWDXzehYz4kTnuBBpkHWJbinnuvU5i61OmxjIEXc2JwbxlrXlvAJ4eSnnmHoHASsqLJpldH23AKIpEZrZcvWIEfea5lMwbW76k72QHRcnvXi7HE9h0YjnzPZIEtyE1FMURVEURVGUXaaBBuLEyZKlmWaWWaZAYY14K0aMJppYZZVOOnkzb+Yc5wCYZZb/y/9lkEGGGWaCCQoUWGYZF9cXzlnntDbaiJiBpWWWffc1K5wrUSJCxBfMlSj5/YgQoYkmUqSIEWOFFYoUyZJd41Tn4PjOd7tBiRK3uc0ii0ww4QvTFlmkgw4e5VG/7BJLTDJJF128iTfh4PjClgmT1hklSoIEMWI00LDuZ5Un7wvbbL0cORwcDnGIGWZ8sWMHHWX1F1hgkUUOc9gXIB7mcNUOcvvZnWy74qJTnOI5M1jTSy/jjHOJS7TTTooUN7jBGGM4OCRIUKBAjFjZ/kHdv5TdY6trtBonSUVRFEVRdo42Ane3ncRMn0gPkmoWQ4RIS4gzWi/wCIEAbJxAKBc15RNIippN84siw0URRLRl3c1yiGjLigEdUx9Txr5eJUjDi1HuemfTCB0k3fBVJDXuTYhY7UGzr9fM9pzZzyHgPtP2deBR084EkiJl06TCKYU3TfsOMEzgLGcZNdvzpuwy8jmdIRBvnUTm2v+y6VeL6cMpyuf6301yFUsrljyGCAS7zfpl80wTOPgdYuP0ymrxgIuIL8BGLn5D1J86qWlwiqIoiqIo22fb96Xz8/OAiOD6+qqbq8DzPP7hH/4Bx3F857p3v/vdW9Z705veRFNTky/yunLlyj0roJucnOTSpUvb3s/f/M3f8L73vY/Z2dkNy6yurvLJT36ST3/60/ze7/0e3/md37ntdu84RxAf8d3A+qmHRXEQiODSpu0ZRERHqLxryoUd6Eqh7UumzltC7U0BV5BI94RZZ6OiapzfmtnYgS7sjBeOiiOm3kMEIr4jSMQ9iEwfs9viNp2iRKmGKPLLw3mCXzk2+0UI6v8VRFEURVEU5a6n3uHK9Z3mt8Q6izX2QvMJaDwq4qfiigi73DhEGqGYFSewxkNBvVpxTMDmuNJfNw6xFnG7s2I9Nwb5JShal7pQvf2OFRVGzLKwvluAv96Wq0eMuNe4UWgfgpnzkDI39dkJEc3lQjf9yd5ge/ug1FMURVEURVGUXaabbnLk6KabGWbw8GikkShRIkQoUqRAgVXzOMUp8uR9RzWAb+fbGWOM53meB3mQ4xxnnHHy5ClQYIYZAOaYI0qUPHlucYskScYYY555X7BnhXUuLg6OL4QDKFKkRIkcOaJEOcQhMmTWuI3Zura+dcDbaaxAz8FhlVVKlGiggUYamWOOVlppoMHfdoITHOYwDTSsK2xxcIgTp512/9isg5wVz1kBWBgr0kqQoIMOWmnlEIeYZ54CBaJEaaWVFlq4znUiRPzzd9ofeKjeQW4/upNtV1wUJcoQQ5znvH9OJpggbR72c+6hh2WWWWGFJpr86xXU/UvZXba6RmFrJ0lFURRFUXaOR5G55HdSQOeEnkeRNDsrjMsQpPUNAC8gjmnLiBvdKkHqXh5J33OQdLikqV9ChErWcS2NiOAWEeFZsylzhECsZtvsMn26YepYIZwb2p8drRknEPvdBp5A0gUnKXeLS5o+dxHMyd+/QbmiOa6TSAribXOMUXNMq6ZfK6FzNofMsV8+5YXss98cf4d5nWTv0rDiFUsbzR5F+j9h+mgd6FJImuVpghTE9dIrq8FDHPqumPfrufiBpLDNAeeoXUSnaXCKoiiKoijbZ9v3RouLwaBJtQK6l156ibm5ORwnuAV85zvfuWU9x3G47777fNe1zURfdzPFYpGf+ImfoFDY3oDUhQsX+Nf/+l+vcZ07evQoR44cYWJighs3blAqSTi6tLTE937v93L48GHe/va3b6vtu5awCK5onhD4vucIpnSZQ6JPCMRpCcp96HNI9AbybS0hU5Q0Uz5tSA8iULPTzjwChPM4N3N+G0SmOImAP8Zp3fIsxdDrqDmWx4BvZn1xnIrblP3EIPJ9G0auyY1+EYL6fwVRFEVRFEW5J4gTDCnVWq8OKp3FMrchNwNOFNwklFahOAPR5u07izWfhPQLsq/cnNl3HuIhp7bcoqwHKWfrHQSsGDHZDcujIixbnYZEaGhzddoIzhxI9gT1DgJtg/K5LQ5DywA09UN2Upz0InE5noi56U8NSHlFURRFURRF2SMcHN+5K08eF5ckSWLEyJNnhRUcHBpooJNOFljgy3yZW9zy3cc+wAf4//j/eJqnATiJxCIlSrzMy6ywQj/9FCiwwAIZMkSJMsMMq6z6grcSJd9BzYq4rADNlllllXHGKVAgS9avY0V4u+U4V0nEPJpppo02RhmlkUa66SZDxnfSa6RxU2FLL70ApEgxwQTLLJeJsEAc7Oz6FKmyepXua/PMc4QjZQK3aaZZYIFOOnmUR1liiZOcpJfefeEgt112Qlw0yCBzzDHMMAMM0E8/k0ySI+d/zg4Ok0zi4ZEmzUu8pO5fyp6x2TVarZOkoiiKoig7w/uBPyZwYdsJ7Bz4LuKM1kAgDHOBeWAaEYQ9BHwVSSdaRUbGHPM6gaQYtZm6RWQULI8IypbNOgdJ6VtE0pNakLn2R01dyxSB+1yPqTtr9ldE0vdakTTBflNnAnGhazT97ghts9hUwUfMsVww69cr12bOQQZ4xbTfS5DC2IgI6m6Zvtp+FlmflDn2Sje4vaAPSYPsRs51muBzHUCO5RXks2xGPrOoKb9ZemU1XETEcyXEW2E9Fz8rbBtGzvtQHe1oGpxSCwV23wdDURRFUQ4a2/4fGIvF/Nerq6tV1Xn22WfL3vf19TEwUJ3SJpUKkteWlpaqqnPQKRQKLC0tMTo6yj/+4z/yu7/7u7z44ovb2ufq6uoa8dwTTzzBb/7mb/KmN73JXzc8PMyP//iP8zd/8zd+X77jO76Dq1ev0tTUtK0+3FHqyfmshgiBx7oVs9mIykGiE+sOZ/3ec6G6Ccpd31JIRGyj4gZEUFc5bYj1EPeAw0iEVe0d7w8D/8fULYbaXy/KDU+f8wvA4xudCEXZRzjItD1tbP6L0HZ+BVEURVEURbknqHcSlzrrWWex6S9BJAGrs5Cfo3y4yYFYToRsnle/s9ihd8PN/wOxZmmruArZMSjMG7FeFgor4kYXSUAsBU5c6h0EKsWI2XGYvwTxdoimxHnOurVtV4x4J3Ac6DkH8TZIX5B1TRU3/W5Cro+2QSmvKIqiKIqiKHvAFFMc4xgv8ALddNNCCx4eOXIUKODi0kEHDg4FClzmMsc4xku8xCoy7nqZy8SJM8QQ38q38vf8Pa/yKhkyNNDAW3krV7jClHmkSZMhg4eHg+M7xoGInJIkyxzQkiT98gAeHnnyLLCAg0OMGC4uRfPYDCvCixHz27fHUSsFCkwxRYQIPfQwZx5NNHGCE74wbSthy6M8yjM8Qzvt/rFe57r/PkuWNGly5GiggQ46iBHjUR4Fandfa6KJDjr4Lr7rwArm1mO74iIHh3Oco402LpjBmv7QYE2UKDe5yeM8TpYsk0yq+5eyp2x1jUL1TpKKoiiKomyPJiS9bpKNRVr1EEPSg1oQ4dKXkJQ7ELHTJdNuJ5IeN4mI17oIUuoOIal488A1JJXPusstmGWGYGTMpg8umrIu8ADwKpIOmEJS/K4TzH1vRXi2z01m28OICC+NCO/6kXTBo2wujhkCzrKxiOYLiLPd84jYrNGcp1kCEV8Lki44Z85Dkzk/62HtOCrd4PaCU2CiNxGrjRN8rtarIIF8jg2h5bchYrN6I4wCQUraVdMuFe2mQ+sHEMHd2Tra1DQ4pRo85Bq7wFoR62XkezKEXiOKoijKvcm2f1Xu7OwEwPM8RkZGqqrzzDPP+HUcx+Gf/JN/UnV7uVzw77yxsXGTkncPYZHiTvGRj3yE1157zX9/9uxZnnnmmTKBIsDAwAB/8Rd/wZNPPukLH8fHx/md3/kdfvInf3LH+7Vn7MbkmNa33HqglwgiwBwSAfcgArdeJJLOVvTFTlVj3d9WCER4JbM8jHivbzRtSK3+3m8EHkW8va1L3nrnx4rnoqb8G2toQ1HuNA5b/yKk46yKoiiKoihbUNrjekDrIzD+WXFNS3ZBtEnEX6U8uDFIHoJog2xPdEv5emg7A21vgPSLsp/VKRHR5RfBWRbhnBXPJXrAcaHtrNQ7CFgx4sx5SEmyIdkJEc1Z4RyOiOfs9nrFiHcKx5FjbD0LSyOQGYNSDty4OOk1nzpYx6MoiqIoiqLcFeTIcZSjXOEKM8zQRx+ttLLAAkWKRIiQIsU1rjHPPF100UQTt7mNi+sLkwDOc5455niSJ3k3wWQeHh7P8ix/x98RI0YHHf7+CxRYYYUCBV/c5uAQD6Uw5kKpVFb0FiVKihR58jTTzDIyIWeUKHHivtguT54YMQoUKJnYL06cBAkiZrCrXgGdh8cccwDMMkucOE00scQS44zTTTc5cpQoMc88zTTzKI+uEbYMMMApTjHMMIc5zG1ul7n0FSiQJ08DDRzhCFGinOSk7zC3E+5rdwM7IS5ycBhiiLOcZYQRxhjzBXjnOMdNbvIaMn59nOPq/qXsOZtdowfdSVJRFEVRDhIXEVHH5xAx2k7ghJ6vA18P/DMCQZiDiOjsnPb2TneOwImtE3F7A0npG0Sc2eZDbbiI6CyPCLOsO51NTzqNiLYuI6Nn7aaNJYK5722aYQOBO1wXkm6Yo9zdrYikC25lXRHdpFwOuImI8uyxjVKePmjFdCBisRXKXfss06Z/Dvie331b9G0niSLpYefBRGflnyvI+bzfbHeBJ4DtjvaNIOcxY9rD7LPy3Fwy2/tD9aqzHSlH0+CUzfCAZxFHRJDrcorydGOQ78kctacbK4qiKMpBZ9v3Sffff7//em5ujhdeeIHHHntsw/LpdJpnnnkGx3HwPLnNfsc73lF1ezdu3PBfV4q9lOr5rd/6rbL3/+2//bcNz2csFuM3fuM3GBoa8j+zX/u1X+MnfuIncA7qrO0bTG1y9b6rAJx+7fT6BSC4W6wUmZXMurhZ5s0yhwjieoEHzfYu5E50ApkqZtXUtxG0nVLGPl1Tr4BE4zs5bUgU+CXgB5DpbFzTB3s8NrqPmT6cMOU1ytpTrl411+bpTa5NZWs2+0VIqQu9NpX9il6byn5Fr03lYLP+TCRXl+8D4HTTa+tu39YMJvNfhWgjNJ2A2echNyf7cxzwCpC5JS5qHY9BpEHKtw/V3o4bhfveD5d+GbxREcgVlqCYEWc715H9R5vFsa3xuJQ/SIKstkE5f4vD0DIgDm3ZSSjmIBKHZI84zwGkBqT8DrJnf//cqBxfi970H0T0/6RSLXqtKNWg14lSDXqdKLtNnDgODvdxH4ssssoqUaIcvXoUgJXTK6RJs8giTTTh4nKDG6RI4eICMMqoL84aZpg22hhiyG/DweEdvIN22nmBF7jNbeaZp0CBLFmmmCJGzHePK1GiQMEXj4Vd5azoLUGCJEk8PDrpJEmSZZZJkKCVVpZZpkiRHDlcXLJkKVHiEIdIkGCFFeLmscACefI1nzsHhw46yJJlhRXmmCNPniaaWGDBFxZavA1izyhRvoVv4Q/5Qzw8XNwyl74YMVpooZ12uumml16+hW8pE8ls131tP1LP37+dEhdFiTJgHmEGGKCTTnX/uofYr/+HN7pGlbuP/XoNKvcWeh0qylomkHS1ViSFzbq53We+L6/V8H1xkTQ8O289iHva+8z6zwHDSBpRP+KqZkUmbzZlhpGUviOImO5Bs98R4POIkKwRSQ1cMP1eMX2fM2W7ERe360ia4MPm9QKS9rdCIFBzzTrrXtYCPGL6shvubi4iKowQuOi1mWNKIv4AK2aZRc6fTSmsdHezIrVeUzeBiLn2kkHkvG/0uVZ6FexE9DZmllPIuWmnXDyHed+OnKNJ068xtpfCdq+kwen/ytq4iIjnSogj4gTlo/WjyHf0NPI9aYPQr0yKsn/Q776iKLvFtjO9nnjiCRKJhO8M9+EPf5g//uM/3rD87/3e75HNZsuEV+9+97s3LB/m1q1bTExM+HU7Ojq2qKGsx5UrV3jppZf89/39/Vt+Bo888ghPPPEEX/rSlwB4/fXXuXDhAm984wG1IetAfNQr+My7PwPA6ac2+IfrINO7hKd8CRNFIqxwRGvd6KwH/CEkaplF7lTzSGQcFqvZfRVD65uQu9U3Il7uOzltyGPAfwM+BLxs+lMItW3d9R4G/qMpr+wpn/mMuTb1ZlDZZ+i1qexX9NpU9it6bSoHGzvTRzmfmZZ48nTTU5vUq4NSAdIXRCxXzEK8E9wEOBFxFSvlwCuKqK2YlXLpi+JAVo+wreONcPqHYPR/w8Ir4nZnBXSOEdC5SWh5EI5/t5Q/SDgO9JyDeJucVxARXRg3Ic5zbYNSfgfRv39KNeh1olSLXitKNeh1olSDXifKbtNHH5e5TA89dNBBiRI99ND8mWYAlk4vMcUULbSwyKLvStdLL/30s8giadKMMw6IwOgiFznL2TKh0kbCpmWWfUGddZqLEPHrWhGd3YeLS5QoCRK00QZAgQIddNBEEw4OnXRymMMUKTLPPHnyLLPMCis00MDDPEwXXZwxc/j/HD/HNNM1n7sECTrpBGCSSW5wgzx52mjz+2lFeq20UqTou/Sd41yZwGqIIeaYW9elL0KEFlpooIGjHOUb+IYygaI9N9t1X9tvbOfv326Ji9T9695D/w8rdxq9BpX9gF6HirKWIiKAakDS1WKIcOvd5vvyVA3fFzsPfokg/S1GkGZ3DknHu2Derzen/fezdk77YST18HHT11nTx3A26yKS3teGpAtmgIeQueunzfYMIj6LADOmXwXT7yQiunoQOMbuubvZ+f2TBCmMraE2QARfkwQeADFzXA7l7m4OgTAH5Lzt9R28Q3Wfa71eBeuRq1huZAuSotxBsDL1VFkf/V9ZPQWC6/4qmF+T1gpd7foBRHB3FvXTUPYf+t1XFGW32Pb/vHg8zr/8l/+SP/3TPwXgT//0T3nXu97F93//968p+/zzz/Of//N/LnOfGxwc5Pjx41W19Td/8zcAeJ6H4zg8/PDD2+3+geCzn/3smnUf/ehH+djHPlbX/v7u7/6u7P0/+2f/rKp63/zN3+wL6AA+/elPH1wBXXud9ey0NJWRk31vhXJ2yoZVU8dFouSbSBR5CZmaJWLKWtGcR+A4VzT7i5injTyfQKK8ncQBvhGJur8API1MNZE37R4HnkT863cqclQURVEURVEU5WDhJkTUVk+9elgaEZFcMQPZCRF0db0ZEqE5G1enYf6SbLdisKWR+tzHHAcOvROSHTB9HuZfhuy49MGNQ/IQtJ2Fzsd3RWC2JziOOPS1npXzlBkLjq+hD5pPHSxXPUVRFEVRFEXZ55ziFM/xHAC99DLOOJNM+m5zk0wyx5zvAufi0kYbPfSwwgoJEvTQwzjjTDDhi7ZGGFlXvFQpbPqaeSyzjIuLg0OUKB4eDg4lSn679nWcOIc4xJt5M6/yKre45TvOddNNjBittFKgQIIEq6zSTDNjjJEnzxJLHOKQ36d4nZ4IDg4zzPgueiVKxIgxxxwODlNM+Y55YZe+V3iFeeZpo61MfPU23rauS1+UKK20coQjPMqjGwrgVNy1d6j7l6IoiqIoyr2Ng6TN2Ugigsw7Xy92Hnx7t95S0dYQIh4ZQRzBqpnT/hSYSE8EbmPAEpIOGDf7KAFHzesls58F4HmC+exbEfFdypQvIsdrxX4ps7+vsXvublZQmCXwDZhH0gbDDnRW1BczfexHxIC77e5WD/V+rvVS6Qi4uEG53XAQVJQwI8i1nkGc5wDOUO6IOI2kL08QiEtHuPudDBVFURTFsiP3gT/zMz/Dn/3ZnwEibvuBH/gBPv/5z/N93/d9HD16lOnpaf76r/+a//7f/3uZ+5zjOPzQD/1Q1e189KMf9V83NDQwMHBv/Mt+xzvesWbds88+W/f+nn/++bL3g4PVhSqV5b7whS/U3Yc7ThSJ5IpbFaygSDDVSqlim3VriwHNyLQwywSiuHmz7EPuUtOhPlhRnhXe2ZxUB4kqG5FpdR6qsb+1EI4c38XuR46KoiiKoiiKohwsoinILddXrx4yY7LMTgEexNvLxXMg7+PtkEtDdlJEdJmx+gR0cO8IzNyonKN6z5OiKIqiKIqiKFURJcoQQ5znPKfNHPwTTFA0j0kmfVGbi8sCCzTSyNf4mu+O1kADSyyRIMEEExznOGOMVSUuaqONDjqYZZYVVihQoETJF555eJQolbnPddLJKU5xghM00ECJEq/zOuOMkyFDG2000kiKFA008CqvMsccAEmSjDFGM83EibPIot9WPedullk8PDJkaKSRLFkyZOiiiyaaylz6xhhjkklfKPgET/htX+Yyz/EcQwzxb/m3XONa3QI4FXcpiqIoiqIoyu7SQzBfvYMIuSrT9KolPPe9FYo9uk65KCIeqfYuP4qk2Z0ncFubQFL/PER0Noek/C0j/XfMOheZy/4k4gHQhgjsUkjKYIwgvdABXjf73y13tyLicDdG4JzmIKK5ldD7NvO61fQ/gqQ17ra723ao9XOtlz7gMtCNeBakEZFSpWhpNxwEFSWMGV3HjK7TTvl1iHnfjlyPk8h3eAwV0CmKoij3DjuS9fXoo4/y4z/+4/z6r/+67y73sY99bI1DmnWOAxHPPfDAA/z7f//vq2rjs5/9LF/4whf8+m9/+9t3ouv3JC+//HLZ+2qFiA888EDZ+ytXruxYn/YcFxGkLdVRN7/B+igy3U0DElm2IVM5WBGdh0S2LyECuzmzzk47kzB1IXCea0Mi4zxwBHiM3Z96ZK8iR0VRFEVRFEVRDhbRBold6qlXDyXTWNEsNxLiRVMioLPlSvV0sgIVmCmKoiiKoiiKskMMMsgccwwzzAAD9NPvC8O66KKddl7jNWaZJUmSRRZZZZUSJVxckiTJkaNEiRQp+uknV2Vw1k8/XXQxzTQLLFCkSIwYBQq4uBQpEidOjhweHg000EknHXQA0EUXrbRyneuUKJEjR5o0WbK00UaBAlmyeHgkjc9AhAgeHje4AYgDnW2jWqJEaaKJNtrIkqWDDuaYI0+eFCnu4z5Oc5oTnABgiik+y2dZYokTnMDD46t8lRQp4sTpMemJ5znPHHOc45wK4BRFURRFURRln9KLCDxuIyl0HrXPkR/GQdLwCsBhAgHadhlE0v+GkTS7fkRE95rZ3o84zo0TpAcmEdFU1Lw/i8zRfwkRr1lRyylEqLYX7m5xxCnvGoHor9f03foCtJhjWzH9eBNyHq3w7l6foz/sSNiLfOaXkM8zhTjP7ZaDoKKEyVUsN5rmNoVck5XlFUVRFOVeYMfuVX/5l3+Zr33tazzzzDO+iK4SK37zPI9UKsX//t//m2i0ui783M/9nF/XcRz+1b/6VzvV9XuO0dHRsveHDh2qql5vb2/Z+2vXrlEqlXBdd8f6tme0IpFIPQK6tZe2kESmV+kgiB5dxN/Y1ssRONPlkelmWswyi0SS4Y9j1dQ5Cnyz2Z9OPaIoiqIoiqIoyp0g1rq39Vwze0jELAuL65ez6205d7dnHVEURVEURVEURakeB4dznKONNi5wAYAYMQAOc5hLXGKWWQBy5JhmmnxoNsc4cd+N7jrXucAFsmT9bZu5px3jGP30kyXLCivMMIOLSyONgDjQrbLqu8910EE77b6ALkKEOHEKFEiQIEuWZZZZNY9wH1OkcHAYYICjHPXd3SaYYIUVJpigVKVvhIPDPPO8xEu+2A8gQYKjHKWZZloJYs0sWYoU8fC4znUA0qR94dwoo/TSy2lOM8wwbbQxxFBVfVEURVEURVEUZW9pQERGNuJw2Dhdbyu80NNF5rzPI2K67SbOOsA5ZH78C2ada/bbjjhA3Tblcki6YAERoTUhgrRGRIRmhXMtZn/LyDnYC3c36572OCKgm0XSGDtCZZaQz6PblHNMv3WOfmEjR8I0gXButxwEFSVMvGK5wei6v76yvKIoiqLcC+zYPVg8Hucv//Ivef/738/HP/5xIBDMWayo7ujRo3ziE59gcLC6eTB+4zd+gy9+8Yu+MC8Wi/He9753p7p+T+F5HhMTE2Xr2tvbq6rb1tZGNBqlUCgAkMvlmJiYoK/vACq6zgJ/jXwDCjuwvwQimOtEIlqQyDuNRLwLyF1mwiw7TLszpmyTqeuY7RFkCp1m4CHEfa4RnXpEURRFURRFUZQ7R8tDMH+hvnr10NAHi5ch2Q3Lo+IytzoNia6gzOq0rMeBZE9QT1EURVEURVEUZR/h4DDEEGc5ywgj/B/+Dx4eb+ANvMiLtNPObW6zyCIuLnHiRIhQpMg8875TnIPDczxHL71c4xoAl7nMczzHEEMMMogTSqM8ZR4rrJAmTSONrLDiC/SsMM8zjyRJuummiy5/e44cMWK+0K6ZZpIkfQc6xzwiRHxR2xGOECECwDzzjDBCH32MM06xCu8Iu1977FZ410wzDTQQI1bWx9d5nSRJxhn3+9hAA/30s8giadKMMw7AAANc5CJnObuu6FBRFEVRFEVRlDtLNyI+akGEW0W2JxYrIsK2dmAeuIK4pg2xfSGaY/ZzFnGi+wPEPW8MEQL2ICmEGUS4FzV9wGy7ibjiWTeoPCKw6kdSBPfC3S3snvagaXMJEfpZ5zwPOGn60ICmMK7Heo6Ee+EgqChhrCC2GxhF/q5MA6HRdabNegfMtEPq6aEoiqLcW+zo/XQ8HudjH/sY3//9389TTz3Fpz/9aRYXRavuOA6PPvoo3/Ed38EHPvABmpubq9rnP/zDP/AzP/MzQCDAe+9730tXV9dm1ZQNWFxcpFgsH5hqaWmpun4qlSKdTvvvl5bqsXDbBzyE3AHu1FQsJSSSPYVEiAVENNeNiOFWTVttyF2nvfO8BdxAIstuJFpuR34BgN2ZeqSAuOKpf7qiKIqiKIqiKLUQie1tveZTMG2G7JK9kB2H+UsQb4doSpznculgeyQJbkLqHTRKBVgagcwYlHLiotfQJ8fiaqCmKIqiKIqiKHcLUaIMMEATTQA8yqP8Lr+Lg0OOHEWKuLjEiJEg4Tu95clTpEgTTSyyyC1uscIKceK+y9p5zjPHHOc454vookR5I28kR44kSV7gBRwcPOPfECfOEkskSPhucylSvvhtmmnmmSdiHjFitNLKcY6TIgXAEktMMkkHHXwD38Ayy6RI0UsvceK8hbdwgxu+eC5NmgIFPDy/L2FnOhcXD48CBV/o5+ISIcIyy7zIizzGY2V9LFDwnfEaaaSPPk5zmhOc8Mtc4hITTNBvPBxGGGFAvRIURVEURVEUZd9RIHBjm0DS5yLb2J+LpPZNIHPejyPipvOI4Okc208hjJrnKST9bwaIISmCGcTVzSNw01sgcHibZq0bVAN75+62kXuaF9qu7mlbs54j4V44CO4XNCV1fxAWxPYif+8uISnJKeRvTTq0PYkKYhVFUZR7j125N3nHO97BO97xDgDm5uZYXV2ls7OTaLT25gqFAr/7u79btu5tb3vbTnTznmR5eXnNulis+mTGyrLr7e9AsIBEqVtPcrk1rtlP1jzfYNYPI9HvHHKXeQSJfDuRCD+KRLkvEkw702v61cfOTz3iAReRCC1Xse0ycuc8xN0ZoSmKoiiKoiiKsn1ys3tbz41C+xDMnIeUGZLLTohozgrncEQ8Z7e3Dx4swZnnwdxFSF8Q4VyYxcsiIGwfgrZBcDRQUxRFURRFUZS7jYtcpJVWZpnFwSFOnCaaiBKlRMkX0uXMwM4SSyRJcolLnOQkAKOM0ksvpznNMMO00cYQQ34bgwwyxxwODkc5yi1uMcooq6wSI8YCC7TQwhRTeHikSfMSL5Eixau8yhhjZMnSQgs99NBBB8c5jodHlCittDLGGAssMM00DTQwwwy99AKQIMF38B18lI9yjGPEiTPPfJmILkeOAgUAX0zn+ema+C50Li7LLPMsz/rHP888Sywxi8SeHXTQTLPvhgfQRRfttJMmzSST9NPPGGMqoFMURVEURVGUfchXkdS6WSSNziEQcXmb1NsIK1zLIPPcn0dS/E4j6X1tEIqg6mfMLKdMm+1I6t9lRLiykYjuhunbnXSDUve0nSHsSHiviMk0JXV/sZEgNk0gnFNBrKIoinKv43jW1k05UPz8z/88v/ALv+C//9Vf/VV++qd/est6N27c4Pjx42XrisUirutW1W5/fz+vv/66//4LX/gCX//1X19lr8t5+eWXOXv2rP8+Go2u249IJIKzQaLgf/yP/5Gf+7mf27Ktp556qnzFNDLVSxHw4MlPP8np106vU3MdbFfC35w4PPWDT0mkmEREdavI1Bpm0swnbz/J6YbT8ATl0+JcQyL/EiKu6wLOhLaHph556v+pOI4KnnzySU6fXuc4POBZxIMeJOqeYt0o96n5pzATn9bWRg2s+Ty0DW1D29A2tA1tQ9vQNrQNbaPONirjiq997Ws8/PDD2+rHfuaOxlFL16EYTKLyZNenOd302tad7joHTz5bXRsVPPmud3G65RYsDsuKYhayk1DMQSQOyR5xngNIDUDPuTVCs/167eJ5MPksLJpArZiB7NSGx/bUJy/V3kaN7NtzpW1oG9qGtqFtaBvahrahbexoGxpH7WEcVUHl5/FhPsxX+Aov8iKTTNJEEz30kCHjC8hWWGGBBd9x7vuf+n5ixGikkRIlima2yChREiTofLKTHzj9A0RD6U8eHhe5yAUu+GI8y+u8zk1ucoQjZMkywQTHnjoGQIFCmTtchAgNNND5ZCeJ0wl//TWucZGLgAjYuujiTGiwK0qUS1ziZV5mjjlWWeXcU+f8Y7TiubBo7jNPfoZrp69RouSvtyLDOHG+k++km25e5mXGGWfReDYc5ziHOMQTPMHsU8GELjly5MkTI0acODFivPfJ996133NtQ9vQNrQNbUPb0Da0DW1jZ9vQOGrv4qgZJLUti6Teff7JJ5k9fZpZJB3PpPvVJKb7wFNP4SJpfwlEmBc1rx3g2558kge2eV39ylNPkUfS8fKmjZg5Fg+4+uSTjJ4+zZI5rnZkvn0XEVcdQsRpCeB9rC9o2c3vhxVC/dVTT617bh3+f/buPT7Oqk78+Gcm96RJk6ZtmpaWNpQApSXlXq4FXFGWmy6Kirte19XfivtT1v2JC4Lrrqi7K/7cXRe8AV5WV9EVRfyhKAWRYguFlkLpjV6hadK0aZvmnszz++OZTDO5ddJcJpfPO69h+jxznmfOhDN55jvnfM8Jhxdee+WVnDxB3+c+x+CeYxBDUjn0n/850JDUCf+7Gs3nCIAnCRNiIfxb2jMhtiH+HNn0PVR4LLwOn8Pn8Dl8Dp9jYjzHWIyjTBxP0aOPPspVV101Iud+73vfywMPPDAi5+4pI6P3guapJs8B9My3jMVi/ZQcvI6OjkEf097efnxP1kYY1XWfmqb7r6G/lxUlTH7rOq69234II/SuW6zHY23AyfReU/4IYUQ8F8gnnEJnAcM79cg6wkglBmwleZ11gJ0cnVaiLV7HXCRJkiSNcaMaR8WO87im3ccu059IJEyKyy4OV2kDKJiXXCaaE648N95WaTu4LkyeC2LQsDVcXa97oNa48+jqeg2bw+TBDAM1SZIkaahGNY5KURFFHOIQESJEiVIQH77UTDNAYqW2LLLIIINMMskmGwiTz1pppYMOssiinXa2sS1pdbUIEZaylMUsZhvbqKaaNtrIJpvlLOc1XuNVwglS5jGPAxzotQJcJ52JOnQXELCRjexnP6WU0k47+9nPVraSTTYzmUkuuSxkIfnks5vd7Gd/4jzt9P7dRoiQQQZRomSQkUjkC+I/HXSwmtUsYQlNNBEhQhFFBAS00MIJnEBGjw65rkTASHymzIhz30uSJEkpS3cc1U44BC+To0Py+kugi5A8PK+zn3IdhAluUWAvcMoQ6xjpcR+L/zuLcDje1PjtYHz7COFrmEqYPNc11Dhdq0F1rZ72dLx+HRxdMS+TcChj13BLCRySOlZFgOWEq2uuje/r0bvOEY6uFSJJ0mTjCnQpGmsJdMe7At2BAwcoLS1N2tfR0dFnYl1fysrKqK2tTWz/8Y9/5Pzzz0+x1sl6ZpTm5uYOKpkPUp+pppc/J4z2DgANhJ/cs+OPBRyNAHuKcnRteAg/2cfi+/IJP+2/Ob6/gXDd44AwGigELgNmdDtfHbAhfr5zCT+RXgbd+jSHrgP4frxOmwkjfgiT9gq71RNSm8pGkiRJGkPG4kw1IymtcdTPToDm1wd/XN4ceOtrgz+up1gHHNkGzdUQa4NoNuSVw5QKiI6z4CXWATu+H76Ow5uhJR6oZZdAZiF0NEBbPFDLnQVFlWGi4Px3j7/XKkmSpDHHOGoU46hj+D7f51EepZZatrKVTDI5kROJEKGTTg5xiEYaqaGGNtqYxjTKKed0TmcZyxLnWc966qlnPvOZxzxO4RSWszzlevS3Ql0NNWxiEwEBhzhEMcUsYhHTmZ4o8yIv8izPAlBAAU00UUYZhRQCYaJaGWUsZCFRolRRxUEOspGNNNPMf/Ff7GIXrfEfgGyyE8mEXYlzXfXqWmlvDnO4nutpoIF66gkI2MlOCinkMi5jRrcOuTrq2MAGIkQ4l3PJJZfLuCwpyVCSJEkaiHHU6MVR3wd+AOwgXDWpk3DIXkf81k44XK+vxLiuefGj3ba7hvflEg7vOwk4j3C43HzCxJJTYBARVN82E67G1Qw8RzhkcBFQGn+shjBp5XXCFaFmEg7RO4ujyS2V8XqYpKaxziGp40MHsA2o5ugKdMO1pockSakYi3GU18BJpqCg94K7bW1t5OXlpXR8z5lh+jrf8XruuedG7w0xk6OryEVInh6lK+LuS9eUKt2j8K5juxLpuiLaTmBV/LHK+OOvEEYLPaOEMsIoPYfw0+lw2kb46beZMBKHMDqf3q1MVyJfTbf6b2N4E/kkSZIkDbtRjaMyppC8jHcqIvHjhkE0M0wkK5oAgcqRbWHyXGdzfOU5YOoiyOkWqLXWwaEN4eNdq+4d2TYxXr8kSZKURqMaRx3DWZzFb/ktJZSQSy7NNLOPfYntdto5whE66SSDDKYwhQwymNdj7vBCCqmnPpFk1j0JLhX9rVB3EieRRRZTmcqrvMpe9rKBDZRQQiGFHOIQz/M8EK5S10gjGWRwAicwlamJ5La98aF0lVSykY28m3fzJt4EwCM8QjXVNNKYqEv31eOi8aGvESIEBHTGO+g66WQhC+mkk1WsIkKESiqJEeMVXmEveymkMFEHgDLKyCWXHHKoGPYOOUmSJGniGs046gzgXsJkt4AwYa5rVblUeqliHB0SCMlD+7rOU0g4bK8rchpcBNW3CmBl/N9lhEMENxAmFE0hHI5YSzg0sZxw+GIWMIdwyGBV/GbynMYDh6SOD5mEv29/55IkHWUCXYrOO+88VqxYMSLnnjVr1oicty85OTlkZmYmLave1NSUcgJdQ0ND0nZxcfFwVm/0zCVs/QFhVBojjFK7IuaB1njvnjjXVS6DMNKdQTglTdd0DbOBPfGyXetU13M0cS7C0XWqYWTWYK+O3++L17eE5EiF+HZJvF61hBFLNX5yliRJknRUVgHHlUCXNXwTr0wYzfFArSUeqGWXJCfPQbidXRKuRNdSGybRNVebQCdJkiRNIJVUUkEFm9nMHObwGq9xmMM000wWWRziUOLfWWTRSSfTmU4ZZUnnaSDsv8smO+l+sDLJpDL+06WUUlazmoXxzqwaaqiP/xzmMAEB+eTTRBMAZ3M2S1iSOL5r9bcaahKJf9vYlniOCBE6us1s2T1JrrsgHotG4sNJY8Q4wAHyyOM8ziNGjEwy2crWpDp2HdO1Ch5AFVVk2k0uSZIkjUmZwDTCIXfZhEP6YoSJdF2RQn89Vd2T57oPA+xalS6bMFmtawRkdo/7odZ7KbCao0MBuw8VzAQWEM6xXxx/LYuBS3E1KI0/DkmVJEnjlZ+7UzRt2jQuu+yydFdjWMydO5ft27cntg8fPkxpaekxjzt48GBS4l00GqWsrGyAI8awUwij0TzCNdEhef32rqS6vnTtD7rdd0XXp5K8nnsAPEm4TnUlYRRQy9EEu5nxehB/vOp4X9AAek6VU9hPuZGYWkeSJEnSxJG/AA6uh6C/YKkPkYzwOCWLxQOuzvh9Zj+BWmZhmEDXVS5moCZJkiRNJJlkci3X8n2+T0BAhAj11NNMMzFi5JJLBhnkkksrrUSJMo95SSu01VFHPfVEiDCTmQCUUz5sdayiioMcZDObqaSSecyjllraaCNChHzyOcxhmmhiNrNZzOKk46cznRJKqKeeWmqZxzyqqU4k0C1gAS/wAhlkJBLnOuggg4xeq87B0YS7MsqYxjQgTK7bxS6yyOJkTk6qYzbZzGQmufEOuUoqqRqRDjlJkiRJw2Ef4Sp0NYTD6rIIk+gOxh/vnhAXkJxM1/3fsW7bEcIV7bI5mtATgXgExbBFUFXxeqY6VHA5rjin8ckhqZIkabwygW4SOumkk5IS6Pbu3cuCBcce0FhTU5O0XV5eTlZW1rDXb1ScQPjpvJVwSpnuq88NFJV29LEvGr9lAhf3eCxCGOkWA2vj++b1KDPSa7D3nCqnoZ9yIzG1jiRJkqSJY8bFsOdhBp5xpLt4sDSjZ6AkovGAKyN+39FPoNa1v6tc1EBNkiRJmmiWspSDHORxHieLLKYxjcMcppPOREJdBhnEiFFIIQc5yHrWU0ghDTQkVlkro4xccskhhwoqhq1+ESIsZznFFLM23tnVtZJcG23UUQeEiXKVVFJLLYc4RAcdZJLJVKZSQAH11NMWHyrX1m3I3AVcwM/4WWJlOQhXl4sRSyTQ9awPQDHFbGVrIkFuAQt4jdfYznYWsCBRxy455FAV/4k4RFWSJEkas9qAuYSrtTXF97UAh+P/7j68r52+e62CHvddyXatHB0wW0aYzJYDwxZBjYWhgtJocEiqJEkar0ygm4ROPvlkfvvb3ya2N27cyAUXXHDM4zZu3Ji0vWjRomGv26ipBxYBzxBOK9NAuC5617Q0maQ+3UWUMLqeC0zt4/EI4frsi4FthOtQd00rU87Ir8FeDmwCZgA7CV97HclrZtcxclPrSJIkSZoYohHImQYte1M8IAY5JeFxSpZXDg2bIHcGNO4MV5lrrYOcboFaa124nwjkzjx6nCRJkqQJJUKEy7iMEkpYwxr2sCcpAa2JJhppZC5zaaGFGmqoj/90HV9GGQtZCIQrxmUOc8dThAhLWcpiFrONbVRTTRttNNNMKaU00siLvMga1jCLWUnH7o3/ZJPNiZwIQHa3IXNTmEI55exgR6+EuZ7JcxAm1+WRx2EOs4c9AOxkZ+J3EBAwi1kUU5xYga6cciqoGPbfiyRJkqThl004hK0CeB3YT5gglws0kzzMLiAc8heBPqKHUNdqdU2Ew+VyCJPnFsYfr2J4h+6le6igNBockipJksYrP4tPQhdccAH33HNPYnvNmjW8//3vP+ZxL774YtL2eeedN+x1GzVtwNnAq0AjYRJdABwijKpj8f3N9B9dQ/jpPka4Vnw+YUTQn0zCtdcrh1j3waoAVsb/XQbsBTYQvuZCwuTB+m6PD/fUOpIkSZImhswCyCqFln2EgdOxZITlMwtGumbjz5QKqIsHarllYVLioQ2QXQKZheHKc231Rx/PyIVoTnicJEmSpAmnvwS1bLKZxSxe4zVe5VUgXP2tltrE4zOZSS65AFRSSRVVI1bPTDKpjP8AnMiJrGAF61nPAQ4QEJBLLjFidNJJBhlEidJAAxEiHOYwAQHl3YbMTWc6J3ESr/M6HXQAfSfOdYkQoZBCSillHvMSq/DtZW/id3CQg1zN1SbMSZIkSeNQObCRcMW5dsLhbVmEQ/Q64/u6puRoJBzaF6PvJLoIkBG/zyVM4jkL6Oq5qoQRi6DSNVRQGg0OSZUkSeOVvQaT0Bvf+EYikQhBEIaMDz/8MP/xH/9xzON+9atfJW1ffvnlI1K/UZFNOLXMMsKoej/hJ/fC+ONNhMl1UXqPC+1aPKH7anVTCae8SWUM6WjLJJzWZjVHp86pIYxQuqKUCCM7tY4kSZKk8S+IQschyMiHzoZjl8/ID8sH0ZGv23gTzYSSpbB/NRTGA7GWmjBprq1boJZbdvTxkqrwOEmSJEkTVs8EtS6VVFJKKWtZC4RJdN3lkENV/CfC6K0CXkEF/81/c5CDFFLIa7zGPvaRFf9pj//kkMMJnEA99dRQQ0W3IXNZZJFJJnOZy0520kILkfgPhMl0XQl1GWRQQAFFFHESJzGf+QDUUccGNlBDTeJ3s41tvX6PkiRJksa+CuC/gYOEQ/lei/87RjicrY1wTvwMwqF9mUArR5PouvZ1JdZBOFSwgnBo3yFgGuHwuCoYxQhKmjgckipJksYrP49MQrNmzeLss8/mueeeA2DXrl38v//3/7jqqqv6PWb9+vWsWrUqsV1aWsry5ctHvK4jpmsN6TJgPnAC4TQXTYRR9uuEU17EODo1TaTbrUtAGI23xcs+DywZ8doPXhXhNwmbCae1mQfUcnR9+JkQn5x0ZKfWkSRJkjR+te4DgnhMFOWYy3VHCMu07huFyo1DxVXQdhAaNkNRJRTMg5Za6GyDjGzInRmuPAdQWBmWlyRJkjQpDbRCXTnlVFCR9tXWAoKk5L3uq8gNlNTXQQdFFDGDGexjHznkECVKO+3E4j8RInTSSUCQSKCLJYbChqvYlVBCPfXUUss85lFNtQl0kiRJ0jgXcHQVuVj8PqPb411TOGYSDvXrmis/O15uGkeHAwJMIVx97t04cFYaKoekSpKk8cg4YJK65ZZbuOmmmxLbn/rUp7j44ospLCzsVba9vZ2Pf/zjiRXrAD70oQ+RmTmOm09fa0i3E35qLwR2cjTChjCiLgDyuu2LEk6X0UEYrecSrkM9FkWA5UAxxCcnpcfkpOG3CE6tI0mSJKk/bXUQze62IxomeiVmGokv093ZRiK5LpoTHqfeIhGYuRyyi6F+bbivoEegFs0JV54rrgrLS5IkSZrU+luhLl22sY0yytjHPraylUIKOYmT6Iz/ZMR/aqmlgQZO5VTKKEtaHa5rBbopTKGIIpppJpdcsskmiywOcpAWWmimmQgR8shLnLe7Qgqpp562+NDYtsQQWUmSJEnjyTbC4Xz7gK2EQ/kWALsJk+PyCVecOxjf7ooMIoRD4/Lix2TEj9sIHOBoQk/XCnWShsYhqZIkaTwyFhgHnnjiiV77duzYkbT96quv9ipXXFzM0qVL+zznjTfeyOc+9zk2btwIhCvMvelNb+JrX/saZ555ZqLc1q1b+fjHP87jjz+e2Ddt2jQ++clPHtdrGTOOtYZ0A+En9kzC6WuihNF3do/zREme2mY38CRHp9EoJ0zWGwvvtAjha15M+E1DNWOznpIkSZLGpo5GyCyA1gMQySCRJBd0Ld0dCZO8IhHCYCkKmfnhcepbJAIlS2HqYjiyDZqrIdYWJirmlcOUCogaqEmSJEkam6qpJkKEIooopZRWWpnK1F7lmmkmh5zEynGrWZ1YRe9FXiSffNppZwYzCAhopZV22umggwwyEgl1bbTRTjsllCStQAfQQAMA2fHOvOxenXqSJEmSxoNqwmFuRUAp0EI4pC2fMGkuJ/54lMTUjgSEQ/y6kucASjBhRxppDkmVJEnjjZ9NxoHLL7/8mGXuvfde7r333qR9y5cv7zP5DiAjI4Mf//jHXHDBBTQ2hoMZn3nmGc466yxOOOEE5syZQ21tLTt37iQWiyUd98Mf/pDS0tLjf0FjxUBrSM8gXJEuiN9nEUblEY4m1AXx/V1ReB3hdBqbuj3HJsKV7pYydqbRyCR8vWNjclJJkiRJ40VmEWTkQ0YOdDYBUYh0zTrSlUAXJZzvMwjLZeSHx2lg0UwoqgxvkiRJkjROdK3y1pXUNoc5TGEKhzhEBx1kkslUpjKHObzO67zGa7zO6xRTTBNNQJiEd5jDNNJIE01MZzoVVHCYw3TSSQstNNHEQQ7SRhsZZCRWretSRx311BMhwkxmAlBO+ej/QiRJkiQNWVuP+5z4fWF8XzMwJX7fNUc+hMP5uqbRKCJMoDsSv0U4mlhXNlIVlyYxh6RKkqTxwgS6SWzJkiX89Kc/5aabbuLAgQOJ/a+99hqvvfZar/L5+fncc889XHnllaNZzZEz0BrStcBewgi8LV72COFUNplAB9AUv+8+lU0psIuj02jMjJ9vNWGy3nLGRhKdJEmSJA1W8Wmw70nIyCUxu0jQEf93BAji2/FZRzJyw5Xqik9LY6UlSZIkSSOl52pvTTRxEidR1mNIak38J4sspjGNTjrZxS7aaKORRjro4ARO4BVeoZZapjKVaUwDIEaMjWwkRowiipjGNKqpZgpTyCabBhqopx6AMsrIJZcccqigYhR/E5IkSZKGSzbhMLxqwvns8wmT39qB6YRD9tq7lcsm0UvFAcIEuUzgdaCecBhfHjCNcK78s0bvpUiSJEkaY0ygm+Te9KY3sX79em699Vb+53/+J7EaXXfZ2dlcddVVfPGLX+TUU09NQy1HUH9rSOcQJsIdIoyumwgT6NqADMIFFdoIx4VmcDQSbwB2dDv/TsKofCHhSnfF8eeTJEmSpPFm2rkQvS/8dzQHYq0QaycpgY6AMHkuPh9oNCs8TpIkSZI04ZRTziY2MYMZ7GQn9dRTRx3TmZ4oU0cd29lOAw3MYx611NJAA4Xx9R9ixNjFLqYwhTLKaKCBgxwkSpRssmmjjSKKyCKLIoqIEOEIRwgI2MUuACJEKKOMhSwEoIqqpBXqJEmSJI0f5cBvCZPkAGoI563P7lamlXDIXh5HV57Liu87TLg6XXv8lgvMIRwouwBXyJIkSZImM3sOxoEgCEb0/LNnz+a73/0u99xzD0899RS7d++mrq6OkpIS5syZw8UXX0xJScmI1iHt4mtIb41uBWDh5QvDRLg/ECbPQZgw10GYPBcfE0omYSQOR6e7KYnfNxBOY7M3/nglsI4wWc93ngZp69Z421y4MM01kZLZNjVW2TY1Vtk2Na5NqYDsEmithY4jELRDAFsbKyASYWH+NiCASDRMnMvMh+xp4XGa9Pz7p1TYTpQq24pSYTtRKmwnSpeJ0vYqqGAlK4Fw9be97GUDGyihhEIKaaCBAxygnnqKKOIgBznCEaYzPanMQQ6yn/0UUcRUpnKEI+SRR4QImWSSTz7ttJNJJhEiLGVpIrkum2xmMpNccgGopJIqqtL5axkXJkob1PhmO1S62QY1FtgOpd7mEc6Bn0U4TK85flu4dSu5wM6FC2mIl51BOIyvHZhPOFd+M+Gc+FlAEeFQvhmEc+Bfi8P2pPHGa6U0OfnelzRSjAeUUFBQwJvf/OZ0VyOtfvOb3wCw8K8XwnWEUXUW4Wp0XSvQdelaYKGYMOqeS5gcN71bmTpgA+FUOPPi+7bhVDYatETb9MOgxhjbpsYq26bGKtumxrWmXVC8GNoOQtshiHZAJMpv6t4IASxc+F0SgVI0B3LKoPj08Lgig6DJzr9/SoXtRKmyrSgVthOlwnaidJkobS+TTJaylNWsTqz+VkMN9fEfgCMcYQpTKKaYXexiGtNYzOKkVepmMYsneIIGGpjPfKYxjSKKKKQwkSCXQw6v8RrttLOABUSIJNUlhxyq4j89H1NvE6UNanyzHSrdbIMaC2yHUm+7CFeh20y4olxu/FYVf7/ULlxIBtBCOMd9HuGc+EWEw/YOEybeZcT35QEnAFcAS0fvZUgaJl4rpcnJ976kkWICndSfpYTrvxcQRtf7CRPiuiLsSPzWFalXkJw8R3y7hHAlulqOTpHj2FFJkiRJ401zNeTPhfwToK0OMosgIzNccQ7C1ekyC6CzI9yff0JYvrnaBDpJkiRJmqCqqOIgB9nMZiqpZB7zqKU2sTrcYQ5zIP5TSCEVVCQlzwHMYAancArb2EYjjUxlKgUUJJLyIEyQu4EbOJ3T2c52qqlOPEc55VRQQaZd35IkSdK4V02Y8LYjvj2LcPW4jPh2KWFiXA3QFC87n3Be/ELC+fI7CAfGTgXmAGcBVeBUG5IkSdIkZy+C1J8IcBlhAtwaYA/JEfa+bmW7prHpSyFhAl3X6nVt/ZSTJEmSpLEs1gaRCOSWQ/4BIALRzHC1OQIoPBky8iDWEW7nloflYwZBkiRJkjRRRYiwnOUUU8xa1gIwj3mJxzewgSyymMEMOuigqJ8OtSKKmMY0ZjGLqUwln3wWsKDPBLnK+I8kSZKkiaeNcNjeLML57qOEQ/W6Euimxe8LCFeXKyec034e4fz31fFzZMcfq8BBspIkSZJCxgbSQCKEK9EtBraRHGHvBhqA1wmnvGno5xxd+7N73EuSJEnSeBKNBzOZOZAzDbKmQu4siLaH+4vPCPe17IX2Q2G57sdJkiRJkiakCBGWspTFLGYb25JWh8snnwYaeJ3X2cEOGvrpUOvan0suZZRxCqewnOWj+TIkSZIkjQFdvUo5hMlyUwmT6eK9UcyK79tLOBd+vDeKPKAyfpMkSZKkvkTTXQFpXMgkjK6XA2+M359HOLXNDMJEu3qgrsdxdfH9EWBmfF/5KNRXkiRJkoZbXjyYyY0HQe2HIJoBGTnhragy3G4/FD6eOzP5OEmSJEnShJZJJpVUspzlvJE3spzlnMd5ZJDBDGYQIUI99dT16FCro4566okQYWa8Q63cDjVJkiRpUuqKBLqG5B0iHKKXE79VxrfjvVEOyZMkSZKUMlegk1LRQe8V6GYQRuN5QFn8sVXxfdnxcp3AFMKpb3IJo/iKUa67JEmSJA2HKRVQtzL8d24ZNL0O1b+DtrOACGx/FCLZYeJc/hzIyIVoTnicJEmSJGlSqqCClYSxZBllVFPNKlaRQQbZZNNGG510MoUpzGIWWWRRTz272c1OdpJNNuWUU0EFmXZtS5IkSRNeBcQjiHBI3uvA74B4bxSPEg7NmwnMwSF5kiRJklJnL4M0kABYB6wB9hBOXdNB+M6ZGv93J2EUfoBwtbmg2/ERwkS6BfH9VfiukyRJkjQ+RTOhZCns+yO0HYRD66HtEMQWh483bIVIJrTWQGYBxGJQWhUeJ0mSJEmalDLJZClLWcUqcsnlAAeop56gW4dahAittJJHHs/wDFOYwj720UEHmWQylanMZjZnczZVVBEhksZXJEmSJGkkZQJLgT8CB4H1hEP24r1RbI2XqQEKgBgOyZMkSZKUGuMGCY6uMNdImOj2JOGqcbuA3wO7gWaggTBhLgMoIpzOpjp+zCzC1ehqgHYgq9u+HcB04IxRej2SJEmSNBKKlsCWr8P+VdDeBLE2CGLhY+1HIDM/3L9/Vbj63EkfSm99JUmSJElpdwZnsIIV7GAHpZSSRx411NBOO1lkUUYZhznMKlaRRx4nciKNNNJJJxlkUEQRr/IqO9hBHXXMZS572Usbba5QJ0mSJE1AS4CvA6sIh+wF3W4tQD5hUt3jQC1QCWwmXIXOqECSJElSfyJBEATHLiYNv5dffpnFixcntl966SVOP/300a1E1wpzawlXiutuF/AcECVMiDvI0Yg8QpgYl0E4jU2k2797rkBXQriG/DzgfMIpciRJkiQNizERV4wKPvuKAAEAAElEQVSitL/eHf8NW78JjTugpQZi7RztsoyEt2gW5JZBwXxY+CGY/87Rq58kSZKkY0p7XDHKJtvrHYvWspZVrGIXu1jDGg5yMGkFuiaaOMIRCiigk04iRIgSJUaMKFHyyKOYYrLIIkaMcziHecxLeo5sslnKUleokyRJ0oiYbHFFul/vfwPfAvYSzm3fQtgTFZ/SkYAwUW5q/HYxcC7hXPhLCVekMyqQJEmS0ivdcUVfnHBDk1cAPAFsiW83A/sIE+kyCBPr6oHDQBNhIl024bumnXC1ulbCKLwrge7EeJmc+GMdwJT4vyPxcy7Gd54kSZKk8aejBXb+N7TsgfaDEOsIV5+LQPifAIIg3N9+MCy380dwwlsgMzedNZckSZIkpUkHHaxlLREitNLKNKaRTTaZZJJDDs00s5GNBAQ00EAbbXTQQQklZJNNO+000kgNNRRQQBFFrGENnfGfbLKZyUwAVrOagxxkOctNopMkSZLGqRbgR0BD/NY1lWOEcPheZ3y7k3D4XgA8BZwKFAKrCefJX45JdJIkSZKSmcajyWsdYfJcDNgK1HB09bhDwCbCd8hhwki8FJgN5BJG6nsJo/T6+L4M4CSge1JsHbAhfu6uiTC3Ea4bL0mSJEnjyd7H4ch2aD8C7Y1AJ0QzwxXnItEwmS7WDkFH+HhGIxzZFh53wp+mu/aSJEmSpDTYxjbaaKOZZmqoIUqUZSxjOtMB2MMedrGLZpo5yEEyySSffEooYRrTaKGFPexhP/tpp52AgDrqyCSTqUwFYCc7KaOMhSxkM5spppilLE3jq5YkSZJ0vB4nHGrXRpgIFyOc3z6bcAhfJ3CEcD77TsIhe/uBR4CzgIXAZqAYjAokSZIkJYmmuwJSWnQAa+P/3kqYDBcAJYSJbi2E0XfX6nMZQAFQTphINweYHt/fQhiRZxIm1HU3PX7OAKiN76segdcjSZIkSSNt31PQ0QCdzYRdkhHIyIWMPMjIj9/nhvvphM6msPy+p9Jbb0mSJElS2lTHO8b2sY+AgBJKEslzALvYRRZZxIjRSScApZRSRBGllFJOOQUUkEEGTTRxiEPEiNFCC/OYRwklBATsZS9b2QrAOtbRQcfov1hJkiRJQ/Y0YS/Uofh9JjCTcJheDuGA12yODnyNxf9dSzgEcGt8/zowKpAkSZKUxAQ6TU7bCKepaSacsgZgEbAEmE84Bc1Ujk5bkw1kEU5f0yWbcOU54uWyCBPueiqM37f1uJckSZKk8eTINiCAWBsEQbjqXGYBZOZDRk54n1kQX40uXo4gfpwkSZIkaTJqi3eMdd0XJjrOQg3x2SljxADIIoscchLbRzhCFllkk00nnbTTzlSmUkwx85nPEpawiEUA1FBDCy200so2jEUlSZKk8aguft8Sv88lnLs+IEyWaydMpuueRJcfv0E4FLBrPnyjAkmSJEndmUCnyalrFbh9HF15bnqPMjmEU9jA0elomrs9ntGjfHs/z9W1Kl12j3tJkiRJGk9irfF/BPH7CESzkstEs8L93csljpMkSZIkTTbZ8Y6xrvuGRMdZsq7V5yLxmDIa78ZujnfOda0ol0kmOeQkHTud6YmV6GqpBY6ufCdJkiRpfOkaktd9hbmuYXnt3cp09UZ13ecTDgEMIB4VYFQgSZIkKUnmsYtIE1DP1eAKezzetZ1HuOpca/wW61YmIJyuJoNw9bk2eqek1gH1hJH6zPi+8n7q1EE47U11/FzZ8bIV+E6VJEmSlH65M8L7SBbQDEEntB+BaGZ8RboIxDrC/Yly3Y6TJEmSJI1pHXSwjW1UU00bbWSTTTnlVFBB5nF2VpVTziY2MYMZ7GQn9dRTRx3T4zNbFlJIK62JxLlOOmmllTzygHBlutb4D5DY33Mlu0IKqae+14p3kiRJksaXBcAaYApwkHB4XiPhEL2uKR47OZpM1zW9RinhkL96eg8NlAbisE1JkqTJw893mpx6rgbXc7LLecBGwndIBmHi3H7CRLhswsj8QHx/NjCVMMGuFniUMDJvJYyupgCzCdeTzyGMrLoLgHXAWnpH7ZuAlcBSoIqjU+ZIkiRJ0mgrvQBqVkBGDnRE4gl0B4EoRCMQC4AYBDGIRMNykczwOEmSJEnSmBUQsI51rGVtr8SzTWxiJStZylKqqEokuqWqggpWshKAMsrYy142sIESSiikkBZaaKCBbLLJIYcYMQ5wgKlMpZ12DnCA/ewnRowMMsgkkzbaCAjYwAYyyWQqUznIQaD3ineSJEmSxpc3AT8nHHKXQzhMr46j89q3Ew7ZixIO7cuN359OmDwHvYcGSn1x2KYkSdLkYwKdJqdywihnBrCTMHqug/hkl1BGuK57R/w+BjQTTmvT3u1WSBhpZxJObdMMvN7teSKE0dUCwoiriuR3XQA8AWyJbzcD+zg6lUnXqnWr48+9HKMxSZIkSekxfRnkzYbDGwm7JTsh6AAiYTwEhEFOJHw8iIXlpy9LU4UlSZIkSccSEPAET7Al3lnVTDP72JdYgW5mvLNqNas5yEGWs3xQSXSZZLKUpaxmNQtZCEANNdTHfyJEmMIU2mgjjzwOcYhOOtnLXjLJpIkmmmkmhxw66aSe+kQSXR11AGxlK7XUMo1pzCBcBb2c8uH8NUmSJEkaJYuAJYSr0BUSzmHfztHV52Ic7Y3Ki++bTTjUrj6+v2vInVGB+uOwTUmSpMnJBDpNThUQn+wyTJbbC2wASggj7wbCSCg3fosQRkldyXRZQBFQTLgyXTNwMmFUvpcwas8CZsX37SRM1jujRz3WEUZhMWArUMPRaJ/4cWXAQmBz/PmWDu2lS5IkSdJxKaqEwtPg8CaIRCCIcrSbsks8eS4S70IqOi08TpIkSZI0Jq1jHVvYQowYW9lKDTUE3eK8neykjDIWspDNbKaYYpYOsrOqiioOcpDNbKaSSuYxj1pqE0l6c5jDC7zAYQ4zhSkAtNBCQEA++QTxn67V8SJE2MQmMsmkgw4iRIgSpY02drGLJSyhgoph+x1JkiRJGj2ZwF8CrxD2OhUSDs1r4mjiXEb81kbYUzUL2Bg/voxwuF8OGBWoXw7blCRJmpxMoNPklEkY0ayG+GSXYRRUz9G13KcRrgV/hHAakbmEkXdn/L6IMDKfFS9bR7j6XFek3hHfLgHOJkyke5GjkVQH4frfEEZhe+P/7p7EV99tfyVh5LYY37mSJEmS0iMSgexp0NkCsY6unT3KANGcsJxzMUqSJEnSmNVBB2vjnVVb2creeKdUCSUUUkgDDdRTn9hfSSXrWMdiFpM5iM6qCBGWs5xiihPPN495iccDAqJE2c9+2mijlVYOc5hOOskgg3rqqaWWQgppp50WWmimOen8pZQynenUUMN5nDeo+kmSJEkaW6LAWYTD67YTDtXLIRy2F3B0eF4uUEA4zK6UowlPAFU4xE59c9imJEnS5OXnOU1eVYSJcZsJo5x5QC3J63DnAK8BLYTR0WHCCCqTMLluFzCHo1Pc5BBG7Nnx83TGy7UQRu3dI6lt8TLNhMl7EK5BP71bHesIV8arideP+HEu4CBJkiRptB3eDJ3NkFcGrfsgI5ej3ZRdIuEtmgV5s8LyhzdD8aL01FmSJEmS1K9tbKONNppppibeWbWIRUzv1llVRx0b2EANNYmkt21so3KQnVURIixlKYtZzDa2UU11YgW6csr5AB/gZV5mDWvYwx4OcYgOOogSZTvbKaKIQxwiIKCTToDECnQAUaLUUccSltBMMx10mEQnSZIkjUMdhEPsTiEcOtcOHIrvb43fooTJc4VAOeFwvbMIk+kgHFpXNaq11njisE1JkqTJy14DTV4RYDnh+tpr4/vm9SiTA9wAnE44nU01RxPsWginrWkDnouf73xSj6Sq49v7CMeblvQ4lvh2CeGUJrXxc1RjJCZJkiRp9NU/D3RCJCtcYS6aCVkl4ap0QQwiUQgCaK8HMiCSCXSEx5lAJ0mSJEljTnW8s2of+wgIKKEkKXkOYDrTKaEksQrcPOZRTfWgE+i6ZJJJZfynp74S7GqooYQSCijgd/yOAxygnHKmMCVx3BGOUEstWWQxj3m00XZcSX6SJEmS0q8ruamFcEjdQsIhelHCZLp6wqF4BwmH600jHAR7JP7vqvgtMsr11vjhsE1JkqTJywQ6TW4RYCnhqnDbSE6QKwcqOPouqSQ5AnqScPqa442k2uJluu4L+6ljYfz4nuUlSZIkaTQ1x+dg7DgCGdmQNQ0K5oSrzHUl0GXkQeNrYRJdxxGg7OhxkiRJkqQxpS3e6dR1X9hPZ1UhhdRT36v8SOiZYPckT9JEE7vYRQklzGc+s5iVWKEuk0ymMpW97OUQh9jHviEn+UmSJElKn57JTdOAU3uU6QSeJkykiwKzgAXAO3FArI7NYZuSJEmTl/GCBOE7oWeC3LEMNZLK7nHf0M/xDT3KZfdTTpIkSZJGUwTIKgpvSfud01OSJEmSxoPseKdT131DP51VXft7lh8NPZP2pjKVsvhPd800c4hDo5LkJ0mSJGnkpDIkL4NwHnuA2Rxdpc7BsEqFwzYlSZImr2i6KyCNW0ONpMrj9zMIB57WA3U9jq2L748AM3scJ0mSJEmjKS8+ODGrEIiEK8x1HEkuk9gXiZfrdpwkSZIkaUwpj3c6zWAGESLUU09dj86qOuqop54IEWbGO6vKR7Gzajwk+UmSJEkaPiY3aaQ5bFOSJGnyMoFO6mbr1q1s3bo1tcJDjaQqCCP3PEhMkrkBWA/siN9viO8vA3KBnPhxmnQG1TalUWTb1Fhl29RYZdvUuFZyFkQyIbsEMnIh1gZHdrD19Sa2VndA0+twZEe4PyMXsqdBJCs8TpOef/+UCtuJUmVbUSpsJ0qF7UTpMlbaXgUVZJNNHnmJFd02sIH1rGcHO1jPejbEO6vKKCOXXHLIoWIUO6vGQ5LfeDRW2qAmN9uh0s02qLHAdij11t+QvNatW2mNv19MbtJQOGxzfPFaKU1OvvcljRRXrZa6+c1vfgPAwoULj124AlgZ/3cZsJcwciohXDu+gTBS73q8ZySVCSwFVhOuIw9QEz+m67hI/Niux6vwXTtJDaptSqPItqmxyrapscq2qXGtqBKmVEDDZsibDc17oP0wv9l2IhBh4aIXINYOGXmQPweimTBlQXicJj3//ikVthOlyraiVNhOlArbidJlrLS9TDJZylJWs5qF8c6oGmqoj/8ARIhQRlni8SqqyBzFzqoKKlgZ75Aro4y97GUDGyihhEIKaaAhUdd0JfmNR2OlDWpysx0q3WyDGgtsh1Jv/Q3JW/Cb3xAFDixcOOCQPOlYHLY5vnitlCYn3/uSRoqf6aTjNRyRVBVwENgMVALzgFqgjXCak5mEUT7xx6uG/VVIkiRJUmqimTDnWtjxfQgCiEShrWt+TyCaBVlF4Qp1OTMgtywsH/WrB0mSJEkaq6qo4iAH2cxmKqlkHvOopZY22sgmm5nMJDfeWVVJJVWj3Fk1HpL8JEmSJA2f/obkdcZvXT1TJjdpKBy2KUmSNDkZN0hDMdRIKgIsB4qBtfF983qUyYkfV0ViXKokSZIkpUXJUmg7CDWPhwlz2dPCe4D8eWECXUYe5J8AZVeE5SVJkiRJY1aECMtZTjHFrI13Vs3r0VmVQw5V8Z9IGjqrxnqSnyRJkqTh1deQvANAAMzH5CYNncM2JUmSJicT6KShGI5IKkI4bc5iYBtQzdEEvHLC9eV9p0qSJEkaCyIRKLsMckpg/xpo3gPR9vCxqYsgayrkz4FpZ0FxVVhekiRJkjSmRYiwlKUsZjHb2EY11YnktHLKqaAirSu6jYckP0mSJEnDp68hefHpHJkRvze5SUPlsE1JkqTJx8930lANVySVSTglTuWI1FKSJEmShkckEq4sN3UxHNkGWT8HApjzBsgrhykVEPXrBkmSJEkabzLJpDL+M9aM9SQ/SZIkScOr55C8eG8Up2Byk4aXwzYlSZImD2MIabgYSUmSJEmaTKKZUFQJmQXhdtny9NZHkiRJkjThjeUkP0mSJEnDr2tIXrw3CnujJEmSJB2vaLorIEmSJEmSJEmSJEmSJEmSJEmSJEnSSHAFOikVHYRrwVcDbUA2rgUvSZIkaXKLdcCRbdDRCARQ8yTklcOUinB1OkmSJEmSRlkHHWxjG9VU00Yb2WRTTjkVVJBpp54kSZI0YTm8T5IkSdKxRIIgCNJdCU1OL7/8MosXL05sv/TSS5x++ulprFEfAmAdsJYwsu4pG1gKVAGRUauVJEmSpLhxEVcMozHxeoMADq6D+rUQ6yNQimZDyVIoroKIgZIkSZI01oyJuGIUTbbXO1kFBKxjHWtZS1sfnXrZZLOUpVRRRcROPUmSJA3SZIsrxtPrdXifJEmSNDaNxbjCyTWk/gTAE8CW+HYzsI+jU9TMjO9fDRwElmOULUmSJGliCwKofQIa4oFSZzO07IPONsjIhtx4oLR/NbQdhJnLTaKTJEmSJI2ogIAneIIt8U69ZprZx77ECnQz4516q1nNQQ6ynOUm0UmSJEkTgMP7JEmSJA2GCXRSf9YRRtcxYCtQQxh1d9kJlAELgc1AMeF0NZIkSZI0UR1cFybPBTFo2AotPQKlxp2QWwaFC6FhM2QXh6vRSZIkSZI0Qtaxji1sIUaMrWylhhqCbrHqTnZSRhkLWchmNlNMMUvt1JMkSZLGPYf3SZIkSRoME+gkgA5gG1BNOAVNFHgWmAq8CuyNlysBCoEGoL7b/krCiHwxvqskSZIkTUyxDqhfG/67YSs0V0PHEYhkQDQbYm0QdIbJdQBFlVC/DqYuhqiBkiRJkiRp+HXQwVrWArCVreyNd96VUEIhhTTQQD31if0ncRK/5tfsZz8xYmSTTTnlVFBBpp18kiRJ0pjTc1hfNlAOzIN4JBAmzzm8T5IkSdKxGAtocgsII+O1hBF2lxpgU/zxQ4TTzywCpncrUwdsiJedF9+3jTDaliRJkqSJ5si2MEmuoxkOb4TWA5A7EzLzw8ejmdB+BI5sh/ZDkD83/NbhyLYwmU6SJEmSpGG2jW200UYzzdRQA8AiFjG9W6deHXVsYAMb2Ug11USI0EYbZZQBsIlNrGQlS1lKFVVEiKTltUiSJEk6qr9hfRAO6zsANBIO56uJ73d4nyRJkqSBRNNdASltAuAJYDVhlN0M7CKckmYz4fQ19cA+wmi7tMfx0wmnrAmA2vi+6pGutCRJkiSlSXM1BAHsfxZa90FGTnhrPQAt+8L7jNz4vn1huSAIj5MkSZIkaQRUxzvn9rGPgIASSpKS5wBKKaWRRvaxj3rqaaedzWxmK1vZxS5aaKGNNlazmid5koAgHS9FkiRJUtxAw/p2AS2EyXHbgWfj5UugRyTg8D5JkiRJyVyBTpPXOmALECOMrmsg0R9WTZg010mYZtoCvAbM7XGOQsIku65pbnpOdyNJkiRJE0WsDZpeC5PjAqCzCRp3QveBhW0Hwu2AsFzTazClIj31lSRJkiRNeG3xzrmu+0IKe5V5jddooQUIE+0OcIACChKJcjvZSRllLGQhm9lMMcUsZenovABJkiRJvQw0rA9gJ2FSXQ5hIl0mR1eY68nhfZIkSZK6uAKdJqcOwvXdIYyy93J0Kpp5wNT4djPQwNEEus4e52mI32f3uJckSZKkiSaSAU27w/uOBmg7CASQkQ/Z08J7gnB/R0O8/GvhvSRJkiRJIyA73jnXdd+Q6LwLddLJbnbTQgsNNNBMMwEBU5nKPOZRQgkBAXvZy1a2ArCOdXTQMbovRJIkSRJw7GF9XSvKHQL2ARmECXKH+jmfw/skSZIkdTGBTpPTNo6u714T37cIWALMB84EyoFcwuS5I4SRdl23c9TF90WAmfF95SNcb0mSJElKl1g7BB2QkQudLeGKdFlTIX8O5JSG91lTw/2dLZCRB0F7eJwkSZIkSSOgPN45N4MZRIhQTz113Tr06qjjIAdpoIEWWsgll3LKOZMzmc98lrCERSwCoIYaWmihlVa2sS0tr0eSJEma7I41rG9JfDsPOBy/jxHOjV/X41wO75MkSZLUXWa6KyClRXX8fh9Hp6iZ3u3x6UAx4dQ0jYQReTXwAnAq4dQ09fGyZYSJdjlAxQjXW5IkSZLSJZIZ3jpbICMHghi0HwoT5LqS6jqbIJoNkSh0NkNWUXiMJEmSJEkjoIIKVrISgDLK2MteNrCBEkoopJCNbKSaalpoIYccCimkhBKmd+sYnM50SiihnnpqqWUe86immkoq0/WyJEmSpEnrWMP6iG/PjZdpBori9xvi5QtxeJ8kSZKk3hzFpsmprcd9YXj3+V99nvbOdrIysrhtyW3hNDZFhNPURAgT6nbFj4kQRtcL49tV+I7SiPn85z9Pe3s7WVlZ3HbbbemujpRg29RYZdvUWGXb1PgWg/y50FwNmUXxfRE+//2ttHfEyMqMctu75kBWcfhQ0An5J4THadLz759SYTtRqmwrSoXtRKmwnShdbHvDJ5NMlrKU1axmYbzTroYa6uM/hzhEhAh55BElSi65nMAJZJCRdJ5CCqmnnrZ452FbohNxYrINaiywHSrdbIMaC2yHUm/9DOvjV5//PJ3t7WRkZfGnt93GVMJkuU5gRrx8hDBpritxzuF90vjntVKanHzvSxopkSAIgnRXQpPTyy+/zOLFixPbL730EqeffvroPPmTwCbCZLgdhNH0Eij4WAFNbU3kZ+fT+G+N8CiwByglTKTLIlzHPZtwXffc+PkqgeWEUbc0AgoKCmhqaiI/P5/GxsZ0V0dKsG1qrLJtaqyybQ6/tMYVaZDW11vzJBzeCPv+AA2bISMfcssoeONPaGrpJD83g8bH3gYtNeFKdIWVMONiKDoVypaPTh01Zvn3T6mwnShVthWlwnaiVEzWdmIclf7XO1nb3kgJCHiSJ9nMZgBaaKGWWtpoo5pq2mnnMIfZz35mM5s382YiPTr11rOeeuqZz3zmMY9TOIXlTNxY1jaoscB2qHSzDWossB2OH2MxrhhJ6Xy9/Qzr42MFBbQ1NZGdn8+/NzayHjgARAlXqpsFzANqCZPpHN4nTQxeK6XJyfe+NDGMxTjKCTU0OZUTRtozgJ2E087U9SizH8gnXPO9mDB6riSclqZLDuHUNFUYXUuSJEma2PLKoWETTDsbWg9A2wGItSSXibVArBWyp8O0cyASCY+TJEmSJGmERIiwnOUUU8xa1gIwj3lAuLLcJjZRQgkRIuSTz372M53piePrqKOeeiJEmMlMAMoxlpUkSZLSIZVhfXXx/VHgnPh2AWGy3LweZR3eJ0mSJKmLCXSanCqAlfF/lwF7gQ1ALL4vFt+OAKcBJwGHgXMJ133PJozWK/BdJEmSJGlymFIBdSvDGGjqadC8BzqOJJcJYlAwH/JmQ2YeRHPC4yRJkiRJGkERIixlKYtZzDa2UU01bbSxkIVkkcVUpvIqr7KXvWxgAyWUUEghDTRQTz0AZZSRSy455FCBsawkSZKUDqkO6+t6PA9YCLyDcNW6ao6uQOfwPkmSJEndGRtocsoElgKrCSNogBrC9dyJ30cIo+yFhNPVvCl+jCRJkiRNRtFMKFkK+1dDYTyQaqlJLpM1FXLLjj5eUhUeJ0mSJEnSKMgkk8r4T5dpTGM1q1kY7xSsoYb6+A+EyXdllCUer6KKTLvRJUmSpLQY7LA+CFeXywUq4zdJkiRJ6ovf/GvyqgIOApsJI+d5wI8IV5iLEq42lxsvWxkvL0mSJEmTWXEVtB2Ehs1QVAkFPQKp0nMhIx5IFVaG5SVJkiRJSqMqqjjIQTazmUoqmcc8aqmljTayyWYmM8mNdwpWUkmVnYKSJElSWjmsT5IkSdJIMIFOk1cEWA4UA2vDXUEkOPpYLpBDGGFXxfdJaRIEwbELSWlg29RYZdvUWGXb1LgXicDM5ZBdDPVrAQi6gqVIJEyei+aEK88VV4X7JPz7p9TYTpQq24pSYTtRKmwnShfb3uiKEGE5yymmmLXxTsF5zEsqk0MOVfGfyCToFLQNaiywHSrdbIMaC2yHUt/6GNZHJP5+cVifNLl4rZQmJ9/7kkaKCXSa3CKEa74vBrZBZ9AZ7o8ClwEV+C7RmNDZ2ZnuKkh9sm1qrLJtaqyybWpCiESgZClMXQxHttEZ6/riMgozL4MpFRA1kFIy//4pFbYTpcq2olTYTpQK24nSxbY3+iJEWMpSFrOYbWyjmurECnTllFNBBZmTqFPQNqixwHaodLMNaiywHUr96zGsjyD+fnFYnzS5eK2UJiff+5JGijGEBOE7oZKj09FE49uSJEmSpL5FM6GoWyAVica3JUmSJEkamzLJpDL+I0mSJGnsc1ifJEmSpOESTXcFJEmSJEmSJEmSJEmSJEmSJEmSJEkaCSbQSZIkSZIkSZIkSZIkSZIkSZIkSZImJBPoJEmSJEmSJEmSJEmSJEmSJEmSJEkTkgl0kiRJkiRJkiRJkiRJkiRJkiRJkqQJKTPdFdDk1dramrS9devWNNXkqFgslrh/+eWX01wb6SjbpsYq26bGKtumxirb5vDrGUf0jDMmGuMojVe2E6XCdqJU2VaUCtuJUjFZ24lxlHGUZBvUWGA7VLrZBjUW2A7HD+Mo4yhJ6eF7X5qcfO9LE8NYjKMiQRAE6a6EJqef//znvOUtb0l3NSRJkiRNIA899BDXX399uqsxYoyjJEmSJA034yhJkiRJGhzjKEmSJEkanLEQR0XT+uySJEmSJEmSJEmSJEmSJEmSJEmSJI0QE+gkSZIkSZIkSZIkSZIkSZIkSZIkSRNSJAiCIN2V0OR08OBBnnzyycT23LlzycnJSWONJEmSJI03ra2t7N69O7G9fPlyiouL01ehEWYcJUmSJGmojKOMoyRJkiQNjnGUcZQkSZKkwRmLcZQJdJIkSZIkSZIkSZIkSZIkSZIkSZKkCSma7gpIkiRJkiRJkiRJkiRJkiRJkiRJkjQSTKCTJEmSJEmSJEmSJEmSJEmSJEmSJE1IJtBJkiRJkiRJkiRJkiRJkiRJkiRJkiYkE+gkSZIkSZIkSZIkSZIkSZIkSZIkSROSCXSSJEmSJEmSJEmSJEmSJEmSJEmSpAnJBDpJkiRJkiRJkiRJkiRJkiRJkiRJ0oRkAp0kSZIkSZIkSZIkSZIkSZIkSZIkaUIygU6SJEmSJEmSJEmSJEmSJEmSJEmSNCGZQCdJkiRJkiRJkiRJkiRJkiRJkiRJmpBMoJMkSZIkSZIkSZIkSZIkSZIkSZIkTUiZ6a6ANBbU19fz9NNP8/rrr3PgwAFmzpzJCSecwCWXXEJ+fn66q6cJIhaLsWXLFl588UVqamo4dOgQBQUFzJw5k3POOYfKysohnX/btm08//zz7Nmzh5aWFmbPnk1FRQXLli0jGjVfWulj29Rwampq4vnnn2fz5s3s37+f1tZWpkyZwqxZszjvvPOoqKhI+Vy2TQ3Vzp07+eMf/8jevXtpbGxk6tSpzJ49m2XLllFeXn7c57VtarwwjpKUDl4npcnD79KUipFuJ9JwM47ScPJaqcnAdqjjYV+S0sV+I2lkGEdJGojXSWniGMn385o1a9i0aRN79uwhMzOT2bNns3jxYhYtWjRMtZc0bgTSJLZx48bg+uuvD7KzswOg123KlCnB+973vqC6ujrdVdU4tX///uDee+8NrrvuuqCwsLDPdtZ1W7BgQfDVr341aGtrG9Rz/PKXvwyWLVvW73nnzJkT3HnnnUFra+sIvUpNZLt37w5mz56d1KaeffbZlI61bWo4PfLII8HVV18d5OTk9Numli9fntK5bJsailgsFnznO98JlixZMuB1/fzzzw9+9KMfDerctk2NF8ZRkgbj+eefT/obsW/fvuM6j9dJaXLwuzSlYqTayZ133jnguVK51dfXj/wvQOOScZSGi9dKjSf2MWm02ZekdLDfSBo5xlHS+LVixYohf8/2s5/9bMDn8Doppd9Y7wfu7OwM7r777qCioqLfc1dVVQXf//73j6veksYnE+g0aT3wwANBXl5eSh/GZ86cGTz++OPprrLGmddff73fL3EGup133nnB7t27j3n+WCwWfPSjH035vGeddVawc+fOUXjlmigOHz4cnHHGGb3a0rE6N22bGk67du0Krr766pTa0rE6PW2bGqqamprgDW94w6Cu69dee21w6NChAc9r29R4YhylgYxGZ5jGny9/+ctD6jjxOjk5DKWDzYSXicPv0pSKkWwn/j3RSDGO0nDxWqnxxD4mjSb7kpQu9htJI8c4ShrfRrLP0OukNHaM5X7gurq64NJLL0353DfddJMJt9Ik4fq0mpQeffRRPvjBD9Lc3JzYF41GmT9/Pueffz4nnHBCUvna2lre8pa3sGnTptGuqsaxtrY22traeu0vKCjgzDPP5MILL2TBggW9Hl+9ejVvfvObOXTo0IDnv/322/na176WtC8nJ4dTTz2Vc845h9LS0qTHnn/+ea6//vqkdi/1p7OzkxtvvJEXX3xx0MfaNjVcHnvsMU4//XQeeeSRpP0ZGRmJ5dkXLVpEYWFhSuezbWooDhw4wBve8AZ+97vfJe3PyspiyZIlXHjhhVRWVhKJRJIef/jhh7nmmmtoaWnp99y2TY0XxlGSBmvnzp186UtfGtI5vE5ODitWrEh3FTQG+F2aUjHS7UQabsZRGk5eKzVe2Mek0WRfktLFfiNp5BhHSRqI10lpbBjL/cDt7e287W1v4/e//33S/qKiIpYuXcrixYvJz89PeuwHP/gBf/M3fzOEVyNp3Eh3Bp802mpra4Pi4uKkzPGrrroq2LRpU1K55557LjjvvPOSyp1xxhlBLBZLU8013mzfvj3RdkpLS4NPfOITwe9///ugs7Mzqdy2bduC97///b1mNPjYxz7W77kfe+yxXuU/+clPBvv370+UicViwU9/+tNg5syZSeVuvvnmEXvNmjg+8pGP9DvbxkCzg9o2NVxWrlwZFBQUJLWRU045Jfjud78bHDhwoFf5TZs2BT/4wQ/6PZ9tU0P1zne+M6ld5OXlBf/8z/8cHD58OKlcdXV1n7Mjffazn+3zvLZNjRfGUUqFK9CppaUleP3114PHH388uPXWW4OSkpJe/48HM/Og18nJYceOHb3+/7kC3eTkd2lKxUi2k55/Tz7ykY8EK1asGNStvb19pH8FGkeMozTcvFZqvLCPSaPFviSlk/1G0sgwjpImhp59hsuWLRv092x99RN4nZTSZzz1A992221J5QsKCoJvfetbQVtbW6JMY2Nj8KUvfSnIyMhIKvuTn/xk8L8cSeOKCXSadP7u7/4u6WL3hje8Iemi2N2hQ4eC0047Lan8//zP/4xyjTVebd++PcjLywv+4R/+odeXpH3527/926S2lp2dHdTV1fVZ9txzz00qe8cdd/R73vXr1we5ubmJsjk5OUF1dfVxvy5NfP/8z/+c1L56BgkDdW7aNjUc9uzZ0yvI/vjHPz6kQWi2TQ3FunXrktpPNBoNfvvb3w54zD/90z8lHVNYWBi0tLT0Kmfb1HhhHKVUjFRnmMaH+++/v98BksfbceJ1cmIa7g42E14mDr9LUypGsp30/HvyL//yL8NdfU0yxlEabl4rNR7Yx6TRYl+S0sl+I2nkGEdJE0PPPsOrr756WM7rdVJKj/HUD1xXVxfk5eUlykYikQE/q3/zm99MqkdVVVXKr0HS+GQCnSaVtra2YNq0aUlfYr388ssDHvPwww8nXRwvuuiiUaqtxruGhoZgy5YtKZdvbGwMSktLk9rbf//3f/cqt2bNmqQy8+bN6/OL1e56dpLedtttg349mhx+8pOfBJFIJNFW3vGOdwSXXnppSp2btk0Nl/e85z1J7eLv/u7vhnQ+26aG6jOf+UxSe3jb2952zGM6OjqCk046Kem43/zmN0llbJsaL4yjlKqR6gzT+DDcHSdeJyemkehgM+Fl4vC7NKVipNpJEPj3RMPLOEojwWulxjr7mDSa7EtSOtlvJI0M4yhp4hiJPkOvk1L6jKd+4C9/+ctJ5d75zncesz7nnHNO0jGPPfZYSq9D0vgURZpEnnjiCQ4cOJDYvuiii1i0aNGAx1x99dWUl5cntp955hn2798/YnXUxDFlyhQWLlyYcvn8/HyuvPLKpH3r16/vVe6nP/1p0vZ73/tecnJyBjz3X/7lXyZtP/zwwynXS5PHqlWr+Iu/+AuCIADgggsu4IEHHiASiaR0vG1Tw2H16tV873vfS2yfd9553HXXXUM6p21TQ/XKK68kbV966aXHPCYjI6PXdX3Hjh1J27ZNjRfGUZLSweukNPn4XZpSMVLtRBpuxlEaCV4rNZbZx6TRZF+S0s1+I2lkGEdJGojXSWniGMn3c89zf+hDHzpmfT74wQ+mdG5JE4MJdJpUHn/88aTtP/3TPz3mMZFIhKuuuiqxHYvFeOyxx4a9bhLAiSeemLRdV1fXq8zxtONTTz2Vk046KbH94osvUl1dfZy11ES0fft2rrvuOpqbmwFYsGABP//5z8nNzU35HLZNDYevfvWriQ52gM9//vNkZmYO6Zy2TQ3VwYMHk7ZjsVhKx02dOjVpu62tLWnbtqnxwjhKUire/OY3s2LFil63srKy4zqf10lJqfC7NKUilXYiDTfjKI0VXis1Guxj0mizL0npZr+RNDKMoyQNxOuklD7jpR+4sbGR1atXJ7anTJnCJZdccsxzX3311Unbv/71r495jKTxywQ6TSrPPfdc0nZVVVVKx/Us9/TTTw9bnaTu2tvbk7Z7ftHf2dnJCy+8kNiORCKcccYZKZ27Z7mVK1ceZy010Rw8eJCrr76a2tpaAIqLi3nkkUeYMWNGyuewbWo4NDU18Ytf/CKxvWjRIv7kT/5kSOe0bWo4TJ8+PWl7zZo1KR23b9++pO3uM4TbNjWeGEdJSsWsWbO47LLLet0GM2Cyi9fJiWu4O9gkv0tTKo7VTqSRYBylscJrpUaafUwabfYlaSyw30gaGcZRkvrjdVJKr/HSD7x27Vo6OjoS24sWLSIrK+uY5507dy4lJSWJ7U2bNjkRnzSBmUCnSeXll19O2q6srEzpuFNOOSVpe8uWLcNWJ6m77du3J2337Fx69dVXaW1tTWzPmTOH/Pz8lM5tO1Zf2tvb+bM/+zNeeeUVALKysvjJT37CaaedNqjz2DY1HB5++GGOHDmS2L7mmmuGfE7bpobDhRdemLT9ox/9iJdeeumYx/3xj39M/LuwsDBpViPbpsYT4yhJo83r5MQ1nB1sEvhdmlJzrHYijQTjKI0VXis1kuxjUjrYl6SxwH4jaWQYR0nqj9dJaeIYyffz8X6W6OvcW7duTflYSeOLCXSaNNra2ti7d2/SvlmzZqV0bM9ZsF999dVhq5fUJRaL9ZoFaenSpUnbO3fuTNpOtQ2D7Vh9+9CHPsSKFSsS2/fccw9veMMbBn0e26aGwx/+8Iek7Z5tsbq6mhdeeIGnn36aF198kcOHDx/znLZNDYebbrqJ4uLixHZbWxtvfOMbeeaZZ/o9Zt26dUlfzHz4wx9O+sLHtqnxwjhKUjp4nZSUCr9LUypSaSfScDOO0ljhtVIjzT4mpYN9SRoL7DeShp9xlKSBeJ2UJo6RfD/7t0JSKkyg06RRU1NDEASJ7aysLAoKClI6dvr06Unbu3btGta6SQC//vWvqampSWxnZ2dz6aWXJpXp+WVR92WDj8V2rJ7+8R//ke985zuJ7U996lN88IMfPK5z2TY1HF588cWk7VNOOYUdO3bwyU9+koqKCmbPns1ZZ53FxRdfTFVVFcXFxZxxxhn83//7f2lra+vznLZNDYfS0lK+8Y1vEIlEEvv27t3LJZdcwl//9V/3+gKmtbWVD3/4w4ntE088kdtvvz2pjG1T44VxlKR08DopKRV+l6ZUpNJO+lNXV8eqVat44oknePrpp1m7di27du1K+nws9cU4SmOF10qNJPuYlC72JWkssN9IGn7GUdLE1tTUxAsvvMCTTz7J73//e9asWcOWLVtob29P6Xivk9LEMZLvZ/9WSEpFZrorII2W+vr6pO2ioqKUj+1Ztq2tjfb2drKysoalbhLAXXfdlbR99dVX9/oAN5zt+MiRI4OsoSaS//qv/+KOO+5IbN9www184QtfOO7z2TY1HLp3emZkZHDPPffwla98pd8OzSAIWL9+PZ/4xCf4+te/zoMPPsjixYuTytg2NVze/va3097ezgc/+EFaWloA6Ozs5J577uGb3/wmf/Znf8Zf/uVfcu655/KOd7yDVatWATBz5kweeeQRpk6dmnQ+26bGC+MoDUVXZ9jhw4eJRCIUFBRQVFTE/PnzbQcakNdJDUVXwktzc3NioM20adOYO3du0sA2jX9+l6ZUpNJO+vOlL32JL33pS7325+fnc9FFF/Hud7+bP//zPycjI2NY6qqJwzhKY4XXSo0U+5iUTvYlaayw30gaXsZR0sS2YsUKzjrrrF77MzMzWbJkCTfeeCMf+chHklZ47c7rpDRxjOT72b8VklLhCnSaNBobG5O2BxMk91W25/mkofje977HH/7wh6R9n/70p3uVG852bBuevJ566ik+8IEPJLbPO+88vve97w1pIKFtU0NVX1/PwYMHE9udnZ186Utf6rfDs6eNGzdy+eWX95p51Lap4XTTTTfx7LPPcv755yft7+jo4Mc//jFXXnklM2fO5De/+Q0Ab37zm1mzZg2nn356r3PZNjVeGEdpKLo6wy677DKWL1/OOeecQ2VlJfn5+Zx11ll88YtfTLr+S128TmoovvSlL7Fs2TIuv/xyLr74Ys4880xOPPFEpkyZwpVXXsl3vvMdOjs7011NDZHfpSkVqbaTwWpqauKxxx7jfe97H2effTbr168f8jk1sRhHaSzwWqmRYh+T0sm+JI019htJw8c4SpqcOjo6eOGFF/j0pz/NKaecwk9+8pM+y3mdlCaOkXw/+7dCUipMoNOk0XO558FcGHNycnrta2pqGnKdJAiX+v2bv/mbpH3vf//7Offcc3uVHc52bBuenDZv3sxb3vKWREfSiSeeyC9+8Qvy8vKGdF7bpobq0KFDfe4/5ZRT+MIXvsCqVas4cOAALS0t7Ny5k9/97ne8+93vTipbV1fHjTfemNQebZsabjt37uy3vcLRNpednc2ll17KtGnTBizXxbapsco4SiMh1c4wTV5eJzUSTHiZOPwuTakYTDsZinXr1rF8+XJWr149rOfV+GYcpXTzWqmRYh+T0s2+JI1F9htJw8M4SlJtbS033ngjX//613s95nVSmjhG8v3s3wpJqTCBTpNGRkZG0nY0mnrzD4Kg175YLDbkOkltbW284x3vSJopb8GCBdx99919lh/OdmwbnnwaGxu5+uqrOXDgABAuO/3II49QVlY25HPbNjVUPTuWcnNz+cEPfsArr7zCrbfeynnnnUdJSQk5OTnMmzePK664gu9///t84xvfSJrZdtOmTXzta19LbNs2NVxisRgf+9jHuOaaa9i4cSORSITbb7+d9evX8/GPf5zS0tKk8m1tbfz93/89ixcvZuXKlb3OZ9vUeGEcpZE2UGeYJi+vkxppJryMX36XplQMtp10WbRoEbfeeivf+973WLlyJZs2baKuro729nYOHTrEiy++yNe//vVeCSj19fW8/e1v58iRIyPxcjQOGUcpnbxWaqTYx6SxwL4kjSX2G0nDyzhKmlimT5/Oxz72Mb7+9a+zYsUKXnrpJaqrq2lra+PIkSO8+uqrPPjgg/zZn/1Z0nFBEHDzzTfzwgsvJO33OilNHCP5fvZvhaRUZKa7AtJo6TnzXWdnZ8rHds2i191gMtOl/vyv//W/+OMf/5jYzs/P58EHH6S4uLjP8sPZjm3Dk8++ffvYunVrYvujH/0o+/bt44knnhjwuO4d7QBr1qxJDAgqLi5m6dKltk0NWUNDQ9L2zJkzede73nXM4z70oQ/xzDPPcP/99yf2ff/73+fjH/844N9NDZ+PfvSj3HvvvYnte+65hw9/+MMAfOUrX+FLX/oSP/vZz/jyl7/Ms88+myi3fft2rrjiCh588EGuvfbaxH7bpsYL4ygNRldn2OLFi6msrGTGjBmUlpZSWlpKW1sbNTU1PP/88/zwhz/kf/7nfxLHdXWGnXfeeZx55plpfAUaK7xOajC6El5OP/10TjrppMTfnalTp9LU1MTOnTt55pln+Na3vpX0Oa0r4eXll19mypQpaXwFGgy/S1MqBttOutx4443ceOONfT5WVFTEkiVLWLJkCR/60If4/Oc/z2c+85nE47t27eLuu+/mjjvuGJbXoPHNOErp5LVSI8U+Jo0F9iVpLLHfSBpexlHSxLJ48WL+7d/+rc/HsrKyqKiooKKigre97W08+uij3HDDDYnVnjo6Ovjbv/1bHn/88cQxXieliWMk38/+rZCUChPoNGkUFBQkbfcVPPen57KufZ1PGqwvfvGL3HfffYntaDTKD3/4Q84+++x+jxnOdmwb1he+8AW+8IUvDPq4j3zkI4l/L1++nCeeeMK2qSHrPvNnX9sD+eQnP5nU6fn888+zd+9eZs2aZdvUsHjooYeSOkFvuummRCdol+zsbN7xjnfwjne8g//6r//ib/7mbxKzMbe2tvKOd7yDF198kYULFwJe0zV+GEdpMIa7M0yTl9dJDYYJL5OH36UpFcfTTgara2WJLVu28N3vfjex/8EHH/TviQDjKKWP10qNJvuYlA72JWmssN9IGn7GUdLk9eY3v5n/+I//4AMf+EBi35NPPkltbS0zZ84EvE5KE8lIvp/9WyEpFamvTSmNcz1nku4apJeKw4cPJ21nZGQ4M7WG5Ac/+AF///d/n7Tvq1/9Ktddd92Axw1nOz7WjMvSYNg2NVQ9Z4Dp60vu/ixatCjxpRmEq9i8+uqrgG1Tw+O2225L2v70pz89YPl3v/vdPPvss8yZMyexr7m5OWmwtm1T44VxlEZKV2dYd12dYZLXSY2EroSX97znPUn7H3zwwTTVSIPhd2lKxfG2k+N1yy23JG2/9NJL1NfXj8hzaXwxjlI6eK3UeGY7VKrsS9JYYb+RNPyMo6TJ7b3vfS+lpaWJ7VgsxtNPP53Y9jopTRwj+X72b4WkVJhAp0lj1qxZSUuqNjY2prw8a11dXdJ2eXn5sNZNk8svfvEL3vve9xIEQWLfHXfcwc0333zMY+fOnZu03fND20BsxxpJtk0NVfcvwgAaGhoGdfzs2bOTtrsG39s2NVQvvPACGzZsSGyfdtppLF68+JjHVVRUcNdddyXte+ihhxId+rZNjRfGURpJx+oM0+TldVIjyYSX8cfv0pSKobST41VVVdVrEHdNTc2IPZ/GD+MojTavlRrvbIdKlX1JGgvsN5JGhnGUNLlFo1HOPffcpH3dv2fzOilNHCP5fvZvhaRUmECnSSMjI4MTTzwxsR0EQcoz2/fs9O5+HmkwHnvsMW688UY6OjoS+/72b/+Wf/iHf0jp+JNOOilpe+/evSk/t+1Y8+fPJwiCQd+WL1+edJ5nn3028dgTTzwB2DY1dOXl5WRkZCS2GxoaOHLkSMrH97cEu21TQ7V69eqk7QULFqR87I033kgkEklst7S0sGnTJsC2qfHDOEoj6VidYZq8vE5qJJnwMr74XZpSMdR2MhQlJSVJ2wcOHBjx59TYZxyl0eS1UqPFPiaNBfYlaSyw30gaGcZRkqZNm5a03f17Nq+T0sQxku9n/1ZISoUJdJpUTj755KTtjRs3pnRcz3KLFi0atjpp8vjDH/7AW97yFlpbWxP7PvGJT/Cv//qvKZ9j9uzZ5OfnJ7a3bduW+GL/WGzHGkm2TQ1VdnZ2ryC2++yNx9JzxpiZM2cCtk0NXc8ZhqZOnZrysbm5ucyYMSNpX1dbtW1qPDGO0kgaqDNMk5fXSY00E17GB79LUyqGo50MRWNjY9J2UVHRqDyvxj7jKI0Gr5WaKGyHSpV9SRoL7DeSRo5xlDS5DfQ9m9dJaeIYyffz8X6WABITW/R3bkkThwl0mlQuuOCCpO01a9akdNyLL76YtH3eeecNW500OTzzzDNcffXVNDU1JfZ96lOf4u677x7UeSKRCMuWLUtsd3R09Gqf/Vm/fn3Stu1Yw8m2qeHQvQ0BrFixIqXjYrEY27dvT9o3f/58wLapoevZ8fn6668P6vieX/J0JYrYNjWeGEdpJDnoXH3xOqmR5t+esc/v0pSK4Wonx2v//v29BmGXl5ePynNr7DOO0kjzWqmJxHaowbAvSelmv5E0coyjpMlt27ZtSduzZ89O/NvrpDRxjOT7uaqqKik5b926dXR0dBzzvLt376a+vj6xPWfOnKS/QZImFhPoNKlceeWVSdsPP/zwMY8JgoBHH300ad/ll18+rPXSxPb73/+eK6+8MmkwxWc/+1m++MUvHtf5jqcdb968mVdffTWxfcIJJ7Bw4cLjen6pP7ZNDdVVV12VtH3//fendNzzzz/PkSNHEtsLFy5kwYIFiW3bpoaiqwO9y6pVq3oNkOzP7t27OXjwYGI7KyuLuXPnJrZtmxovjKM0kgbqDNPk5nVSI8WEl7HP79KUiuFuJ8fjscceIwiCxPaiRYsoLS0dtefX2GYcpZHktVITke1QqbIvSelmv5E0coyjpMlrz549vPTSS4ntSCTCxRdfnFTG66Q0cYzU+zknJ4dLL700sX3o0CGeeuqpY577V7/6VdK2nyWkic0EOk0q5557LmVlZYntP/zhD7z88ssDHvOrX/2KPXv2JLarqqo46aSTRqyOmlgee+wxrrrqqqQv4++++27uvPPO4z7nNddck7R9//3309raOuAx3/zmN5O2b7jhhuN+fqk/tk0N1XXXXZc0a+OmTZv46U9/eszjvva1ryVt92xHtk0NxfLly8nOzk5st7a28uUvfzmlY++7776k7SuuuIKCgoLEtm1T44VxlEZKKp1hmry8TmqkmPAytvldmlIxEu2ktrZ2UOVjsVivVZ6uu+66435+TTzGURopXis1UdkOlSr7kpRu9htJI8c4SpoY9u3bN+hjvvzlLyd9b3/++eczc+bMpDJeJ6WJYyTfzz3Pfe+99x6zPt/+9rdTOrekCSKQJpm77rorABK3P/mTPwna29v7LHv48OHg9NNPTyp/7733jnKNNV798pe/DHJychJtJxqNBt/85jeH5dxXXnllUru88847+y370ksvBbm5uYmykUgk2LBhw7DUQ5PD8uXLk9rbs88+229Z26aG6vbbb09qQzNnzgy2b9/eb/mf//znQSQSSZTPz88P9u7d26ucbVND8ed//udJ7ScjIyN4+OGHBzzm6aefTmpHQPDII4/0Kmfb1HhhHKVjqa2tHfQxt9xyS1I7WbZs2QjUTOl24oknJv1/3rdvX8rHep2cPI63ndTU1AzqeTo7O4Nzzz036bluvfXW46myRoDfpSkVI9VOrrjiiuB973tfyv+vb7311qQ2lZeXF1RXVw+5HppYjKM03LxWajyyj0kjwb4kpZv9RtLIMY6Sxr8777wzuOSSS4LHHnssiMVixyz/y1/+MsjIyEh6Lz/00EN9lvU6KY0tY7Ef+MiRI0FpaWlS2d/97nf9nvvb3/52Uj1OOOGEfj97SJoYTKDTpHPo0KGkiyMQXHPNNcGWLVuSyj3//PPBsmXLksotXLgwaG1tTVPNNd707BD667/+62DFihXHdevpqaeeSvqSHwg+9alPBfX19YkysVgseOihh4KysrKkcu95z3tG75egCWEwnZu2TQ1VQ0NDMG/evKS2UV5eHjz00ENBZ2dnotzhw4eDu+66K8jKykoq+8///M99nte2qaHYvn17UFBQ0Ksz9FOf+lSvQdv19fXBF77whV6doDfccEOf57ZtarwwjtKxjGRnmMaH6urqPuPZntevhx56qFeZ/hIOvE5OHsfbwWbCy8Tid2lKxUi1k+7nveyyy4Kvfe1rfQ7Cfvnll4O3ve1tSXUAgrvuumt0fgEaV4yjNNy8Vmo8so9JI8G+JKWb/UbSyDGOksa/O++8M/G+POWUU4LPfe5zwZo1a3r1H9bU1AS33XZbkJmZmfReftOb3tTvub1OSukx3vqBP//5zyeVnzJlSnDfffclJcY1NjYG//qv/9rrb9B99903LL8zSWOXCXSalB577LFeA/Wi0Wgwf/784Pzzzw/mzp3bqwO8oKAgWLduXbqrrnGkZ4fQUG59ueOOO3qVy8nJCU477bTgnHPO6fWFEhAsWrQoOHz48Cj/JjTeDaZzMwhsmxq6VatW9ep0AoLp06cHy5YtC5YuXZo003LX7aabbhrwvLZNDcUjjzzS60uTrs+Qp556anDhhRcGixYt6vUZE8IVlRobG/s9t21T44VxlAYykp1hGh/uv//+445577///n7P63VyYhnuDjYTXiYWv0tTKkaqnfR33mnTpgVLliwJli1bFsyZM6fPMm9729tSmkBAk5NxlIaT10qNR/YxaaTYl6R0s99IGjnGUdL41r3PsOf7tLKyMrjwwguDysrKXokzQFBZWRnU1dUNeH6vk9LoG2/9wB0dHcEVV1zR69iioqLgzDPPDJYsWdJnPPkXf/EXw/ybkzQWmUCnSes73/lOkJeXl9IFfNq0acGjjz6a7iprnBnpjsxYLBbcfPPNKZ9jyZIlwbZt20b5t6CJYLCdm7ZNDYfnnnsuKC8vT7kdfeITn0iaVbQvtk0N1eOPP95rcPexbu9973sH7AQNAtumxhfjKPVnpDvDNPaNVMeJ18mJZbjbiQkvE4vfpSkVI9VO+upMP9YtGo0Gf/d3f3fM7yMk4ygNF6+VGo/sY9JIsi9J6Wa/kTRyjKOk8etzn/vcccWpV155ZXDgwIFjnt/rpDT6xmM/cF1d3aC+S7vhhhuClpaWYfqNSRrLokiT1Hve8x6ef/55rr/+erKzs/ssk5+fz5//+Z+zfv163vSmN41yDaWBRSIR/v3f/51f/vKXnH/++f2WKy8v5/bbb+fZZ59lwYIFo1hDTVa2TQ2Hs88+m5dffplPfvKTFBUV9VkmEolwySWX8NRTT3H33XcTjQ780da2qaG6/PLLeeWVV/iHf/gHZs+e3W+5aDTKG97wBn7729/ywAMPkJ+fP+B5bZsaT4yj1J+MjIw+9zc2NrJ582ZWrlzJ5s2bCYIg6fErr7ySP/7xj5SWlo5GNTUOeZ3UQPr723PgwAHWr1/PH//4R15//fWkx6LRKH/3d3/Hj370IyKRyGhUU2OEf080kJ///Od8+9vf5tprr+33e4gueXl5vP3tb2ft2rX88z//8zG/j5CMozReeK3UWGA71GDYl6R0s99IGjnGUdL49fd///c88sgjvOc972HOnDkDlo1Go1x00UU8/PDD/PrXv6akpOSY5/c6KU0cI/l+Li0t5fHHH+fLX/4yFRUV/ZZbvHgxDzzwAD/5yU/IyckZ9GuQNP5Egp4jl6RJ6MCBAzz99NO8/vrr1NfXM336dObOncsll1xCQUFBuqsnpWTbtm08//zz7Nmzh+bmZsrLy6moqODCCy90EIfSyrapoero6GDlypVs2rSJuro68vPzmT17NpdccgmzZs067vPaNjVUr7zyCi+88AL79u2jsbGR4uJi5s6dy8UXX5zSF7v9sW1qvDCOUnednZ38+te/5kc/+hG/+93veiWsdBeNRrngggu49dZbueaaa0axlpoIvE6Obw888ADvf//7j+vY+++/n/e9731J+44cOcKPf/xjHnroIZ588kkOHz7c7/F5eXlcc801fOYzn2HJkiXHVQdNLP49UX86OzvZsmULGzduZM+ePTQ0NBAEATNmzGD+/PlcdNFF5ObmpruaGqeMozSeeK3UWGA7VKrsS9JYYL+RNDKMo6Txbffu3bzyyivs2LGDw4cP09rayrRp05g9ezYXX3zxkCfZ9DopTRwj+X5+7rnn2LRpE9XV1USjUWbPns2SJUs4/fTTh6n2ksYLE+gkSZIkSZI0rEa6M0ySejLhRZIkSZIkSZIkSZIk9ccEOkmSJEmSJEmSJEmSJEmSJEmSJEnShOT6tJIkSZIkSZIkSZIkSZIkSZIkSZKkCckEOkmSJEmSJEmSJEmSJEmSJEmSJEnShGQCnSRJkiRJkiRJkiRJkiRJkiRJkiRpQjKBTpIkSZIkSZIkSZIkSZIkSZIkSZI0IZlAJ0mSJEmSJEmSJEmSJEmSJEmSJEmakEygkyRJkiRJkiRJkiRJkiRJkiRJkiRNSCbQSZIkSZIkSZIkSZIkSZIkSZIkSZImJBPoJEmSJEmSJEmSJEmSJEmSJEmSJEkTkgl0kiRJkiRJkiRJkiRJkiRJkiRJkqQJyQQ6SZIkSZIkSZIkSZIkSZIkSZIkSdKEZAKdJEmSJEmSJEmSJEmSJEmSJEmSJGlCMoFOkiRJkiRJkiRJkiRJkiRJkiRJkjQhmUAnSZIkSZIkSZIkSZIkSZIkSZIkSZqQTKCTJEmSJEmSJEmSJEmSJEmSJEmSJE1IJtBJkiRJkiRJkiRJkiRJkiRJkiRJkiYkE+gkSZIkSZIkSZIkSZIkSZIkSZIkSROSCXSSJEmSJEmSJEmSJEmSJEmSJEmSpAnJBDpJkiRJkiRJkiRJkiRJkiRJkiRJ0oRkAp0kSZIkSZIkSZIkSZIkSZIkSZIkaUIygU6SJEmSJEmSJEmSJEmSJEmSJEmSNCGZQCdJkiRJkiRJkiRJkiRJkiRJkiRJmpBMoJMkSZIkSZIkSZIkSZIkSZIkSZIkTUgm0EmSJEmSJEmSJEmSJEmSJEmSpLS67LLLiEQiiduOHTuG7dzve9/7ks79xBNPDNu5Nfr8/ylpsEygkySNmvnz5yd9WI1EIuTm5vLaa68N6jzdj7/ssstGprLjRM9g8XgDgOE4z7Jly3r9//3MZz5zXPWRJEmSNDqM04bfaMdpn/3sZ3v9P+y6RaNRcnJyKCoqYt68eZxzzjm8/e1v5/Of/zzPPPMMQRAc/wuVJEmSRpCxyvAbS31KkiRJ0mRjjDP8esYmPW+ZmZkUFBQwc+ZMqqqqeMtb3sJXv/rVQf/OpeF0rHbb1Xbz8/OZMWMGp556Ktdeey133XXXsCYSStJkZQKdJCmtWltb+ad/+qd0V0NDtHPnTlatWtVr/49+9KM01EZdHnjggaTg+rOf/Wy6qyRJkqRxwDht4giCgLa2NhoaGti9ezdr1qzhJz/5CbfffjsXXngh8+bN47bbbqO+vj7dVZUkSZKOyVhFMLIrEWhgzuwvSZI0vIxxRlZnZydNTU3s27ePF198kZ///Od8/OMfZ+HChXzsYx+jsbExbXXbsWPHmEqGdIzZ2NLZ2UlzczN1dXVs2rSJX/7yl9x2222cdNJJvO997+Pw4cPprqIkjVsm0EmS0u6+++5j+/bt6a6GhqC/RLktW7bwwgsvjHJtJEmSJA2Vcdrk8Nprr3HXXXexYMEC/vM//zPd1ZEkSZKOyVhFkiRJ0kRijDP6Wltb+Y//+A8uvPBCV6PTuBKLxfjOd77D+eefbxKdJB2nzHRXQJKk9vZ2/vEf/5H77rsv3VXRcRpopbkf/ehHnHnmmaNYG0mSJElDZZw2fr33ve/lfe97HxCuQNfU1ERjYyN79+7llVde4Y9//CNr165NOubQoUN89KMf5Q9/+APf+c53yMrKGv2KS5IkSSkwVpEkSZI0kRjjDJ+vfOUrLF26NLHdtYrXa6+9xnPPPcfPfvYzDhw4kHj8xRdf5G1vextPPfWU/SJKm57tNggC2tvbaWxspLa2ltWrV/Pggw/S0NCQKLNx40Y+/vGP+3dDko6DCXSSpLSYNWsW0WiUPXv2APDd736XT3/605x88slprpkGa8uWLTz//POJ7euvv55f/vKXdHZ2AmEC3Re/+MV0VU+SJElSiozTJob58+dz2WWXDVhm+/bt/Nu//Rtf//rXaW5uTuz/4Q9/SHNzMz/96U+JRqMjXFNJkiQpNcYqkiRJkiYSY5yRsXTp0gH7R+6++24+8pGP8MMf/jCxb9WqVfznf/4n//t//+9RqKHU27Ha7Yc//GG++MUvctVVV7FmzZrE/h/+8Id85StfYerUqaNQS0maOBwFIUlKi5ycHG677bbEdmdnJ5/97GfTVyEdt56rz330ox9l+fLlie0dO3awatWq0a6WJEmSpEEyTps8FixYwFe+8hU2bdrEJZdckvTYQw89xB133JGmmkmSJEm9GatIkiRJmkiMcdKjqKiI//qv/+Kiiy5K2v+Nb3wjTTWSUjNjxgy+/vWvJ+1raWlh7dq16amQJI1jJtBJktLmL//yLznxxBMT2//93//Nhg0b0lgjHY/uCXTTp0/n8ssv5+1vf3u/ZSRJkiSNXcZpk8vcuXP57W9/yzXXXJO0/wtf+ALPPfdcmmolSZIk9WasIkmSJGkiMcZJj0gkwv/5P/8nad+GDRvYv39/mmokpebss8/utdpcdXV1mmojSeNXZrorIEmavLKzs7njjjv44Ac/CEAsFuPOO+/kwQcfTHPNjt+BAwf47W9/y+7du8nMzGTevHlcfvnlFBcX93vM7t27WblyJbt27SIzM5OFCxdy2WWXUVhYOHoVP04bNmzgpZdeSmy/9a1vJTMzkxtuuIGbb76Zzs5OAB588EG+/OUvE4lEjvu5XnnlFdauXUttbS1NTU2UlJRQUVHB+eefP+ilyLdv385zzz1HTU0Nhw8fZurUqZx44omcf/75zJgxY1Dnqqur4+mnn6a6upoDBw5QWFjIrFmzuPDCC5kzZ86gztWXgwcP8uSTT/Laa6/R0NDArFmzOPPMM6mqqhryuQcjCAJeeOEFNmzYQE1NDbFYjJkzZ3LyySdz/vnnk5GRMer12bRpE2vWrEm0icLCQsrLyznjjDM4+eSTiUadK0KSJGmwjNNC4zlOG6zs7Gx+8IMfcPbZZ7NlyxYg/P9+yy238Pvf/z6lc3R2drJq1Sq2bNlCbW0t0WiUsrIyFi1axJlnnjmkWLC7l19+meeee469e/eSm5vLggULuOyyyygqKjqu87W2trJy5Uq2b9/Ovn37yMnJoaysjKVLl3LaaacNS50Ho62tjbVr17J+/XoOHDhAR0dHIl6tqqrihBNOGPU6SZIkjRXGKqGJEKu8+OKLvPTSS9TU1NDa2sq0adNYuHAhF1xwAXl5eZO+Pnv37mXlypXs3buXgwcPUlpayuzZs7n44ospKSkZ9PlqamrYtGkT27Zt48CBAzQ1NZGdnU1BQQEnnngip59+OgsWLBiBVzKw0YjH0vkeM76TJEnHYowTSkeMc+GFF/ba9/rrr1NaWprS8Y2NjTz11FPs3r2buro6pkyZQllZGeeddx7z588f5tr2r6GhgY0bN/Lqq69SU1PDkSNHyMjIID8/n/Lyck455RQWL148auOnRjP22LZtG6tWraK6uppYLMacOXO49NJLh2Ws3kDa29t55pln2L59OzU1NUSjUUpLSznjjDM488wzR/x3nZeXx6FDhxLb+fn5KR+7Y8cOVq9enWgr06dPZ+7cuVxyySUUFBQMS/3q6+tZsWIFu3fvpqWlhbKyMi6++GIWLlx43Odcv349a9euZc+ePWRkZDBz5kzOOussFi9efNznbGpqYs2aNbzyyivU19cTBAHFxcWcdNJJVFVVMXPmzOM+t6RxIJAkaZSceOKJARAAwYknnhgEQRB0dHQElZWVif2RSCR44YUXBjxPV1kgWL58ea/H77zzzqQy999/f0r1S+W47du39/n81dXVwXve854gKysr6XEgyM3NDT74wQ8G9fX1SefasGFDcPXVVwfRaLTXMVOmTAnuvPPOoLOzc8A6L1++POm4FStWpPRah+s8d9xxR9Jxv/nNbxKPXXHFFUmPPfXUU4Ou16FDh4LPfvazwbx583r9jrpu0Wg0uPTSS4N77703OHLkSL/nam5uDv7v//2/wSmnnNLvuYDg7LPPDv71X/812L9//4B1+3//7/8FF110UZ///7pu55xzTvDQQw8NeJ7+2t1zzz0XXHvttX22KSA47bTTkn7f3XV/r6V6e+9739vnuQ4fPhzcfvvtwaxZs/o9tqSkJLj55puD2traAV9rX3Xr7pVXXgk+8YlPBKecckqQk5MTTJkyJXj55ZeTyrS3twd33313UFFRMeDrKS0tDf7iL/7iuN8TkiRJk4VxWn3SucZjnNbzd3TnnXce1/M98sgjvV7zc889N+AxNTU1wc033xyUlJT0+9l81qxZwWc+85ng8OHDx6xD9+O6t8f77ruv31guJycnuOWWW4KmpqaUX+u2bduCv/iLvwgKCgr6rff8+fODu+++O2htbR3wXP21vy6/+93vgne9613BvHnzgoyMjGD+/Pm9zlFXVxf87//9v4Pi4uIB45yTTjopuOWWW4LNmzen/FolSZLGK2OV+qRzjcdYpbvGxsbgc5/7XDB37tx+P+9mZ2cH73//+4NXX3211/ErVqxIqa+j562/ug21Pt0Ntd+jy0MPPRSce+65QSQS6bM+GRkZweWXXx78/ve/P+bve8uWLcFb3vKWoLy8PKXf0+mnnx584xvf6LMN9WzHqd76ey+NRjyWrvdYEBjfSZKk/hnj1CedK50xTltbW6/nfOaZZ4553Lp164Lrr78+yMnJ6fdz3qJFi4IHHnig37q/973vHfRn6672EgRB0NnZGbzvfe8LTj755H5jh+63WbNmBbfeemu/fTRDHWM2nLFHdz3/327fvj2IxWLBj3/84+DMM8/s89zRaDS46qqrjhnD9fx/kEq72bVrV/DBD34wmDp1ar+vrbS0NPjsZz97zP6w4223LS0tvd5ju3btGvCYzs7O4P777w8WLVrUb72zs7OD66+/PnjxxRePWYf+fncvvPBCcN111wWZmZl9Psell14arFu3LqXXGQRBEIvFggceeGDAcZ4LFiwIvvjFLwZvfetbU/597tixI/jABz4Q5OfnD9hOlyxZEnzmM58JXnvttZTrLGn8MIFOkjRq+voiIAiC4Ac/+EHSB9DrrrtuwPP0FYh3N9pfBPziF78YMDjqui1dujRobGwMgiAI7r777gGD6a7bu971rgHrnO4Euu5ByvTp04P29vbEY/fee2/SOW+++eZB1emRRx4Jpk2bNqgAfe7cuX2ea/Xq1QN2gvZ1y8/PDxoaGnqdq6GhIbj22msHda6/+qu/Ctra2vqsW8929+///u/BBz/4wZTP/cUvfrHXOYcrge7pp58OysrKUj5HYWFh8Itf/GLA/699dSQ3NzcHn/jEJ4KMjIxe5+z+xeCePXv6/RJkoNt99903YJ0kSZImM+O08R+nDVcCXRAEweLFi5PO9Td/8zf9lv3Zz34WFBYWpvy5fNasWcfsgO5e/sQTTwzWr18fVFVVpXT+Cy+8MPH/ciBf+9rXguzs7JTrXVlZGWzatKnf8/U3YOC1114L3vzmN/c639SpU5OO//3vfx/MmDFjUDFONBoNtm7deszXKkmSNJ4Zq4z/WKXLypUrg9mzZ6f8ebeoqKhXX8NwJtANR326G0q/RxCEExn+6Z/+6aBe11/+5V8m9cn19Nhjjx3X7+uKK67o1Tc2nAl0oxGPpfM9ZnwnSZIGYowzdmKc2traXs810MQGsVgsuO222wacZL3n7fzzzw/27t3b61xDTaBrb28/rs/nc+fODTZu3NirPkMdYzacscdA/28ff/zx4KKLLkrp3AUFBcGTTz7Z77kHm0B3zz33BHl5eSm/tlNOOWXAOOZ42+3Pf/7zpOP+5E/+ZMDye/bsCc4999yU6x2NRoM77rhjwHP2/N396le/Cj760Y+mlMxZWFiY0oQwBw4c6PU7Gsytv9/ngw8+GEyZMmVQ58rKyjrmxC6Sxp/RWZdVkqQBvPOd72TJkiWJ7V/84hc8++yzaaxR6tasWcP111+fWBo7JyeHM844g3POOafXUvJr167lzjvv5Oabb+aWW26htbUVgClTpnD22Wdz5plnkpubm3TMD3/4Q7773e+OzosZpLVr17Jp06bE9lvf+lYyMzMT23/2Z39GRkZGYvvBBx+ks7MzpXPff//9XHfddRw4cCBpf2FhIVVVVSxbtozZs2f3Ou7w4cO99v36179m+fLl7N69O2l/Xl4eixcv5oILLmD+/Pm9jmtqaqKjoyNp3/79+7n00kt5+OGHk/YXFxdz5plncuGFF7Jo0aKk3wPAN77xDT7+8Y8P9JITbrnlFr797W8ntrOzs6msrGTZsmXMmzevV/lbb72VH/zgBymdezAeffRR3vCGN1BTU5O0f9q0aZx11lmce+65vZYrb2ho4K1vfSvf+973Un6eXbt2ceGFF/KVr3xlwPbR1NTEFVdcwQsvvJC0Pz8/n1NPPZULLriAhQsXkpOT0+vYrveaJEmSUmecNj7jtKG66aabkrZ//etf91nuvvvu44YbbqChoSFpf1lZGeeeey5nnnkmJSUlSY/t3buXK664gt/+9rcp1aWmpoZzzz2XdevWJfZNnz6d8847j6qqKvLy8pLKr1y5kk9+8pMDnvMf/uEf+OhHP0pbW1vS/rlz53L++edzxhln9Gojmzdv5sILL+TFF19Mqd4AK1asYOnSpTz66KMDllu/fj1XXXUV+/btS9pfUlJCVVUV5557LvPmzSMSiSQ9HovFaG9vT7k+kiRJE4mxyviKVX71q1/xhje8gT179iTtnz9/Pueffz7nnXceJ5xwQtJjhw8f5oYbbuDpp58el/VJtd8D4NChQ1xyySX86le/StqflZXFaaedxgUXXMDJJ59MNJo8tOdb3/oW1113Xcr9bhD2p5x++ulcdNFFVFVVccIJJ/SKNR5//HHe8573pHzOwRiNeCyd7zHjO0mSdLyMcUY/xune79BVh4qKin7Lf+ADH+Dzn/88sVgsaf+CBQtYtmwZixcv7lX3VatWccEFF/D6668PX8X7kZmZycknn8yyZcs4++yzWbBgAdnZ2Ulldu/ezRvf+EYaGxtHvD4jEXu8+c1vTorJCgoKOP300znvvPOYMWNGUtnGxkauvfZaNm/ePLQXAtx55538r//1v2hubk7sy8jI4NRTT+XCCy/ssz9s06ZNvPGNb6Surm7Iz99lx44dfOITn0hsFxYW8pWvfKXf8rt27eKCCy7o9beka7zksmXLWLBgQdJjsViMz33uc/zVX/1VyvW66aab+NrXvkYQBADk5uZy+umnc/755zNr1qyksg0NDbzzne+kvr6+3/MdOnSI5cuX8+STTybtz87O5rTTTuOiiy7ijDPOoKCgIOU6Ajz22GO8853v5MiRI0n7Z86cydlnn81ZZ53FnDlzeh3X3t7e630vaQJIdwafJGny6G8mnSAIZ66n2+wNb3rTm/o9T/dy6Z5Jp+tWVFQU/Mu//Etw8ODBRNmWlpbglltu6XeGijlz5gT3339/0NzcnDjm8OHDwbve9a6kcqeddlq/dU7nCnS33npr0jG/+c1vepV5wxvekFTmd7/73THP+9xzz/WaffLkk08O/ud//qfXjB6vvvpq8E//9E+JZeB7zuS/Y8eOoKSkJOlcs2bNCu6///7gyJEjSWVff/314Ktf/Wpw0kknJcrW19cnHo/FYsHVV1+ddK5LLrkkeOKJJ3otK3/kyJHgnnvuCYqKinrNutJTz3bXdVu4cGFw3333BYcOHUoq//zzzwfnnHNOUtkZM2Yk1fWZZ54JVqxYEXzqU59KKveWt7wlWLFiRZ+3V155JXH8rl27eq3+d8455wQrVqzo9VpXrVoVXHbZZUllc3Nzg/Xr1/f5/7fnzEWzZs0acCaXrplYb7/99qT95eXlwQMPPBA0NTUlnb+pqSn49a9/Hbz73e9OLFt/zz339FkXSZIkGadNhDhtOFege+aZZ3r9TnrGJGvWrOkVs1155ZXBc889l1Suo6MjeOyxx4KlS5f2il/27NnT5/P39//lLW95S69ZKRsbG4P/83/+T1K5jIyMYPfu3X2e++GHH+41A+a73vWupFgoCIKgtbU1+OlPfxosWLAgqewpp5zSK44Mgt7tr7S0NBGL9HXrHrdefPHFSY8tW7Ys+M1vfhPEYrGk56itrQ1+8IMfJLWJnvWWJEmaaIxVxn+ssnXr1qR+kszMzOCTn/xkn5/Zt2zZErznPe9JOu/cuXMT/UL19fWJ/oyeq1Tfe++9/fZ9dO87Gc76dHe8/R5BEARvf/vbe8ULX/3qV5PaRhAEwd69e4O///u/7xVr3H777X3+7h977LEgKysruPbaa4N77rkn2LhxY6/+nSAIgrq6uuAzn/lMr5XynnrqqUSZ5ubmxO/zTW96U1K5z372s/3+7qurqxPnGK14LJ3vMeM7SZJ0LMY4YyfG+fCHP5x03A033NBv2f/4j/9IKhuNRoObb7452LVrV1K5xsbG4Nvf/nYwc+bMXv+Pun8Wf+WVV4IVK1YEP/zhD5PKzZ8/v9/P1s8880zi+K4V6M4///zgrrvuClatWhW0tLT0qndzc3Pwve99r9f4r3/8x39MKjfUMWbDGXt0198KZFdccUXw85//PCk26+zsDH75y18Gc+bMSSp75ZVX9nnuVFeg+/GPf5xUrrS0NPja174WHD58OKlcLBYLnnrqqWDZsmVJ5W+88caUXltfz9/e3h4cPHgweP7554Pbb789KZbNz88PnnjiiT7P3XXsBRdckPQc5eXlwXe+853EKpBdduzYEfzVX/1Vr3jtW9/6Vkq/u65bRUVF8O1vf7vXqoKPPvpoUFpamlT2C1/4Qr91f+c735lUdsqUKcGXv/zlXjFyZ2dnsHLlyuCjH/1or1Xlev4+Ozo6gvnz5yeV+dM//dOk91WX3bt3B9/85jeDs846K1G2+98oSRODCXSSpFEz0BcBQRD0Sgr6wx/+0Od5xtoXAcuWLet3gF4sFus1WBAI3vnOd/YKpro0Nzf3Cqa3bNnSZ9mhLFc90C2VLxQqKiqSAsT29vZeZe69996k8/7VX/3VgOeMxWLBGWeckXTMJZdcMuCS7UEQfgnx6U9/OigtLU3af8011ySd67TTTkvqsOtLe3t7cPfdd/9/9u49Pq66zv/4+5wzyUxuTZO0TVrohVLKtVC5FVBAFlxdQUEU76L+FlxFF3G9reiKLN7Wy+IFWXVVFFxlFbErisgdsaWUAm2BAm1pQ9O0SZOZSTL3yznf3x8nGTK5TtKkSdPXk0ce03Pm+/2eb5KZkE++5/P9mIqKiqKF1R//+MdFY33sYx8bMuDv78knnzTBYLDQ56yzzhrUZuDrLhAImBtuuMFks9lhx+3p6THLly8v6vflL395ULtbbrmlqM1HP/rREefb55JLLinqd+GFF45Yjtx1XfOe97ynqM9Qn6sxgxeS+z6OP/548+1vf9s899xzhUXQaDRauO7ChQsLbS3LMps2bRr182hpaTFvectbzA9/+MOSPm8AAIBDEXHawR+nTWQCXXd396Drrl+/vqjNq171qqLnr7zyykE3BPaXTCbN3/3d3xX1efe73z1k24HXPuyww8z9998/4pzf+MY3FvX55je/OahNOp0edBPrUDFUf52dneaEE04o6nPttdcOajfcDQOSf5PDrbfeanbu3FmIbdra2owx/oYw/dsuXLhwyBtCB3rsscfMiSeeyA2WAABgxiNWOfhjlbPOOqvQprKysqS1p09/+tNFY//4xz8e9fN44oknRh13Mucz3nWP1atXF7Wvr68fde3jj3/8owkEAoU+tm0PGRtEo1HT2dlZwlfF97Wvfa1oLtdcc82Q7QbeLPnb3/521LEPdDw2Fe8x4jsAAFAKYpzJj3FK+R1/4L1c0vBJXG1tbSYUChXaWZZlbrvtthHHf+mllwYlcg0VRwz8Wh5//PGjzt0Y/2u6ffv2ktoaY8zatWuLrrNy5coh2433HrPJij0Gfm+bmprMH//4xxHHfv75501VVVVRvzVr1gxqV0oCXUdHR1HS2lFHHWV279494vUzmYx59atfPWq8tj+x+YUXXmh27Ngx4jy+853vFPU54ogjBiV8DvSjH/2oqE91dbWJRCKjfu1s2zZf+MIXhkzi7DMwEXG41/pdd91V1K62tnbQ5p1DGe37+cADDxQ9f9ppp416z6cxxvzpT38yS5YsIYEOmIFsAQAwTdxwww1Fx//2b/82RTMp3XHHHaeHH35Yhx9++JDPW5alN73pTUXn3vve9+rXv/71oFL1fUKhkP7+7/++6NzActpT7YknntCOHTsKx295y1sUCAQGtXvrW98qx3EKx7/73e+Uz+eHHff//u//tHnz5sLx3Llzdeedd6q6unrE+VRWVuqrX/2qHnzwwcK5jRs36o9//GPhOBQKafXq1YPKgw8UCAT0iU98Qk899ZQqKyslSa7r6utf/3qhzdlnn63vfe97su2Rf5U6+eST9cEPfrBwvHbtWrW0tIzY51vf+pa+8IUvqKysbNg2NTU1+trXvlZ07tZbbx1x3FJt375df/jDHwrHDQ0N+sUvfqHy8vJh+9i2rR//+MdatGhR4dzatWu1bt26Ua9XVVWln/zkJ9q8ebP+5V/+Rccdd1yhzPrs2bNVXl6u7u7uoq/bkiVLdOKJJ4469uGHH64777xTl19++ahtAQAAMDTiNN/BEKdNhFmzZmnWrFlF59ra2gr/fvDBB/X0008Xjo8++mjddNNNsixr2DErKip02223FX1tf/Ob32j37t0jzqWhoUEbN27U+eefP2K7973vfUXHjz/++KA2//M//1P0eZx33nn6/Oc/P+r1f/nLXxbFtD/84Q+VTCZH7CdJRx55pP7617/qnnvu0fve9z4tWbKkEFM1NjZKkp555pmiPhdccEEhFhrJGWecoSeffFJHHnnkqG0BAABmMmIV33SNVR5++GGtXbu2cPzd735Xr33ta0ftd/3116u+vr5wfPvttx908yll3UOSvv3tbxf1u/HGG0dd+7jwwgt1zTXXFI49z9N3vvOdQe1mz56thoaGUefa58Mf/nDRmtdTTz1Vct/RHMh4bKreY8R3AABgIhDj+CYzxnnkkUd04YUXKpPJFM5deeWVes1rXjNk+x/84AdKp9OF4w984AN673vfO+I1li5dqh/96EdF52688UYZY/Zj5q+wLGtMvz+eeeaZOvnkkwvHmzZtkuu6EzIX6cDFHvfdd58uvPDCEdscc8wx+uhHP1p0brz30910003q6emRJJWXl2v16tU67LDDRuxTXl5eFOd5nqff/va347r+cFzX1YYNG4Z9PbmuOyhGvOWWW7Rw4cIRx/3Qhz6kt73tbYXjeDw+6HU8lJ/+9Ke64YYbFAwGh23zlre8pSg+ev755xWLxQa1+8pXvlJ0fOONN+qUU04ZdQ6jGRivXXTRRaPe8ylJb3zjG/X888+P+LkBODiRQAcAmDbe8IY3FAWkDz30kB566KEpnNHo5s6dO+ovyQOD1lKC2GXLlhUdd3R0jH1yk2jgAuHb3/72IdvNmTOnaAEyHA7rgQceGHbcn/3sZ0XH1157rebMmVPyvPovLA4c65/+6Z+0fPnyksc65phjCouYf/nLX4oSBv/1X/91xBtE+3vzm99cdPzII4+M2L62trakcS+++OKiRdutW7equbm5pL4j+eUvfynP8wrHV155ZUl/6KisrNTHPvaxonO33XbbqP0ef/xx/eM//uOIgenABdFoNDrquP1VVFSMqT0AAABeQZz2iukep02UgRuYxOPxwr8HLjR+4hOfGHGzjT4LFiwoSnTL5/P69a9/Peo8SokHTzjhhKLjl19+eVCbgfP+7Gc/O+q4knTSSSfp9a9/feE4EonoT3/604h9jjrqKG3YsEFnn332iO32J84JBAIjbroCAABwKCBWecV0jFVuvvnmwr+bmpqKNhscSUVFhS644ILC8WOPPaZsNntQzaeUdY/m5mY9+uijheMFCxaMeiNun09+8pNFiWW/+tWv9vsG2NmzZ2vu3LmF44l8DR3IeGyq3mPEdwAAYCIQ47xivDHOxo0b9fDDDxc+/vKXv+h///d/9ZWvfEXnnHOOzjvvvKLNHd7whjfopptuGna8gb/LfuYznylpHhdeeKGOO+64wvHzzz+vDRs2lNR3Mhx11FGFfxtjFA6Hp2wu4409Rtt8v8/ATdbvvffe0ifXyxijH/7wh4Xjiy++uOj7OZJVq1YVNlKURr9PcKzuuecevf3tb9eqVauK7mXs8+ijjxbdP3jGGWfo3HPPLWnsga/vUu77W7JkyahtAoGAjjnmmMKx53mDChBs3ry5aKP+I444Qh/4wAdGHbsU+xOvhUKhku8RBXDwGFwqBgCAKfSVr3yl6Jf2f/u3f9Pf/va3KZzR/is1gBupT3d3d0n9brzxRq1cuXLM17vmmmu0adOmktoaY4p2R2loaNB55503bPu3v/3tRUlzt99+e9GCVx/XdYuCRtu296ty2MBEvVIXQ4fSv7KdZVk655xzSu47MFDcvn37uOfRn+M4Ouecc7R69erCuaeffrqkwHQk/RdsJX8XmFJdeumlRcH0mjVrRu1z/PHHj9pm7ty5qqioUCqVkiR1dXXpl7/8ZcmLyQAAANg/xGlD95lOcdpEGmkX1IHxwiWXXFLyuJdeemnRTatr1qzRpz/96THPb6C6urqi466urqLjXC6n9evXF45ramqKboAdzaWXXqq77767cLxmzRpddtllw7ZfsGCBZs+ePeq4ixcvLjq+99579eKLL+roo48ueW4AAACHOmKVoftMh1jl4YcfLvz7Na95TVHC12j6r3OkUint2bNnv9c+DuR8Sln3GBhbXXzxxSXtgC/5CYBnnnlm4bUei8X0zDPPlPy9TCaTamtrU3t7u8LhsDKZjNLpdFESXimVt0txoOOxUkzGe4z4DgAATBRinKH7lBrjfOITnyipneM4+sQnPqGvfe1rCgSGvo1+9+7dRRv2HXvssUVJQKO59NJLtWXLlsLxmjVrdNppp5Xcfzzy+Xzhd/2Ojg4lk0llMhm1trYWtZuo3/dHcyBjjz7HH3+85syZo87OTknSzp071d3dXfKG9pL03HPPqb29vXBcagJan8WLFxf6l3Kf4FCxeT6fVzabVSQS0fbt23X33XcXVWJ84okn9JrXvEZr1qzREUccUTi/P/f9nXbaaTr88MO1e/duSX7iZzQaHbQONx6jreX1vzdTkt7xjndMWOLawHjt9ttv17XXXluUyAng0EICHQBgWjnnnHN0wQUX6P7775fkB4/33HOP3vCGN0zxzMavfwnq8fYpdefIlStXFlV8K1UpN/f1Wbt2bdEuIG95y1uG/WOC5P9B4KMf/ajy+bwkafXq1frRj340qErBli1bCqXPJem4444rqrA2Fj09PUV/hJg1a1ZRdbqxWrt2beHfxhjV1NSMe6xIJDLuvgMN/MPMRCTn9d/xyHEcrVixouS+S5cuVU1NTaHM+jPPPKNsNltSRYqRBAIBveENb9Dvf//7wrn3v//9euihh/TBD35QZ511VskLywAAABg74rSh+0ynOG0iDVysnDVrliR/R8b+u1nOnz+/aBfN0Qxc/HvyySfHP8kh5tdnYDWIZ599trAZh+RXrBvLzbKTNe/TTjtNjY2NhUXUZDKp008/Xf/yL/+id77zndxoCQAAUAJilaH7THWssnXr1qIqAnfcccd+3fgWiUT2K4Fuus1H0qDqE2NNZFy5cmXRjdRPPvnksGOEw2Hdeeed+stf/qJNmzbppZdeGnHjlIk0HeOxyXiPEd8BAICJQowzdJ/9rbjcx7Isvfvd79ZnP/vZUe+H6p+sJI3vd/b+Jmptob9MJqN77rlH//d//6enn35aW7ZsmZAK3uM1lbFHf8uXLy8k0EnStm3bdOqpp5bcv/99gpL0sY99TB/72MfGNZdS7hMsJTb/0pe+pNWrV+uKK64oVBDcu3ev3ve+9+nRRx8txLgTEWv2JdAZY/TUU0/p/PPPH9MYQxltLe+xxx4rOl61atV+X7PP6173OpWXlxeu2dbWphUrVujTn/60LrvsMi1atGjCrgXg4MCdxgCAaefLX/5y0fEXv/jFKZrJxAiFQgekz4Hyv//7v0XHo+30OGfOnKIgr6urS3/5y18Gtdu3b1/R8Vh27RloYHn35cuX79diaF9gOBH6kssmQlNTU9FxqTsuDSebzRYlMc6bN08VFRUl97csqyio9DyvELTvr+uvv74oEc/zPP3sZz/T2Wefrbq6Or3uda/TF7/4Rd19992DdqkBAADA/iNOm95x2kSJx+OD4orDDjtM0uA4a6w3jDY0NBQteg+MAcdrtN1r93feA3emnKh5l5WV6d///d+LzvX09OhLX/qSjjnmGB122GF661vfqm9961v629/+NqWL3gAAANMZscr0i1Umck1F2v91lek2H+nAxCltbW364Ac/qKamJn3oQx/S7373O23fvv2A3sA6HeOxyXiPEd8BAICJRIwzeTGOMUZnnHFGSZuJT8ffZftks1ndcMMNampq0iWXXKJbbrlFGzdunLLfM6dD7NHfwM0fx3o/3XS9T/CSSy7R73//+6JN5tesWaN77723cDxdX7ejreXt3bu36Pioo46akOtK0ty5c/XJT36y6Fx7e7s+9alPafHixVq6dKne/e536/vf/742bNgwYQm7AKYvEugAANPOqlWr9KY3valw/MQTT+gPf/jDFM4IfTzP0x133FF07vWvf70syxrxo29npD4Dk/AkDUq02p9qCxM5ljSxVeMm8o8DA3dcSiQS+zVeNBotOh4teB3KwOp8A8ccrxUrVuiOO+4YtCON5C9C3n///brhhht04YUXau7cuXr9618/qLw7AAAAxo847dDw/PPPFx3btl3Y3GSi44VsNjuo2t14jLZZyv7Oe7JiHEn60Ic+pOuuu27Iitp79uzRnXfeqU9/+tM6++yzNWfOHH3wgx/Utm3bJuz6AAAAMwGxyvQzkWsq0v6vq0y3+UiTH6esX79eK1as0M9//nPl8/lB/QOBgI444gi95jWv0Tve8Q59/OMfV21t7ZjmUIrpHI9NNOI7AAAwUYhxxu+hhx6SMabwkc/n9brXva6ozSc+8YlB97ENZbr+LtvR0aGzzjpLX/ziF4fcYNyyLM2fP1+nnXaaLrnkEn3kIx/RiSeeOCHXHsp0iT36G3g/XTweH1P/iY4hJ9LZZ5+t8847r+jcnXfeWfj3dH3djraWN/BrPtGvkRtuuEFXXHHFkM/t3LlTv/71r3X11VcXqot//OMfH5TUB2DmCEz1BAAAGMoNN9ygP/7xj4VFqC9+8Yt605vetF9VxLD/HnnkkQkJDv7whz8onU4X7Rg0cMFxf77XEzmWJOVyucK/A4GA7rvvvnGPNbBq3P4YuHPQwCB2rCbi6zawz0QmDL7pTW/Sli1b9I1vfEO/+tWv1NnZOWS7fD6ve++9V/fee6+uueYa3XjjjRM2BwAAgEMZcdrM9+ijjxYdn3rqqYW4bbrHC8PZ33lP9py/9KUv6aKLLtLXv/51/elPf1I6nR6yXSwW089//nPdfvvtuuWWW/TOd75zQucBAABwMCNWmV76r6lI0kUXXTRot/exWLly5YyajzS5ccq+fft00UUXDVpDOffcc/X+979fZ511lpYtWybHcYqeX7169ZgrM4xmusdjE434DgAATBRinInhOI5uv/12nXbaadqxY4ck/56it7/97Vq/fr2WLVs2bN/p+rvsZZddpieffLLo3PLly3XFFVfota99rVasWDGogt8HPvABbd68eUKu3990ij36G3g/3cCEutEMjCG/8IUv6Pzzz9/veU2Uc845Rw888EDheNOmTYV/T9fX7WgGfs/KysomdHzHcfTf//3fesc73qFvfetbeuCBB4ZM+JT8wg3f+973dOutt+r3v/+9Xvva107oXABMPRLoAADT0kknnaTLLrtMv/nNbyT5v+jfcccduuyyy6Z4Zoe2oSrHjUcsFtOf/vQnvfWtby2cq6urK2qzP4HyRI4lSfX19Wpra5Pk/yHljDPOGPTHhqnQ09NTdLy/lfYGft0Gjl+KgX3q6+v3a04DHXbYYfrud7+r//zP/9TTTz+tRx99VOvWrdP69evV3Nw8qP13vvMdHXXUUbrqqqsmdB4AAACHIuK0me/2228vOr7ooosK/57oeKG8vHzMi5bjsb/znuwYR/ITFe+44w4lk0k99thj+tvf/qb169dr3bp1g3bdTKfTuvzyy3XsscfqpJNOmvC5AAAAHIyIVaaXgb8zV1VVTekNZ9NtPtLkxik//OEP1dHRUTiePXu2br311qIqJgfKwRCPTTTiOwAAMBGIcSZOfX29Vq9erTPPPFOJREKSX1XrTW96k9atWzdspavp+LvsX//6Vz3yyCOFY8uydMMNN+hzn/vckJWQJ9t0ij36i8ViRccDv5ejGfi9Ouyww6Y8huxv3rx5Rcf944yhXrfz588veeypisFmzZpVdNz3Xp1oF1xwgS644AJ1dXVpzZo1+tvf/qYnnnhC69evH/S66erq0lve8hY999xzWrBgwaTMB8DUOPD/xwQAoETXX3990Q4kX/rSl+R53pjHcV13Iqd1yMrn8/rd735XOJ4/f74eeuihkj/+/d//vWi8gcl4c+bMKTreunXruOc6cKxt27aNeyxJmjt3btHx9u3b92u8iTLwa7RkyZL9Gi8YDBYFpPv27VMymSy5vzFGu3btKhzbtj1pgbTjODr11FP1iU98Qv/7v/+rnTt3aufOnfrqV7866I8BX/3qVydlDgAAAIci4rSZ65FHHtETTzxROA4EAvrgBz9YOB64IDfUBhYjCYfDRQteA+O2ybK/8x7YfjLnXVlZqfPPP1/XXXed/vSnP6mzs1MbNmzQRz7ykaL3XS6X0ze/+c1JmwcAAMDBiFhl+phuayrTbT7S5MYpt956a9FzN99885TdwHowxWMTjfgOAADsL2KcibNixQr9/Oc/Lzr3wgsv6J3vfOewX5/p+LvswN/1r7zySn3+85+fkuS5oeYzlbFHfy+99FLR8aJFi8bUfzrGkP0NrNbWf8P96fi6LcXAogF9hQ4m83oXXnihvva1r+n+++9XJBLRX//6V73rXe8qatfV1aWbb755UucC4MAjgQ4AMG0dc8wxes973lM43rJli37961+P2q+8vLzoOJVKTfjcDkUPPvhgUcn1iy++WK997WtL/vjnf/5nBQKvFL/905/+VHTz5LHHHlv0vXvuuecG7exRqvr6ei1cuLBwHI1G9cILL4xrLEk65ZRTio7/+te/jnusibRhw4ai4zPOOGO/xzzttNMK//Y8T08//XTJfbdv3170PTv++OMVDAb3e06lWrJkiT73uc/pwQcfLCrl3traOuiPIwAAABgf4rSZKZ1O62Mf+1jRuXe96106/PDDC8d1dXU68sgjC8dtbW1qbW0t+RpPPfVU0fHAOGuynHDCCaqoqCgcP/PMM4MWF0cyMCY6UPOW/N1jTznlFN1888367ne/W/Rc/11mAQAAQKwynRx//PEKhUKF402bNo2rgvVMnY9UvBYjDV7vGc1wcUo+n9fOnTsL50OhkN7xjneMc5b772COxyYa8R0AABgrYpyJ9ba3vU2f+9znis7dc889+sxnPjNk+8n6nX1/DNxo/f3vf/9+jzle0y326BOPx4sS3o488shBCXGjma73Cfbp/3WX/Ap5ffb3dbtx48ai45NPPnlskxunY489tuj4+eefPyDX7RMIBHT22WfrV7/6lT71qU8VPUe8Bsw8JNABAKa1L33pS0WJMNdff/2ofQaWVu9fKhzjN7Bi3Fve8pYx9Z89e3ZROfNkMqm77rqrcFxRUaHTTz+9cJzL5XT77bePb7KSzj333KLj2267bdxjnXfeeUXHP/7xj8c91kR5/vnn9cwzzxSOjzrqqEHlwvsnLJbqNa95TdFx/6qDo7njjjuKjl/96leP+foTYeXKlTrppJOKzrW3t0/JXAAAAGYi4rSZxXVdXX755Xr22WcL56qqqoas5HwwxgtlZWVFsWYikdA999xTcv/pEue8//3vl2VZhWNiHAAAgMGIVaaHYDCoM888s3Ccz+f1s5/9bMLGH+vax2TPZzwGxlb/93//p3w+X1Lf1tZWrVu3rnBcXV1dWBPp6OgoqkqycOHCCa1GMdav/UyJxyYa8R0AACgVMc7E+vKXv6w3vvGNRef+8z//U7fccsugtocffrgWL15cON6+fbs2b95c8rUGrp8M/F12PPd0Dfy9ccmSJWMeYzhjnc9kxx7jdeeddxbNq/+9iqU644wzijZheeKJJwYllk2VbDarO++8s+jcBRdcUPj3/qzjPfbYY0UbZx5zzDFqaGgY50zHZmDS4gMPPHBArjuUD3zgA0XHxGvAzDP1/7cCAGAERxxxhP7f//t/heNt27aN2qd/5TFp8C73w3n55ZfHNrlDSC6X0+9///vCcW1t7aCkslJccsklRccDk/Le/va3Fx1/+ctfVjweL3n8J554Ytixvv/972v37t0lj7V58+bCLpgXX3xx0R+YNm3aNK4kuu3bt2vfvn1j7jeU6667ruj4yiuvHNRm1qxZRcel7Cp1+eWXF/1B46c//WlJZdFjsZh+8IMfFJ1773vfO2q/Umzfvn3MO+LU1NQUHdfV1U3IXAAAAECcNpO0tbXpH/7hH/Tb3/626Px3vvOdoupzfQYuGt14440lxRktLS36n//5n8Kx4zh65zvfOb5Jj8PAeX/1q1+VMWbUfhs2bND9999fOJ49e7YuvPDCCZnTQw89NKZFt8rKyqJYjRgHAABgMGKV6ePyyy8vOv7KV74ypgrWfdauXTvo3HjXPiZrPuOxZMmSoo0gOzo69N///d8l9f2P//iPohtC3/nOd8pxHEmD44T29vaitsOJx+NKJpOjthvP1346xmMTjfgOAABMFmKciWXbtn71q19p+fLlRec//OEPa82aNYPaD/xd9itf+UpJ17nzzjv14osvFo6XL19etLGENL7frQf+3rhnz55R+xhjSrpXbazzmezYYzxyuZy+9a1vFZ370Ic+NOZxgsHgoGp6V199dcmbnvSfT/97GSfCJz/5Se3atatwHAwGddlllxWOzznnHC1durRw/PTTT+vPf/5zSWN//etfLzqeqPv+SvG6172uENdK0h/+8AeFw+GS+qbT6RGf/+Mf/6hYLFbyXLjnEJj5SKADAEx7//Zv/1a0q8dozjrrrKLje++9d8TEqX379ultb3ubfv7zn493ijPeX/7yF0Wj0cLxhRdeWLTDUakuueSSoh0V//znP6unp6dwfMUVVxSVTd+1a5fe/e53FxLZhpPJZHT99dfrDW94Q+HcRRddpBUrVhSOY7GY3vrWt6q7u3vEsTzP03/9139p1apVhYC9trZW//zP/1zU7uqrrx50k+lwUqmUvvGNb2jlypVFQex4/fCHPyy69uzZs/WP//iPg9r1D4glf2F3tEXJpUuX6uKLLy4c9/T06D3vec+IwabrurriiiuKFptPP/30CdsJdPfu3TrrrLP0r//6r0Wvw+F0dHQUJdzV1dVp2bJlEzIXAAAA+IjTDm779u3TV7/6VS1fvlz33Xdf0XNXXXWVrrjiiiH7vfa1r9WrXvWqwnFzc7OuvPLKERdFk8mk3vOe9yiRSBTOvfWtby3auXWyvetd71JTU1Ph+PHHH9e11147Yp99+/bpfe97X9Hn9qEPfUjV1dUTMqdHHnlEK1as0E9+8hPlcrlR2997771yXbdwPHCxHQAAAD5ilenhve99b1E1hM7OTl144YVqaWkpqf+2bdt06aWXDnmz48C1j6FudD2Q8xmvf/mXfyk6/td//ddRNxNcvXq1br755sKxZVm65pprCsehUEjHH3984binp2dQdYKBNm7cqNNOO62kyiTj+dpPx3hsohHfAQCAyUSMM7Fqa2u1evXqoiSZbDarSy+9dNA9XR/+8IdVUVFROP7Nb36jH/3oRyOOv23bNn30ox8tOnfNNdcU3S8n+Qlr/at7NTc3j7rJx6mnnlp0PNr3bN++fbr44otLSqAa6z1mkx17jJUxRh//+Mf1zDPPFM6dffbZ4/5d+9prry3a9OLRRx/V5ZdfrkwmU1L/Bx98UKeeeqp+8YtfjOv6A+3Zs0fvfOc7ddNNNxWd/8IXvqB58+YVjm3b1sc//vGiNldeeaV27Ngx4vjf//739Yc//KFwXFlZqQ9/+MMTMPPSHHbYYfr7v//7wnEikdAnP/nJEfskk0ldffXVgwo4DHTHHXfoxBNP1B133FHSZi5333130THxGjDzkEAHAJj2DjvssDH9Qj5nzhy97nWvKxz3Bbk7d+4satfa2qobbrhBy5cvH1O56kPRwEBjYCW5Uh122GFFwXwmk9Hq1asLxxUVFfrud79b1Oeuu+7SqlWr9Je//KVoMUnyg8ObbrpJRx99tL70pS8VPW9Zln7wgx8UlZhfv369Tj75ZP32t78dFNBGIhH9/Oc/10knnaSrrrpqUMLYtddeW3SjaCaT0Tve8Q694x3v0OOPPz7ohlHP8/S3v/1N11xzjRYvXqzPfvazRTeMDuezn/2s/u3f/k0vvPDCoOdefvllfeQjH9FVV11VdP573/ue6uvrB7U/7rjjiv7Y8sILL+hTn/rUoM/tpZde0sMPP1w4/u53v6vZs2cXjh988EGdccYZuv/++wd9nuvWrdPf/d3f6Te/+U3hXDAYHFeFvpHkcjn9x3/8hxYtWqT/9//+nx588MFBO/vkcjndc889Ouecc4p2jnn/+98/roRPAAAADI84bfpqbm7Www8/XPj485//rDvuuEM333yzPvGJT+jcc8/VggUL9PnPf37QjotXX331oMW3gX7yk58U/X79P//zPzr//PO1fv36onau6+q+++7TmWeeqUcffbRwvqGhQf/5n/85AZ9p6YLB4KBqDl//+tf1tre9TVu2bCk6n81mdccdd2jVqlVFcdmyZcv0hS98YULn1dHRoSuvvFJLly7V5z73uaKF3T49PT368Y9/PKhi33BJjgAAAIc6YpXpIRAI6NZbby2KHTZt2qSVK1fqa1/72pA3hnZ3d+uXv/ylLr74Yh1zzDH6/e9/P+TY55xzTtHx1772NT3wwANF5/L5vB544IHCjcKTOZ/xevOb36y3vvWtheOenh6dd955+va3v62urq6itm1tbfrc5z6nt7/97UVrYZ/5zGeKblqVpHe/+91Fx1dccYVuv/32QWtszzzzjK666iqdeuqpQ65JDWXg1/6nP/2pbr/99qKbEI0xWrduXSHWmq7x2EQjvgMAAJOFGGfiHXvssbrtttuKktr27dunN7/5zUX3djU1Nekb3/hGUd+PfOQj+vCHP6zm5uai84lEQj/5yU901llnqa2trXD+1a9+9bAbcfT//drzPF1++eVFfSUpHA4XYpGBv+v/4Ac/0Je+9KVBaz179+7V17/+dR199NG66667hvsyFBnPPWaTGXsM9IY3vEHf+973Bn19JL/K2hvf+Eb913/9V+FcRUWFfvKTn4zrWpJfNXBgxcFf//rXWrlypX75y18WFQzos2vXLt144406/fTTdf7552vz5s0lXWvjxo1F63oPPvig7r77bv3617/WN77xDb35zW/WsmXLBt2/+frXv16f/exnB4131VVXadWqVYXj1tZWnXnmmfrZz342qPpfc3OzPvShD+nqq68uOv/tb3+76PVwIHzxi18sSlr8xS9+ocsvv3xQAnB7e7u+973vadmyZfr+979f0tjNzc267LLLdMwxx+jLX/6yXnrppUFtOjs79fWvf71okxrbtouqgAKYIQwAAAfI4sWLjSQjySxevHhMfdvb201VVVWhf9/HueeeO2T7tWvXGsdxitpalmWOPvpoc9ZZZ5kjjzzS2LZd9Pzs2bOLjm+55ZZB4+7cubOk6/f30EMPFfW57rrrRu1zyy23lNTn3HPPLWr30EMPjTr2WMdJpVKmpqam8FwwGDSxWGxc1zHGmK9+9atF13rjG984qM2nPvWpQd/rvu/Rq171KnP66aebhQsXGsuyip6vra0dNNb3v//9IceqqqoyJ554ojnjjDPMkiVLBr1eJJloNFo0VnNzszniiCOGHK+2ttaceOKJ5tWvfrU58cQTTWVl5ZDtnnjiiaIxr7vuuiHbSTJz5841p556auE1O1Sbf/qnfxrx6/35z39+UJ/Kykpz8sknm7POOsssXLjQSDLvf//7i/rdddddpry8fFDf+vp6c8opp5jTTz/dNDY2Dnretm3zs5/9bNj59P85UOqvogPfQ30fFRUV5qSTTjJnnXWWWbZsmQmFQoPaHHnkkaarq6uk6wAAAByKiNMOzjitv5FiilI/Ghsbza9+9auS5/bDH/5wUDzWN87pp59uTjnlFFNfXz/o+VAoZO65555hx+3fdiyvx1L7XXvttUN+/gsXLjRnnHGGWblyZVH82/dRV1dnnn766SHHHM/rz5jhv28NDQ3m1FNPNatWrTILFy4cMlZ929veVvLXBgAA4GBFrHLwxyrGGPOzn/3MBAKBIX/3XbRokTnttNPMmWeeOeTXWJI5/vjjB42Zy+UGrTVIMgsWLDBnnHGGOfXUU011dfWQc5uM+Yxn3aNPOBw2J5xwwqDrlJWVmeOOO86cddZZ5uijjx5yLq973etMLpcbNGYsFius/Qx8zZ5++unmtNNOM01NTYNitf5rLCO951796lcPGnvOnDnm9NNPN6tWrTJ1dXVDviemSzw2Ge8x4jsAAFAKYpzpF+MM9XvcpZdeajzPK2r3nve8Z8jf95YuXWrOPPNMs2LFiiHvWVq0aJHZtWvXsNe/7777BvVxHMccf/zx5tWvfrU55phjjG3bRa+XSy65ZFCfYDBoVq5cac4880yzZMmSQd/b2traouOdO3cOOZ+x3mM2mbHHwO/twK/rqlWrzKpVq8yCBQsGPW/btrntttuG/bq///3vL/l184//+I9DzsFxHLN8+XJz5plnmtNPP93Mnz9/yHYf/ehHx/S5lfrxrne9y6TT6WHn/dJLL5nDDz98UL+KigqzYsUKc+aZZ5qlS5cOOfYHP/jBCfnajaffNddcM2g+fT+7hovVBx4PHHvgtfs+mpqazOmnn25OPfVUs2DBgiHXPT/1qU+V9PkBOLhQgQ4AcFCYN2+e/vmf/7nk9meeeaa++c1vFp0zxujFF1/U2rVr9dJLLxUqaVVXV+uHP/zhoPLV8P35z38u2qnmggsuUHV19bjHG1i97r777lMkEik6981vflPf/e53i6rHSVJXV5eefvpprV+/Xi0tLYPKag9Vhe1jH/uYfvOb36iqqqrofCKR0ObNm7Vu3To1NzcP2v2mpqZm0PUXL16sJ598UhdddNGg63R3d2vz5s1as2aNNm/ePGjHFklasGCB6urqBp0fTkdHhzZs2FB4zQ50zTXXFO2eM5TPf/7zRVX/JL+E+VNPPaW1a9eqpaVlyH4XXXSR7r777kFf00gkoieffFLr169Xe3t70XPV1dX63e9+pw9+8IOlfHola2pq0oIFCwadT6VS2rRpk9auXavt27cP2vXo1FNP1cMPP6za2toJnQ8AAAB8xGkHv/nz5+trX/uaduzYoXe9610l9/unf/on/fKXv1RlZWXR+fb2dq1fv15PPvnkoDhv3rx5euCBB/T6179+QuY+Hl/5ylf0jW98Y1Cs19LSonXr1mnjxo2DdmpdtmyZ1q5dq5UrV07oXI455phBXz/J3012w4YNevzxx9XS0jIoVr388sv1P//zPxM6FwAAgJmGWGX6+OAHP6j7779f8+fPH/Tcrl279MQTT+ixxx4r+hr3N7C6muRXk7vtttsUDAaLzu/Zs0fr1q3Thg0bFI/HD9h89kd9fb3++te/6rWvfW3R+Vwupy1btmjt2rV68cUXB83lAx/4gP70pz8Nim0k/zW6evXqQdUCurq6tH79ej3xxBNFVRte9apX6YknnlBjY2NJc/7Zz342aK2rs7NT69ev1+OPP65oNDpkv+kUj0004jsAADDZiHEmx3XXXaeLL7646Nydd96p6667rujcrbfeqmuuuaaoYp0k7dixQ4899pieeeaZIe9ZWrdunRYuXDjs9S+44AJdddVVRedc19Vzzz2nNWvW6IUXXhgUC9xyyy161ateVXQuk8lo48aNeuyxx9Tc3Fzo09jYqN/97neD7tUbzljvMZvs2GM4u3bt0uOPP67HH39ce/bsKXquoqJCt956q9773vfu1zX6/OQnP9F3v/tdhUKhovOu62rr1q167LHHtH79eu3du3dQ3/Lych111FETMo8+y5cv1+rVq/WrX/1qUEzc39KlS7VmzRqtWLGi6HwqldIzzzyjxx57TDt27Ch6zrZtXXvttfrpT386oXMei29/+9uDvnd9P7sGxuqBQEDXX3/9oEqIA61YsWLI2LmtrU3r16/Xhg0btGfPnqL7UG3b1mc+85lBFSgBzAwk0AEADhqf+cxnxpQI84lPfEKrV68eNhCpqqrSRz7yEW3btk3/9E//NFHTnHEGlv8uNagezrHHHqujjz66cJzL5XTnnXcOanf11Vdr69at+tCHPqRZs2YNO57jODr//PP185//XFu2bBmyzWWXXaaXXnpJn/70pzV37txhx7IsS2eccYZuuukm7d69e8hEwbq6Ot11113661//qje/+c1DLogNbP++971Pd999t3bt2qUjjzxyxPZf/epX9S//8i9DJgP2WbVqlR566CHdeOONg/44M1BFRYUefvhhXXXVVSMGzkN9Hueff762b9+uT33qUyN+3WbPnq2rrrpK27dv3+/Xx1COOeYY7dy5U7/61a900UUXDfqjxEDLli3TTTfdpHXr1unwww+f8PkAAADgFcRp05/jOKqqqtL8+fO1cuVKXXLJJbruuuu0bt06tba26l//9V9HjWuG8u53v1tbt27VFVdcMWLM1tjYqM9//vPatm2bzjrrrP35VCbEpz/9aT377LO67LLLVFFRMWy7xYsX61vf+paeffZZHXPMMRM+j3e+853atWuXbrzxRq1atUq2PfKf6s8++2zdfffd+sUvfqHy8vIJnw8AAMBMQ6wyfZx77rnasWOHbrrpJq1YsWLUdY1jjz1WX/ziF/Xiiy8OWqPqc/bZZ2vt2rU644wzhh3HcZwh10UmYz77o66uTg899JB+/etfj5go5jiOXvva1+rhhx/WLbfcorKysmHbnnzyyXrqqad06aWXDvv5HX/88frhD3+oDRs26IQTTih5vsuXL9eGDRtG3BzFsqwh463pEo9NNOI7AABwIBDjTDzLsnTbbbfpuOOOKzp/ww03FP3ub9u2brzxRj3++ON6wxveMOLv4sccc4x++tOf6vHHHx9y446BfvCDH+i73/3uiPdl9V/DmT17ttasWaNPf/rTw/5O3djYqM997nN68cUXdemll446hz7jucdsMmOPPqFQSE899ZTe//73D/s5BwIBXXzxxXrmmWf0nve8Z8zXGMnVV1+tnTt36rOf/eyo96E5jqOzzz5bN910k/bs2TPuxFTbtlVVVaVFixbpnHPO0cc//nE99NBDevHFFwclfQ5n0aJFeuqpp/SDH/xgxES+8vJyvelNb9JTTz2lr3zlK6PGyJPJtm3ddtttuvXWW7Vo0aIh2wSDQb3zne/Us88+qy9+8YtyHGfEMT/5yU9qx44duuGGG0Z9/VmWpTe+8Y3629/+pv/4j/+Y0q8FgMljmYGlWwAAmGE8z9OTTz6pp556SuFwWLNnz9YRRxyh8847b9REHEwPruvqqaee0pYtWxQOh5VIJFRTU6Ojjz5ar371q0e8WXMgY4yeffZZbd68WR0dHYrFYqqsrNSRRx6ps88+e9CuOKPJ5XLasGGDtm/frkgkop6eHgWDQc2fP18nn3yyjjvuuBGDqS996Uu6/vrrC8e33HKLPvCBDyibzeqJJ57Qs88+q0gkovLyci1YsEBnnHGGjjjiiDHNsU80GtVf//pX7dixQ8lkUnV1dVqwYIFOOeWUEXc8kvz30RNPPKEXX3xR+/btk+d5mjt3rpYvX65Vq1YNuVPLZMnlcnr66af1/PPPKxwOK5VKqaamRnPnztUpp5yio446igAWAABgmiNOm1lyuVxh58eOjg7Ztq158+bp+OOP18knnzxtfz9PpVL629/+ppdfflmdnZ0KBoNqbGzUSSedNOGVJUbT09OjJ554Qjt37lQkEpHrupo1a5YOP/xwrVq1Sk1NTQd0PgAAAIcqYpXJFw6HtW7dOu3du1eRSETZbFbV1dU68sgjtWrVKs2bN29M473wwgtat26d2tvbZVmWGhoadNRRR+mUU05RVVXVAZ/P/tq9e7cee+wxtbe3q6enR3V1dTrssMP0mte8ZsTNF0ca76GHHtLu3bsLX59TTjlFJ5988n7Ptbm5WWvWrFFra6s8z1NDQ4OWLFmi0047TbNnzx6x73SKxyYa8R0AAJhOiHEmXk9Pjx599FHt3r1b4XBYVVVVamxs1KpVq8Z9T1cmk9HatWv13HPPqbu7W9XV1Zo3b55OPPFEHXvssUNu0tDT06MHHnhAL730kjKZjGpra3Xsscfq3HPP3e/7uMZzj9lkxh594vG4Hn/8cb344ovq6upSVVWVDj/8cJ177rmaM2fOhF1nJDt27NBTTz2lzs5ORSIRGWNUX1+vY489VqeddlpJcehU2LZtm5588km1t7crmUyqoaFBCxcu1Nlnnz1kkYGpZozR+vXr9cwzz2jfvn0qLy/XkUceqQsuuEA1NTXjHrevgnpLS0uhgnptba2WLFmiVatWjSvuBnBwIYEOAABgCg2XQAcAAAAAAAAAAAAAAAAAAAAA2H+DU9IBAAAAAAAAAAAAAAAAAAAAAAAAAJgBSKADAAAAAAAAAAAAAAAAAAAAAAAAAMxIJNABAAAAAAAAAAAAAAAAAAAAAAAAAGYkEugAAAAAAAAAAAAAAAAAAAAAAAAAADMSCXQAAAAAAAAAAAAAAAAAAAAAAAAAgBmJBDoAAAAAAAAAAAAAAAAAAAAAAAAAwIxkGWPMVE8CAAAAAAAAAAAAAAAAAAAAAAAAAICJRgU6AAAAAAAAAAAAAAAAAAAAAAAAAMCMRAIdAAAAAAAAAAAAAAAAAAAAAAAAAGBGIoEOAAAAAAAAAAAAAAAAAAAAAAAAADAjkUAHAAAAAAAAAAAAAAAAAAAAAAAAAJiRSKADAAAAAAAAAAAAAAAAAAAAAAAAAMxIJNABAAAAAAAAAAAAAAAAAAAAAAAAAGYkEugAAAAAAAAAAAAAAAAAAAAAAAAAADMSCXQAAAAAAAAAAAAAAAAAAAAAAAAAgBmJBDoAAAAAAAAAAAAAAAAAAAAAAAAAwIxEAh0AAAAAAAAAAAAAAAAAAAAAAAAAYEYigQ4AAAAAAAAAAAAAAAAAAAAAAAAAMCORQAcAAAAAAAAAAAAAAAAAAAAAAAAAmJFIoAMAAAAAAAAAAAAAAAAAAAAAAAAAzEgk0AEAAAAAAAAAAAAAAAAAAAAAAAAAZiQS6AAAAAAAAAAAAAAAAAAAAAAAAAAAMxIJdAAAAAAAAAAAAAAAAAAAAAAAAACAGYkEOgAAAAAAAAAAAAAAAAAAAAAAAADAjEQCHQAAAAAAAAAAAAAAAAAAAAAAAABgRiKBDgAAAAAAAAAAAAAAAAAAAAAAAAAwI5FABwAAAAAAAAAAAAAAAAAAAAAAAACYkUigAwAAAAAAAAAAAAAAAAAAAAAAAADMSCTQAQAAAAAAAAAAAAAAAAAAAAAAAABmJBLoAAAAAAAAAAAAAAAAAAAAAAAAAAAzEgl0AAAAAAAAAAAAAAAAAAAAAAAAAIAZiQQ6AAAAAAAAAAAAAAAAAAAAAAAAAMCMRAIdAAAAAAAAAAAAAAAAAAAAAAAAAGBGIoEOAAAAAAAAAAAAAAAAAAAAAAAAADAjkUAHAAAAAAAAAAAAAAAAAAAAAAAAAJiRSKADAAAAAAAAAAAAAAAAAAAAAAAAAMxIJNABAAAAAAAAAAAAAAAAAAAAAAAAAGYkEugAAAAAAAAAAAAAAAAAAAAAAAAAADMSCXQAAAAAAAAAAAAAAAAAAAAAAAAAgBmJBDoAAAAAAAAAAAAAAAAAAAAAAAAAwIxEAh0AAAAAAAAAAAAAAAAAAAAAAAAAYEYigQ4AAAAAAAAAAAAAAAAAAAAAAAAAMCORQAcAAAAAAAAAAAAAAAAAAAAAAAAAmJFIoAMAAAAAAAAAAAAAAAAAAAAAAAAAzEgk0AEAAAAAAAAAAAAAAAAAAAAAAAAAZiQS6AAAAAAAAAAAAAAAAAAAAAAAAAAAMxIJdAAAAAAAAAAAAAAAAAAAAAAAAACAGYkEOgAAAAAAAAAAAAAAAAAAAAAAAADAjEQCHQAAAAAAAAAAAAAAAAAAAAAAAABgRgpM9QRw6Orq6tIjjzxSOF64cKGCweAUzggAAADAwSaTyailpaVwfO6552r27NlTN6FJRhwFAAAAYH8RRxFHAQAAABgb4ijiKAAAAABjMx3jKBLoMGUeeeQRXXLJJVM9DQAAAAAzyOrVq3XxxRdP9TQmDXEUAAAAgIlGHAUAAAAAY0McBQAAAABjMx3iKHtKrw4AAAAAAAAAAAAAAAAAAAAAAAAAwCQhgQ4AAAAAAAAAAAAAAAAAAAAAAAAAMCMFpnoCOHQtXLiw6Hj16tVatmzZFM0GAAAAwMFo+/btuuSSSwrHA+OMmYY4CgAAAMD+Io4ijgIAAAAwNsRRxFEAAAAAxmY6xlEk0GHKBIPBouNly5bp+OOPn6LZAAAAAJgJBsYZMw1xFAAAAICJRhwFAAAAAGNDHAUAAAAAYzMd4ih7qicAAAAAAAAAAAAAAAAAAAAAAAAAAMBkIIEOAAAAAAAAAAAAAAAAAAAAAAAAADAjkUAHAAAAAAAAAAAAAAAAAAAAAAAAAJiRAlM9AeBQYjwjL+rJi3uSK8mR7Gpbdp0ty7amenoAAAAAUDIv7ym6I6rY3pjcrCun3FHN/BrVLa2THWC/HgAAAAA40Dwvr2h0h2KxvXLdrBynXDU181VXt1S2zbIwAAAAAAzkeZ6i0ahisZhc15XjOKqpqVFdXZ1sm/UuAAAAYCZhpQToZ/v27ZKkZcuWTei4xhi57a7cdtdPnOvHC3vSbslpdOQ0OrIsEumw/ybrtQwcSLyOMVPwWsZMwOsY/Rlj1L6pXW0b2+RmXe3L7JMkzQvOU/jFsFrWtqhpZZMaT2okvgGGwM9UYOx43wBjw3sGmP4m+n1qjFF7+ya1tW2U62aLnguHX1RLy1o1Na1UY+NJxGnAfuD/scDBi/cvcHDivYv+JieOaldbW5tct/iGvnA4rJaWFjU1NamxkfUuYH/wsxw4ePH+BQ5OvHdHRgId0M+9994raWJ/YBhjlH85Ly/i+cc5Iy/ZrwJdpS1Lltw9rkzaKLA4QNCN/TYZr2XgQON1jJmC1zJmAl7H6GOMUfPDzYpsi0iS8qm8no0+K2OMTnVPVdW8KklS6/pWpbvSWnzuYuIbYAB+pgJjx/sGGBveM8D0N5HvU2OMmpsfViSyTZKUz6eUSHQUKtBVVc2TJLW2rlc63aXFi88lTgPGif/HAgcv3r/AwYn3Lvqb+DiqWZFI73pXPq9EIlGoQFdV1bve1dqqdDqtxYtZ7wLGi5/lwMGL9y9wcOK9OzIS6IBJ5ra78iKejDH+Y8IUP9/tyqqyZNfb8iKe3JCrQBNvTQAAAADTT/umdkW2RWQ8o8j2iOLtcbkL/V05u3Z1qevlLlU3Vqt+Wb3CW8MKzQ6paWXTFM8aAAAAAGau9vZNikS2yRhPkch2xePtkl5Zi+rqelnV1Y2qr1+mcHirQqHZampaOWXzBQAAAICp1t7erkgkImOMIpGI4vF40fNdXV2qrq5WfX29wuGwQqGQmppY7wIAAAAOdvZUTwCYyYxn5Lb7N5P2T56zQpasWZaskL8zjUmYQoU6t92V8czQA5Z6zbCr3Ms55XbklHs5Jze8f2MCAAAAgJf31LaxTZL85Lm9cWV6MjLGjzVyyZwyPRnF98YV2e7v2Nm2qU1e3puyOQMAAADAdOJ5eYXDW5XNJpTNxtXc/IjC4a3yvPy4x2tr2yhJvclzbZKMQqE61dYuUihUJ8koHm9TJLJdktTWtmnc1wMAAACAA83zPIXDYWWzWWWzWTU3NyscDsvzxrf+5Hme2tp617v6Jc+FQiHV1tYqFApJkuLxeKFCXVtb27ivBwAAAGD6oMwVMALjGXlRT17ck1xJjmRX27LrbFn26GXZvajfz+RMIXnOnmPLrnwld9VLevI6/eQ6M8vIkiUv6slpcMY2V+Mn67ntrj/X/vMIe9JuyWl05DQ6lJQHAAAAMGbRHVG5WVe5VE6dL3QqGU6qvKpcxjUyMsrEMpKREvsSSnenNWvhrEK/huUNUzx7AAAAAJg6xhi1t2/Snj1PKhbbo2w2J0nauvUuBYO1qqlZoAULTlFj40ljWsOJRnfIdbPK51O9leekuXOPU2XlnEKbZLJTHR1bFI+3q7Z2UaFfQ8PyCfwMAQAAAGBi+XFUu/bs2aNYLKZsNitJ2rp1q4LBoGpqarRgwQI1NjaOMY6KynVd5fP5QvLc3LlzVVlZWWiTTCbV0dGheDyu2traQr+GBta7AAAAgIMZCXTAECYqGc2L+zvPeEn/0QpZRclzkmRX2jJBI5Mx8pKenFpHXnxsCXTGGOVfzheq2JmcP1Yh6a/SliVL7h5XJm0UWBwgiQ4AAADAmMT2xmSMUev6VnU1d8nLe/JyXqHCXHxvXIGKgLKxrLKxrFrXt2rxOYsV2xsjgQ4AAADAIcsYo507H1Jz80Pq6WlRPp+S6y6RMVJHxxYFg7MUjb6krq5mpVJRLVny2pLXcGKxvZKkRKJDfZXn+ifPSVJl5RyFQnVKp6NKJPaptnaRYrG9JNABAAAAmLb8OGqnmpub1dPTo3w+L9d1ZYxRR0eHgsGgotGourq6lEqltGTJkjHEUTFJUiKRkORXnuufPCdJlZWVCoVCSqfTSiQSqq2tVSwWI4EOAAAAOMiRQAcMYcKS0dwBj+XDXDAoKTNE+xK57a68iCdjjP/YW+2u8Hy3K6vKkl1vy4t4ckOuAk28/QEAAACUzs266m7pVnhrWLlETkZG+VRexvXjj1QkJafckSzJylgKbw1r9hGzVbe0bopnDgAAAABTp61to7Zt+5MSiTYlEh1KpSJy3cMkSd3duxQIVKiiok6el9PWrUmFQrM1f/6rShrbdbNFj8FgzZDtgsEapdPRQe0BAAAAYDpqa2vTtm3blEgklEgklEql5Lr+DXXd3d0KBAKqqKiQ53naunWrQqGQ5s+fX9LYfeP0PQaDwSHbBYNBpdPpQe0BAAAAHLzIoAEGMHkzcclozoDH4dYjM8O0L2W+nl8tT1LRfK2Q5SfsZSWTNjIJI09+ZTu33ZUzz5FlU4UOAAAAQGlsx9a+zfuUT+WVS+fkpl1ZjiUjI0uWPNeTG3dlXCMn5KgsVaZ9m/dp6d8tneqpAwAAAMCU8Ly8tm69S4lEu+Lxferp2S3XzUgykiy5bk65XFLZbFzG+Oe2br1LjY0rZNujL+M6TnnRYyYTG7Jd3/mB7QEAAABguulLikskEorH4+rp6SlKXnNdV7lcTtlstjeOkrZu3arGxkbZtj3q+I7jFD1mMpkh2/WdH9geAAAAwMFr9IgBOJSY3gS6uKd8c15umysv7snISDW9SWmSn4wW8WQ8o9xLOeV25pTbkVPu5ZzcsCvj+cG5Xe2/xexK/9Gke6vZ9eMlPZmMKWrX168UXtSvjmdyppA8Z8+x5cxz5Mx25MxzZM+xC/M2OSO5vf0AAAAAoES5dE7JjqScMkf5ZF65TK4Q+xgZP57yjHKZnPLJvJxyR8nOpHLp3BTPHAAAAACmRji8VdHoDnleTj09rcrlkpIs+fd4GhnjSbKUyyUVi7XK8/KKRncqHN5a0vg1NX6FhaqquZIspdNRJZOdRW2SyU6l01FJlqqq5hX1AwAAAIDpJhwOKxqNyvM89fT0KJfz15n6kuX6HnO5nGKxmDzPUzQaVTgcLmn8mhq/cndVVZUkKZ1OK5lMFrVJJpNKp9NF7fr6AQAAADh4UYEO6GWM0RUXXKHcCzm5Ha68bj/BzKq2ZMmS4pI1y5KqJK/T8z9inizbUt7Ny6q05CU8mW4jL+fJqXFkz7PlJTzZFbasKstPvOv0ZIJGCkrKqJA8Z1VZssosyZHsujEk0MX9efYl5lkhq5CI18eutGWCRibjJ/A5tY68uF+NDjPTVVddNdVTAPYbr2PMFLyWMRPwOoYkJTuSkiVlk1nls3l5OU85Nyf7R378kVFGMvIr0RlX2WRWgVDA7weggJ+pwNjxvgHGhvcMMH3s2fOUPC+vRCKsZLJT+XxagUBQ5eW3yhhPqZQty7KVz2eUy6WUSHSqpqZJe/Y8pblzjxt1/Lq6pWppWStJqq5uVDzepo6OLQqF6hQM1iiTifUmz/nPBwIhOU5QdXVUCgfGg//HAgcv3r/AwYn37qFpz5498jxPiURCyWRS+XxegUBA5eXlMsYolUrJsizl83nlcjklEgnV1NRoz549mjt37qjj19XVqaWlRZJUXV2teDyujo4OhUIhBYNBZTKZQvJcdXW1AoGAHMdRXV3dpH7ewEzFz3Lg4MX7Fzg48d4dGQl0gPzkufzLeeV35f0bPlOeTMrIGCPLteRZnuRJprW3qkLGf7SrbKlashKWlPXPWwFLsqV8d17WPkvGMbIsS/Y8W6qUlJS8tCf1+FXjZCSr0pJVbsl4RoEFAVm2Vfrk3QGP5cO0603YG9R+tK+NZ+RFPT9Rz5Wf4Fdty66zxzZPAAAAAAe1ZGdS5bXl6nihQ17ek3GNXHfowMK1XCX2JTT7iNlKdpJABwAAAODQlEi0y/M8hcNblc32yHXzyuUSkrx+rWxJljwvq3B4q6qq5imRaC9pfNsOqKlppVpb16u+fpmMMYpGtyuR2CdjXFmWo7KyCtXVLVN9/TJJUlPTSbJtlogBAAAATE+JRKI3jgorm83Kdd1CFbqB+tpVVVUpkUiUNL5t22pqalJra6vq6+t746ioEomEf6+gZamsrEx1dXWqr6+XJDU1Ncm2S98QHwAAAMD0xOoIIMltd+VFem8AjfjV50y+t+x73PjrmJ4kq/fDf8pPhAvLX9ssk6wySyZp/DaOpIDk1Dp+Ut4eT5ojWZZVuJblWLJCfsKdiRr/JtTDTCEYL4kz4DE7TLvMMO2HYYyR2+7KbXcHJdt5YU/aLTmNjpxGp/S5AgAAADioZXoyysQzUn7kdiZvlIlnlOnJjNwQAAAAAGa4rq6XlUh0yPOGi4/8ZDrXdZVIdKir62UtWHBKyeM3Np6kVCqqnTsfVCoVViBQIdfNyfMs2bajQKBCqVRYPT2VOuKIv1Nj40kT8FkBAAAAwOTp6uoqJNKNxI+jEurq6tKCBQtKHr+xsVGpVEo7d+5UKpVSIBCQ67ryPE+2bSsQCCiVSqmnp0dHHHGEGhsb9/dTAgAAADANkECHQ57x/EQxY4zcfa68uOdXhsvJT5Qz/RsPM4gnyZVM2vjJdJL/aEv5VF7WHEuWZ8lsM7LK/GpzlmXJZI1fzS7uJ6PZtba8vZ7ymbwCiwMlJabZ1ba8sCe70pbb7cqkjbykf1yYXtLzryMVztvVw++K01eRz4v4f4QwOX/MQgW6SluWLLl7/OuVOlcAAAAAB69QXUidWzv9WKkUOalza6dCdaFJnRcAAAAATFehUJ06O7fK89Iltfe8tDo7tyoUqhvTdYwZbTGLNRwAAAAAB4dQKKTOzs5Rk+f6eJ6nzs5OhUJjW48qjqMAAAAAHApIoMMhz4v6iWFuxJUX82RSxq+mUFoM/gojf/3Rk5885/Wey0umzciUG1kBS0bGT7Trq9hQ7peG98KefyPqEkkRyQ25CjSN/ha162xpt2TJklVlySSMvE5PJmikoKSMCslzVpUlq8zyk+Dqhk+gK1TkM8Z/TBT/wcDtdmVVWbLrbXkRr+S5AgAAADh45VN5ZTrHVlEuE84onxqlXB0AAAAAzFD5fEqZTHhMfTKZsPL5VMnt29s3KRrdrlmzDlM2G1N7e4vS6W4Z48qyHOXzGTU2rtCsWYcpEtmmioo6NTWtHONnAgAAAAAHRj6fVyYzxvWoTEb5fOnrUe3t7YpGo5o1a5ay2aza29uVTqdljJFlWcrn82psbNSsWbMUiURUUVGhpqamsX4qAAAAAKaZ4TNogEOEF/f8KnQtrky2t/LcWJPn+vRPojP9PnKSkpJJGJkeI2X9dpZjyZJVaO/1eHJ3u5L8JDbjjb7TjWVbchodSZJdb8uq8ncRNRn/Wv2T5+x6/y3vNDqy7KF3G+2ryCepKHnOClmyZlmyQr3jJ0yhQl2pcwUAAABw8GpZ2zL2Tmac/QAAAABgBmhpWauhK8KNxPT2G53n5dXWtlHG+H1aWh5TT89uZTLdyuUSymS61dOzWy0tj6mlZa2MMWpr2yTPY6MTAAAAANNTS8v41pVK7ed5ntra2nrjqBa1tLSop6dHmUxGuVxOmUxGPT09hef8OKqt5Ip4AAAAAKYvSkYBruTuc+WlPSmjsa9jDtQXKw8cx7zyvLGNnDpHlmXJ5Huf6K1a50U9eY2e7KAtL+rJaXBkPOOfj/vV8uRIdrUtu84uJNCZtJ/Q5jQ4MrOMvGS/tpW2X3lOfpJdX8LdkNPvrchncqaQPGfPsWVXvpJv6yU9v8pdwsjMMrJkFeYKAAAAYGZ66f6XJr2fl/cU3RFVbG9MbtaVU+6oZn6N6pbWyQ6wBxAAAACAg8vOnQ9Par9odIfy+Yza2jappWWt0uluBQJBGfPKjZ2WZSuViiiVCqusrEZNTScqGt2hhobl45obAAAAAEymnTt3Tmq/aDSqfD6vtrY2tbS0KJ1OKxAIyJhXbvazLEupVEqpVEplZWVqampSNBpVQ0PDuOYGAAAAYHoggQ6wJDfq+pXaJnvDTc+/nhzJKrdkV9gyWeMnxnkqJNG5UVd2ky0v5snkeivCua8MYzyj/Mt5mZyRXWvLmePIqrZkl9vyOjxZsuTUDkhmc/zKc06jn7g37BTj/qKql/QfrZBVlDwn+Ql5JuhXt/OSnpxaR16cBDoAAABgJkuFU5PWzxij9k3tatvYJjfrFj0XfjGslrUtalrZpMaTGkeMZwYiIQ8AAADAVEqlOie1Xyy2V11du9Tc/JDS6S7l8znlcgl5Xk7GGFmWJdsuk2WVKZ3uUnPzgwqFZisW20sCHQAAAIBpKZUa53pUif1isZi6urrU3NysdDqtXC6nbDYrz/P6xVF2YT2qublZoVBIsViMBDoAAADgIEcCHQ55xjNSSlJW+199rqQL+h8mZWSCRla5JSvQW4mu7/op/wbS/J687JB/U6fJGbkJVyZmZFJGVpkly7Hkxlx5EU92gy0rYMmea8sqt/zqcUNUqxuVO+CxfJh2QfkV+wa2BwAAADAzeaM3GU8/Y4yaH25WZFtEkpRP5ZXoSBQS3qrmVUmSWte3Kt2V1uJzF4+aRDdZCXkAAAAAMBaeN76dG0vtl8ul1NLyNyWTEWUyMXleTv5ikx/nGNM3VlquWybJUUvL37R48dnjnlc0ukOx2F65blaOU66amvmqq1sq22bZGQAAAMD+87zxLUiV2i+Xy6mlpUWJREKZTKao8pzkrzG5rr+25LqujDFqaWnR4sWLxz2vaDSqWCwm13XlOI5qampUV1cn22azRwAAAOBAYiUDhzwjIy/lTX71uf5Skmv7AbY92/bfiXlJOfn/tiSvx5+TCRp5EU9e3JNJGJmsH7Qbz/gV68olK2VJtuTUO/LaPNn1tgKLA+O7EdQZ8Jgdpl1mmPYAAAAAZqbxbjgySr/2Te2KbIvIeEbhrWFFXoool8zJeEaWbamsskz1R9arYXmDwlvDCs0OqWll0/CXm4SEPAAAAAAYn0kKpHr19OxRV9cuZbMxeV7/BZ2B/Y08L6tsNqaurhb19OwZ22yMUXv7JrW1bZTrFi8chcMvqqVlrZqaVqqx8STiKwAAAADTWk9Pj6LRqLLZ7KDkuYGMMcpms4pGo+rp6RnTdfw4ql1tbW2FhLw+4XBYLS0tampqUmMjmz0CAAAABwoJdDjkmW4j45rxV1MYD09SUvKynl9Rrty/MbTwX8iS6TGy62x5kd7EuXTvHIOSEpKX8SdspS0pJOVb8pIn2Q1+HzfkKtA09re4XW3LC3uyK2253a5M2shL+seF6Sc9mYz/B4S+83Y1O+IAAAAAGBsv76ltY5u/e+faFu17fp/ie+NyM64f/9iSE3TUs6dHyc6kFr56odo2tWneCfNkB4aOQfon5EW2RxRvjxfdO9r1cpeqG6tVv6y+pIQ8AAAAABi/yU2gC4dfUCbTJddNldTedVPKZKIKh18ofSbGqLn5YUUi2yRJ+XxKiURHoQJdVdU8SVJr63ql011avPhcbv4EAAAAMG2Fw2Gl0+mSK9Z5nqd0Oq1wOFzyNfw4qlmRSO9mj/m8EolEoQJdVVXvZo+trUqn01q8mM0eAQAAgAOBBDoc8tyoe2CT5woXluT5AbOSkrGNTJ1RoDzgV5azJOP0Vp/LepIrWQHLrwhnS1bQ8qvW2b0fnuRGXMmSnAZHbrsrZ54jyx5bcG3X2dJu+Yl8VZZMwsjr9GSCxk/ey6iQPGdVWbLKLMnp7QcAAAAAYxDdEVU+k9eep/do+1+2K9mZHDI+i++Nq2dXj5wqRwtWLlB0R1QNyxsGtetLyJPkJ8+1xSVJobqQgjVBZWIZpaPpwvmG5Q2jJuQBAAAAwHSVTHYokxlbFYRMJqZksqPk9u3tmxSJbJMxntrbN2vHjoeUSoVljCvLclRR0aClS89TY+OJCoe3KhSaraamlWP8TAAAAADgwEgkEsrlcmPqk8vllEgkSm7f3t6uSCRSqEK3Y8cOpVIpGWNkWZYqKiq0dOlSNTY2KhwOKxQKqamJzR4BAACAyUYCHQ55Jmn8RLQpubj8hLjeHDcra0mNkrH8YDm/Ky/TYyS3N9HOlUzWSLZf8c0qtyTLT6azHEsma/xqdbOMLFnyop6cBmdMU7JsS06jI3ePK7velqfeCngZI2X6tauyZNf7N5g6jWNP1AMAAACA2N6YIs0RPfu/zyrXNcJipScl9yX17O3PKjQ7pDl75wyZQBfdEZWbdZVP5f3Kc5LmHjdXlXMqC22SnUl1bOlQvD2u2kW1hX5DjQcAAAAA01kkskNj3yXS7e03Os/Lq61to3K5nDZs+J66unb1Xs+SZdkyxlM2262nn27W7NmLdOqpV6utbZPmzTtBts0yNAAAAIDpZ9++fZPaz/M8tbW19cZRG9TV1VV4zrIsGWOUzWb19NNPa/bs2Tr11FPV1tamefPmybbZ7BEAAACYTPzGjUOeyfiJaVPO9pPjjGVkckZezJPpNvLSnrxkbxJbX7JfTn5luGTvcykjlcn/kOQl/cVSLz6+0npOoyO73pZlWXIaHDnzHVm1lqxqS1atJWe+I6fBkWX5SXRO49iS9AAAAABAknKpnJ77zXMjJ8/1b9+V03O/fU651NDtY3tjkqRER0IyfuW5/slzklQ5p1KhupBkpMS+RFE/AAAAADiYJJPRSe0Xje5QOp3QunXfUldXsyRPxviJdfl8Wp7Xt0Olp66uZq1b9y2l03FFo6Ul6AEAAADAgTaWSnLj6ReNRpVOp7Vu3bpC8pzneXJdV/l8Xq7ryvP8e/q6urq0bt06pdNpRaPji+8AAAAAlI4EOhzyvIw39Ql0Rv6GnUaFRDmTMv7cUvIrv+XkJ8/l5VeiyxmZtJHJm0Llub4EusLnM87Py7IsBRYH5CxwJEeyyiw5tY6cekdOrSOrzJIcyVngKLA4IMui+hwAAACAsYs0R9Szo2dMfXpe6lGkOTLkc27WLXoM1gSHbNd3fmB7AAAAADiYJJPjq5xQar9YbK82b/65Eol2eZ6R6+bkeVkZ40oyMsaV62Z7zxslEu3avPnnisX2jmteAAAAADDZMpnMpPaLxWLavHmzEolEIXHOGFPUxhhTSKRLJBLavHmzYjE2ewQAAAAmW2CqJwBMJWOMlJafwDbVjCRb8ro92ZW2vIQnJeUnwRlJll6ZZ/9znqRqv3qd5VhShaS+gnD7URjOsiwFmgJy5jnyop5fzc71x7Srbdl1tiybxDkAAAAA47dt9bZx91v14VWDzjvlTtFjJjb0Ymbf+YHtAQAAAOBgksvFJ7VfLNahcPhFSZIxeb2yUGXJ36e1d3dImd7nAwqHtyoW6xjXvDwvr2h0h2KxvXLdrBynXDU181VXt1S2zbI2AAAAgP3nuuPbVLHUfrFYTOFwWMaYQYlzA/W1CYfD406g8zxP0WhUsVhMruvKcRzV1NSorq5Otk19DQAAAKA/VhpwSHPbXXmuVzh+2bwsSVpsLT7wkzGSsvKry9nGrzzXP3FuYDzt9T4n+ZXoyv1kQBM3stKWvIingBWQc5gjOzD+YNiyLTkNjpwGR8YzhWQ6r9sjmW4a2759uyRp2bJlUzwTYPx4HWOm4LWMmYDXMUZ0ZO/jS2PvuvPRneO65HD9aubXKPxiWFVzq9T1cpfS0bSSnUlVzqkstEl2JpWOpiVLqppXVegHHCj8TAXGjvcNMDa8Z4CDwX4EUv3k8+lJ7bdly//KGE+e17ezoyTZvclsRpIjz8urL5HO81xZlq0tW/5XK1a8reT5GGPU3r5JbW0b5brZoufC4RfV0rJWTU0r1dh4kixr/OtRJOhhf/H/WODgxfsXODjx3sVkmOwEui1bthQqz5U6rmVZ2rJli1asWFHyfPw4ql1tbW2DrhUOh9XS0qKmpiY1NjbuZxxFgh72Dz/LgYMX71/g4MR7d2SsBOCQZTwjt92VJUumd9HvUfOopClMoMv5H8YzUt96Y/84s38Vuj6eZGLGfzfbkhf0ZDu2jGWU35mXu9tVYGlAZceWjTtoNcb/Wrntrl+Frv/lw560W3IaHTmNzn4F3Jg49957ryT+54eDG69jzBS8ljET8DrGiF7f+3jz2Lt6SW/0RmPoV7e0Ti1rWyRJ1Y3Viu2Jafe63bIClgLBgPKZvEzeqLy6XDULahQIBeQEHdUtrRvXPIDx4GcqMHa8b4Cx4T0DHAz2I5AqMr4bP0vt19Xlb17iJ8n5LMuSMe6AYxXaOU5ZoV8pjDFqbn5YkYhfoTyfTymR6CgkuFVVzZMktbauVzrdpcWLzx3zWtSBStDDzMf/Y4GDF+9f4ODEexcHo66urlErzw1kjFFXV9eY2jc3NysSiUiS8vm8EolEIcGtqsrfQLK1tVXpdFqLFy8eZxw1+Ql6mPn4WQ4cvHj/Agcn3rsjI4EOhywv6vnrg+NdW5xM/dfu+irN9SXP9U+iM/3ayH/O5I28uCcraMnkjSzbUn5bXl7MU/D04JiT6Iwxyr+clxfxL2Jyxr9Z1ZVfga7SliVL7h5XJm0UWBwgKAYAAAAwJeyAraaVTdr9+G45QUepSErprnTxRiSW5GZdzT5itowxajqpab+qdgMAAADATGVZ6r3x85VNTIwZaSMUT8b4/UrV3r5Jkcg2GeMpEtmueLxd/YO4rq6XVV3dqPr6ZQqHtyoUmq2mppUlj38gEvQAAAAAoI/ruuNKoBtLZbz29nZFIhEZYxSJRBSPx4ue7+rqUnV1terr6xUOhxUKhdTU1DSm+Ux2gh4AAAAwFUigwyHLi/cmhHljC1inRN8UbQ1Onuvj6ZVkuzLJyK8aZyqMrHpLapNyz+cUPD44pku77a68iCdjjP+YKL6w2+3KqrJk19vyIp7ckKtAEz9aAAAAAEyNeSfO086Hdqr75W6FakOK74srvjcuL+/JDtiqnl+tUG1I3S93q2puleadOG+qpwwAAAAA01IgUKnBC1Kjrat5vf1G53l5tbVtlCRFItsVi+1RNhuXZQUUCASVz2dkTL5Q8a6hYbna2jZp3rwTZNulrUVNdoIeAAAAABxInuepra1NkhSJRBSLxZTNZmVZlgKBgPL5vIwxhSS+hoYGtbW1ad68eSVvvD/ZCXoAAADAVGGLdRy6+jZtOQjy5yT583R7H/vm3FeZTv3OlUtWrSUr6D/hpTyZiP9kfkdeXn6knUEHXNLzk/AkFSXPWSFL1ixLVsi/hkmYQoU6t909OJISAQAAAMxI+zbvkxN01NPao+33blf4hbDSXWllY1mlu9IKvxDW9nu3q6e1R3a5rX2b9031lAEAAABgWmpqWtmbvOaU2MORMV7JCWjR6A65bla5XFIdHc+rq2unLMtWeXmlbNtReXmlLMtWV9dOdXQ8r1wuJdfNKBrdUdL4AxP04vE2SUahUJ1qaxcpFKqTZBSPtykS2S5JamvbJM/Ll/j5AgAAAECx2bNnj6sC3ezZs0tqG41G5bqucrmcOjo61NXVJcuyVF5eLtu2VV5eLsuy1NXVpY6ODuVyObmuq2g0WtL4AxP0+pLnQqGQamtrFQqFJEnxeLxQoa6trU2eV/o9iQAAAMBUoUwUDl19a30HW66XGeHfNVJgTkB2yM+NdRN+9Tgv5cnKWrLLbeVfzqv8yPKSLuVFPcmVTM4UkufsObbsyldyb72kJ6/TT64zs4wsWfKinpyGUhdTAQAAAGBieHlPrU+26tnbn1Xnlk55WU9u3pVxjR8zWZLlWLIsS/ue2SfjGQVCAc07YZ7sQGl7DHl5T9EdUcX2xuRmXTnljmrm16huaV3JYwAAAADAwWDRorP01FM/lmVJpdz/aVmSZGnRorNKGj8W2ytjjPbs2aBUqlOBQKUcJ6hUKiLPc2XbjoLBWXKckFKpTu3Zs0GLFr1GsdheNTQsH3X8vgS9fD7VW3lOmjv3OFVWzim0SSY71dGxRfF4u2prFxX6lTI+AAAAAAzU2Nio7du3j6tfKWKxWG8ctUepVEqBQECO4yiVSsnzPNm2rWAwWDi3Z88eLVq0SLFYTA0NDaOO35egl8/nC8lzc+fOVWXlK5XGk8mkOjo6FI/HVVtbW+hXyvgAAADAVCKBDoNEo1GtWbNGra2tikQimjdvng4//HCdffbZRYHQwc6utuWFvVcquB3sPEkxyTWuvFo/GLYClqwy65UEuHLJ6/SkI0scMu7vDOMl/UcrZBUlz0mSXWnLBI1MxshLenJqHXlxEugAAAAAHHjRHVFt/eNWhV8MKxPLyMsO2O3S+JW2c7mc3Lyrzhc69eJdL2rxaxarYfnIi3rGGLVvalfbxja5WbfoufCLYbWsbVHTyiY1ntQoy5opgSYAAACAQ1k83q6KivpC8tlojDGqqKgrub3rZtXTs1uJRIeMkfL5pLq7X1b/HSRTqYgkI2OkRGKfenp2q65uaUnjx2J7JUmJRIf6Ks/1T56TpMrKOQqF6pROR5VI7FNt7aKSE/QAAAAAYCBjjGzbluu6ozfuZdt2yVXrXNdVT0+PEomEjDHK5/Pq7u4uapNKpQpzSSQS6unpUV1dXUnjx2IxSVIikZDkV54beM9oZWWlQqGQ0um0EomEamtrS07QAwAAAKYSCXQoePHFF/XZz35Wf/7zn5XNZgc9X11drbe97W362te+pqampimY4cSy62xpt/zEs5nASPLkJ8plJbfWleVa8lJ+FTnP9qSAZByj3I6c5PhJhHadLcse5uZOd8DjcIXrgpIyQ7QHAAAAgAMosiOivU/uVbo7PTh5bgAv6yndndbeJ/cqsiMyYgKdMUbNDzcrsi0iz/UU2x1T164uuRlXTtDR7MWzVXNYjVrXtyrdldbicxeTRAcAAADgoJfLJVRTs1CJRFjGDF47HMiyAqqpWahcLlHS+JZlq6enRbbtKJPpkTGeKipmKxCoVCAQUj6fVj6fVCrVJdu2VVnZoJ6e3bKs0qp/u2626DEYrBmyXTBYo3Q6Oqg9AAAAAIxVLpdTIBAYUwJdIBBQLpcrqa1lWerp6ZFt28pkMr0bmVQoEAgoEAgon88rn88rlUr1xlGV6unpKXndqm/efY/BYHDIdsFgUOl0elB7AAAAYDojgQ6SpF/84hf6yEc+Uth9ZCjxeFw///nPdffdd+v222/XeeeddwBnOPEs25LT6PgJdLZmRiKd53+YvJHSkik3Ur73XM7IzbkyaaN8dV7WLMuvwLdbchodOY3O4EDZGfA43HphZpj2AAAAAHAAbb9nu9LR0ZPn+nhZT+loWtvv2a6j3nDUsO3aN7UrvDWs7l3dfoJeV7p/QQRFtkUUmh3S/FPmyxij0OyQmlYe/BvPAAAAADi05XIJWZYUCtUqleoYtX0oVCvLUskJdJ6Xl+flFQiE5LoZSUbBYK2qquYV2iQS+5RI7JPnWQoEKuR5OXlevqTxHae86DGTiQ3Zru/8wPYAAAAAMFapVEplZWXKZDKjN+5VVlY24n2b/XmeJ8/zipL0gsGgqqqqCm0SiYQSiUShXV+fUjiOU/Q43OfRd35gewAAAGA6I4EOuueee/SP//iPRbuA2LatRYsWqbGxUa2trdq9e3fhuX379umSSy7R+vXrdfTRR0/FlCeM0+jIqrJkkv6dj++13zvFM5ogpvcjPeBcSvKMp+yOrKzZluxa269Y96ykgGQ32HLmOgosCMhpcGRVWsrvzMtr9+SFPb/EfLste57tP29bciOun4hnJDtoy3M8OQsJiKfaVVddNdVTAPYbr2PMFLyWMRPwOsaIbp7qCbxi37P7lE/ni5LbRmSkfDqvfc/uG7aJl/e09+m9Cm8Na98z+5Tpzshz/UVGO2DLy/v/TkfT2vPEHuXTeTlBR/NOmCc7UFpVBBxa+JkKjB3vG2BseM8AB4NpFEiNIBicrWw2oWx26MSzgbLZmLLZhILB2SW1d5wy2XZA+Xy6N4kup66ulxWN7pRlWTLGyLJsWVZAjlOmfD6lYHCWHKespPFrauYrHH5RVVVz1dX1stLpqJLJTlVWzim0SSY7lU5HJVmFxL2amvkljY9DD/+PBQ5evH+BgxPvXRyMAoGAjCl1ocpnjFEgUNqtvI7jyLZt5fP5QsW5cDisffv2FeIox/E30u97PhgMlpzgVlNTo3A4rKqqKnV1dSmdTiuZTKqysrLQJplMKp32b0zsS9yrqRm64jfAz3Lg4MX7Fzg48d4dGQl0h7iOjg69613vKkqe+4d/+Ad95zvf0fLlywvnnnzySV111VVav369JKmnp0dvf/vbtXHjxpLLe09HlmUpsCSgXGdpJdAPakZ+NbqU5OU8qUNyHVeWY/k/CSzJi3pyd7nKbslK1ZKVsuTuc/2+Ocl4Rm7CldvmKqec369cskO27ApbyvgVHPK785KroavaAQAAAMAkibfHZdwxLkq6RvH2+LDPR3dEFd0RVWx3TOnutDI9/o6almXJeEaWbRUWQo2MYq0xlVWWKbojqoblDeP/ZAAAAABgitXXH614fG9vdbjRuW5G8fhe1deXtgGn57maNWuhurtb5boZpdM9GnpHFEuh0Czl8znNmnW4PM8dos1gdXVL1dKyVpJUXd2oeLxNHR1bFArVKRisUSYT602e858PBEJynKDq6paWND4AAAAADDRr1qxCclmp0um0Zs2aVVJbz/M0a9YsdXV1KZPJjHitUCikXC6nWbNmlVyBrq6uTi0tLZKk6upqxeNxdXR0KBQKKRgMFl2zurpagUBAjuOorq6upPEBAACAqUQC3SHum9/8prq6ugrH559/vv7v//5PZWXFOzeecsopuu+++3TGGWfo+eeflyRt3rxZq1ev1lve8pYDOeUJZYyRXWOXXp1gJnB7Pyz5SXEBI2UkOZLJGKlCUkLSHr+N5VgyeSNle/v1MfLPpSQv5skLebLill+ZrtNSLpaTG3flzHb8Kneufw272pZdZ8uySawDAAAAMLFyydzY4zvT228Y3S3d6mnpUSaWUXJf0m9r+RuMFCoi9CbRuRlXlQ2V6tndo+6W7pIS6Ly85yfo7Y3Jzbpyyh3VzK9R3dK6cVewm4wxAQAAABx6Eol2ZbMJjaXMdy6XUCLRXlJrxylXdfUCpdNhpdPdsixHjlOmbDYhY1xZlqPy8iq5bk7pdLeCwYiqqxfIccpLGt+2A2pqWqnW1vWqr18mSYrH25VORwuJc5Kl6urGwvNNTSfJtllCBwAAADB+/YsZTHR7x3FUVVWlnp4epdNpWZYly7KUz+d7q3hbhSp46XRaPT09qqqqKrkCnW3bampqUmtrq+rr6yVJ8Xhc6XS6KFmvurq68HxTU5Nsm/UnAAAATH/89f8Qlsvl9NOf/rRwbNu2vve97w1Knusza9YsfeMb39Cb3vSmwrlvf/vbB20CnTFG+Zfz8lKe/04YW9x68Otb68z3PvZLqis8Z/lfJ3kafm3U9PZNSCZtlE/k5YZdWdWWrJcsOXMdOfNfqUTnhT1pt1+djgp1AAAAACaSmxlfYDdSv+5d3fLynnr29ijZmZTnenLKexcZjfw4SpKbdZVP5tVT26OK+gp17+oe8ZrGGLVvalfbxja52eLrh18Mq2Vti5pWNqnxpMaS46bJGBMAAADAoaulZa08Lz96w35cN6+WlrU69dQrR21bUzNfmzf/UpZly3HKlcl0K5s1siz/xktjPKVSEVmWpWCwVpZlqa3tKR155Pklz6ex8SSl010Kh7eqoWG5amsXKZHYJ9fNynHKVVU1T4FASJLU0LBcjY0njenzBQAAAID+Ojs7J7VfTU2N1q1bJ8/zZFmWcrniTSKNMcpms5KksrIyeZ6nnTt3atmyZSXPpbGxUel0WuFwWA0NDaqtrVUikZDruoUEvkDAv/W4oaFBjY2NJY8NAAAATCUS6A5hDz/8sCKRSOH41a9+tY477rgR+1x44YWaP3++9u7dK0l67LHHCoHSwcZtd+VFPKlHUpn8KmyHMtP70Vet3ep3vu94tA1GXUlpyWSNTMzIqrZk9hp5WU9OjSMFJLvSliVL7h5XJm0UWBzgxk0AAAAAE8J44ysvPlK/TE9GqUhKsRa/mpuR8at5u6aQQGc5ljzXk3GNYi0xzZo/S5me4YNMY4yaH25WZJsfk+dTeSU6EoVqcVXzqiRJretble5Ka/G5i0eNmyZjTAAAAACHto6O5zSeMt9+v9HV1CxQOPyibNuR5/Xt9Ghk244sq0zG5OS6niRLnufJth2Fw1tVU7Og5NlYlqXFi89VKDRbe/Y8qXS6W/l8Wp6XlzGe0ulu1dRUa8GCk9XYeBJxEgAAAID9smfPnkntV1VVpY6ODlmWHyf16atEZ4zxN8yXCkl2HR0dqqqqKnkufhy1WKFQSHv27FE6nVY+n5fneYXKdjU1NVqwYIEaG9m0EQAAAAcP6iYfwh588MGi4ze+8Y2j9rEsS//wD/9QOPY8T/fdd9+Ez22yGc/Ibfd34/e6PP+dwLuhWF9CneR/bUqNcz35Ve1ykuk28mKe3H2u3E5XptvI3evKDbsyxsiLeIXvAwAAAADsr3x6bJURSulXXlWuyPaI3Kwrz/Pk5T25GVee6/nHbu9x3j92s64i2yMqryofdsz2Te2KbIvIeEbhrWG1bmhVV3OXYnti6mruUusTrQpvDReeb9/UPurnMBljAgAAADi0xeNtk9pv1641Ki+vUT6flTGubNtRMFiriop6hUI1qqioVzBYK9t2ZExerptTeXm1du1aM655DXdPp2WNbzMWAAAAABgokUhMar8tW7bIcRzl8/lCopzjOAoEAkWPkr/5Yl/VuC1btoxrXsMlx5E0BwAAgIMRKUOHsA0bNhQdn3TSSSX1G9huzZrxLVJNJS/qSa5kckYma2TZlhSc6llNY/0r05XKlZ9Il+39tyT13j9qEn7ynORXAhxvlQgAAAAA6G8yEuiMjNJdaX/XTs9IXm/FOlNoUHTesiylu9N+pboheHlPbRv9m0kj2yOKt8UlI4XqQqpdVKtQXUgyUrwtrsh2v5pc26Y2efnhg7LJGBMAAAAAjMlrPBXo/H6j6+x8QRUVdfK8nCSprKxawWCNcrm0stmkcrm0gsEalZVVS5JcN6uKijp1dr4whs/BqLn5YbW2rpfnuQqFZikQCMlxyhUIhBQK1crzXLW2rtfLLz9SuAEVAAAAAMZjvDFFqf3a2tpUXl4u1/U3sLcsS7Zt+5s8um5v9W67UI0un8+rvLxcbW2lb5Dix1HNam1tled5CoVCRQl6oVBInueptbVVL7/8MnEUAAAADhqBqZ4Aps5zzz1XdLx8+fKS+h199NFFx9u2bZuwOR0oXty/SdBLerIcS7IlU26k1BRPbLoab4zbm3hnMkZe1pPt2lKlZOJGSkhmlpElS17Uk9PgTOSMp4TxjLyo57++XEmOZFfbsutsP0kTAAAAwKQa7+YcI/ULbw3LLrOVS+UGx0ZDHHuep7JAmcJbw0OOF90RlZt1lU/lFW+PS5LmHjdXlXMqC22SnUl1bOlQvD2u2kW1hX4NyxsO2Jj9eXlP0R1RxfbG5GZdOeWOaubXqG5pnewAezMBAAAAM5WfuDb2BLq+hLfR5PP+wlwgUCFjXGWzPXLdzCsjGVepVESum5FtBxQIVBT1K0V7+yZFIttkjKdIZLvi8Xb1/5y6ul5WdXWj6uuXKRzeqlBotpqaVpY8PgAAAAD0FwgElMvlxtWvFH1jG2MKH33JdP3Pe55XSKLr368U7e3tikQiMsYoEokoHo8XPd/V1aXq6mrV19crHA4rFAqpqamp5PEBAACAqUIC3SEqm80O2lWk1CCmsbGx6Pill16asHkdMO4rj1aFJTfjSskpndHM5UrK+lX/XNeVXWfLJIxMwMhKWLJn2cq35g/qpDNjjNx2V267+8prq5cX9qTdktPoyGl0KF8PAAAAHGQyPRk5QUdu1n3lHkurXxU6q/fD+B9u1pUTdJTpyQw5XmxvTJKU6EgUqsT1T3STpMo5lQrVhZSOppXYl1DtolrF9saGTXYbNGZtSJ7rKbw1LC/vyQ7YCtYGFZwVVKYnU9KYkh/rtG9qV9vGNv/z7yf8Ylgta1vUtLJJjSc1EusAAAAAM1B1dZOi0bFvpFldXdqao58QZ5RMdsh1c7LtgBynTLlcSsZ4sixbZWUV8ry8XDenVKpT0vJCIt1oPC+vtraNktSbPOevjYZCdQoGa5TJxJRORwvnGxqWq61tk+bNO0G2zTI6AAAAgLGrrKxUKjX2XfwrKytHbySprKxM2WxW+Xy+kBzneX4xgb6KdP2T6fL5vLLZrMrKykoa3/O8wn2l/ZPnQqGQgsGgMpmM0ul04XxDQ4Pa2to0b9482TabLgIAAGB64y//h6j29vai0tllZWWqqqoqqe+cOXOKjnft2jWhczsgnFcerZAlZTQo8QkTyEjK91b+C8j/+iel/N687JgtO2RL+VeaH0xJZ8YY5V/Oy4v0/iEiZ+Ql+yUDVtqyZMnd48qkjQKLA9P68wEAAAAOZsYeZwW6kfp5fgW2oip1Xv/OKirIYDwjL+8Vt+mnLxGt7zFYExyyXbAmqHQ0Paj9SGPmM3mloimlu9JKd6eL2sTb4kp3pWWMUfX86lHHNMao+eFmRbZF/LFTeSU6EoUKdFXz/L8htK5vVborrcXnLibWAQAAAGaYqqo5ozfaj35z5hyjLVvukOe5koxyuZRyuZQsy1bfjiW5nH/jqeME5Lp5dXXt0oknXl7S+NHoDrluVvl8qrfynDR37nGqrHxlfslkpzo6tigeb1dt7aJCv4aG5SV/vgAAAADQp68q23j6laKxsVHPPfdc0bn+94H2/3efRCIxqGjCcKLRqFzXVT6fLyTJzZ07tyjBL5lMqqOjQ/F4XLW1tYV+DQ3Db9oIAAAATAck0B2iotFo0fGsWbNK7juwbTabVS6XK3mXkunArrblhT3Zlba8qFeUvIVJ0HdPpi153Z4s25KxjKycJWMbmXIjt9sdU9KZ8Yy8qDfllevcdldexJMxxn9MFP8Rwu12ZVVZsutteRFPbshVoIkfvQAAAMBksGXLHcfuKLaG3xEzVB9SLpnzd+zU6Al6lmUpl8opVB8a8nmn3Cl6zHRnFG+PK9OdKaoWl+5KD9l+uDGNMYrvjSvVmVKgMqDyqnJlYhl5rifbsRWcFVQ2kVU+mVd8b1z1y+pHHLN9U7si2yIynlFke0Tx9nhRomDXy12qbqxW/bJ6hbeGFZodUtPK0qpMAAAAADg4lJfP0islt0tl9fYb3eGHr1IisU+27cjzXHleTpJk244sy5Ex+d7kOj/Wsm1HicQ+HX74qpLGj8X2SpISiQ5JRqFQXVHynCRVVs5RKFSndDqqRGKfamsXKRbbSwIdAAAAgHGpqCitYvZ4+82bN0/5/Nhudszn85o3b15JbWOxmCQ/6U7yK88NrI5XWVmpUCikdDqtRCKh2tpaxWIxEugAAAAw7ZHFcYjqC3D6jCX5bai2iURCs2fP3t9pHTB2nS3tlixZMq4Z+9ofxsbyP4wxUtav0iZbUqXkdrjyUp7scltWmSWVS6bb+Elndbbyu/Jyo66cWsevGFhlyWSNvA5vUNXAA125znhGbrs/if7Jc1bI/zyUlUzayCSMPHlyGhy57a6cec4BTfIDAAAADhXGHWcFuhH6lVWWyeR7Y5hS2H7MU1Y5dJxdM79G4RfDqpxbqbaNbYpsj/ibjWQ9GdfIcizZ5bbkSZVzKlU5t7LQbzg182u04/4dcnN+fJJoTyjdlVag/JU/+8T2xuRmXAVrgvLynnp29+iI844Ycjwv76ltY5sk+clzbf4Oo6G6kII1QWViGaWj6cL5huUNatvUpnknzJMdKPULBQAAAGC6i8f3+puJDFHBYDiWZSse31tS2927H1dl5RxFIttkjOmtPOevJxmTL4zXdy6XS6qm5jDt3v24li17/ajju2626DEYHDquCgZrlE5HB7UHAAAAgLHqq9o2Wf127dql8vJyJZPJktp7nqdQKKRdu3Zp4cKFo7Z3XbfoMRgMDtkuGAwqnU4Pag8AAABMZyTQHaJyuVzR8VgS6IYKipLJ5H4n0K1cuVK2PfhGO8cZPhHq2muv1ec///lRx7755psHnTN5I+X8GxvPLjtbi8yisU+6n196vxzx+bOts7XYWnzoXsOTX+nPkn6Z6b1Guve5Hkm2v3uojHTu3HO1OLlYVoclu9KWuuQny1mS96InkzKyZvnPeUlvyMp1P7r9R7LKh0lSM9IFZ16gIxqO2K/qdTf/4GY/SU7+a0mSFFDh9fp3x/+dlsxZIq/TT64zs4wsWfKifjJdSdcY4rXb39///d9r2bJlJc+Za3ANrsE1uAbX4Bpc41C/xkxzQOOoqwY0+Iukl0qc6HAGjjnQGK/hud64ruE1D9GvlxN0/A1B8iPcMNrvGp7lKWtntUEbtOXmLZKKX7t1S+u0a80udT3fpa5dXUq0JWRc498salsynpFlWbIcS7lkTl0vd6npxCbdft/tsu4f+ntqPKPaaK0qyyrluZ7yqbzyqby8Gk/B6qAy8YxyMT9oKasqkx2wFW+Lq3ZRbdE4fd9zN+Mqm8xKnpQrz0mLJDtga0lmieykrUAwoKp5VYq3xRVvf2Wc6I6oGpaPvLvoTPlZwjW4BtfgGlyDa3ANrnEoXWOmObDrURMfSBVfY6iAZ+KuEY2ukDFHafAulCNfI53uLukayWRY2exrlM+fImMGxmX3yrJ2FhL4jPHkea7Ky2eps/OFkhLo7rpro1w3K8+rlOsukmU5CgQ6Cs8fd9wszZsXVCbjV1hwnPKix1LMlPc51+AaXINrcA2uwTW4BteY2GvMNAf6vr6JdiCvEY1Gx9U/lUqVdI1YLKZcLifPG35tqz9jjILBYMnzuuuuu+S6rjzPk+u6sixLgcArtxkfd9xxmjdvnjKZjCT/NdD/sRQz5X3ONbgG1+AaXINrcA2uwTUm9hoHAgl0h6iBActQAe5whtplstSAbCRjLS0uDU4EHAsr4N+YqKykMvmPmBxGfhU6T8VrrH3nTe+H7R+bnJHX5cnYRnbClnJSviMvK2D5CWoVltQquXJlVVn+4qln5O5zZQUsWdV+lToZ+Ul0vdcwrvFves1Lue055eN5WZWWLNsaX/U6b8CjrUH97EpbJmhkMkZe0pNT68iLl55ABwAAAIzkQMdRh6JkR1JWmVV6dbveOMfLDx0n2wFbgVBAu/66S9merNycq1wy57fv7WsHbJVVlinTk9Guv+7SYacdJis5fIzi5TxV1FfI6/BkOZacoCM35yrbnVUmmpFlW7IClpwyvxq2l/dU3VSt7l3dQya8ufneStt5r5DcJ0mpaEqB5Ct/SkrsS8gpdxRvj2v24tmK7Y2NmkAHAAAATDXiqLEaW6VvYzwZU1rlgVfaDhXvFJ+zLMmyHGWz3cpmS6vM4DgBuW5Wtu3IdSVjXBmTl2W9Etckk51Kp6OSLFVVzZMk1dTML2l8AAAA4FBBHFW6sVTw7m8sX+OxVQm3lM/nS76/03Ecua4r27blum7vhiam6J64ZDKpdNrfOb+qqkqSVFMzdMVvAAAAYDqxzHh/Y8dB7amnntIpp5xSOD788MPV0tJSUt9UKqXKysqic21tbWpsbBzTHJ577jmdcMIJheNQKDSmRD6p9J1qhmOMUer+lLI7sjIRP7EKB5glP5XXlp/IWC6/mltKfnW43qQ62a/823IsqUKyy2xZtZbkSV7Y85PmJFlBS/ZsW1bIkrPIkR205WU9mQ4jk/TbGNcUkuzsGlvOPEdWmR/o2/W2AosDRYG/8Yy8qCcv/krFOy/qyeR7k/3iflU8Z/bgxDi3y5XpMbKqLTn1juzZtsqWll71EQAAAMMbGFc8++yzOv7446dwRpNrKuOo663rx9ynz3XmugMy5vXl179SHXosyqTrskPP8Y8f+aOe+dUzyvaUvutK+axyrXj3Cl30XxcNes7Le/rTx/6knQ/tVHxPXLn48BMuqy5T9YJqLf27pXrj998oOzD097r5kWZ1vtCpl//6slrXtyrdk5abceWm3cKiphNy5AQdhWaFdNjph2nxOYs155g5WnLukkHjvXTfS4ruiKr5oWZ17exSaHZIlmMpFUnJy3myy2xV1FfIuEbprrRmHzFbS85borqldTrydUeW/HUCAADA1CCOOoBx1PUlbNY3jOuuG30Jd7LH/8lPzlRr67oxj33YYWfoiiseG7XdAw98Xi+++AfF43uVyfTI81zZtqNXdl/0H/vOB4OzVF09X0cf/Wadf/5XRh3f8/LavPmXct2swuGtisfbJEmhUJ2CwRplMrHe5DmpurpJDQ3L5ThBnXjie2Tb7EMLAACAVxBHHcg4aj/Wjq4beq3nQI7/gx/8QJ2dnWMee86cOfroRz86ars//vGP2rJlizKZTElJcbZtKxgM6rjjjtNFFw1etxrI8zxt3rxZrusqHA4rHvc3MAmFQgoGg8pkMoXkuerqajU0NMhxHJ144oljfo0AAABgZpuOcRR/+T9E9e380SebLf1GwKF2hxk43nhs2LDhgL8hLMtSYGlA+ba83G6XBLqpYORXcLMkpSUl9UpFOslPVpNe2WjUloz8yoFuhSt165UKcMZvb1J+tTerwpKX9mQHbb+yXb43aS7p/9sKWJItuWlXXrcnZ54ju8GWF/HkhlwFmgIyxii/N6/8zry8uCeTMoUEOpM3kidZIcuvdpctXqg2np+w53a6UkayZMkqt2TX8ccCAAAATIypiKOmM8uy/HhhHP2Gk01llc+MLVjMZ/LKpoaOszue71D75nYlOhIjJs9JUi6eU6IjobZNbep4vkONK4beuMbN+oly0V1RxfbE5Gb8QMoYU1QRLxfPKRfPKdoS1SKzSG526KoQTrmjnt09yvRklE1k1d3arVwi54/bO54TdFRWVaaK2RXK9GTUs7tHc46ZU/LXaKJ5eU/RHVHF9sbkZl055Y5q5teobmndsImHAAAAODQRR5UuEAhOar9gcJZyuYQ8z+2tROfJGFuvLPxI/gKRJ2P8CnK5XFLB4KySxrftgJqaVqq1db3q65dJkuLxdqXT0ULinGSpurqx8HxT00kkzwEAAAADEEeVbqQ1p4noV1NTM+aKgPl8vuQKcbZtq6mpSa2traqvr5ckxeNxpdPpQuKc5CfP9T3f1NRE8hwAAAAOCvz1/xBVXV1ddJxMJkvu29PTU3TsOM6g8Q4mgcUBmUf8GyxfNi9LkhZbi6dySoeeviQ6Vxr2XteBCXWuXqks0Rd/e8XtTdbITbry5nhSsvcPDZ5ffa6vvRW0pLLetmH3/7P3t0GOZfl93/k9514AN/GQSCQqE6h+qOyu6amZafZMFangKChTbJHrNR2yqQ1JsTEhLjkRlsnhg2OX3AiGbWkV8gtbEaY2RG+EHQyHbZFDyVaQy3DYq5HIsThBD02pJQ01M93z0Oyuqq6unuysBDILD5l4ugDuPWdfHODmQ2VWIdGZlZVV/09HBTqBcy4OUEgUDu75nb9bCFr2iOsx6pJi/K0x0XqE7Vtsz7rQ3HTT0ylvUhXPguorF9zbNdhdiwkNpm3cfRmF7VrM0EAG/Mv+3F+aPMrt27cBeOWVV87k+EI8DvI6Fk8LeS2Lp4G8jsVDTQuOvXeuozgzZmDcZ/iT9BkazODoPre/fJv2B21GO7NtZDPaGdH+oM3tL98+NkDnpT0+/NcfsvXmFvEwxhp7cG5lJxuRKIiHMVvf3OLDj33IyqdWjjxebiXHzvd2GPaGtO60iAbRwTkQEIURw/aQsBmyUF5gd32X3MpH31znpKy11N+qU3uz9kAgsPFug/U31qneqFK5Xjmz+ddJyXuqECcnvzdCnIz8zghxEVyMiVQYds60XxAsEcdj4niMtW4OZe3RC0GtNUTRmDgeEQRLM4+lUrlOGLZpNG5SLl+jWLxCr7dFHI/wvDS53Cq+HwBQLl+jUrk+87HFs0f+jRXi4pLfXyEuJvndFRfRScNtJ+1nrUUpNVP1OXAV5XzfbSI/q0qlQhiGNBoNyuUyxWKRXq9HHMd4nkcul8P33dLjcrlMpXL0+SshQN7LhbjI5PdXiItJfncfTgJ0z6hqtUoqlUqqye2f4DzK4RLjly9fPpMxPi5KK1gAYvhj+8eABOgeO8PB8NusDofq9ov32tgtV23OetaF3VKuEtyU0gqVV5iuwXQNelGDhdEbI+JGjOkZzI6B0eR4xi08RbufdaAxo70HYMeToN0ATN8kFesYAD7YjmX0JyPiF2NSn0nBDpjuXjud1+iSdq/NOf2zf/bPAPnH7zjWWEzLnPrzLk6XvI7F00Jey+JpIK9j8VA/Prn89XMdBeCqPs9Vge5wOmyffmP2DWdm6bf9zjaD7cHscyADg/sDtt/ZPrbJQmmB9778HmZk9jYMOYp1G4qYkeG9L7/Hn/t//rmHjr/2jZoLz036HiUaRGx+c5N0IT3Lo0mcRsU4ay13v3qX5q1mMpbedi85Xm7VBfo2vrZB2A5Ze33tiQjRyXuqECcnvzdCnIz8zghxETxBE6mHGI12H93oI/Qbj3tonSaOw0c3BuI4ROs043Fv5rEopVhbe50gWKJWexOAYvHKgTael6FavU6lcv2JmDOcF2MiWq07dDqbScCwULhMqXRVqvJNyL+xQlxc8vsrxMUkv7viIorjoxaynV6/Xq934mpvWmt6vZPOo9YIgoBarQZAsVg80MbzPKrVKpXKk7OB4XkwxtBqteh0Osn620KhQKlUkqp8E/JeLsTFJb+/QlxM8rv7cPJN9zPK8zzW1taShKm1lq2trZnCcPV6/cDPa2sXO2xmWgad1pi5ElziiTVd3GmAMVhlXXDOV+gFjV50oTfbtdiRRS242+zQutCbhXjTVaQzDYMd271QnmKvCp11E2GVm/TdMS5gNwQb2iRsp1DYgcX6Frq4wN67hujDCP/5g5XoTMPAh+BVPLyKdyZfMjyrATJrLXE9Jq7HDwQvH8fzLoQQQgghzpax883rHtav9b3WXMc8rt/9d+9johNWtBsb7r97/9jbt/50i7Adnmi30bAdsvWnW1Q+8+CuoN1al/q364x74yN6P2jcHVP/dp1urcvKq0dXtZs6zYpx9bfqNG81scbSvN2kW+8eCPq1P2iTr+RZfmWZxs0GwVJA9UZ1psd0UZxGEFEIIYQQQojjxPFslbPn7RdFQ4wZnujYxgyJopP1UUpRrd5gdfU1CYgdwVpLvf4WtdqbD/zdNRrvsr7+BtXqjWc+YCiEEEIIIcQsTlLpbZ5+Z13hbsrNo6qsrq5KQOwIbh5Vp1arPRB+bDQarK+vS8BQCCGEEOIJ9OyeCRB8/OMfTwJ0AO+8885MAbp33nnnwM+vvvrqqY/tcTK7Bjuw7rdhvvOA4kk2XT8a44J0sQuxmdC4KnQ+2MiF6PCByP1sWq5yg+nuC8957s+0OoWNJ9fHYAcWVVAujJdSmMi40N7+CbBybeP7MaqhIAO6o4kzsRvLNMiW1SgU8b0YG1r8Nf/UJtLPcoDMWkv0QYRpuheFHdsDFQLP8nkXQgghhBCPyXznDB/aL7w/WyWEWft1vtc5tprbseyk3zG+9Q++5ZpFsx3YRm7+861/8C0+/blPP3D71ne36G+drPJef6vP1ne3ePnHXj7+fk+xYpyJDLU33a6nzdtNurUuAEEpIFPIMOwMCVthcn35WpnaWzVWX1t9KoJlpxlEFEIIIYQQ4jjGzDfJmrVfHBuGw1209meqtqC1z3C4SxzPt3mK1j7l8jXK5Wtz9X8aWWu5e/erNJu3AIiiAb3edhIwzOVWAdjY+Bph2GZt7XWZYwghhBBCCPEQZx2gs9YyHs+2AeLUeDyee1xaa8rlMuVyea7+TyM3j7pLszk53xVF9Hq9JGCYy03Od21sEIYha2vHn+8SQgghhBCPlwTonmE/9EM/xO///u8nP3/961/nR3/0Rx/Z71vf+taBnz/72c+e+tgeJ7NjUFbBxV8/Jx4mAutZlHWV4lBg+3avmpzBBamUC1YxAjuyLlw5PWfrgc5oyEzaDnHHsu4Y0+NOq9Mp1F7oznOvseTYxoIBowzmHYNe0egFjVKKeCdG5RR6WWOahjiI8avzvV3vrzRnI4u5b7BDi8q6wN6zFCCL6zGmabDWusvewS+GTvN5F0IIIYQQ52S+c3/z95tDPH70otCT9mvfbbs5xglYY2nfbR9527v/5F3M2Mz+vFhXJe/df/Iuf/b//mePbba/YlzjZoPme03G/THWWJRWpLIplj+2TPla+ZEV41p3WsSjmGgQucpzwMqrK2QvZZM2/ft9tt/eplvvUrxSTPqVr13sk7ynGUQUQgghhBDiYVKphTPt126/h1L60EJOfeDzq7vNJP+vlKbdfm+ucYkH1etv0WzewlpDs3mbbrfO/slgu/0B+XyF5eVXaDRuEgRLVKs3zm28QgghhHg2GBPRat1hNOoBlrt3/0gqB4sLI5VKnWm/4fBkFbk/aj/xoHq9TrPZxFpLs9mk2+0euL3dbpPP51leXqbRaBAEAdXq0ee7hBBCCCFOizGGVqvFaOQqSt29e1cqBx9BZpTPsH/n3/l3+Nt/+28nP3/pS1/iV37lVx7ax1rLl7/85QPXzRK6e5IloSfvvEciztQ05GYsDAENKq2SEJ31LSpWrhIcYEOL7U7CcwYXgjPKVZ3rg0q5QJzy3HVKK6yanFAcTKrTmcl9pK2rcDB5ndmBu42hC/URg21brLawCGqksD2LweCVPeJ6jLfqofTJFjzayDL69igJAMY7MXbHYq3Frls3/kAlJ6LPKriXBPTyGl3SJ34cp8EaV3kPOBCeU4GCNC7UGNpTed6FEEIIIcTTZd5qZcf1U958ny8f1i+OYhd4OwETGeLo6FBe63ZrrkBe63brofdXe7OGtZb1N9aTIJ2f9UkFKcbhmF6tR3+rT/9+nxf/rRcfWjGus+kq8vW2e2Bd5bn94TmA7KUsQSkgbIX0tnoUrxTpbHZmDtCZyNC606Kz2UnCaYXLBUpXS+daxW5/ELF5u+kChPv+utoftMlX8iy/svzIIKIQQgghhBAP4/vZRzf6CP3CsInW/oEAndbeJCgH1rpqB8bsBei09gnD5lzjEgcZE1GrvQkwCc+5Kt9BUCKTKTAcdgjDVnJ9uXyNWu0tVldfk4XrQgghhDgT1lrq9beo1d4kjkfEsVv42Wi8S6PxLuvrb1Ct3qBSuS6bhokn1nT+clb9ZqnefZr9pguxO51OUmHtWV6IbYyhVnNzpP3huSAIyGQyDIdDwjBMri+Xy9RqNVZXV5/J50sIIYQQZ8/No+rUajXiOE4+9zUaDRqNBuvr61SrVSqVisyjkADdM+0Hf/AHqVQq1Ot1AP75P//nfPe73+X7vu/7ju3ze7/3e9y7dy/5+fr163zsYx8787GeJZVR7jdB5idPNwtEQMqF2+zuoWpxsUItKNSigp4LnyW3gwu5aVfBLqlSZydBOUiCdajJbqiTfnZsIQLjGReeiybhuel3HmYyprGriqYGCrWkwILuaeyiRaEwLRfqmumhWosdTcJ/8eTYXeMCZGpvTDBZhFsGNVanEiCz1gXV4nq8V7lv+lAbBj4Er+LhVbzH+o+waZnkuZiG5/Qljc7u/eKbvnEV+np2ruddCCGEEEI8nYLlgP52f65+R/HS832+fFi/uTZ9sMf3G/fHJz/eI/q17rSIhhFb396icbOBNZZUNkU0iBjtjtApjZ/1GffGNG42yBQzrL62emzFuHgUH7jMFDJH3m+mkCFshQ+0fxhrLfW36tTerD3QvvFug/U31qneqFK5/vi/XJwGEQEXnqtNTsyWAjKFDMPOkLAVJteXr5UfGkQUQgghhBDiYYbD9pn2U8rH8zIopZhm6KydhuWmP9t97dWkvZziPg2t1h3ieEQUDSaV52Bl5VWy2UtJm37/Ptvbb9Pt1ikWryT9yuVr5zJmIYQQQjy9rLXcvftVms1bAETRAGPGWGvZ2fkeudwqABsbXyMM26ytvS6LP8UT6awrxJ11QG/q8ELs/U5zIfZFC+i1Wi3iOCaKoiQkt7KyQja7t5FMv99ne3ubbrdLsVhM+pXLs23wKIQQQggxKzePukuz6Tadi6IIY8xkHrVDLpcDYGNjgzAMWVtbe+bnUXJ24RmmteaXfumX+Jt/828CbjLyy7/8y/z+7/8+vv/gS6PT6fCf/Cf/yYHrfuEXfuGxjPVMLbpQkzLP9pvBM8Hggm3TqnLgQnLaVSI0KYNCYYcWtaBcpTi7r+14EpTTuIqFEQd2+Qd3rCSsNz1+Chdom7adHm/6c+Sqn6HAdi061lhjsXkLPfCXfEx39iDXNLxmscSN2IXiQuPuw4AZGJSn0GWNSiu01uhV/ZEDZNZaog8iTHNycntsMf19FeiyGoUivhdjQ4u/5j+2f4RN143J9N2lCtSB8By48dmMda+FvsEreid63oUQQgghxNNp+ePLNN89eXWD5Y8vH3l9ZunooNejPKxftpylaU84Ruv6HWXez+kP69fZ7LD74S6tOy1G3RHDzhDt6YNzKgUmNmQKGVrvtQiWgmMrxk0DhdPLYefoE8vT6w+3P461lrtfvUvz1uTLxUFEb7uXVKDLrU6+XPzaBmE7ZO31x/vlYutOi3gUEw0iV3kOWHl15UD1vf79Pttvb9OtdyleKSb9Zq28J4QQQgghxNT+8NpZ9MvnK3heGqU07oTKg/3d5201+X+N52XI5ytzjUsc1OlsAtDrbQOWICgdCM8BZLOXCIISYdii19uiWLxCp7MpATohhHhMjIlote7Q6WwSxyM8L02hcJlS6apUAxVPnXr9LZrNW1hrJtVx68TxiwC029+j3f6AfL7C8vIrNBo3CYIlqtUb5ztoIY5w1gE3z/NOPFez1uJ5s69/Omohdq/XSwJup7EQ+3EF9E5bp9MBoNfrAa7y3P7wHEA2myUIAsIwpNfrUSwW6XQ6EqATQojH5KKFs4X4KOr1Os1mE2ttUh13+tmq3W7TbrfJ5/MsLy/TaDQIgoBqtXrOoz5f8m3KM+4/+o/+I/7e3/t7NBoNAL7yla/wl//yX+a/+q/+K1555ZWk3Te/+U1+8Rd/ke9+97vJda+88gr/wX/wHzz2MZ82NVauClf6vEcizpxiryqaYi/I5oHyFSpQ2IZ1r4XpuVq7r23MXqBuWljBkITwklAdk3Z23/9z6PrpddP5fYwL7HlgfON2W921LtBVtA9UczuONa4CXHLMSbU1NJAB27FJENB2LMYaLBZVUB85QBbXY0zTpdZN0+zd9/T2nRiVU+hljWka4iDGrz6mf4biQ5fH/b5ngOER7YUQQgghxDOr8FzBfZ4+yflOPel3BBPPeeL0If32h6dO4rh+C5cW6G52T3Yw6/odZzwYs/O9HXrbPQaNgQvLjQ3W7FsYO6mIN2gM8Bd8dtd3GQ+OrmpXuFyg8W6D3EqO9gdtwlZI/37/gSBZ2ApBkQTfCpeP/nuZqr9Vp3mriTWWxs0GzfeajPtjrLEorUhlUyx/bJnytTKNmw2CpYDqjcf35WJnc3JidrsH1lWeO/z3mL2UJSgFhK2Q3laP4pXisUFEIYQQQgghHkbroytrn1a/y5d/gPfe+9/w/YA4HgIWa2MOhun2dkT0/QCtNZcv/8Bc4xIHxfHowGUmc/R8KZMpEIatB9oLIYQ4Oy5U8Ba12psPvO82Gu+yvv4G1eoNKpXrT1SoQIh5GRNRq70JMAnP1QBQykNrnQT6p9eXy9eo1d5idfU1CZOKJ854fPR5jdPqp7U+8Xu/UupEgYH9C7EbjQbNZpPx2FWEVEqRSqVYXl6mXC7PtRD7cQT0zsp0Qfr0MpM5egPMTCZDGIYPtBdCCHF2Lmo4W4h5GWOo1dwcaRqeg73PftNA//T6crlMrVZjdXX1mQ6TygzyGbe4uMhv//Zv8+/+u/9u8o/FP/kn/4Tf+73f48qVK1QqFe7du8f6+vqBfrlcjv/5f/6fSacvdurMGhcUUgsK27T8lP6p8x6SOCse7nyrx14oavrebyZ/hqAWFfi4KmoZYMTeQtlpu8PhNzgYkpuG76YV6vZ/DlM8GKibmhzbdi2k3FjN0GB3LRzc8PNYpuUqvv2HP/wfEm+6O1ZlhdpW7rgWrLYoqzADg0Zj+5Y4HeNVvLkDZPuDe/vDcyqYhFNHrsqe7VkMLpQX12O8VS9ZJHumvEOXx53bHR5qJ8XnztUv/uIvnvcQhDgV8loWTwN5HYuH+vXzHsDZyuQycwXoMrmjT5j16/25xvGwfsP28MG5xqOoSb8jVD5TYfvb2ycb4KTfcfr3+/Tv9xl3x4wHY+Kxq+imvb0v5UxsXKW3lMe4N6a33aN//+jHXbpaYv0N911FvpKnW+uy/fY2QSkgU8gw7AxdeG5yux/4eBmP0tXSsWM0kaH2Zg1rLetvrCdBOj/rkwpSjMMxvVqP/pZ7LC/+Wy9Se6vG6muraH/2Lxc/yntqPIoPXGYKx5yYLWQIW+ED7YW4qOSziBAnI78zQlwEF2MiNe9J9Fn7vfrqX+Vf/ItfnSwA1ZPwHBw1uVFKT9p5vPrqX51rXOIgz0sfuBwOO0e2m15/uP2zSP6NFeLiuki/vy5U8FWazVsARNGAXm87qUCXy60CsLHxNcKwzdra67L4U1x4rdYd4nhEFA3odusArKy8ytradLHM8/T799nefptut06xeCXpJ5VxxbNmYWFhrmrhCwvHb4K433QhtrWW9fV1ms0mo9EoCe5Za+n1evT7ffr9Pi+++OKJF2IfVSllvye5Usq0kt/0cjg8+lzb9PrD7U/qaaiidJE+hwkhDrpIv78XOZwtxLxarRZxHBNFUfJ5amVlhbW1taRNv99ne3ubbrdLsVhM+j3LlXElQCf4t//tf5vf+I3f4Od//ucZDAaA++B99+5d7t69+0D75eVl/tE/+kd85jOfecwjPX2mZVBWofPahZ1OuuBQXBzTSnHTzXqmITdAZVz1uQMV6nBV6QgmleEexrIXxltwyW3UpN+Y4wNz7I0hqWJngMgF0vBwQbeOQWVn+6Bmum5Vr+lPVvdmgAHYvrtja114zsYWhcKOLCpQmKZBpRR2PBngCQNk0+CeHdskPKcvaXR232LYvsHcd+E6u+ju37Rmr3D3Uei8xjQMOquJd2Js6MKzh8dnh5OxT67X+YvxRYMQQgghhDg7Vtm9StOziib9jjDqzrdT/8P6DXtDlHaf82eltGLYO/qk3kJp4eShQW/S7xg2tgyaA0b9EfEwTk7uTncrTX6OLbGJGffGhK3w2MekfU31RpWNr22w/MoyAN16l7AVJsE5lAvPTW+vXq8+NOjWutMiGkZsfXuLxs0GWMiuZN3mO7EhtZAinUvT3+7TuNkgU8yw+toqrTutx1bdzUt7By6HnWNOzE6uP9xeCCGEEEKIk5mvgvas/Xq9LRYXX6Tfb6C199Ad+bX2sBYWF1+g19siCJbmHJuYKhQu02i8Sy63Qrv9AWHYZHv7HbTWGBOhtY8xhjBsAjoJbBQKl8934EII8ZSr19+i2byFtWZSiavO/oUG7fYH5PMVlpdfodG4SRAsUa3eOLfxCnEaOp1NAHq9bcASBCWy2YM7TWezl5JKdL3eFsXiFTqdTQnQiWfO9LzKPP1m0Wq1iKIoqeAzGo1IpVLEcZzct1KKbrfLaDQik8mwuro680Ls4yqlBEFAJpNhOBw+0ZVSCoUCjUaDXC5Hu90mDEP6/T7ZbDZp0+/3CUN3rmoa2CgUjq74fZxpFaXNzU12d3cZDocYY9Bak8lkWFxc5PLly1JFSQghJi5yOFuIeXU6buOzXq8HuM9T+z+TAGSz2aQSXa/Xo1gs0ul0JEAnxOc//3k++9nP8p/+p/8pv//7v89o9ODCvGw2y1/5K3+FX/3VX+W55547h1GevmnYKAk/aWauuCUukGk4bRqQm/6sXUhOX9Lo1CRYNbLundEDjAtSmXgSrJrONS1730/bvWOhQC9pVKxcgG1a7e5hryk7Gc804De9bvLSNG13nJl3DjpUOc6Orauq5uMq2UVuQSpmEtKb3qVvsXULI1Aphc5ojGfwXpxtkeXh4J4K1IFwGrjn0mYsdujCa17Rw3QfU4CupOFDUChUTrlKePcNNmOTqnvT8JzKKVRKgTfpJ4QQQgghnmnb3z15JbaH9ZtnV9BH9Zu3qvNx/QbNAf6CT9SbPTnoBz6D5uDY283YMO6PXXgOVx07HsZoX7vwn7GYyLiq2coSDSNGvRFmfPzC28r1CmE7pHGzQeljJfzAp/1Bm3gY42U8ltaWKDxfQGlF+VqZyvXjK+QBdDY77H64S+tOC2st8Sh2FfD2P/UKolGEl/ZovdciWArobHYeW4CucLlA490GuZUc7Q/ahK2Q/v0+2Uv7Tsze77sQoYLcai7pJ4QQQgghxEkpNd/397P22939kELheba2vo21Bq19rGVfJTp3LKVIbi8Unmd390NZKH0KSqWrrK+/kSyCbTbfp9m8je9n8f2AKAqJoj5KeSwvv4LnZfC8DKXS1fMeuhBCPLWMiajV3gSYhOdcwCAISmQyBYbDDmHYSq4vl69Rq73F6upraC1LwMTFFcejA5eZzNHfZ2YyBcKw9UB7IZ4kZ3Ee6HA7Y0622YkxZubjdzoddnZ22NzcTEJbURQd2PDE8zyUUgyHQ+7du0cmk5l5IfZxlVIOB9Ce1EoppVKJ9fV1APL5PN1ul+3t7QcCgNPbfd/H8zxKpdLM92Gt5f333+fu3bvs7u4yHo8ZjUYHAnStVotWq8VgMOCll16SEJ0Q4pl20cPZQsxr+vlsepnJZI5sl8lkCMPwgfbPKvn2RCQ++clP8r/+r/8rzWaTf/Ev/gUbGxu0Wi0uXbrEiy++yJ//838+2RHjqRFPJpUdc/KKAuJimQbVpnNF466zxrpKcVlQCwpG7IXeFBAAAxe8snZStS2yBwN04KrFecoFtEru0oZ2r2rDUd9BTCseHhWiA9CTsJuF+P0Yf8V/9GR3X+U4ayy2Y1EFtRecUy40aMeTEN3YuiDdAFTaHVuXNAzBjAzRhxHE4FW8h9/3oeAe6WPaTcJqD7Q/Y0orvIpHfC9GL2sMk0p4w0nAcNoup9DL7gOxV/HmXogshBBCCCGeHrVv1k6337xVzx/SLxWk5jrkcf1MZEjn00T9aLbxKkjn0y4Ad4xpRTQTuzZWTapSR+ZgBTom10/aHVdhDVz17ys/coVuvct7/9t79O/3GQ/GWGNdhb2dIZ17HT724x/jyo9ceeR8ajwYs7u+i4kNw90h2tOQBj/r4wc+URgR9SPM2BCHMcFSwO6Hu4wH44ce9zSVrpZYf2NyYraSp1vrsv32NkEpIFPIMOwMkwp8+UoeP/DxMh6lq7OfmBVCCCGEEGJqf5DtLPq12x8wGDQIgiVGoy5xPEIpjdZ7cxVrLdYaPC9NECwxGDRotz+Ya1xnzZiIVusOnc4mcTzC89IUCpcpla4+kaEGrX0qlet861v/I9bGpNN5BoMW/f52Eqrz/QUWFopYG9Ns3uTTn/6pJ/KxCCHE06LVukMcj4iiwaTyHKysvHqgEle/f5/t7bfpdusUi1eSfhIuFxeZ56UPXA6HnSPbTa8/3F6IZ8lwODxwXmUW07DbLMbjMVtbWwyHQ0ajEVEUJceY3u/0Ot/3GQ6HbG1tceXKlZmOf7hSSiaTwRhDo9E4EBCbBh6etEopWmuq1SobGxssLy8D0O12CcMwCc4BSZUjgGq1eqKARq1W49atW/R6PXq9HoPBgCiK9s3TfBYWFjDGcOvWLYIg4PJlqRQuhHh2XfRwthDz8jzvwOVxn/em1x9u/6ySb7fFA5aXl/mJn/iJ8x7GY2G1xTQMtj+ZUM67kFE8uXxcSMuwF1DbH1rzJ1XeYlB5F3pTgdoLdhnQCxqrLF7Gww4sZmBcEC2tMD2TVIvDAiM3UbZZixopbMfu3eeU4uB1+9dwTivaTarlWeMqpJm2Ia7H+NWHv23rvMY0DDqribdi7NiN144sKqVcZQc7Cc+pyQDG7FVf1O5nMzB4Kx7KKuJ7MTa0+GsPCfB5hy6P2+RreKjdY/w32Kt42NBimq7qnV10lfCI3Th0VrvKc4Be1niVhw/OGotpGVd9b3qMvEaXtATvhBBCCCGeImE7fHSjE/TTniaeYycJ7R1/Ys3P+u6zfnyCk6Va4WePnl8slBbwfG/2Ku0aPN9jobRwbJMojEgFKfyMz3DHTQx0evLZeTI/m1ahs7HFz/ikghRRePxuN9Za7n71Llvf2cJEBhMZRp0RJjJoX+OlPExk2PrOFrnVHC/9hYfvwNm/30+q4MXDGJuy5C/nSef3FmGMuiO2/3TbVcazrrJe/35/hifpdGhfU71RZeNrGyy/MjkxW+8StsIkOIdy4bnp7dXrVbT/9OycZyJD606LzmaHeBTjmxy2DwABAABJREFUpT0KlwuUrpaeqscphBBCCPEkMGa+3Sdn7ReGLcKwhTExWqfQOoW1MXE8ZjpR8Lw0SmmUUhgTJX3mHddZBNystdTrb1GrvflAFZRG413W19+gWr1BpXL9AlUFmJ5I23eNnEcVQogz1+lsAtDrbQOWICgdCM8BZLOXCIISYdii19uiWLxCp7MpATpxoRUKl2k03iWXW6Hd/oAwbNHv338gPOo+BypyudWknxBPGq31iSvETfvNYhqkOon9obdH6ff79Ho9xuMx4/EYa22yyHp6v0op4jhO2vR6Pfr92c6VTCueRFHEYDAgDMMHFntPA2nWWvL5/IF+T4JKpUIYhjQaDcrlMsVikV6vRxzHeJ5HLpfD990cs1wuU6lUZj62MYabN2/S6/Xodrt0Oh2iKMLzvOS1NRgMkr8bgJs3b1KpVKSKkhDimXU4nB0EwYHwHEA2myUIAsIwfOLC2ULMq1Ao0Gg0yOVytNttwjCk3+8/EB6dhvynhbQKhaMrfj8rJEAnnm1DXHguhTsPdPK5q3gSqWP+Hx6sHDeZW9u+xWLdzyNXmQ0NtmtRVrnqdIYkJKXSyr2DRriKdJOwW9yPoeWuV1ZhfeuqGx4OzR03PsWBUJnyFfSBAsT1GG/14VXRdEnDh65invIVFovZmYT8UpOdWkfuNa+sSqowAsnjswMXtjMdtyBUL2tM0xAHxwf4DgT3dlzgzvTdz1Omb1zFN0iu1/nHN3FXSuGv+cRBTFyPUSi84qGQnOeCdg+ruGetJa67YxxeTGwaBj589DGEEEIIIcTFYaP5Vgge1y+VSzHunrxiWSp3fJW5YDFwc4eImSvGKV8RLAZH3rz08hLWWvy0TzR49AlVP+1jrWXp5aVj23gZN5exxiY7lJrIuE1DpsOazHWUmrTzFF7m+I0tam/WuPVPb9Gr9eht9xg0B0RhlFSgM7FJAnk3+zcJlgIuf//xCyrUoQna4Z9P2u6sVK5XCNshjZsNytfKFK8U6W31kjBZbjWHH0xOzF4rU7k++4nZJ5m1lvpbdWpv1ohHBydjjXcbrL+xTvVGlcr1iszFhBBCCCFOSRQdt1ve6fSLouGkWp0mikKsjdHax/P25j/GRBgToZRHNquxNiaKZqucMDUNuN2793U6nXsMhzsYE6G1TyZTpFB4juee+zNzBdystdy9+1WazVuTxzSg19tOAnrTxd0bG18jDNusrb3+xHxeNSaiXn+Lcvka/f42o1EHrTXZ7AqpVMB4HBJFfUajLvl8lXL5GvX6t6hUPi1V6IQQ4oxMg9jTy0zm6EVtmUyBMGw90F6Ii6pUusr6+hsA5PMVut0a29tvEwQlMpkCw2En2UQhn6/g+wGel6FUunqewxbiSPN+3p+1XxiGaK1PFCjTWh+ojvYw3W6X0WjEeDzGGJOEAafndqaXcRyjtWY8HjMajZKKP4/ieR7WWrrdLoPBAN9355gGg0FSgW5hYYHxeJxUElpeXp67UooxhlarRafTSQJuhUKBUqk0d+BMKcXa2hpBEFCr1QCSakb7H2e1WqVSOdk5i0ajkVRSmobnMpkMQRCQSqUYj8dJ6LDT6ZDNZmm1WjQaDVZWVuZ6PEIIcdFN/02cXmYymSPbZTIZwjB8oL0QF1WpVGJ9fR1w1W+73S7b29sEQZBU851+Bszn8/i+j+d5lEql8xz2uZNvtsUzy5pJ9SnlAkNzFAAQTzqNC4VNN8k8vJB0GpqcVDqgA/igMgqVmlRviHDBuhCYrC1VaYXKTaokZNirbmeAIcSteO/Y0b779yeX06Dmvip36Mkfz93/dLwqo1zgzXPtTctVTzuO0gqv4hHfi1F5hRoo7NBiY7eAVKVUEqQjYu9fgdiNTXkKVVToZe0Cpj2Lwd3nwwJ8B4J7OeX63TfYjKugx5AkPKdyk3F4k36PkVIKv+rjrXpzVY+z1hJ9EGGa7i/Rjo+oYseMVfuEEEIIIcSFYOcsVX5cv9xKjn795BXLciu5Y29bfGERP+NjxmamwJ/yFH7GZ/GFxSNvX/nUCigw8Wy7zJjYgJ70O8ZCacFt8mEmm5VElnjsNrawWBQquT/l7QXojqtqZyLDzS/dpFfv0d3qsvvhLvEwRqdc5bl4HDPujxl1R27+o+Dml25S+XTl2Cpl2UtZd5sCP3Cf5bubXfysq4Y3DsdE/Qjta5Tn5m06pcleyh55vLOilGLt9TWCpYDam5MTs1cOnZjNeFSvPz1hsmm1weatJgDRIKK3fTA0CLDxtQ3Cdsja62tPxeMWQgghhDhvcTxfRe5Z+3leBms1/X4da91uhMZMK9A5SrnP79ZG9HpbZLOX8LyjF8EcxVrL++//79y9+7+zu7tOFA0YDjuTqncemcwirdZ7tNt3GQxavPTSXzjRZ8l6/S2azVtYa2g2b9Pt1tl/Qqrd/oB8vsLy8is0GjcJgiWq1RszH/8stVp3iOMRcewqOywtvUw+X0UpnQQMrTV0u7XJAtkhSilarTtS5UgIIc6I56UPXA6HnSPbTa8/3F6Ii0prn2r1BhsbX2N5+RUAut36oerDKvlcBVCtXpdQv3hmnfT775O0N8Yk4bVpeO64inrGGKIoOtD2UQqFAnfu3CGOY0ajETs7OyilDgTkdnd3sdaysLBAHMfs7u7y8ssvz/wYYLqRSp1arfZAQKLRaLC+vj5XwG1KKUW1WmV1dfVUA3qbm5sYYwjDMKk8t7S0RDrt/q1fWFggCALu37+fVPHL5XJsbm5KgE4I8cya/hsyvTxc2XRqev3h9kJcVFprqtUqGxsbLC8vA3uVfPdvnpDP55Pbq9XqM1+1VmaR4pllWsZVFsspzD3zYCUwcXFN39cVeyG149aQWvZCbt6kb+QCddOqc3ZkkwCczk0WSuJ+VlnlApja/Uw8Od40uDcNz00DctN33el97p+fe5M/k2p1OqeTIN908a3pPjxAB676mQ0tqqHQee36difhuKxCp7ULfu1MAqTRJFy3qPBKHrqg8coepm9cCK5nsYuTBa3HBPj2B/f0ssYw6Te0sO+zqMpNwnmTcT4srHaWlFZ4Ze+Rz+VhcT3GNI2rltF0j/HA7Ttx8hgfVbVPCCGEEEJcEPN+ZD2mX+G5Atvf2T7x4QrPHb3bNECukiN7Kcu4P54p8Ke0InspS65ydCjPCzw3D4lnCw9O23rB8Z+vC88X9gJ5k4vpCUmttNu1FLdr6fR2ayyF549+3I2bDVp3WpixYXdjlziMyRQzBKUAP/CJwoiwFTLcGdLZ6JAtZ2m936Jxs8HKq0efQPQXfBZfXKS31SNTyLgqZwqifkTUn1TiU+ClPby0h/a0Cy8uPP7P/EopqjeqrL62SutOi85mJwmTFS4XKF0tHRsUvIjqb9Vp3mpijaV5u0m33j0wz29/0CZfybP8yjKNmw2CpYDqjer5DVgIIYQQ4ilx0kpvJ+23sFAiDJvE8WTjCx5ccGnt9DpFHA8ZDJosLMy+Q26t9ia3bv1Ter0avd42g0FzUu3OoJTG9xdYWChhzJibN/sEwRKXL3//TMc2JqJWexOAZvM2nc49RqMuSvn4fmZSYS+aVNmDcvkatdpbrK6+9kQs9u50NgHo9bYBy8JCmUuXPvlAuzgeE4Yter0tisUrdDqbEqATQogzUihcptF4l1xuhXb7A8KwRb9/n2z2UtKm378/CRSppNJpoXD5nEYsxOmpVK4Thm0ajZuUy9coFq/Q620dqOzr+27n63L5GpXK9XMesRBHmzVINm+/fD5/4vswxpDP52dqO11svT905uZrR4vjGGvtzBXuisUinU6HwWDAaDQiiqLk+NPqdtP/H41GDAYDOp3OAxXeHsZVCr9LsznZlC+K6PV6ScAtl5tsyrexQRiGrK3Nvymf1ppyuUy5XJ6r/2HTSn7TkEcqlUrCc1PpdJpUKkUcxwyHQ3K53MwVAIUQ4mlUKBRoNBrkcjna7TZhGNLv98lm9zbC7ff7yb9V038HCoXj12AIcVFUKhXCMKTRaFAulykWiw987vF99110uVymUqmc84jP3/l/My/EOTHdSQUpZffCTOLxmAbKYC9kdhrPvz50nPgEx7Uk1eesnoTnhq7aHDGuYlrkKrLZlIU0LoCpFCpQ2LFFxQqbtijjfk4qy4ELxqVxVeGswnase+1NzwdPAnbTKgYqUKiSgtDdtzJq7zE9glIKf83HDi3jd8boBY0ZmWQcynNV6fSiu14NFcpTeEsu0KYyk0WsWY3NuBCc6Ru8ovfQAN80uGearo1dPKI6W2py7GWNV7lYuzdYY4nr7i9gf3hOBQrSwAhsaGeu2ieEEEIIIS4GndHuc+0c/Y5S/lSZO1+5c9S60IcczPU7zuJzi5Q+VqJ/v88wGu7Ng/bPh9TeZTqbpvSxEovPHV2BrnW35SrFnYCNLa27rYc0AO1plK/c/Cfeq9J34MSrBbSr7Ka0OnZOd+8b9zCRYdAaEIcxOq1ZemmJdH7vJGJQDNj+022iMGLQHJBbzXHvG/eODdAVLhdYfGGRsB0yaA7w0h7ZlSw2tpjYuPF7iv5WHxQsf2yZxRcWKVw+vy/Wta8pXytTvnY6J2afRCYySaW95u0m3Zo7CRyUAjKFDMPOkLAVJteXr5WpvVVj9bXVpypEKIQQQghxPk55R5FDcrlVBoMWbu3no+YgFmNgMGglYYFHMSbi5s0v0evV6Xa32N39kDgeonUKz0sRx2PG4z6jUXcyL1HcvPklKpVPzxRwm1ZwG4/7bG//KWHYJJerkE67xTnpdJbRqEu7/T5huMPi4otJvychgBbHowOXmczRc5tMpkAYth5oL4QQ4vSVSldZX38DgHy+QrdbY3v7bYKgRCZTYDjsJNW48vkKvh/geRlKpavnOWwhToVSirW11wmCpWSTgmLxyoE2npehWr1OpXJ97rCLEGftYWGz0+i3srLCO++8c6JjG2Nmrk6mlDpRRblpFbpZfyenFecGgwFxHCcBvP39pz/HccxgMGBpaYmdnZ2ZQ2r1ep1ms4m1lmaz+UC4rN1uJ5VYGo0GQRBQrT6Zm/Id97zKe6AQQuwplUqsr68DLmje7XbZ3t4mCAIymQzD4TAJz+XzeXzfx/M8SqXZN+kS4knl5lFrBEFArebWVRzeeMDzvI9UefdpIwE68eyaBJFMb7r1/fkN5ZkzqeaWhMeiUz7ucSGzSWU34GBob1J5TqUUekG78NrCpLIcuOCbUnshu7RC6cmONxZ0WWNaxlWts8otCA2AgQtdTYN8KuWCarqoicPYPe7p8zAJz6lAoQsalXXhPOu5sB7evrHO8lQoRerjKUzfYDuTRal960JeKQsZoAf0J+0zai+8l3VPkjWuioTpGlTkAoRosC/aIwNh0+BeHMTE9RiFwiseGrDngnZexbtw/wiblgsD2rFNwnP6kkZn9xZknqRqnxBCCCGEuBjSC2nC/my7Zh7ud5SF0sKJ559KKdfvGJd/4DLf+Z3vkFvJEYURZmRcOO3Q/ShcRersShYv7XH5B47emXrz65vY2LrNN2aoQjdtt/n1zePbaIU1Fi/l5gIWd/JT4eYhWBeom54U1f6kKt0xm1H06j0Ahh0XGMwUMgfCcwDpfJpMPsOgOWDYGZJbzSX9jlK6WmL9jXVWX1tluDOkebtJf6uPn/XxA5/xYEzUj1CeYvmVZVZeW8EPfEpXZ/ti3UTmmagWd9pad1rEo5hoELnKc8DKqytkL+3bMfB+n+23t+nWuxSvFJN+T3OwUAghhBDicfD9LFF08l3sfT/76EYwWRh9dOW5oxnAUqu9ybVr/94jWzcaN2m17mDMmN3dDeI4JJMpEgQlfD8gikLCsMVwuEOns0E2W6bVep9G4yYrK68+8vidzibWWu7d+zcMBvfx/Syel2EwaGJMjNYemcwinhcwGNzn3r1/w5UrP/zEVHDzvPSBy+Gwc2S76fWH2wshhDh9WvtUqzfY2Pgay8uvANDt1gnDVhKcA0U+X0lur1avPxGVTYU4DUopqtUbrK6+Rqt1h05nM6lAVyhcplS6Kq938czb2dk5036e5xFFEVrrA1XojqO1JooiPG+2tVG7u7tEUUQURYzHY5RSeJ6HtXvniJRSGGMYj8dEUUQcx+zu7s4UoDPGJIvH94fnDocopteXy2VqtRqrq6toff7naqZVkTKZDL1ej+FwyGg0OlCFbjQaJRXqMpnMgX5CCPEs0lpTrVbZ2NhgeXkZcBU9wzA8UCF1Gp4GqFarT8T7vhCnwc2jqqyurtJqteh0OkkFukKhQKlUktf7PjKjFM+u6ZxtgDs3N0NlL3EKPCAFjEkWSR5Y1HnSTXg89sJw0wCdJgl7JX+venKbwp1f3V+dbt8x1IJClzTKKszkhK1WGpVTrmLbvopqCoVVLmSmMxpKLnymRq7CmwmNq0gWu2p0OqVd3xBXXc66Kg3TsapFhbc8CZbpyfNk3T9s05CWzs/+D5jSCv+yT2xjVE4dqJpmBxYbuQW1ylPuvnBjQEG8E2N3LWbHuHaeq74XEzP69ujYEJxSCr/q4616mJZxlR6nFejy2j23F7Qa27Rq5bT6iArUgfAcnLxqnxBCCCGEePKls2nCxhwBuuzRCwq3v7uN9jQmnr0EnfIU29/dPvb2aQArKAVJNS4TPXh8ndIESwFBKcDzvWODX92Nrpuv7N/t9KiP8ZObp5uLdDeOX1i7++EuQTGg/UEbrDsBq7wHD2pjd6x4HBMsBux+uHvsMQ/0O2ZnVnuCSab2NdUbVTa+tsGLf+5FsitZWrdbjAdjzMjgpTyCakDplRLlj5fdl5DXq48Mv1lrqb9Vp/ZmjXh08MuHxrsN1t9Yp3qjSuW67PZ1lM6mW6zb2+6BdZXn9ofnALKXsgSlgLAV0tvqUbxSpLPZkQCdEEIIIcRHlMlkCU8+HSKTmS1At7v7IcZEWDvb/Mhag7Uxu7sfztT+3r1vYEzEYNAijkO0TrO09BLpdD5pEwRFtrf/lCgKGQya5HKr3Lv3jZkCdHE8Ynf3Q3q9bayFKOqzs/MB+092DQZNwGIt9HquCt6TUiWoULhMo/EuudwK7fYHhGGLfv8+2eylpE2/f38S2FBJ5b9C4ejNWIQQQpyOSuU6Ydim0bhJuXyNYvEKvd5WEiLK5Vbx/QCAcvkalcr1cx6xEKdPa59y+doTsemAEE+awWBwpv3G4zHAiSrQ7e/3KO12m8FgkJzXmQbn9i/qNsYkYTprLf1+n3a7PdPxW60WcRwTRVESkltZWSGb3bcpX7/P9vY23W43qdDSarVmrnB3lp577jnef/99FhYW8DyPOI5pt9sEQYDv+0RRRBiGGGPwfZ+FhQW01jz33HPnPXQhhDhXlUqFMAxpNBqUy2WKxSK9Xi8JEeVyOXzfxWbK5TKVSuWcRyzE6dNaUy6Xn4jPNE+yxxKgM8ZIalE8cXReYxqTiZ7bsFKcNY1bdBmxt/hyOteehulOYhqG2x/Cm4S18Cb/P71e77s0k0t78HqVnVSg85QLyA0V5NwiShtZVOpgRbW4Ebv+ngur6QWNt7p3u7UW0zTEm7ELoaUnVeZSitRSCrMwCWS1jXtO0sAYbG5Sln7oAmkq5/rggS6d7L3Uq3jY0I3DK3vYRRfsUp6CLqi8wnYnIT4PdMH9Xti+xY4mfyILKTADg7foQQzxvRgbWvw1/8gFnkorvLL3dAXH4kOXx22wmgGGR7QXQgghhBAXUqaYgfU5+x1h0BgcGW57GBMZBo3jT2zufG+H1e9bJWyH7rN4xkP7+sD9aN/NdZRWpLIpVl5dYed7O0cGjKy17oTnrHM0u3cy8zjD3eHkwUwq1mlXjc5EJpnTaV8TjSM3xzCH+h2Sr7gFr5lChl69x7g7ZtQdHahCN+qOGHfHoFy7/f2OU7leIWyHNG42uPSJSyytLdHb6iUV43KrOfxg8sX6tTKV6w//Yt1ay92v3qV5qwlANIjobR88HsDG1zYI2yFrr69JiO6Qaehwejn9uzwsU8gQtsIH2gshhBBCiPnNW2ls1n7dbn0Snpv1s1uMMTHdbn2m1r2ea+cqqFnS6TzWWnq9LayNUcrD9xdIp/OEYZPhsEMut5r0exSlNLu762jtMRzuYq1hYWEJ388mFe6iqM9g0EZrTTZbZnf3Q5R6Ms6bl0pXWV9/A4B8vkK3W2N7+22CoEQmU2A47CTVjvL5Cr4f4HmZJyYAKIQQTyulFGtrrxMES5NqrVAsXjnQxvMyVKvXqVSuy3dJQgjxhJmGnubpN4t+v58Ey2allKLf78/UNgxDtNYzH38afgtn3H1lMBgkATBwC73T6XRSeW4aqBuNRoA7/xSG4cwBwE5nsilfrwe4ynP7w3MA2WyWIAgIw5Ber0exWKTT6TwRi83L5TKlUolGo8Hi4iKdTofhcMh4PE5eW9PwXKFQQGtNqVR6IsYuhBDnyc2j1giCIKlEOg1JT3meR7VapVKRjW2FeJY9lgDdlStX+Jmf+Rl+5md+hhdeeOFx3KUQj6RLGj50QZ8k2CVmNw2izUKxVx3Ow1Wfs/v+qCOON8sc/Kg2lr0wmsdeWM/uu93b9/NkbCqlUGn3IlAZlVRqU75CFzWqpPAWvQMV1dBgI4tpGxdCO3Q+WCmFXtaYgcE2XChOL2jUgsIrea5/x+K/5GPHFqbfU+zbkEfl3DHAheFOWr1NKYW/5hMHMXE9RuFCgLqgiTdit9A1Y5LHMv5gDEP3/7brqucpX7lgX+Qq0hHjHlfTEAcxfvUZKWbqHbocHdNueKjdU5QhFEIIIYR4FnnBfB/ojus36o5mn0tNmUm/Y3Q2Oyy+sIjyFGZsUEw24ZhuOqLBS3nY2GLGBu1pFl9YPLZCV7qQfrAC3cOqh9t9/Y6RyqUI2yHpxTTD3SHKuvGlcqmkIl88ipPr04tpwnZIKpc68niXf+Ayd75yh6AU4Ac+0SCifbdNUApIBSnG4TgJU/kLPgvLC+iU5vIPPLxSglKKtdfXCJYCam9Ovli/cuiL9YxH9fpsFePqb9Vp3mpijaV5u0m33j3w3LU/aJOv5Fl+ZZnGzQbBUkD1RvWhx3zWeGnvwOWwc3Socnr94fZCCCGEEGJ++yu1nUW/0ahDHB/9+e44cTxkNOqccESWKBoyGDTwvIPnNIbDHQaDBnE84qQ7PRoTYUyE7weTx2HJZIpJpTZwVed6vS2MUfj+AsaMMSY64fjPhtY+1eoNNja+xvLyK4ALNYZhKwnOgSKfryS3V6vX0foZOS8khBDnSClFtXqD1dXXaLXu0OlsJhXoCoXLlEpX5f1YCCGeUFrruQJ0sxaoGA5PNoc6ab95xh/H8czjj+M4qS43LcyRyWTIZPY2zxsOh4xGI4wxSahu1jFN200v9x93v0wmQxiGD7Q/b1prrl27xre+9S3AfSYYDAZEUYS1Fs/zyGQyLCwskMvlyOVyXLt2TQqcCCEE03lUldXVVVqtFp1OJ6lAVygUKJVK8n4phHg8Abp79+7xn//n/zl/5+/8Hf79f//f5+d//uf58R//8cdx10IcS2mFV/GIPojcb4KPC1uJR5sG0qbrBA+fT9wfWNOTP/7kujF7G4ke7jetCHfSxaRTMXsV4XwXjLShRQWTgY7AGrt3PzHJYlKVUa4qmwKLxQ7d4HR2El5b9B6oqDZm7KoYPiRQpZRCpzQsAZlJUC+v0GWNd8XD7Bpse1KSfuyqw00Dejqr3aJXXGDNq8y3+E8phV/18VY9TMscCAHajsV7Ye96uzMZS7gXnlM55S6DyU4/PYvBVbSL6zHe6smDfRfRtGqlzmriHVeBz/RN8hoBMH3zwGtH5+UDtxBCCCHERZbOzVdx4bh+vfu9uY73sH7xKGb3w12G7aGroG1sUtnNYlFWYY1FpzTa14TtkN0Pdyl9rHTk8RZfWARAobAcCtEdx+71O4pOabDuxJ/2NFZb/MBH+xqt96rj2Xiy+cjki2udOvrzdPlamdLVEo2bDQrPFejc6zDcHRINoqT6Xjx24bnC8wW0rym9XDoyMHiYUorqjSqrr63SutOis9lJKsYVLhcoXS2h/Ud/zjeRSUJ4zdtNurUuAEEpIFPIMOwMCVthcn35WpnaWzVWX1ud6fjPisLlAo13G+RWcrQ/aBO2Qvr3+2Qv7e0Y27/fJ2yFoEiq+hUuF85ryEIIIYQQT415F+bP2i+VyhHH40c33CeOx6RSuZna5vOuYrQxEXE8wtqY8XiAtSZZsKmUJooGGBMnwbZpv0fxvBRa+0RRiO8HWBszHO5MxhgwHrsKdJ6XRimPKBqQySzieUdvFHIeKpXrhGGbRuMm5fI1isUr9HpbSUgjl1vF9wMAyuVrVCrXz3nEQgjxbNHap1y+Rrl87byHIoQQYkaZTIbx+GTznGm/Wfi+f6Lqc+A2TPT92eZp81TQm4YTZuH7fhKem25SGEURxpgDFdbAnVOatjvJ+PdfHhccnF5/uP2ToFqtEoYh77//PlprFhYWGA6HBwKHvu+zuLjIyy+/TLUqGzMKIcR+WmvK5bJU5xRCHOmxbkcUxzH/+B//Y/7xP/7HvPTSS3zhC1/gr//1v87KysrjHIYQCa/i4V3xiDYiyLjQkJjBNDy3P0R3uMrb9Dp/322Go0N3+7NXH3UzFwOkcCG6SfgMg6sup4AI7Mju3Y9yba21rsJaZNBNt1BR5SZVG7xJxcJDThKoUkrhlT1UylWEmwbxbNkS1w9WhzvAm7xOK95HLhmstDoQAvStT/RBhGm6MBz+JDg3tqBBpzVqUbnLSSU8O7CY+wbbs9hFi0JhWuZAsPBplVStxIUKbW/yXGQsZHCV+ybhuUe9doQQQgghxMUxb5DpuH7xaL5Jz8P6aU9T/1adKHS7TxpjQLnw2fTkIoCJDdpqojCi/q06L//Yy0ce79InL7nNR2adgkzmfJc+eenYJp7nEZQCwp0QndLY2KJ9jedPTkxqL3ksynN3HCwFx56w1L7m2k9c49v/47fBuvnOoDUgGrjnQKc06cU0C6UFcis58pU8137i2on+PrWvKV8rzxS6O0rrTot4FBMNIld5Dlh5deWB4Nf229t0692k0l3rTmvu+3wala6WWH9jHYB8JU+31mX77e0HgojT2/3Ax8t4lK4eHRAVQgghhBCzO/sKdF1OWvUN7KTfo12+/AN897v/XwC0TjEe99nZWcfz0mjtYUw8CdYZUin3OX043OXy5R+Y6fjGxCwuvkins0kmU8CtYVVEUZ8o6k9aKTKZJZSatn8BY56MygYwqcK99jpBsESt9iYAxeKVA208L0O1ep1K5fpHPlclhBBCCCHE025hYYFud7Y5y+F+s5g36DVrv9HoiB3kT7FfEAQEQcBgMEjGNA3sTc9n7a9o53le0mcWhUKBRqNBLpej3W4ThiH9fp9sdt+5mX6fMHTnFXK5XNLvSaGU4qWXXmJhYYF79+7R6XQeCNAVCgWee+45KpWKzNOEEEIIIU7gsQToUqkU4/E4+aBmreX999/nb/7Nv8l/9p/9Z/yVv/JX+Lmf+zlef/31xzEcIRJKKdKfTjO+MybeiA+GwMTx9s+5DofmDosm7RV7Vd8Os8dcf5LxTOf4/qT63Bj0osYsGFdtoW/3brOu2hsp9xrAwwXvPJJKaiqn0CWN6RpUQRHdjVwYKq/RJY3S6lQCVUopvFUPPIg3Y0zPuOPlFV7Vhd3OqrqbUi7MFwcuwEcEekFjMJB2z5UONLrggnRKKVRWYTOuQp/pG7yih+k+GwG6adXK+F6MXnbPk+1NqhXu26xoGjYEF358FqrzCSGEEEI8zYY7R+9MOW+/aWDspB7WLwoj+vf7eCmPcX+MjSx+1icVpFCeq+o2DsdE/YjIRHiXPfr3+0Th0WXYbWzxAs8F8maYJCul0BkXijtO9lKW7EqW3nYPL+VBem/nUO1pF+7TGn/BBwupXIrsavZA2Oyw6o0qYTvk/T98H53SLCwvMNwdumN5msxiBn/BZ/GFRV7+sZep3ni8O3B2NjsA9LZ7YF3lucOPJ3sp64KFrZDeVo/ilSKdzY4E6PbRvqZ6o8rG1zZYfmUZgG69S9gKk+AcyoXnprdXr1elip8QQgghxCnodu+fab8wbHHyk3Nq0u/RSqWrKOWhtYfnpRmPe0RRn/G4j1JqUoXOBcSmoTqtfUqlqzMd3/PSLC6+QLv9PsNhm1QqSz5fYTjcxZgYrT0ymUW63TpR1CeXW2Fx8QU8b75K52dFKUW1eoPV1ddote7Q6WwmFegKhcuUSlfnrkYohBBPO2Miee8UQghxQKfTOdN+J60Od9J+Zx2gW1paIpvNMhgMGA6HxHFMHMeMRqNknra/KlwQBGSzWZaWlmY6fqlUYn19silfPk+322V7e5sgCMhkMgyHwyQ8l8/n8X0fz/MolZ6sTfncPK3K6uoqrVaLTqeTVPorFAqUSqUkZCiEEBeNMUbe24QQ5+axfFuzubnJP/yH/5AvfvGLvPXWWwBJmG40GvE7v/M7/M7v/A6f+MQn+IVf+AU+//nPUywWH8fQhHCL6v5shsHvD7i7cxcsrKm18x7Wk++oSnKHWfaq1GlcSO1w5blHBfAexQOm5xn15P/tpOJcMNk9xwPjGWzHump0vkr6qmASDMsrvGVXhU1nNaZviDdiVNaF40x7UrGhYeDDvapwHyVQZe1e9blpgFBnJh/+xhDfc9fPU33u9u3bALzyyisPbaeUwq/6eKseo2+NiIlRkYIYVEkdHQCbhAOT0OOTs1HqmfMqnqs0OKnaZxddkJAYF47M6qTyoV7WeJWnP1h4lmZ9HQvxpJPXsngayOtYPNTHJpfvnesozkw0PDpkNm8/f2G+r2Ie1q+73QUL4+EYG7sKdCYyxKM4CdCZyLidO2MYh2P8wHf9jrD7vV2yK9nZw4MKsitZdr+3+9DxF68U6W31iAYRw90hylMo6zY50VqDAg+PdCFN9lKW4ovFhz5upRQv/YWXWCgtsPn1TXbv7TLcGbrK4r4mU8yw+Pwil3/gMpXrj38HzmnVwOllppABYGu4BcBqZjW5PmyFD7QXeyrXK4TtkMbNBuVr5eS1FI9ivLRHbjWHH7jXSvlamcr1yjmPWJw2+SwixMnI74wQF8HFmEh1ux+eeT+lNNaaE7Wf1c7O91hZ+T4GgxbD4S7j8QCwWLt3UkophTEDlPJYWnqZS5deZWfne5TL1x55/ELhMo3Guzz33A8Shm0GgyZRFLKwsJy0GY26xPGQbHaF5577QZRSFAqXZ34Mj5PWPuXytZke+7NK/o0V4uI67d9fay31+lvUam8SxwcDA43Gu6yvv0G1ekOqdwrxEcm/veIimoazzqqf7895nmnGftMqZycx3TBxFouLixSLRUajEbu7u4zHY4AD/15Ow36+7yftFxcXZx5LtVplY2OD5eXJpnzdLmEYHniO8/l8cnu1Wn1iAxtaa8rlMuXyxd14Ud7Lhbi4zmYeVadWqz0Q7G40Gqyvr1OtVqW6phAfkfzb+3CPJUC3vLzML/3SL/FLv/RLfPOb3+Tv//2/z2//9m/TbDaTNtZa3nnnHX75l3+Zv/E3/gaf+9zn+Pmf/3l+8Ad/8HEMUTzjlFZ4ZY8/vvfHEqCbxTQY91HaTz/b6BMe6/AxPDeBtsqiAoW35GHHFpVRKG9yJwZ0oLHWYkfWBew8FxKzsUUtK/wrPlq7NqZhsKFFL2pYALN7KCCFIr4XY0OLd2W+QJW1luiDCNN0Xx7Y8RH99t2Pv+af6APhP/tn/wyY/R+/pKKeAXywO9YtZj2qetp0Da136PIZcLhqn0LhFQ89Ad5ewFI+xH80J30dC/GkkteyeBrI61g81I9PLn/9XEdxZvYvrDyNfovPL9L408aJj7f4/PEnBgf3BwSlgPbdttuZM+WhtT4Q4tOexkt5mNgwbA0pvVRicH9w5PHiOEYrjU5pzOjRJzx1SqOVfujupYXLBRZfWCRsu6phqWyKVC5F1I+SXeX8rM+4N0ZpRfmVMosvLFK4XHjofSulqN6osvraKq07LTqbnSRUVbhcoHS1dG6VyLy0d+By2HGTqbd33wZgdWX1wPWH24s9SinWXl8jWAqovVkDoHjl4OZbXsajer16LmFJcfbks4gQJyO/M0JcBBdjIhVF81XknrWf5y1MKgzMfmylFJ63MFPbTmeTQuE5Op0PGY97gJnc194OkNaCUpbxuEenszFpvzlTiKxUusr6+hsAXLr0SbrdTYbDLuNxH89LE8cjrLWUSi+Tz18mlVrA8zIzV7g7TKocnT/5N1aIi+s0f3+ttdy9+1WazVsARNGAXm87eW/O5dx3PhsbXyMM26ytvS7fVQgxJ/m3V4gHBUFwpv2stXMF6GY9n1YqlVhaWuJ73/sexhhSqVRShW7K8zw8z8NaS7/fZ2lp6UQV4iqVCmEY0mg0KJfLFItFer1ecj4ql8slgcJyuUylMv+mfFJF6dHkvVyIi+v051F3k+xIFEUPvDcDbGxsEIYha2trMo8SYk7yb+/DPfZv0r//+7+f/+a/+W/4tV/7Nf6X/+V/4Td/8zf5yle+grU2eaPr9/t88Ytf5Itf/CI3btzgF37hF/jJn/xJstns4x6ueAZYYzFbBu9FD77D/GEu8XCGvUp0p1F5jr3j2ZRF+xq9qF31uNCgMgpyQA9s16LzGgL2KuFpV31OF7V7J5xUXLO7LoinSgrbttjawQHGO3FSUc40DSqYL1AV12NM07jAXtNVrnvY/cRBjF8927dsndeYhkFnNfGOC+6Zvvt5yvSNq7AHyfU6/2xN9vdX7TMtg+nuCz7mNbqkjw4eCiGEEEKIC8mMZ6+EMEu/xRcWD86JZqEm/R7CTv574EvkaVXw6aGUStoeJ1PMMO6P9+ZxDxurAgyMB2MyxcyxzUpXS6y/sc7qa6sMd4Y0bzeJ+hF+1icIAqIwIupHaF+z/MoyK6+t4Ac+pauznRDVvqZ8rUz52pOzA2fhcoHGuw1yKznaH7QJWyH9+/0Dbfr3+4StEBTkVnNJP/GgJzksKYQQQgjxtDJmvpM4s/YrFCrUaif7DKeUplCYbXFjHI94770/oNutu00W7eEdH93P1rqJT7db4733/oBy+eMzHV9rn2r1BhsbX2N5eboYoZ7chwu1KfL5SnJ7tXr9xGE3qXIkhBBPlnr9LZrNW1hraDZv0+3uvfcDtNsfJO/9jcZNgmCJavXGuY1XCCHE02XeUNas/ZaWlrh79+6Jjm2tZWlpaeZx9Pt9oigim82ys7PzwAaN05/z+TxRFNHv90/0uJVSrK2tEQQBtdpkU77ioU35PO8jVTmSKkpCCHEy9XqdZrOJtZZms0m32z1we7vdTqqDNhoNgiCgWq2e02iFEE+zc9uKLp1O87nPfY7Pfe5zbGxs8Ju/+Zv81m/9Fu+9917SxlrLm2++yc/93M/xK7/yK/z0T/80P/dzP8drr712XsMWTyHTmoRfxhxYVCjOgCUJrwHu+Va4539e2k16VUqhcu4vUKWUWxQ6CXqpvML0DaZnUCj3zhfg/j8GXdTuGAsK1VWovCJuxEmoTQUK0sAIbGixPYvBVZyL6zHeqneiQJU1lrjuHvT+8Nws93OWwSxd0vChe15UTrn7v2+wGQsZYMjec5pzzznepN8zaFq50itLdQghhBBCiKdZPJ5vwnJsv3k/0j+kX/ZSlmF7SLAUMOwMMWOD8hRexkN7GhMb4lFMPI7Rnnbt2kOyl47eqMjzPeJxjDX20UE/O5njjGI8//jPxtrXVG9U2fjaBi/+uRdZKC+w9a0twp2QYXuI8hRBMWD1M6tc+sQlF5a6Xr3QgahpaBAgX8nTrXXZfnub6OUIrTX1b9ddeG5yux/4eBlv5tDgs+pJDEsKIYQQQjyt5l3jN2u/avXP8O67/+REx7bWUq3+mZnaGhOzsfEvsTbG2pjjJzg2aXPv3r/CmJ+beTyVynXCsE2jcZNy+RrF4hV6va0DVYh831V6KJevUalcn/nYIFWOhBDiSWNMRK32JsAkPOcW5QdBiUymwHDYIQxbyfXl8jVqtbdYXX1NqoUKIYQ4FWcdoCuXy0RRdKJjR1FEuTzbd/ZRFNFoNEin03S7XTxvb0N6V6F8uiGJZjQakc/naTQaRFGUVI2bhVKKarXK6urqqVeIkypKQghxMsaYJNC8PzwXBAGZTIbhcEgYhsn15XKZWq3G6uqqVPMUQpy6J+Jd5fnnn+dv/a2/xa1bt/jqV7/KT//0T7OwsACQ7Aa4u7vLr//6r3P9+nV++Id/mP/pf/qfGI1GjziyEI9muq4qQNyK9wJd4uxYwMO9++jJ/3+U74k1qAWFXnQhOOtZ0O4Dl921mLbBtAw2tChPoTKTP7FyFda6BtN0r4Ho/Qg7tu7PJNSmL2m8VQ9vycNb9dCX3Num7bl2xJMQJnuBqtRaitTVFKm1FF75wdDbNLQ57/2cFaUVXsUteNXLOgkk2qHF7toD4Tm97MbnVc421CeEEEIIIcR5GzQHp9ov3A1PPu9Uk37HyK24E3F+4LsTjVqhfY2X9pI/2ncbe2hPk1pIHeh3WLDkKsKdRDyMCZaCh7apXK+w/PFldjd2CVsh2ZUsudUc2dXJ5UqWsBWyu7HL8seXqVyfrarEk2oaGgRYfmWZfDUPCmxsicdxUnkuX82z/MoywIUPDQohhBBCiKeLC52dXT+tFZ6XOtGxtU6hZzwv8eGH/5rRqIdbfzkNzymU8tDaRymPvQmau3047PLhh/965vG4ygav8/zzn8Xz0vh+QLF4heXlVygWr+D7AZ6X4fnnPztXuG1/laNG4yYbG/+Gdvsunc492u27bGz8CY3GzeT2ev2tEx1fCCHEybRad4jjEVE0mFSeg5WVV6lUPs3S0ktUKp9mZeVVALrdOlEUEsdDWq075zlsIYQQT5Fer3em/cIwTEJss7LWEobHn8fa7+7du8RxTCaTIY5jrLVks1kKhQK5XI5CoUA2m8Vae6DdSavinaX9VZQajQYbGxu02206nQ7tdpuNjQ0ajUZye71eP+8hCyHEuWq1WsRxTBRFSUhuZWWFSqXC0tISlUqFlZUVALrdLlEUEccxrVbrPIcthHhKPXErcn7kR36E3/qt36JWq/Hf//f/PT/0Qz8E7O0uYa3lX/7Lf8nnP/95nn/+ef7j//g/5vbt2+c8anGhTc/hzbcmUswrAFVQ7l3oZHPuPR4uiNa3LjAXW5is8bThJPAVg40sduSCdaRAZRQ6r8FzATXTNS7M1nd/TH8SiAsUOnvwbVJnNSrjTm5O201DmLOatj/r+5mHV/FceE5Nqqtd9lBFV5VPFRXeZVdxTSkXopsG7oQQQgghhHhameF8n8OP69ff6p98DmQn/Y7hZTyyl7KYsSGVTeGnfbBgRq7ynBkZsOCnfVLZFPEoJnspi5c5+vN8r95DafXgCVLFkRvPWGtBuX6PfCj7jnnkCdinbH+OyvUK5WtllFaUr5V5/gefd4HGlGbppSWe/8HnD9x+0UODQgghhBDi6WLM8Ez7nXBN5oSauV+t9m8AizHjA/0f/OPE8Riwk34nGJFSVKs3+MxnfoqXXvoLlMufYGnpZcrlT/DSS3+Bz3zm/0a1euPE4bmjqxxZgqBEsXiFICgBlm63RrN5e/KY38KYk22IIh7NmIhG4yajUY/RqMvdu39Eo3FTnmshnkGdziYAvd420/fkbPbSgTbZ7KXkPbrX2zrQTwghhPiopsGDs+q3vb194mMrpWbud//+/QPjSaVSpFIHN1bZf9203bTfrKy11Go1vvWtb3H37l0ajQbtdptGo8Hdu3f51re+Ra1WO3FY8GFVlIrFIkEQJOOeVqir1WoYc/br/p40xhgajQaj0YjRaJT8PTyLz4UQz7pOpwPshbmDICCbzR5ok81mk/fQabtpPyGEOE0fpe7Tmcrlcjz33HNcvnwZ3/eJ4/jASYXp7gx/7+/9PX7t136NH/3RH+UXf/EX+Ut/6S/heRLoECcwfbko5g9yiZOJ3R9rXMCNo+ZEs/x9WGDsdu83LYPNWVRaoYxyldsi69rEoDwFBuzAYgeTdjlXhc6Gk9CccdXWknOl6WPuNwMM2QtfnnQD1sP9zup+5qCUwl/ziYOYuB6jUHjFQ++pngvaeRVPyssLIYQQQoinnlXzTRSP6zfcmW8B6sP6WWNZ/cwqnc0OXsbDy3jE45h4GGMj6zbIyHh4KffZ3l/wWf3MqpuTHaGz2cFLTT7vT+dm+4syTNeYTv5fKYWX8uhsPvwL7PpbdVq3Wyw+v8i4NyZ8L8REbjMUYw3RIKLwXIHF5xdp3mqyUFpIKrhdVEop1l5fI1gKqL3pTqjqlNtApbhSBFwAsnq9SuV6ReZYQgghhBDimdJs3pqjl525X6+3jdY+1u5tSOI+c1usNbhqdHuBPGtjtPYnoYiT09qnXL5GuXxtrv6HHVflaH9Qo9+/z/b223S7dYrFK0m/0xrDs85aS73+FrXam8TxiDgeAdBovEuj8S7r629Qrd6gUrku8zkhnhHT94HpZSZTOLJdJlMgDFsPtBdCCCE+qlkrvc3br9lsorU+UchJKZWExR4liiKstQwGg6TCnOd5SZBNKYXneXiex3A4ZDAYsLS0RBTNvnmFtZa7d+8mY4qiiF6vRxzHeJ5HLpcDYGNjgzAMWVtbm/nz/HFVlPYHQfr9Ptvb23S7XYrFYtKvXC7P/BguMjePqlOr1YjjmDh2ix4bjQaNRoP19XWq1SqVipwXE+JZMX0fmF5mMpkj22UyGcIwfKC9EEKcpicuQHf79m1+8zd/k3/wD/4B9+7de+D2/Ts+TD88GWP4wz/8Q/7wD/+QarXKz/zMz/CzP/uzvPDCC49t3OLi0nmNaRjUgnwYf2wsLjTX5ejw3LTNUfYv1LS4AKQC27XYrnUV5lIKi0XFylWlM6CyCjK466YV6QD8SbW6yKK0C9klgbbjvsOerlv1Dl3O6nC/s7qfOSml8Ks+3qqHaRlX+S5296/zGl3S7rkSQgghhBBCnJi1dq4KdA/bAdNLexRfLFK+ViZsh4y7Y7y0tzdvUuD5HvEwJpVPUb5Wpvhi0bU5QjSI0CmN8tXevGQSlJseL3kcFpSv0ClNNDj+5KWJTBIga95u0tvqkS6kWbyySKaQYdgZErZCelu9pBpb7a0aq6+ton197HEvAqUU1RtVVl9bpXWnhff/c3835U+UKVwuULpauvCPUQghhBBCiHn0+/cx5mSBAmNG9PuzVh548HO2m1pNT07ZI9scfd3jd5IqR2HYotfboli8QqezKQG6U+AW3X41CWxG0QBjxlhr2dn5HrncKgAbG18jDNusrb0uiz+FeAZ4XvrA5XB49IZS0+sPtxdCCCE+qnmrd83abzwen7gqm7WW8Xj86IaA7/uEYZiMZzh8cAPJ8XicXG+MIQxDfH/2pc71ep1ms4m19kCVuKl2u00+n2d5eZlGo0EQBFSrs23oeJIqSmEY0uv1KBaLdDqdZyJAd1R40RgzmUftfKTwohDi4poWRppeHvXev//6w+2FEOI0PRHf/vf7fb74xS/yIz/yI3ziE5/gv/wv/0s2NjYOfBC31pJOp/lrf+2v8ZWvfIX/9r/9b/nkJz/5QJvNzU3+i//iv+Dq1avn8VDEBaRL2gWDck/Er8OzYzon1zy4ePRRcyK1r18EjCeXyv2/7VoIcaE4lIsKW1BWoQoKnXd/13Y0CdJZsGOLyijQoLOT26eV6fYPu29clTr22k2PN6tp+7O+n49KaYVX9kitpUhdTZFaS+GVPQnPCSGEEEKIZ8q8n3+P6xeFs++QOWu/wmW303WwFOAHPv6Cj5fx8AMfLz25DDz8BR8/8AlKwYF+h3kL7otoGx+crFljsdY+ULnOxq6S97TfUVp3WsSjmGgQ0a1PduR8dYXKpyssvbRE5dMVVl5dAaBb7xKFEfEwpnWn9bCn5ULRvqZ8rUw6lyadT/PS6y9RvlaW8JwQQgghhHhmRVEPY062k7QxMVHUm6ltsfgixkQotX+ucvj+9n5WysOYmGLxxRON6aycpMrRUe3FR1Ovv0WzeQtrDY3GTTY2/g1xPMKYMe32XTY2/oRG42Zye73+1nkPWQjxGBQKlwHI5VYARRi2Hgh29/v3CcMWoJKw7bSfEEII8VHNGyaYtV8mkzlxxZ9pJblZLC8vE4YhmUwGYwxRFBFFEZ7nkUql8Dwvuc4Yk1QjWl5enun4xhhqtcmGjvvCc0EQUCwWCQJ3jqzb7SYhr1qtNnPA8CRVlI5q/7TbH15sNBpsbGwQxzHGGNrtNhsbGzQajeT2er1+3kMWQjwGhYL77moaog3DkH6/f6BNv99PqqVO2037CSHEaTrXCnRvvPEGv/Ebv8Hv/u7vJh9UrbUopVBKuUVZ1vKpT32Kn/3Zn+Xzn/988kH4x37sx/jCF77A7/3e7/Frv/Zr/OEf/iFA0u9Z+cApPjqlFV7Fw44tn698HrNjYHDeo3rK2X1/jpp7HhWos4dut0e0i3HBOoWr6qbAem4hp7EGeqA9jV5wlRRMaFx1urR7z1FZBZ6rYKdyCtuzmPsGm7GQAYYkoTaVU6iUa69LJwzQlTR8CIqzu59f/MVfPNGYhHgSyetYPC3ktSyeBvI6Fg/16+c9gDM2b7bpmH6HQ2mzeli/0tUS3/nt7zDcGZKv5tlZ32Hcczt9ak8Tj2PicUwqlyJfzTNsD+nVe5Sulo48XvGFIiYySbW5ZO62PxM4nctNbjdjQ/GF4rFj7GxOduTc7oGFoBSQvXRoR85LWYJSkFSiK14p0tnsUL72dO3IKe+pQpyc/N4IcTLyOyPERfC0T6Rm0+s1OfpE0cOYSb9HW1v7EW7d+j2U0hwsoHD0/EopjVKu35NAqhydH2MiarU3AWg2b9PtugW4n/lMh0ymwHDoqv5Nry+Xr1GrvcXq6mtofa5LMIQQxzitz8il0lXW198AIJ+v0O3W2N5+myAoTd4fOpPwnLvd9wM8L0OpJJuACzEPmd8K8aCzDtCl0/PNJ2btVywWk/XBWmuMMUn1Ot/3iaIo+VlrnbQtFo8/B7Vfq9UijmOiKErWJK+srByoEtfv99ne3qbb7SbHbbVaM1WIkypKxzsuvPiZz3yGTCbDcDgkDMPk+nK5TK1WY3V1Fa1ls0khnkSnN48qsb6+DkA+n6fb7bK9vU0QBAfeH6a3+76P53mUSkevZxBCPJzMox7usX/qqNfr/N2/+3f51Kc+xZ//83+e3/zN36TT6SSV5KYBuCAI+PznP88f//Ef893vfpdf/uVfPnIXib/4F/8iX/nKV3jrrbf46Z/+aVKp1ON+SOIpoFc0Ku1CSkkIS5yd6XzwYetGFXuLMw+H58y+69Shtgb3d2gnl2byZwSmY4i3Y+JujAkNtj+pQBe7qnV2aPHW3OD0skbl3EHt0GJ37YFQm152LxKvcvKKbNPQ5lnfjxBCCCGEEOKjU2bOCnTH9PPSc57YnLWfdScUvZRHOpt21c6yabyUN/PJp5VPrxCP4qMrox11le9CeiufXjn2mPEoPnCZzqbp1rs0bjbYfnubxs0G3XqXdDZ9ZHshhBBCCCHE08fa8Zn2K5evkU7nsXa2eYW1MalUnnL52lzjOm1S5ej8tFp3iOMRUTSg23UVEVZWXqVS+TRLSy9RqXyalZVXAeh260RRSBwPabXunOewhRCPgdY+1eoNAJaXXyGfrzJ9j97Z+V7ynpzPV1lefgWAavW6hGuFEEKcmoWFhTPtN636c1Kz9hsMBly6dIkoikin06RSKbTWxHHMcDgkjmO01qRSKdLpNFEUcenSJQaD2SoidDqTDR17rnJ5EAQHwnMA2Ww2qUQ3bTft9yhSRel4x4UXK5UKS0tLVCoVVlbcucRut0sURcRxTKvVOs9hCyEeA6011WoVcJVI8/k84N5Dd3Z2DoTnplmRarUq4VohxJl4LN/QxHHMl770JX7jN36DL3/5y8RxfCAwt7/a3Gc+8xl+9md/lp/6qZ+aedcIgE9/+tP81m/9Fr/6q7/Kf/1f/9f8d//df3dWD0c8Ray1xPWYuB5jI4taVLB93qN6yu2vJrf//z32gnHqmPaH6cmf4yrSMblO791mR5b4fpyE7FRagZ5UfBuBub+306lX9rCLFtM3rr0HOqtdRThc+G0ahJuFNRbTMpiuwUYWMzYwnFSWW+TU7kcIIYQQQghxepQ3Z4DumH7GnLS6wqP7te60yFVy9LZ7NG83yRQylD5WwsYWExu0p1Geor/VZ9QZsfDJBXKVHK07rSOru/XrfTKFjAuvTedkir1NPbSb37gHCjqlyeQz9Ov9B441NQ0A6pRm0BrQrXXJV/MH2nRrXbq1Ll7Go7hWPNDvPJjI0LrTorPZIR7FeGmPwuUCpaulo8OFQgghhBBCiBMZj8Mz7WdMTC5XYTBozBSiU0qTy1Ux5snYyEOqHJ2fTmcTgF5vG7AEQYls9tKBNtnsJYLAVaLr9bYoFq/Q6Ww+MQFMIcTZqVSuE4ZtGo2blMvXKBav0OttEccjPC9NLreK77tF+eXyNSqV6+c8YiGEEE8T359vye+s/WYNqs3bL45jnnvuOVqtFuPxmFwuh+d5DIdDjDForclkMsRxnNz+3HPPEcezzdOm7aaXmUzmyHaZTIYwDB9o/yhSRel4JwkvhmFIr9ejWCzS6XRmqv4nhLjYKpUKYRjSaDQol8sUi0V6vR5xHON5HrlcLvm3qlwuU6lUznnEQoin1WMJ0D3//PNsb7tU0v7g3PTnXC7H5z73Ob7whS/w2c9+9iPdV7Va5e/8nb/D3/pbf+ujDVo89ay1RB9EmOZkEWLkUu5xKobofMf21JsG3aYBuGmVuOnP8aF2x5ku5DwqkDddWzqtRLf/WJOQmvIVpFyoTuUULLgqEdZaUGC1RaUUXvHQgk3PVYTzKl7yXvbQh7svqMm+ubbyFbZviTdjVF6hF/XB453wfoQQQgghhBCnb7qxxWn101o/fKOQIw/GQ3dX62x2UEqRWcywUF4gGkQopYjGEdZYrLGk/BSpXAp/wSe9mEYpRWezc2SAbrg7ZOHSAoPWwN2v5wKBSWgOF4Sz0eQ7Hq1YWFlguDs8doyFywXuv3OfcCdk0BiAhTAI3UYj+0J+o84IujDaHWGtpXD58e/Iaa2l/lad2pu1ByrgNd5tsP7GOtUbVSrXKzJXE0IIIYQQT7mTTl7293u0KBrOcR9q0u/Rut06qVRAJlNkMGjw4C6OU+76TKZIKhUkFcfO27TK0cbG15IqRt1unTBsJcE5V+WoIlWOTlkcjw5cZjJHz00zmQJh2HqgvRDi6aaUYm3tdYJgiVrtTQCKxSsH2nhehmr1OpXKdfn+SAghxKkajeb7zDlrv06nkxTEmJVSauYKbp7n1sG98MILxHHMYDDA87wHglZRFFEoFHjhhRdQSuF5s224OG03vRwOj54/Tq8/3P5RplWUNjY2kipJ3W6XMAyT4Bw8m1WUzjq8KIS42Nw8ao0gCKjVagAPFFryPI9qtUqlIufhhRBn57F8e761tZW8ke2vNvcDP/ADfOELX+Anf/Ink3Kcp2XeUtXi2RHXY0zTYK11lz1L3ImPr2QmPjq17/K453kaoosm7QzHnzs9Kjh3+P6mwTxzqL1xiyKVpyANpMHUDDZn0csahUKvanRGY7r7KsPlNbqk9yovPMLhoKYdP1jRzit42L6FCNQlhfLVie9HCCGEEEIIcTbMcM6Kccf0y63kaNxqHNhc45G063ecacgrHrk5rRd4jHojhjtDbGyT8JsXeGAPtT/qeMOYbDlLd7NLPIrdMbRylcP3scodO51Pk13OEg+Pf1ClqyW+89vfYdgeks6n6dzr0Nvu4aU8tK8xkSEex/iBT+H5AoPWgF69R+nq492R01rL3a/epXmrCUA0iOht95IKdLlV9/ew8bUNwnbI2utr8uW9EEIIIYR4is17wmy2fpnMIt3uvRPejyaTWZypZb+/BVgWFpYZjTrE8Ril3Ekja+3ks7zGWoPnpVhYWAbMpN+TQaocnQ/PSx+4HA6PXgw8vf5weyHE008pRbV6g9XV12i17tDpbCbvzYXCZUqlqxJoFkIIcSZ8358r4DZrBbo4juc6/qwhqEKhQKPRIJ/Ps7S0xOLiIr7vMx6Pkwp0qVSKKIrQWifriguF2TZcnB4/l8vRbrcJw5B+v38goNfv95OwWy6XO9HxQaooHeesw4tCiIvPzaOqrK6u0mq16HQ6yXtnoVCgVCo9E4FjIcT5eqzf1lhrKRQK/ORP/iRf+MIX+P7v//7HefdCJKxxFcEATNNgugYbWuhPGuyvgiZOxzTkNg21HcUAY9zz/6hw3P7jPiyQ57MX3Nt/v5Ognkor9GWNl/awocX2LAaDV/Yw2wb/0z5eef5J2lFBzQO378SonHKhPaXQOY1flS/ShRBCCCGEeFJEw/lKlB/Xr/BcAT/jE/VnP66f8Sk8d/yJOy/tYa2lc6/DzvoOZmzQvmbcHycBumgYuetTmmA5YPmVZbz00XMdf8FnobRAppBh3Buj05p0Ls24O06qxaXyKUa9EWZkyBQyLJQW8BdmnMvsm+dZJhXA9644V/W36jRvNbHG0rzdpFvvHhhT+4M2+Uqe5VeWadxsECwFVG9Uz2/AQgghhBBCXGCl0ss0Gu+csJelVHp55rZKeUdUBVNorR9YEBrHI5TyOPeJyT5S5eh8FAqXaTTeJZdbod3+gDBs0e/fJ5u9lLTp9+9PKgEqcrnVpJ8Q4tmitU+5fI1y+dp5D0UIIcQzIp/PJ5V7ZmWtnbnARTqdPvG8QilFOj3bZhKlUon19XXAPZZut4sxhlwuRyaTYTgcEoZhEp7zfR/P8yiVZttw8ajjb29vEwTBgeNPbz/p8aePV6ooPehxhBeFEE8HrTXlcplyuXzeQxFCPIMeW0rjz/7ZP8vP/uzP8rnPfe6BcstCPG6m5SqA2bF14bmehTSoQMEACdA9yqNCbUe1Odx+GpKbVpibBuv2B+EedR+WB6vL7b//4yrYTf8/DTqn8fIe3pKH6RvMffd6sIsWhcK0zNwBusNBzWl4TgWTqncjHgjtxfUYb9WTynNCCCGEEEI8Iex4voWTx/Wrfn+VD/75B3SH3dnmnR4EpYDq9x8f0ipcLvDeH7xHZ6PDoDFg3B8/0GbQGoCFVDZFZ8MF7V7+0aMXnV765CXu/ck9ytfKhO2Q8WBM5EV4aQ9l3ELTKIyIhzGphRTla+Wk33Fad1rkKjl6Wz2at5ukC2ly1RzRwAX70vk0/oLPuDdm1BkRfDIgV8nRutNKjn/WTGSovelOdDZvN+nWuoB7/jOFDMPOkLAVJteXr5WpvVVj9bVVtC874QkhhBBCiKeRD8yzqchsp6BLpVfY2wVxVmrSb4aWyiOTKVKvfwdjokn1Obd41Fp3AkkphVIaYyL6/QaXLn1yEqJ7ckiVo8evVLrK+vobAOTzFbrdGtvbbxMEJTKZAsNhZxKec7f7foDnZSiVrp7nsIUQQgghxDNg1iDcvP2KxSL1ev1Ex1ZKPRAgO47Wmmq1ysbGBsvLy1hrabVa9Hq9pFJ4KpWiVCqxvLwMQLVanbki0eHjA3S7XcIwTIJb4J6PeY4/JVWUHvQ4wotCCCGEEB/VY/kmvVQqEQQB//Af/kP+zJ/5M3zmM5+Z6zhf/vKX+bt/9+8CbveBL33pS6c5TPEMMV1Xisz0J5XnDKiUwoyNq4B2XIU04UwryR0XNFT7Li0Hz30ergZ3VPW4WdenWo4/b7s/hKc5GKib3v8YrLaYjkEvanRWYzMWO7SYvsErepju/AG6/UHNaXhOX3L3k7Q55dCeEEIIIYQQ4sn28b/4cb79j77NuDtmuDt8ZMXtTCFD7lKOj//Fjx/brHilyPZ3tunWu0RDF2yzxmKVO9ForUVZhdIK7Wl6tR73375P8crRJzNfev0l3v7dt7HW4mU8F6LrjrG4Ocv0Uqc0wVKAv+DjL/i89PpLx46xs9lxO5AuptG+ZtAcJDtual+DhagfMeqNWCgtkC64HU47m53HFqBr3WkRj2KiQeQqzwErr66QvbRvZ8z7fbbfds/19Pl7nCE/IYQQQgghHietUxhz8gCd1qmZ2i0vHz/POY1+0+CTtfGk2tzhk1rTIB2AxtqYbrdGPl+Za1xnTaocPT5a+1SrN9jY+BrLyy6w2e3WCcNWEpwDRT5fSW6vVq9LkFEIIYQQQpy5sw7Qvfzyy7zzzskqhRtjePnlWSuFQ6VSYTAY8P777zMYDPB9nziOMcagtcb3fQaDAbu7u7z88stUKiebo1UqFcIwpNFoUC6XKRaL9Hq9JOCWy+XwfffZvVwun/j4+0kVpT2PK7wohBBCCPFRPJZvcFutFn/0R38EQLvdnvs4169f56tf/SrgdnC4c+cOV6/KLm5iDpPzYzay2NCiMsoFmKLJysX5Cgw8W6bnGacBuP0htf2huP1Bu1kry53mGNk3hmhyCeBNru+7SnGmZ/AKHmSAIXvnUD9CJcL9QU1wlef2h+eAUw/tCSGEEEIIIU7ZLBW4j+t3hJVPrVC+Vqa31SMex0RhdPQmLhr8wMcPfJY/vszKp1aOvavWnRaD1oCo76q5GWOwxoXnpuM31qBQxFHMuD+m3+jTutNi5dUHj+sHPi/9n17iX/6//yXD3aE7ZmzcgtPJPG8afhvuDrn/zn1+6Fd+CD84/mumeOQWrLbvtDFjQ/HFIngQNsLkhOXCpQWCpYCwHdK+02ZpbYl49PjKw3c2OwD0tntgXeW5/eE5gOylLEEpIGyF9LZ6FK8UH2vITwghhBBCiMcpCAr0+4O5+s2i01nH99NE0ez34ftpOp31mdqWy5+g07k3qTz3qN0zDUpput1NyuVPzDwe8fSqVK4Thm0ajZuUy9coFq/Q620l1f9yuVV8PwCgXL5GpXL9nEcshBBCCCGeBNONDefpN4tut3vi+9Ba0+12Z2pbqVQw5mTVB4wxJw6hzfMczUopxdraGkEQcO/ePcIwJIoid/7MWsIwpFAo8Nxzz1GpVGZ+7sWjPc7wohBCCCHEPB7bFmjT8sofxeXLl/nYxz7Ge++9B8A3v/lNCdCJ+UyySXbsFv/Zsd0LePm4c2hShW4203CaJnlek4Wi09Ca2ffz4XDdURt+njaLqyy4f2yx+2MjCyNXLc4reC48B3uP5aPk2A6H8NLHtDvF0J4QQgghhBDilM2yzvK4fsdY/b5V2u+3aY/b2NgSR/HB+9Dg+R6phRSLzy+y+trqQ+9q4082XEANSzx0x/JSXhJ0mwbfzNgQh5N245iNP9k4MkAHbqOR3laPcd9VnkvCc9N9Z5TFYhn3x/S2eljz8BOdXtpj98NdhrtDLJbuVhc/476W8jw38Ro0BkTDCC/tMdwdsvvhLpc+eemhxz1N07De9DJTyBzZLlPIELbCB9oLIYQQQgjxtEmn8/T7W3P1m0W/f3+uhZn9/v2Z2m5uvom1ljgeProxEMcjjFlgc/NNnn/+B080LoAoCrl794+4f/8domiA7y9w6dIneeml15Oglbg43KLb1wmCJWq1NwEoFq8caON5GarV61Qq12XRrRBCCCGEAM4+QNfr9U58fGMMvV5vpra3bt060bH393vxxRdnaluv12m1WiwuLjIej2k2m8Sx24jRWst4PKZQKLC4uEiz2WRhYYFqtTrXuOI4ptFosLu7m1S4W1xcJJvNPrqzOLH94cVarQZAsVg80MbzPKrVqoQXhRBCCHEuHluA7rQ+6FSr1SRAV6/XT+WY4tmj8xrTMMnr0g7cwj9i3KJFqUA3O4MLmU0CdCqlXCgxmiyu9Pa106DSyt0W7bt+3ooOs5pWyttvEqozQ4OX9rBdS9yNsUM3kGmlOJ3/CCXCD4fwRse0O83QnhBCCCGEEOKJ1rrTIn85z+XPXmZ3fRdwYTksWCwKlcxftKd57rPPka/mad1pHVvl7P7b98FAFEbupKkCL+MdnGcpMJHbWTMKI4gn/Y4QhRHf/B++ifY1CoUZm4MVxicboRhj8HwP7Wne/Ptv8n1/9fuOrUKXW8mxu75LppChdbdFPIih6Kq8+YFPFEaErZDhzhB/waf0condD3fJreTmep7n4aW9A5fDztGLbKfXH24vhBBCCCHE08Y8YqOMj9pvZ+cDjBk/uuGBY4/Z2flgprb1+puTPrNtemFMdKDf7GMyvP3273Lnzh8QReGB2+7d+xPefvt3uXr1/8yrr/5f0fojnHcSj51Simr1Bqurr9Fq3aHT2Uwq0BUKlymVrqL1Y1tyIYQQQgghLoCTbhJy0n5RFD260Ufod/v27bmOf/v2bX7sx37ske2MMUmwqtls0uv1yGQyFItFMpkMw+GQMAzp9XoopSiXy9RqNVZXV2eeT1lruXPnDt/97ne5f/8+URQRRVFSBGQ0GtFut9nc3OS1117j5ZdfliDXKXLzqCqrq6u0Wi06nU5Sga5QKFAqlWRuLIQQQohzc+G+zd1fSnpnZ+ccRyIuMl3S8CEorVBphQkNtr9vN33ZPP7kUqAChV7UEIHZNUkYTfnKVSNQk2DdNDTH5PJxVftT7C34nAYlQ4j9GC/yiDYiNznzwbQN+OC96GGNRemTT5KnQU2d1cQ7MTa0mL5JwnkApm9ON7QnhBBCCCGEOF3znYc8tl9ns4O1lubNJspXpAopol5EPIyTE3de4JHKplC+onmrSeUzFTqbnWMDdGEnZNQfEQ9jd4JvOqWwJMdEgfIUGIiHMaP+iLATHnm89/7gPXbXdzGxwUTGbYailQvUTXZONZHBGndpYsPO+g7v/cF7fOInPvHQpyUJCe5z+OfzUrhcoPFug9xKjvYHbcJWSP9+n+ylvV1I+/f7hK0QFORWc0k/IYQQQgghnkaj0e6Z9nOV5E56kmj2CnSdzibGjHhwl8WjKaUwZkSnszn7aIzhX//r/w+bm98AYDzu0+vVieMxnpcil3NVEm7e/BLd7iaf/ez/QxYKXkBa+5TL1yiXr533UIQQQgghxDOu0+mcab9WqzXX8Wft12q1iOOYKIqStcArKysHKsL1+322t7fpdrtJ9bJWq0W5fPR5ssM2Nzf5+te/zu7uLsPhkOFweCBA6Ps+mUyGra0tvv71rxMEAc8999ysD1XMSGtNuVye+e9NCCGEEOJxuFABut3dXf70T/802e0hn8+f84jERaW0wqt4xFsxKqdQXYWNJxXoJDx3cpNAnF7VeL6HjS12ZLGhhTFYNQnNTarQJUFFeLzV/qaV7vafi7VAH8yCQbUVtmBdlbyBRRUV8XpMfC/Gq3h4Fe9Eu80kQU0UKqewPYu5b7AZCxlgyF7IMKdc9T5v0k8IIYQQQgjxVIpHMZtf32T3w12Gu0OiQeQ2HJmw1hINXKDOX/DZWd9h8+ubLH9s+dhjpnNpxv0x2tMYY5JAmhe46nAmNsSj2N2PcZXtxv0x6Vz6yOPd+qe3sLEl6keY2KCVJlvOHqguF4UR/ft9TGyI+hGe73Hrn946NkDX2+6x+OIim1/fJFPI4Gd8vIxH1I+I+u6kpR/4LkCY9hjuDln++DK97R4rrJz4eZ5H6WqJ9TfWAchX8nRrXbbf3iYoBWQKGYadoQvPTW73A/cYSldLj2V8QgghhBBCPG7jce9M+43HR1d9Pq1+o9EuxkQoBTaZdukD53qsPXjiyJjoRMHBt9/+XTY3v4G1hkbjJoNBk/0nvzqdTRYWlimXr3Hv3r/h7bd/l9de+9zMx3+cjImkypoQQgghhBBPuP0FKM6i31lXuJsG+Xo9N28MguBAeA4gm80SBEFSia5YLNLpdGYKYhlj+MY3vsHu7i5hGNLv94miCKVUsknk/op0AN/4xjeoVqtzbXZijJEqa0IIIYQQF8iF+aZ7OBzyC7/wC4xGI8DtAPiJTzx8V3MhHsareHhbHqbrKo2hkPDcvBQo6yoZWG0xDeOq+2m1F56bhuYObyR62gG6aUjusOn9632X0zmqAetZdFajFpQL/qXdY7JjVx0hvucqyPlr/swhuiSoeS9GL2sMBtuzLjS379yuyin0shuMV/HmqnYnhBBCCCGEuDjq36nT3egy7o3dFUfMYayxjHtjuhtdtr67xffxfcceb6G8ABZ0Sid9MXuV3RST+dokqKdTGuyk3xF2N9xi0WgYJe2Vp4jCKKlopzy3CYgdWaJhRIZM0u8o8Shm8YVFmreaDBoDctUcQTFguDt0IT1Pk1nMEO6EhM2QzGKGxRcWiUePb6KufU31RpWNr22w/IoLLHbrXcJWmATnUC48N729er2K9uUEqBBCCCGEeDrF8XwLJ2ftF4aNuY4/az+t3aYhbpEkyf9r7SVzG2PiA7ft7/coURRy584fAEzCc25c6XSBdDrPaNRlNOowGDRoNG5x6dInuHPnK3zyk/8XfD+Y9eGeOWst9fpb1GpvEsejA7c1Gu+yvv4G1eoNKpXrJ9poUgghhBBCCHH6hsP5NiKZtd+8n/ln7RfH8YHLTCZzZLtMJkMYhg+0f5Tt7W22trYwxiThOa01qVQK3/eJoojxeEwURfT7fdLpNFtbW2xvb1OpVGa6D5jOo+rUarUHxtZoNFhfX6darVKpVD7SPEoCekIIIYQQp+vUAnR//a//9Zna/Y2/8TdOXJJ3MBjwjW98g3a7newCUSgU+OEf/uF5hioE4CZtqe9LMd4Yu0DT+LxHdIEpF5yzHYsZG1fBLbTuHSbiwdCc4mDQ7TRDdJqjg5Bqcltq33im9+u7kuGMwewaVKBAg921xLtxEnAzTUMcxPjV2d86vYqHDS2mafDKHnbRYvrGjdHDhfZSkxOyyxqv4s37yIUQQgghhBAXwM73dmjfaTMOxw+fC01uG4djWu+12PnezrFNC5cLpPNpokGE9jTWWOJx7BaEaoU1FhMZF3zTbofNdCFN4XJhpjGbyBCFhxbAjsFGs0/mvLSr6F36WIlhZ0g8jNG+ZmH5YIjPjA0LlxYofayUVKN7nCrXK4TtkMbNBuVrZYpXivS2esSjGC/tkVvNJZX4ytfKVK7PfjJVCCGEEEKIi2feEziz9Yui+RZ+ztqvUHhucm55f8W5mDg2k/DcdPfF6W0KpTSFwnMzHf/u3T8iikLG4/6k8hwsL3+cXG41adPrbdFs3mIwaDAeD5J+r7zy4zPdx1mz1nL37ldpNm8BEEUDer3tpALd9LFsbHyNMGyztva6hOiEEEIIIYQ4R9bON0+btV8qlWI8PvlCylQqNVM7z/MOXB4X7Jtef7j9o9y+fRtjDKPRKKk8VygUDgT1hsMhu7u7RFHEaDRCa83t27dnDtC5edRdmk03D4yiiF6vlwTccrkcABsbG4RhyNra2onnUY8roCeEEEII8aw5tQDdF7/4xYd+EJt+AP9X/+pfzXX8af9pKeVf/uVffqB0sxAnNa2SRgzIPGJ+FhgBA7BjiwkMKlLYeFJ9blr1bX+QbhqiOxxmO42xHFeFzgPlKVgAYlzIz+ICcxGQBZ3T6KyGtHtMNrTYnsXgAnBxPcZbnb1KnFIKf80nDmLieoxC4RUPTei9SUXEiicTWiGEEEIIIZ40mgc3BZm13xE6tQ7DnaGbL83Axpbh7pBOrXNsm3wlT3GtSLgb4mU8bGSxWExsUMZtRIQCL+WhfIXOaIpXiuQr+SOPt/j8Itvf2U7Cd+AqyO2fB1ljkz/T6xefXzx2jIXLBRrvNsiv5l1ozkB2NYvWGhMZtK8xxiQVw6djmzXkd1qUUqy9vkawFFB7swZA8UrxQBsv41G9XqVyXU5KCiGEEEKIp5tSGmtPXhVaqdl2wbd2nsnW7P2y2UtkMkuMx7XDRzhm8aglkymSzV6a6fj3778DQK9XByzpdB7fX6DX28LaGKU8fH+BVCrPeNyl16uxtPQy9++/88QE6Or1t2g2b2Gtodm8TbfrHstUu/0B+XyF5eVXaDRuEgRLVKs3zm28QgghhBBCiLMVBAH9fn+ufrMoFAo0Gg1yuRztdpswDOn3+wfWAvf7fcIwBEjCaIXCbOeLWq0WcDCAp7VmOBwmlci11nieRxRFDIdDgiBI+s2iXq/TbDax1tJsNul2uwdub7fb5PN5lpeXaTQaBEFAtVqd+fiPI6AnhBBCCPGsOrUA3VmbVp6z1vITP/ET/O2//bfPe0jiKRDXY+zAJuG5D+wHAKyptXMc1QUzDatFbmEnQ1yQzrduweg0PDcNtu3vsz9HdqiYwdweds50ev/xZKweqJRbPGrHFp3TeKueC9BND9c3mPsG27PYRYtCYVouTDcrpRR+1cdb9TAtg+nuq0CX1+iSnjmQN6vbt28D8Morrxx5uzX2sY1FiHk96nUsxEUhr2XxNJDXsXioj00u3zvXUZydUw7Qfe//+J5bqDnrJiLWfX7/3v/xPfh/Hd3EX/CpXK/QrXcxI1ctTimFiU0yF9OexlqLH/jkVnNUrlfwF47+WuiVf+8Vbv7TmyhPJSG6Uc/twKk8t1nKNOymtEL7mjiKeeXfO/49onS1xPob64ALx3VrXfpbfYJSQKaQYdgZErZCUO52P/DxMh6lq6UZn6jTo5SieqPK6murtO606Gx2kgp0hcsFSldLaH+2BcH7mcjQutPine++gxkbXqy8+JGOJ8SzRD6LCHEy8jsjxEVwUSZS835OnTVAd7aVE1ZXP0UQlBgMGkRRzMMnYgrPSxEEJVZXPzXT8aNoMLkcEUUjlBrQ6x0M6w2HO0TRIGmzv995MyaiVnsTYBKec2MPghKZTIHhsEMYtpLry+Vr1Gpvsbr6GlpfmGUGp0r+jRXi4pLfXyEuJvndFeLxmzUIN2+/UqnE+vrkfFE+T7fbZXt7myAIyGQyDIfDJDyXz+fxfR/P8yiVZjtftH++aK1NqtEdZsz/n72/jXEsy+87z+855/KZDAaDGUFGVldmVXZVqrtUrSy1bFmyDJUsrCGssbMeYD3YN4KN8Stb8Nizr0bzYixBwAIGtDNeewC9GRi2AWMhjDDzxjMYjOzVg7XTltqSVdWtLndlVuVjRcYjyYjg0yV5zzn74pCMiMyITAYzIiMj8/8BEowg77m8JIORvHHv7/zcU8vOwjnHxkbYRzocnnty+yfXV6tVNjY2WFlZQevZ9pXPO6D3ssnvciEuL3n/CnE5yXv32c70L9uzfIic90CI1pqPPvqIX/qlX+Jv/a2/JTMmiBfmncdu2hAeGge8/sD/ASABuplpDsJwnhBGnBgSfsOkQXmFH/mDpr/JCaiaEKJLOLk17hyotELZcNKnSit84lEZhc7rI+E5AJ3X+IzHDzyu5zBlg+ucLkA3vV+tMFUz19jT+u3f/m3g6f/8vA8/99Of/UNcw8FX0oYnXh0n/RwLcdnIz7J4HcjPsXimyaT5v3GhW3F+5t1POWFc+3H79IE8Nx53gtJqifLbZd76ybd40H/AsDPEpA12aKcNcZPv08U0X/vJr1F+u3xiu9uNv3yDdCFN0k9CYM6FdnHnXdi/c34azFNRCNmli2lu/OUbJ26jjjT1j+qsfXeNpfeWAOhsdohbcQjOwTQ8N7m9fqt+ocEyHWmqN6tUb1ZfaD3eezY/3WTjkw3s0PKH238IQH43T+PzBo++84j6R9JoJ8SzyGcRIU5H3jNCXAaXY0dKa4M9fQEdWs92HGTej7+zjqvXfxytDbncMp3OOt6PJmvgyAEuQKmIXG4ZrQ31+o/PtP4oygEhEGdtaDdwzpIk8bTZIIpyjEbh9klwbjLuorVad7F2SJL0x81zsLz8wZEGvl5vh+3tz+h0NimXr03HVas3L2SbL5r8HyvE5SXvXyEuJ3nvCvHyTcJr5zVOa029XmdtbY2lpfHxok6HOI6PrGMSEAOo1+szh88ON9l577HWkiRPz+xvrT1yLvPhcc/SarWm65wE25aXl59q0Nve3qbT6VAul6fjqtXnH296GQG9l01+lwtxecn7V4jLSd67z3ZmAbrf/d3fPfZ67z0///M/Pz0B6L/77/47Pvroo5nXG0URCwsLvPPOOzPXMAsxC9dyB4GuhPkn0XxTTcJzEQchxMmlAtIHX3t8WM6Nl5mcLDpuPnspwbl0aJtTCwoVqRDwG4aTPQFUXoVtPk6G0Kw3OUg8x8HiV4H3nuRBgmuGF8CPQihw2kCX1ygU9rHFx57oeiQnbwohhBBCCDHv5/8TxnnnTz25kPc+hNZOMGl3q32rxnB/SONOg1F3RCqfQkcalzi89eSWclTfr7LyrRWibHRiu1v7cZuv/czXuPvbd0OIDhUa5yC0zpmwn6C1RhtNlIv42l/8Gu3H7WeGzWq3asS7MY3bDao3q5SvleludaftboWVAlE2/KmqerNK7VbtVM/Tq8h7z/3fu0/zThOApJ/gRmFW072HexRWCgCsfXeNeDfm+sfXZT9MCCGEEEK8MqwdPX+hFxp3vg13WkcsLHyN0ahHKpUlSRTOHZpZczzro9aGKMqQSmUpl9+euV3typVv8OWXv43WKQBGow77+2ukUgfNC71egyTpoXUKY9L0+y2uXPnG6R7umHMJrdZd2u11rB1iTJpSaZVK5cZcjXDt9joA3e424MlmK0fCcwD5/BWy2Qpx3KLb3aJcvka7vf7GBuiEEEIIIYS4aEqpuUosZj32YOeZReWU42q1GnEc02g0qFarlMtlut0u1lqMMRQKBaJofLyoWqVWm/140bVr17h9+zZKKZRSWGvp9XoA04lOJl8bEyaYH41GXLt2bab1t9thwstutwuEYNuT4bt8Pk82myWOY7rdLuVymXa7PVOA7rwDekIIIYQQb7ozC9B9/PHHz7x98uHzx3/8x/nZn/3Zs7pbIebmOuMQkRrvUEqAbnaGECpTHG1OODxZy6RhbhJOjAihtcP775MA40kmt02OYT55f7OarEeP1zXeJpVWqIIKrQmZcajuOIPxpXni8pKxmxbXDCdquqbDd4/+McXuWVRBoZc0rumwWUtUP9OiUiGEEEIIId54Oq3nCtDp9Mk7rYfb3d7+i2+Tq+bY+t4W8V6MTzzaaLJLWVZ+bIUrP3IFpdQz293a623e+vNvsXt/l63vbWGHlpRJYUd2uq9nUgZnHSZtWLq5xFt//i3a688O0CmluP7xdbKLWTY+CbNnlq+VjyxjMob6rdenjW3z002ad5p452l+0aSz2cG+HQ4i7z7cZffB7rR1r3G7QXYxS/2j+gVvtRBCCCGEEBPzBehmHefcSQdmzmZct7tNrXaLTmeDbncLAKU0Ycfm8MEjUMqQySywsvJjdLvbLC8/f/3Xrv0Mf/AH/0+iKI1SBudihsM21o6IogxJMsDa0KBgTA5jUgyHHa5d+5lTPV7vPZubn7Kx8QnWHn3sjcbnPHr0Her1j6jVbp1qP2qyrsllJnP8ZLaZTIk4bj21vBBCCCGEEOLlmyc8d5pxg8Hg+Qu94DilFNevXyebzU7b1iZBsAljDPV6nVrtdMeLrl+/HiaA1OF43OTfxJNfT5a9fv36TOufBAUnl5lM5tjlMpkMcRw/tfzznHdATwghhBDiTfdSkhE/+7M/O/0Qu7i4+DLuUojnG++TqEgdtKWJ59NABpRWIUgWAQPw1h9toxufVKnSCm88KlFPNyY4DkJ3h8NyHLrOc9B2Nyv1xKUGTHitlVOonEKXNaqk8LseVVD4rsfHoZFN5w9OInU9hx+EjZpcr4uXL23pncduhh/6w+E5lR3//A/Bxx7f9TgcpmqwmxazYsJrLYQQQgghhDgT2VI2zA56ip1QpRTZUvaZy9Ru1ei3+tz7nXvErZj8ch6TCSE3bTSZhQxxK2Z/bZ93f/7dZ7a72aFFa83qj6/iBo54L8YOLTa2OOfQWmOyBpMxZBeyrP74Klpr7PD5B/+UUtQ/qrPy4Qqtuy3a6+1pA11ptUTlRuXEYN9l4xI3DQo2v2jS2QgzhSqj0FqTrWSJW/H0+urNKhufbrDy4cpr8xwIIYQQQgjxLOfdcGftkFLpLawd4lyC1gbvHc4dNNBprVFK41yCtaPp8rNotx9Trf4IGxt/SiqVw/sE5zxKgbUDlAKt02itSKWyOOdYWbk5Hjdbg5v3nvv3f49m8w4ASdKn292eNtAVCisArK19lzje5fr1j2c+udSY9JHLfr/FcNil09nAuSFapykW69Pn48nlhRBCCCGEEK+fJEmev9AZjFNKUa/XWVlZodVq0W63pw10pVKJSqWC1qc/VtJut1lZWeHzzz/HuWfP1O+cI45jrl+/PnMAzRhz5DKOYzqdDoPBYHoMbRKeO27553kycJdOp49dfzqdniugJ4QQQgjxpnspAbrf+73fexl3I8TpjPdJVEGFENGkDU2CdM/mATsOzDEOlRnwfX8woejkuGMKVFGhRgqf+PCcO44+x5OA3OTr48JvioNg3nFBu8P0ofWpsA2Y0PKgyxqVU0RvRahUCPQ569CLGkcIlbkdh8/40LA3YBqeUwWFSoXQoK5cvhMZXcuF123kp+E5fUU/FRZ0O+F58AsehcK1QphOCCGEEEIIcTYW31vk0R8+mk7qMgulFYvvLT53uSOzhx63zzTj3BgmHfYBUtkUi+8ski6lMWlDZ6ODGzp0WlOsF7FDy7A9JJVNHRk3Cx1pqjerz2ysu+xad1vYoSXpJ3Q2Q0hu+YNl7vl7ANS+VaO302P7s206m51pG1/rbuu1fl6EEEIIIYQ4MO9BudnGGZNmff1PGAz2xiG5Ed4fPlDlx9+D1ikGgz3W1/+ElZUPZlp/u73O6upPsLt7n36/QS53hXS6QBzv4b1FKUM2W2Y47OLckGx2kdXVn6DdXp85QLe5+SnN5h28dzSbX9DpbB55/Lu7DygWaywtvUejcZtsdpF6/aOZ1l0qrdJofE4uV+X+/d+n03lMOl0iig4aFBqNzxkO2xSLV1ld/XPTcUIIIYQQQojX03k33J23drtNv99/bnhuwjlHv9+fOUBXKpVoNBrk83nW19dptVoUCgXS6YOJRprNJt1ul2w2y9WrV6fjZjEJ2mmt6ff7dDodisXikWU6nQ6dTgdjzLS5b9aAnhBCCCHEm+6lBOiEeBXposY1HKZgcAWHHVkJ0M3icLCNEMhSaXUQbpvsi3lgAM66gxNDHUefY83zfwtN2uz8oe+fx4zvR4WZ/dEhAKcL+kgQLroa4d/yuHWHXjoI0fmBh0Ot8qqg0EvhAZva8Y1s3nlcy+E648drws+YruhXosHNdcIfBVwvXKqsOhKegxCG9Jnw+F3PYcoG15EAnRBCCCGEEGepUC2QyqYYjmZrNACIshGFauGZy2x+uknrixYLby0w6o5oftnEjizeebzzjPojSldLLLy1QPNOk1wlR/2j+rHrKq2WaHzeoLBcYPfBLsP2kOUPlln50ZXpMpPgFwoKK4XpOHGgvd4GoLvdBQ+ZcgZnx39/ABq3G2TKGTLlDIO9Ad2tLuVrZdrrbQnQCSGEEEIIcQZyuQrr638CeJxLcC58FlfKhGZwHwJ0IeyWAJ719T/hp37q7820fmuHaK2p1W6RJH2GwzbGpCgUrhxZLpXKkU4vU6vdCu3dMzbcOZewsfEJwDg8Fxqus9kKmUyJwaBNHLem11erN9nY+JSVlQ/R+vmnAVQqN3jw4P/Ho0ffod9v4L2j12vgfcLkgJ5SEcZE9PsNHj36Du+993+mUrkx0/YLIYQQQgghzp4xZq62sVkDVi8rQOe9Z3Nzk42NjaceT6PR4NGjR9TrdWq12swt2xAa4RqNBqlUCmvtdLsOr+PwdalUikajMW2Me55KpcLDhw/Z29vDOYf3nv39fSCE3ibBvcnXe3t7rKysUKlUZlp/qVRiZ2eHwWBAv9+fPibv/bSBTinFcBj2KweDAd77mQN6QgghhBBvujMJ0D18+PDI99euXTuL1QpxrnRFw1egUOiqDg1pOxe9Va84Q2h0O9QSp5xCeYUyodENDUwa2S0HzXGapxvmDBCFkJsf+vAbyQDDQ/c3abWblRvffzZsq/ceZRRm2YTLmiF6K5oG27z3JIME1wxBMb8QwmPTEFxeh8AdoJc0pnb0jwnee+ymxW7apxokXMPBVyF0Z2rmVDvzZ84+cZk+Yblx895TywshhBBCCPGmmneilRM+/heuFEgX0ww7w9nWqyBdTFO4cnKAziWOjU/CCZPNL5p0t7pkShnK18pkShkG7QFxK6a71UVpRfVmlY1PN1j5cAUdPd2wXblR4dF3HgFQrBXpbHTY/mybbCV7ZH2T26NshMkYKjdmO/j3prDDsEOVDBL6zT7xbsxgb4C7Fg6edjY6dDY6xLsx3nmKq8Uj44QQQgghhLh4Z7xD9ORSKsL72ScXOTxuFru7DxgO2+OTGkNATik9/TeZwTGE6ELAbjjssLv7gFrtx567fmPCwZZUKsvi4juk0yWMSdPpbODcEK3TFIt1rB0yHLZJpbJHxj1Pq3UXa4ckSX/cPAfLyx+Qzx8E9Hq9Hba3P6PT2aRcvjYdN0vDndYRvd42+/sPSaUK9HoNRqPuU8ulUgVyuSvs7z+g19uaKZwnhBBCCCGEOB9RFM0VoIui2T7HHw6BnYbWTx9vOon3nvv379NsNgFIkoRut4u1FmMMhUI4Jra2tkYcx1y/fn3m8+4ePnw43f5JUC6VSh0JEFprGY1G09udczx8+JBvfOMbMz3OVCpFt9sln8/T7/enQbfDcrkc+XyebrdLKpWa+fmpVCr82Z/9GXEck06n2d/fp9vtorWehiedcxhjWFhYII5jut3uzAE9IYQQQog33Zn8dfudd96ZfkBVSpEkyZHbb9w4+1nolFJ8+eWXZ75e8eZQOoSp7GOLqRpc9/Q7fm+cCMiC8uPAmw8NdD4ah98SDsJzh4+nqicu9fhrDSqlUEUF+4TjlJqwPk8I68FBiG7WY7TuYIxKhaY1s2JQKUX6w/SRRjilFNH1CJsNITiFwpSfmHHHHB+C896TPAjhOwjPxVPhOxT2scXHnuh6dHEhOvPE5UnHowdPLCflc0IIIYQQQpyp3HIuHNhKG+zg+Qc4TdrgnCO3nDtxmdbdFnZoSfoJnc0OAMsfLJO/kp8uM2mM62x2KF8rT8cd13SmI039ozpr311j6b0lADqbHeJWPA3OoUJ4bnJ7/Vb92DDem8ykDd57Ousd+o0+UT4iVUjhrcfj6Tf7ZBYyDLtDkl5CZ6PD0ntLmLTsiAkhhBBCiFeD1lmce/pEwFnGzSKVKkxnzT+NVOrZDd0Ta2t/SBTl6Pdb4xDd5CTKo8cEvXc4pxiN+mSzi6yt/SE/8iP/yXPXXyqt0mh8TqGwPA3rLS9/wMrKj06XmQTcQFEorEzHzaLdXgeg290GPNls5Uh4DiCfv0I2WyGOW3S7W5TL12i312cK0CVJTKNxm0xmgUbjNt5boigzbuhL4f0I7y3eW3q9barV92k275AkMVE022sshBBCCCGEOFuFQoHBYPD8BY8ZN4tUKvXU+b+zjpvV5uYmzWYT7z3NZpNOp3Pk9t3dXYrFIktLSzQaDbLZLPV6faZ1T9Y1CRlqrclms08F6CbtdJPlntyGkzjnGI1GFItFNjc30VqTy4VjeJOm88n99no9arUaSZJM2+NO6/B52cddCiGEEEKI0znT6eFOqmG+f//+kQ+HZ0E+AIqzYGoGH3vsjkVrzd9Y+RuhNUwme3+aAbKgCxoSQttcQvgtMuRgEtLDb01FCLNNuPF1k3+aaQMdWfBDjx/50GyXVeiCxu7Zg1a5w9viD63vybCeOrhdZRSqrPA9T3QzOhKemw5RiqgeYVYMruVwnUMhuKKettU9yW5aXDNUsbumw3eP/o6zexZVUOgljWs6bNYS1V/OrJy/9Eu/dOR7XdS4hkPnw3Pq4xD20/mDHXPXc/jBeCd+fL0uygmw4uI8+XMsxGUlP8vidSA/x+KZfuOiN+BycSOHjo7fxziO0gqTMrjRyZO+tNfbAHS3u+AhW8keCc8B5K/kyVay0ya68rUy7fX2sQE6gNqtGvFuTON2g+rNKuVrZbpbXezQYtKGwkqBKBv2b6o3q9Ru1WZ6PG+S0mqJu//mLm7k8Php29zy/WUA+vRpr7dJ4oTMQgY3cux/tc+7f/ndC95yIV498llEiNOR94wQl8Hl2JFKpYoMBqcP0KVSxZmWi6I8w2Hr1OuPovzzFwK63R2iKMdo1Md7y6Rt7ukDSx7vLaNRjyjK0e3uzLT+SuUGjx59B4BisUans8H29mdksxUymRKDQZs4bk1vj6IsxmSoVGabfNba4ZHLTKZ07HKZTIk4bj21/PPcv//7WDsgnS7hnGUS8jt8P4NBm253G+cS0ukSSRJz//7v8957vzDTfbxu5P9YIS4vef8KcTnJe1dcRtlsljiO5xo3i0lY67RmHTdrU92845xzbGxsANBsNmm323Q6HZxz03OMtdbTc42r1SobGxusrKzMFECbLDMZPykEsdZO2/W899Pzjw8H3mbRaoUJWhYWFtjZ2UEpxcLCAun0QdP4cDik2+1OW+KstbRaLarV44/JPbn+QqFAt9ul2WySyWSoVCrh/MRxCE8pRa/XYzgcksvlKBQKM6//IsjvciEuL3n/CnE5yXv32V5OkmPsrEJvZxnEE2+2SfuYH3gsFo+fveXsTTNpdYtCKE17PQ1b+aEPITjC7dPn8HAQ0RMCc3DQajYOxrndcDIhw7CcMgqd06Gdzih8avy6TNY3Cclx6Ht36Gsd/qmCCgE4rSETApPPorTCVA2m+vzZ/r3z2M2wQYfDcyqrIA0Mwcce3/U4HKZqsJs2NOHNeKLsWdIVDV+BQqEKKmzXjsNnPGSAAdPXUxUUKqVCgLAiATohhBBCCPGGm3cf8YRxew/3yJazxM346bZu/8TXY5mFDHsP9068Kzu0Ry4zpcyxy2VKGeJW/NTyx1FKcf3j62QXs2x8Eg5kTprrJkzGUL9Vp3arJhMdHaN8rUxnvYNOabz12NhiY4svedLFNMPOkGE7nNjqix4daTobnaeeZyGEEEIIIS6KUqNzHZckvbnWP+s4pQz9fgPnRhzsZD25s3ZwvXMj+v0GSs3WCq11RL3+EWtr32Vp6T0AOp1N4rg1Dc6BolisTW+v12+h9WyH6I1JH7kcDNrHLje5/snln2dn54cAdLubGJMil6uwuHiDJAmBQ6UMhUIdpQyjUYdud5PFxXfZ2fnhGxugE0IIIYQQ4nmcO3lCxLMYN+/xmFnHzdMSfppxrVYLay3D4ZC1tTXa7TbpdPpIAG8wGLC3t0epVKJUKpFOp2cOiKXTaVKpFEqpI6G4w21zE0oplFKkUqkjAbhnabfD/lev1yObzbK4uDhtBZwE3DKZDJ1Oh8FgQK/Xo1wu0263Z9r+druNUopMJkMul8Nae2y4MkkSjDGk02mUUjOvXwghhBDiTXdmAbrnhdok9CZeVUopVFZh3jIMG0MJ0J3EAyNwLYdOh9lYVFpNQ28oUGmFT3wIyD0ZdjMcNMZFHGmm8yN/8L0GUqCKatpwp6zCK3/05FJ/sCyOsB2Hx+cUOjNuUStrzBVzpid0ulZoqfMjPw3P6Sv6qUY3txPCdX7Bo1C4lpspoHfWlFaYmsE+tqERj/F2DTwMDi03bsyDEDi8iLCfEEIIIYQQrzNnwwyayqiwH4UK+zGHw3PjSUI8YbISpRTOnnzg1KTNkctBe3DscpPrn1z+JEop6h/VWflwhdbdFu319rSBrrRaonKjgo5k0o2T7D3co7hapHG7gTaaKBdhMoYoHeGtJ5VLoYzCDsazniaOYr3I3sO9E5sBhRBCCCGEeJlGo/lOnJx1nHOnb2U4zbiFha/R7W7hfTLT8t4ndLvbLCx8beZtqdVuEce7NBq3qVZvUi5fo9vdwtohxqQpFFaIonCyY7V6k1rt1szrLpVWaTQ+p1BYZnf3AXHcotfbIZ+/Ml2m19sZh/VCe9xk3CySJLQLWhsCj+l0iUym9FTTXSZTYjTqTJebjBNCCCGEEEI87bwDaOcd0BuN5ptIZdZx7XYb5xx37txhf39/2qjW7XanzXDZbBalFPv7+9y5c4dvfvObMwfE6vU6jx8/JpfLTcNuAMYcHBM7HKTL5XKk02nq9fpM2z8ZO7nMZDIUi0WKxaNN7EmSMBgMnlp+1vU758jlciwsLJBKpZ4K6C0sLLC/vz99XWddvxBCCCHEm+5MAnS/+7u/+8zb5/3QLsRLM95/UFaFJjRxPAvE4AYONKEZzoKKxo1lOrTR4QiBOU34ehJ2O3RupiI0nHnnJ1egonCdilQI5+VBDcehPE0I1I2XnZ5gyqHrDrXPTddZVqiSCus+Q64Tfq+5XrhUWXUkPAeg8xqfCSE113OYssF1LiZAByEQ52OPa4Zt8Athu7CEtrl8aP0D0Ev6uY19QgghhBBCiNPLlrMkcUKUibCxDQe7lA6TV4z3obwPTdZaa6JMRDJIyJafnl1yorRaovF5g8Jygd0Hu8StmN5Oj/yV/HSZ3k6PuBVa7worhem4WehIU71ZfaVDXS5xr1zIr73eZuFrC+ze2wWgUCtQrBUZ7A9w1qGNJrOQobPZIekl6Eiz8LUF2uvtV/q5FkIIIYQQb47Q3HZ+45yb7wS/Wcel00VGo9OFvUajPul08fkLjimluH79Y7LZRTY2PgGgXL52ZBljMtTrt6jVbp1qssdK5QaPHn0HgGKxRqezwfb2Z2SzFTKZEoNBe9p0VyzWiKIsxmSoVG7MtP4oyo23LwXAcNg5drnBoHNkuck4IYQQQgghxMs3b1Bq1nHzFmXMOs5ay/r6Ou12G+89cRxPw3MT/X4fYwypVIp2u836+jpLS0szrf/DDz/k008/nbbCDYdDhsMhSimMMVhrp/eVTqcpFAoYY/jwww9nWv8kiDe5HAxOmNRyfP2Ty592/cPhkEql8lRAb3Nzc671CyGEEEK86c4kQPfxxx+fxWqEuDgGfM/DfMcB3xyO8BwdbpPToRWBYWigU2kVGuVGHA24+XA7AClCKO7w/qMG0uP163GD3BWN73ts14bbxy0MWA6aGY5rutPjMJ4HYrBrFl3U01lqzoR94vKkFvcM4XE+ufwFUEoRXY+wWYvdtCgUpvzEzrMJQTtTO9vGPiGEEEIIIUSgI02UjdAmhOY0GpMxaH2wz+Kcgzg0SesohOieFQKr3Kjw6DuPACjWinQ2Omx/tk22kiVTyjBoD0J4bnx7lA1NaJUblZm2+VUMp01479n8dJONTzaww6M7XI3PGzz6ziPqH9Wp3aq99H0cO7QopSiuFum3+igVXs/c0tGTTdPFNKl8iuJqEaXUU49DCCGEEEKIizLneZMzjzvvEzM3Nz+FU0+c6cbjZqeUol7/iJWVD2m17tJur08b6EqlVSqVG2h9+sPyWkfU6x+xtvZdlpbeA6DT2SSOW9PgHCiKxdr09nr91sz3deXKN3j8+N9TKNRot9cZDtt0u1vTJjuAbneL0ahNaLirT8cJIYQQQgghLsZ5N9yd934awM7ODgBxHJMkCVrr6T/nHM45kiTBWksqlZouP4t0Os3777/PD3/4QxYXF9nb22M4HOK9J0nC7P1KKdLpNOVyGYD333+fdPqkk/+OKpVKNBoNCoUCu7u7xHFMr9cjnz80qWWvRxyH43KFQmE67lVYvxBCCCHEm+5MAnRCXHa6qPGDcXOaeDbP0TBYihCiS3tUVqGGCkbglT9YbtKiMPTookblFHbfTgNvKqUgCSeHkg3rdLvjFyPLwbHNSUjuifVOv1YH2+etn7apoUJjXPIgIboenc1Jk+aJy5P+xjB4YrkLnuxFKUVUjzArBtdyoUlv0kBX1OjKuPlCCCGEEEIIcS6KK0XSpTSD9gClxy3oHuzoIDQ1aaNTWmEyhvRCmuLKyQ0IOtLUP6qz9t01lt4LM3B2NjvErXganEOF8Nzk9vqt+nPDb69yOG2yffd/7z7NO00Akn5Cd7s7DflNmvbWvrtGvBtz/ePrL3U7TTrsAEaZiFwlR7acpVAvMNgb4BKHjjSZcobOeofB/oAoEx0ZJ4QQQgghxEULs/OffvbJWWe+936+z+ezjtvY+B6nD9D58bjT0zqiWr1JtXpzrvHHqdVuEce7NBq3qVZvUi5fo9vdmgb0CoUVoig0llerN6nVbs287nfe+ZjPPvstAHK5Jfr9Bs3mHdrtDTKZIoNBZxyeg1yuSiqVI4pyvPOOTK4rhBBCCCHERXkZAbfztLe3h7WWJElIkgTv/TQ8N/kaOLKMtZa9vb2Z7+Onf/qn2d/f5/Hjx1QqFUajEf1+H+ccWmtyuRypVGjYvnr1Kj/90z8987orlQqPHo0ntSwW6XQ6bG9vk81myWQyDAaDabitWCwSRRHGGCqV2Sa1PO/1CyGEEEK86SRAJwSgK+OTBietaq/G/uKr6/DzM26MQ41Db57wPE4u4aAZToUQne8fDdf5xKOMAgWqpELYru9x1qHyCnKEgJoZ/7McDdUd3i4X2ueUCg10bs+hl3TYvqbDZi1R/cV/9emixjUcOq+xexYfe1wvfD/hei4EM2F6vS5ebDvDhNIKUzWYqpyYKYQQQgghxMuUr+UpLBdCI1mk8LEniZOn921UaPGOchGFKwXytfxJqwSgdqtGvBvTuN2gerNK+VqZ7tbRMFmUDftC1ZtVardqz1zfqx5OA9j8dJPmnSbeeZpfNOlsdo7sr+4+2J2GBhu3G2QXs9Q/qr+07Sutlmh83qCwXGD3wS7xXkzprRLVm9XpMr2dHoP9ASimz2lpVWYJFUIIIYQQr4YoKmBtPNe42Zw+nHeacf3+FkqpU50oqpSi39+ac7vOnlKK69c/JptdZGPjEwDK5WtHljEmQ71+i1rt1qn2y6Ioy40bf4Xbt/8V1epNGo079PsNRqP2NDgHilyuSrX6PgA3bvyfpoE9IYQQQgghhDitwWBAkiQMBgOcCycXHm6Gm+y/TS4HgwHpdJrBYHD8Co9hjOEXfuEX+Hf/7t9x584dgGlg7vAy77//Pj/90z898yQwAFpr6vU6a2trLC2NJ7XsdIjjeBpsgxBum9xer9enwcCLXr8QQgghxJtOAnRCEMJE+oo+aDgTs/GH/o3Gl5qDgNvkeOTk+4jQrjDi4HmOwxif96iRwjVdCMAtKBwONVLorMYNHD4etwRO9lkdR8N8k6BeEVReoWxobcCH8JypGuymxayYF25Z0xUNX4FCoQoK3/W4HYfPeMgAA6bhOVVQoQ3PHAprXiLeeWmrE0IIIYQQ4oykcimWP1xm45MNcGBSBm89LnF471FKoSMdJhlxkPQSlj9cJpVLPXO9Simuf3yd7GI2rBsoXysfWcZkDPVbszXGverhNJe46eNsftGks9EBIFvJkillGLQHxK14en31ZpWNTzdY+XDluc17Z6Vyo8Kj74xnCa0V6Wx02P5s+6ltnNweZSNMxlC5IbOECiGEEEKIV0OhUGMwaMw1bjbzzmg52zjnwHv3/AUPr9k73OmGnDulFPX6R6ysfEirdZd2e33aQFcqrVKp3EDr+Q77f/DBf0ans87jx39MtXqTXm+bdvsxziVoHVEqXSWfX0YpxdWrf44PPvjPzvjRCSGEEEIIIU7jcIjqZYw7a6PRCO891obZ9yfHqw4H55RS0zCdtRbvPaPR6SZgMcbwl/7SX+Inf/In+bM/+zM2NjYYjUakUinq9Toffvgh6XR6rsdQq9WI45hGo0G1WqVcLtPtdrHWYoyhUCgQReNJLatVarVZ95GfXn+lUiGKInZ3d6frX1xcpFQqoZSaa/1CCCGEEG+yFw7Q/dt/+2/PYjvm8rM/+7MXdt/i9eKdRxUVXvmD1jQxu0mA7nA7nCKE1ybPpwOS8b+JcSudMuOwWyp870YO1QihM698CNRlQ6OcH/qD9Sfj+xuH5DBAFrTRMCSEIstAE3zX4xc8CoVruRduXlNaYWoG+9iilzQOF+5j4OHQhDeqoEIDHmBqLx7ce5m899hNi920B42BY67h4KvwmEzNvPSmCSGEEEIIIS6r0mqJ7lY3tMFpsH2Lxx98plZgrUXZ0D4X5SK6W92ZWsmUUtQ/qrPy4Qqtuy3a6+1pY1xptUTlRmWm8NhlCKe17rawQ0vST0K4D1j+YJn8lYOmvt5Oj+3PtulsdqZhwtbd1pEGuPOkI039ozpr311j6b3xLKGbHeJWPA3OoZgGEQHqt+ov7TkUQgghhBDieUqlGs3mZ3ONexVks2Xa7ecvd9y4V5HWEdXqTarVm2e4Ts2f//P/Bf/u3/2/uHPnf8XaAen0QYPgYLBHkgx4//2/yp//8/+FtBoIIYQQQgjxHKdtwT48bhaTtrbTmnfcWXsyCHc4MAdPB+pOGjerdDrNt7/97bnGniQ0hV8nm82ysTGe1LL8xKSWxlCv16nVnj+p5XHrv3btGp1Oh7t3705fu0lT3u7uLp1Ohxs3bnDt2jU5b08IIYQQ4hReOED3cz/3cxfyAUwp9cp8qBeX1yQglGwk2E2L8gpv/NGQl5jdJCynOJj8c9LqNzme5g/dbpm2xvmRDy1tkzCcD8FGkoPlp0E6zTSo5u0Tr9cIvPLosgYLaqDwaQ9DcD2HKRtc58UDdBDCYz7203Y7v+BxvUMtbXkdHhOglzSm9uL3+bJ470keJLhmeFH96JjHhsI+tvjYE12PZGdcCCGEEEKIGZSulmjcbkwb5iA0W0OYqAN/8D0uXNe806R09fkBugkdaao3q3MHxS5DOK29Hs6C7W53wYdw3+HtA8hfyZOtZIlbMd2tLuVrZdrr7Ze2jQC1WzXi3ZjG7QbVm1XK18p0t7rTYGNhpRDClIQgYu3Wq3GisRBCCCGEEAD7+49f6rizVizW2d7+/lzj3hTeex4+/LfkchW++c3/G1999Yc0GnemDXfV6vt87Ws/RSqV49GjP+D69Y/leJAQQgghhBDPME947jTjJs1tpzXvuLOWyWQYjUZEUTRto3POobWehg+dc9Ng3WS5TCZz0Zt+RGgKr7OyskKr1aLdbk8b4kqlEpVKZe4JSLz3PHjwgMFgQL1eZ2tri2azOV3/0tISKysrDAYDHj58yPXr12U/TQghhBBiRi8coJuY94O/EBflcEDI73l8x4eglfwoz28Sjpv8mwTqDCEYZwhNdZNlGV+vx+E4wsmiJCEEp0YKn/jwm2pyYqkZzziTDq0IjJgG7iahPL/ncbGDMiivwIxPQJ38HeCM/h6glCK6HmGzoaVNoTDlJ0Jy5nK2tNlNG94bPgQEfffoG8Pu2Wm7nms6bNYS1c/svxQhhBBCCCFeWw//j4fgYdgZAmEfBw7Cc6jxZCJjw86Q/JU8D/+Ph7z3C++9lG28DOE0O7RHLjOl4w+cZkoZ4lb81PIvi1KK6x9fJ7uYnbb6TQKHEyZjqN+qU7t1+llIhRBCCCGEOE+dzvo5j4uYb1bL2Y5HODeZyfE0B//UeNybYXPzUxqN2+ztPWR9/U+I412MMRiTA2B39x5x3GJ19Sfw3pPNLlKvf3SxGy2EEEIIIcQbzBgzV/HEpL3somWzWeDpQJ9z7rjFcc6hlJqOe9VoralWq1SrZ3d8bHNzk0ajwd7eHuvr68RxPL3NWsvGxga7u7usrq6O99Oy1OtvzkQwQgghhBAv4kzSDhKeE5fRJCDkrCN5nODaDjochL7EfNShy0mbnAkBOa8OtcXpsIyKVPiXVpAC5RRe+2mTHApIQGVUWF4rbCe0BT4VnnNhvZNWOrfr0E7jnUeX9PTEVM7w7wFKKaJ6hFkxuJbDdQ61tBU1uqLDibCXiHehmRE4Ep5T2RBcZAg+9viuxxHa9+ymxayYS/dYhRBCCCGEeNm2P9vGJQ5vPd55lFZoo8N13oeJOVImfO883nqcdWx/tv3SAnSXIZxm0ubI5aA9OHa5yfVPLv8yKaWof1Rn5cMVWndbtNfb0wa60mqJyo0KOppvFlIhhBBCCCHOk3PHf84+q3HpdIHhcO/U60+nCzMtZ22MUgbvZz+5VCmDtfHzF3wNOJewvv6nNBq32dr6PoPB3jQ8qHWEc+F5i+MWjx//e5IkxpgMKysforVMqiiEEEIIIcRFiKJorgBdFM32GV5rfWKY7XnjZpEkCdlslm63O22cO+n8Y6UU1loymcxcj/kycs6xvr5Oo9Fga2uLwWAwfT0OvzZxHPP48WOSJMEYw8rKytyNd0IIIYQQb5IX/sv23/ybf/MstkOIl+pwQMg+trg9F5rOJAv64g4/h4fa6FROQR+88SHoNmmrM4fGjML33vtpGI4UEIFKK1RWhXBcexySs4R/hzNbkzBdEtbjOuMd+gzofNhJ1MWz31lUWmGqBlN9NWbreRGuFUKAfuSn4Tl9RU+fPwDXc7idEK7zC+EkX9dyr8XjF0IIIYQQ4jztr+1P93dsYkOQLvIoddDKbYcWl7gwCYgG7HjcS3IZwmml1RKNzxsUlgvsPtglbsX0dnpHmvJ6Oz3iVgwKCiuF6biLoiNN9Wb1pbX0CSGEEEII8aK8n2/WyVnH5fPVuQJ0+fxsn6mV0hiTOtWJlsakUOrNOOmw1bpLq3WXdvsr4niPwWCfKMoSRWnAo7UhSYYMh128h3Z7jVQqT6t1l2r15kVvvhBCCCGEEG+kxcVFNjY25ho3C2PMXAG6WRvu0uk0xhiUUs+9H+ccURRhjCGdTp96my6jVqtFq9Wi3W4TxzGDwYAoiqYBSK01SZIwHA7x3tNut0mlUrRarTNtwRNCCCGEeF29cIDun/2zf3YW2yHES3U4IOQa45n/9TiQNWlNkya6+U2Cc4bQODf5fhKU0+PrPfhBaJlTLpwoOg3PjZdTRh00x43XpbzCO398WG/82nkfWuywQBSCeyqlQjNc5c048DmvSejQ9cKlyqoj4TkIYUSf8fiBx/UcpmxwHQnQCSGEEEII8Tx2YHHeMWgN8DY00CmtcNZNJxrRJjRZe+sZ7A5wVx128PLa3Z4Mp/UbfXZ+uBO2M3HoKDR99xt9lFEXEk6r3Kjw6DuPACjWinQ2Omx/tk22kiVTyjBoD0J4bnx7lI0wGUPlRmXm+3CJk8Y4IYQQQgjxRlPKEA62zDPu+Tqd05/0eZpxuVwF5043e6b3nlxu9v2Gy2xv7xH7+48YDNoMBvt474iiNFGUJ4qyJEnYpxqNegyH+wwG++zvf8Xe3iMJ0AkhhBBCCHFB5m1im3XcaHT6fcDTjNNaMxwOZw7pee8ZDodvTLva3t4e+/v7DAYDBoMB3vtpgO5w++BoNGI4HDIYDNjf32dvb08CdEIIIYQQM3jhAJ0Ql9E0INRx+DicsOiHh4Jb0kT34g6HEB24vgttCu6JZZIQonMjFwJ3k+sVoX2OcXudBZ/40BQ4CcpNllOE32aT6ycBPRfaBrXRqCiE8EzNoPThyjrxFPvE5UkT+GSAwTHLCyGEEEIIIU5Uulqis9EJgTlCu7Z1Rz9MW2un+zsucXQ2OpSuzh5Oe9Hg1ySc5n1oxmvda9H6skWUj0hlU4ziEUkvQWnF0vtLmIw5dTjtRelIU/+oztp311h6bwnvPM0vm3Q2O3gX9vNT+RRLX19i6b0lAOq36jM9fu89m59usvHJBnZ49LVpfN7g0XceUf+oTu1WDaVk/1IIIYQQQry+0ukC/X4817hZTAJapzXruMXFG3h/upM/nRuxuHhjns26dPb2HuJcQpIMsHZAKpWnWFwlnS5OlxkOOwyHXUajHtYOcG7E3t7DC9xqIYQQQgghXm1a67ka3GYNiFk73wla8447a0op4jieeXuSJCGO4zfmeMze3h7OOZIkwVpLKpWiWCweaeAbDocMh0NGoxHWWpxz7O2dvt1dCCGEEOJNJAE68WYa73/5XghjefxB+Eea517MZF/ecTToNggtcGiOTlY6vn3aKDcZZ8btcymFyqgQtBt6fN/jR+Owoz+6LNH4ujT4TkhBqpRCZUMATy9pTE0a0p7LPHE5PGG5wQnLCyGEEEIIIU505UevMNgdHJ3YY7JvoznY1xlTWjHYG3DlR688d91nFfzSkaZ2q8b3/uX38NaTLqXpN/v0tnvTcFqUi8iVc3jradxu8GO/+GMvvZWtdqtGv9Xn3u/co9/sk8qlcCOHsw5tNKlcin6zz/7aPu/+/LvUbtWeu07vPfd/7z7NO00Akn5Cd7s7DSJO2vbWvrtGvBtz/ePrF3rQVlryhBBCCCHEecpmq/T7jbnGzWbeg3KzjVtYuI73pztJ1HvLwsL1eTbq0hkM9gGwNgY8Sukj4Tlg/L0G/DS4OBknhBBCCCGEeFoURQyHJ51s9exxs5i3ie1VaXCL45g4jvF+toYD7/10zJtgMAgn5E0ChkqpI+E54Mj3k0a6yTghhBBCCPFsEqATb6Zx0MfbEOjycQhkPbAPALjOm3Fg7Fw4wvM7aYabnADqxl8fd5xyRPhtNAlgaVAolFaovEKlVWg7I+wUHzmh1IeQHNmwHpUO46wZ39H4t5y5YoiuR2/MbDRffPEFAO+9996px+qixjUcOq+xexYfe1wvfD/heg4/CC/C5HpdfDX+0CJeHy/ycyzEq0R+lsXrQH6OxTN9fXz55YVuxaWx/f1tokzEIBkcbT+fTEAyuSRcejxROmL7+9t88//6zRPXex7BL4U6/M3Ry5OWm9FZBb8OH2A99mDrKTdt89NNmneaeBeCgc0vm4x6o6da7ao3qzRuN8guZql/VD/VfZzF71RpyRNvGvksIsTpyHtGiMvgcuxI5XJlWq35xs3m8A7Qacz2Gffhw9+fY91h3M/8zP9jrrGXSSazAEAUZQGF95bhsPNUA104uKfGyx2MexPJ/7FCXF7y/hXicpL3rriMzjtAN+tyZzXurG1ubs4cnpvw3rO5uXlOW/RqyWTCSZKT18t7z3A4fKqBbmKy3GTcq0h+lwtxecn7V4jLSd67z/ZqfCoW4iWbBIRUetxaNgIc/IH/A/BwXUuAbm4eSDgShsOPv0+YNsZhxtfbJ8YSZk5RJRUuIxUa5yzgQKc0bugOgnnjkJ6yCpVTeDx+6MMJgmnQBY1ZNETXnh2e887jWg7XceG+TPg50RV9tBnikvjt3/5tYM4AXUXDV+MQY0Hhux634/AZH4KMA6bhOVUILYGY8bgZvW7PtzgfL/JzLMSrRH6WxetAfo7FM/3C+PI3LnQrLo324zapUopB59BMkJP9o8PfT/aVPKRKKdqP289c7+HgV/OLJp3NzpF17j7YpVgrsvTe0nODXy5xbH66ydLNJbrbXYadIVpr8st5omxEEickvYRhZ0ixXmTp5hKb39uk9q3ac8NvZxn82vx0k9YXLRbeWmDUHRF/GeMSh7ce5x1JP6F0tcTCWws07zTJVXLPDLu5xLHxyQbeex5959H0+YzyEalsilE8orvRpbfVo7fT4+2feZuNTzdY+XDlVKG/F/2detla8t5E0gx49uSziBCnI+8ZIS6Dy7EjVSp9Dfj3c457Pq1TOHf6E0u1Ts203Nran5x63S8y7rJZXLyO1hHGZIiiLM4ldDrrRFGeVCrLaBSTJD2cS4iiLMZk0DrF4uKbexxV/o8V4vKS968Ql5O8d4V4Wj6ff6njzlqjcfqW8xcZd9ksLi6itcYYQxRFOOfodDpEUUQqlWI0GpEkCc45oijCGIPWmsXFxYve9BPJ73IhLi95/wpxOcl799nOJEB348aN6ddKKb788uhsiX/rb/2ts7ibI5RS/NN/+k/PfL3izTANCKXG7WaTCS7nmeRSPG3SPgfhOZ200unwbxK4IgKVUfihh0EYowoK5RWqOA5mjc8r87HHJz6MySlwhGAdIYw1eR2VUvjIh/BXRqGLGrWg0AsHJ6gdDm/5xOP2Hb7nURl1JLzlGg6+AlMzmJp55U44fFYI7UUorTA1g31s0Usah8N3fQjNHTrHVxUUeincl6mZmYJv3nvspsVu2qfaCF/151sIIYQQQoizkMQJ6Xz6YL9JhckrDs+2qZTCaz9tpEvn0yRxcuI6J8EvIITnNjoAZCtZMqUMg/aAuBVPr6/erD4z+NW628IOLTa2eO+pvFshX8ujtcYlDh1pnHP0NnvhM/7AopSidbdF9Wb1xO08y+DXk4+5u9UlXUqzcG3hyGPubnVRWj33MU8edzJI2Pr+Fo3bDfCQX86HfS/rSOVSpAtpets9GrcbZMoZVj5cee7jPmtnGZYUZ0uaAYUQQgjxunHOPn+hFxiXShUZDJqnXn8qVXz+QsBwuHfqdb/IuMtmYeFrLCy8zWjUJ5MpMRi0SZIQaEyS3vhyiFKGTKZEJrMwHjNbQFIIIYQQQog3UZKcfDznLMZVKhXu3bt36vVXKpWZllNKnbohbjJuFkmSnLjsSfetlJr7eb1sFhYWWFhYYDQakclkGAwG08d++FIpRSaTIZPJTMcIIYQQQojnO5MA3f3796cfXo/7cPvP//k/P9OTQib3IwE6Ma9JQMjtuRDSyhBa6MSLmQQRJ19P2uY0R9oTvPboogYPOqdDSGs/hNnIjpvPsoro7QgSQtAt8riMQ3mF23UwJITponHIbvwrxjsfglxpDsJ3icfuhxM//dDjtkPgzHuPa4TwnHd+2qpGFEJ+ekGjFzT2scXHnuj6s1vsXpZZQmg+8eG5mZOpGXzscU2HqRr8gsf1DgX18jq8dwC9pDE18+wVjrc7eZDgmi58PzpmnahX7vkWQgghhBDiLKXyoSlBG43TLuyLTHakxoE570N4TmmFNvrIuONMAm9JPwlhKmD5g2XyVw5mE+3t9Nj+bJvOZofytfJ03HHBr/Z6aLvrbnfBQ3Ypy/I3lp9abnO0OQ2pla+Vaa+3nxkkO8vg11k/5snj3v9qn9bdVtjvGlp6O72jk+0oSIYJJm1ofdkiu5h97uM+S2cdlhRnR5oBhRBCCPE62t//6lzHJUk81/pnHTfvx6035WNapXKDSuUGSdIjjlsAOOdwzqJUhPcJWkdEUZpMpszCwlssLX2dSuXGc9YshBBCCCHEm+u8A3TN5uknITnNuHnCc6cZl06nT/zb+EnrUEqRTqfn2q7LplKpUKlUSJKEOA77vmE/zU3P0dZaE0XRNDy3tLQ0c0BSCCGEEOJNdyYBOiEuI1MzuL4jeZRg8gab2CPtWuKUDofnxk1zROPZZQyhZc4eXKdQoSktAXKgnIIeqJLC1M10nNt3+E44eVTr8cl+RUIDHR7i8PUkQKdQ02Y6lQ/hOh1pXNOR3EnwfR/a6HLgth12z8IIXN9Nw2gqCgE813SojMJcNSG4m1VE9Yv9tTlrCI1RCBOeFGx+HqUU0fUImw1BPYXClJ8IyZnTtcXZTYtruhBcbIZWuyO379lpq51rOmzWXvjzLYQQQgghxFmr/ViNO//rHaJMxKg7OmhDV4T9qEmLN+EzfZSJGPVH1H6sduI6nwq8VbJHgmQA+St5spXsTIG3SXPW5DJTyhx7v5lShrgVP7X8cc46+HXWjxlg1B+x/2gfZx2D/UEIL6YhykdE2YgkTkh6CW7ksLElu5hl/6t9Rv2XNyPPeQQHxdmQZkAhhBBCvI7OO0Bn7XwBulnHpVIFhsP2qdefShVOPeYy0jpidfXHsXZIFOV4/PhPxkG6sKOqlAEU2WyFq1d/goWFt6nXP0JrOXYjhBBCCCHESZxz5zpuZ2dnrvXPO+6sLS0tsb6+PnPTnVIKpRRLS0svYesuntaa1dVVrLVEUcTjx4+nQTo4aPrLZrNcvXqVhYUF6vX6wXmVQgghhBDimc7sr9vP+zA778wUQpwXpRSpd1Ik9xKS+wkqrY6GwMTsJid5Ti5hGpYjIjy3jEN0nhBY23dgwm06q1FO4bVHFUPDglpSISS37yE/DooNHCTgUx41UqiRghyQHle4J6FFTuc0Kqum2+ISB4/H968hWUumbXQMwMehgQ4IPwMjQsNdZvy7aw1IIDEJZsWEhrsLMmsIzeNRVmE35w+hKRUCg2bF4FoO1zkU1CtqdEXP/Fx4F1rzgCPbrbLjtsDh+HXoehyh9c5u2gt/voUQQgghhDhrV3/iKi5xjHpPhK4mQbonjHojUvkUV3/i6onrPOvAm0mbI5eD9vGzzUyuf3L545x18Os8Qn69nV7Yf/RgBxaf8hRXi6SLB7OaDjtDtv/jNm4UlnMjF1rqXpLzCA6KFyfNgEIIIYR4XQ0G++c8bt6DcrONW17+UbrdjVOvfXn5R0895rKq1W4Rx7sopVhYeIv9/TV2dx9g7QBjMiwuXmdh4S2UMlSrN6nVbl30JgshhBBCCPFGGw6HL3XcWXvvvff47LPPMMbM1LpnTJjY/b333nsJW/dqqNVqxHE83k9bYH9/n93dXay1GGNYXFxkYWEBpRTVapVa7eRJOIUQQgghxFFnEqD7lV/5lWfe/ru/+7tncTdCnDmlFKkbKfzIY7+yEp6b12QCnElrwiSIaAlNbokLrWgJoAlBORS+50MwbRxgVFmFyY9PuByA73pUQeFih9tz+NgfhOL8eJ1DoAd6RaMXNX4vtK75vgcVAlq+7XG77mBbFSFsNw7NeetDaE4R2vJ0uB/vPKqncHkH2dBM51oh3HURThNCmwTdziKEprTCVM0LPW7XCuE7P/LT7dZXNDp/cKKg6zncTnhcfiH8jFzk8y2EEEIIIcR5iHdjlFHY0Qz7oB7syKKMIt49uWHhrANvpdUSjc8bFJYL7D7YJW7F9HZ6T4Xd4lYMCgorhem4k5x18Os8Qn4K9czvT7vceTiP4KB4cdIMKIQQQojXlXPHf84+u3HnG6BbXf029+//f0+99tXVb596zGWllOL69Y/JZhfZ2PiEcvka5fK1I8sYk6Fev0WtdmvadiCEEEIIIYS4GOfdcHfelpaWyOfzdDqd57bQKaXQWlMoFN6YBjqY7KddJ5vNsrGxQblcplwuH1nGGEO9XqdWq8l+mhBCCCHEKbyUAN3HH398FncjxPkogI0ttC56Q14TnoNAnRp/PQKPPwjWjb/31kMKlFGhNS6lIAKvPL4XAlS2YXFbDj/0qCi01BGP16E85MBkDXbXomKFXtAQg8qF+naVDc10KlL4ocf1HSoaX98Zh+gcoT0PQvBssp3jRj3f97g9h01Z7L69sEDXaUJoOPAmBOlehRCa67jp9kEI/R3ebgCd1/hMaBF0PYcpG1zn4rddCCGEEEKIs9S408D50x2k9Hgadxq8+/PvHnv7WQfeKjcqPPrOIwCKtSKdjQ7bn20/1aY1uT3KRpiMoXKjcuJjOOvg13mE/PJX8qENTEGUjVBK0VnvEOUjUtkUo3hE0kvQkUaZ0GKvU/qpIOB5Oo/goHhx0gwohBBCiNfX+Qbcztvu7v2XOu6yUkpRr3/EysqHtFp3abfXsXaIMWlKpVUqlRtofSanFQghhBBCCCFe0LxhqVclZNXv97l27Rp37tzBWou1J08AqLUmlUrx9ttv0+/3X+JWXrywn1ZnZWWFVqtFu92eNtCVSiUqlQpa6+evSAghhBBCHCF/6RZvNOccyZ0Ed8+FBjJxNibngiYHIS7gIFznD24nCY1v1lnQkGwkpN5NQRyCYq4xDs8VVHiNhoRgmwE/CM1xTjlUOjTcKa2mLXOTcJltWPSCxu5b6HPQjje+/+n2TBr0JuE5Ow7+WUIjXs/j9y7uoO9pQmhhwYNxFx5Cs09cpk9YLgMMjlleCCGEEEKI18TGn25guzbsa8zA40k6CRt/unHiMmcdeNORpv5RnbXvrrH03hLee1pftOhudfHWo4wilUtRea/C0nthxs/6rXoIn53grINf5xHyi3IRC28v0N3qkillQnhPQdJLSHpJWEiFbTJpgzaaha8tEOVe3p/XziM4KF6cNAMKIYQQQrya9vYeEA74nGYSEz0e9+bROqJavUm1evOiN0UIIYQQQghxglwux2h0+hMdc7ncOWzN6VlruXr1Kuvr60cex+GGPK31tH2uWCxy9erVZwbtXmdaa6rVKtWqTMYnhBBCCHEWJEAn3mij/zgiuZeEIJaFX9S/eNGb9HoZEQJQhoPg3OHzKQ8F11SicPsOFztcz6FTGh+Nm+hSITznh2HApEHO+RCu8z0Pg9A6Z3csKh2CZdNw2Xj/WhkVWgI0uKELDXiHA33mYBuVVuGE1vE5kljwcWiwuzCnCKH959/4z1FFdXT5i2SeuByesNzgieWkJOGN9ku/9EsXvQlCnAn5WRavA/k5Fs/0Gxe9AZdLr9ljFI9QqJlCdApFEif0mr0Tl3ky8AbQ2ewQt+JpiAwVgmSzBt5qt2r0W33u/c49+o0+US7CjixOObTRRLmIfqPPfn6fd3/+XWq3as98HE8Fv5ox2z/cRmuNSxw60jjniJsx6OcHv87jMZdWSyx8bYF4N6bf7GPShvxyHm89zobHrYyit9UDBUtfX2LhawunDqe9yO/U8wgOihcnzYDnTz6LCHE68p4R4jK4LDtSk1kH5xl38eJ4l9NvixqPE+Jp8n+sEJeXvH+FuJzkvSvE06JovlN+5x131owxtNttisUiw+GQfr+Pcw6tNd57lFLT8Fwul6NYLNJut1leXr7oTRdzkt/lQlxe8v4V4nKS9+6zXdin4uFwyHe/+13+9E//lDt37rC3t0en06FQKFCpVLh+/To/9VM/xU/8xE+QyRw/a7MQL8IljtGXI+yeDQGjiysWe705po1w0+8Zfz+Z9NOCdx7SoX7cNzwuHcJ0fuBRGYXyIfimSxpVUNNaeddxYfzo0Pihh8VD26APXY6b5aav9+TYrzrYJmVU+O3oCQE6d2i5iwyjXeIQmi5qXMOFRsA9G8KIPXekQc/1wusNTK/XRamaF0IIIYQQr5fB/gA8eH9oJ1Qz3ceB8W3u4GvvfRj3DLVbNeLdmMbtBtWbVcrXynS3utihxaQNhZUCUTb8Gah6s/rcwNt0O6bfHLPAKc5DnQS/Jgc/m/eaNL9oEuUjomxEEoeWN2UUS+8tYTLmucGvs37Mk21c+XCFwd6A5hdNelu96TaO+qMj27j84TJRNnqp4bTzCA6KFyfNgEIIIYR4fV3uAJ33DqXAn+IhhOUvcDJFIYQQQgghhHiG4fCkE8bOZ9xZKxQK7O/vk8lkMMaQyWSmgbkJ5xzee4wxZLNZ9vf3KRQKF7jVQgghhBDidfHSA3T379/nH/7Df8hv/dZvsbu7+9zli8Uif+Nv/A3+3t/7e7z//vvnv4HijZE8SPA9HwI7chzs/B0OrCkOAmqHj72OQpDODzxkCUEwDz7xIQSWCS10fuRRWRUuI4XX/qDtLk0IvR3a51cZhe96VFqBG4f1ntyuSThOgdceNVQHwbND26iiizvoe5lDaLqi4avQnqEK4fVwOw6f8ZABBky3WxVUaB0043FCCCGEEEK8Rrz1T5+D+mSgjqO3ocbjnkEpxfWPr5NdzLLxyQYA5WvlI8uYjKF+q07tVu1IYO84m59u0vqixcJbC4y6I5pfNrEjG/bZnGfUH1G6WmLhrQWad5rkKjnqH9VPXJ+ONLVbNb73L7+Ht550MU2/1ae33ZuG6qJcRK6cw1tP83aTb/3it54Z/Drrx3w4nPb2X3yb/HKe1hctRv0RbugwKUO2nqXyXoXq+1WUUhcSTjuPsKR4MdIMKIQQQggxr8lMi/OMe758foVW68tTrdl7Rz6/Msc2CSGEEEIIIcT5u+wBugml1JFjY957tNY4JydyCiGEEEKI8/NSA3S//uu/zq/+6q8Sx/GRD7/HncA0ub3dbvMbv/Eb/A//w//AP/gH/4Bf/uVfPjLbhBDzcjsuBK1GF70lbxhP+M2jx19PLkccDbP1CCeVTkJt1qO0CmErDa7tpoE5lVXTk1BVWuH7/ki4TOUVtDjaHud56oTV6fY48MofBPw0YEDlFCp7gQG6isY/DAFDbz2+53EdhyoodEmHAOIrGkJTWmFqBvvYopc0DofvjsOSh4o0VEGhl8L2mpoJr7kQQgghhBCvkdLV0sG+xsR4X2R6sPDwscFx2K509flNVUop6h/VWflwhdbdFu319jRUVVotUblRmSns5RI3DaQ1v2jS3eqSKWUoXysfCQN1t7oorajerLLx6QYrH67MFyZ78vkA/IwtF2f1mCcOh9OW3lsilUux+2AXO7CYjGHx+iKlt0rTx30R4bSzDg6KFyfNgEIIIYR4fZ1vwE3rHM51T792nZtpuYWFq6ytaY4eIHru2llYuHrqbRJCCCGEEEKIl8Ha0+zfvPi4s9btdllYWODx48dYa58Z7FNKEccxV69epdvtsry8/BK3VAghhBBCvI5eWoDuv/wv/0v++//+v58G4w7PIHHiLOschOuGwyH/zX/z3/BHf/RH/E//0/9EFL308jzxmvGJPwhNzXZenjgrnhBeNKBSCj/0B810k0Dd5J9jepvve5x3B8sp0GmNcgofhVY6ZRSMj5sebjhzicN3PCqjUF5Nm+yAaUhvsk4IXysTfk8pFDqj0XmNLl/MyW3ee+yWxbc9rumm2+qHHj/0uJabBvx0Ub+SITRTMyHY2HSYqsEvhJAjlhD0y+sQ+gP0ksbUzLNXKIQQQgghxCVUrBfRKY0eapw9dCLqCS10Wmt0SlOsF2e+Dx1pqjerVG9W59rG1t0WdmhJ+gmdzQ4Ayx8sk7+Sny7T2+mx/dk2nc3ONLzVuts68T5d4tj8dJPqzSq97R7D9hCtNfnlPKlsilE8IuklDDtDivUi1ZtVNr+3Se1btZlCRi/6mCeUUlz72Wt0Njvc/dd3SeIEAJM24GH3/i6djQ43/soNrv3stQsLp511cFC8OGkGFEIIIYQ4vVQqw2Bw+gBdKpWZabl8folwQOV0AbowTgghhBBCCCFePfMel3hVJtuz1lIsFul0OgwGA4wxKKUYDofhPD2lSKfTeO8ZDAZ0Oh2KxeIrEwAUQgghhBCX20tJof2P/+P/yD/5J/8EpdSR4Nyf+3N/jp/7uZ/j5s2b1Go1CoUCw+GQdrvNl19+yZ/+6Z/yv/1v/xudTmc67n/5X/4XfvEXf5Hf/M3ffBmbLl5jKlIHoSnx8ngOAmtm3CowCcnpg+uxHG2oG4/1Qx9uHy9n920I0mU0LICzDrNsYMCRhjOlFaTDalRB4eOwHp94fN8fbNOhxjnvwk65yinUokItKPTCy/+B8d6TPEhwzdA2Rxf87jh0mAaFmgb/VDY0uCmlXrkQmlKK6HqEzVrspkWhMOUnts+EoJ2pmVfmDzdCCCGEEEKcpfyVPLlqDju0uMQdtK89+fF3fL1OaXLV3JHw2nlrr7cB6G53wUO2kn3q/vNX8mQr2WkTXflamfZ6+8QA2ySUZ2OL957Fdxcp1osorXCJQ0ca7zydjU6YQGRgUUo9M5R3Hrz3PPj9Bwz2Blz9iavsr+0/1UC38NYCg70BD//tQ65/fP1C913OKjgoXpw0AwohhBDidaS1xs1RQKf1bMdSnjXJ6lmMy+frKOU5zd0o5cnn63Nt13lzLqHVuku7vY61Q4xJUyqtUqncQOsXP+yfJDH37/8+Ozs/JEn6RFGOK1e+wTvvfEwUZc/gEQghhBBCCPH6i6KIJEnmGjeLWfe3zmrcWTPGsLGxgbUWYwyDwQDv/ZH9PGvDMaJMJoO1lo2NDVZWVua6P+ccrVaLdrs9vc9SqUSlUnllnpNnSZKE+/fvs7OzQ5IkRFHElStXeOedd6SERAghhBBiDi/lE9R/9V/9V9Ovvff8lb/yV/hH/+gf8cEHHzx3bL/f5x//43/Mr/3ar00/LP/Wb/0Wf/2v/3X++l//6+e52eI1p69ouAdkgfiit+YNMwnMDTkIyh0+YXRyGRGa6g4307nxdY4QpPPj5dLg9h2MQKUV0WoUAnXjhjNlFPqqxvUcft+jlsZNdR1wyoVGQsc0PKeUCi10UWh1MyWDqRh05eXvONtNi2s6vA/tbT4et3cOQ4uix6PSYTsnwcHoZvRKhtCUUkT1CLNicC2H6xxqoCtqdEW/Mo15bzrv/HNfo1mWEUIIIYQQR1354ArFWpFhe4gdWrwbHxCc7Bcd2j9SWpEupinWi1z54MpL20Y7tEcuM6Xj2x0ypQxxK35q+eM8GcrLVXNc+cbTj8mO7MyhvPOw+ekmzTtNvPM0v2yGBj5/qIHuwS5JnLD03hKN2w2yi1nqH72aJ9eKl0+aAYUQQgjxulFqvkn6Zh83X4Bu1nHD4T7en66lwHvLcLg/z0adG+89m5ufsrHxCdYOj9zWaHzOo0ffoV7/iFrt1lzHhZxzfPbZb3H37r8mSY4eNH38+N/z2We/xY0bf4UPPvjPXugE0/MOAAohhBBCCPEmiKKI4XD4/AWPGfcqyOVy7OzsEEURo9FoGpbTWk9LNpxzOOcYjUYUi0V2dnbI5XKnup+wH7XJ+vo6+/v7DAYDnHNorclkMiwsLLC6ukqt9mpOeBf20z7jyy+/pNfrkSTJtKHv3r17/OAHP+DrX/86H3zwwaUIAgohhBBCvCrO/VPxH/3RH/HgwYPph8y/9tf+Gv/z//w/z/yhM5fL8cu//Mv81E/9FH/1r/7VaYjuV37lVyRAJ15IdD1i+IMhSiu88vMfoxPzOdQqNz1BFCDFtA1OpRREh1rnJgG6yWynk9Y4B956lA0tcb7jGT0ckbqWeqrhzCwZ9I9oVFqRPEpCE1pR4XZdWMcTv5tUVmFWDXpBY+rmpYaCvPPYhmX4gyEk4DoOPwphOVMx+JTHtz2+46fPjV7WqJLCrLx64bnDlFaYqsFUT3/wXUJb58t7j90MLYE8cV6Bazj4CvRK+MOL23InLiNNgkIIIYQQx8sUMyx/sEy8G2MHlkF7cLBfdHi/VEG6kCZ/Jc/yN5fJFI8PsZ0HkzZHLgd7AzqbHQZ7g2lbXKacId6Nj13+OOcRyjtrLnHT5rDmF006Gx0gNPBlShkG7QFxK55eX71ZZePTDVY+XJFQlDhCmgGFEEII8bqYsyBu7nFnbW3tjzmYqWRWajzu9M4jIOa95/7936PZvANAkvTpdren6y8UQgvD2tp3ieNdrl//+FR/l3fO8Ud/9P9mff0/ADAa9eh2N7F2hDEpCoUwYcjt2/+KTmedn/zJv3fqkzPPOwAohBBCCCHEq8TNU+N9inHzfmZ+VT5r7+/v45xjMBhMm/om4TlgGqaz1mKtZTAYYIxhf3+fWq02031477l37x73799nf3+f0WjEcDg8EqBrtVq0Wi36/T7vvPPOK/P8QPhZ+MM//EPu3btHHMeMRqPpedNKKbLZLL1ej06nQ7vd5i/8hb8gITohhBBCiBmde4DuBz/4ARA+lGqt+cf/+B/P9WHz537u5/iv/+v/ml/5lV8B4Ic//CHf//73+da3vnWm2yveHDrSRDciRg9Gpz92Js6G5yAE5wntbzBtglOpMKuMMqENzg99WEZxENoZj/UDH9rnlIJquPSJx6yaE0NWpmpIHiSh1e1rHtd2uD0XGu4i0GWNLoXl9ZLG1OabafXUT8uhAJPbcyEkZ33YNkKbHhkwCwZVUbiew+2Mb0srfNsz/MEQXdCvVbhslmCXhLZejPd++p4A8CM/bXHEgM5r8DD6/ggAXdUh3PnEMgqFfWzxsSe6HsnrIYQQQghxSGm1RP3bdbZ+sMXewz1MZPB4fOKnB75UpFAonHVkFjPUv12ntFp6qdvY+LxBfjnPxicbtO62KKwUSBfT02WaXzTpbnXJLeXIL+en407yVCivPTh2ucn1s4Tyzlrrbgs7tCT9JDTPAcsfLJO/kp8u09vpsf3ZNp3NDuVr5ek4CUoJIYQQQojX07wTWsw6bt7P+7ON63Y3OJiVcVZ+PO4UI84xILa5+SnN5h28dzSbX9DpbHL4oObu7gOKxRpLS+/RaNwmm12kXv9o5vV/9tlvsb7+H/De0WjcptPZxPuDZoPd3YcUizWq1Zs8fvzHfPbZb/Hhh//3mdd/3gFAIYQQQgghXjXnHXCzdr79tFnHTVrgTmvW7W80Gmit6ff7wPh8sPG2TfZDJl977+n3+xSLRRqNBu+///5M97GxscGdO3fodrt0u136/f6RBrcoisjlcjjnuHPnDtlsltXV1VM/5vPygx/8gC+++ILBYECn05m25030+30ymQzOOb744guKxaKcRy2EEEIIMaNzD9BtbW0B4QPy+++/z7Vr1+Ze1y/90i/xa7/2a9MPg5988ol88BMvRC/pENLS/vTHz8TZONyyMAnU6dBQ5m24QeUUpMFvhfY1H48HqLAsUQiO4cDFDt3U6Csat+0wf86c2ASglCK6HmGzIZRlyuZIY513PgTz8qHhLnmYnHsY7ckAk+s6XN/h+x4/9KisCj+zex43cuiqRuc1LuNwuw5336GzOmz3+PzN1yFcNkuwS0JbL85u2hAo9T5cdo/+QczuWTwHjZ2u51Cop5ZRhRA6dU2HzVqi+rl/3BBCCCGEuDQqNyp0/z9dbGzRRpO4BO8OPmN5H8J0yigiE2FjS3erS+VGZeb7cImjdbdFe72NHVpM2lBaLVG5UZmpKa1yo8LD/+Mhe5/vYYcWbz37X+0DoKIwWQkqzAhqh5b9h/usfGvlmds4CeUVlgvsPtglbsX0dnpPhdPiVgwKCiuF6biX8ZgB2uttALrbXfCQLWdx1tG43TjSvJdZyDDYH9Dd6lK+Vqa93pYAnRBCCCGEuCCa+Q5wzfYZ2bn5Zp+cdZwx8/3teNZx3ifMM4tmGDfrsucXEHMuYWPjE4BxeC4E+7LZCplMicGgTRy3ptdXqzfZ2PiUlZUPZ2q8S5KYu3f/NQAbG5/S7W4BHmMypFJZkiQmSfrs7j5gNOqzuvrj3L37b/jGN/4aUZSd6TGcdwBQCCGEEEKIV82kPW2ecbOYJ9z2IuPO2qQJDo627k2273CI7vByw+GQWTjnuH37Nt1ud9rQliQJxhi01jjn6Pf7jEaj6X3evn2bWq32SrS4JUnCD37wA4bDIfv7+8RxfDAB5zjcmCQJ1lqccyil+Oyzz/jmN79JFMn5WUIIIYQQz3Pun5gWFxenXy8tLb3QuqrVKu+//z4//OEPUUqxvr7+glsn3mTeefy2Ry9pbMeG1jFxMSbHLoeEMFxmHJ4bhPCcyigYASa8btOJS3MhOKXLGp3V2G4I/7i+Qw0VOq1JHiSkv54++a6VIqpHmBWDazlcx+ETj9t3+IFHZRTKh8Cax597GO3JAJPbcfhRCPL5JOy0u45DFRT0wKUcekGHgF3fT5873w4ntL4u4bJZgl0S2nox3oWGP+DIc6yyIcDKEFw/BDVVajzb09CjF0OIc7KMjz2+63E4TNWEcOqKufQNiEIIIYQQZ2n7B9vErTi0S3uePt/VAyq0T8fNmJ0f7My0Xu89m59usvHJBnZ49OBs4/MGj77ziPpHdWq3as/cJ9CRJpVP0d3skr+Sp9/q02/2j55zqiBXzZG/kqez2eHqT159ZlCtcqPCo+88AqBYK9LZ6LD92TbZSpZMKcOgPQjhufHtUTbCZMxzg4Nn9ZiB6fhkkNBv9Yl3Y+K9+MgynY0O8W44WFlcLR4ZJ4QQQgghxMumVIT3s51E+OS42cw7++Rs4+Y9uW/WcVqnOW14Dvx43GzOMyDWat3F2iFJ0h+vF5aXPyCfvzJdptfbYXv7MzqdTcrla9Nx1erN567//v3fJ0lidncf0O2G9efzV9A6wntPKpXDuYReb4dud5O9vYeUy9e4f//3ee+9X3ju+s87ACiEEEIIIcSrKJ1OMxqN5ho3i/NuuDvvgN5oNJqG6CZjJuGw49Y3Cc/N+pw2Gg1arRbW2ml4LpPJkM1mSaVSjEYj4jhmMBjQbrfJ5/O0Wi0ajQbLy8uneMTn4969e3Q6HXq93jQ8Z4zBmINSAGst1lriOCadTqOU4t69ezM39AkhhBBCvMnO/S/PhxvnNjY2Xnh91erBjN6HPxQKcVquFdqrdEpjlZ1/kk5xNhQHjXKGEFpzHm89ru0gJrw+ycFyKhqfbJoKqzAFg2/7EDjrekiD23Hw9RnuXitM1aCXQuhOeYXKKfzIY9v2pTSdHRtgUuPHqYBeeA78cPzHg6LC73ucd/hOaKzwgxC2U+lxsyKXP1w2S7BLQlsvbvI7cfr+AfSVcThuzO94aHHQAqnDz6G5cvD/seuNg59dj1/wKBSuFV4XIYQQQggB259t037cxiaWwf4gTB4y+dh6qBjBW89gf0Aqn2L/8T7bn21T+7Haiev13nP/9+7TvNMEIOkndLe70za2SaPb2nfXiHdjrn98/cR9GZc4Rr0RhVqBre9vobUmt5QDQrjOJWHnWWtNb6fHyrdWGPVH05a24+hIU/+oztp311h6bwnvPM0vm3Q2O3jnUVqRyqdY+voSS++FCZjqt+rPDOWd5WMGMGmD957Oeof+Tp8oF+Gdp9/sTx9bbinHqDci6Sd01jssvbeESctnXSGEEEIIcTGU0sxzbqNSs86qP29DwWzjUqniXGufdZwxqbnWP+u48w6ItdthMtludxvwZLOVI+E5CIG3bLZCHLfodrcol6/Rbq/PFKDb2fkh/X6Ldvvx9Dprh1g7OLTUwT7U/v4a6XSJnZ0fzhSgO+8AoBBCCCGEEK+iec9pnXXceU9Ect7S6TRxHCYvnDSqHW6dA44E64BpUGwW6+vrOOeI43jaPLe4uDgdn8vlyGaz7OzskCQJ/X6fQqHA+vr6KxGge/ToEcPhcBqee/K5gYPnDaDf72OM4dGjRxKgE0IIIYSYwbl/Kv7444/JZrPEcczDhw/Z3NykVjv5hK/n6fV6069fhQ+s4vJynXFaLk0IZknO5mJpwmsB+MiHwFei8YPQOOedD6+TIxx3Pfw3gz74wriqPB1Cb5OWuklr26wusuns2ADTioZeOHnW+dCON3lMkxNt7XpoUJwE5yahJrWgXotw2SzBLgltvbjJ70TXC5cqq448xzCe8SlS02V0Xj/1Rxqd1/hMCHK6nsOUDa4jr4UQQgghxMQX//sXDPYGDNqDsJ8DYeKM8cEupccHvXzYDxq0Bwx2B3zxv3/xzADd5qebNO808c7TuN2g+WWTUW/0VDiterNK43aD7GKW+kf1Y9fVutvCjRzlt8vs/HAHpRULqwukiwcHJ4edId2tLjqlKV8r44aO1t0W1ZvVY9cJULtVo9/qc+937tFv9knlUriRw1mHNppULkW/2Wd/bZ93f/5daree/fejs3zMAKXVEnf/zV3s0DLsDtl7tBfWNXltlGL3/i5KK3JLOezIsv/VPu/+5XefuZ1CCCGEEEKcF+fma0Oed9xZi6LsuY4zJjfX+mcdd94BMWuHRy4zmdKxy2UyJeK49dTyzzMadYnjFt5bnBuhdYpJA58xKawd4VxYl3MjvLfEcYvRqDvT+s87ACheHc4ltFp3abfXsXaIMWlKpVUqlRvSJiiEEEKIN85wePqW8NOMKxaLdDqdU6+/WJxvApOzls1msTbsk05CYJNjMFrrI810k0trLdnsbPuBk+dmMAgTg6RSqafCd+l0mlQqhbWWwWBAoVCY6zk9D51Oh9FoNH0eJs/L4edn8r33Hucco9Holdl+MTvnHK1Wi3a7jbUWYwylUolKpYLWs058JIQQQojTOve/VhYKBf7T//Q/5Td/8zdxzvGbv/mb/P2///fnXt+XX345/frb3/72WWyieFNNjg1G46/nnURTvJhJ9saHfyqj0LmDnTxyhHDY8KDxatpEl4A3HrfvUAOFKqiD5cZZHRXNHhK76KazYwNMSxrbtygTwoEAvh9CdE65cMLtgHDbuJlPlzTR16LpNl32cNkswS4JbZ0B+8TlcRM3OcLvzMnvy4jjmzszwOCYdQohhBBCCFpftui3+iT9JHyuGrfOPXkwcHJ90k/ot/q0vmyduE6XODY+2cB7z6PvPJqGyqJ8RCqbYhSP6G506W316O30ePtn3mbj0w1WPlw5tuGtvd4GoLfTI1fJsfjOIsV6kcHeYNrEliln6Gx0GOwN6G33KF8r015vPzNAd+TxPfH11Iy7Vk8+5sbtBqPeCGUUJjLYxOKtp7vZnekxA+ExPG7Tb/bpN/oMOoPweVeDNhpn3fR7PPQbfdrrbcrXyrNttBBCCCGEEGcuOddxShm8P+6PwM8fNwvnTr/u04wL878dqvqebRTPKK4+4rwDYsakj1wOBu1jl5tc/+TyzzMadfHeopQehyoVmUyZKMpMl0mSAf1+C+fsuPHQzhygO+8AoLh43ns2Nz9lY+OTp163RuNzHj36DvX6R9Rqt57ZCC+EEEII8To57/2cy95A1263yWQyjEaj6fmBhwNhh4Nik+symQzt9vH7Q89z0ufQV/Xz6eEg5eQ4WhRFRxoKJ8G/w8fZ5g1uipcv7EdtsrGxMQ2TTjQaDR49ekS9XqdWq72yP6dCCCHEZfZSYuq/+qu/Ov0A9+u//uvT2R1O64//+I/Z399HKcW7777Lhx9+eJabKd40hmnLGCABulfBpDXOe7zz05n+VUqFEFsEhMkvwY1DdYNxO1vPYZs2hK0SUIWw86CvzP5r7qSmM7NiMIsGs2Km6/NdP226c635/vBx0uM/HGBSWqEXwn2qwjhEZ8Jj9nF4/GFDQ4hORQpz5WigT+c1KnMQpoNDDYyXwSzBLgihreOWF7MxT1we93cVTTivQo3/JRz/SWLyc/nkOoUQQgghBL1mj1E3tKRNJhIBQgudVk9NMuKdZ9Qd0Wv2Tlxn626LZJCw9f0tGrcbOOuIchFJP6G71SXpJ0T5CGcdjdsNtv5siyROaN09PpRnh/bIZbacpVgrUr1ZZfmDZao3qxRrRbLl7LHLn2Tz001aX7RYeGshNLjFFpeEpm2XOJJ+Qq6SY+GtBZp3mmx+uvncx7z5vU3W/3Sd7lY4gdONHMPeEDcK+zzdrS7rf7rO5vc3n/mYAfYe7oGCvUd7JMMk7Hd6j7ceOwyBPO9DO3oyTNh/tH8wTgghhBBCiAsx78Gt2cZpPd8fd2cdZ2081/pnHadUxOkPh5vxuFm2Y/aA2HHLP0+ptApAobAMKOK4Ra+3c2SZXm+HOG4BikJh5ci458lkFoGDwJ337qlts3Y4DVFOlpuMe57zDgCKi+W95/7932Nt7bvTJsa9vYc0m1+wt/eQJImxdsja2nd58OD3j59ERwghhBDiNfRkIOasx513w928gZ1Zx1lryeVy04YtrTVRFE3HK6WIoujI7blcbubnp1AoAJDJhBPJBoPBU499OBxOz2GeLDcZd9EmTXuHG8ieDFce/n6y3KwNfeJihf2o+6ytrWGtJUkS9vb2aDab7O3tkSQJ1lrW1tZ48OCB7EcJIYQQ5+ClBOhu3rzJL//yL+O9Z319nV/91V+daz3/4l/8i+nXf+fv/J0z2jrxptJFjd/3+J4//eST4uxMThid7NclhNdEhxNF3Z7DtR2qpFC5cYAsTfjtZcdtbL3xv86hlrohYCC6PvvsObM2nR0Oo3nnSR4njB6MGN0dMXowwjZsOBn2tE4IMKmF0K6nlEIXNSo7DhVmwvOhiuFrFOF5WjjmDxKXOVw2S7ALJLT1gnRx/Ien8c+8j/30vTDhfWg/VFEIa/rEP7Wj7noOP/BH1jVZtxBCCCGEgKSX4BJ3dB9UceTA4JEWNh/a1pLeyQ0R7fU2+1/t07rbYtgZ0tno0Pyyyd6DPfbX9tl7sEfziyad9Q7DzpDWly32v9qfNs09yaTNkctB+/iJkCbXP7n8cSaNcQDNL5p0t7qkS2mqP1Llrb/wFtUfqZIupeludWl+0QRg49ON8Fyd8Jj3Hu3x+I8fM+wMsSPLYG9Av9knbsb0m30G+wPsyDLsDHn87x+z92jvxMcMITjX3eyGsNzks+548ohpuFEdfC5OhgndzS57jyRAJ4QQQgghLsq8M5HPNi6VOj4QdlbjkmS+Ez9nHZfLLR456XAWWityucWZlj3vgFilcgNj0kRRjmKxBsD29mdsbn6f3d37bG5+n+3tzwAoFmtEURZjMlQqN2Za/5UrH6B1CqUMxmRQStPtbrG39xXd7s74cgulNFGUQSmD1mmuXPlgpvWfdwBQXKzNzU9pNu/gvaPRuM3a2h+zu3ufdvsxu7v3WVv79zQat6e3b25+etGbLIQQQgjxUswbeJl13Hk33J23SXgum82itcZ7j7V22j53+PvDy+VyuZnWf/Xq1enyxhicc+zu7rK/v0+v12N/f5/d3V2cc0RRNN2eq1evnvMjn82kdUxrPd2fHQwG9Pv9I5fAdBmlFLVa7SI3W8xoc3OTZrOJ955Go8Ha2hq7u7u02212d3dZW1uj0WhMb9/cPHmyUSGEEELM54V7mX/t135tpuWUUqTTaYbDIb/+67+OtZZisXiq+zocoHtVZnwQl5cqK1xnHPQY7x8+8A8AuK6uX+CWvaE8ITznPfTBdu2RiK/qqdC4NuIgGOUOjR0f61UZBYXQTqeXNDo6xYHRUzSd+diHAOa+D+14o4ObXcPBV2BqBlMzM8+wo4sa13DovMbu2WmASec1eknjI0+yE1oQVFqhyxrf99Pf5CoXmvqUUtzdugvAjZXxQdJLHC571vMyIaGtF6crGr4CRQhs+q7H7Th8xocA5iD83KNCuBTC+8x3wh+upsuMXwdVCEFPzHjdc/jiiy8AeO+9987iIQpxYeRnWbwO5OdYPNPXx5dfXuhWXBoma0Lj9uEDoQ68PjgwyKFjmJOGbpM9+UP8qD9i7+Ee3a0unY0OzrrpQUelVWj3Hiqcc4z6I6JsxP6jfUb90bHrK62WaHzeoLBcYPfBLnErprfTI38lP12mt9MjbsWgoLBSmI47SetuCzu0JP2EzmYHgOUPlp9a5/Zn23Q2O5Svlafjqjerxz7mre9tMewMGfVH+GT8OdQotNE467CdsHOnI82wM2Tre1tc+0vXTtzG3Xu79Bt9TNrg7LhhIW0waXOwzqHFDizOOkza0G/02b23e+I6jyO/U4U4PXnfCHE68p4R4jI4mx0ppQzenzzZxrPGzSKfv0Icb596/fn8lZmWS5L+qdd9mnFLS+9z797vMPtMmmHWjKWl92daf6m0SqPxOYXCMru7D6YBscOP/0UCYlpH1Osfsbb2XZaWwu/0TmeTOG6N1xm2uVisTW+v12+h9WynAGQyRa5c+SZfffXvyGRKjEa9cQvdAGsPJlIxJk0qlUcpxZUr3yCTme0Yf6Vyg0ePvgOEgF+ns8H29mdksxUymRKDQXv6OOYJAF4E+T82cC5hY+MTAJrNL+h0woQ5T762k+ur1ZtsbHzKysqHM/98CnHW5P0rxOUk711xGaXTaeL49G3b6fRsE20kyen3AU8zzhgz130YM9t+ZqlUIpvN0m63p+GvyfGxSYju8D8I7Wql0mwTtVSrVSqVCo1Gg4WFBdrtNoPBgNFohDEGa+00PFcqldBaU6lUqFafPhZ1EarVKqVSiWazidYa5xzee5IkOTiOSDgf25hwXmKpVHpltv848rs8cM6xsTGebLTZpNMJx0uz2SyZTIbBYEAcx9Prq9UqGxsbrKysnHpyICHOirx/hbic5L37bC/818lf/dVfPVVts1LhhK3/9r/9b099X4dnmfi7f/fv8rf/9t8+9TqEmPB7HlVQoc1qPIv8H7g/ACRAd2Hc+N+4XY7JvrgmnLzoD12vx/8m4Tkz/pcmvKaLYHuW4RdDVCo0t+mKDq0BJ5mx6czHHt/1YEJozTuP3bNh28y4pQ6FfRzCXtH1aKbfk7MEmFQUbiMatyhmfGidSyvcpoNBCJP9zg9+BwgBusseLpsp2HWGoa03ldIKUzPYxxa9pHE4fNeH53Z8nFwpFZ7X8XkGqqhQqCPLQHgd9FJ4/k3NPPt99wy//du/DciHOHH5yc+yeB3Iz7F4pl8YX/7GhW7FpZEtZ8OkBCj84RM4/fGzi6qwcBh3gt5Oj952+Jf0k7Ce8XHWSTu2x2OHFqccve0e3a0uvZ3eseur3Kjw6DuPACjWirQft/nqD79CRYooE5EMEnziSRfTlK6WiLIRJmOo3KicuI2T5rfudhc8ZCvZI+E5gPyVPNlKlrgV093qUr5Wpr3ePjZA19ns0NvugQfbDzORZsoZ0vk0OtK4xDHsDRnsDXCjsD/Z2+lNw3vH2b23i7c+LA/olKZYL4bXavI3KTztx+3pct76Uwfo5HeqEKcn7xshTkfeM0JcBmezI6V1CmtPf2Kj1qmZljNmvkPJs4+br5lh1nFRlCGVyjMYzN4anUrliaLMTMu+jIBYrXaLON6l0bhNtXqTcvka3e4W1g4xJk2hsEIUhf3FavUmtdqtmdddKq2yuvoT9Ho7bG5+SjpdIJXKMxrFeG9RypBKZRmNekyChaurP/HKBAAvgvwfG7Rad7F2SJL06XRCI8Ly8gdPhUe3tz+j09mkXL42HVet3ryQbRZC3r9CXE7y3hWXUS6XmytAN2vD2iR0dpqmu0mj2avg6tWr/OAHPyCKoum5xBOTySEn/7TW0+VmbYjTWnPz5k2+973vAeGx9/t9kiQcPzPGkMlkyOVyFAoFCoUCN2/efGWen3K5zNtvv81gMJiG/SbPB3AkXKi1plAo8Pbbb1Muly94y08mv8uDVquFtZYkSaYhueXlZfL5Q5ON9npsb2/T6XSmr2mr1XqlA5Li9SbvXyEuJ3nvPttL++vz5EQj4FSBu8MOj5u36lqICddx4R0wCUvN92MpzsO4jW7KEcJpihCam3yvD/6pSOFT/mC5FKhuCLFNGsye1wo3a9OZ23P4oUcthBZDBqAHB8vYPTsNELmmw2YtUf35v25nDTCppbBupRS6rnHbDiz4gj8Il9nQFGY37aUPl83yvMDZhbbeZKZmws9902GqBr8Q3gOHw6FE4JrhBGRd1ZDw1DIqFZ57vaQxtUtUdyiEEEII8RIorUjn0/QHTzQmnPRnDgXpfPqZn2+99eyv7WOHFu/8tD1NR3raQOcSh0sc2mjs0LK/th/2G46hI039ozpf/dFXmIyh1+jR2ehgh3Y6iYlJG4r1IovvLuK9p36r/swGcDu0Ry4zpeNPSM2UMsSt+Knln9Tb6oUmv/HjVVqRKWWOrFcZFQJ01oVlrae3dXxoEMAm4b4moUNlQmAwyhzszyWDBGUU3vrpcpNxQgghhBBCvGypVAFrT9/ilkoVZlwu//yFXmCcUvMdq5h1nDFpstkKg8E+szbQZbMVjJmt+eFlBMSUUly//jHZ7OK08WsSRpowJkO9fota7dapjsNXKjdIpb7D17/+Czg3YmfnPzIa9dA6jTE5rB0xGvVQynDlyjf4+td/gVQq98oEAMXFabfXAeh2twFPNlt5qnkyn79CNlshjlt0u1uUy9dot9clQCeEEEKI196sTXLzjqtUKrRarecveMy4V0GlUkFrTSaTIY5jrLVHzi2Gg3ONU6kUmUxm2hI3q3q9ThzH3Lt3D601uVyOwWCAc25631EUsbCwwLvvvku9Xj+PhzqXSRveaDTi3r1706DVk5RSFAoFrl+/Pm3dE6+2dns82Wi3C4TmucPhOYB8Pk82myWOY7rdLuVymXa7LQE6IYQQ4gydSYBu1jCbhN7EK8USGr2KCt+Tn81XypMvh+egae7w5eT4aCp8rfM6tMI5FZrYEoffDidJztIKN0vTmYsdPvaotIIY/HC87qyatt9NGuocIYRkNy1mZbZA1ywBpsPhpGg1wmr7VLiM8eQ8h8NzlzlcdtrnRUJb81FKEV2PsFmL3bQoFKb8xHNpIPVhmJ3Ybblw8vQxyzwrrCqEEEII8SYrXCmQKqUY9oYkvec3RZiMIVVKUbhy8gmuySBh1B2FGSidP2gMNmraxkZCaLlzYZbKUW9EMjj5/ld+bIV7v3OPjU82GLaHaKMZDod461FGkcqlGLaHbHyyQf5KnpUfW3n240ibI5eD9uDY5SbXP7n8U3x4fHZo0UajjCLpJzjrMCmDHVnc0KEjjbehfU8Z9cxzZnPVHMoolFbhkhDAG6VHR9apUOE+x8vlqrPNCiuEEEIIIcRZM2a2Jrl5xxUKtbnWP+u4WYNq845bWLiOcyOUivB++NzllYpwbsTCwvWZt+VlBMSUUtTrH7Gy8iGt1l3a7fXp+kulVSqVG3O1th0OAN68+X9haek9Nje/Txzv4b3FmCzZbJla7VtcufINlNKvVABQXBxrh0cuM5nSsctlMiXiuPXU8kIIIYQQr7NZm+TmHbe8vMyDBw9IktnbyI0xLC8vz7RsFEWnWvfhcbPY29tjeXmZOI5JpcK+6eHWucMNa6lUinQ6zfLyMnt7ezOHiJRSvPPOO+RyOR4/fky73X4qQFcqlbh69Sq1Wu2V2g/RWrO6uoq1lnQ6zdraGnt7e9M2Oq01xhjK5TJvvfUW5XKZ1dXVV6ZBT5zMWnvkMpM5YbLRQ+HSw8sLIYQQ4my8cIDun/2zf3YW2yHEy2cABzqtcWYcxBGvlsm+qT90eTg4B6i0QmVCqxoKVErh98bNZBlCO5Z2IegTjVvYGgofe1I3U0eCZDM1nQ3DfZAFv+9ROYVZMU+31O2Mxy54FArXcuiKxrVcaK2bBL+KGl3R0+2YNcB0OJx0XLiMO+G5UmX1WoTL5nlexHyUUkT1CLNinvvz6mv+ucsIIYQQQlx6KWA057hjLH59kUwxQ3erezA5yElU+JcpZVj8+uKJi+0/2CfKRcS7cbjChOCdNjo0BxsNGabNdC5xRNmI/Qf7J65z89NN9r7aAw+DvQHDzhA7Othx7ts+6WKa7GKW/a/22fx0k9UfXz1xfaXVEo3PGxSWC+w+2CVuxfR2euSvHMys2NvpEbdiUFBYKUzHHfvUGEW2kqWz0UGndHiMCtzQ4YZu+vyZlMHp8H22kg0hupO28WqJbCVL3IoxKROCd+N2uck6bRJa+HRKE2UjspUspavHb6MQQgghhBDnzXt3ruOSJJ5r/bOOy+UqtNtfMVs73IQil5ttZn2tI6wdohTMMs+rUmDt6JUNiGkdUa3ePNMGr8MBwOXlD6hUblyaAKC4OJMQ6+RyMGgfu9zk+ieXF0IIIYR4ne3u7p7ruHq9TjqdPlXILZ1Oz9yyNgnvnNZJYaAntdttyuUyu7u79Ho9jDHTxzMJ0EVRxHA4RGtNsVicq4Ur7IfUWVlZodVq0W63sdZijKFUKk2b8F5FtVqNOI5RSrGwsEC73WZ3d3e6/YuLi5RKJbTWVKtVarX5Jr8RL5cx5sjlYHDCZKPj659cXgghhBBn44X/Ev03/+bfPIvtEOKl00UNGlQ2BLAmTV3iFXLcS3K4fc6Efz7xYeZ/FG4vBHlUSh3c3vX44biJra/QRc3o8xGu74hWoyOBq+c1nRGDGihc36HSCr2oj4TnILSh+UwI3rmeQy9oRg9HqK/UU0FN13Dw1dHg12kCTHB8uGxy+zRk9hqEy077vIgXo7TCVA2mevJO+CzLCCGEEEJcdlqFyTXmGXecyrsVdCo0ZCuj8NafuO8zaUHTkaby7skniFprSefTqGg8cYbRpAvp0EY3FukIO7Rh/ylSpPPpE2csdInj9r+6TW+rhx2GGS2dDW1uSim897gkXGdHlu5ml9v/6ja1b9XQ0QmP+0aFR995BECxVqSz0WH7s22ylSyZUoZBexDCc+Pbo2yEyRgqN45/3MVakVwlR24px2A/HEhKF9PThj2lwn7RqBvSj7mlHLlKjmKteOLzePXbV7n7r+8y6o2Id2MsISznnDvyWimjMClDoVagsFzg6revnrhOIYQQQgghzpO18wXoZh3X7zfmWv+s41ZWvsXW1vdPvf6VlW/NuB3bnC6cB+DG42Z3mQNilz0AKC5GqbRKo/E5hcIyu7sPiOMWvd4O+fyV6TK93g5x3AIUhcLKdJwQQgghxOuu3++f67iVlRWcO92+oHOOlZWVmZYtFovs7e2dav2TcbOw1qKUolQqTYN6WmtGo9H0+E4qlZo+xlKphFJq7hauScjsNOG7ixb2066TzWbZ2NigXC5TLpePLGOMoV6vv3INeuJkpVKJRqNBoVBgd3eXOI7p9Xrk84cmG+31pu+LQqEwHSeEEEKIs/Nq/qVeiJdAVzQqr6BDCNCd+gCaeKnGzQv4g6+VOTjh1CUONQxBSGUULBBCdjoE2lzf4fYcLnb4kQ9huIfgdhxmy5D60RTa6Oc2ndmhxSsffnZc+Nk5VgYYhHCfazjwYJYNfnQ0kKfz4cRZ+9jiY090PZru1J4mnPRkuIwoPFe6ql+7cJmEtoQQQgghxMt02oOQzxtXWCngrCNVSJHEycnnco4buFOFFM66aSPbcXJLOZQOobhROwTGkjgJ+zjjfSY7HE+2MQ7PKaPILeWOXV/jdoPW3RZ2ZGk/bmNjS/5KnmwlSyqbYhSPiFsxg70B7bU2+Wqe1r0WjdsNlj9YPnadOtLUP6qz9t01lt5bAqCz2SFuxdPgHCoE4ya312/VTwzkrX57lbv/5i6VGxX6zT6D9oB+s0+qkMKkDHZkGXVHOOfILGSofD0EF1e/ffLJetWbVZa+voS3nqSfsPdwjyROUEahjcZZh7cekzaUr5VZeGuByo0K1ZuX56CrEEIIIYR4vVjbO9dxcbw71/pnHVcsrqB1hHOz135rHVEsznbiZ7e7hfeTA0sT4SDTZHKQ6c7X+DbvPd3u1szb8+S2XcaA2GUOAIqLUanc4NGj7wBQLNbodDbY3v6MbLZCJlNiMGiPw3Ph9ijKYkyGSuXGRW62EEIIIcRLMW/Qa9Zxkyay0657d3eX1dXnT2gQRfN99p913KRNK4oicrkc2WyWQqHAYDDAOYfWmkwmQ6fTYTAYTNf7prVwXeYGPXG8SqXCo0fjyUaLRTqdDtvb22SzWTKZDIPBYBqeKxaLRFGEMYZK5eRJVoUQQghxevKXbvHGUloRvRuRPAonw5ECZm82Fy/T5LjmpHluHKDziccbD4Nwm2fc3JAC+uBGDr2ksR0bwmzD0ETnBuOA2TAEzHzX43YdqZupaUPbSU1nRGE9ru3wex6GJ2zzuGHbxz6MzYNtWHz36Nmxds+iCgq9pHFNh81aovr8v5on4TKVCk9a6npq7nUJIYQQQggheKpF+kXH7T3aI5VNhbZs9+yJXLwLE4Skcin2Hu1R+1bt2OVKV0tkK1nivZgoF2ETCyo0yflhaOxGh6ZuExmibER2MUvp6vEzFq7/h3Vc4ohbMUmcYNKGxXcWSRfTAOTIkS1n2fmPOyRxQr/Zp7BSYP0/rJ8YoAOo3aoR78Y0bjeo3qxSvlamu9XFDi0mbSisFIiyYX+oerNK7dbxj3dye+VGhcbtBpUbFfbX9hm2hyS9BKvt9LnNX8mz8LUFTMpQeffZYTcdaW7+Jzf53r/8HvjQaNfZ7DDsDPHOYzKGdDFNsVakWCtSqBW4+Z/cPDHkJ4QQQgghxHk7TfBsnnGjUXuu9c86LooyKBUBsz8OpSKiKDPTsu32OsakD49GKYNS4D1orfAevLdMQnTGpGm312fentfJZQ0AipdP64h6/SPW1r7L0tJ7AHQ6m8RxaxqcA0WxWJveXq/fkiCmEEIIId4IYaKO8xv35ZdfztVA9+WXX/LNb37zuctOAjynNeu441q4SqXSkYa4Xq/HYBBOvnvTW7guY4OeOJ7Wmnq9ztraGktL48lGOx3iOD7y/ikWi9Pb6/W6BCWFEEKIMyZ/oRRvNFMzqLzC9zykgfka1MV5mwTnJiaZMEM4pjo5rjmeRNQTQnUqo/B7/qBd0IcxHo9KFK7rQkNdWeN2HclXyZEWuOOazmzDkjxI0HmN3Qutca7n0PmDDXQ9hx/48IeN0Xjb44OTY1VWhZ+3YQjY+a7H4TBVg920mBXz2rTFCSGEEEII8UyG+QJqL3OSyUkT9jzjjtG800QZRdyMn79eD/1mn8q7FZp3micudvXbV7n7r+8y6o3obHVCEzbuoLXbe/zI4xMPERRqBfIrea5+++qx6+tsdgAYtAehBa+YmobnJtLFNKliCtu0DNoDCiuF6biTKKW4/vF1sotZNj7ZAKB8rXxkGZMx1G/Vqd2qTdu5jzMJu33/X34ffJhMpN/qk/QTvPdhYpRcRK6So7BcoFgrzhR2q39UJ96Nufc799ApTf5KnsH+AGcd2mgyCxmiXMTC1xZ49+ffpf5R/ZnrE0IIIYQQ4nzNeyxh1nHnu36t05x+h8uPx80mitJobXBOAZooyuBcOLCklMIYw2gUAw6tDVE0+7qFeJPVareI410ajdtUqzcpl6/R7W5N2wsLhRWiKAtAtXqTWu3WBW+xEEIIIcTLobWeq4Vu1pDM1tbWqUN63nu2tmZr2j5tOO+0445r4frqq6/QWmOMwVqLc45MJiMtXOK1U6vViOOYRqNBtVqlXC7T7Xan7YKFQmHaulitVqnVTp5sVAghhBDzeSkBuocPH57Leq9du3Yu6xVvDr/rMVcNfuSh8/9n729jJEnS/D7wZ2YeER5vGRUZlZlRVV2d3TU9tTvD3qnWzC339rV1pIiVdCAWoiCcXpYg9gMFiCBEEJAofSZISqBASF/IOy2whAitCIF6AU7Hw+FIam+GK85yZ3d2p2dneqdfprqqq6sys7IyIzPjzSPCzew+WHhk5GtFRFVWV3Y9PyDhme72mJu7h0e6udn/+cOvml9dbGKkcPE4wiTZAqi8Aktwn+uPt8HheGwCXnm8HV9MSxDd6VBWaYVXHmXHIjoXRG2qFkRz57nAqZrC9R2+N56AOgg/ruqCMG4AfjDerwHlVBDO+TBZVF/VJ8R27onDdz1+yaNQuJY7ItpbhL/0l/7SM8ULwsuAfI6FLwryWRa+CMjnWDiXv/cMsZrFBHQvMtHeon3EM+JG3RH7D/aDmG2WalLP/oN9Rt2zHRkyN7aDhwcUlgokowQ7sjAK/ZBsINXkDPmlPMqop7qxTXOWkE0tMJlWKUXznSarb6/SutuivdGeONBVr1Wp36rP7Oh2XOxWXC4+s9hNKcUb/+obFOtFHn33Ee1HbQb7A1zq0JGmUCtQvVHl+tevP1XkdxbynSoI8yP3jSDMh9wzgnAZeJaO1CFKLdY5mjUun6/S7W7NXX8+P5szwJMnHzJ/B0+P457O0tINHj5U5HIx1g7w3mHtEKU0WuvJ3+BQSpPLxYBmaenGnG0SXhXkf+whSinW198ljq+wufk9AGq1o/M3jCnQbN5hbe3OQv1nQXieyP0rCJcTuXeFy0ixWGQ0mt8tvFgszlSu1+vNXfc8cYs+t80al7lwffbZZ0RRRK/XO9W9zlrLlStX8N6LC9clR77LDwn9qHXiOGZzc5xstHYs2agxNJtN1tYWG4cUhOeJ3L+CcDmRe/d8XoiA7o033nju/8iVUqRp+lzrFF49XMeF7CV1g0tcEFNlbmbC6UzfyuedJzVDmbPiTosJiUGDq5zzkBJ+Mne66ZjMjW4w/lsTnOBcWO/zPqyLABtEbMoq2AZTPd0FznuP3bLYLYsfBtc4orAP13XQG4vwYhXc68oqtKEHKhcEfypWR8RzALqk8YWxCK/nMDWD6zy7gE4QBEEQBEEQLgXPWZx2Gei3+iStZC7Dh6SV0G+dbZmuI03jJxp8+n98SvlqGW/9RPSVubFl4q/y1TJKKRo/0ThTqFZeKwNQqBbobnVJDhI6m53g+O186Ct5SNrhOArVwpG4WdCRpnG7MbOI7zSmxW4b393g4NHBCbHb0o0lrn392lxit+cp8hMEQRAEQRCEiySfr9Lvn91XOC9uFuJ4ee6654kbjdooNZ+7gVKO0ag9U9nV1bf58Y//vwwG+4BCKT1OMGLxPmRz8T4TFIb+Qj5fZnX17bnaJAivKkopms13WF19m1brLu32xsSBrlq9Rr1+C61fyJQUQRAEQRCEl4ZCoXChcdOJE2clGyuahTiO56p7kbjV1VU++eQT9vb2KJVK5HK5Ey5cuVxusn11dXWhNgnCy0joRzVZXV2l1WrRbrcnn/1qtUq9XhfBqCAIgiBcIC/0beW8D+6CcOFkTgcOtNG4qoPW59qilxd17AcOz5+fKsOx3xcR0B2vUxPc5/JMnNx83of9Z23IyniCWA4OnekchyK7KYcLHwcXOhT4occ9dtiaRS/rIy5w3nvS+yluN1SoS5p0L8X3fHCZqwSBXLY/3dTovMZuWyiFY/BdH9p/GgWC2C87lkUcOARBEARBEAThEqK1xjHfZMks7oXxnEV+rXstvPUhMcg0ZyQr8S64a7fund1Zdakj7aesfW2NB//iAdpocuVccLkbJylRkUIbjdKKta+tYRM7EZod5/rXr/PJP/uE+EqMxzPYHfCk/4RcKYfJGezIMuqNSPsphaUCcT1G5zTXv3595tPjUvdcxGkXKXZ7HiI/QRAEQRAEQbhIqtXX6PcfLxQ3C4VChbMzH56FGsfNUFIZnJtvUMQ5i1KzJSG8ceOnieMrdDpbaG2wNgUcJ4esFcYYlIqI4yvcuPHTc7VJEF51tI5oNG7TaNz+vJsiCIIgCILwuZPL5S40Lo7jhQR0swrclpaW5qp7kbjHjx+Ty+Wo1WpsbGxMHOiUUjjnaLfbxHHMtWvXiKKIx48f02w2F2qXILysaK1pNBo0GjIOKQiCIAgvkkuR7ut49gsR4gnPjfH4mtce3/YoFP4yWxlcNJmYzRHOXSZYcxwVsmUOcOfVk23P6jhtsqiZ2mce9JJGVzSu7VCpCk5wZpwhJw4TSxmOY6adBKfbMy0CTMbL6HD/9kk4ENuwEwGd3bK43eDc4HZdEMONj9X3w+8qH1znlFLQB4qgVzU4cAfjCcHDM85H5pRnji2fEe88ruVwnbGzogFd0ei6PuKuJ7z8yLUUBEEQBOGLis5r3HABAV3+8mbdS3spzrqTfaaz+lAenHWkvfTMOlt3W7iRY+nmEiYXOhRKqyBOtIA+FB2anGHp9SXs0NK62zpVHNa43eDKm1f49Lc/JSpE2Jxl2B4y2B9MyiityBVzmIKhv9tn5asrMwnNvPdsvbfF5vc2scOjE2V3Ptjhwbcf0HynOZdjHIjYTRAEQRAEQXg1KZUWc4ibNS6KShzJTDgTehz3dIbDLrPbc2eocdzTqddvEcfLxPEVhsMuSo3G48wKpRgL6TxKMRHPFYsN6vVbc7ZJEARBEARBEITLgtYa5y4uueMidc8TV6nMlrBk0biLbr9zjs3NTZRSWGspFovjhCaKKIpI0xTvPfl8HmstSik2NzdZXV1dKMGmc05cvgRBEARBEIQJL0RA90u/9EtzTXo6zvb2Nu+//z5KKarVKv/Kv/KvPMfWCa8yuqJxOw5lx2KsRMRzp5IJ3jJRmppan5GdOnss7qz6sv5nNP4ZclJUVwi/64JGNRX51/L4vicdpnh8EK8pUEsKtazwj31Y7/yhsG9aODfdRhd+vPEooyAFHwVnB9/1uCcO3gjCJbsVDmpaPKeLGmrgEx8EcimQgrqiIA+5P5HD7wfnOl3S2H0byvYcunTY+XY9hx+M6xyv15Vn65x7H9pst+yJMW234+AzMGsGs2ae6btZuHjkWgqCIAiC8EUnrsd0Op2F4i4rw84wOKDPKhz0wTF92DkrIwe0N9p473n0e49ob7YZ9UfBudv6SUIR7zyj/oj2ZptH33nE+i+t095onyo405Gm8RMNPv3tT9FGY0cWNwpJRbI+oVIKG1m00eCh8RONpzq9ee+598177H60C0DaT+ludyeOceXVMgAPv/OQZC9h/d11ec4VBEEQBEEQhHNZbGLjrHHGRBgTYe3sArosZhYOneRmdblTx+LOZ3//U1ZW/gR7e59gTIT3ecDjvcV70DqrS2FMRBTFXL36Vfb3PxUnLUEQBEEQBEH4grLouMOscYPB4OmFniEun8/PLQLUWpPP52cq2+/3wxjTHCYXSin6/f5MZVutFtZa0jSl0+mglOK1116jVDpMxNLr9dje3qbT6VCr1SZx8zh1ee/Z2tpic3PzRJ92Z2eHBw8e0Gw2WVubL6GjIAiCIAiCcLl5IQK6b37zm88U3+v1+Jmf+Rl++MMf0u12+Zt/82/ycz/3c8+nccIrja5r3H3HaHuE67vgSPYszDq+d5lxHBXGTbvPHeccBwUMhyK6lMNzp8PvKlboqkYVFfk/mSe3nsPveUYfj1Cxwo885EIHXBc0KlW4vAsOgucJ/DJRXSbii0BFCp+OJ4KO56S6Azdx/cKCH/lD8dxVfVQEt+SC4I7gkqdyCr/v0XUNn4EiuNNlwjxf8EEcOGAinlNlhcqpIBiszyegm3Yn8+l4HwOPKimwQaQ3cS0raRQK+ygI+qL1SF4CvKR4HwSYbjd8tvzIy7UUBEEQBOELR7lRpvNgfgFduVG+gNa8GHQ0dhGeY36o0upccZodWvYf7LPx+xskrQTnXXh+TEO/RmmFHVlUpHAtx8Z3N7jy5hXqt+qn1ufS4HgX12NaP24BYPImJCvJmmXCMYx6I4rLRdJ+ikvdue3cem+L3Y928c6z+/Euna3OkXOwd3+PylqF5beW2flwh/hKTPOd5gwnSRAEQRAEQRBeTbrd7QuNi6IYpY5nQTwPjdZBiDYLcbw093ttpRRxvDRT2XZ7Y+xiEJPLZW56DudSssEirSNAk8vF4+NVtNsbIqATBEEQBEEQBGEhLlpAl8vliKKI4fDsxIvHiaKIXC43U1nn3EICulkFfe12G4BuNziLx3F8RDwHUCqViOOYJEnodrvUajXa7fbMAjrvPffu3WN3d5zQMU3pdrsTB7pyeZzQ8eFDkiRhfV0SOgqCIAiCILwqvBAB3bNSKpX4zd/8Tb7xjW/gnOMv/IW/wA9/+MOZs2IIwpkosAcWv+2PupUtgh7/ZC5tXySOH08mQFMcusXNc/6my0eEc6aBXFiqSKFXgkgt91aO/Jv50EltgNsP4jA/9Gin8akPP85PXBDIh44w2fhnhprarwGVU6iCCm0ocOhKZ4Mr3eiTEe6Jw+25ILAcBLe7afEcBCGTL3j8IAicTM3gOg7TCM5g9pFFL2scwcHODzxMvfNQZYVeDnWaNRMm085yGk9xJ7P7Fr/v8d7jH/hwPmM16eTbfTvZn9t12NgSNS/Fv4JXDrtlg+uh90fcDyfb5VoKgiAIgvAFwC/YeVo07mVg6eYSn/3uZ7MHqHC8SzfPniCqjebT3/6UQXtAmqTYgQ19onEfyVmHHVqUUpiCYXAw4MH/8YBbf+rWqfW17rZofdJCKUWunCNNUnzkJwOmk6VW5Eo5UOOYu61THe0giPI2v7cJEMRzm0E4GddjCtUCg/aApJVM1jduN9h8b5PVt1ef6mwnCIIgCIIgCK8q3e7WhcYVChVyuRLWDvA+fWp5pQxRVKJQqMxUv9Y5oqiItSNmzTASRUW0nm3i52jUp93+jDiu0es9HrdRj39Cv8b7MHBkTIE4rtFuP2Q0ms05QRAEQRAEQRCEy8dFO9BddP25XI5SqUSapjOJ1rTWlEqlmQV02TjQPMwjuMvc4LJloVA4tVyhUCBJkhPlZ2Fra4vd3V289+zu7tLpHE3mube3R6VSYXl5mZ2dHeI4ptmUhI6CIAiCIAivApdmpv2dO3f4tV/7NX7jN36Du3fv8nf/7t/lr/7Vv/p5N0u45Ngti3vk8HYstnoWPEHE9Cq40MGhW9xxR7rTyM7Jcee67G9DcIIrKFReBeFZw2BeM+TezB3tlBuCs1rmYDeeR+l7wUHOWw/ZOKse1z3tOuc5IgD0Q49CoWMdYhW4jgMD6TANgrq+nwjflFO42KGW1NF2jR3lJm5846VZM/gkCKBMw+CXTnERy4V69LLGrJmnnno4w52s44KYToW/s8+0MkF8qEYKn4RjcYT22C2LWZ1dtCe8GLwL4kjgiHhOxUEgyhC5loIgCMLnxrT77eSZpqLRdS3/h4S56e30XmjcQmT9nkXiTmHlqyuH/ZJZGPdnVr66cmaRYXfIwWcHwTkuSUOCEQPGhOdD7zzWWrz1+MSTK+XY/2yfYff07KQHnx1w8OCAYWeId558NU9UjCZOeJmzXdoP+xq2w/4PPjs4U0DXutvCDi1pPw3Oc+NzUbp6mFW096TH9vvbdLY61F6vTeLOqlMQBEEQBOEy4FJH626L9kYbO7SYvKF6rUr9Vl0SBQjPzKJCr1njrly5RT5fYTA4mFFAp8nnq1y5cnqyjuMsLd2gWKyTpn2szTIPak7PjgjG5CgW6ywt3Zip/l7vydhtLtSTy5Upl1ewdoj3FqUMxuTpdrfxfvxO3o3o9Z7MVP9xnEtpte7Sbm9g7RBj8lSr16jXb42d7gRBEARBEARB+LyZx1ltkbh8Pj9xV5uHWc0klpaWKJVKJEnCYDA4kvgwYzohYj6fp1wus7Q0m5N3LpdDaz2XYE1rPbNAzxhzZHmW8162/nj5p+GcY3NznNBxd5d2u81wOBy7k0ekaTpOphLOV6PRYHNzk9XVVbSW9zSCIAiCIAhfdC7VE99f/st/efL73/k7f+dzbInwRcA7z+jhCL//nNRuWTWX6q56BiyHbnuzzpP2nJwoaoNwThc0Og4/RKAbmuiN6ERGG10JE7PN1dApVkYdiuGcBzsW0Y3d7VRZhWsSjX8Uh6I7O3ZoKwQnOlVWwR3OgkIFUVrf4boOPxy7FI6CC17mDDYh68ubo0ulFNF6hLluJq53pmYwywZTM0E8Z8BcN0TrJ4/3LKbdyeyOxW5Y7LY9FFXtO3ziUeUgStRaY1YN+mo4eN/1QWRnwbUWmQ0sXCSuFQQJfuQn4jl9NVxDc8XItRQEQRA+F7z3pJspwz8aBiH/ztipd8eR3h+v30wXHnQSXk2S3eSFxi3EbONxM8fFtXih6s6Le/zDx9jEBvHc+B7U447PaX+nSYpNLI9/+PjU+vbu7+FShx2EOnWkKa+UKV0tUVgqULpaorxSRkd64njnRo69+3tntrG90Qagu90FH5znpsVzAKWrJeJ6DB66j7tH4gRBEARBEC4b3ns2v7fJ93/z+9z75j12Pthh75M9dj7Y4d437/H93/w+m9/blD6U8EwcisMuJm5p6SZxXMOYPE/vHAUxWhwvsbR0c6b6V1ffJp+vEMd1lMrqn8qCOJW1UilDHNfJ5yusrr49U/3ZkIv3njQdMBy2GY16aB3aqrVhNOoxHLZJ08HkfpzXMMJ7z+bm9/j+93+Te/e+yc7OB+ztfcLOzgfcu/dNvv/932Rz83tyvwuCIAiCIAjCK0CxWLzQuJWVFUqlEktLS0RRmGumtcYYM/nRWk8EY0tLSxSLRVZWzk7UOE2tVpvEz0K2/1qtNlP5arUKQLlcBiBJEnq9o4kze70eSZIcKZfFPY1Wq4W1ltFoxPb2Nnt7exMhodaafD6PUoq9vT22t7cZjUZYa2m1WjPVLwiCIAiCIFxuLlWquzt37nDt2jU2NjbY2Njgd3/3d/mZn/mZz7tZwiXFtRxu201EVyfG42ZPonKI59md7C4TmVnBIhNKpx3hCIOLuhgc2PSShgHYTy1q/ajTm65r+Cws9b7G7buJWI50LKLL3O10yHDjag5lFO7ABfGcAlUMwjVd1kGUZxTpk3DxVEEFRxVCvX4Q6nR9hxoqKITJpz7yqJrC9VwoQ3CUgyD0y1BKETUjzKp5Lm4tZ7mToYNDmeu5w3M8Agrg2g5VVeiSxheCm57rOUzN4DrBwUx4ecg+f9m1VLGafLYy5Fo+H8RFSRAEYTZOdb897qqLwj4Kgv55EgMIrzbpcLEO1KJxi6C0wi9gM37Ws0R3u4sdztfhtCMbhGdnsHdvD4/HpaF/pFRos7dH251lHHVpSMaxd2/v1PoGByFDyKg/CgK5oUXnNG4U+tBKK3ROMzgYhOQ0/dGRuFOPYXzM2bJQLZxarlAtkLSSE+UFQRAEQRAuE9577n3zHrsf7QKQ9tPJc6DJG8qrYfLXw+88JNlLWH93XfpQwkI4t1hStVnjms2vEUVF4niJNO1znv5LKUUcL5HLlWg2vzZT/Tdu/DS12jppOmA06o5FbFkCwzCQpJRGKU0UFYjjGrXaG9y48dMz1V8qXUUpQ5LsAQ6lNEnSwnvQ2uCcRangnAeOJNmjWr1BqXR1pvphfL/f+ya7ux8BkKZ9ut3tiQNdubwKwMOH3yFJ9lhff3fh+10c7gRBEARBEATh2bnoflSj0eDRo0dz199oNGYq98Ybb/DDH/4Q5xyDwYDBYIC1FufcZBwoc4QrFApUKhWq1SpvvPHGTPVfu3aNDz74gNFoNFMSkEyod+3atZnqr9frPHjwAIBKpUKn02F7e5s4jikUCgwGg4l4rlKpEEURxhjq9fpM9bfbbbz3PHr0iH6/jzGGNE3pdDpYazHGUCwW0VrT7/d59OgRr7/+Ou12e+ZrIAiCIAiCIFxeLt2b9PX1dTY2NgD44Q9/KAI6YWFcZ0p4ZDkUzo0FVjhYYI7kq0l2/s7irPM4PsfeeUzdoIsaf+Bx1qGXNW7XYWNL1Dz8qlJaYdYM9pElWo9IP0uxuxaf+omIDT3epwWXOFRJgQOVV/jUo0xwvCMHeilkzHFDN3HD89ZDGsR1qqpw3sEI1DBsc7sOyqFu3dcTIaEqq4mjnK6ftCJUWmEa5pkFTme5k6muwveD+55zDhz4YZg0q1D4nkdVggCQAYciUZmP+vJx/Nrkzygn13JhvA9CVLtlT5w3t+PgMzBrBrNmZPKSIAgCR91vjwj4s+37FlVWZz7DCcKZjF5w3AJ4t1jH8Ky4ze9tnhC2PbWuNLiXnEWym2Byh/0M70MfQBGEdNlyeqDT5MyZTn6FpQLeB2HcqDcKjt/eHzqKj/vPo94IPIySMIhaWDpdFAdg8ubIctA+XWyXrT9eXhAEQRAE4TKx9d4Wux/t4p1n9+NdOludI+/J9+7vUVmrsPzWMjsf7hBfiWm+0/z8GixcWrQ22AXeC2s923O21hGlUoNebxulNN6f/a40iNyKFIuNmcVcjcZtrl//PzEcBhc4a0PfIrySzfYVRHT5fJVK5QbXr3+DRuP2TPVHURFj8qRpH2MKjEY9rB2eKKeUJpcrjcvliKLZHSO2tt5jd/cjvHfs7n5Mp7PF9A2/t3efSmWN5eW32Nn5kDi+QrP5zsz1Q+iPbW29x+bm9060f2fnAx48+DbN5jusrd2R99mCIAiCIAiC8BQWdYaeNe7KlSsL1T9rXBRFfOlLX+LDDz9kOBwyHA4nbZteKqWoVquUy2Vu3bpFFM3aT2tQqVQYDAYziQa11lSr1ZnFZ1prms0mDx8+ZHl5GYBOp0OSJBPhHATxXLa92Wyi9cm5eKdhreXg4IBOp8NwOGQ0Ojmo2O2GpJW5XI5Op8PBwcHMAj1BEARBEAThcjPbU+VLRL/fn/z++PHjz7ElwqXHclT4pTiUlIp4bn4WPV+aIFyLxsIuwHf9xN3EbtkTE0/NmkEvB3eo6GZE1IzQJR0Eb7lQj8orlFHhmirw/TBpVNc0FMME1Owb0PvgMKdyCnIEF0EF+poOznHN4IqnG8Gpzqc+CNN6Ht8ObcsmjGftu0jnqjPdybJvdD0+n2P8cPxyJBMYZvNUzbGl8PJw/NqcHM8PyLVciMxFyT6yEzGq3bfYXYvdt/hRcCa1jyzp/XThl6eCIAhfFM5yv1WxQi0pVByeO572DCcIl5ZFze7OiNv+0fb8/Sc/jjsDkzegxok0/HRYEL35oytDOXW2OK32eo3BwYDBXnCYswPLYG9Asp8waI+XewPsINzrg70Bw/aQ2uu1M9tYvVYFoLxSBgVJK6H3pHekTO9Jj6SVgGLiypLFCYIgCIIgXBZc6ibJD3Y/3qWzGcRzcT2m9nqNuB6Dh85mh92Pg0Pd5nubwU1YEOYkOKddXFy3u02ptMpw2B7HZHF+6gcguMQNh21KpRW63bP7L9NoHXH79p+lWKyTy5WIogJaGzINmFJB7BdFBXK5IqVSndu3/+zMAr1yeQVrh5RKK1gb3O2iKCaXK5PPL5HLlYmiGO8d1g4ol1dwbkS5vDJT/c6lbG5+D2AsntsEPHFcp1Z7nTiuA55OZ5Pd3Y8B2Nx8D+dm72hmDncPH34Ha4ekaZ/9/U/Z3f2Y/f1PSdMEa4c8fPgd7t//lrzPFgRBEARBEITPmcz1bB6MMUfmxT6Nr3zlK+TzeQaDAYVCgXw+j9YhibzWmnw+P3FzKxQKfOUrX5m57syxLpfLPTVBh1KKXC5HtVqlUqnMvI+1tTUajQZKKRqNBjdu3ODKlStUq1WuXLnCjRs3jmxfW1ubuW6lFPv7+wwGA3q93kRg6Jw7shwOh/T7fQaDAfv7+5KMRBAEQRAE4RXhUlkCdDodfvSjH00eVud56BaEE5jwo7TC6+A4NhHUydjSiycPOtZQBfckTMz2S0H0ZncsSqsgHLOE61ZR6Lwm/TiFYXCSc9pBh3AtNZNvOJ96VC64x2mjg7gsAl3Rk+8Tn/rgUDf+LOiaxlTCywy9pHEjh0ZDZSxIM0GkRwHMNRPEd4Be1pi1C1YxneFOpgoK3x0fR98fHpcbd/BdEN1lQjpdCgPdunLptNRfeHRF43YcuqSDoCvxuJ6bXDOQa/ksiIuSIAjCfJzlfnv8/9LxZzjXcs/svCsILwWL9g/PiOvvzj4AOmtc4ysNfvxPf4xCTfq0Pj2jAQoUilFvROMrp2cDrV6rMjgYTISwzo6TdyiFV2PXax/W6UjjnSfZT84Vu9Vv1Xnw7QcAVNYqHHx2wN1/dhebWrTROOswkaG8WmbptSWiOMIUDPVbn1/GT5c6WndbtDfa2KHF5A3Va1Xqt+roSJ69BUEQBEE4ndbdFnZoSftpcJ4DVr66QulqaVKm96TH9vvbdLY6kyQErbstGrdny9YuCBlRFJOmnYXiZmE06tPtPh5PMLQoxSkudGq83uKco9d7zGg0X79Ha0UUxURREefSscuBH0/+NERRkSiKFxIMKqUol1fY37+PtUG4FkUxxuSwdsRo1AUUUVSkVFrlMPPm02m17k5EbcF5DlZWvkqpdHVSptd7wvb2+3Q6W9Rqr0/iZnXRexEOd4IgCIIgCIIgPD+Gw7OyZD+/uMePH2OMIY5jkiTBe3/Eoc17j7WWarWK1prHjx9z7dq1metXSs3kWDdrudPi1tfXieOYzc2QhKhWO5qk0RhDs9lkbW1tLnFb6Jf2cM5NfrTWk3YqpUjTFGvtRFCXlRcEQRAEQRC++Fya2eDee/7KX/krDAbBbkcpNVdmDEE4jq5oVFnBLkFMN+TQhW7siia8QEbg2g5z3QQh2MBjuxatNLZlMfVjk693wCuPdx5VV/gnYaI2FdBGhwybfXD90Ln1Jgy0uq7DLBuICdc6Dm5tOq9hCK7rIA+qdtjxVkqhGxqXc9AH0iCe02WNKqognjPBec6smbk67d55XMsdEQfqikbX9dkudme4k6mSghYoo4KILvFhorvyOOVQQ4XqhzpV+bDdui4TP182dF3DZ2FisyoHYaR74vAFH5waB4eOgnIt5+M8FyXywJBw73Q9jiD8sFsWs3qxzpKCIAgvM2e6306hSxpf8PhBEH2bmsF1REAnCKfhhosNwJ0Xd+2da7jUheeVpwn+fEgk41LHtXdOHyx11uFSh4kN3h51rzuyBLz1mIIJMfbsNupI03ynyYN/+YD+Xp/HP3zMqDs62l4F3e0uuUoO5xw37tyYWaj2PMVu3nu23uBWyeAAAQAASURBVNti83ub2OHRlwM7H+zw4NsPaL7TZO3OfIO2giAIgiC8GrQ32kB4rsmc56bFcwClqyXiekzSSug+7lJ7vUZ7oy0COmFuoqj09ELPENftbnFw8ClaG7wPIrkwmKbHojkAh/cO0Ght2N//lG53a6b6nUv56KN/jNZ5QJGmfbx3KBVNXOi8d6RpH1BoneOjj/4xzebXZnKh63a3WVq6ycbGdymXVygUaoDD2hHOpWhtKJUagCaK8gyHbRqN23S726zMYELXbm9M9pM5z02L5wBKpavEcZ0kadHtPqZWe512e2MmAd3pDncQx3UKhSqDQZskaU3WNxq32dx8j9XVt2d26RMEQRAEQRAE4fnS7XYvNM45x4cffki/3yeKIqIomoi/lFITMV22rd/v8+GHH7K2tnZEZHcWnU6HwWCAcw5jzERodpzM7c45x3A4pNPpsDJLR2oqvtlssrq6SqvVot1uY63FGEO1WqVer8/U3tPqHQwGWBvGdzIxIUAURUfEcwDWWgaDgYz3CIIgCIIgvCK8kDfnn3766dwx1lr6/T7b29v8wR/8Af/df/ff8YMf/GDykF+v1/mFX/iFC2it8Kqg6xq9ouHTcedR+yBgWiwJjLAoDhiB3bb4isdFDnpB2MJmELepJYUqBUHYRGRW0viBx++NBUUadFWjrwZRm31iw7aI4ISSeiiHa40JIjtsECjpJY1LXXBrW1JBIDc62ilWSmFqBt8fi9FihSoq9BVNtB6dL3g7Be+DiMdu2RNiTbfj4LOjgrxpoZ1rOeyOBRPqIWHiTqaWFH7fQ2668UEQpMqH4jm9HF4wmDURBb2MKK0wawb7yAYXNMaOPgMPg6lyci3nRlyUBEEQFuAM99sTjEXeJ8oLwnkYFvusXOJ/y4sOwJ0X19nsEF+JaXfbM9XlvSe+EtPZPN2pYuu9LeIrMb2dHt57vPXhWXPasd2H5ATehG1xLWbrvS3WfmrtzP2u/NQK3/3177L9R9vkS3mUVvR3+jjr0EZTbBTJxTm2/2ibXJzj63/x6zMdy/MUu3nvuffNe+x+tAtA2k/pbncnorzyahmAh995SLKXsP7uugyqCoIgCIJwhOyZJFsWqoVTyxWqBZJWcqK8IMxDLndWJ/35xHU6mwyHbdI0GYvnNMZEhM5B1kHwWJvivcXahOGwMxF0PY2dnQ/Z3f0x7fYj+v0naG3QuoRzmVDPo7UBPP3+EzqdDbTOsbPzISsrX31q/dYOWVp6jd3dj+j3d6hUmsRxjcHgAOcsWhsKhSWSZJ8k2aVQWGJp6TWsnW2wMCuXLQuF0125C4UqSdI6Uf5pvAiHO0EQBEEQBEEQni9pms49bpC5os3Czs4OrVYL5xwHBwd476lUKsRxPBGIJUnCYDCg3W5TKpVotVrs7OzMJHBrtVqkaTpxb8vadxrBrdyTpimtVos333xz9oMeo7Wm0WjQaDyfpEIHBwcUCgV6vR4QnOyiKMKYMLgYRdGR43HOUSgUODg4eC77FwRBEARBEF5uXoiA7o033njmyUTTWSyUUvy1v/bXKBROH3QUhFlQWhFdixjmh3g1/nxNTwZcuOLnUMerhCeIWfo+TBB4TDiHEJwAFai2wm7ZIJBbCkI1u2+DE4ImCOUYiyJLGrc/dorLByGcx4c6R8E5zqchjpgg4NMQ3Yomwhq7YfGJn4jSMlzPwRB0rDHXDCqniNajuUU1zjpGPxwF8ZwLk07xBBexKIgDFQr7yOL6QaznHrvJxGLvPL4XYnzP47XHb3t87CEPbhCEPypWQYCYCy4UakVhyqHdAHpZY9YWn3m8kHueMDNmzYTP4W4Qbvml8JmcFpE+r2v5KiEuSoIgCAtwhvvtCQbHysnXpjADuXKO0cFoobgXxqJ9vDMeiVW0oIDunLhkPyFXyp2aAfQ0vPPkyjmS/eTU7Z2tDoUrYUK3tx6TD8ka7MDiCQkGTMGEvon19Hf7NL/epLN1uiAv44//5z9mcDCg2Ciy/f42w87hF4obOdoP2+SreVa+skKyl/DH//Mf8/b/7e2zj+MCxG5b722x+9Eu3nl2P94NxzR1Wvfu71FZq7D81jI7H+4QX4lpvtM8t05BEARBEF4tTN4cWQ7ag1PLZeuPlxeEecgmM15UXL//BGuHRwRf3nuUUpOkp9P9kDQdYu2Afv/JTPVvbPwBvd423e4Wo1Efa0doHY3d7cJ+rHU4l+KcpdPZJIpiNjb+YCYBnTF5lFLU619iMGhj7QCtI4rF5WPnY0SxeJV6/UshoaKZTWCYlcuWg8HpSU2y9cfLP42LdrgTBEEQBEEQBOH5k8vlJo5ns2KtJZebbezr0aNHOOfo9/tYa1FKUSqVJvVorSmVSgyHQ9I0pd/vUy6XefTo0UwCur29PUajMHaX9flOG1vJ+oLee4bDIXt7ezMe7cUyGAwoFovs7+8DQUAXxzGj0WhyLHEcT86f1ppischgcPr7G0EQBEEQBOGLxQsR0GXMOpHrNLKHcO89/9a/9W/x1/7aX3tezRJeZXKgSgr2wp/3/X0A1llfvE6PiOjmxREmXGcJS7Nx2/F8AW+C85xzDjSYqwaGY/GY8jAKDmvkwT/xuD2HilTYPvRgwneIygVBGT7sQykV6tIQrUeMOiPQwdXLd31woCr4iZuKH4SLqspjUZoJor1ZyVznRh+OcLshA4/vjts4RhUVLnYTIZr9yKJyCl3T+NGUgEqDH/rgzNcN9TgcaqBQecW99j3w8Gb9TZQK8bqmJ+d12t1uXuZ1zxMWQ6kg0LRxONeK4IJ4hGe8li87H3/8MQBvvfXW86tUXJSEz4EL+SwLwgtEVzQf//HH+NSzzvqZiQayZ6Vsva7M/pwkXHK+NF7+eP7QV1FAl4sXa/t5cTaxpMk4o+nT2qvGmUz7KTY5+yHn4NODkLREQToY1z2u1+NJkxTvPSZn8NZz8OkB179+/cz60iTl7j+9C0D3cTc878YRUSFCFzRu4MJ+UHS3uxSXi9z9Z3f5yV/5SaL49NdXz1vs5lLH5veCU8bux7sTh764HlOoFhi0ByStZLK+cbvB5nubrL69io5m/86TZwNBmB+5bwRhPuSe+XypXquy88EO5ZUye/f3SFoJvSc9SldLkzK9Jz2SVgKKiei/eu105yrhi8ozdKSmSJLdC407FIQdTXQ6zdG//bG48zk4eESStOj3W6RpH+9BKXDjMRzn/PjvFO9TkqRFklzh4ODRTPVXq9fY2fmASmV1LJpzlEqraK1xLkXraCwm9ICmUlmbxM1Tf7m8wt7effr9HZ48+RFKHdbvvaPf30EpQ7m8Olf9F+1wJ8yP/I8VhMuL3L+CcDmRe1e4jORysyc8zPDezyyg63a7ACRJQpqmGGMYDk/2AZxzWGtJkoRyuTyJexppmjIajbDWnjC9mG5vtrTWMhqNZnbQO62drVaLdruNtRZjDNVqlXq9jtbzjzdnphylUolut8toNBonSjmcW5UkCaPRCGPMRHwoZh4Xh3yXC8LlRe5fQbicyL17Pi9UQPcseO9ZXl7mP/vP/jP+k//kP/m8myN8QbCfWXSksVEQAv22+20A1vUzCOhAxHOL4jl67uzUeggCuY7H1z26ofG7Htd14ZtsBHbb4nYcvn+Y8VTFY+GcUqiiQhd1EOZZgvBsKbgn+H2PWTOkn6VhPwdjl7fO2BkuPxbhlRUsQfo4hQjc7wSxnr6qidajMydNeu9J76fYJxbXcnjrcfvjieZq3M68CmJAG8RwrutQKJxyuJGD3tH6fP9Q0IcDoiDAU0bxrbvfAuCtn3gLCkF0qCL1zA5x2XG43aByPCLqM0fd83ziidajL6Sw60WhlCJqRphV80q6/f2Tf/JPgOf8ECcuSsLnwIV8lgXhBaLrmt96/7fAw6997dcuJNGAcMn55fHy780fqs5SmV1Q3EIs2r87I07nF7s3zosbtAcMu8PZxH7jpC/D3vBMN5S4HtN+1A6u0yMX3K+9PyoKHCc+caOQHKSz0SGux2fu9t637pEmKaPeiP5uH4CVr65MJoxDENbtfrRLf6fPqD+axL31yyf/h16E2K11t4UdWtJ+OnHTW/nqyonJ7tvvb9PZ6lB7vTaJa9xunHnsx5FnA0GYH7lvBGE+5J75fKnfqvPg2w8AqKxV6Gx22H5/+8RzSrY9iiNMwVC/Vf88my28cJ6hIzXFaNS/0DjvLcbk0NoAHqU0WmeTOj1KhaFm5yzeO7Q2GJPD+9kykvX7uwwGbUajLs5ZQOG9O7b0eO/GrgZdBoMD+v3ZBID1+i0ePPg2AJXKGp3OJr3eY+K4TqFQZTBokyQtQFGprBFFMcYUqNdvzVV/5mLQan1Cq/VjoqhELhczGiWkaQ+lNMvLX8aYwlz1X7TDnTA/8j9WEC4vcv8KwuVE7l3hMjKv+9wicZnrW+ag5pwjTdNJ3ySKoom4bTgczi3os9Yeac/x+Om/j5ed5xi2trbY3Nw8Eb+zs8ODBw9oNpusra3NNffsypUrIZFkmqK1nrinZ656wOQcTZe7cuXK3McgzIZ8lwvC5UXuX0G4nMi9ez4vRED3S7/0SwsJKPL5PLVajZs3b/JzP/dz/Bv/xr8xyfggCM+Kdx77xGI7NgiTNIfOZ7OgCIIKfyxOHOguBstEbGYfBVc2732YyNn3QezSAa99uJYALri0+bxHxxq1FL6HdE0H8dwgiL9MzeDaDgoEUVvbo4yC0jg+DfthOezLfeaCKK+scB2Hdx7/iWfwnUFwA3vTEC1FR8RNdsvidh22Y7G7NojOxnNVVayCKMqBqo5FdP3QPr2kw/EloAoqlM2DGiocDp8EIZ0uafCgr4R9KoLzRO527rm6k2XH4b0Py+7RD7rdt6iyQi/rcLyxJWpeGq32S4vSCtMwmIaouJ4VXdG4neCaZPetuCgJgiDMgNJqkrBAL+vwDDJ+lmJKe5M9A0BwSP0ii7yF54dL5+mEPXvcIuh8cEdbJO40ileKtGjNXV/xSvHMbXZkcUOHP94RPWkEMf7V4wYOOzp9QNOljjRJSUfppN91gmk3umHKKBmde12e/OgJAN2tLnjIV/NHxHMQ3Ffam21G7RHdzS5X3rzCkx89OVVAdxFit/ZGmHTa3Q5tjOvxkfoASldLxPWYpJXQfdyl9nqN9kZ7LgGdIAiCIAhfbHSkab7T5OF3HrL81jIAna0OSSuZCOdQTJxyAZp3mnM52gpCRhCZXVxcsXgVUBhTQKk+3jusHaKUJhsMC+I2h1IaYwqAGsc9Ha0VSbKHc248AdPjnEUpjVJ6UnfWXuccSbKHnvGdg9YRzeY7PHz4HZaXQ7+i09kaO9ll/bIgnsu2N5t30Hq2cQ2tI9bW7vD97//mWGxYoNX6hOGwg/cWpQz5fJV6/Q28t+zsfMjXvvarM9d/3OEuSVr0ek8olQ7Pb6/3ZCICnNfhThAEQRAEQRCE50+7PZsj96JxlUqFJEkmf2cCOWMO5xRlDmvTjmuVSmWm+o0xJ9zngIk477T1mXPcrHjvuXfvHru7ITlKmqZ0u91JPeVyGD96+PAhSZKwvr4+89y3paUljDE45zDG0O/3J33O7BiUUmitKRaLOOfQWrO0tDRz+wVBEARBEITLywtRNXzzm998EbsRhLnI3Jz8noeUxQRvauoniz/uoiYsjuJQDAcwAnJBXJZuBdt33/VBwJidczsVy2G810Fo5qseVVJBFDcI5b33pI9SdKzRVzTOO+yT4EqIDgI3rzz2voUUVC1MInd7LkykTUHlFSpSpPeCO5t7w6E/05g1g17RpJspft9jf2xxfXf4mYvC0vUcahSEb6ZisB2Lciq0eTgW8lwL7m4T17pIgQaf87AU3PncnoPioTuE6wQh0PNwK/POY7fCCZ4Wz2WiPoYEQV83OOiZhsFuWcyqTKAXXh50XcNnwbVGlZW4KAmCIMyIihTehQEF0zD4pVNcaHPjZAXL4RlIEGYhHaQvNG4RSsslOhudheJOXb+yWGKg8+K89zjrQj/nyIYzyqfj8mdkHB22h0GUN3BH6zhDSOcGwTV72D7L3hfSfrhmmWgvXzndEaFQKTBqjyblsrjjXITYzQ7tkWWhWji9jdUCSSs5UV4QBEEQBCFj7c4ayV7Czoc7NG43qL1eo/u4ix1aTN5QXi0TxWGIrnG7wdqdtc+5xcJlJYjMFoubhXr9S+RyFfr9PUCN9+dPOMxlgjrn3Fgw9qWZ6o+iItYOx4K4MMDmvR67BIQ2Bme64EantcbaIVF0doKR46yt3SFJ9tjZ+ZDl5S8RRTF7e/exdoAxBa5cWWdp6QZKaRqN26yt3Zm57gznHI8f/5D9/ftYe9TdwdqE4XCfJNljfX11rnpPc9Db3n7/FAc9FnLQEwRBEARBEATh+TMcnj1W8jzi1tbW+P3f/31yueAOnondcrkcURSRpimj0QjnHFEUkcvlGAwGrK3N9u4hc6/LnO0yMgHbcRGd1qGfGEWzT0Xe2tpid3cX7z27u7t0OkfH4fb29qhUKiwvL7Ozs0McxzSbzZnqrtVqeO/J5/Ps7u6ecJ7Ljslai1KKK1eu4L2nVqvN3H5BEARBEATh8iKzwYVXFncQnMb88JgAax4sh050EeGOypbCszEtnjNMBHE+DY5wft/j9t1RweLxiZ2ecI1S8COPO3BBEKfVoVuKGX8Wuv7QVa3jUfkgmsGOXef2XPic5IJwzm5aXCuU9Umo2+07XBLEd/azIMCzjyzDHwyxW8F5zg/9oUuhDj+qoFAFhR95/IHHpQ7lFd76SXnvPL516Prm+x4suMThth32gQ2TYDsO/2QsCh3C6IcjRndHjO6NGP7RMAj5FhlNJ4hOseFcZuI5fVVjVg3misGsGvTVcNF81+NH4za2Xpw7iCA8DaXVRNShlzWqHL5c/CDcf9PiOXFREgRBOIrKK8x1AwZUTmFqBrNsMDUzERyb64ZoPXpu7rfCFx83WtCBbsG4Rahcny0j58xxizb9nLhRdzSfq7oD9DjuFA4eHgDM3HfIsnZmcacRFcPAqcmFZ7Fh5/SB4EFncKRcFnececRup5U/DZM3R5aD9uDUctn64+UFQRAEQRAylFKsv7vOjT95A5M3RHFE7fUay28tU3u9RhRHmILhxp+8wfq7s2dRF4Tj5PPlpxd6hrh6/U3i+Mo4O38YrDl0hbNT7nBhu1KKQqFGvf7mTPUPh32MyY/7HocDQ86lODfCuSyhhp7s25g8w2F/5mNVSvH6679EoVDj0aPvsrd3D/AYkwc8e3v3ePTouxQKNV5//Zfmuh+dS3n06A/Y2PgDDg4+w9owBuOcnfwEN4aUg4PP2Nz8QzY2/nDquM4nc9ADWF5+i0qlCSiSpMX+/qcT57lKpbmQg54gCIIgCIIgCBfDvP38ecpnzmnZ75mgbTQaMRgMGI1GE6c1rUMfq1gsTn5/GsPh8FQxXDZmdNrYURRFMwsAnXNsbm4CHBHPxXFMrVYjjmMAOp3OxKFuc3PziJjvPPb39ymVShwcHExEcsePAcI5t9ZycHBAqVRif39/pvoFQRAEQRCEy428PRdeWWzLBkezRScvZv2pEcF9y0ytC+N4QcQkzM/0uczIko+ORYs+CeKsI9cv6+8ej3WE66TB7ThG0QgGoSOsixq7ZdF1fcRVTZc0XAGGYLsW3/Ioo4LD2siHiePq0HmNNIj7sEAB0s9SKEJ0NSL9JA1Ocv5QVIYCb4M4zuFQZuwmZ30Qdo7r8rnglKdQQUhnp0SfCvww/O2tRw0UqNB27zwKhes46IXzZVYN9pHFJ36hie2uE06264WlilU4T1PoksYXggjJ9RymZnCd4EYnCC8LZs0E4euuExclQRCEOYmaEWbVTNycJ9+dz8HtVng1WXSi8IucYGzdYu5iZ8VlArF5OS/OjRxaabyaUfCmPFrpM4WI3a3upM+RoczJc+7teH/j/lp3q3vmPq/+5FUe/d4jymtl2htthu0h3cddyquHE3e7j7uM2iNQUG6WJ3GncRFit+q1Kjsf7FBeKbN3f49kN2H7R9shy2rq0FHItprsJqCZtL16rXpmnYIgCIIgvLoopWi+02T17VVad1u0N9oTB7rqtSr1W3V0JNn4hGejXF4jSXYXipuFavUacVyjWFxmNOrhvZvqj01PQnRARLHYII6vUK1em7Elnji+wmBwwOFAUKjXuWxfh/tTShPHV5gnK6b3nvv3v8VgsM+1a9+g3f6Mvb1PjzjQVas3GAz2+fTTf876+rsz9zlbrbt89NH/m4ODe2Ph3Gjizuc9KJUdh8P7PPv79/jww3/M+vov0Gjcnmkf0w56jcZtarXX6XYfY+0QY/KUy6tEUZhguqiDniAIgiAIgiC8Shx3VpsnbhYqlQqtVmuuBOdKKSqV2RI6drtd1tbW6Ha7E5Fc5qyWHZcx5oiILiu/srIy0z7iOKbfP5q45CwHuqz8rLRaLay1pGk6Ec+trKxQKpUmZXq9Htvb23Q6nYkzXKvVotFoPLX+drvNkydPSJIEOF34N30MSZLw5MkT2u32TPULgiAIgiAIlxsR0AmvLG7PHY7FLWbIFfCHP6owFjmNxi5j8zgACIccP2fHhXJwfBz18Hxn8cfd6GxwcXNthx96dFmjV3UQoykgB3730FVtWhjmHoSd++FY2EZwXdElHQR1yuO1PyrI9OAfe5wau9SNxs5545cT5MaiODc16XR8PK4XPptqfHDZdtcJbZ8c1nDsBKfGznw9HwR943Z4gkufKihs3+IHnuhmhNt12NgSNef8F2CPLfNnlCsQHP6OlxeElwSlFNF6hI0tdsuiCC5KRzBBaGfWjGQAFwRBOIbSCtMwIpAXnguzCr6eV9wiDFuzZcycNa7fnt0pYdY4HWmcn6PzqcB5d+aE7UxYZyJDOgqZYZRWR0R03vpJX8VEJiQHOccZ8I133+D9/+l9AIrLRfo7fXY/2qW92aZQKTDoDIJ4Dig2iuSKOaJixBvvvnFqfSfEbq2E3pMepatTA6xPeiStJAjyZhC71W/VefDtB5N+2+4nu+x+vEtUiojiiDRJSXspyiiW31rGFAymYKjfqp9ZpyAIgiAIgo40jdsNGrdlEpbw/CkUrlx4XBzXyefLaG3wPrwLCBMNw6CGUgqlQGtDPl8ijmd/Pi4Wl8nnqygVEV7DqvHSTy2zrJWgVEQ+X6VYXJ55H1tb77G7+xHeO1qtH9PpbHHUge4+aZqwvPwWOzsfEsdXJq5vT2N39y7b23+EtSNGoy7O2fHk1Qhjclg7wvsU5yyjUZcoKrC9/QN2d+/OLKBTSrG+/i5xfIXNze8BUKu9fqSMMQWazTusrd2R99mCIAiCIAiC8BQuOrnjzZs3+fTTT+eq23vPzZs3ZyprrWVpaWniEhdFIYl6mh5m+s/lchMxXRRFLC0tYe1sE7hOc7c7fuzT66dd7mah3W4DQQgIQXw3LZ4DKJVKxHFMkiR0u11qtdrMArd+v8+TJ09OCCWnj2daVKe15smTJycEg4IgCIIgCMIXExHQCa8ux0VWi6APf1ReoUoKlQ+uX77jRUC3KJkwzk/9nf1uOXT4y9ap8bqIQ5e64+5/HhiGjq+Kxp36HPiBR1XUoYtKDlQ/ZOVRJRVcVNIwWdQNXLieJvw9LX7TFY3vHk4gVYXgVmdbFu/GbnIDP2n7RHxnPcqqILpMp+rOA3lQTuHxwS3LOlSkUJHCmyCY894fHqsJx+1zUx/ssaudihRu1+FKDnPVYLcsZtXM5xJjji3Pmkc8OFZO5tYLLyFKKXFREgRBEISXABMZ7AIZF0z04h4y+7sLCt7OiGs/aC9U33lxhaXCfH1cF34KS4VTN+dr+cPB0GnDBxf6K96Nd6QP96m0Il87K8sGRHHErT9ziw//Xx/SuN1g58MdOlsd0u2U3uNemHQbKSprFRpfDgOgt/61W0Tx6a+uMrEbQGWtQmezw/b728T1mEK1wKA9COK58fYojp4qdtORZu3OGt//ze/jrSdfydNv9elt9yYDwVExolgr4q1n98NdfupXf0qcYwRBEARBEITPjcFg/0Ljut1toqiAtSOiqDgWhE13PvzYaU1PtkdRnm53m1mMDZaWrqN1hDEFtM6NHdyOd2zCQJvWOaKogNYRS0vXZ2q/c+lEdLa7+zGdziYQRIGFQpXBoE2StCbrG43bbG6+x+rq22j99GH0u3f/Kc6lODfCuXR8HsrkcgW89+RyRUajAaNRZ1wulL1795/y5S//6zMdA4wdLZvvsLr6Nq3WXdrtjYkDXbV6jXr91kztFQRBEARBEASBhdzn5omr1WporWcWrEEQd2VOa0/DGMPBwQG5XI5ischgMMB7f8R1LhOGFQoFcrkcBwcHXL16dab6K5UKSilyuRyj0WiyflpEl/XbsnLzOOhl5yVbFgqnj1UVCgWSJDlR/mk8ePAA59wRoVw+n58IDgHSNGU4HE7KOed48OABX/nKV2bax4vEOUer1aLdbmOtxRhDtVqlXq/P7IooCIIgCIIgHPLMb9L/1J/6U8+jHXOjlOJ//9//989l38IXA1VSEzex+YOnfh+LvVSsUD4I6HRd4yOP6zroPI/WvoKcdWmyCZpTEzUnArrp9YqTQrzsuo0FMv7A4wseugTx29CHyaDdsbNbC9SSCqK46fm543ombnR6LGqLglAOTxDpeYIbnA9lswmh6PHfBRVEfYxFcNl7ltxYkFkM21VR4fs+iP0iFb65++PjijgioFNGHXGGUPnxclyHbVl0TaMIosF5nGN0ReN2HLqksfs2iPp67qhbX88FoSBM1uuKdNaFlxdxURIEQRAE4WnYdDFL5bPi0v7xbB+zcV5cvpYPiTMICTiehiL0c84SvJUaJQq1AsPeMPSRbHDXVoQEI6hxP8aFPggqiPFKjdKp9WV89d/5Ku1Hbe7+s7uYvKG8UibZT0LbjSKuxZi8IdlPuPWv3eKr/85Xz6xLR5rmO00efuchy28F94nOVoeklUyEc6ggnsu2N+80Fxe7TTugT1a9OCdEQRAEQRAEQTiNwaB1oXGjUR9rhzg3Ik37BIc4jfcOpZiI50CRpn2cS7F2yGg0WyKStbU7eO+I4yVGo4Oxw13mYBAGeMIk1Wzy5xLee9bW7sxUf6t1F2uHpGl/7DwHKytfpVQ6nDja6z1he/t9Op2tibNbqzWbQ1yr9QkAaRr6INkkVWsPJ5lqrSeTNtO0Tz5fnsTNi9YRjcbtmd3rBEEQBEEQBEE4ycmkHc83LkkSoiiaS0AXRRFJksxUtlwuc3BwQD6fnwjmcrkcURRNXNfSNCVNU7z3FAoFDg4OKJfLM9efy+XI5/MMBgOcc2itj4i1nHOT9fl8nlwuN3P9xpgjy8FgcGq5bP3x8k+j0wmTNbPzr5Qin88fiddaMxqFBC5ZuSzuZcF7z9bWFpubmyc+Szs7Ozx48IBms8na2po4kQuCIAiCIMzBMwvovvnNb77wB7DTbKEFYV5UefwZmnIz+1X9q7MFZ/1hN44HKDARR6lcyOSCOHs/fzxBzJZ9BUw5IUy2j0Vsk+1jgZ3KhYmdOIJjggqucJoweOmHYwc5NRawGYXf9xOnuAnT+4JDcV06tU+AQtiPd6FuXKjXq7FgbnTsWMZt1CUdBJnl8eRXxRG3N5/4iUhNGYXXPoj2VDg+pRS/9pVfC009cIdCv0jBKIjcTM3gOnMK6OoaPguTbVU5CA3dExdEiAVgwGG7yiqcbzOOE4QF+Et/6S993k0QhOeCfJaFLwLyORbO5e8tHpor5hjun2VtfH7cC2PR1w9nxLnRgplNz4kbtAbBPXdWF3Qd+hKD1umDkitfWeH+1fv09/ukSTrpM0/6J1P9Le89USmitFJi5SvnW0wopVj92irb72+T7CXYYXDs9j70l+zIEpUiqterrN15+oDf2p01kr2EnQ93aNxuUHu9RvdxFzu0QaC3Wp442DVuN1i7s3ZufS51bL23ReN2g952j2F7iNaa0kqJXJxjlIxIeynDzpBKs0LjdoOt72+x9lNrcwnz5DtVEOZH7htBmA+5ZwThMvAMHakpnFts4uescb3eE7rdbdI0wbkU7w8Te2RzR7234zqDQKzb3abXezJT/VobSqUGaZpgTBHvuwQBXTQR6oUBFY8xRfL5KqXSMlrPNrbRbm8AwUkPPHFcPyKeAyiVrhLHdZKkRbf7mFrtddrtjZlEakE8CM5ZvHdobXDuePIThVLZBFN7JE64fMj/WEG4vMj9KwiXE7l3hYsgc2hbJG4Wdnd35657kbjsOJRSRFFEHMdEUUSapkec2+bFGEO5XGYwGExc6LJjn96nMYYoiiblZxW4VatVdnZ2KJfL7O3tkSQJvV6PUukwSWOv15sICjNhXrVanbn9cDjHWClFmqZYaycCw+n5x9lnYdb2vwi899y7d2/ymUjTlG63O3Ggy87Jw4cPSZKE9fX1l3o+tXyXC8LlRe5fQbicyL17Ps8soBOEy4ou6SDwyQOnzxmcDQ+k4HYcLINpGnSk8Z/4Q4HdYvMjv/hMT7ycJ0YDOQ5d2zyHbgB2qhwcFbnFYb2uaIhAuVDIdVwQpY18EJh5h4qCm6Aqj50Kh0GA5tPgMuetD58fwj794FBkpwrjlwVW4Xv+UMTnOVxvPV6NXe+Umkx2VcXxcklhrhvcjsM9caHt+bG7gwvHrVD4UagHzUTM6fXUSc0c6tz4dzt1juZ8T6K0wqwZ7COLXtY4XHDrG/gj95AqK/RyaIxZM+HYBEEQBEEQBOEUlm4u0d3sLhT3ovALTkg9K+5Ico556jsnbtgZoiMd3OJmcaDTCh1php3TxYs3fvoGP/yffkj0WYQ2Gpe60KeY7sON+2DaaKI4otgocuOnb5y73633tmh93KK8Wmbv3h6djQ6j3ujIIGalWaG8Wmb3o11KyyWa7zTPPg6lWH93nfhKzOb3NgGovV47UsYUDM07zZkEea27LezQYhOL954rb16h0qygtMKlLvT1naez2QlZSQcWpRStuy0atxvn1i0IgiAIgiAIF0EuV7zQOO8tBwefMRx2xgK6rGNwoiTOpQyHXQ4OPpuI6p5Gt7vN6urX6HYfUyhUMKaA9+nYzS643OXzVZSKiKIcxkTj8tusnJ+/AwBrh0eWhcLpEy4LhSpJ0jpR/mlUKmsTtzml1Njp4ahTX+ail/VHrB1RqZyf3EMQBEEQBEEQhIvjogV0g8GA0Wj09IJTjEajM53YjtPtdllaWmJjY4NCoYBzDmPMxHUOgqOdUsHdezAYsLy8TLfbZWWGjpT3ntXVVdrtNvl8fuKml6bppG+Ty+UwxqC1JpfLsbq6OvM5rdfrPHjwAIBKpUKn02F7e5s4jikUCgwGg4l4rlKpTER69Xp9pvpzuRy5XG4y7jR9XMdFhVmZLOZlYWtri93dXbz37O7unnDH29vbo1KpsLy8zM7ODnEc02yePZ4mCIIgCIIgHPJcBHSL2loLwudKBKqkUAOFN/6oa9msTAu3huB2HfQhLadBULSIQOxVYN7zMuXQRsTERW5y/jOO1zkdF4MuBmc3CuA7HlVSwXVuFARouhAmQzICn45d43qhHm9DeaVUcEgY+EMxXTYxNnO5M0BCcGYbOxwqcyjEowQ6r/GpD+uVDyIzFT6TuqYp/J8L0AerLAzBbluUU0H8RxD5+eG4fsPh55BDYSBw6IqnCY53WXmmlnNg1gw+8bjd4F7nlzyu58L9Y6aEqYBe1qG887iWw3WmylU0uq5FXCcIgiAIgvCKc/PnbrL5B5tzicqUUdz8uZsX2KqjZI7Ozy1u0SQr5xgUeOsxeYOzs1XsrMPkzJnnvXG7QS7OhXpjc/jMf7y4BhMbfOrJFXPnishc6tj4ww2efPCEz779Gd3HXbz1RPFYpGcd3npaP24xbA+5+XM3MQXD6tur57q7KaVovtPk6k9e5d637vHkR09I+ylRMeLqT17ljXffmLjQPY32RhuA7nYXPBQbRa7+5NUT5ezIkrQSuo+71F6v0d5oi4BOEARBEARB+FzI58sXGpemCUnSIk2TiRjsrAEe792R8rNg7ZBa7SZLS6/T622jtUXreOwwFwY+jMnhXHB3W1p6nVrt5swCN2PyR5aDQfvUctn64+WfRrP5Dh988P/EmDxpOgD82BHgsA8SJmh6vFcYU5jECYIgCIIgCILw+bDoXNdZ40ajEc7NNxDknJtZdGetZWlpid3dXfr9PpVKZSI8C30nPfm73+9TKBRYWlqa2ZHOGEOtVmN5eZkkSUjTlFwuh9b6SJk0TYmiiOXlZWq12swOblprms0mDx8+ZHl5GYBOp0OSJBPhHDARiAE0m80j+z+PZrPJo0ePKBaLtNuHfcDp9k2fi2KxSD6ff2kEaM45NjdD0shp8dxxgWG2vtFosLm5yerq6sznSBAEQRAE4VXmmQV0n3zyyfNohyC8cJQPblq+47HRuFO0iIguixu7n/nh2FXMqiBeEgHdSTKx19OEdNPaqmmh2LSrXHo86Nh+sljGLzLScUw0dnAYEER1JojffDdcP5+OndUIwjtd0aE9eSBHcJbL3NzG+1FGhW0dH0RiSoMGl4xfihSAAbh2cLijAGqoUEahigoVK8w1g6kboqtREJ3tOMyqOWyPAZVXYYJp16GcwvfHYr6x25z342PAH5m061Mf3OFK4YRkYrx5UEoRrUfY2GK3LAqFqR17AWKC0E6vauxWKHfc7c7tOPgslDNr5qW2kRcEQRAEQRAujjfefYM//I0/ZNSZPRNnrpjjjXffuLhGHWfRPt0ZcVEummQAnYcod/YrHJ0PArSZhXkuiOh0/vQ+gUsdLnUUagWG7SHKh8Qfx1EEh+xCrYC3fuLSdhqtuy12f7zL5h9u0tnqYBMbEoo4jxuFhisdkpx0tjps/OEGUSl6qrub956t97bY/N4mdmjJFXPkiiFL6P79fX7wP/6A5juzOdDZoT2yLFQLp5YrVAskreREeUEQBEEQBEF40RQKs2XgXzSu1bqHtUOcm2UALbjQWTuk1bo3U/2HgrUcUVRE6xxaR4xGPby3KGXI5co4N0LraG6BW7V6jZ2dDyiXV9jbu0+StOj1nlAqHSbK6PWekCQtQFEur07iZuH69W8QRUWcGzEcdsdtZuLAd/g3KKWJogJRVOL69W/MVL8gCIIgCIIgCM+fixbQHXcLm5VZ44wJ86zq9TqDwQBrLVprisWjTuPWWorFIvV6HaXUzAK3arXKkydPKBaLRFGE9x6t9cS5L3O2U0oRRRGlUmkSNytra2skScLOzg6NRoNarUa32x0nJDGUy2WiKIyLNRoN1tZmd/F+++23ee+99yiXywwGA4bDIcPhcHIOrLWTa5nP5ymXyxhjePvtt2fex0XSarUmjn/ZZ2JlZWVyngF6vR7b29t0Oh1qtdokrtGQZI+CIAiCIAhP45kFdOvr68+jHYLw4jGglzS6EYRI3vkw9pcl0JyHbH6gJwiFRgRXuxRxoTuNbM7i087L9LzLzHUui7UcPe9nYUI5ZYPDGyPwA48qKNzQoeLg+KaiIJ5TFYW3UwI054N7XUnjOiFLj2ooXMfh9tzhNVdhXz71KIIYDs+hK10Eqhj2QTI+liGQC+3XVzXR9QilFaZpUFqh6xo+C5NSdUWHCas2xKqigj2Ce14+CEJJwzbvPHbbhjbp8U9/fDrqZuKSp+uLZZ1RShE1I8yqOdNZDgXp/TS4MhLaecKpDoV9ZPGJJ1qPREQnCIIgCILwChLXYoqN4lwCurgRE9fiC2zVUeZxx5slTuf15Pl8Hs4SuwFUrlcY9UZBgDZDe5VWpL2UyvXKqdvvfeseuXIOkzO41AXHbqXBgyf0eVBhsNilwc0uKkbc+9Y93vrlt06tc//BPo+//5jedo80SUmTFG002uggpLMeO7TBiQ5Pb7vH4+8/Zv/B/pkCOu899755j92PdgFI+ynd7S52aDF5Q3k1uGo8/M5Dkr2E9XfXz+13mLw5shy0B6eWy9YfL/954FJH626L9kZ7ctzVa1Xqt+rnOvcJgiAIgiAIXwzCpL95B6LUzBM/e73HeG8ngrCntyeU7fUez1S+Wr3G3bv/DO9Tcrkyg8EBzlmiKMZ7h1Ia58JgWy5XxvuUg4PPePPN/8tM9dfrt3jw4NsAVCprdDqbbG+/TxzXKRSqDAbtsXgubI+iGGMK1Ou3Zqp/MGizuvpTPHz4L8nlSqRpH+9dSHToDxOnaB0RRUWU0qyuvn2mE54gCIIgCIIgCJefixbQVatVdnZ2qFQqFItFvPeUy2WUUhMHutAnCWK3SqUyiZuFer3OD37wAwaDAZVKhYODA4bD4AKutcZai7WWfD5PpVIhSRK63S71+uwJXpRSrK+vE8fxxG0tE4JlGGNoNpusrT09QeI0+XyeL3/5y/zoRz/iypUr7O/vT9qfpilKKZRS5PP5yT6//OUvk8/Plqjloslc87rdLhCc56bFcwClUok4jifnvlar0W63RUAnCIIgCIIwA88soBOEy4qu6ODudc3gdt2hNXcm0pp1rDETKI1jvB8L8UYsJsZ7FZj3nGTCxkwQNhamoQmOcDARj03KZ9dwXNbjoUsQrJmw3SfB0Y086CsaH3ncgZs4wjnvIAmddh1pzFcMuqixn1h0ZZxZZzg+mLFwTcf60M2uE7aZGwZVUNADyuD6DrcfxHeqqtBFjbkyFs0ta8xamHypdHBJtI8selnjcMEhbxCc84iAURCC+oHH94IwEB/aAkF8p3LhJYJeDoJRCM5vSj+bYE1phWkYTOPkZNF0M4jnvPdh2T160e2+DW54yzrcf7Elasq/JEEQBEEQhFeNUX8U+lCGE67FpzJ2pR71ZxfcPTPP2YHOFBYTW50X562f/MyCdx7n3Jnln/zoCUkrob/TB0UQuU2J8xRq4h6Hgv5On6SV8ORHT84U0LU+adF70sOlLoj9sn5WzkwEdIyCICztpbiao/ekR+uT1pnHsfXeFrsf7eKdZ/fjXTpbnSPnfe/+HpW1CstvLbPz4Q7xlZjmO80z66teq7LzwQ7llTJ79/dIWgm9Jz1KV6eyej7pkbQSUEwEetVrs2dVfV4cd96bZueDHR58+8HMznuCIAiCIAjCZcaiVIT3s/eRlIqYrQMGw2EXa4czC+6891g7ZDjszlS+VnudTmcDrXN4b7E2ASCfr5LPVxgOOwyH7XHdFbSO6HQ2qdVen6l+rSOazXd4+PA7LC+Hvkqns0WStCbCOVBUKmuT7c3mHbSebbzC2iG3bv0Z9vY+wdoH5PNlnHOMRt2JADCXK48nmQ4pl9e4devPYO1wpvoFQRAEQRAEQbh8JElyoXH1ep0HDx4AUKlU6HQ6dLtd4jimUCgwGAxIkmQinouiCGPMXAK3aTLnNmMMWmucC/Msn3XsQSlFs9lkdXWVVqtFu92eONBVq1Xq9TpaL5Yo8Gd/9mc5ODjg0aNH1Ot1RqMR/X5/IjAsFovkcjkArl+/zs/+7M8+07E8T7I5rNmyUCicWq5QKJAkyYnygiAIgiAIwvmIWkF4ZcncvXReo69qbMcGEVYm0IKnT5RUBEFWFqMIE/9SP78QTzhJ5uw2fT2yv6Oxs1smpovA98bCMqbKKQ7HgT3BJY6xk1uR4Ei371F1haopVFXhe0GkphIV3N3qCrNqMCuG3HoO95MuuKs9cdiWDcK1UhCD+X2P73pcP6j5VE0RXQ9ftS7n8AceXdRhv6kPYj2j8COPuW6CsG3qBYNZM/gkiNBMw+CXDp3czJKZiOl82eMrYcKs8iF7bOYKgQ4CQbMa6p4W6V0E3nnsVjjp0+I5FYfzyTCIF33X4wjHZbdsaN8zivoEQRAEQRCEy8XWe1ukvRSTN9j+0wd2TN6Q9lO23tvi9v/19gtoIeiCxg3c0wueEncaWbKLeTkvrrvVxbk52ujBWUd36/RJrcPOkIOHB9jB4TXx1k8Ec5PJs+PHdzuwHDw8YNg5exLo3id7eOtJhyluFNqar+YnLmkqUng89iDsMx2meOvZ+2Tv1Ppc6tj8XshKuvvxLp3NkJk1rscUqgUG7QFJK5msb9xusPneJqtvr57pzFa/VefBt8eDzmsVOpsdtt/fPlFntj2KI0zBUL+12KDzojxv5z1BEARBEATh8hLHNXK5mOFwdgFdLhcTx7WnFwTA4VyKUnBSQ3dyEEwpcM5ymPHwfPb3P6VSucbOzodobYiiIsYUiKI83ltyuSJKGawdjCdqplQqTfb3P6XRmK1PuLZ2hyTZY2fnQxqN29Rqr9PtPsbaIcbkKZdXiaLgct5o3GZt7c5M9QIYk8cYw5e+9K/z4x//f+h2H5PPF8nni0fKpemQpaXX+NKX/vXxxNOXw9lAEARBEARBEITnz1zjNQvEaa1pNps8fPiQ5eVlILjXJUlyRIRXqVQm25vN5sxitFarRblcptvtsru7S6FQoF6vhyTqYwGaUoper8dwOKRYLFIul2m1Wgs5oGmtaTQaz9U9zRjDL//yL/M7v/M7fPTRRwATwdx0mS9/+cv87M/+LMZc3Dy6ecnaki0Hg8Gp5bL1x8sLgiAIgiAI5/O5Cui++93v8i/+xb/gu9/9Lo8fP6bVauG9Z3l5matXr/KNb3yDn//5n+enf/qnP89mCl9QMnev9GGKioM1t9f+6Hif5uwxvswNbfrvLEYTxHginnt2jp/DTJhomJx/j0elKvydOVdkroBZHRoogy7qIG6zQexICm7fYTsWUwkCLlVROO3C54Lgsqa0QlfCDnWkyX8pD18aV+88ruVwHUc6SkMZo/EFj76iJxMVTc3gq8EpznsPHVD5saDtujnVgU0pRbQeYWOL3bKhPbXDDq/3/tDdrQS0wR24w/OmQC0p9JJGReEzf1yk97xxrXB+/eiwbfqqRpcObxjXc7gnY0e9pSD2cy13qpudIAiCIAiC8MVl6/tbh47TGac9qmbPt2Pn563vb11848bEyzG9jd5CcaeRDtKF2nFeXGejM7P7XIa3ns5G59Rtw84wiOEUuJELbtuRDglAdHCe887jRi4kwVBTMWftLw3tS3tBGKeikBBl+riyunzqSXvpkbjjtO62sENL2k+D8xyw8tWVE25x2+9v09nqUHu9Nolr3D59EFZHmuY7TR5+5yHLb40Hnbc6JK1kIpxDMXG1A2jeaZ4pyLsonrfzniAIgiAIgnB5WV39Gp9++u25YrxXrK5+baayznmUmh5wAVDjdVl9julBCaUUbsbEIe32BktLr7G39wkA5fIalcoag8EBzlm0NhQKS3Q6W6RpD60jlpZeo93emFlAp5Riff1d4vgKm5vfAzjhYGdMgWbzDmtrd+YaP6lWr7Gz8wFLS01WV38Kawc4l9Lvt3BuiNZ5isU6WkcYU2Bp6dokThAEQRAEQRCELyazOng/S9za2hpJkrCzs0Oj0aBWq9HtdicObuVymSgK89AajQZra2sz191ut1FKUSgUKBaLWGuJ45NjXmmaYowhn8+jlKLdbj9XEdyzYozhF37hF/iTf/JP8oMf/IDNzU1GoxG5XI5ms8nbb79NPv/yJTepVqvs7OxQLpfZ29sjSRJ6vR6l0tT4V683EUuWy+VJnCAIgiAIgvB0PhcB3W/8xm/wX//X/zV//Md/fGR91gnIBib+4T/8hwDcvn2bv/pX/yp/8S/+RcmYLTxXzJohfZRCH3RNB0GP9oeTN5/WL/UcESodEd4pjrqfCc+PTKAYhe8NZcP3wkQE6Qg/2fUoBLc6pRVqSRFdjbCbdlIHKbgNB0uhLAOCsxugyio43Zmxa+EpKB1Edpn4y+047L6FfWB4sqyqqCAcUx5VC8I8lTv7u00pRdSMMKtmItTDEtpU0ZN2Zdv8yOP7HjyoUmh/Vu5FOLy5TriBXG/swherI+I5AF0KAkM/CI56pmZwHRHQCYIgCIIgvGoM2gNc6nDpoYJO6SCs8iq4K6OYiMOysoP26dkWL4KVn1zh/sb9heJOI00WFNCdE9febM/tbOedp73ZPnWbs0E0N0pGk3PvfehrOetC38uHPoe3nnSQknd5nD07O2qxUWSUjMK11qGe/m4/bJzqTzsXRHkudYySEcVG8dT62huh7d3tLvjgPDctngMoXS0R12OSVkL3cZfa6zXaG+0zBXQAa3fWSPYSdj7coXG7Qe31Gt3HR93dong86Hy7wdqd2QednwcX4bwnCIIgCIIgXF7W13+e7373/8H5GSGn0Wgd4mYhinJonQOO9sHOntip0DpHFOXO2H4Ua4copahUrtHvtwDPaNTD2hHeO7x3jEY9crkSuVyJSuUaSimsPTt5x6mtUopm8x1WV9+m1bpLu70xcaCrVq9Rr99C6/mHzev1Wzx4EASMlcoanc7muM4bFApVBoM2SdKabI+iGGMK1Ou35t6XIAiCIAiCIAjPhyiKSNP5x2oyQdrTWHR+6zxxIVHIOnEcs7kZxgxqtaNO48YYms0ma2trc9VtbZjs6JyjWCxSrVZJ05ROpzNxoKtUKlSrVdrt9sQ5L4t72cjn83z961//vJsxM/V6nQcPHgDBRbDT6bC9vU0cxxQKBQaDwUQ8V6lUiKIIYwz1ev3zbLYgCIIgCMKl4YUK6DY2NvgP/oP/gG9961tHBlayB/TjD+pZmQ8++ID/6D/6j/gf/of/gX/4D/8hN27ceHGNFr7YjJ3JVE1Bl0MHs8wB4byxRj9VDg4n/DlQKHzkYXRxTX+lyYSJBuiOJ9Nm8wBHnC58NGMh15LGXDG4vsPvj10P9NgtbeCPjAGrcnCHgyC2nEV8pisat+PQJY3dt/gkCMSOu69lAr1sfeZud+5hHxPqnTjEc7a9UOyx5VnJesZixRPlBUEQBEEQhJeTzO15kbincfxRW4NWeiLSOlLuBefVKdZPF3AtHLeYfu7cuGFnOL8DuudMx7hivcioN8KPDl3aferx45346Z0pcEPHqDc691xV1iqheDR2sLM+OH/ro6523vnQf4vUkbjj2KE9sixUC6eWK1QLJK3kRPmzUEqx/u468ZV4IlTL3OsyTMHQvNNk7c58g87Pg4tw3hMEQRAEQRAuL5XKNbSO0NpMJi2eh9YGpSIqldkc0CqVNXK5Emnax9rpTsnpHRCtzVjoNluiCWPyU0uPtQO0zh0bO1akaX8sPssfiZsXrSMajdszu9fNUl+z+Q4PH36H5eW3AOh0tkiS1kQ4B4pKZW2yvdm8s5BYTxAEQRAEQRCE58Mi4rl54l6EgC4r32w2WV1dpdVq0W63Jw501WqVer2O1vMn1jMmDOxpren3+3Q6HXK5HGmahkT3SpGmKcPhkCiKJsK9LE54NrTWNJtNHj58yPLyMgCdTockSSbCOQjiuWx7s9lc6FoLgiAIgiC8irywt/OPHz/mF3/xF/nkk08mD9IQRHLn2U9Pl/vt3/5tfvEXf5Hf+Z3fmctWWhDOwrUcygV3LF3SsDx2zxqMRVkpYYLo2Yk0D4V0nsM7SgNFggPZtEud8HzwBBeK9pRboJ3aNn2+s0m+DnRZ4zsev+QxVwy2b8GPxWt5UEV16OxWOnSF08saszZbJ1/XNXwWRJSqHJzm3BOHL/iF3O0uJebY8qxEsINj5eQ9iiAIgiAIwkuNyY+foReIO4tCtYAyCmUUPh0nmTA6/O19ENFZP8laqUwQW50llroIFnXtOjNu0f7hLA7pz6m+7F2Mc26m/WYTdc8b3C2uFMmVcpjITNzylB47DPog1JsW0pnIkCvlKK6cLsrLPlfZ8ixXwmz98fLnoZSi+U6T1bdXad1t0d5oTxzoqteq1G/VPzc3t4ty3hMEQRAEQRAuJ/fufZM4rjMa9Zglq6NShjiuc+/eN7lx46efWr5avUmxuMxg0MHaEednntRoXaBYbFCt3pyp/dXqNZ48+RGDwT79/i7giaIiWkc4p9Da4L1lNOoyGvUYDA7w3lOtziYAfBGsrd0hSfbY2fmQRuM2tdrrdLuPJw535fIqURQD0GjcZm3tzufcYkEQBEEQBEEQLpKLdrg7jtaaRqNBo/F8xgCq1SpPnjwhSRIODg4YDofkcsFlPJv3q5RiOBySz+ep1+vjflr1uexfgLW1NZIkYWdnh0ajQa1Wo9vtTgSS5XJ58nlpNBoyl1oQBEEQBGEOXoiAznvPr/zKr3D37t3JA7T3nq9+9av8uT/353jnnXdYX1+nWq2ilOLg4IB79+7xh3/4h/wv/8v/wgcffDCJuXfvHr/yK7/Cv/yX//JFNF34guM6YaDP9RxKKcyKCdnw+z44lA3HIrqsT6s5FNRlzgd+vG58N3nnUXkVnMhGDvrjeBHRPR8y1z/N0eviON2NQoVtfuBxuy6I1roKhmMBW6SCa2BOYWpHJ1J65dHFMCky/SQNQreKRtf1mW50SivMmsE+suhljcPhu8/H3e6ycJEufIIgCIIgCMLnhzYau4AFnTZnP+etfm2Vu791F5MzuEHon9mRRaXq0PlsKumOyRm00ax+bXXudixKmqSHfb9ZUeO4M7Yt1D88p8uQ9hZsY+/0NvZ2e3P3UZRW9HZ7Z26PChEmH8RzJm+wQ4tLXRDOjd/5ZH3t6XJR4fRXV9VrVXY+2KG8Umbv/h5JK6H3pHfCiS1pJaCgvFqexM2KjjSN242XSnh2Uc57giAIgiAIwuWk1fqEYnGZTucR2SBJeL4+FLqpzN2bMNGxWFym1fpkpvpXV/8E1eoNer0drO1xaHJ30ipca00+X6Zavc7q6p+Yqf56/RY/+MH/SJLskc9XOTj4jG53G61zGJPD2hHOjTCmwNLSayRJi253i3r91kz1vwiUUqyvv0scX2Fz83sA1GqvHyljTIFm8w5ra3deuIu1IAiCIAiCIAgvlkKhcMQpbJ64l4F6vc4f/dEfsbOzg7WWNE0ZDE4mMTTGYIxhZ2eHcrlMvV7/HFr7xST0M9eJ45jNzU2AidNfhjGGZrPJ2tqa9DMFQRAEQRDm4IUI6P77//6/53d/93cnE6Ju3LjBf/vf/rf8m//mv3lmzDe+8Q3+7X/73+Zv/I2/wf/6v/6v/OW//JfZ2trCe8/v/d7v8Q/+wT/gL/yFv/Aimi98kbHHlg5Uadyh6IPKK1RF4Yce3x8PBmZiLTh0OzNM3LOUGjuK5TXqqsJtu5Bdv/sCjudVIRMt+qm/s6Xm8Bodc6PzqYc+2EcWFYdBZLNqJg5wKgoOdF4HsZvv+clPhttx8FkQvZk1c2oH1KyZIBrbdZiGwS8FAdmzuttdFsSFTxAEQRAE4YvJooMv58U17zQp1ot0Bp3gOmf9CdHcpJ6x+1xcj2neaS7UlkVI9pOF3N2S/TMGRw2HyUDm4ZxuQ5Rf7PXOmXEKbGLPFe3NW96OLIWlAjqv0ZFGoXDeTfrXCgUatAp9M53XFJYK2NHpwq/6rToPvv0AgMpahc5mh+33t4nrMYVqgUF7EMRz4+1RHGEKhvqtyz2Ae5HOe4IgCIIgCMLlw3tLmvbQOodSQyAI5sKYLITu2DjTIAqtc6RpD+9nS7Dwxhvv8nu/938njmsMBgc41+Nklsms7gJxXCOKirzxxruLHM2k/xgWnqw7+bJPBlRK0Wy+w+rq27Rad2m3NyYOdNXqNer1W2j9QoblBUEQBEEQBEH4nGk0Guzv7y8U97LQ6XQYDkMfMxPRTRtnTI/jDQYDOp3O59XULyyhn9lkdXWVVqtFu92eONBVq1Xq9Tpay1w7QRAEQRCEeXkhb+r/9t/+20CYALe2tsY//+f/nDfffHPm+D/35/4cP/VTP8XP//zPs7Ozg/eev/23/7YI6IRnxxxdup5D5zVej53HFKiCwuFCmcwBIfFBDDUl1lJaQTR2FlvSKBMmA3rtDx3T3MkmCAtwfPJq9vf0eO30Ng8MwHmHKipUotB1jb6qJ+Kt3Js5lA6d/PR+ius6FAo/OkX8hsI+Cs5q0Xp0YuBWKUW0HmFji92yKE6622HOF+FdZsSFTxAEQRAE4YuJjhYbhDkvLl/Jc/MXbvL+P3o/rDjLRW38qOi95+Yv3CRfyS/UlkXobi+WDeWsOJMz2HR+NzCTO1sAtfTaEk8+eDJ3nUuvLZ26PnPdU0rhpy/I9CP79GqlznfdI7jBxbWYUqPEYG8ABopLxaP9ZA3DgyFKKUpXS8S1mN6T013tdKRpvtPk4XcesvzWMgCdrQ5JK5kI51BBPJdtb95pLvw5fll4Ec57giAIgiAIwuWhWFxmNOphTI7RSKEUpwq1nBvhPeNyPYrF5Znq1zqiWr3Gzs4H5HLxuJ6Uw7mSajyJMiKXiwGoVpszi8VarbuUy2t0u9vs7n5MoVClXv8S3lucs2htUMrQ6z1mOGxTLP4k5fIardZdGo3bM+3jRaJ1RKNx+6VsmyAIgiAIgiAIL4bXXnuNu3fvLhT3MrCzs8NoNCKKoonzXBzHaK0nAjrn3MSZrlKpMBwO2dnZYWVl5XNu/RcPrTWNRuOlElgKgiAIgiBcZi5cQHf//n3ef//9iUDkv/gv/ou5xHMZX/7yl/lbf+tv8R/+h/8hAD/60Y+4f/8+6+vrz7W9wquFrmjcjkOXNHbfBmcsfHA9sEAEfhh+V0ahGxqlFa7ncK3DTPlEBMGdBm89dstOxFZEwAgR0F0U06K56Z9sW3beHTAiuAHGYZk5nk2Lt+yWxe260NnfDcKvaey+nQi/3K7DxpaoefKrVClF1IwwqwbXcrjOlAivooPj3RdYMPaqu/AJgiAIgiB8EcmVcofCpDnjzqJ6rYpSKjiNDWzoi52GD4kaCtUCSqkXKgYadobPNU5FCzr5nRNXvVkNCUHOOn+n1acV1Zunn8dkJ8HE5tBJXY0dAAmCumyZOQYCmNiQ7Jz9+VBj9V1puURns4NLXbiehMHWTKznUoc2mtJy6UjcaazdWSPZS9j5cIfG7Qa112t0H3exQ4vJG8qrZaI49Ncatxus3Vmb+fy8rLyqznuCIAiCIAjC6dTrtwCFMTGwh3MW7xlnoQ+DJ845vE9RyozLqXHc02m17lIsNoiiII6LohjvHc5ZsuyRQeSmJ9uLxcbMArd2eyP0CQtLFIsNrB0Qx7UT5dK0jzEF8vkllFK02xsiUhMEQRAEQRAEQbgANjY28N5jTJjLpbWmVCoRRYfz49I0nbjOGWPw3rOxsSECOkEQBEEQBOGl58IFdN/5zneAkCW+WCzy7/67/+7Cdf37//6/z3/8H//HJEmYCPS7v/u7IqATngld1/BZmJCnygrfGYumhmEioEJN7hKlFP7AQymI5HRZgwu/K6NQVYVLXSgzHjd0bXeYof9wrFJ4HpxlGuA5FNVl5z4T0mUxESgfhJC513MT8ZZ3Y/Ej4HbHorfhOD4C0lB/ZkNvGga7ZTGrZ7unKa0wDYNpvFoCsVfdhU8QBEEQBOGLiMovKPw6J656vcrOhzvkq3mS3QQ3mso6cqz/pI0mX82z+9Eu1esv0E0r62PM05c7p3w6ONul7TzOiyteKaIjjbWzO9vpSFO8Ujx1W1SKyBVyDHND3DBcE22OJgHxzk/2Z3KGXCFHVDr7NVPpaim4v2mIa2Hyrc6FOnWkQ3/a+YlwDhW2TzurHUcpxfq768RXYja/twlA7fWjk21NwdC802Ttztrc/Q6XOlp3W7Q32hNRXvValfqt+ufmZPeqOu8JgiAIgiAIp3PlyhsUClWSZG/iCud9irUn7aO9D0K0SmWFK1femKn+g4PPaLc/o1Jp0utt49wIYwooZdDajAV7FudGRFFMpdKk3X7IwcFnMwncrA2JR5wbUSzWWVq6QS5XYTDYx7kUrSMKhRpLSzc4OHiIc6MjcfPiXEqrdZd2ewNrhxiTp1q9Rr1+a2bXPEEQBEEQBEEQLjfGmLnGU6bjZqHdbs+9D2MM7XZ77jZdBJkwbjAYEEURhUKBYrHIYDCYJEQsFouTMoPBgHK5PIkTBEEQBEEQhJeZCx8J2NraAsKkprfeeos4jheuq1Qq8eUvf5k/+qM/OlK3ICyK0gqzZrCPLLquuX/vPq7rWM+tgx27lbnxhM/x3eK6LjjV5Q5nQ6orKjgiJCq40EUe3wuxRIAhTKAcC7CEZ+S4QM5yeF6zya2Z89y0gHG83SuPH4XrE61Hk0mUrhUc0tzQYZ9YfOKD21x+HJwP2/yeD9uqYZtruZdOIPfxxx8D8NZbb31ubXgZXfi88y9NW4Sn8zJ8jgXheSCfZeGLgHyOBYDBweD0DV8aL388Zxzw6b/4FByk3RR0cFnzk1mfTJ7jlQp9rbSX4q3n03/xKW/98ov5PMa1mPZn8w9aZiKxEyzqTH5enBo71J19qk+GRIqzzN3qb9a5Z+4RxRHpIMU7H/rH2TVx48QiY2e6KI5QRlF/82yXs6gYsXRzie7jLoVqIQjSCmbSl9N5DQqsDkI1bTRLry0RFc9/daWUovlOk9W3V5+b2M17z9Z7W2x+bxM7PDrAvfPBDg++/YDmO4uJ8uDZv1Mv0nnvZRQNCgLIs4ggzIvcM4JwGXhKR2oOarU32Nn5EKXA+yybx/HBKIVSQUC3tDR7ctK9vfs4l+JcJja7QaFwBeeGeG/HQro8g8EeaZrg3BDnRuzt3Z+pfmPyR5bDYY96/UtUKkefYbe2Hp9afla892xtvcfm5vdOiO92dj7gwYNv02y+w9raHUn4J5yL/I8VhMuL3L+CcDmRe1e4CHK53EICulwuN1O5/f39hQR0+/v7c7fpIvHek6Yp3nuiKBo7nQdGoxFJkmCtPRzXE4QzkO9yQbi8yP0rCJcTuXfP58IFdNOZJSqVyjPXN11Ht9t95voEwawZfOIZfTLiWzvfwlvPn8/9+aOCrCH41EMuiK+whB/CZEGG4PouiOZG47KWMBkxW0ZAjrkmNApnkI1dZsJEx9Gx4GxsONsehevk01BIK42+og8FjeP6XMfhvcduWHzfoyKFMgrXd2EfeiymNOD7oZx6XeE6L5+A7p/8k38CvBz//F4GFz7vg7ug3bKTezfD7Tj4TNzwXkZeps+xIDwL8lkWvgjI51gAcIMzFFy/PF7+vTnjgMc/fIxLHTa12JHFu+DwjR+7gBNEWt567CiUcdbx+IePX5iArrh8ukvbonGK8XHNiTpL7QYMu0NM3gQh4oyYvGHYPd21oXazRuVaZVKvt/6wHzYW0SkURhuUUZicoXKtQu1m7dT6AKrXqiy9tkSyl9Df7WPyhtJKCW89zrrgcGcUvcc9ULD8pWWWXluiem02t0EdaRq3GzRuN2Y+B6fhvefeN++x+9EuAGk/pbt9VJwG8PA7D0n2EtbfXZ+7D/Gs36kX4bx30aJBQXhW5FlEEOZD7hlBuAw8pSM1I1obkmQXrXNjYdhZfY3x+IjOjcvP9r5+MDgAIE0TwKN1xPLyrRPlNje/D/hxucO4p1GtXmNn5wPK5RX29u6TJC16vSeUSlcnZXq9JyRJC1CUy6uTuFnx3nPv3jfZ3f1ofCx9ut3tiQNdVufDh98hSfZYX39XnnmFM5H/sYJweZH7VxAuJ3LvChfBos/7s8aNRqOZ3eoyjDGMRqNFmvXcKZfLeO/DXCtrcc4xHIbxpMyBTinFaDSalPPeUy6XP+eWCy8r8l0uCJcXuX8F4XIi9+75XLiA7urVwwGO5+EYN11Ho/Fsk6IEAULn1tw0pJ+mhxMCFaiCOhRmefD4Q0c6pSbuVRTAtR1+5PGDcUb+bH6oBpULgisIznSknBDwCGcwPUFzmkz0ZgnuB8ffT2QOdDlQsULHwcnADzxuNL4442t7xD3Ogj8Yuwd6wjXdP7pz3/eT9viexx94ONtkQXgJ8N6T3k9xu+Ha+5HH9aYc6EoahcI+Cq6D066EgiAIgiAIwiHOLWaddl5c52EnDLz1hiHhRWaWwKHD2eTv1DPsDXHW0XnYOavK5079rTqf/h+fzucmrkPcqRhCv3BezhlrdSN32NeZkfNirn39GlfevMKwPSTtpTjlgvvY2NFb+eBe59IgfCuvlanfqnPt62dPYq3fqvPg2w9YfXuVwf6A3Y936T3uEZUiojhi1B+R9lKUUSy/tczK2ytEcUT91ovtcG29t8XuR7t459n9eJfOVufItd+7v0dlrcLyW8vsfLhDfCWm+U7zhbYRnq/z3osQDQqCIAiCIAgXw3DYpd1+RKGwxGiUJR5VKKVDUhLv8f4wC2GhsES7/YjhcLYkpYXCEgDGxIDCe8dw2CGfP0x4Ohx2CIMuiiiKj8Q9jXr9Fg8efBuASmWNTmeT7e33ieM6hUKVwaA9Fs+F7VEUY0yBev2kiO8strbeY3f3I7x37O5+TKezxfRD/t7efSqVNZaX32Jn50Pi+ArN5jsz1y8IgiAIgiAIwuXiogV05XKZJ0+eTPpks9b7sgjQrl+/zvvvvw+EtllrOTg4wBiD1hrn3MRdL4rC9OPhcMj169c/tzYLgiAIgiAIwqxcuIDu5s2bQJiM88knn/Dw4UNu3LixUF3379/n7t27k79fe+2159JGQfB7Hl3RYEC5seAqGovfdBDPMQSfePxwqmNrwXfHjggjf9TRzBBEXCaI8XzfnxR6Cecz5Q53hMzRD066z2VxEeiynlxDTFivvUZFCj/0qMJR9zivPO7AhWs+FkOqokJFKuwvDZN2feKDOLKkgnhSiRX9y4zdsrjd4C7odl24Z6e371tUWaGXNW7XYWNL1Lzwf4+CIAiCIAiXj0X7M+fEpcOU/k4fm4yzjLhx/2v6kS1znVZgE0t/p086XESBthhLN5ZQWoWEKjOitGLpxukTRqNCxGgwfxbRqHD+M2qazHdOzivfuN2g8VZj4g538OAAlzqUVoeTcK1HR5qlm0us/IkVlr+0fK77m440zXeaPPzOQ27+3E1KKyVaH7cY9Ue4ocPkDHEzpv5WncaXG0Egdqc5swjseeBSN3F02/14l85mEGrG9ZhCtcCgPSBpJZP1jdsNNt/bZPXt1Rfazmmeh/PeZRENCoIgCIIgCCd5/Ph9vHdYOxxPuowwJo/WWfZBP57cOEQpJq5rjx+/z0/8xJ99av212utoHRFFBYwpYO2ITmeDKCoRRTFpmpCmPawdTcponaNWe32m9msd0Wy+w8OH32F5OWTD7XS2SJLWRDgHaiJwA2g276D1bO/wnUvZ3PwewFg8F573jwv0svWNxm02N99jdfXtmfchCIIgCIIgCMLlIhN9XVTc9evXuXfvHlrridDsPLTWeO9fGgFavV5HKYXWmiiKJi50EOYAO+dwzqG1nojqtNbU65KBXhAEQRAEQXj5ufA3/7/4i79IoVCY2Dj/V//Vf8V/89/8NwvV9V/+l//l5PdcLscv/uIvPo8mCgKuM866PxZsmdcMKlbBXSybNFYKQhuXOBTq0DUg5fBOytwRPIfuaD5MnvTGw4j5XAu+yEw5SZzLaWXG5xXDUQHd9MTcaHzetQ/XIjks5+3YSbCkjroBZnWZcRmC+FGXDydC2q4NAiw3tf/FjDiEF4B3HrsVLvK0eE7FCvIcCmO7HkcQU9oti1k1KC2KV0EQBEEQhGm00tgF7LS1OltYVFopkewmYaJn9lw/7kNlTIRrPmS6TFoJpZXS3O1YlM5WJ/RB5kGP404hrsWMDuYX0MW1+MxtvZ3e/H1NP447BR1pbv/Z2wz2BygU5ZUy+5/tM2qPcDa4zuWqOWqv1aheq1JpVrj9Z28/VUS2dmeNZC9h58Mdrv7EVa6sX6H7+KjTWRSHDnbjdoO1O2tzHtSz0brbwg4taT+dXL+Vr65Qunr4ees96bH9/jadrQ6112uTuGcRsH2eXEbRoCAIgiAIgnDI/v59crkS/f4uSmm0NuRyxSNljAHweG+xdkAut8L+/v2Z6q/VbrK0dJM07VMoLDEY7JMkByh1gPd+nGAj9NXy+SUKhSWWll6jVrs58zGsrd0hSfbY2fmQRuM2tdrrdLuPJ2K/cnl14mzXaNxmbe3OzHW3Wnexdkia9sfOc7Cy8lVKpauTMr3eE7a336fT2ZoI/1qtuzQat2fejyAIgiAIgiAIl4dMDHZRcWtra+TzedJ0tsSHoT+VZ23txY6JnMX+/j6rq6skSTIR0QV38/CTCeemRXYrKyvs7+/TaFzOsRJBEARBEATh1eHCBXSlUolf/uVf5n/73/43AP7u3/27/MzP/Az/3r/3781Vz6//+q/z67/+6xPL6j/9p/80lUrlubdXeEXJ5oBmEw7zoIzCxz44x1mCWCo/Ft44DtfpqVjFoTsCx/6Oju3jVUZx8ryd5iQ3XX56W1bWTm3PllPuf955fOcwUJnglMAQ1Ejh2x5/dWq7ViHehrIADMBZN3GgI53aZsP+RGj18uJaLjhFjvxEPKevanTpcKKn6znckyCu80sehcK1Dp0JBUEQBEEQhMCiYpnz4pRW4Xn7jG2nub5lTmgvisHeYJJgY1Z86hnsDU7fuKjm6Jy4zkYnOPfNgcfT2Thd5AfQfKdJspfwyW99gs5pyqtlBgeDiYCusFQgKkYsvbbEm3/qzZkcyZRSrL+7Tnwlnoi2MhFahikYmnearN1Zm7wDelG0N9oAdLe74IOIbFo8B1C6WiKuxySthO7jLrXXa7Q32p+bgM6ljtbdFu2N9kSIWL1WpX6rPtM9+yqKBgVBEARBEL5IeG/J5cpoHd5na50jny9jbZbRUWFMDmtHWGvHArsy3s+WHKVev0W9fovhsMve3qdYO5zEKmWO/K6UplK5Tr3+Jer1WzMfg1KK9fV3ieMrE7e44w52xhRoNu+wtnZnrn5Cu70BQLe7DXjiuH5EPAdQKl0ljuskSYtu9zG12uu02xsioBMEQRAEQRCELyij0fxJDueJq9VqVKtVRqPQD/N+am6aUif+zuVyVKtVarXaadW9cNrtNktLS1SrVQ4ODlBKTZzoMowxWGtRSlGtVllaWqLdbouAThAEQRAEQXjpuXABHcBf/+t/nX/8j/8x3nustfz5P//n+a3f+i3+0//0P+X27fMHH37wgx/wN//m3+Qf/aN/BDDJYvHX//pffxFNF14VMp3MWKhlH1pc3gXBVCbwisC3g7hm4moWgzYa1x9P+Jye93ncDS1Rc0+6/EIxfT701LrsW8hyKIw7fpqm/1ZnLD2HrnARKKtwqUNHGo9H+fHk2xGQB13VuH2HPtCTLKl4UEsKOsF5brL71IfPQrbLbJsbl3+FL+vLTuYu6XphqWJ1RDwHoEsaX/D4gcf1HKZmcB0R0AmCIAiCIBxnUdHaeXHtz9pEccQomRp0HBefiOemEmo45yjEBdqftRdqyyIMe8P5XafdOO60TcMFM5ueE2eHYZByHhGdUgo7PHvSrFKKN/7VNyjWi2x8d4ODRwcM9geTflahVmDpxhLXvn5tLrGbUormO02u/uRV7n3rHk9+9IS0nxIVI67+5FXeePeNiQvdiyY7H9myUC2cWq5QLZC0khPlXyTee7be22Lze5sn9r/zwQ4Pvv2A5jtPFyJeRtGgIAiCIAiCcEi5fBWlIJ9fYjTq49wI5xxRdPgsa22KcyOUMuTzSygV4mZB64hm8x22tv6IYrHOcHjAcNgZC/SGBIFenlyuRLFYRyloNu+g9XzP9Eopms13WF19m1brLu32xsSBrlq9Rr1+a+46w7EPjywLheqp5QqFKknSOlFeEARBEARBEIQvHtMCtouI6/f7rK6uMhgMcM4xHB7tX0y/s8/n85TLZVZXV+n3+wu163mTCeVC3zIiikJfbDQK/U2tNblcblI+c+abFtgJgiAIgiAIwsvKC5mR9LWvfY3//D//z/lbf+tvoZTCOcff//t/n7//9/8+X/nKV3jnnXd44403qFQqKKU4ODjg3r17/P7v/z4ff/wxwETgopTir/yVv8I3vvGNF9F04RVBVzT2iQUP3nrcvkPlslmbTJzNfNeH30uAAV3QQZCDxml3KJDTHLrU2TDR0Q/9oWPaq4g/9rvmUECXOdKlnDxH2WTZaYc/BeTGTnBmSuBmwno8E7GcT/3kb+89yoTvEd/3UAU/9NgtS9SMwjVd0rg9hx94VKRQZRWunQttVHkVnMpSjyop9JI+FGAKLx/22DJ/RrkCMDilvCAIgiAIgjAhX82T7CYLxZ2FTS35Sp7BwQCrLKixY50LDmkKhTIhOQYetNbkK3ls+uIe2HY/3j3piv001DjuFC7CyS9fzc+f2MOff23gUOy2+vbqM7mcHdntMeFXrpgjVwwDrfv39/nB//iDmYRfF4HJmyPLQft0F8Fs/fHyLwrvPfe+eY/dj8JnLO2ndLe7k2tTXi0D8PA7D0n2EtbfXT/zXF4m0aAgCIIgCIJwkps3f55PPvn/EcdXSJJdnEtJ0wSI0drgnCVNE5RSaB2NRW6Gmzd/fq79aK0oFutYO6TT2WI06uK9RangaFeprI3rfrZneK0jGo3bz839zZj8keVgcHoylmz98fKCIAiCIAiCIHzxyOVyJ0Rts8bNgrWW69ev02q1SNOUcrnMaDRiMBhM5sAWCgVyuRzOOSqVCtevX39pBGjGGA4ODhgOh+TzedI0ZJ2PomjSfq31ZN1wOOTg4ICrV2dL1CIIgiAIgiAInycvLKX33/gbf4OHDx/yD/7BP5gMnnjvef/99/njP/7jU2OyrB2ZcM57z6/+6q/yd/7O33lRzRZeEXRd437gDl3GUnCDM7L7K1ADBXlQFYWKFL7n0UWNs1NCufHkRW89qqfChEvD6Q5rrxqZ05zh0MnBjX8ygZzm8HyNhYhwuE0VwkRabz1KK9TS2BkwGcf6II6bONTlQOeC2E2ZIIpTXqG0wm5ZzKpBVzRuxxFdDw4Yvu9RVqGLhxNC/XAsnisqoutReClQWWwCrPACMMeWZ73/GhwrJ6JIQRAEQRCEE5RXyxzcP1go7ixM3pAr5YjiKPSnfBDNoQnLDBWc7KL4/8/e3wdHlt33ff/7nHP7uRuNRg/QjZnZmd3Z5fBpxRkuRTLyj/JSTihKv8SW7djyL1Ykxak4cdGpSJGlSipOVWKl8lBxbMcpS6EiK6FkJ47kSJXY+tmSTIn8lWRapElqlyutyOFydmdnZgcYDNAA+gH9cO85vz9udwOYAWYwz8DM57U11ejuc+493biNxcG5n/uNyBQzjzSwlGzdY3W3rb0XOksLpbSC3l0G8m73PmZLWYy9u6rnxhqypYOdFGojS/1s/b4rjj3I4NfDUFmssPqNVUrzJdYvrdNv9end6O2qyNa70aPf6u/6nlQW965i8bAsv7rM2jfXCD6w9sYaneXOruNp/dI65UaZuRfmWL2wSn42T/N8c89tHZXQoIiIiIjs7bnn/hhf+crP0um8Qy43y2CwThynleisjfA+xvsYayNyuVmcy1AuN3nuuT92oO17H7O8/Cpzc2fpdlcYjXpks0WKxWNEUZ447hPHPUajHsY45ubOsrz8NRqNb7uninEPWqWyyOrqNyiV5llfv0S/36LXu0GxuH1iZ693g36/BRhKpYVpPxEREREReTLNzMzQ7Xbvqd9BOOcwxnDy5EmSJGFra2vPvoPBgFKpxMmTJzHG4Nzh+Lt7qVRic3OTbDbL+vo6cRyTy+UolUpkMhlGoxH9fp/BYECSJMzOzrK5uUmptP86loiIiIjIYfFIVy7+t//tf+Pbv/3b+Ymf+An6/f4tJ0HtDMztvA0hUCgU+O//+/+ev/yX//KjHLI8RUI38EPNH8L3PaE3rmg2CXNNQm+TUBdAkgax7JyFLIS1gJk1sA6hH9IKaZFJ+43DWyEbCJ20MtpTGaLbWbVh8p7GO+5PRIBNq8GFQRpIDFthd4gupO2MS4N0Jp+GFJNhkvbN2jRQ58DkTRq4y5ppeC4Mx5XpRukJur7lsTULV9ITdd0xh2/7adtJWA8PdtZiKzatUujSAOZh86lPfepxD+FQmIQibdGSbCSEfsD30vsTvpdWHASmjysUeTjoOJYnhY5leRLoOBaA3mpv7yd++h77AbXnalz7yjWylSzxVgwmDeb4xE+rUFtn0wshBMjOZMmUMtSeq93z67hbmfLBrih60H61MzWuf+06frTPRVv2YDOW2pn9X/PMyRlslF7UhYNs1qbbnDl5sMVeH/sHUoHuQQa/HobamRqXv3AZgHKjTGepw8rrK+RreXKVHIP2IA3PjZ+P8hEu5277vdnL/fxM9bFn6ZUlIK1y2FnqANwyxsnj9bN1ll5dYuHFhT2/V0clNCii30VE7o4+MyJHwR0mUgcURXne//4/xyuv/Ny0EsBw2Mb7BO8nVQJyZLMVSqUFcrkZ3ve+7yeK8gfafqt1kSQZkiR9QgjUas9RLDaw1k6Ded57er1lQggkyQBjDK3WxXuqIud9TKt1kXb7GkkyxLkslcoitdqZewrk1WpnuHz5CwCUyw06nSVWVl4nn6+Ry1UYDNrj8Fz6fBTlcS5HrXbmrvclTwf9P1bk6NLnV+Ro0mdXHoYzZ85w7dq1e+p3EJVKhdXVVcrlMrOzs8zMzBBFEaPRCO891loymQxxHGOtpVwuT/vdC+89rVaLdrtNkiQ456hUKtRqtWmluHsxKXix0833RQ5CP8tFji59fkWOJn12b++RX/rvL//lv8yf/bN/lr/zd/4Of+/v/T0uXbp0S5udv2ifPn2af+ff+Xf4S3/pL9FoNB7lUOUpkqwmhFFIPxH98YP59Ir8k7BW8ONQXZI+h02DcmEtYHIGimA7Fl/ymIxJq5RFaeUEO2cxkcGveJJ8kp7QGO8zmMNsknm917nwXv0SdgcVLdsV5iIDnrTSw2TfnmmFORONw7ZZgykZQjutBIgdV5+zaSDKzuz4Y4ABO2/TkOMgDU+5qsN3PK7ucA1H8k6SBiNJg5XTrm68v5KZPu8aLj1O5FDaGYo0JUPoBvwNT8gFyAEDpuE5UzIPPRQZfMC3PL7j02PfpWE9W7M6jkREROTQG6zvXZnqfvq98D0v8I3/5xuUGiX6633ifkzoB2xkpxexiPsxIQSifERpoYTLOl74nhfu9WXctXKzzOo3Vu+uk0n77eX4h45z8Z9dvKv3M1PMcPxDx/d9vnq6SraSJRkl6dz1TsOzhmw5S/V09bbtQggsv7rM0itL6cVKdlj9xiqXv3CZ5vkmjXONO1aKe9DBr4fBRpbm+SZXv3SVuRfmAOgsd+i3+tPgHIZpyA+gea75yMYH0LrYIhkmxFtxGkAE5t83f0vgbeX1FTrLHaqnqtN+e1UQvDk02H6nzZXfvYKJDFEuIh7EhDiQLWepHK/cc2hQRERERB6e97//++l0rnHx4mexNiKO+/T7G4SQYIwjn68SRXny+RpnzvxrvP/933/gbbfb6Uml3e4KEMjn55iff88t7ZaXR/T7Lbrd61Srp2i3r91VgC6EwPLyqywtvUKSDHc9t7r6DS5f/gLN5nkajXN3VaXa2ohm8zxXr36Jubl0HtnpLNPvt6bBOTCUy43p883muUNRPU9ERERERB6OTOYeL5x4wH61Wo3Ll8d/dy+X6XQ6eO8plUrkcjkGgwH9fn8anouiCOcctdrd/d09nUcts7S0RJLctIazusrly5dpNps0Gndew9mp2+0yMzPDtWvXyOVyeO9xzhHHMXE8uVBLhDEGay2DwYC5uTm63S7z8/N39Rrg4QUARURERET28lj++r+wsMBP/uRP8pM/+ZNcvXqVf/kv/yUrKyu0Wq3x1QtrLCws8OEPf5gTJ048jiHKUya5lmBCGnbDMA1eTQJaACEOaehlUjUtgtALeOsxfhy0y4BJDKaSBurMaFz5rGAgAtuwhG8E/NAfvQDdzupx99PX3PS42fHY+NZk0/csDEManoNp9YnJ12GUhurMjME6m76nFsim37uwFQg+YCrj938SyisajDUkIZlWtwOmt67h0ipla2mgLsykFcumYafiuPIcaTDSNSYlCeUwMtbsCkV6PKEb0u/9jvOVH3YoMoRAspyQLCfbx9yYX/VwJd2va7i7+qOViIiIyKN0c4DqQfSbf+88C9+2wFuff4tsKZtecGDk0+pso3GjcVW6bDlL3I058eETzL/37hfg7tX8i/Nc/sLldPHxIHMik1Z3m39x7zE+/4nn+dLf+RJxPybp3/k9dQVHtpLl+U88v2+bXCVH/V11rv3eNWIf374KnU3fz/q76uQquX2bhRB46/NvsfbNNQDirZjuSndagW5Siezql67SX+9z+uXTt/1d9kEHvx6WxrkG/fU+qxdWqZ+tUz1VpXt99+uO8umf0+pn6zTOPdqLPbWvtQHornQhpAHEne8hQPFYkXwtT7/Vp3u9S/VUlfa19p7v4yQ0eOWLV3A5x9baFv31/u5jfVztffa5WUIIjzw0KCIiIiK3Z63lox/9ESqV43zrW79Or7dKsXhsGqCLogLF4jGef/67ed/7/uxdnYA4CbNNbnO5vSsi5HIV+v3WLe0PIoTAW299nrW1bwIQx1t0uyvTCnSl0gIAV69+iX5/ndOnX76rv6M3Gufo99dZXb1AvX6WavUU3e71XdufVOSr18/SaJw78LZFREREROToWV9fH1fVvt1iym7WWtbX1w/cttlscvXqVebmxhfr63To9/v0+/1pu3K5PH2+2Wze1VwtnUe9xdraeA0njul2u9MAWqk0XsO5epV+v8/p07dfw9kpSRJmZmZYW1tja2uLcrk8Df5NKuhN7m9tbZHL5ZiZmbklxHeQ1/AwAoAiIiIiIrfz2C+fd+LEiV0huW63y7e+9S22traI43j6S7fIw+S74wnxkDTolrfYik1DWiMISUhPQAzpvxAHjDUEn1ZGCMOAKaRBHVtM74dBwJQNbtHhKg5bs8TLMX7Z41v+/gJpj8P9hOd2Vq7bWW2uDCakQTkgPUE2SoNujNdWbc6S+GT63k/7+rR6nE0sSS7BRGmFMeNNWqkiCticxRYsbn6PkNskPOV23xpjiE5HJPk07GQwuOpN/Z3CTkfJ4w5FhhCIL8X4tfTnTBjtsX8MyTsJoR+ITkc6rkRERORQuteLDNyun40sp//oaa7+y6vEWzF+5BkxSudg49//jTNk8hmiXERUijj9R08/0vDO8594ntf+3muEZHwxlDuwGUumkNk38BblI2rP1UiGCVvxFiHef7JlIkOukqP2XG0a2trLsfcco3q6yubVTTavbBJCuHXOOb5vrKHUKFE9XeXYe47tu83lV5dZ++YawQdWL6zS+laL0Vb6vTHOkClkqD1fo362zuqFVfKzeZrnm/tu70EHvx4WYwynXz5NfjY/rZg3CfNNuJyjee5glfcetEkgdXK7XwgyV8nRb/Vvab+XhQ8s8Obn3mTj0gbFY0UypQzdpS7JKMFlHKVmiUwhw8alDUrzJRY+sPCAX5WIiIiI3C9rLS+++Od4z3u+j7fe+v9x48bXieMtoqjAsWPv4dlnX56GxO6Gc9ldt4NBe892k8dvbn8Qy8uvsrb2TULwrK29QaezzM7JzPr6pWmFuNXVC+TzszSb5w+8fWMMp0+/TD4/y9LSKwBUq6d2tXEuR7N57q4r3ImIiIiIyNHTbrfvKUDXbu89H9pLo9Gg3++zurpKvV6nWq3eEnCLovHF+up1Go27u1jf8vIya2trhBBYW1uj0+nsen59fX0a0FtdXSWfz9Ns7r+Gs5Nz6flwtVqNwWBAkiSMRiO894QQ8N4zGo2I45hCoUCtVsMYg3MHP9/qYQYARURERERu54EF6Pr9PsPh7qsJzszMHLj/r/zKr/C3/tbf4nd/93d3TU5qtRrf933fx4/92I/x/ve//0ENV2QXw+4JVghhu9JcYHeIbnx4hjhsh7zydrt9hjS0dVPAKviAv+5xzzjipZiwFY5WgA62T8DcGYi7k52V5wzpTx0DuHFQLpAGiSzTkJzv+LSdA9ZI3+dJgG5HuzAM+OCxxTQoZ0oGchDWQhqU6oY0ONVL20z4nk8rkMH0cVveft4YQ9SMcAsO3/LpeCZhp7LF1uwDr1AmD8/jDkUmywl+bfxHpLW0At6u5zeSaQU8v+ZJ8glR87Hn20VERERukZ3JMtw8eBWBnf3242NP3I85/UdP8+Zn32TUHZHJZwgEjDGEEDCkF8nIzeQ4/UdPEw9ifOwfWYguykYsfGCBd770Dj7xt1QU3sWlocCFDywQZff+na670uWZ73yG7vUuo96IeBAT/I6LtoyrohtriHIRhVqBZz72DN2VLvPsXdXu2Zef5cuf/jLFhSL99T7D9jDdJuy6EImxhmw5S3G+SLwV8+zLz+65PR97ll5ZIoTA5S9cZvXCKqOtEdZabGTxscd7T2e5Q+9Gj2f+X8+w9OoSCy8u7Pt9eRjBr4fFGEPzfJOFFxdoXWzRvtaeVqCrLFaonak9tgpsLut23Q7agz3bTR6/uf1ern/tOplihtlnZ3nny+9MK9AZY/Cxp321Tb6W5/iHjhMVIq5/7fptw5IiIiIi8vhEUZ4XXvgkL7zwyQeyvUplkdXVb1AqzbO+fol+v0Wvd4NicftiHL3eDfr9FmCm1eIqlcUDbd/7eBpqS8Nz6UUs8vkauVyFwaBNv9+aPl6vn2Vp6VUWFl7E2oP/Hd0YQ7N5noWFF2m1LtJuX5tWoKtUFqnVztzV9kRERERE5OjaWQXuYfVLL+Rxmnw+zzvvvEO/358Wkwgh0O/3qVQqHD9+/K4rrHnvWVpK50g7w3P5fH5aGa7f708fr9frLC0tsbCwcKBCFpVKhdXVVUqlEsaYXecEh5CuPY1GI0ajEZlMZhp2q1T2rli+l4cZABQRERERuZ0HshIQQuC9730vb7/99vSx973vfbz66qt3/KV7NBrxQz/0Q/zSL/3SdFs7ra2t8ZnPfIZf+IVf4D/8D/9D/sbf+BuqSCcPnCkbWAayEDoB0zMEAkSkFQYG4wDdiO2TD8ehrzBKj1lTMmDAliyZs5lbAla+lZ5oaRKDnbUkG8k0jPdUGb9vpmTS0FvWEDJp0C0Q0vdzyHZobud7NAnPWSCbVqIwzkAf7BmLzdo0qDjy2FmLJw0r+RuekAuQI/1eDra/ZyZj0pNca7f+XDHW4OoOV3+wFcnk0XtcocjgA8lyesLvzvCcyRvIAkPSY78b8KQV8pLlBLfgFNIUERGRQ6e4UKRzpXPnhnv020/rYgs/8syemmXmmRmiQoR1lmSYTCuduawjJIHCsQKzp2fxQ0/rYuuRVSVzWcd7/8x7WbuwRm+lRzDpxVCC31Elz6bzQWMM+Vqe9/6Z9+4bWEqGCbPPzFJYKNBZ7mBjCzYNrU3YKH3MRpZio8jsM7O3DZLZyFJulLnx9Ru4nMMNXdr+pgp0LutwOcdwc0jppdK+IbDWxRbxIGb5a8tc+71rjHojMsUMSZIQD+N0IdemYcBhd0iumpuGzfb7vjyM4NfDZiNL/Wz9kVbAu5PKYoXVb6xSmi+xfmmdfqtP70ZvVzW/3o0e/VYfDJQWStN+e5mEJY0xxP2YYr2Iyzmss7hsehz5xJMr54j76ff+TmFJEREREXly1GpnuHz5CwCUyw06nSVWVl6/JeA2eT6K8jiXo1Y7c6Dtt1oXSZIhcbw1rjwH8/PvuyWgt7LyOp3O8rRyXKt1kXr97F2/Hmsj6vWz99RXRERERESeDNbau764tjHmns9Z3W9f93qB71arla7XxPE0eDY/P0+xuGOdoNdjZWWFTqdDtVqd9qvX77zeUavVePvtt9nY2CBJ0rWpSXhwcvFLSN/HJEnY3NxkYWGBWq12oPE/7ACgiIiIiMjtPJDfKH/zN3+TS5cuEUIghECpVOIf/sN/eKBfWP/9f//f5xd/8RenfY0xt/wDSJKE/+l/+p/4U3/qT90SshO5X67p0vBbwWIwhDiQ9BL8pie0A2E4DnVNzmecVFDLpBXUJkEuV3fTcNbNfCft7Hs+rVhXesAvYlLh7WG7m+pzE5Mg3M5qdMk4rJg3mGMGkx0HiiavY1KZbtLHMn3fsaTBo1GATPq0X/PgIDoZkXlfJv3Dxdy4Kh1paC5shl3hOTuX/oxyDYWVnhaTUGTmdIbMmQyZ0xlc/eF9/yfB2TAK0/CcPWZxCw4363ALDnssPQ5DdxwgTcb9RERERA6Ze/2d6Xb92tfaQBr4KdQKLL60yPEPH6f2fI3ZZ2epPV/j+IeP03ypSaFWoLfS29Xv1p3d0xBv26+yWKG31OPEd5wgX8tP21tnMZHBOjudx+RreU78KyfoLfX2DSy5rGPjygZJP8FGNr14S9heKDUmnWcGAjayxFsxG1c2bhska11ska/niXIRIU77ZUoZokJElIuIChGZUibdXxyI8hH5uTyti609t9e+1mbz8ibXvnyNUWeEH3mGm0O21rbor/XZWttiuDnEDz2jzoh3vvQOm5c39/++sB3gKs2XwDANfu10N8Gvp1XtTA2XdUSFiHKjDMDK6yssv7bM+lvrLL+2zMrrKwCUG2WifITLOWpn9l64bl1skQwT4q2YznIHDJz86Ele+J4XeO6PPccL3/MCJz96Egx0ljvE/ZhkkOx77IiIiIjIk8XaiGbzPABzcy9QLjcBQ7/fYmPj7WnluXK5ydzcCwA0m+cOXM2t3b4GQLe7AgTy+dqu8BxAsXiMfL4GBLrd67v6iYiIiIiI3K1KpXLX55+GEO6qwloIgbfeeourV6/ivSefzxNFEc45oigin8/jvefq1avT824Pqt1O12K63S6QBs92hucAisUi+Xx+V7tJvzux1pLJZOh2uxSLRbz3bG1tsbW1Ra/Xm37tvadYLNLpdIii6MDhtv0CgI1Gg9nZWRqNBvPz8wB0Oh3iOCZJElotrUuIiIiIyP17IAG6//v//r8BpoG3v/JX/grvec977tjvn/2zf8bP//zP7wrLTYJ0N/+bPPerv/qr/LW/9tcexLBFplzdpRXILJBJA3GTylAkbIe/dgS4TGRwcw4TjY/bO4Vfku1bY0xa9e5BXkg/m459zxM/H0S4brINN761HPwnyM72k22M309/wxM2x9XhYrbfJ79jzHbHbQYo7tjGkLSKnQ9k3p8hakZEzSgNz5lxBblFh6mm77mpGtxiWlVuErJzDVWYk4djZ3AW0spztrj7g2OLFpMzu9pN+omIiIgcJqPu6IH3m1RViwcxW2tbbF7eZGt1C5dxZEoZXMaxtTp+fG2LeBDv6neLhxCgq56q0rnWIZvPUn2mSnmxTLaUnYbSokJEtpSl3CxTPVUlm8/SWepQPVXdc3ul+RLLry4z2BiQDBMsaQDPOIONbDofNWBDWolvsDFg+dXlNHi2j43LG3Sudig1S9uV2yJHppghV82RKWZw0XZFt1KjROedDhuXN/bcXryVVp8btAeM+iOGvSHD7hCf+HQel3iGnSHDrSGj/ohBe8Dy15aJt+J9x/igg19PKxtZmuebAMy9MEe5WZ4GEjfe3pgGEMvNMnMvzAHQPNfct1rcJPTYXelCSEOgO6vZARSPFdPwaIDu9e6ufiIiIiLy5Gs0zlGvn8UYS71+lhMnPszs7LNUKseZnX2WEyc+vOv5RuPcgbedJMNdt7nc3iekTh6/ub2IiIiIiMjdmp+fv6cA3STUdRDLy8usra0RQmB1dZWrV6+yvr5Ou91mfX2dq1evsrq6On1+eXn5wNueVIWb3OZyuT3bTR6/uf2deO8ZjUaUSiV6vR7WWgqFAoVCgVKpNP3aWkuv16NUKjEajfD+YOc6PewAoIiIiIjI7Rzs8n938Ju/+ZvTgNuxY8f4K3/lrxyo33/1X/1X068nk5KPfvSj/Of/+X/Ohz70IWZnZ7lw4QI/8zM/w8/8zM9M2/3X//V/zZ//83+es2fPPojhi2CsIXpXRLKeYLM2ndBNgnOWNKg1qXyWBeNNGuQKaRW6yfHrex5XdfiOx9VvCmW53bfGmbTSwIMSdoxzcs7ipJLb5OtJkG1cAW7a5052BuDcTX137mO/vnBL2G5SPc5gMD4NtoXhOIQ4uKm/YTvY6NLwYrCB0A8EAqZgsBlL2AhQTwOK0emIJJ+QLCcYDK566/fDNVxafc6o+pw8JMlNt9l92uVIj/ub24uIiIgcIqPePQbobtPPZR0hBDrXOmytbhEVIoIPbK1t4Ucem7EU5gqMeqO0QtZSh7kX5vavxnavU6zb9Nt4e4PyYpnVC6tYZ8mVcxTrRaLs9p9U4mFalctai4895WaZjbc3qJ+t37I9H3s2L2+S9BN87EniJL24xzg8F5KAjz0+eLCQDBI2r2zi4/0XHjfe3kj7jDxRPiI3m6MwWyAexoQkYJwhykZsrW+R9BPCKOBHno239w7QdZY70+pwo94IAttBvIwjGSWMeiMGG4N0DldLq8d1ljv7jnES/Lr6pavTYFdnuUO/1U9DX5AGvxoHC349zRrnGvTX+6xeWKV+tk71VJXu9S7JMEkDkgslonx6fNbP1mmca+y7rUkYdXKbq+yz0F7J0W/1b2kvIiIiIk8+YwynT79MPj/L0tIrAFSrp3a1cS5Hs3mORuPcXa25OJfddTsY7H1C5OTxm9uLiIiIiIjcrVJp/wsWPoh+3nuWlpYAWFtbm1ZZy+fz5HI5BoMB/X5/+ni9XmdpaYmFhYUDVXFzzu26HQwGe7abPH5z+ztptVp476lWq9y4cQNjDDMzM2Sz2/Ow4XBIt9vFWku1WsV7T6vVol6/dV3sZncTAOz3+3cdABQRERERuZ37DtC1Wi2+8Y1vTCvI/cAP/ADlcvmO/b71rW/xO7/zO9PgnTGGP/En/gS//Mu/vGsi8IEPfICf+qmf4mMf+xg/8AM/gDEG7z3/zX/z3/CZz3zmfocvMhU1I+KFmNANmJGBLAQTMDY9gRHSAJfJp9UATJQGvkxhx0LgbcIvtmzxqx5btCQbCfRJP4EPam63Mwy3c23S7LjdGeIzpEG7O51gOgnPjb+evN5dQbdJuC5mO1Dnd/Sf7COXBg6B7WpzFuyMxQ88rpYO0K/4XfskD27GEZJAGARCHNKxYMBDGAaw7AouGmOImhFuweFbPq3olaSv3ZYttmYxVsE5echuCs6y30VxBze1U1FEEREROYRcxt35Aho3M+N++6gsVrj42Ysko4Rhb8jG5Q2MM9NqaQCbVzcJSaBQL5AM0zDZc9/13N4bfAgBuva1NjMnZ1h/cx2AUqNEuVFmsDnAJz4N1c3k6Cx3iHsxNrLMnJyhfa29Z4Dund97hxACyTAh+DANz9konaMEM75AS+wJPpAM0nbv/N47ND6wdxBqsJn+Qpn0Ewhp9bm9KrcNvjYgCQlxP97V72bd6910/uVDGsCzhlwltytcZZ1lsJG+B5N2k+pk+3mQwa+nmTGG0y+fJj+bZ+mVdBH+5oqHLudonmvSONe47QnM04qF49tBe5+F9vHjN7cXERERkaeDMYZm8zwLCy/Sal2k3b5GkgxxLkulskitdgZr737ZuVJZZHX1G5RK86yvX6Lfb9Hr3aBYPDZt0+vdoN9vAYZSaWHaT0RERERE5F60Wi2y2SxbW1sH7pPNZmm1WgfefpIkxHE8DcnNz8/vqrLW6/VYWVmh0+lQrVan/Q4SQKtUKqyurlIqlVhfX6ff79Pr9W7Zfr+fXrxwEvyrVPau+H2zSaW3Xq9HoVBgdnaWcrnMYDDAe4+1llwuR6fTYTAY0Ov1qFartNvtA43/YQcARURERERu574DdF//+tcBpiG4f/Pf/DcP1O9Xf/VXd93P5XJ8+tOf3vcqGv/Wv/Vv8U/+yT/hf//f/3cAfuVXfoWf+7mf0y/GD1C32+W3f/u3uXLlCisrK9TrdU6cOMEf+SN/hFrt1hPvnjTGGNy8I2ylJwnSSUNyQBq8SoAM2KpNnx+wHRIbAHn2Db8En24zaSUQk56IGIeDVXA7qEkQb1JhbrJNx+5gXSZ9rWQhbAUY7bF/s2MbO4Ns420bl4YIAwHi8fs0qUzndoTrJqG+DDALruim+wtxmFayC0mAYfo+mcjc+hrG4zGRSd+/YZiOzZg0RGdyZs8worEGV3e3VgQUeQRuDs6GfsD30vsTvucJg/Rgnzxuy6qyISIiIodPsV5k/eL6XQfoivXivk9XT1Vpv9Nma22L4eaQeBDvuoDJzq+H7SH9tT6da51bwkI793dP86vbXFsjGaYV4sqLZbZaW9PAW2GusKtdtpwlU8xQXixjjNm3QteNP7xBJp9JK5970ip7tUI6z5wMxxq2WluEOOC9J5PPcOMPb+w7xtxMGmyL8lE6V0sCw86QbHnH1UA7w3TOZJiG1Cb9bhZCGppLhgnWpeG+eCv93tgorbKXDBNcxk2/Nm67Ovt+HmTw62lnjKF5vsnCiwu0LrZoX2tPg4iVxQq1M7UDVe+rLFZY/cYqpfkS65fW6bf69G70KB7bsdB+o5dWCTRQWihN+4mIiIjI08faiHr9LPX62QeyvVrtDJcvfwGAcrlBp7PEysrr5PM1crkKg0F7HJ5Ln4+iPM7lqNXOPJD9i4iIiIjI02cwGJDNZqeBsDux1k7bH8QkgNbtphcdzOfzu8JtAMVikXw+T7/fp9vt3lUArVarcfnyZQDK5TKdToeVlZVbKtxNno+iCOfcgc//vLniWz6fp1wu31JUI45jBoPBXVeIe9gBQBERERGR27nvAN0bb7wx/TqXy/Gxj33sQP1+8zd/c/q1MYbv+Z7vodG4/ZXF/6P/6D+aBui63S5f/vKX+ehHP3oPo34ynDt3jq997WsA/PW//tf58R//8XvazjvvvMN/+p/+p/zKr/zKdOK2Uy6X49/4N/4N/tv/9r/lXe96132N+bAzkcFVHXhIVpL05EKfnjwYtkIaHHNgRiYNj1nwQ5+GyDC3hF9CCCTLCclyMq22FrbSfsab9ATJBxGeg+0wnmd3eG5SbS7Z8RjjdpNw3eimbVnS0JtnOu7JPkISpsFBExlMxWBKBvoQooAZGJJ2AlmmJ2eayGASQ+ikFfuCSwO3k+1OA3HxOJxnx/uevJ7h+H0bh/NCHKYhvkllPVM0qtolh46tWbiS/nwwJUPoBvwNT8gFyAEDpuE5UzJphUY37iciIiJyyMyemmXpq0sHWkycsM4ye2p23+c33t5Iw2JrWySjZFptzdj04hnA9H6SS+it9ag+W2Xj7Y09q7thubcq37f59WtSaSvKRRRqBfLVPKVmKa2+FntsZMlVc3SudRhsDohy0a5+N5tUfbORxTiDtXbPKn3WWrzz0xDUftXiAGZPz2Iji8s5onyEjz2dax2iYkQmn2HUHxH3YnzsifIRLuewGcvs6dm93w5nydfydJY76TijdP6VDJPtYOB4rmfHb15+No91d/499kEFvyRlI0v9bH3vz8MB1M7UuPyF8UJ7o0xnqcPK6yvka3lylRyD9iANz42fnxw/e1U4FBERERG5W9ZGNJvnuXr1S8zNvQBAp7NMv9+aBufAUC43ps83m+fuqdqdiIiIiIjIRCaTSddhDhigy2QyB972zYGyXG7vixnmcjn6/f5dB9CstTSbTa5evcrc3BwAnU6Hfr8/DZ1BGp6bPN9sNvctbHGzh10h7mEHAEVEREREbue+Vxc2NjaA9ASoxcXFA/UJIfA7v/M7GGOmles++clP3rHft3/7t1MqlaYhr29+85tPbYDu+vXrvP766/e9nV/7tV/jB37gB1hbW9u3zWAw4Jd/+Zf59V//df7u3/27/Lk/9+fue7+H1bRaVNkS2uNKdElaEcBbTxgG/LpPA2eOadDLluwt4ZcQAvGlGL+WTrTDKEwDaGEY0op1PaZV2B6IndtxpCG4hHRfw/RhY9OgX7CBsB62g2qB7UDdzgAb46+j9J+NbPp8DkxiMFmDLViYnKvXA7LgW347IGjGFeKypO9dMq5eRxos2jWGiO1qdhnSk2bD+P3zTCtQ7KyI5+oufV2q2iWHjLEG13Ak7yTYOYvHE7ohDc3t+PuSKRnsXHr8ukZ6PIuIiIgcNqe/6zRf/0dfv7tONu23n80rm8SDmLgXM+qOMNZgrMEn2wuWNrIQYNRNQ2DxMGbzyuaegaHcXI7BysGuAHpzv/3cUqFro0/lRGXX/ns3emnA7QAVuvKVPAAuk/7eZzIGl3fp30jGYcEQAiZjMMFMw3WTfnuZOTnDzDMzjLZG09BTPEwTiHFvfDuMMc6Qq+TIzeTSPidn9txeuVEmX8tTmCsw2BxgMGRL2fTiMuMxGmMYdUcEEyjMFcjX8pQb5T23t5f7DX7Jg2EjS/N8k6tfusrcC+OF9uUO/VZ/GpzDpMfE5PnmuaZCjiIiIiLywDQa5+j311ldvUC9fpZq9RTd7nWSZIhzWUqlBaIonQ/V62dpNM495hGLiIiIiMhRViwWMSa9wOHk/NVJuGxyLiuA935Xu5uryO3nYQfQABqNBv1+n9XVVer1OtVqlW63S5IkOOcolUpEUXpqcL1ev2Nhi50edoW4hx0AFBERERG5nfsO0E1KTgMHDtC99tprrK+vTycbAN/1Xd91x37GGJ5//vlp1bXbhb6eZEmS8KM/+qPEcXxf23nllVf4M3/mz9xSde7kyZOcOHGC5eVl3n777emVVjqdDv/2v/1vc/z4cb7zO7/zvvZ9WN1cLYou+IEnbAWCSyufTatF2e3gl6ndGn6Jl9LwXAghve2Og1/juZwf+O3Q2v19K281Cc9Nwmh+PN6IdJ8B6I+r4JmwHUab/ESYzDd3XmRnXF2ACGzFYrIGv+HTQFsOTMYQNkJ6QmUvpIE3tvcf4nEViQAmGEKchhNDJq1Kh9l+H4zbHpeJxl/vCNHtDM/ZGZu+90egalfwAd/y+I5PA4IuDW3amlVg6gnmGo7QT38OuLojzAR8b8cxULRp+BawcxbXUClFEREROZxsZImyEcPRcPdcYd8OEGWj2wZt1i+ts3VjC+99+m/oMc7s+v3Yx+nFOWzG4oNna2WL9Uvre24vykUMuPsA3aRq3F4edIWuY+87xqXfvkRUjLDOEuLAsDMkU8zgMo5klDDqjQhxwDpLppjBOMOx9x277RhrZ2rEvXg6Fu89PvHpnCoO0+9frppj5sQMc8/P7TvGxZcWufjZi8yemWVrbYvB5oCt9a1bx+gDuZkctedruKxj8aWD/V1IDpfGuQb99T6rF1apn61TPVWle707rQxYWigR5ccL7WfrNM4dfKFdREREROROjDGcPv0y+fwsS0uvAFCtntrVxrkczeY5Go1zu9aXRURERERE7tbJkyf5gz/4A3K5HKPRCEiDc865aaBuZzW4XC5HHMecPHnyQNt/2AE0mMyjTpPP51laWgKgWq3uauOco9ls0mg07moe9SgqxD3MAKCIiIiIyO3cd4BuZ3nq/a6WcbPPf/7zu+4vLi5y9uzZA/XdOVHodDoH6nPUxXFMp9Ph0qVL/It/8S/42Z/9Wb761a/e1zYHg8Et4bmPfOQj/NRP/RTf/u3fPn3swoUL/MiP/Ai/9mu/Nh3L93//9/PGG29MJ29Pkr2qRZlg0pDYIA1zGWvS8FY2DXq5Yw5XTwMvk/BL8IFkOZ1I7wzPmXxasY0C+JHH9/20Mtx9GwfKmGRvxie0moJJK8UV0sBfGIVpJbgQhTS0ZtgOpU22Nak6NzkxNkqryNlqGlgzmGmFu9AP+BseHIROIPTH4bnxj4cQQto+SfdvcukJnMGHNMSXDZCBMEzbmSh9j6bBQjuuPDd5TTYN3Nmyxb0r/ePFYa7aFUJ6PCTLSRqa2sGveriShqxcw2nh9wlkjCE6HZHk02PAYHDVm0JyTseAiIiIHH6DjQG5ao7RVhqcuhNjDblqjsHG/n8r2Gpt0W/1GbaH+DgNz7lsOqeaVKm2kSUZJvjYM9wc0l/vs9Xa2nN7ySDZ8/E7uV2/B12h68SHT/CHv/yHJMOEqBgR92KGneE0PBiSkFaLM4aoGJEpZigeK3LiwyduO8bFDy6m2yxEvPOVd9KxjS+gYlw6h8rX8hz/0HFmnpmheX7/MdbP1qmdqbF6YZXamRqbVzcZdobEvZjEJtPvf+FYgZmTM7iMo/ZcTdXkjihjDKdfPk1+Ns/SK+OF9lM3LbTnHM1zTRrn7m6hXUREREQmCy730u/pYYyh2TzPwsKLtFoXabevTSvQVSqL1GpnsPa+l7VFRERERESYnZ0lm83ivcc5Nw3LhZBeOH7CGINzDmstuVyO2dnZA23/UQTQJuNrNpssLCzQarVot9vTAFqlUqFWq91T1bZHUSHuYQYARURERERu575XGur19OSoEAIXL148UJ/Pfvaz0z7GGP7oH/2jB97fcLidNjpoWeyjbmdI8UH5uZ/7Ob71rW9N77/44ot89rOfveVKJmfPnuUf/aN/xHd/93dPg49LS0v8L//L/8J//B//xw98XIfBzdWi7IzFdz2+nVaiMxmTnnwImJKZVj/bGX5J1pJpWGwSnrPHLLa4PVFMBgl+03MPxRH2Vkgr502DZg5M1mAzFgpppTZjxpX1IojfiTE3DIHxxD8wrYg1XcvdWRkvpNvLnM0QLUZpyDBY/JpPQ4KjNGToBx5sGha0BZtW7BuH+8IgDc1Nxmis2a7kNwCbt4R+wMyYNLjYHlehs9sV63BgygZbtETH0moWh7lqVwiB+FJajRDSY+KW6mMYkncSQj8QnY406X8CGWOImhFuwakKoYiIiBxZnaUO+Wqe3mqPJL5zUM1mLPlqns7S/he/SQYJg84AH/v0gh+kcwaX3f79Phkm6RwC8Iln0B7sG3gLwzsH++6l34Os0FU/W2fxQ4vEWzHD7pABA5JhQjJKMIlJq+1Zi8s78rN5CrUCx7/9+B3DaZMxGmOYOTHD5tVN1i+tkwwSXM4xe3qWmRMzGGfuOEYbWc7+8bO89vdfS+eC1rDV2iLeiqd/y4kKEYVagdJ8iXKjzNk/fva21QblcDPG0DzfZOHFBVoXW7SvtafHd2WxQu1MTd9fEREREXnorI2o189Srx/swqsiIiIiIiJ3a2tri+PHj3Px4kUymQzW2lvCc1EUTQN0kBaI2Nra++KON3sUAbSb91ev16fn8T4Ij6JC3MMKAIqIiIiI3M59B+je9a53Tb9eX1/nK1/5Ch/60If2bd9qtfjsZz87LXcN8PGPf/zA+3v77benX99N2WrZ7dOf/vSu+//D//A/7Pt+ZjIZ/vbf/tucP39++j37W3/rb/GjP/qjT1zQ54033gDg+eef310tatbhZtMqCKEXCHHAzljsMYuruFvCL76ThqV8L701ebMrPBdCwIxMGngz25UV7oexBlM02KxNT/6Mx/udsZiKwWTSoJqpGmiPr5ozummngWn4blKpgJDeN8W0YoGZMbeEDEM8riQ3CRjmTVplbmschsMQhun7Nt2mAZuzmDkDw3T7tjIO3E1ChcfGIcTOOEiX3R1eNDWDax7uql3JcpIGDEPYVY1w+vxGMg1i+jVPkk+Imvd/FdXJsfzCCy/c97bkwTHW4OrbVSvl9nQcy5NCx7I8CXQcC2xXaZtcCCOQBqnCc+Pfcb81vvjFuAL1ZI502+puGTsNZQXSC20EH/Cxx2YsfuTTeZgP6bZ9IO7H6YVC9hDMPQbo7tDvQVbospHl3X/i3Qw2B9iMZePSBsPukGS4/T65rCNbzlI9VeXYe48dKJx28xirp6r3VUWseb5Jf73Pm7/1JjZjKcwVGGwO8InHOktuJkdUiJg5OcNzf+w5muebt92ebDvMP1NtZKmfrauaoBw6h/lzI3IY6TMjcpjsN9d4fnz7rX2ev89FIxF5KPT/WJGjS59fkaNJn115GJIk4fjx46ytrbG6ujqtMjcajaZtMpkM3qfn/c3OznL8+PFppbqDeBQBtIfpUVaIexgBQDlc9LNc5OjS51fkaNJn9/buO6XxkY98hFwuN60M9zf+xt/g//g//o992//dv/t36ff7u35p/uQnP3mgfV29epXl5eVp38kVOOTufPOb3+S1116b3j916tQdvwcf+MAH+MhHPsIXv/hFAC5fvswrr7zCBz/4wYc61kftN37jNwD41Kc+dX/VopKbbrO7nw6b4zCZ5cGsgUbgFtw0XOYTn451xmKcwZYsmeczmGOG+PWYJE6wWYvPeBjt2I5hOiZjDcGmQTzs+CTZXBqGM8YQnY62Q4Y2rTY3+cOByaZhPlMw6bZMWhnPGw99IAc2m578aZ3F1A22bqfB2knIzJTSfU2Di4M0SGfrluiZCDfnDnXVruADyXJ6EOwMz5m8SY+JIYR++no9aRgxWU7S7+V9vq7Jsaz/+clRpuNYnhQ6luVJoONYAMqNMqOtEdlilq3+Vvq7vjOE70l/z41+LsInPp3rGMiWsoy2RpQb5X236UeeKB9hNtO5BjadI9jIQmB66+14rmENUS7Cj/ye27vXClkH6fcgK3RNwmmZYobisSK9Gz221rbwIz8NqxXni1RPVe8qnPYgx2iM4dmPP0uhVuDaV66x+c4mg420WqCNLLlqjpkTMyy+tHigQJ5s089Ukbunz43I3dFnRuQwcaQLLTebrMv99G36ichho//Hihxd+vyKHE367D6ddhZmuNt+B+FceqH2Z555Bu89vV4P5xzZbDa9SKQxWGtJkoRiscgzzzyzqxrdQcfyqAJoD4sqxMmDop/lIkeXPr8iR5M+u7d33wG6bDbLn/yTf5Jf/MVfBOAXf/EX+cQnPsFf+At/4Za2X/7yl/kv/ov/Ytck59y5c5w+ffpA+/q1X/s1gOlE5f3vf//9Dv9I+NznPnfLY5/5zGf4+Z//+Xva3m/91m/tuv+93/u9B+r3r//r//o0QAfw67/+609cgA6AAMlqcvehuZ3cTbfDHZv3Ab/pMVmTVlqbhNYOfpGaPccchoGQG1d6yKZhNztjMUVD9sNZaMPotRH+uk+rK4y2+05NzkF1EJKQVp6LzPQxU9iuImGMmYYMh2aYBun8ODBXMEQnIjDgNz1hM2DcuHpcLn3eFiyUIXMykwbKxpXvJu81sDu8OH8P34fHzLfSsYfRdijQHrO7qhH6nsffSMN1YSb9/vmWV4UyERERETl0ysfL6aKhSy/UgR8vRo4rTE8unmFsurBobXqRjPLx/QN0UT4iW8mytbaV/p5v0jDbZN4fQsBG4/2FNFyXnckS5ff+c0aulKN/o3/Xry1Xyt11n/vxsMNpD6qK2IMM5ImIiIiIPI2cy5AkewXo7txPRERERETkaeScI47vZR51sHOtKpUKq6urlMtlZmdnmZmZIYoiRqMR3nustWQyGeI4xlpLuVye9rsbT0oATRXiRERERORJct8BOoCf+Imf4Jd+6ZeANNz27/17/x6//du/zQ//8A9z8uRJbty4wT/9p/+Uv/k3/+au6nPGGP7SX/pLB97PZz7zmenXhUKBs2fPPojhH3of//jHb3ns85///D1v78tf/vKu++fOnTtQv5vb/fN//s/veQyHUQghDTqNAoOvDtJAlyWtulY0mCsG13C4hrvjyYu2bPGrHlu0JBsJoR/wvfR+6IU08DYIaUiNdD/AvYfoQhpUM5HBzBrsgp0GsEzeEP9hTBgFkqtJ2rbj0/ZhXGUuSrcx/Td+7Xggy3Ygr2pvqZhn7DgsF6cV75Jr6YsI/YAtWlzVESqBZC2BTrotW0tDZJn3Zojm9/8x5OruSAfJfCdNJPreuFpG3uwKzwHpMZFLq+v5nsdVHb6jAJ2IiIiIHD4u6ygvlll7Yy2tWO1DWv0a0nlG7Alsz3ECgfJiGZfd/3fb/GyewlyBrdYWo94IH/t0cdKlvzcbY/CJT0N5URqeK9QK5Gfze2+vlmfj0sZdv7Z8be/t7RRCYPnVZZZeWSIZ7p68rX5jlctfuEzzfPPAgbejFE57UIE8EREREZGnTRTlSZKte+onIiIiIiLyNIqi6J4CdFF0sFNha7Ualy9fBqBcLtPpdPDeUyqVyOVyDAYD+v3+NDwXRRHOOWq12l2PCRRAExERERE5TB5IgO6ll17iR37kR/gf/8f/cXqF+J//+Z+/pULa5ArykJ4o9u53v5t/99/9dw+0j8997nP883/+z6f9v/M7v/NBDP2p9Ad/8Ae77h80iPjud7971/1vfvObD2xMj5v3nuErQ0I/TMNoYRi2Q3R5g521hDgQ+oHodHTbEyJtzcIV0mpwJUPohrTKWC7g+57QTsNSWGByEdGYtGrD3c//00+yG4f9sma7yuN4W8YYfNvjez4NCfZC+nkspFXwggmQSdtN3gOyYLMWojQkZ0sWO2O3q+od8PWSI620N0iDhaZk0nCY48kPiSU33Wb3aTd5j25uLyIiIiJyiBSPFZl9bpb1t9an1ecm1eUhnfNjxlXpfBq6mn1uluKx4r7brJ6qUjxWZOvGFsONYRqei9K516Sqncu5tDKbtRSqBUrzJaqnqntuL/jtfgdmxv1uI4TAW59/i7VvrgEQb8V0V7rTwFtpoQTA1S9dpb/e5/TLpw9cNU7hNBERERGRJ5dz91bt+l77iYiIiIiIHHX3WpXtoP2stTSbTa5evcrc3BwAnU6Hfr9Pv9+ftiuXy9Pnm83mkagWJyIiIiIit/dAAnQA/91/99/x+7//+3z2s5+95SS6icnJYyEEKpUK/+Af/IMDX/njr/7Vvzrta4zhT/2pP/Wghv7UuXTp0q77zWbzQP0ajcau+2+++ea0bPlRFkJg+MqQ5O20OlvwgWQl/RoDJjKErUDoptXpIA3URc39j11j02p1yTsJds7i8Wn/QSB0QhrE8+mxHLJhOzwH25XfDsqM+yTbX4deSKvm5dONJqsJyXJCGIb03yhsv76CgQ6EOGBLlmDTyngmY9KqEqOAmTVEx9PQoC3f+v2+3etlsKNdyWDn0v6u4TD2YCeUHlnuptvhPu0GN7V7wnOFIiIiInI0ZQoZXNZhnMFkDH7gbw2qhbTynM1ajDO4rCNTyOy5PYDqM1Wqp6rE/Zhhb8jW6lZa5bq4Pd9K4gTrLIV6geqzVWaemaH6zN4Bukwpk87hRgdP0JnIkCntP0aA5VeXWfvmGsEH1t5Yo7Pc2fXa1y+tU26UmXthjtULq+Rn8zTPH2yuLSIiIiIiT65crkivd2/9REREREREnka5XI7ePUykcrmDX4ik0WjQ7/dZXV2lXq9TrVbpdrskSYJzjlKpND2vtV6v33LepIiIiIiIHE0PLPmUzWb51V/9VX7wB39wGp4zxuz6F0Ja9erkyZP8xm/8BufOnTvQtv/23/7b/O7v/u40gJfJZPjTf/pPP6ihP1VCCCwvL+967KDlxWdnZ3cFHofD4S3bOoriazHJ5SQ9PpO06tw0YAZp4KyfhsH8dY/f9GkY7Q4VClzDYecsxqQV19yiw1QNpmjS4Jo104pzJmcgT/qJNGyH6Q7CALn0pE+i9NYuWvxaejKrX0vDbIT0OZMx0xNeQxKm+zfO4L1PP78hDdSFENKKccccJmPAjavN3c3rLRtM1eAWHa7u0hDenMU1nvyU2CRsaIvpbeiPKw/u4Hs+DRruaLdXSFFERERE5HErzZfoLneJchHWWYw1uy6KMblvrME6S5SL6C53Kc2X9t1m7UyN2pkaMydnqCxWqD5TJT+bx+Xc9F9+Nk/1mSqVxQozJ2eoPZ/22Uv9XfUDV36bjtsY6u/av/qbjz1LrywBpOG5pTQ8l6/lqZ6qkq/lIUBnqcPaG2mFuqVXl/Dx3VwZRUREREREnkT1+nseaT8REREREZGjrl7ff83mQfUzxnD69GlOnDiBc44oiqhWq8zNzVGtVomiCOccJ06c4PTp03e99iQiIiIiIofTA6tAB2mI7ud//uf5C3/hL/DTP/3T/Pqv/zrtdhtIJx0vvfQS3//938+nPvUpyuXygbb5O7/zO/zET/wEwDSY96f/9J/m2LFjD3LoT412u02SJLsem5mZOXD/SqVCq9Wa3u90Og9sbI9D8IH4zTgNmrW3qyfYkk2rt8XjIFk8rqZmwK97bMXiWx5X3z8EZowhOh2R5NPqbwaDnbH4TT8NswUbIEnHYawh5LaDeyT7bvpWCfAcuMSl2+uk2/XtcXgOsLM2fWzLbwf0TBoWNHmDwUzDe8GEadjOluyBqsbt9Xpd9ab3x6XbcA13aP6wEHzAtzy+49P30aUBNluz910hz9YsXAGDwZQMoRvwN3z6fc4BA6bhOVMydwwpioiIiIg8Tj7x9Ft9suVsOn8I2xcGMRhczuFHPp3fYMiWs/TX+/hk/yCZjSyLH1wkGSZE+YhrX7mWzkt2Xq/EpGG1xZcWqZ6qsnh+ERvt/Tvz3Lvn0ouL7Ff9eQ8mMsy9e27f51sXWyTDhHgrTivPAfPvm6d4bLsiRO9Gj5XXV+gsd6ieqk771c/e2yKviIiIiIg8GQqF/ecaD6Pfw+Z9TKt1kXb7GkkyxLkslcoitdoZrH2gy84iIiIiIvKUKhQKj6SfMYZms8nCwgKtVmt6XqVzjkqlQq1Ww9r7P4fLe/9Qty8iIiIiIgf3UFYyPv7xj/Pxj38cgPX1dQaDAfV6fVf1soOK45if/dmf3fXYxz72sQcxzKdSt9u95bFMJnPg/je33Wt7R4lveUIvrTwXeuMzNA24ue3glx966KRBOnxaRSz0Ar5z+wAdjENlzQi34PAtz+jtUVptLkd6QmcEJjGEQSCYcXguYffJogcxBLNmMAvptvymx2DwG+mtyaeV7/yax2QNYWu8gwwYbyAhDQySBlWNSSvH2YLFzR+8atzNr/dhhNIelBACyXIa9rs5rOhXPVy5/7CfsQbXcCTvJNg5iycNNIZBgMGOdiVzoJCiiIiIiMjjtPzqMrlqju5qF0wafrNR+nsugLUWkzVp5TUDo96IcrPM8qvLNL6tse92G+ca9Nf7GGOYOTlD+2qb9UvrJIMEl3PMnp6lcqKCdZb62TqNc/tvq3qiigl3WYEuGKonqvs+376WXhiou9KFALlqDp94Vi+s4mOPjSy5ao5cNcdgY0D3epfqqSrta20F6EREREREnnL9/voj7fewhBBYXn6VpaVXSJLdVyxZXf0Gly9/gWbzPI3GuUNzAUURERERETma+v3+I+1nraVer99z5bv9pPOoZZaWlm4peLC6usrly5dpNps0Gg3No0REREREHpGHfinA2dnZ++o/CeLJgzEajW557G4CdLlcbtf9Xq9332OaOH/+/J5XVXFu/wDTf/af/Wf81b/6V++47Z/+6Z/e8/EwSsNML8+9zKlwih+q/dAt1b9s1uIjT7BpJTrj05DazaGr/fYx8YlPfIJT9hTRQkToB/zAY3OWEAXoQximAT0MsE+Bhr/v//6tD3rSsbwNLxde5vns8xCTfront1kwRQMtMM6kIbphgNF2ZUfGf0P4hdYvpO/3xngsl9KKDCZKvwff/d3fzQsvvHDb12qswdXdvgHDO71XB9nHndxpH//quX+VZwvPAulx4Hs7wn5Fi8GQvJMQ+oHodLTnMXiQ1/H888+n3++1NHAZZvbYVybd9l4hxXt9rz71qU/dtt+D2Mfd0D60j3vZx52O46PyOrQP7ePmY/movg7t4+nex6c+9Sl++qd/+rb7OQqv40n0KOdRvdUe8bmY0btG+MST+Z0MudUc7v906UVAshAVIkbdEckgYdQbkZ/NT6u23WkfcT8m7seEQoD3pI+9b+Z9VHNVXM7RPNekce72i4g2b2+teHeHX42T30yw+f2v8JkM08lfPIjZWtuiv95nsDHY1ear2a8SKgHK4KzDrTjcuiP7B1ng6Hw+tI9Hs4+DztcO++vQPrSPR7kP/U6tfWgf97aPvfZ3FF+H9vH49/GkeZTzqPX19wKndjzy68C3gNt/3waD9oH3cbOHcVwNh90dwTnPs88OmZkZ4FyWUmkBgKtXv0S/v87p0y8f6OTPJ+XzoX08Xft4kv5Gpn1oH0/bPrR+rn1oH0d7HzsfOyqv40nzaOdR6/c0xsFgsO9zj2ceNdwVnHv22WeZmZnBOUepVALg6tWr9Pt9Tp8+rXmU9vHE7kPzKO1D+zi6+9A8SvvQPo72PjSP2ttDD9A9KX7t136N7/3e730o2/7hH/5hPvOZzzyUbd/MuVsDTXdTCnwathrzfp+k1z2I4/iu++wVCLwrk5czCa450tDZzaIdbez469sXY7t1V+10Z2GUVpozWQNZcFlHEieElXGwajKeu61CFyCsBDjB9id7cjtMQ21mxhA2AqY0rjbXT0N7k1AdDsymSV8jYDLjx5+wi9yEOODbnpBPg22hu/vNTjaSaVU4v+ZJ8glR895+XBpjiE5HJPm02p3B4Ko3HTzu/qvdiYiIiMjT6VHPo0ISwKS/54Y4EPd27D9A3IvxI4+JDNZZ+q2DX+0zyke4nMMPPUmcQICZkzM8+/5nqZ2pYaM7z13/8P/6Q6yzeOMPPKcyzvCH/9cf8oE/94E9n3dZRwiBzrUOW6tbRMWITCnDsD3EJx7rLJyC4APBB0xscDn3xM2jRERERESeFI9yHpUk99ZvY+PyPfV7GOK4Pw7PBZJkiPcxnc4NjOkBsL5+iXK5wdzcC6yuXiCfn6XZPP9YxywiIiIiIg/Wo51HJXdutIeNjY176vcwxHE8fR1JkuC9p9PpTM8LW19fp1wuMzc3x+rqKvl8nmaz+TiHLCIiIiLyVDDh5kSU7OmwBej+y//yv+Sv/bW/Nr3/1//6X+fHf/zH79hvbW3tlnLjcRzvGazbS6PR4Pr169P7v/u7v8tHP/rRA456tz/4gz/gxRdfnN7P5/N3FeaDg1+pZj+jSyPiSzHx1ZjQDYRhwOQNtmzT4NhYspbgux6TMbh5h52x5F7K7Vthbb99+VVPspEQNgLkxtURNj2+5wlb6cmWYTMQeuHWkz3NTV9btsN+DojSUF7m2UwalNsMmGoamAOwxyymYPCrntBLX6vf9GlVvVJaYc41HG42fU12zu5bee0oCz4wfG0ICSSryTQ8Z/JpoJHhOFgImFJaSQ8H2W/LYuz9vRfBB3zL4zs7KtCVLbZm73vbIiIiIk+rm+cVv//7v8/73//+xziih+txzqN+7+d/j69++qv0N/q0r7YJIZApZXCZ9EIQIQSSUcKoO8IYQ+VEhfxsnpf+g5f44A9/8K73dy9+5tt/htWvrzLqjQ4WoDOQKWaov6fOf/Dl/2DPJqsXVnn1773K2oU1Wm+1GGwOiPIRUXb7IhvxMK2el5vJUXuuxty75jj3g+eon63vuU0RERERkcdJ86hHN4/6m3/zJO321bvuV6mc4Md+7Mpd93vQvI/52tf+PkkyZHX1Ap3OEgD5fI1crsJg0KbfbwFQLjep18/iXI4PfOAHsFbXcRURERGRJ4fmUY9yHvU3abf3r8q9n0qlwo/92I/ddb8HzXvP1772NZIkYXV1lU6nA6TvYS6XYzAY0O+nF6Asl8vU63Wcc3zgAx+46/dYREREROQwO4zzKK1cPGUm5b93Gg6HFAqFA/W/+cowe23vXn35y19+5B8IW7aYosHkDGFrXCEuDvhOWjGBCHx/u0KZKZq0WlvRYGt3OWFNdt+anMFWLZTAv+XTwN4WhCik4bhAWoluLzc/59N/wadhODtjSboJtmLxcTp+f8NjcmlIzCee0En3Y8sWW7bp1zP2ia+G5ltpeC2MwvT7ao9ZbHH7++l7Hn8jfd/CTMBg8C1/V4HJvRibBvLudzsiIiIiIhOPch5Vni+DgSgXEUgvAAIQFSJcxpGMEpJRks5LnCHKR9v9HhGzV9m3vaY1Yffze/Ybq56q0rnWwWYsIQkk/YSknxAqgWw5y7AzZNgeppstB2xk6Sx1qJ6q3t+LERERERGRh+JRzqMymTLppORurmdqxv0ev1brIkkyJI636HSWAZiffx/F4rFpm17vBisrr9PpLFOtnpr2q9fPPpYxi4iIiIjIg/do51GZR9rvQWu1WiRJQhzH0/Dc/Pw8xWJx2qbX67GyskKn06FarU773VwYQUREREREHiwF6A7oIx/5CJ/73OceyrYfZfntXC5HFEW7yqr3er0DB+huvrrL7OzsgxzeI2drFnPF4GpuWvUtDEMarnIhDVqNTwq1BYut2PSE0eeiu68Y5m66HY5v+2CzluDGFfCcme77FuE2X4e0Ap2dsxhjiM5EMEgryXnGYbBBSB9zllALaUgwByYY7IIlcyrzxFdD8500eeh76a3Jm13hOQBbtIRc+n75nsdVHb5z/wE6EREREZGjLMpHFI8VaV1skSlmSAYJfuTpr/exzqYX6kgCLuNweUcyTJg5OTMN0j2SMRb3qKJ9h/NUDYaouP8YN97eoLxYZvXCKtbZNDCYc0TZiJAEMoUMxhmSQYK16UVMys0yG29vqAKdiIiIiMhTLpstcS8BurTf49duXwOg210BAvl8bVd4DqBYPEY+X6Pfb9HtXqdaPUW7fU0BOhERERERuSfZbPaR9nvQJudXdrtdIK08tzM8B1AsFsnn8/T7fbrdLtVqlXa7rQCdiIiIiMhDpgDdAc3NzfHxj3/8cQ/jgXjmmWd48803p/c3NzcPNPlaX1/fFbyz1tJoNB7KGB8VYw2u4QhxwI4s/rpP1zF9WokOy3bFuUoaTHPPOKLFu//o2LLFr3ps0ZJsJIR+Gs4Kg3Hlu2FI92mAHNBj95rq7dZWx+eHmrrBmDRE5045krcT/Foa/Aoz6f5ISKvMFR0mk3a0c5bo9B4nmj6JbqoEyH5/O8kBgz3ai4iIiIg8pXziaXygQftam0w+kwbjAiTDBEJ6oQ5XcNOKblEhovGBBj7Zr7T2g7f40iJLX11KL1wS73hi51Rnx9zKOEMgsPjS4r7bbF9rM3NyhvU31wEoNUqUG2UGmwN84rHOkpvJ0VnuEPdibGSZOTlD+1pbAToRERERkafc7OxzXL/+Gt4ffF5krWN29rmHOKqDS5LhrttcrrJnu1yuQr/fuqW9iIiIiIjI3ZqdneX69et3OY+yh6YQQJIku25zudye7XK5HP1+/5b2IiIiIiLy8Ng7N5EnzfPPP7/r/tLS0oH6LS8v77q/uLh4aEqf3w/XcLh6+i86EWFnLaaUBubsrMXNO9yMwziDO+XIns/eU9DM1iw4MBmDKaX9/Q2PX/VpkK6dVjwLJkCeu70Yado+D3YxDcNZm9664266X1d1uDmHq47Dcw7ccff0hOdg/0qANxvs015ERERE5Cnlso6ZZ2Y49u5jZMppgK44X6QwVyA/l6cwV6A4XyTKR2TKGY69+xgzz8zgso/ul+kXv/9FMGmYb5ew498Oxhkw4377SIYJxhjKi2UKxwpkChlGvRHJKMHHnmSUMOqNyBQzFI4VKC+WMcakwUIREREREXmqnT79MdJFnIMuyVrAjvs9fs5ld90OBu09200ev7m9iIiIiIjI3Tp9+vQj7fegOed23Q4Ggz3bTR6/ub2IiIiIiDw8CtA9hd71rnftuv/1r3/9QP1ubve+973vgY3pcTLGEJ2O0vDcnCU6lX7tFtKwmZ2x2HlL9tuz5D6Yw9p7+9hMqt1BWvFtEqILcUir0SU+rUA3BONNWh/yoCG6AJQgU8pgjJmG4YwxRM2I7Ldl01BdPQ0F2noarst+W5ao+RSF50grAQLYYno7qQS4087KgJN2k34iIiIiIk+rymIFYwzHP3yc2dOz5Kt58rN5KscrVJoVKscr5GfTx2ZPz3L8w8cxxlBZ3LtCwcOQjBJmnplJ51YHEOLAzMkZktH+YbdJANBlXVpxb5CkVfaMwTCefxmIt2IIN7UXEREREZGnnKFQmAMOWjnBUyjU2F1G+/GpVNJq3aXSPGDo91v0ejd2ten1btDvtwBDqbSwq5+IiIiIiMi9KBQKD7X9w1SppOtipVIJgH6/T6/X29Wm1+vR7/d3tZv0ExERERGRh0eJkKfQd3zHd+y6/5WvfOVA/b72ta/tuv+Rj3zkgY3pcdsZNMs8lyE6HZF5PkPmPRlyL+XIf0eezPHMfQfNXMOl4Tlj0qp3iw4zZyALJjJp9QMLxMDdFPezpIG8AMlyQvC7TxY1Nt1f5nSGzJkMmdMZXN1h7OFYgH2U9qsEmCwnJOsJyXKCv5EuZJuSmVbqszX9uBQRERGRp1vtTA2XdWQKGY695xhzz8+RKWbIlrMU54tky1kyxQxzZ+Y49p5jZAoZXM5RO1N7ZGMcbY2YfW4Wm7F3Pt/UgM1YZp+bZbQ12rdZZbFCCIHBxoCttS2GnSEhCdjIYiKDjSwhCYy6I7bWthhsDgghPNLgoIiIiIiIHE6ZTIlCoY4xB7vAhjGOQqFOJlN6yCM7mFrtDM5liaIC5XIDgJWV11lefo319bdYXn6NlZXXASiXG0RRHudy1GpnHuewRURERETkCMtkMhQKhQOfp2eMoVAokMnczcl2D0+tVsM5RxRFlMtlAFZWVlheXmZ9fZ3l5WVWVlYAKJfLRFGEc45a7dGtp4mIiIiIPK2UCHkKfeITn9g1wfzH//gfH6jfP/kn/2TX/e/6ru96oOM6DB520GxS7c4dd9MQV7QQbYfnIiCGMAwwIr2/78bG/xyQB7ZIg3MJ+NZBr2T69Nm3EuAgEDbDtPKcKRnsXPoj0jWezrChiIiIiMhONrI0zzcBmHthjvJimdxMjkwxg40smWKG3EyO8mKZuRfmAGiea2KjR/enh+5yl0FrQPV0NZ1jTQfP9gVLxowzVE9XGbQGdJe7+26zdqZGd7lLf71PtpKlv9ln5fUV1r61Rvtqm7VvrbHy+gr9zfHzrT7d5e4jDQ6KiIiIiMjhZIxlMNggkykeqH0mU2Qw2MCYw7GEa21Es3kegLm5FyiXm0wq0W1svD2tPFcuN5mbewGAZvMc1t5ugUtERERERGR/xhgGg8GBA3GZTIbBYHDfF8Z/UKy1NJvj9bS5uWmIrt/vs7GxMa08Vy6XmZsbr6c1m1h7OOaBIiIiIiJPMq1ePIWazSYf+tCH+PKXvwzA22+/zT/9p/+U7/3e7923z2uvvcYXv/jF6f16vc7LL7/80Mf6JJpUu3MLDt/yJJsJ5oqBGKyxBAKhnwbhCKQhuZ0F5QzpSZ9ZwKdfm8y4ktpWGpzzHY+rH+xqpk8j13CEfsCvpe9TmAn4nk/fcwe2aKfvqZ2z08CdiIiIiMjTrnGuQX+9z+qFVepn61RPVele75IME1zWUVooEeXTPzXUz9ZpnGs80vF1r3cJScBgiHIRIReIMhFJnFbqNtbgIkc8ijHj/0IS6F7fP0C3S2C6AGtIq4Cbcam7w7IwKyIiIiIih0evt8L2Io9l94LPzSZzijDudzg0Gufo99dZXb1AvX6WavUU3e51kmSIc1lKpQWiKA9AvX6WRuPcYx6xiIiIiIgcZb1e75H2exgajQb9fp/V1VXq9TrVapVut0uSJDjnKJVKRNF4Pa1ep9F4tOtpIiIiIiJPKwXonlI/9mM/xp//839+ev8/+U/+Ez72sY9RqVRuaTsajfjRH/1RQthe1PuLf/EvTidxcm8m1e4AomcikusJybUEkzfYvCVshLQSHaRBOUjXTrNsV0+4qdCcCePF1eRRvIKja1IJMMknJMsJBoOr3hSSc2nQzjWcToQVERERERkzxnD65dPkZ/MsvbIEQPVUdVcbl3M0zzVpnGs8+t+lQzpXSoYJ1lmMM+SreWzW4jKOZJTgh57+Rp+QBJJhks6tbnMOa+tii1KjRHely9oba+QqOWrP1whJwCd+up/e9R7D9pDCewqUGiVaF1vUz9Yf3WsXEREREZFDZ2vrBs5lATAGQrBEURYwGGPGa2+BOB5iTDoxcS7H1taNxzfomxhjOH36ZfL5WZaWXgGgWj21q41zOZrNczQa57SmIiIiIiIi92Vrawvn0vO4JvOmyXmK2/MoiON4Ov9wzrG1tfV4BryHdB51mnw+z9LSeD2tetN6mnM0m00ajcewniYiIiIi8pRSAuoI+PznP3/LY2+99dau+9/61rduaTc7O8v58+f33Ob3f//385M/+ZN8/etfB9IKc5/85Cf5qZ/6KT74wQ9O273xxhv86I/+KL/1W781fWxubo4f//Efv6fXIrfyHY8xBpMzmEJaic5g8AW/HaDbWYUu7Pg3+QR7MDmzfXFSFUy7o5srAfrOjgp0ZYutWYzVHydERERERG5mjKF5vsnCiwu0LrZoX2tPK9BVFivUztSwkX08Y3OGfC1PZ6mDzaTBtmSUMOqPphW+rbPYyBJsOsnK1/JpiG4f7WttjDHkZnIU6gWSQUK+mr+lXbwV43KO7EwWYwzta20F6EREREREnnKDQZdMpoQxaxjjpiG5EPz4pM80SGetASzGWDKZIoPBAatkPyLGGJrN8ywsvEirdZF2+9q0Al2lskitdgZrtewsIiIiIiL3bzAYkMlk0vPpdvybmHxtrZ3ez2QyDAaDe9qf955Wq0W73Z5WiKtUKtRqtek+7kU6j2qysLDwULYvIiIiIiJ3TysZR8B3fdd33bHNpz/9aT796U/veuzll1/eM3wH6RVMfumXfonv+I7voNtNF+H+xb/4F7z00kucPHmSEydOcP36dS5duoT3fle/f/AP/gH1uk4CfGAm1eI82ILFlA3JakLoBLDp49MAXRi3t0AmnWj7kcdYg8kYTHH8B4KyJtcHNakEOKkGKCIiIiIiB2MjS/1s/VCFxEqNEoVagcJcga21LcIo4DLjqtI7MnLxIL0qaWGuQKGWVozbTzJMJ21+5CnUCsycmCFTzjDYGOBjj40suWqOmRMzbF7dxI/8rn4iIiIiIvL0yuVmyGaLOJdjNOoBFmujaYAuPRHU4n0CBJzLkc0WyeVmHvfQ92RtRL1+lnr97OMeioiIiIiIPKFyuRzZbBbn3LTKXCaTIYSwYx5lpvedc2SzWXK53F3tJ4TA8vIyS0tLJMnuNZ3V1VUuX778QCrEWWup1+s631JERERE5BBQyuYp9m3f9m388i//MnNzc7sev3LlCl/84hd58803d4XnisUi/+v/+r/y3d/93Y96qE82t30bQiBZSyCAzVnMjNn9KZ3MxRMI/YAfeEww2KLF5NJbHNiaPtoiIiIiIvL0Of7ScYwzZMvZtMqcDww7Q+J+TDJMiPsxw+6Q4AM2smQrabvjLx3fd5su63bdDntDyo0y9bN15t83T/1snXKjzLA33LO9iIiIiIg8vebn34sxlijKj0/w9HgfT0/6DCGM7/vxSaF5jHHMz7/3cQ9dRERERETksZifn8cYQ7FYxFqbnk+XJFhriaIIay1JkhBCwFpLsVjEGMP8/PyB9xFC4K233uLq1askSUIcx2xsbLC2tsbGxgZxHJMkCVevXuXSpUvjCuIiIiIiInLUKWXzlPvkJz/Ja6+9xg/+4A9SKu19xf1sNsv3fd/38ZWvfIUf+qEfesQjfPJNqsXZoiX0A6ETCATCIMCQ7U+pH/8L49skrUBncgaTN5hKWoHONRzG3vtVb0RERERERI6q+tk6mWKGeCumeKyIy7ppcC7eitMg3SDBZR3F+SJxLyYqRLetoldZrABQmi+BgX6rT+9Gb1eb3o0e/VYfDJQWSrv6iYiIiIjI0+vEiQ9jbRZjwLkcxliSZIT32/+SZIQxFufSagnWZjhx4sOPeeQiIiIiIiKPx4kTJygWi2QyGbLZLFEUTUN0k38hBKIoIpvNkslkKBaLnDhx4sD7WF5eZm1tjRACq6urXL16lfX1ddrtNuvr61y9epXV1dXp88vLyw/xFYuIiIiIyKMSPe4ByJ097CuYHD9+nF/4hV/gf/6f/2d++7d/m8uXL3Pjxg1qtRonTpzgYx/7GLVa7aGO4bB44403AHjhhRce2T5tzcIVtgNyQFgLhFEg+JBWqJsE53bm4jJABHbBYqO0Wp075nANVTmQx3MsizxoOo7lSaFjWZ4EOo7ldg7b8VFulsnOZOlv9omyEQZDYLu6g8FMq8NlZ7KUm+Xbbq92psblL1xOt90o01nqsPL6Cvlanlwlx6A9SMNz4+ejfITLOWpnno55tNy9w/aZETkK9LkRuTv6zIgcHrXaGfL5Gr3edQaDDtaO8B7gDCEYjLkIpFUTrM2QyRQpFOao1c485pGLyF70/1iRo0ufX5GjSZ/dp1O9XmdxcZHRaMRwOGQwGEyDcwDOuem/XC5HPp9ncXGRen3/iyXu5L1naWkJgLW1NTqdDgD5fJ5cLsdgMKDf708fr9frLC0tsbCwgLWqVyFyt/SzXOTo0udX5GjSZ/f2FKCTqVKpxPd8z/c87mE8Vr/xG78BPNofGMamVeNGF0aYoiEkgZAEMGCiNDEXopAG6BIgBlxauc5EBmIwNUPmPRmiZoQxqj4nj+dYFnnQdBzLk0LHsjwJdBzL7Rym46N1sUW5WaZ+tk5nqUNUiCjOFwk+pOE5YzDWMOwMsZGl/u465WaZ1sXWvlXobGRpnm9y9UtXmXthDoDOcod+qz8NzmHS8Nzk+ea5JjbSIqrs7TB9ZkSOCn1uRO6OPjMih8fGxtssLLxIv79Ov79BCDHOWYbDTwCQyfwC6dUTA1GUo1hsMD//fjY23qZeP/tYxy4it9L/Y0WOLn1+RY4mfXafTtZa3v3udzMYDHDOsbGxwXA4pN1uA5DNZnHOkc1mqVarHDt2jHe/+90HDre1Wi2SJCGO42lIbn5+nmKxOG3T6/VYWVmh0+lQrVan/Q4a0hORbfpZLnJ06fMrcjTps3t7CtCJHAKu4RhdGqUnc2YMtjCe0OeBEWlwzqbVCMNgXJHQgckb3AlH/o/ksU4nZ4qIiIiIyNOtfa2NMYb8bJ7qM1Xifky2nGW0NSL4gLGGTCHDsDMkykfkq3mMMbSvtfcN0AE0zjXor/dZvbBK/Wyd6qkq3etdkmGCyzpKCyWifPonlvrZOo1zjUf1kkVERERE5BBrt69RrT7DzMxJtrZukM3O4FzE6mq6ppPP18hmSyRJjHMRMzMnqVafod2+pgCdiIiIiIg8tZrNJv1+n0wmQ7FYpNfr0e12AahWqxQKBYrFItVqleeee45ms3ngbU+CeJPt5fP5XeE5gGKxSD6fp9/v0+12qVartNttBehERERERI44BehEDgFjDO6Ygx74ngebhuNsMV1ADT6kleeypNXptsBUDdFihJtzCs+JiIiIiIgAyTABwI88hbkCMydnyJQyDDYG+NhjI0uummPUHbF5ZRM/8rv67ccYw+mXT5OfzbP0yhIA1VPVXW1cztE816RxrqHK4CIiIiIiAkCSDDHGUKks0u+vAQZrI9bXc0CgXn8XUVQghJgQApXKIsYYkmT4uIcuIiIiIiLy2BhjePbZZykUCly7do3NzU2uXr0KwKlTp8jlcszMzLC4uEijcXfrMkmS7LrN5XJ7tsvlcvT7/Vvai4iIiIjI0aUAncghYSKDrVpssISVAAZMwYAFm7OYosFYQ7KcEFzAlNP7uMc9chERERERkcPBZd2u22F3SO1MjXKjvKvd8mvLe7a/HWMMzfNNFl5coHWxRftae1qBrrJYoXamho10cRMREREREdnmXBaAKMpRKMyRy1Upl5tcvjwCoNH4ALlclU5nicFggyjK7eonIiIiIiLytDLG0Gw2WVhYoNVq8Xu/93sAnD17lkqlQq1Ww9q7X5dxzu26HQwGe7abPH5zexERERERObp0ZpfIIWHL6cfRlRwmZzBZgykZXN1hyxZjDb7nCYOQth9Xp5v0ExERERERedpVFisAlOZLYKDf6tO70dvVpnejR7/VBwOlhdKufgdhI0v9bJ1nX36W5z/xPM++/Cz1s3WF50RERERE5BaVyiIApdI8YBgMNrDW4VwO53LU62ex1jEYbACGUmlhVz8REREREZGnnbWWer1ONpslm83y7LPPUq/X7yk8B1CpjNeSSukaUb/fp9e7aS2p16Pf7+9qN+knIiIiIiJHlyrQiRwStmbhChjS4Jxve+IrMRjAkwbnPJAFV3Vp5Tk37iciIiIiIiLUztS4/IXLAJQbZTrXOlz54hWss7isIxkm+MSTK+coN8tE+QiXc9TO1A68Dx97VaATEREREZEDqdXOcPnyFwAolxtsbl7l4sXfpN9/CWMMr776aziXpVRaYGbmBFGUx7kctdqZxzxyERERERGRw8F7T6vVYjgcAvDWW2/dVwW6Wq3G5cvjtaRymU6nw5UrV7DW4pwjSRK89+RyOcrlMlEU4ZyjVjv4WpKIiIiIiBxOCtCJHBLGGlzDEV+NIQK/5QntQBgFSEjDc5B+ahPwiSf7rmwasBMRERERERFsZGmeb3Lli1eI8hG9tXG1ubCjkYFkmDD73CwhBJrnmgcKvoUQWH51mWtfucbmO5sMNgb42GMjS66aY+b4DIsfWqRxroExmqiJiIiIiAhYG9FsnufKld+l31/n+vXX6Pc38P5FQoBW6w2Mieh2l8lmS4TgaTbPYa2WcEVERERE5OkWQmB5eZlr166xubk5DdBduHCBXC7HzMwMi4uLNBp3ty5jraXZbHLlyhWiKNpVbW6nJEmYnR2vJTWb91zxTkREREREDg+tvogcInbBEt4K+HUPAUIS0spzgfSfBUaQrCaYjmHoh4Q4kH0xi3WapIuIiIiIiCx8YIE3P/cm62+tU6gVCHFIq8WNElzGUTleoVArsP7WOsVjRRY+sHDHbYYQePNzb/LW595i8/Imo60Rw/YQn3iss+RmcrS+1aL1Vout1hbPfvxZhehERERERASA+flv48tf/hmuXPkiw2EP74d4n141cTDokM0WGQ57XLnyRZzL8cEP/sXHPGIREREREZHHK4TAm2++yVtvvcXGxgbdbpfRaATA22+/TaFQoFgs0mq12Nra4tln725dZmFhgTfffJP19XWKxSKZTIZut0uSJDjnKJVKZDKZ6fMLC3deSxIRERERkcNPATqRHT71qU891v376x6TMQQX8Kt+d/W5SYjOAC79Q4G/7hn1Rvh1T/bdWVzD6SRNAR7/sSzyIOg4lieFjmV5Eug4lts5bMfH9a9dJypEuLzj6hevMuqOphXo/NCz9sYa7WttTnz0BC7vuP616zTPN2+7zaVXlvjm//ebdJe6dFe6bLW2iLdiQggYY4gKEYVaAT/yfLP3TfKzeRY/uPgIXq0cRYftMyNyFOhzI3J39JkROVxef/0fcuPGBeK4R693He9HWPszQCBJDP3+EGu7WNtgZeXrvP76P+Tbvu3/87iHLSJ70P9jRY4ufX5FjiZ9dp9eS0tLXLhwgdXVVTY2NhgOh+TzeQA2NjbodDpks1l6vR6j0Yh8Ps/i4sHXZa5fv04mk6FarXLt2rVpBTpjDN572u32dJtRFHH9+nWazduvJYnI3vSzXOTo0udX5GjSZ/f2FKATOSSCDyTLSVp5bjUQzOQMT6Yne2LGX49DdT54cMA1iEsxoR+ITkcK0YmIiIiIyFPJx55rv3eNtW+usfn2JplCBgIkcYIxhhACLnJkChk2394kX80T5SMWXlzARntX9fax58I/vkB3uUtnuUP7nTZxP8ZlHDay+JFnq7fFqDsihAAGLvzjCzS+rbHvNkVERERE5OkQx31+//f/T7rdd9jaWsf7GO896TJOuujjfQBitrbWce4d/uAPfpH3vvdPEkX5xzt4ERERERGRx8B7zze+8Q2uX7/O5uYmg8GAJEl2tUmShCRJ8N6TJAnf+MY3aDQaWHvndRnvPUtLSxhjSJKEQqGAc+lF66MoIo7TCyhms1mSJF1fWlpaYmFh4UDbFxERERGRw0sBOpFDwrc8JOA3PL7jMRgCIQ3IQXqbADHbgboRhE7AJ+M+1pDkE6KmPtoiIiIiIvL0aV1s0brYon2lTX+jz6A9IMpHZEvZaZt4GDNoD8BA+2qbTDFD62KL+tn6nttcvbBK62KLZJSk4bmtmFw1R76WJ5PPMOqP6Lf6DDYGtK+2KdaLtN5ssXphlfn3zT+qly4iIiIiIofQm2/+FuvrbzIcdhiNunifYG2EcxmMsYTgSZIR3seMRl2Gwy6t1kXefPO3eNe7/t+Pe/giIiIiIiKP3Orq6rQqXL/fJ45jAJxzWGunoTnv/TTodu3aNVZXV5mfv/O6TKvVIkkS4jim0+lgjOHkyZMUi8Vpm16vx8rKCp1Oh2q1Ou1Xr++9liQiIiIiIkeDLokhckj4jgcguZFeMSf4kAblApiswViTfmId25/cACEOhFEguZb2S5aTtK+IiIiIiMhTZuPyBpuXNxm0Bww2BwQfiLIRUTEiP5cnKkZE2YjgA8PNIYPNAZtXNtm4vLHvNq999Ro+9vRb/bTyXNYx++wsMydmKNQLzJyYYfbZWVzWEfdjtta28CPPta9ee4SvXEREREREDqNLl36b4bDNaLSF98m4okGeTKZAJlMkkykQRXmMMXifMBr1GA7bXLr024976CIiIiIiIo/F1atX6fV6jEajXdXgCoXC9F82myWEQBzHjEYjer0eV69ePdD22+02AN1uF4B8Pr8rPAdQLBbJ5/O72k36iYiIiIjI0aUyVSKHxbjSfBiMw2/j8Bw2/ReG48ej8ePJ+NaMm3fSIJ3B4FseV3eIiIiIiIg8TTbe3sDHnngQkwwSMsUM5cUy2fJ2BbphZ8iwO2TUG5EMEvzIs/H2/gG6znIHIK1aFyBTzuzaHkC2nCVTzpCsJQzaA0oLpWk/ERERERF5erVaF4FAkgyBgDGObLaEc5lpG2szxPEWIcTTdmk/ERERERGRp8/KygohBEajEd57nHMUi0WiaPtU1yiKGI1GJEnCaDQil8uxsrJyoO0nSbLrNpfL7dkul8vR7/dvaS8iIiIiIkeXKtCJHBaTvNs4EDcN0ME0XIcFY8yubsYZjDMEAr6XVrGbVLMTERERERF5mgw2BwAk/SSt5m3NnmE3LBAg7se7+h3EzXOy6ePs/biIiIiIiDy94jida4QwWfAxu8JzwPi+2dVu0k9ERERERORpMxiM13rGgTVr7a7wHKQBOmvtrnaTfnfinNt1u1+/yeM3txcRERERkaNLFehEDglbtvhVn96uewwmXSj1EPx2VbrJY1MRabAuMttBu0N2wZvgA77l02BfArj09dqaxVidZCoiIiIichT52NO62KJ9rU0yTHBZR2WxQu1MDRs9nuv15GbSq4RG+QgMhCQw7AxvqUBHAphxux399lJqlNI2lRzd5S6D9mDPbQ46AzBpu539RERERETk6VUqzQNpSC6tMpcwGHRwLiKEgDGGJIkJIZm229lPRERERETkaTOpCDcJrCVJQr/fxxgznUeFEKbBuUm7/SrJ3axSqbC6ukqpVGJ9fZ1+v0+v16NYLE7b9Ho9+v0+AKVSadpPRERERESONgXoRA4JW7NwBeycxSyNw3MD0rCcJ61GtzNrFkirJuSBEZiC2a5id0gueBNCIFlOSJaTW0J9ftXDFXANh2u4fas4iIiIiIjI4RJCYPnVZZZeWSIZ7v5Ff/Ubq1z+wmWa55s0zjUe+e/5s6dnsZHF5RxRPiIZJbTebGGswUYWH3uCDySjhCgf4XIOm7HMnp7dd5vHXzrOm599k0KtgMs7kq2E9bfWydfyRPmIuB/Tb/XxQ09UiCjMFbAZy/GXjj+6Fy4iIiIiIofSM898B2+99TmiKMdwaPA+od9fH1dKMEDAe08IflxVIYcxEc888x2Pe+giIiIiIiKPxfz8PG+//fa06lwcx3Q6HaIomobn4jgmjuNpdTpjDPPzB7sQSa1W4/LlywCUy2Xa7TZXrlzBGEMURcRxTAiBbDZLpVIhiiKcc9RqtYf2mkVERERE5NFQgE7kkDDW4BqOMArYmsW3PCETYEgaPtsZoJsUc4ggdANkwGQNtpg+YcuPp9rDTiEE4ksxfi0tlxdGAd/bUYGuaDEYkncSQj8QnY4UohMREREROeRCCLz1+bdY++YaAPFWTHelO61AV1pIr8J59UtX6a/3Of3y6Uf6e/7MyRlmnplh1BthrGHYGTLaGuGi7auMJHFCSAKFuQLZSjbtc3Jm323Wz9apnamxemGVmRMztK+0GWwO0u1mHMkowY88UT6icqKCjSy152rUz9YfxUsWEREREZFD7OTJf4VK5Tg3bnyddHEnIYSYJLn5iokGsHjvqVSOc/Lkv/JYxisiIiIiIvK4nThxgtdff51er4cxZly5O8F7P20zqUQ3WYMqFoucOHHiQNu31tJsNrly5QrOOba2tqbV5nZKkoTZ2VlCCDSbzfGFUERERERE5ChTgE7kEHENR+gHfNtDDN56WB8/6Xc0nFSfA4w3GGfSxyLScFrt8U/Yk+UEv+YJIaS33bD7+Y0EUzLYOYtf8yT5hKipH0kiIiIiIofZ8qvLrH1zjeADa2+s0VnupHORsfVL65QbZeZemGP1wir52TzN881HNr7amRq152qsfmMVn3iiXIRPPHE/JhAwGGwmrVAXkgBh3OfM/lcNtZHl7B8/y9f+/tcggDGGrdYW8VZM8AGXceRmchRqBUrzJUqNEmf/+Fls9PjnZSIiIiIi8njV62ep19/LjRvfGJ/caQnBs2siRfr45MTPY8feS71+9rGMV0RERERE5HGr1+vMzMywtrZGJpNhOBzivcd7P61AZ4zBWksmkwGgUqlQrx/8woYLCwu8+eabbGxsUCwWyWQydLtdkiTBOUepVCKTybCxsUGpVGJhYeFhvVwREREREXmElFYROUSMMUSnI8hBSALuiiPJJhCT/gtsh+cMaaguA6ZswILf9GTfm8XYx1vJLfhAspwA7ArPmbyBLDCE0A+EbsDjcXVHspzgFtxjH7uIiIiIiOzNx56lV5YA0vDcUgeAfC1PrpJj0B7Qb/Wnj9fP1ll6dYmFFxceWZjMRpZMKYPLOmrP1Vh5fYVRb7SrTTJKyFayzD43i8s6MsXMHcfXPN+kv97nzd96E5uxFOYKDDYH+MRjnSU3kyMqRMycnOG5P/bcIw0NioiIiIjI4WatoVCYI477eB+PH711LcS5HIXC3COt4i0iIiIiInIYlctlZmZmiOOYOI73bGOtJYoiZmZmKJfLd7X969evk8lkmJ2d5Z133plWoDPG4L2n3W6Tz+c5fvw4URRx/fp1mk2t/YiIiIiIHHUK0IkcMsYYMosZ7DFL/zf7hCjgV/32WqpL22AAm4bSDOOS9B7s/OOvcuBbHhIIozANz9ljFlvcHpvvefyNNFwXZtJKEL6VhulEREREROTwaV1skQwT4q04rTwHzL9vnuKx4rRN70aPlddX6Cx3qJ6qTvvVzx78qp/3w8eeUW9EqVGie71LuVFmWBniR9slvW3Gki1m8bGn1Cgx2hrhY3/bEJ0xhmc//iyFWoF3vvIO7XfaDDYG0365ao7KiQrHXzpO41xDJ7yKiIiIiAgAq6sXGI22KJcb9HorhJAnhMnVEifSNR7nMpTLTUajLVZXLzA//77HNWwREREREZHHptVqUS6XOXbsGJ1OZ1ptLkmSafU55xzeezKZDMeOHaNcLtNqtQ5Uhc57z9LSEsYY4jimWCzinMNai3OOJEnw3pPL5YjjGGMMS0tLLCwsYO3jPy9PRERERETunQJ0IofVJkQLEW7WMYyG0CUNz0UGIjBZQ4gDoRMIo4ApGeysJawHeDTnpu7Ld9KTU30vvTV5sys8B2CLlpALhEHA9zyu6vAdBehERERERA6r9rU2AN2VLoS08tzO8BxA8ViRfC1Pv9Wne71L9VSV9rX2IwvQtS628CNP9ZkqN75+A2MNc8/PkS1np22GnSHd611sxlI9VcUP/YFCfsYYmuebLLy4QOtii/a1NskwwWUdlcUKtTO1R1ZpT0REREREjoZ33vkqISRYm8G5HNZG5PM1jDGE4DHGEkKg329hjMPaiBBi3nnnqwrQiYiIiIjIU6ndbmOMIZfLUa1WieOYbDZLHMfTAF0URQyHQ6IoIpfLYYyh3W4fKEDXarVIkoQ4jul00gtGnjx5kmJxxwUjez1WVlbodDpUq9Vpv4NsX0REREREDi8F6EQOqWkIbcvj8g4za7DHLKGXhs7wgAWfGVdSiMZl5A9DCC256Ta7T7scMNijvYiIiIiIHDrJMNl1m6vk9myXq+Tot/q3tH8UJiG/3o0ehVqB2WdnKTfLt1SL6yx1GGwM6K307jrkZyNL/Wz9kYUCRURERETk6Op2lwEYDjtEUZZ8fo6ZmROMRlvTAF0mU2Bz8wr9fovhsAM0pv1ERERERESeNkmSrit57ykUCszMzJDJZBgMBnjvsdaSy+UYjUZsbm7ivd/V707a7fEFI7tdAPL5/K7wHECxWCSfz9Pv9+l2u1Sr1QMH9ERERERE5PBSgE7ksNojhGaswZQNlHe0cxA2w+EKobmbbof7tBvs015ERERERA4dl3W7bgftwZ7tJo/f3P5RuDm0l6/mKTfKlBvlXe3irZjBxuCxhPxEREREROTplsvNkMvN3PSoeSxjEREREREROWycc7tuh8MhtVqNcnn3Ws/y8vKe7e9kErSb3OZy+1wwMpej3+/f0l5ERERERI4u+7gHICL7OMIhNFtOf7TYYnob+gHf87va+J5PK+ntaDfpJyIiIiIih09lsQJAab4EBvqtPr0bvV1tejd69Ft9MFBaKO3q9ygchZCfiIiIiIg8PcrlBgC5XAUwjEadcZW5bcNhh9GoA5hxu+1+IiIiIiIiT5tKZbweVUrXmfr9Pr3eTetRvR79fn9Xu0m/O7k5cDcY7LOWNH78bgN6IiIiIiJyeCmtIrLDG2+8wRtvvPG4hwEc7RCarVlwYDIGU0qvmupveJLlhGQ9IVlO8DfS12JKBpMx4Mb95IE4TMeyyL3ScSxPCh3L8iTQcSwAtTM1XNYRFaJpRbeV11e48PULvHnpTZZfW2bl9RUAyo0yUT7C5Ry1M7VHNsajEPIT0c9Ukbunz43I3dFnRuTwWFx8CWsj8vkaUZQnSYasr7/F8nKPGzdiNjevsr7+FkkyJIryFApzWJthcfGlxz10EdmD/h8rcnTp8ytyNOmz+3Sq1Wo454iiaFp1bmVlhQsXLvDmm2+yvLzMysp4PapcJooinHPUagdbj3rYAT0R2U0/y0WOLn1+RY4mfXZvL3rcAxA5TH7jN34DgBdeeOExj2QcJrsChjSEFroBf8MTcgFywIBpeO6whdCMNbiGI3knwc5ZPJ7QDel4d1y0x5QMdi4dr2s4jDWPacRPnsN0LIvcKx3H8qTQsSxPAh3HAmAjS/N8k6tfusrcC3MAdJY7XMpfggBnW2fBpOG5yfPNc01s9OjmKLUzNS5/4TKQjqOz1GHl9RXytTy5So5Be5CG53h8IT8R/UwVuXv63IjcHX1mRA6Pev0stdoZVlcvUKkcp91+h8Fgk3b7NGCYnf09kmREFBWoVE5gbUSt9hz1+tnHPXQR2YP+HytydOnzK3I06bP7dLLW0mw2uXr1KnNz4/WoTodLly4BcPZsOl8ql8vT55vNJtYebD2qVqtx+fLl6TY6nQ4rKyvk83lyuRyDwWAanruXgJ6I7Kaf5SJHlz6/IkeTPru3pwCdyCF11ENoruHSqnlrHld3hJlxBb2ENOhXtGnoD7BzFtdQmXsRERERkcOuca5Bf73P6oVV6mfrVE9V+dbatwghMPvsLKWFElE+/VND/WydxrnGIx3ffiG/fqs/Dc497pCfiIiIiIg8PayNOHv2j/Paa38fCBhj2dpq0W6P10dshmx2hkKhRqk0T7nc4OzZP461WsIVEREREZGnV6PRoN/vs7q6Sr1ep1qt8q1vjdejZmcplUpE0Xg9ql6n0Tj4etR+Ab1+vz8NzsG9B/REREREROTw0uqLyCF2lENoxhii0xFJPiFZTjAYXPWm8bn0NbqGw5jDEfwTEREREZH9GWM4/fJp8rN5ll5ZAsBm0gXD6nwVAJdzNM81aZxrPJbf8/cK+XWvd0mGCS7rHnvIT0REREREni7N5nn6/XXefPO3sDZDoTDH6mqGEKBaPUUuN0MUFZiZOclzz/0xms3zj3vIIiIiIiIij5UxhtOnT5PP51laGq9HjQNs1ep4Pco5ms0mjcbdr0ftFdDrdrskSYJz7r4CeiIiIiIicngpQCdyiB31EJoxhqgZ4RYcvuXxnR3hv7LF1uyhqZgnIiIiIiIHY4yheb7JwosLtC62cP+PgwD1d9epLFaonak91opue4X8qqequ9o87pCfiIiIiIg8PYwxPPvsxykUaly79hU2N9/h4sURAPPz7yOXqzIzc4LFxZdoNM5pjiIiIiIiIsJ4ParZZGFhgVarhXPpOXP1ep1KpUKtVrvnqnB7BfQmwbyJ+wnoiYiIiIjI4aQAncgh9ySE0Iw1uLrD1Q9PhTwREREREbk/NrLUz9bJlrIAPPvys493QDvcHPJrX2tPK9AdhpCfiIiIiIg8XdITP8+zsPAirdZFfu/3/h8gcPbsv0qlskitdgZrtWwrIiIiIiJyM2st9XqdbHa8HvXssw9kuzcH9Nrt9rQC3f0G9ERERERE5HDSSozIEaEQmoiIiIiIyN2ZhPzqZ+uPeygiIiIiIiJYG1GvnyWbLQHw7LMvP+YRiYiIiIiIPN0mAb16XWtJIiIiIiJPOl0iQ0REREREREREREREREREREREREREREREREREnkiqQCdyBP3/2bvv8KiKvQ/g391NsiGVJCRZCCQh9JpIDdLFAtKUJnAFAUW9ol7LFbFQvBYUFRv6CopgQ7pYUGyEXkNvoSYkBJKQ3tvuvH/EHHO2JJtkN1vy/TzPPjBn58zO7s45Ob+dMzNCJ6DL0kGXrwO0AFSA0ksJpZ8SCqXC1tUjIiIiIiKyC7pyHbKuZCHvRh60pVqo3FTwbu4Nvwg/KF04pxARERERETUsna4cWVlXUFpaAEAgIWEnvL2bw88vAkolu22JiIiIiIj06XQ6ZGVlobS0FACQkJAAb29v+Pn5QalkXw8REREREZlPIYQQtq4ENU5nzpxB165dpfTp06fRpUsXG9bI/gkhoE3VQpuqrRg4p08FqIJVUAWroFBwIB0REREROb/GFlc0tvdbV0IIpJ5IRcrxFGhLDYMnlZsKmigNgiODGTsRERERUaPT2OIKe3i/Qgikpp5ASspxaLWlBs+rVG7QaKIQHBzJGIWIiIiIyA7ZQ1zRkOzh/VbEUalISUmBVmukr0elgkajQXAw+3qIiIiIiOyRPcQV+jiVIZGDEEKg/Go5dJm6inSZgK6wygp0HkoooID2uhaiWMAlzIU/DhARERERUaMjhEDCjgRkXswEAJQXlaPgZoG0Ap1nkCcAIPlQMoqzixE2OIyxExERERERWY0QAgkJO5CZeREAUF5ehIKCm9BqS6FSucHTMwgAkJx8CMXF2QgLG8wYhYiIiIiIGrWKOCoBmZl/9/WUl6OgoABarRYqlQqenn/39SQno7i4GGFh7OshIiIiIqKacQAdkYPQpmqhy9RBCFHxb4F88UhtjhYKTwWU/kroMnXQumvhouEhTkREREREjUvqiVRkXsyE0AlkXspEfmo+UCV8yr6aDa9gL/i39UfGhQy4N3WHJkpjuwoTEREREZFTS009gczMixBCh8zMS8jPT0XVICU7+yq8vILh798WGRkX4O7eFBpNlM3qS0REREREZGupqanIzMyEEAKZmZnIz8+XPZ+dnQ0vLy/4+/sjIyMD7u7u0GjY10NERERERNXj6BoiByB0AtrUiqXoqw6eU7grADcApYAoFhAFAjrooApQQZuqhSpIBYXScHYdoRPQZemgy6+ygp2XEko/pdH8RERERERE+nTlOmRdyULejTxpdTfv5t7wi/CD0kVpszqlHE8BgIrBcykVHarufu5Qe6tRkleC4qxiaXtA+wCknEhBUNcgm9WZiIiIiIicl05XjpSU4wDw9+C5injF3d0ParU3SkryUFycJW0PCGiPlJQTCArqCqWy8XXj6nTlyMq6gry8G9IKfd7ezeHnF9EoPw8iIiIiosZIp9MhJeXvvp4qg+fc3d2hVqtRUlKC4uJiaXtAQABSUlIQFBQEpZJ9PY5Gp9MhKysLeXl50gqD3t7e8PPz4/dJRERERBbHngYiB6DLqhjoJsqENHhO2UwJpcc/QaKuUAddesXgOuEjoIACuqyKwXSVhKgYiKdN1VYMnKv6Ghk64BqgClZBFazisvZERERERGSUEAKpJ1KRcjwF2lJ5YJFxPgNJ+5KgidIgODK4weOKrCtZ0JZqUV5UXrHyHIDAzoHwaOYh5SlML8TNszeRn5oP31Bfab+A9gENWlciIiIiInJ+WVlXoNWWory86O+V54DAwM7w8Ggm5SksTMfNm2eRn58KX99Qab+AgPY2qbMtCCGQmnoCKSnHodWWyp7LyDiPpKR90GiiEBwcyf4rIiIiIiInl5WVBa1Wi/LycmmQXGBgIDw8qvT1FBbi5s2byM/Ph6+vr7RfQAD7ehxFRRyYipSUFGi1ev2NGRlISkqCRqNBcHDD9zcSERERkfPiFA1EDkCXr6v4t7DiX4W7QjZ4DgCUHkoo1ApZvsr9gIqgs/xqObTXtdJgPG2OFtpMLbQ5WogyAWgB7XUtyq+WQwjREG+NiIiIiIgciBACCTsSkHwoWRqolpOYg8xLmchJzEF5cTm0pVokH0rG1Z1XGzyuyLuRBwAouFkAiIqV56oOngMAj2YecPdzBwRQkFYg24+IiIiIiMiS8vJuAAAKCm4CEHB395MNngMAD49mcHf3AyBQUJAm268xEEIgIWEHkpMPSYMNc3ISkZl5CTk5iSgvL4ZWW4rk5EO4enUn+6+IiIiIiJxcXt7ffT0FFX047u7ussFzAODh4QF3d3dZvsr9yP5VxIEJSE5OlgZL5uTkIDMzEzk5OSgvL4dWq0VycjKuXm34/kYiIiIicl5cgY7IEWj1/nUzkU8NoMRIfgDaVC10mToIISr+LZAHltocLRSeCij9ldBl6qB118JFw1MEERERERH9I/VEKjIvZkLoBDIvZVas8lYltMi+mg2vYC/4t/VHxoUMuDd1hyZK02D1q1wRr/JftbfaaD61txrFWcUG+YmIiIiIiCypcjW1yn/Vam+j+dRqbxQXZxnkbwxSU08gM/MihNAhM/PS3yv1/RNoZmdfhZdXMPz92yIj4wLc3ZtCo4myWX2JiIiIiMi6Klcjq/xXrTbR16NWo7i42CA/2b/U1FRkZmZCCIHMzExppcFK2dnZ8PLygr+/PzIyMuDu7g6NpuH6G4mIiIjIeXEFOiJHoNL711S/aYnx/EInoE2t+JGg6uA5hbsCCh8FFO4VK9eJgorBdUDFgDuh4+wtRERERERUQVeuQ8rxFACoGDyXki+t8uYb6iut6pafko/MS5kAgJQTKdCV66or1qJUbirZvyV5JUbzVW7Xz09ERERERGRJKpWb7N+SEuMrIlRu18/v7HS6cqSkHAeAvwfPpaBypT5f31BpZb78/BRkZl4CAKSknIBOV26zOhMRERERkXWpVCrZvyUlJvp6/t6un5/sm06nQ0rK3/2NVQbPubu7w9fXV1pZMD8/H5mZf/c3pqRAp2u4/kYiIiIicl4cQEfkAJReFYeq0qPiX1EsoCuUB4W6Qh1EiZDlq9xPl6UDtIAoE9LgOWUzJVRBKqiaqqAKUkHZ7O+yCwREmQC0f+9HREREREQEIOtKFrSlWpQXlVesPAcgsHMggrsFo2l4UwR3C0Zg50AAQH5qPsqLy6Et0SLrSlaD1dG7ecVqDp6BnoACKM4qRmF6oSxPYXohirOKAQXgGeQp24+IiIiIiMiSvL2bAwA8PQMBKFBcnIXCwnRZnsLCdBQXZwFQwNMzSLafs8vKugKtthTl5UV/rzwHBAZ2RnBwNzRtGo7g4G4IDOwMAMjPT0V5eTG02hJkZV2xZbWJiIiIiMiKvL3/7uvxrOjDKS4uRmGhXl9PYSGKi4tl+Sr3I/uWlZUFrVaL8vJyafBcYGAggoOD0bRpUwQHByMw8O/+xvx8lJeXQ6vVIiur4fobiYiIiMh5cQAdkQNQ+ikBFaBwVUDhWbFanC5dB22qFtpsLbSpWujSKwa7KTwVULgqANXf+wHQ5Vc8VznoTuGukAbZSa/hoYRCrZDlq9yPiIiIiIgo70bFiggFNwuklec8mnnI8ng085BWoitIK5Dt1xD8IvygclPBpYkLvIK9AAA3z95E6qlUZCdkI/VUKm6evQkA8Ar2gou7C1RqFfwi/BqsjkRERERE1Hj4+UVApXKDi0sTeHkFAwBu3jyL1NRTyM5OQGrqKdy8eRYA4OUVDBcXd6hUavj5Rdiy2g0mL+8GAKCg4CYqV57z8Ggmy+Ph0Uxaia6gIE22HxEREREROR8/Pz+oVCq4uLjAy+vvvp6bN5Gamors7Gykpqbi5s2/+3q8vODi4gKVSgU/P/b1OIK8vL/7Gwsq+hHd3d3h4aHX3+jhIa1EV5mvcj8iIiIiovpwsXUFiOzJ66+/jrKyMri6uuKll16ydXUkCqUCqmAVtNe1UPoroYOuYqW4EgFUWaVe4amA0r9iYJwqWAWFsmJAHLSQ/+tm4oXUqChPPz85HHtty0S1wXZMzoJtmZwB2zEBgLZUK/tX7a0GAKz8ZSXKteVwUbngwbsfhNpbjeKsYoP8DUHpooQmSoPkQ8nwb+sPoGI1vOKs4opV5wBAUTF4rvJ5TaQGShfOL0QNh+dUotrjcUNUOzxmiOyHUukCjSYKycmH4O/fFkDFSmrffLMbWq0OKpUSEyZ0g5dXsPS8RhMJpbJxdOFqtaWyf9Vq4ytGqNXeKC7OMshP1ND4N5bIcfH4JXJMPHYbJ6VSCY1Gg+TkZPj7/93Xk5+Pb775BlqtFiqVChMmTICXl5f0vEajgVLJvh5HoNVqZf+q1Wqj+dRqNYqLiw3yk+PhuZzIcfH4JXJMPHarpxBCCFtXghqnM2fOoGvXrlL69OnT6NKliw1rVLGke2FhITw8PKTZS+yFEALlV8uhy6xYFU6UiYqV4rSoWG3OQ1mx8hwApb8SLmEuUCgq0mVXy6DL0EGbo4XIEVC4K6AKUhm8hjZVC1EioPBVQOWrgjJACdcw1wZ7j2Q59tyWiczFdkzOgm2ZnIE9t2N7jCusyZbvN2FnAjLOZyAnMQfZCdlw93NHcLdgDHhiAIpLi+Hu5o49H+1B6qlUFGcVo2l4U/iG+iKgQwDCB4c3SB2Bitjp6s6ryLiQAQAoLy5HQVoBtKVaqNxU8AzyhIt7xc2oAe0DEDY4TIqdiBqCPZ9TiewVjxui2uExQzVhHNWw71cIgatXdyIj4wIAoLy8GEOG/BfFxWVwd3fFjh3vwMWlYmb9gID2CAsb3GhilISEncjIOI+cnERkZyfA3d0PwcHdDPKlpp5CcXEWmjYNh69vKAICOiA8fLANakyNHf/GEjkuHr9Ejsmejl1bxxUNzdbvtyKOuoqMjL/7esrLMWTIEBQXF8Pd3R07duyAi8vffT0BAQgLY1+Po0hISEBGRgZycnKQnZ0Nd3d3BAcHG+RLTU1FcXExmjZtCl9fXwQEBCA8PLzhK0z1Zk/nciKqHR6/RI7Jno5dW8cVxnDaDSIHoVAo4BLmAlULFaACFK4Vg9xU/iqofFUVg+dUgKqFSjZ4DgCUXhWHutKj4l9R/Pfguyp0hbqKFe2q5Kvcj4iIiIiIyLt5xUoAnoGegAIozipGYXqhLE9hemHFSm8KwDPIU7ZfQ1EoFAgbHIaQPiFQuang4u4C31Bf+Lf1h2+oL1zcXaBSqxDSJ4SD54iIiIiIyOoUCgXCwgYjJKQPVCq3vwfLVcYhCri4uEOlUiMkpE+jGjwHAN7ezQEAnp6BABQoLs5CYWG6LE9hYTqKi7MAKODpGSTbj4iIiIiInFNFHBWGkJAQqFQqabBcJRcXF6hUKoSEhHDwnIPx9v67v9Gzoh+xuLgYhYV6/Y2FhSguLpblq9yPiIiIiKg+XGrOQkT2QqFQwEXjAlWQCrosHXT5VVag81JC6aeEQmn4g4DSTwlcAxRQQOGpgCgQ0KXrINQCUAMogTR4TuGpkAbjKf04gI6IiIiIiCr4RfghaV8SAMAr2Av5Kfm4efYmhK4ilhA6gZtnb0rPVw5U84vwa/C6KhQKaKI0COoahKwrWci7kSetQOfd3Bt+EX5QujDeISIiIiKihqFQKKDRRCEoqCuysq5AoVD+vV2J8PAh8POLgFLZ+Lpt/fwikJS0DwDg5RWM/PwU3Lx5Fu7uflCrvVFSkvf34LmK5ysHG/r5Rdiy2kRERERE1AAq4igNgoKCkJWVJQ2SUygUCA8Ph5+fH5RK9vU4Gj8/PyQl/d3f6OWF/Px83Lx5E+7u7lCr1SgpKZEGz3l5eUmDJf38Gr6/kYiIiIicT+PriSFyAgqlAqoAFVQBKvPzB6ugva6F0l8JHXQQBaJi0FxJlXyeCij9K35YUAWrjA7GIyIiIiKixknpooQmSoPkQ8nwb+sPAMhPzQfE3xkEAEXF4LnK5zWRGpsOVFO6KBHQPgAB7QNsVgciIiIiIqJKSqULAgLaywbQBQS0t3GtbEepdIFGE4Xk5EPw928LAMjPT0VxcZY0cA5QwMsrWHpeo4lslIMNiYiIiIgaK6VSiYCAANkAuoAA9vs4KqVSCY1Gg+TkZPj7/93fmJ+P4uJiaeAcUDF4rvJ5jUbDwZJEREREZBHsXSBqJFTBKohiAV2mDqoAFYSPgK6wygp2HsqKlecAKP2VUAWbNziPiIiIiIgaj+DIYBRnFyPjQgYC2gfAN9QXinUKQFsxcUdI7xC4uFf81BDQPgDBkcE2rjERERERERHZs+DgSBQXZyMj4wICAtrD1zcUBQVp0GpLoVK5wdMzCC4u7gCAgID2CA6OtHGNiYiIiIiIqD6Cg4NRXFyMjIwMBAQEwNfXFwUFBdBqtVCpVPD09ISLy9/9jQEBCA5mfyMRERERWQYH0BFVIYSoOZODUigUcAlzgdZdC22qFgoooPLVGySnqhhopwpWSbP2kGNy5rZMjQfbMTkLtmVyBmzHVEmhUCBscBjcm7oj5XgKAEAo/m4fCsDF3QUqtQqaSA2CI4MZVxAZwXMqUe3xuCGqHR4zRPaPx+k/FAoFwsIGw929KVJSjgMAfH1DZXlUKjU0mkgEB0cyziSb4rFL5Lh4/BI5Jh67VBXbg/OoiAPD4O7ujpSUiv5GX19fWR6VSgWNRoPgYPY3Ojoeu0SOi8cvkWPisVs9DqAjqkKr1dq6ClalUCjgonGBKkgFXZYOuvwqK9B5KaH0U0KhZMDpDJy9LVPjwHZMzoJtmZwB2zFVpVAooInSIKhrELKuZEk/vCiUCoQPCYdfhB+ULkob15LIfvGcSlR7PG6IaofHDJH943Eqp1AooNFEISioK7KyriAv74a0Ap23d3P4+UVAqWS3Ntkej10ix8Xjl8gx8dilqtgenEtFHKhBUFAQsrKykJeXJ61A5+3tDT8/PyiV7G90Bjx2iRwXj18ix8Rjt3rsaSBqhBRKBVQBKqgCVDVnJiIiIiIiMkLpokRA+wDg7zk4FEpFRZqIiIiIiIioDpRKFwQEtEdAQHtbV4WIiIiIiIgagFKpREBAAAIC2MdIRERERNbHKRqIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiMgpcQAdERERERERERERERERERERERERERERERERERE5JQ6gIyIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIip8QBdERERERERERERERERERERERERERERERERERE5JRcbF0BarxKSkpk6UuXLtmoJv/Q6XTSv2fOnLFxbYjqjm2ZnAHbMTkLtmVyBvbcjvXjCP04w9kwjiJyfDxmiGqPxw1R7fCYoZowjmIcRUR1w2OXyHHx+CVyTPZ07DKOYhxFRHXDY5fIcfH4JXJM9nTs2mMcpRBCCFtXghqnH374Affcc4+tq0FERERERE5ky5YtGDt2rK2rYTWMo4iIiIiIyNIYRxEREREREdUO4ygiIiIiIqLasYc4SmnTVyciIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIrISDqAjIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKnpBBCCFtXghqn7Oxs7Ny5U0q3atUKarXahjUiIiIiIiJHU1JSgqSkJCk9ePBgNG3a1HYVsjLGUUREREREVF+MoxhHERERERFR7TCOYhxFRERERES1Y49xFAfQERERERERERERERERERERERERERERERERERGRU1LaugJERERERERERERERERERERERERERERERERERETWwAF0RERERERERERERERERERERERERERERERERETklDiAjoiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiInBIH0BERERERERERERERERERERERERERERERERERkVPiADoiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiInJKHEBHREREREREREREREREREREREREREREREREREROiQPoiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjIKXEAHREREREREREREREREREREREREREREREREREROSUOoCMiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIqfEAXREREREREREREREREREREREREREREREREREROSUXGxdASJ7kJWVhb179yI5ORmZmZkICgpCy5YtMXDgQHh4eNi6ekRmuXLlCo4ePYrr16+juLgYLVq0QEREBKKjo6FU1m+89JEjR3D+/Hlcv34dLi4uaNGiBbp27YrOnTtbqPbkzByxbZaWlmLPnj24evUqUlNT4ePjg5CQEPTt2xcajaZeZRMZw7ZMlXQ6HS5evIiTJ08iNTUVOTk58PT0RFBQEHr16oX27dvXq3yek8mSGEcRWY81z9dEtuDI1zhEtqLVanHhwgWcOnUKaWlpyMnJgVqtRtOmTdGpUydERUXB09OzzuXzuCGyDcZRRM6Pf2OJrINxJZFjY4xL9cE4isj58TxOZB2Mo4gcG+MoKxFEjVhcXJwYO3ascHNzEwAMHl5eXmLGjBnixo0btq4qOaiYmBijbas2j++//77a1/j5559FdHS0yf1DQkLEwoULRUlJSa3qrtVqxdKlS0VERITJsiMjI8U333xTj0+I7NHRo0dl3/PNmzfrVI4jts3s7Gzx+OOPCz8/P6PlqlQqceedd4pDhw7VumxqePVpywsXLqz3+TsrK6va12BbpkoZGRni008/FWPGjBHe3t7VtqvWrVuLDz74QJSWltbqNXhOJktiHEVkyN6voYlswZGvcYhsJS0tTXzwwQdixIgRwsPDo9rjxsPDQ0yZMkWcO3euVq/B44bINhhHEdkvxnNE9otxJZFjY4xL9cU4ish+MY4isl+Mo4gcG+Mo6+MAOmq0Vq9eLZo0aVLtiaXyERQUJLZv327rKpMDsuYAOp1OJ+bMmWN2OT169BBXr141q97p6eli0KBBZpc9depUp/1D2Ri9++679fqRw1Hb5uHDh0VoaKhZ5bq6uoqlS5fW6nOhhleftmztAXRsy1QpOTnZZKdPdY8+ffqIpKSkGsvnOZksjXEUkXH2fA1NZAuOfI1DZCvHjh2r03Hj4uIiPvrooxrL53FDZDuMo4jsG+M5IvvEuJLIsTHGpfpiHEVk3xhHEdknxlFEjo1xVMPgADpqlH799VehUqlkB7lSqRTh4eGib9++omXLlgYnAR8fHxEXF2frqpODseYAuhdffNEgr1qtFh07dhS9evUSAQEBBs9HRUWJwsLCautcWloqhgwZYvQYiIqKEl27djU6qv2RRx6xwidIDS0hIUEEBQXV60cOR2ybSUlJQqPRGOwbHBws+vTpI9q2bStcXFwMnl+zZk2tPhtqOPVty9YcQMe2TFXFx8cbbT+enp7illtuEbfeeqto3bq10TxdunQR2dnZ1ZbPczJZEuMoIuPs+RqayFYc9RqHyJZ2795t9Jjw9vYWt9xyi+jXr58IDw832XG2fPnyasvncUNkG4yjiOwb4zki+8W4ksixMcal+mAcRWTfGEcR2S/GUUSOjXFUw+AAOmp00tLSRNOmTWUH94gRI8T58+dl+WJjY0WfPn1k+bp37y50Op2Nak6OSH8AXXR0tIiJianVw1iA+ccffxj8kfrvf/8rMjIypDw6nU5s2rTJIGB9/PHHq63zSy+9ZHDx/Pnnn8uWaS4oKBBvvfWWwQ9WGzdutNyHRw2iuLhYJCcni+3bt4t58+YJPz8/g7ZVmx85HLVtDhgwQJa/Xbt24s8//5TlSU5OFtOmTZPl8/DwEImJiWZ/PmQ9lm7L+gPoHn300Vqfv8vKyoyWzbZMVVX98SogIEA8/fTTYteuXUKr1cryXblyRcycOdOgXT/xxBMmy+Y5mSyJcRTRPxzpGprIVhz1GofIlqp2imk0GvH888+Lffv2GVxH5efnixUrVhj8/fHy8hJpaWlGy+ZxQ2QbjKOI7A/jOSLHwbiSyLExxqW6YhxFZH8YRxE5DsZRRI6NcVTD4AA6anSee+452UE9bNgw2Y2+VeXk5IhOnTrJ8m/evLmBa0yOTH8A3ciRIy1Sbu/evWXlLliwwGTeU6dOCXd3dymvWq0WN27cMJo3PT1dNGnSRMqrUCgMbliv6rPPPpPVIzIysr5vjRrQqlWrDC6IjD1q8yOHI7bNrVu3yvJqNBqRnJxsMv/9998vy//kk0+azEsNwxptWX8A3dtvv22RurItk774+HjRpEkT8corr4jc3Nwa8z/77LOy783NzU2kp6cbzctzMlkS4yiiCo50DU1kS454jUNka7t37xbe3t7inXfeMWsmxyNHjhjMMPnhhx8azcvjhsg2GEcR2RfGc0SOhXElkWNjjEt1xTiKyL4wjiJyLIyjiBwb46iGwQF01KiUlpYKf39/6YBWKpXizJkz1e7z008/yU4Y/fv3b6DakjOwxgC6I0eOyMoMDQ0VxcXF1e6jf6H70ksvGc337rvvyvJNnjy5xvr06tVLts8ff/xRp/dFDc/SP3I4atscPXq0LN+nn35abbkpKSnC09NTyu/h4SFycnJqrA9ZjyMNoGNbJn15eXni4sWLZucvKCgwWC597dq1Bvl4TiZLYhxF9A9HuoYmsiVHvMYhsrXU1NRar6isvyrztGnTDPLwuCGyDcZRRPaH8RyRY2FcSeTYGONSXTCOIrI/jKOIHAvjKCLHxjiqYShB1Ijs2LEDmZmZUrp///7o3LlztfuMHDkSzZs3l9L79+9HRkaG1epIVJNNmzbJ0g888ADUanW1+zz00EOy9E8//WRW2bNnz66xPg8++KBZZZPzc8S2mZ+fj99//11Ku7u7Y9q0adWWGxwcjFGjRknpwsJC/PXXXzXWhwhgWyZDXl5eaNu2rdn5PTw8cOedd8q2nTp1yiAfz8lkSYyjiKzHmudrIltyxGscIlsLCgpCq1atarVPnz59ZOnU1FSDPDxuiGyDcRSR8+PfWCLrYlxJ5NgY41JdMI4icn48jxNZF+MoIsfGOKphcAAdNSrbt2+Xpe++++4a91EoFBgxYoSU1ul0+OOPPyxeNyJz1aUdd+zYEW3atJHSJ0+exI0bN2R5CgoKcOjQISnt5eWFgQMH1lj2yJEjZenffvutxn3IPgwfPhwxMTEGj+Dg4DqV54htc+/evSgpKZHSgwcPhoeHh0XKpoZj6bZsLWzLZClhYWGydHp6ukEenpPJkhhHEf3DUa6hiRyRLa9xiByVTqeTpX19fQ3y8Lghsg3GUUT2h/EckfNjXEnk2BjjEuMoIvvDOIrI+TGOInJsjKNqjwPoqFGJjY2VpSMjI83aTz/f3r17LVYnotrQarU4duyYlFYoFOjevbtZ++rn27dvnyx9/PhxlJeXS+nOnTvD1dW1xnJbtWoFPz8/KX3+/HmjF9FkfzQaDYYMGWLwcHd3r3VZjto2+XfBOViyLVsT2zJZSllZmSzt4uIiS/OczHZsafxuiP7hKNfQRI7Iltc4RI7q5MmTsnR0dLQszeOGyHYYRxHZH8ZzRM6PcSWRY2OMS4yjiOwP4ygi58c4isixMY6qPQ6go0blzJkzsnT79u3N2q9Dhw6y9MWLFy1WJ6LauHz5smxllpCQELNWZgFqbsd1PT6MlX3p0iWz9yXn4Khts65lt2/fHgqFQkpfvnwZQgiz60WNE9syWUp8fLwsHRgYKEvznMx2bGmMo4isw5rnayJHZMtrHCJHdOPGDWzYsEFKe3l5Yfr06bI8PG6IbIdxFJFz499YIvvEuJLIcTHGJYBxFJGz43mcyD4xjiJyXIyj6oYD6KjRKC0tRUpKimybRqMxa1/9JacvX75ssXoR1cbVq1dlaXPbMFBzO7Zm2eT8HLVt1rVsd3d3+Pj4SOmioiJcv37d7HpR48S2TJag0+kMZk2MioqSpe2xrVmzbLZj62IcRWQ9jMGI/mHraxwiR3P9+nWMGjUKubm50rb3338fzZo1k+XjcUNkG4yjiJwf/8YS2R/GlUSOizEuAYyjiBoDnseJ7A/jKCLHxTiq7lxqzkLkHFJTU2UrUbi6usLT09OsffVPJomJiRatGzUehYWFOHbsGHJzc6FQKODp6QkfHx+Eh4fD1dW1xv31fyzy8/Mz+7VrasfWLJucn6O2zfqWnZOTIys7JCTE7P3JsaSnp+PgwYMoKiqSriH8/f3RqlUr2cpX1WFbJkv47bffkJqaKqXd3NwwaNAgWR57bmvWLJvt2DoYRxFZD2Mwon/Y+hqHyN7pdDrk5OTg7Nmz+OGHH7B8+XKpQ0ypVGLx4sV48MEHDfbjcUNkG4yjiJwf/8YS2R/GlUSOgzEuGcM4isj58TxOZH8YRxE5DsZRlsMBdNRoZGVlydJVV6moiX7e0tJSlJWVmTXgiaiqmJgY9OjRw2C7i4sLunXrhkmTJuHRRx9F06ZNje5vyXacn5/fYGWT83PUtsl2T+Z666238NZbbxls9/DwQP/+/fGvf/0L999/P1Qqlcky2JbJEt544w1ZeuTIkQaBraO2NbZj+8Q4ish6eN4j+oetr3GI7FnLli2RnJxs9Ll+/frhzTffNOjQrsTjhsg2GEcROT/+jSWyP4wriRwDY1wyhXEUkfPjeZzI/jCOInIMjKMsS2nrChA1lIKCAlm6NkGysbz65RHVR3l5OY4dO4YXXngBHTp0wMaNG43ms2Q71i/LmmWT83PUtsl2T/VVWFiIP/74AzNmzEDPnj1x6tQpk3nZlqm+vv76a+zZs0e27YUXXjDI56htje3YPjGOIrIenveIKtjDNQ6RI3r66aexdu1akx1iAI8bIlthHEXk/Pg3lsi+MK4kcnyMcYlxFJHz43mcyL4wjiJyfIyj6oYD6KjRKCsrk6VrcwJQq9UG2woLC+tdJyJj0tLSMGnSJCxfvtzgOUu2Y/02bM2yyfk5attkuydLOnHiBAYPHoxDhw4ZfZ5tmeojMTERTz75pGzbzJkz0bt3b4O8jtrW2I7tE+MoIuvheY/Ifq5xiBzRe++9h/DwcIwePRrnzp0zmofHDZFtMI4icn78G0tkPxhXEjkHxrjEOIrI+fE8TmQ/GEcROQfGUXXjYusKEDUUlUolSyuV5o8fFUIYbNPpdPWuEzm/Zs2a4YknnkDXrl3Rvn17BAYGIiAgAAEBASgtLUVqaiqOHj2K7777Dps3b5b2E0Lg8ccfR58+fXDLLbdI2y3ZjvXbsDV1/MNAAAEAAElEQVTLJufnqG1TpVKhvLzcKmWTY+vcuTPmzZuHLl26oE2bNtK529fXF4WFhbh69Sr279+Pzz//HIcPH5b2y8rKwsSJE3HmzBl4eXnJymRbproqLS3Ffffdh+zsbGlb69atsXTpUqP5eU5mO7YkxlFE1sMYjBo7e7rGIbJnGzZsQElJCbKzs5Gamor4+Hj88MMPiIuLgxACP//8M2JiYrB+/Xrcfffdsn153BDZBuMoIufHv7FE9oFxJZHjYYxLpjCOInJ+PI8T2QfGUUSOh3GUZXEAHTUaTZo0kaW1Wq3Z+5aWlhpsq80IXGq8unbtig8//NDoc66uroiIiEBERAQmTJiAbdu2Yfz48dII7fLycjz77LPYvn27tI8l27F+G7Zm2eT8HLVtNmnSBHl5eVYpmxzbpEmTMGnSJKPP+fj4oFu3bujWrRtmz56N119/HfPnz5eeT0xMxNKlS7FgwQLZfmzLVFf//ve/ceDAASnt4eGBDRs2oGnTpkbz85zMdmxJjKOIrIcxGDV29nSNQ2TP+vXrZ7DtjTfewAcffIBnn30WQggUFBRg0qRJOHr0KNq3by/l43FDZBuMo4icH//GEtkHxpVEjocxLpnCOIrI+fE8TmQfGEcROR7GUZZl/hBCIgfn6ekpSxsLnk3RX77SWHlE9TV8+HAsW7ZMtm3nzp1IS0uT0pZsx/plWbNscn6O2jbZ7qm+FAoFXn75ZUyfPl22fcOGDQZ52ZapLt5880188cUXUlqpVOK7775Dz549Te7jqG2N7dg+MY4ish6e96gxs7drHCJHo1Qq8fTTT+OZZ56RthUUFODFF1+U5eNxQ2QbjKOInB//xhLZHuNKIufBGJcAxlFEjQHP40S2xziKyHkwjqo7DqCjRsPLy0uWrlzlyxy5ubmytEqlMiiPyBIeeOABBAQESGmdToe9e/dKaUu2Y/0ZI6xZNjk/R22bbPdkKVUDEQA4ffo0srKyZNvYlqm21qxZYxDUfvDBBxgzZky1+zlqW2M7tk+Mo4ish+c9aqzs8RqHyFE9++yzUCgUUvqnn35Cfn6+lOZxQ2QbjKOInB//xhLZFuNKIufEGLdxYxxF5Px4HieyLcZRRM6JcVTtcQAdNRoajUa2dGRBQYHZy1Cmp6fL0s2bN7do3YgqKZVK9O7dW7YtNTVV+n+rVq1kz+n/capOTe3YmmWT83PUtsl2T5YSGRlpsNx11fM3wLZMtfPjjz/igQcegBBC2rZgwQI8/vjjNe7rqG2N7dg+MY4ish6e96gxstdrHCJH1bx5c7Rp00ZKl5aW4siRI1Kaxw2RbTCOInJ+/BtLZDuMK4mcF2Pcxo1xFJHz43mcyHYYRxE5L8ZRtccBdNRoqFQqhIWFSWkhBNLS0szaV/8G+KrlEFmav7+/LJ2ZmSn9v+ofOQBISUkxu9ya2rE1yybn56hts65lFxcXyy4klUolWrZsaXa9yDn5+fnJ0lXP3wDbMpnvjz/+wKRJk1BeXi5te/bZZ/HKK6+Ytb89tjVrls12bF2Mo4ishzEYNTb2fI1D5MgCAwNl6arXajxuiGyDcRSR8+PfWCLbYFxJ5PwY4zZejKOInB/P40S2wTiKyPkxjqodDqCjRqVdu3aydFxcnFn76efr3LmzxepEpK+goECW9vHxkf7fokULeHh4SOkrV66gtLTUrHJrasd1PT4A4Pz589WWTc7PUdtmXcs+f/68bEaWNm3aQK1Wm10vck7Vnb8BtmUyz549e3DPPfegpKRE2vb000/jnXfeMbsMnpPZji2NcRSRdVjzfE1kb+z9GofIkRUXF8vSSuU/3T48bohsh3EUkXPj31iihse4kqhxYIzbuDGOInJuPI8TNTzGUUSNA+Oo2uEAOmpU+vXrJ0tXXaKyOidPnpSl+/TpY7E6Eem7cuWKLN2iRQvp/wqFAtHR0VK6vLzcoH2acurUKVlavx1HRkbK/kieOHFCNuuEKUlJScjKypLSISEhsjpT4+CobZN/F8hSMjIyDJa31l+ymm2ZarJ//36MHDkShYWF0rbnn38eS5curVU5PCezHVsavxsi67Dm+ZrInjjCNQ6RoxJCICkpSbYtODhY+j+PGyLbYRxF5Nz4N5aoYTGuJGocGOMS4ygi58bzOFHDYhxF1Dgwjqo9DqCjRuXOO++UpX/66aca9xFCYNu2bbJtQ4cOtWi9iCpdv34dp0+fltIKhQIDBgyQ5alLO75w4QIuX74spVu2bIm2bdvK8qjVagwaNEhK5+TkYPfu3TWW/csvv8jSPD4aL0dsm/369YO3t7eU/uuvv2RBY33Kpsbljz/+kK2A1blzZwQEBMjysC1TdXbt2oU777xTNhBz0aJFePPNN+tUHs/JZEmMo4isx1rnayJ74SjXOESO6siRI0hPT5fSrq6uiIyMlOXhcUNkG4yjiJwf/8YSNQzGlUSNB2NcYhxF5Px4HidqGIyjiBoPxlG1xwF01Kj07t1bNqp2z549OHPmTLX7/PLLL7h+/bqUjoyMRJs2baxWR3IeN2/erPU+7777rmwARt++fREUFCTLM2rUKFl61apVsiWWjfnss89k6fHjxxvNp1/2p59+WmOdV65caVbZ5PwcsW26uLjgrrvuktLFxcX48ssvqy03LS1NdgHp4uKCMWPG1FgfchxpaWm1yq/T6Qxm5zHVJtiWyZg//vgDI0aMQH5+vrRt6dKlWLhwYZ3L5DmZLIlxFJH1WPN8TWRrjnaNQ2RLJSUl2LFjR633e+2112TpoUOHyialAHjcENkK4ygi58e/sUTWx7iSyDExxqW6YhxF5Px4HieyPsZRRI6JcVQDEkSNzBtvvCEASI/bb79dlJWVGc2bm5srunTpIsv/6aefNnCNyVEtXLhQDBw4UPzxxx9Cp9PVmP/nn38WKpVK1t62bNliNO+dd94py7dw4UKT5Z4+fVq4u7tLeRUKhTh79qzRvPn5+SIgIECW96+//jJZ9sqVK2X1aNmypcnjiRxHWFiY7Hu9efOm2fs6Ytvcv3+/LG/z5s1FcnKyybKnT58uyz958mSTecm26tqWb7vtNjFjxgyT7VHfvHnzZK/TpEkTcePGDaN52ZZJ388//yzUarX0PSiVSvHZZ59ZpGyek8mSGEcRVc8er6GJbMkRr3GIbCkrK0sAEFOmTBFxcXFm7fP+++/LjgUAYvv27Ubz8rghsg3GUUSOgfEckX1iXEnkuBjjUn0wjiJyDIyjiOwT4ygix8U4quFwAB01Ojk5ObIbfgGIUaNGiYsXL8ryHT16VERHR8vytW3bVpSUlNio5uRoFi5cKLWdDh06iP/973/iyJEjBoPpUlNTxUsvvSRcXFxk7e2uu+4yWfbu3buFQqGQ5X/++edFVlaWlEen04ktW7aI4OBgWb7p06dXW+/XX39dlt/Ly0t88cUXsh+kCgoKxDvvvGNQ5y+++KJuHxbZxI0bN0RMTIzBQ7/NbNmyxSCPqcFBjto277jjDln+jh07ipiYGFme5ORkMXPmTFk+Nzc3sy9WyXos3ZYHDx4s7TNkyBDx8ccfi/j4eIN8Z86cERMmTDAIQt54441q68u2TFVVbW8AxGOPPWa0PZvz0MdzMlkS4yiiCo52DU1kK456jUNkK5WdYpWdUKNHjxZff/21SE9PN8h76tQpg4kkAIj77rvPZPk8bohsg3EUkX1hPEfkWBhXEjkuxrhUH4yjiOwL4ygix8I4ishxMY5qOBxAR43SH3/8YbDSl1KpFOHh4aJv376iVatWBicVT09PceLECVtXnRxI1QF0+m2pffv24tZbbxXt27c3+IMEQLRv397oH72qFixYYLCfWq0WnTp1Er169TL4QQmA6Ny5s8jNza223PLycnHbbbcZ7Ovj4yNuueUW0a1bN+Hp6Wnw/LRp0yz58VEDWLVqldE2as5j1apVJst1xLaZnJwsNBqNwb4ajUb06dNHtGvXzmAACACxcuXK2n7sZAWWbsv6PyZUPvz9/UW3bt1EdHS0CAkJMZpnwoQJNa46yrZMVZlqb3V5GMNzMlkS4ygix7uGJrIVR73GIbKVqp1i+tdaLVq0ED179hS9e/cWQUFBRvP16NFD5OfnV/saPG6IbINxFJH9YDxH5FgYVxI5Lsa4VF+Mo4jsB+MoIsfCOIrIcTGOajgcQEeN1pdffimaNGli1oWAv7+/2LZtm62rTA7mf//7X50uPO+8806RmZlZY/k6nU48/vjjZpfbrVs3ceXKFbPqnp6eXquL6fHjx4vi4uL6fmTUwKz1I4ejts3Y2FgRGhpqVrkqlUosXrzYrHLJ+izdlo0NCqrpoVQqxXPPPSe0Wq1ZdWZbpkrW/vGK52SyNMZR1Ng54jU0kS048jUOkS3k5eUJHx+fOh0jY8eOFXl5eTW+Bo8bItthHEVkHxjPETkWxpVEjosxLlkC4ygi+8A4isixMI4iclyMoxqOEkSN1PTp03H06FGMHTsWbm5uRvN4eHjg/vvvx6lTp3DXXXc1cA3J0b344ovYunUrpk+fjpCQkGrzKpVK9O/fHz/99BN+++03+Pn51Vi+QqHARx99hJ9//hl9+/Y1ma958+Z4+eWXcfjwYbRu3dqsugcEBGD79u149913ERERYTJf165dsXr1amzcuBFqtdqsssn5OWrb7NmzJ06ePIk5c+aYPAaVSiWGDRuGPXv2YN68eWaVS47nhx9+wMqVKzF69Gj4+PhUm7dJkyaYOHEijh8/jiVLlkCpNO/ymm2ZGgrPyWRpjKOIrMOa52siZ8RjhpyNl5cXbty4gS+//BLjx4+v8bdBpVKJgQMHYuvWrdiyZQu8vLxqfA0eN0S2wziKyLnxbyyRY+KxS2Q9jHHJEhhHETk3nseJHBOPXSLrYRzVcBRCCGHrShDZWmZmJvbu3Yvk5GRkZWWhWbNmaNWqFQYOHAhPT09bV4+cRFJSEs6dO4eEhATk5uaipKQE/v7+aNGiBQYMGICAgIB6lX/lyhUcPXoU169fR1FREZo3b46IiAjceuutZg/oMCU2Nhbnz5/HjRs3oFQq0aJFC3Tr1g1dunSpV7nUODhi2ywtLcWePXtw9epVpKamwtvbGy1atEB0dDSaN29er7LJsWi1Wly8eBFxcXG4fv068vLyIIRAYGAgwsPD0b9/f7i7u9f7ddiWqaHwnEyWxDiKyHqseb4mckY8ZsjZCCEQHx+Ps2fP4tq1a8jNzYVWq4W/vz9CQkLQv39/sybgqg6PGyLbYBxF5Pz4N5bIMfHYJbIexrhUX4yjiJwfz+NEjonHLpH1MI6yHg6gIyIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIip+S8QwOJiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKhR4wA6IiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiJyShxAR0RERERERERERERERERERERERERERERERERETokD6IiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyClxAB0RERERERERERERERERERERERERERERERERETklDqAjIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKnxAF0RERERERERERERERERERERERERERERERERETklDiAjoiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiInBIH0BERERERERERERERERERERERERERERERERERkVPiADoiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiInJKHEBHREREREREREREREREREREREREREREREREREROiQPoiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjIKXEAHREREREREREREREREREREREREREREREREREROSUOoCMiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIqfEAXREREREREREREREREREREREREREREREREREROSUOICOiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIicEgfQERERERERERERERERERERERERERERERERERGRU+IAOiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIickocQEdERERERERERERERERERERERERERERERERERE6JA+iIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiMgpcQAdERERERERERERERERERERERERERERERERERE5JQ6gIyIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIip8QBdERERERERERERERERERERERERERERERERERE5JRcbF0BIiIiqt6OHTswdOhQKf3AAw9g9erVtqsQWdSQIUOwc+dOKR0fH4/w8HDbVYiIiIiIiIiIiIiIiOxOeXk5jh07hrNnzyIjIwNFRUXw8vKCj48PIiIi0LFjRwQHB9u6muTkEhIS0Lp1ayk9ePBg7Nixw3YVIiIiIiKyUwqFQvp/WFgYEhISbFeZaoSHh+Pq1atSWghhw9oQERFZF1egIyKyc+Hh4VAoFLKHu7s7rl27Vqtyqu4/ZMgQ61TWjrVr1072GSxdurRe5SUkJMjK8/HxQXFxsYVqS/bG2HFY10d2drat3w4RERER1QNjtIaTk5MDd3d3g8/7r7/+snXVyIr0422FQtEgN2MOGTKk2ljOxcUFnp6eCAoKQmRkJO655x588MEHtTr2d+zYYVCuvXaYExEREdUG4yTrunDhAh599FH4+fmhT58+mDFjBp599lm8/PLLeOqppzBr1iwMGTIEGo0GYWFhmDVrFrZs2YKysjJbV50asdWrV1cbYymVSjRp0gRNmzZFu3btMGTIEDz//PPYtWtXrV5H//yzaNEi67whIiIiIhtizNVwGrpvasaMGfxeGpD+99oQixjof8f6D5VKBQ8PDwQEBKBLly64++678dZbb+HChQtmv4at+taIiBwRB9ARETmgkpISvPbaa7auhkOZPHmyLL1u3bp6lbd+/XpZ+p577oG7u3u9yiRydPo/2BERERE1FozRrGPLli0oKSkx2F7feI4ajjPFCFqtFoWFhbh58yZOnjyJH374AU899RTatm2LJ554AgUFBbauIhEREZFdYZxUfzqdDm+99Ra6du2K5cuXIz8/v8Z9EhMTsWrVKtx7771o2bIl4uPjG6CmFape+4eHhzfY6zoS/Yk7GvOEGkIIFBcXIycnB5cuXcLOnTuxZMkSDB48GAMGDMDRo0dtXUUiIiIiu8aYyzrYN+UYnCm20ul0KCoqQmZmJs6ePYtff/0V8+bNQ6dOnXD//ffj5s2btq4iEZFT4QA6IiIH9cUXXzRop5ejmzJliix96NAh2dLjtaU/gE6/fCIiIiIialwYo1meqc7IzZs3o7y8vIFrQ2RcSUkJli1bhltvvbXWs/0SEREROTvGSXUnhMCsWbMwb948g5XkPD09ERkZiVtvvRVt27aFh4eH0TLS0tKQk5PTENUlsqi9e/diwIABBv2xRERERCTHmMvy2DdF9kKn0+Hbb79Fr169cPr0aVtXh4jIabjYugJERFQ3ZWVlePXVV/HFF1/YuioOoXPnzujevTtOnjwpbVu/fj2ee+65Wpd15coVHDlyREo3a9YMd9xxh0XqSY7hu+++g0ajqdO+Xl5eFq4NEREREdkDxmiWlZmZiT///NPocxkZGfjzzz8xfPjwBq4VNSbvvfceoqKipLRWq0VRURGuXbuG2NhYfP/998jMzJSeP3nyJCZMmIDdu3fD1dXVBjUmIiIisj+Mk+pu0aJF+PLLL2Xbbr/9drz44osYNGgQVCqV7LkjR45g48aN+OabbzixA9mlu+66C/PmzZNtq1xl4dy5c/jpp59k/bhFRUWYNm0aIiIi0KtXr4auLhEREZFDYMxlWeyboobw/PPPy9pR5Qp0KSkpOH78ODZv3ozr169LzycmJmLMmDE4duwYfH19bVFlIiKnwgF0REQORKPRQKlUShfIX331FV544QW0a9fOxjVzDJMnT7bIADr92Q4nTJgAFxf+SW1MoqOjER4ebutqEBEREZGNMUaznk2bNslWWRg3bhw2b94spdetW8dOSicVHh4OIYStq4GoqCgMGTLE5PNLly7Fo48+iu+++07advDgQXzyySf4z3/+Y3SfIUOG2MV7IyIiIrImxkn1d/HiRbz55puybS+//DJeffVVk/v07NkTPXv2xKJFi/B///d/eO2115CRkWHtqhKZTaPRVBtjvfbaa/jmm2/w0EMPoaSkBABQWlqK2bNn49ixYyb3S0hIsHBNiYiIiOwbYy7rsUXf1OrVq7F69WqLlkmm2UMfTceOHauNjd555x28+OKLWLp0qbQtPj4eixYtwnvvvWd0H3vpWyMicgRKW1eAiIjMp1ar8dJLL0lprVaLRYsW2a5CDmby5MmydGxsbJ2Wsddfqn3KlCn1qhcRERERETkmxmjWUzXucnd3x//93//B09NT2vb9999LN9QR2YKPjw++/fZb9O/fX7Z9xYoVNqoRERERkX1gnFR/n332GUpLS6X0oEGDqh08V5VarcZTTz2FEydOYMCAAdaqIpFV3H///fjwww9l244fP47Dhw/bqEZERERE9ocxl/Wwb4rsgVqtxrvvvmtwT+pXX32F4uJiG9WKiMh5cAAdEZGDeeihhxAWFial165di7Nnz9qwRo6jdevWiI6Olm3TX02uJpcuXcLx48eldMuWLTFw4EBLVI+IiIiIiBwQYzTLS0tLw44dO6T08OHDERQUhFGjRknbcnJy8Ntvv9mgdkT/UCgUmDt3rmzb2bNnudIHERERNXqMk+rn119/laVnzJhR6zJCQkKwc+dOdOvWzUK1ImoYDz74IJo1aybbtmvXLhvVhoiIiMg+MeayPPZNkb2ZN2+eLJ2ZmYkzZ87YqDZERM7DxdYVICKi2nFzc8OCBQvw4IMPAgB0Oh0WLlyIDRs22LhmdZeZmYk///wTSUlJcHFxQWhoKIYOHYqmTZua3CcpKQn79u1DYmIiXFxc0LZtWwwZMgTe3t7VvtaUKVNw4MABKb1+/Xo8//zzZtdVf/W5++67DwqFwiBfUVER4uLicPnyZVy/fh0FBQUQQsDT0xOBgYHo0KEDunfvDldXV7Nfu64uXryIo0ePIjU1FQUFBfDz80NYWBj69+8PHx+fepd/48YN7Nq1C8nJydBqtWjRogWGDBmCkJCQOpeZmZmJvXv34vr168jIyICnpyc0Gg169eqFNm3a1KqsoqIi7N27F4mJiUhLS4ObmxuaNWuGnj17onPnzka/P0dhrfdWUlKCffv2ISEhAWlpaVCpVGjWrBkiIyPRvXt3qFQqC78Ty0pISMChQ4eQmpqK/Px8NGvWDK1atcLAgQNlM0PVR1ZWFmJiYpCUlITi4mIEBwdjwIABaNu2ba3LysnJweHDh3Hx4kVkZ2dDpVLBz88P7du3R2RkZLXnQiIiIrI9xmgV6hqjGbNx40ZotVopPXHiRADApEmTZDHZunXrMGbMmFqXbwnnzp3DsWPHkJaWhpKSEgQGBqJ169a49dZboVar612+VqvFrl27EBcXh9zcXDRv3hw9e/ZEly5dTO5TUlKCmJgYXLlyRdpn4MCBiIiIMPt1hRCIj4/HxYsXkZCQgNzcXJSUlKBJkybw8fFBmzZt0L17d4ObGe1Jfn4+9u7di6SkJNy8eRPu7u4IDAxEjx490KlTJ4vHgLfeeqvBtuTkZAQEBFj0daoqKChATEwMEhISpJinb9++9bo5+vLlyzhw4ACSk5OhUCjQrFkzREVFITIyEkpl3ebhKy0txfHjx3Hq1ClkZmaivLwcvr6+CAsLQ2RkJFq2bFnn+hIREZF9Y5xUoa5xUmJioixd1+ummq7jtFotLl26hEuXLiExMRG5ubkoKyuDh4cHmjZtinbt2iEyMtIifUmOLCkpCRcuXEB8fDyys7NRVFSEJk2awMvLC61bt0a3bt3QokULm9Tt5MmTOH36NFJTU1FSUgJ/f3+0bdsW/fr1Q5MmTepUZn5+Pnbs2IGrV68iJycHPj4+aNeuHaKjo+Hr62vhd2BIpVKhb9++2Lp1q7QtOTnZqq8phEBsbCxOnTqF1NRUeHt7o127dhg0aFC9PseYmBhcvXoVubm58PHxQceOHdGnT596HVNXrlxBbGwsbty4gfz8fHh6eiIoKAjdunVDx44dG6TvmYiIiGyPMVeFxtY3VZ24uDgcOXIEN27cgEqlQsuWLXHbbbdZpK8iPj4e+/btw/Xr16FSqdCqVSsMHTq01n1F9hxbmaOh76fr3r07PD09UVBQIG1LTk5Gz549Lfo6VZWWlmLnzp24dOkSsrOz4e/vj1tuuQW9evWqc1/R9evXsXv3biQnJ6OsrAz+/v7o3r07evToUef4RavV4vTp0zh+/DjS09NRUlICHx8ftGzZEpGRkWjdunWdyiWiRkIQEZFdCwsLEwAEABEWFiaEEKK8vFy0b99e2q5QKMSxY8eqLacyLwAxePBgg+cXLlwoy7Nq1Sqz6mfOfvHx8UZf/8aNG2L69OnC1dVV9jwA4e7uLh588EGRlZUlK+vs2bNi5MiRQqlUGuzj5eUlFi5cKLRarcn63rhxw2DfS5cumfVehRCie/fusn1jY2Nlzz/33HOia9euQqVSGdRP/+Hn5yf+/e9/i5SUlGpfMyYmRrbfAw88UGM9y8rKxEcffSRrJ/oPlUol7r33XnH8+PFqyxo8eLBsv/j4eCGEEDt27BBDhw4VCoXCaPljx44VCQkJNda1qh9++EEMGDCg2s8vNDRU/Pe//xUXLlyotqyzZ8+KCRMmiCZNmpgsq2XLluK9994TJSUl1ZZV9Tis+hlYgqnPtzqWfG9VHT9+XEyYMEF4eHiYLNfX11dMnz5d7NixQwghxKpVq2ps68YeVd9n1e2V57lKhw8fFrNnzxYRERHC1dVV+Pr6ipycHIO6a7VasWrVKtG5c2eTr+nm5ibGjh0rTp48WeNn8cADD8j2jYmJEUIIcezYMTFmzBjh4uJi9DUGDRokTpw4YdbnffLkSTFhwgSj58Cq5/e+ffuKt956S2RmZppVLhEREVkXY7QsWVn1jdGMGTRokFSGWq0Wubm5QgghCgsLhZeXl6z8wsLCGssz9X4r/fXXX2LKlCkiNDRUqFQqER4ebrSckpISsXTpUhEeHm7y+s3T01NMmzbNrOt6Y7GAVqsVH3/8sdBoNEbL7927t9i7d6+snKKiIvHSSy8Jf39/o/sMHz68xtjsl19+EUOHDhU+Pj41XsurVCoxZMgQ6RpZnyViBP0YzBw7d+4Ud911l3BzczP5GkFBQeLf//63OHr0aI3fh6n3p6+0tNTgdfbv328yf3XxTyVTx/GlS5fEtGnThLu7u9H3FxkZKXbu3GlWvSv98MMPokePHiY/s5CQEPHyyy+LxYsXm31OSk9PF//5z39E06ZNq/3O27RpI5555pka43siIiKyf4yTsmRl1TdOUqvVsn3WrFlj1vs015dffiluvfXWavsYKh9ubm5i9OjRJr87/c/W3EeluvSB1Wa/6mKLc+fOiaefflp06NBBqNVq4eXlJc6cOSOEEOLgwYNi+PDhIiAgwKz307t3b7Fp0yaz6mruw1RMUlBQIP73v/+JVq1aVfu9zZw5U1y+fNmsz1MIIa5evSruv/9+k+3Czc1N3HPPPeKbb76p8VgVwjA2NPe7FUKIqVOnyvZ95JFHTOY11Z9Tlanju6ioSLz77rsmP0sfHx/x+uuvi/LycrPrHh8fL6ZOnWoyblOr1WLChAnir7/+ksWvpj5HIYTQ6XRi1apVBv3U+g9vb28xfvx48cMPPwidTmd2nYmIiMj+MebKkpXlCH1TQpjXH6B/3bxw4UKj+YzFNmVlZeKzzz4THTt2NHp96OLiIu67774a7000FTdt2bJF9OrVy2jZSqVSzJw5U6Snp1dbtr3FVnW5T68u99NVpR+zmHtcCSFEixYtZPt+9913JvOa07dmqr3duHFDPPHEEyb7CSMiIsTmzZvNrrcQQuzevVsMGjTI5L2lAQEB4sknnxQrV6406xgQQoj8/HyxYMEC0bx582q/85CQEPHII4+II0eO1KrORNQ4cAAdEZGdMxYACyHEmjVrZBd9Y8aMqbYcewuAf/zxR+Hr61tjABMVFSUKCgqEEEIsXbrUoNPQ2GPKlCnV1vm2226T5X/jjTfMeq9xcXGy/dq1a2eQJyQkpNZBWtOmTQ1ugKyqtp2HcXFxJgNjYw83NzexYsUKk+XpB45HjhwREydONKtsjUYjzp49W+Nnm5qaKvshwpyHQqEQf/75p9HyFixYYNYgxspHv379xI0bN0zWz54G0Fn6vQlR8YPKnDlzTAasph7z58+32gC6rKwsMW3aNKP76v8wdv36ddG7d2+zX1upVIoFCxZU+5no/3jxyy+/mP0ZeXt7i127dlVb/ocffljtwDljj9DQ0GrLJCIioobBGM3yMVpVycnJsg7PsWPHyp6fPHmyrOyNGzfWWKapTtlr166J4cOHG9TX19fXoIxz586Jtm3bmn3tplarxaefflptvfRjgX379on+/fubVfb27duFEBUTPFQ3cUrlQ6PRiKtXr5qsy0svvVSn6/q5c+calNXQA+jy8/PFhAkTav16K1eurPb7MHcAXVpamkHZ1Q0Iq5rP3AF0n3/+uXjllVfMiiFcXV3F+vXra6x3YWGhGDduXJ2+K8D0OWnXrl0iMDCwVmUplcpaTW5ERERE9odxkmXjpJYtW8ryTps2zaz3aa5//etftb7+UyqV4qOPPjIoyxEH0BUVFYmnn37aaF9L5Q3Hn332WZ3e19SpU0VZWVm1dTX3YSwm2bdvn8ENlNU9fHx8xI8//ljj5/nNN9+YNaDS2MMaA+juvvtu2b4vvviiybx1HUC3a9euaifIqfq49957zboBe/Xq1SYHztX1c8zNzRV33HFHrcurqR+MiIiIHAtjLsfrmxLCugPojhw5Uu0k41UfzZo1kyYLMafspKQkg/srTT06dOhQ7X1p9hZb1eY+vfrcT1dVfQbQ6Q/a+/33303mresAuk8//VR4enqa9d6WLl1aY521Wq2YM2dOnb6r6o6Bs2fPitatW9e6vMo+VSKiSi4gIiKHNHnyZCxevBinTp0CAPz44484fPgwevfubeOa1ezIkSMYO3YshBAAALVajQ4dOsDNzQ3nz59HXl6elPf48eNYuHAhioqK8PHHH0vbvby80KFDB+h0Opw7dw7FxcXSc9999x2GDx+O6dOnG339KVOmYPv27VJ6/fr1eOGFF2qsd9Xl2CvLqYlSqURYWBgCAwMBABkZGbh+/TqKioqkPNnZ2Rg+fDjOnTuHkJCQGsusTmxsLIYPH46MjAzZ9hYtWiAkJAQqlQqpqamIj4+XnistLcXDDz8MX19fTJo0qcbXGDZsGLKzs6W0l5cX2rRpA1dXV8THx8teOyUlBVOmTMHhw4dNLrmdmJiIwYMHIyEhQbZdqVSiTZs2CAwMRHZ2Ns6fPw+tVis9L4SQtZXKbTNnzsSXX34p2+7m5ob27dvD19cX+fn5uHz5MvLz86Xn9+/fj5EjR2Lv3r1wd3ev8TOwBWu9t7KyMowaNQq///67wXMtW7ZESEgISktLcf78eRQWFsqez83NtdC7kzt58iTuueceWTs1JTExEYMGDcLVq1dl25s0aYI2bdrAy8vLoM3rdDr873//w40bN7BixQqz6jR16lRZu3d3d5fKv3r1KlJSUqTn8vLyMHnyZJw+fRp+fn4GZX3xxRd48sknDba3aNECLVu2RElJCW7cuIG0tDTZ8yUlJWbVlYiIiGyDMVrdY7Sq1q9fD51OJ6X1Y5SJEydi7dq1Unrt2rUYP358rd9zTEwMJk2ahPT09BrzHjt2DLfffjsyMzNl2729vREREQF3d3ckJyfj2rVr0nMlJSV49NFHkZGRgRdffNGsOg0fPlx2jR0eHg6NRoPr168jMTFRVvaMGTPwySefYMqUKdL3o1Qq0bZtW/j7+yMhIUF2jZqSkoIZM2bIYuGaBAQEoFWrVvDw8EB2djbS0tIMPq8lS5YgJCTE6PVtQ8jJycGQIUNw/Phxg+dat24NjUaDgoICxMXFobS0VPa8peKZEydOyNJeXl6IiIiwSNmV/vvf/8riEVdXV0RERMDPz8+gfZSVlWHWrFno2bOnyXqUlpZi+PDh2LVrl2y7SqVC27ZtERAQgLy8PFy8eFF2LNfk1KlTGDFiBAoKCmTb/fz8EBoaCjc3N6SmpiIpKUk63wAVMVpZWZnZr0NERESOg3FS3eKkPn36yOKLNWvWYNKkSRg1apQ13ioAQKPRoEWLFnB3d0dmZiZSUlJk16A6nQ5PPPEEQkNDMWbMGKvVw9oSExNxzz334NixY7Xe18fHB+Hh4fD29kZOTg7S09NlcRdQ8V0FBwdj6dKllqqy5JdffsGECRNkfYxARewYHBwMIQSuX78uazu5ubkYP348YmJi0L9/f6Plrly5ErNnz5ZdowMVbSI0NBRARUxZNe6wtpMnT8rSkZGRFi3/6NGjGDJkiOz3hxYtWiA0NBT5+fmIi4tDeXm59Nz333+Pd955B3PnzjVZ5qefforHHnvM4HNs3rw5QkNDodVqkZiYaND3Ux2dTocxY8Zgx44dsu1ubm4IDQ1FYGAgMjMzkZSUZNCHxz4lIiKixoExl2P1TVlSdHS07Hd1Pz8/hIWFQalU4tKlS7I+kPT0dNx55504fvw4mjVrVmPZ3bt3R1ZWlpRu2rQp2rRpA51Oh8uXL8vKPn/+PGbNmoVffvnF7LrbOrYyhz3cT3fp0iWDsi0dG33wwQey2F+pVEox5s2bN3Hp0iVZ/ueeew7R0dHo16+fyTLvv/9+fPfddwbb27Rpg+DgYBQWFuLSpUuy+xtrkpKSgiFDhhjEU97e3ggNDYWXlxfS0tKQlJQki+UAxkZEZISNBu4REZGZTM0gI4QQ33//vWy2hLvuustkOVXz2XoGmcqHj4+PePvtt0V2draUt7i4WDzzzDMmZ4QICQkRq1atEkVFRdI+ubm5YsqUKbJ8nTp1MlnnzMxM4ebmJstf3ezwlbp06SLbx9jKaiEhIaJr165iwYIFYufOnSI/P98gT2lpqfjxxx8NZv148MEHjb6uubNoZmRkiFatWsnyzpw5U8TFxRnkTU5OFs8++6xshhQvLy+RlpZmkFd/5pXKR2RkpFi/fr0oKSmR8mq1WrFmzRqD2RVNLR9eWloqoqOjZXnVarWYP3++wfLxeXl5Yt26dbKV6r7//ntZnrfeektWVlhYmPj6669l7UWIihlitm7darBSn7HVE4SwjxXorPXejB1v9913nzh9+rQsX3l5uYiJiRH333+/NCvrf/7zH3Hjxg0RExMjYmJiRHBwsKycLVu2SM/pP6rWu+o+np6ewtvbu9qZYSpXoCsrKxP9+vWTPde8eXPx5ZdfSjNPVUpISBAPP/ywwaxAn3/+udHPRX/2n8pHRESEWLlypcjLy5Pl37ZtmwgICJDlXbx4sUG5mZmZBsvdT5s2zeDzFkKICxcuiPfff19aUSQ4ONhoXYmIiKhhMUazfIxWVdX4QK1Wi9zcXNnzRUVFwsvLS8rTpEkTg2uzmt5vQEBAtSt5VV2BLicnR7Rp00b2fPv27cWWLVtEaWmp7HXOnDkjxo8fL8urUChMzgZpKtaaNGmSOHnypCzvn3/+aXAdWflQqVTiP//5j0hISJDy63Q6sXbtWuHi4iLLe/DgQaN1eemll4Sfn5+YNWuWWLt2rUhOTjaaLy4uzmC1N19fX1nsa4kYwdwV6PQ/b6VSKR577DGDuKq4uFj8/PPPYvTo0VLe9957r9rvw9wV6B555BHZfuPHj682v35cZ4ypVTyCg4PFe++9JzIyMmT5Dx48KCIiImR5H3nkEZN10D+m3dzcxIIFCwx+EygrKxM7duwQs2fPNpjl1Ni5ZcCAAbI80dHR4vfffxc6nU6WLy0tTaxZs0b2mZ87d67az42IiIjsG+Mky8ZJa9euNShTqVSK559/3uS1em3861//EhqNRjz++ONiy5Yt4ubNm0bzHTlyRAwZMkRWj7Zt2xp8bpXX9FXzubu7m7z2r3qt3dAr0Gk0GpPfGyBfgc7Dw0NMnjxZrFq1Sly5csVo+UlJSeLf//63rAwXFxdZTJKVlSW978jISFneTz/91ORnVNkXIoQQly5dksWELi4u4r///a9ISkoyqNPFixfF9OnTZa/TqlUrWX9epRMnThis3jFkyBCjsWNaWppYuXKl6NWrV43HqhB1X4Fu//79sv3UarXJNipE3Vagq3pczZw5U/reK2VmZopp06bJ8vr5+YnCwkKjdYiNjTXoex42bJiIjY01yHv58mXx9ttvG/zWYOxz/Pzzzw3ORx9++KHsfCRERX/rzp07xWOPPSatHPH888+b/MyIiIjI8TDmsmzMpc8afVNCWHcFusrH+PHjxY4dO2S/w5eUlIjPP/9cVmcAYvbs2bUqe8iQIeKXX34R5eXlsrLff/99g/uv9u/fb7Rse4utzL1Pr77301VV1xXoFi9eLNuvZ8+e1eavywp0lQ9vb2+xaNEice3aNVn+uLg40aNHD7PPMR9++KFBzDVnzhyRmJgoy6fT6cShQ4fEM888I5o2bVrjMXD//ffL8nTo0EFs3rzZYJXCnJwcsWXLFjF69GhpVclff/212s+NiBofDqAjIrJz1QXAQgiDToo9e/YYLcfeAuDo6GijnTpCVFwgR0VFGewzefJkgwC1UlFRkQgKCpLlv3jxosl6V71pDoB47bXXqn2fZ86ckeWPiooymq+619R3+fJl0aRJE6nMgIAAodVqDfKZ2wk4depUKY9KpRJr1qypsQ4ff/yxrOwXX3zRII9+4Oju7i4+/PBDo3WttGTJEtk+I0eONJrvnXfeMQjGdu/eXWO9t27dKlq1aiUbQHfmzBnZzaH9+vUz6EDSl52dLdq2bSvt4+XlZXAjohCmfyio7aNqQF7JnMDcWu8tNjbWoI7vv/9+teUKUbEk+oABAwwCfv3PqboOzapMfV7R0dHi//7v/8SFCxekH73S0tKktvf+++/L8rdu3dog4Na3fPly2T5eXl4iMzPTIJ/+jxdKpVK8/PLLori42GTZ69evl+3TpUsXgzwrV66U5Rk3blyNn49OpxNfffWV6Nq1a415iYiIyPoYo1knRhOiYtKDqh1uY8eONZpv8uTJsnJrin1MdcoCFZ08X331lYiPj5duJqw6mcdTTz0ly9+rV68ar8VfeOEF2T6hoaEGHThCGMYC3t7eYvPmzSbLXbp0qUH9Q0NDjd6QV+nJJ5+U5X/ppZeM5ktKSqr2WlffXXfdJSt3y5YtRvPVNUYwp5Nv48aNsjwuLi5iw4YNNZa9f/9+0aVLF4sMoDty5IjBzaY1xbRV89ZmAN3DDz8scnJyTJZ76NAhWX4fHx+jcfuxY8dkx5larRa//fZbje+1pnPL5cuXZc+3atXK6KRC+vbv3y+6d+/OAXREREQOjnGSZeMkrVYrbrnlFqMxjEqlEsOGDRNvvvmmOHDggNFYoybx8fGyGyCrU1JSIrp16yarw/Hjx43mrZrH09PTrPIbegBd5aNLly7i3XffFWfOnJGuW7OysmRxoTk3xFbSn1jDVF+Lftxx+PBhs8q/9dZbpX08PDzMileee+452WutWLHCII/+sTlt2jSDCTD06R8rlhxAV1paKvr37y/b76GHHqp2n7oOoOvcubM4evSoyXLLy8tF9+7dZfuYijn1j9dZs2ZZ5HMcOHCgLM+PP/5YbZlCVAz+e/jhh8ULL7xQY14iIiJyHIy5HK9vSgjrDqALDw8Xu3btqvb1f/31V9l7UyqV4urVqzWW3bRpU7F27dpqy37sscdk+8yZM8doPnuLrcy5T8/S99PVZQDd1atXDSZy/+abb6rdp64D6O655x6DhQ6qunbtmmzCEIVCYXSRhhs3bsgWXVAoFGL16tU1vteajoH8/HxZuR4eHuLGjRs1lnv27FkxaNAgDqAjIgNKEBGRQ3v11Vdl6fnz59uoJubr3LkzduzYgZYtWxp9XqFQYPTo0bJtlUs7e3t7G93H3d0dd955p2zb4cOHTdZhypQpsvS6deuqrbP+8/r7V2rbtm215VQVERGBESNGSOmMjAxcvXrV7P2runz5smyp+Hnz5pmsY1WPPfYYOnXqJKWrlmHKr7/+iieeeAJKpenLiGnTpsnSBw8eNMhTXFyMd955R7Zt2bJlGDBgQI11uPvuu3HixAn07NlT2rZkyRJpCW5/f39s2bIFvr6+1Zbj6+uL1157TUrn5+dj69atNb5+Q7PWe9M/f8ycORP/+c9/aqxPp06dsGPHDsyePdvct1ArgYGB2LJlC/bv349HH30U7dq1g7u7u/ScUqmEVqvF+++/L9tv1apVaNWqVbVlP/zww5gwYYKUzs/Px/Lly2us08qVK/Hqq69CrVabzHPvvffC09NTSp87dw55eXmyPKdOnZKlx44dW+NrKxQKTJs2DYcOHaoxLxEREdkeY7QKtY3RAGD9+vUQQkjpiRMnGs03adIkWbqmeM6YNm3aYNeuXdi2bRumTZuG8PBwuLm5AQCCg4MBADk5OVi5cqW0j5ubG7799tsar8Vfe+019OnTR0onJiZi48aNNdZp69atuPfee00+r3/t6O/vj8OHD8viIn1jxoyRpU19By1btqz2WlffnDlzZOmjR4+ava+lVI13gIpjreq1vinR0dGIjY3FyJEj6/X6O3fuxMiRI1FSUiJtmz17tlkxbW0tXLgQy5cvh4+Pj8k8vXv3RocOHaR0bm4uzp07Z5Bv8eLFsuNs/vz5BsdqXejHOrfffrssPjIlOjoaR44cQZs2bepdByIiIrJfjJMqmBsnKZVKbNiwQYpNqtJqtfjrr78wb948REdHo2nTprjjjjuwePFinDx50qz3Fh4eDpVKZVZeNzc3g74AW1z/W4qnpyc+//xznDx5Es888ww6d+4sXbc2bdpUFhd6eXmZXa41Y6QdO3Zg3759UvqDDz7AkCFDatzvlVdegb+/v5TW7wP87bffEBsbK6XbtWuHzz77DAqFov6VroPMzEyMGzcOe/fulbY1b94cixcvtvhrderUCYcPH8Ytt9xiMo9KpTLoazXW3/nrr7/i2LFjsrI//fRTi3yOVeMsFxcXs+JYPz8/LF++3CHOs0RERGQ5jLkq2HvflCUdP34cAwcOrDbP8OHDMWrUKCmt0+nw7bff1lj2sWPHcN9991Wbx5x7AwH7iq3MZev76U6dOoU77rgDGRkZ0rY77rgD//rXv+pVrjEPPPAAvv/+e6O/P1QKCQnB0KFDpbQQwug9bO+99x6Ki4ul9IMPPogHHnig3nW8dOmSrNy+fftCo9HUuF/l92FO/ExEjQsH0BERObjhw4fLbs6KiYlBTEyMDWtUs8DAwBpvzNO/ccqcG6n0B6/dvHnTZN4xY8bAw8NDSp86dQpxcXEm82/YsEH6v0KhqDFINFe7du1k6erqXJ3ly5dDp9MBqOjMfPbZZ83et+qPDVeuXMG1a9eqzR8eHl5jmRqNBgEBAVI6PT0dhYWFsjy//PILUlJSpHRUVBSmT59uZq0rOoAqB0tlZ2djzZo10nMPPvgggoKCzCpn5MiRso7inTt3ml2HhmCt95aeno4ff/xRSru6uuLNN980u14qlQpdunQxO7+5/Pz8cPTo0RoHlu3evRsJCQlSOjo6GoMHDzbrNebOnStLf/311zXuY067d3FxQceOHaW0TqdDUlKSLI/+cZCVlVVjuZWaNGlidl4iIiKyHcZo/6hNjAbIb+ZTq9UGg78qjRgxQtbZtm3bNuTk5NRYn0rt2rVDbGxsjR2L33//vWxChHHjxqF9+/Y1lq9UKvHf//5Xts2ca86aJoMIDw+XTWTi7e1dY2xQ2+/AXJaKZevq6NGjOH78uJQOCgrCvHnzzN7f3d3d4D3oO378OHbs2CE9fvvtN6xbtw6vv/46Bg0ahKFDh8pi2uHDh2PZsmW1fi/mMCceAYCuXbvK0vqT9GRnZ2PTpk1S2tfXt1a/H1SnPrGOi4sLXF1dLVIPIiIisk+Mk/5h7jV6mzZtsH//fvTt27fa8goKCvDnn3/ixRdfRGRkJKKiorBu3TrZDaD1Zevrf0s6ePAgHnzwwWoniawLa35Gn3zyifR/jUaDmTNnmrVfkyZNcPvtt0vp/fv3o7S0VErrTy740ksv1WpildpKSUmRxVh//fUXfvjhByxbtgwPPPAAwsPD8fPPP0v5AwIC8Msvv6BZs2YWr0tQUJCsn9iUmmIsALKJd4CKm9UtFd9UjbPKy8uRm5tr9r7sUyIiImpcGHP9w177piytpskeK82aNUuW/u2332rcx5w+CXOulevC1vFnQ9xPFxcXJ4uNfv/9d2zcuBFLlizB3XffjVtuuQUXLlyQ8vfo0UN276olWar/SQiBVatWSWmlUomFCxfWu35A/fqfFAqFNGk/EVElF1tXgIiI6u/111+XDRyZP38+9uzZY8Ma1V9tZh4xtU91QaqnpydGjx4tmw1m/fr1WLBggUHeU6dOyWZt79evH8LCwmpVN51Oh9TUVKSkpCAtLQ2FhYUoKSnB+fPnZfn0L/jNtX37dun/3bt3h5+fn9n76gdCly5dMjm7T234+fnJZkLJzs6WdUb99ddfsvwzZsyo82vt2bMHZWVlUtrcgVRARbsJCAhAWloagIr3X5PvvvvOrJlMjL1WbVnrvcXExMg60EeOHGn2wDxr8vHxMav97d69W5aubqUOfb1790bLli2lwaLnzp1DVlZWrY4bU/TLyM7OlqX1zx2ff/45Hn74YXZkEhERORnGaMb3qS5Gu3TpkmwWyeHDh1c7g+jo0aPx3XffAQBKSkqwZcsWs2cxbNGiBZo2bVpjvvpcc44ePRqurq7Stfz+/fshhKjXDPRKpRIeHh7Iz883e5/afAemZGdnIyUlBampqcjJyUFJSQmSk5Nleeoay9aVfjw5depUaaUIS3n66afNyqdSqfD0009j8eLFcHGx7c/tNcUjO3bsgFarldJjx461WMehfqzz+++/4/z587JV8YiIiKhxY5xkfJ/qrtFbt26Nffv2Yd26dVi2bJkUV1TnxIkTmDx5Mr788kusWbPGrNinqoyMDOn6Py8vDyUlJThx4oQsT0Nf/1uSJSYGzMvLkz6jrKwslJSUyFamBiz7Ge3YsUP6/4ABA8xePRCQ9wEWFRXh+vXrCA8PhxBCNumiq6srxo0bZ4nqmvTbb7+ZdbMuULGiwJo1axAREWHVOtWkphhLp9PJbkxXq9W45557LPb6YWFhuHjxopRetmwZXn75ZYuVT0RERM6FMZfxfeylb8pWqq4cBlRMHljf/iqg4nOu2g+mf61sjoaOrczREPfTvfXWW3jrrbfMyjt9+nR88skn0srptlJTbHTixAnZYMcBAwZY5P5TwLD/6eTJk9i1axcGDRpkkfKJqPHhADoiIicwaNAg3H777fjzzz8BAHv37sW2bdswfPhwG9es7upy0a+/T9WbwoyZMmWKWQPo1q9fb7BfTbRaLWJiYrB582bExsbi9OnTKCoqqnG/uigsLJTNvB8bG1uvIDczM9MCtaoYCFVV1VktAeDAgQOydNWZkGpr3759snTV5edry5z3Hx0dbfYMLPVlrfdmyc/fFmJjY2XpqKioWu0fFRUlDaATQuDo0aMYNmxYvetVU7sfNWoUXnrpJSl9+vRpdOvWDXPnzsU999xjF4MYiYiIqP4Yoxnfp7oYrWpsBgATJ06stuyJEydKnZSV+1u6k7I+15zu7u7o0KEDTp8+DaBiNsQrV66YNTtqdTw9PWs1gK62cTJQ0WG8bt067N69GydOnJCtsmYv7CGeUSgUmDp1Kp5//nl069atwV/fmJriEf34snfv3hZ77d69eyM4OBipqakAKn6r6NOnD5555hlMnjyZA+mIiIiIcZKJfWq6RlcqlZgyZQqmTJmCGzdu4LfffkNMTAx27dqFhIQEk/v9+uuvGDVqFGJiYqpdDevEiRNYv3499u/fjxMnTlisj8iZJCcnY8OGDdi+fTtOnDiBxMTEBnvtCxcuyG5C3LhxY737AMPDwxEXFyf7rjt37mzyRuGG1K1bNzz//POYOnVqvW/otYSaYiz9z7Fr164WnTBx1KhReO+996T0/PnzcezYMTz88MO47bbbuJI3ERERyTDmMr6Po/VNWZqvry80Go3U15OTk4P09HQEBgbWu2xvb2/perjq5PCm2DK2Mpc99D8BFQP3XnjhBfTv398mr6/Plv1PLVq0wC233IJjx44BqJjI5I477sCcOXNw//33o0ePHhZ7LSJqHJS2rgAREVnGa6+9JksbGwjmSOoyA3pt9xkxYoRs5s0zZ87g7NmzBvmqDqBTqVTVBss6nQ6ffPIJWrVqhTvuuAP/93//h8OHD1tt8BwApKSkmHUTpLny8vIsUk5NswBVropWqWPHjnV+rcqBUJZgqfdvKdZ6b5b8/G2haocxYP6S8pX0Z6fR/zzqqqZ23717d4NBuJcvX8YjjzwCjUaDTp06YdasWVixYgVOnTplkToRERGRbTBGq90+VTsp1Wo1Ro8eXW3+ESNGyG7u+/PPPy1+o6c9XnPW9nuoTf7Y2FgMHToU7dq1w8svv4zffvvNLgfPAfYRzwghEB0dbTeD54Ca4xH977Nt27YWe21XV1f873//k23Lzc3FokWL0LFjR4SEhGD8+PF45513sGfPHoPOVSIiImocGCfVbZ9KzZs3x4wZM/Dll18iPj4eCQkJ+OKLLzBlyhSj14J79+7FBx98YLSsP/74Az169EBUVBTeeOMNxMTEcPCcnosXL+Lee+9Fq1at8PTTT+Onn35q8Bs8LdlHBPzTT3Tjxg3Z9nbt2ln0derK29sbEydOtIvBc4BtYywAmDt3Lvz9/WXbNm/ejOHDh8PX1xeDBg3C888/j++//95i/VxERETk2BhzOX7flDVoNBpZurpV+WrD3BUC7SG2Mpc99D9Vvq69DJ4DbB8bLV68WBYnlpaW4r333kPPnj0RGBiIUaNG4fXXX8dff/3V4KsWEpHj4QA6IiIn0bdvX1kQd/jwYfz44482rJH9c3Nzw7hx42Tb9FebO378OC5cuCClb7vtNgQHBxstr7CwECNHjsScOXMMOp4qNWvWDD179sTo0aPx8MMPW2SWEksH4lWXIa+Pmjq3MjIypP+7uLjUa6lxS34Glnr/lmKt91b18wcgG0zqCLKysmRpc3+UqaQ/k6p+eXVlTqfu559/jpEjRxpsF0IgLi4Oq1atwiOPPILu3bsjJCQE8+fPt9iPV0RERNRwGKOZ79y5c7LJA0pKSuDr6wuFQmHy0aRJE9kEEWVlZdi8ebNF61X1GtHV1RVubm612t9a15zWsGLFCvTr1w87duww+nyTJk3QsWNHDBs2DNOmTcPDDz/csBXU0xDxTExMDIQQ0qO8vBx33HGHLM/TTz8tzeZrD2qKR9LT02Vp/RlD6+vhhx/GwoULoVQadjtcv34dmzdvxnPPPYeBAweiWbNmmDlzJi5evGjROhAREZF9Y5xkWWFhYZg5cybWrFmDpKQkzJ492yDPBx98AJ1OJ9u2YMEC3HnnndLs7fq8vb3RtWtX3HnnnZgxYwYmT55slfrbs59//hlRUVHYsmWL0X4jNzc3tGvXDoMHD8bUqVPxzDPPWKUe1uoD1C/X19fXoq9jzAMPPCCLsYQQ+Oqrr2R59u3bh0ceecTqdTGXrWMsjUaDX375Bc2bNzd4rqioCLt378aSJUswbtw4aDQa9O/fH5s2bbJoHYiIiMixMOYyn732TVmD/j15BQUFFinXnHuk7CW2MldD9D+tWrXKIDaaNWuWLM+7776L1atXW/y168rWsdFdd92F5cuXG+2rTU9Px9atW/Hyyy/j9ttvR0BAACZMmICjR49atA5E5DxcbF0BIiKynFdffRU///yzFGwsWLAAo0ePtptZ+uzR5MmT8cUXX0jp9evXY9GiRbJ0VforR1X12GOPYdu2bbJtLVu2xEMPPYRhw4YhKirKYJDPokWLsGfPnnq8A8Ml0Hv16oW33367zuU11MwpVYPi+rZR/c9g2bJl6NKlS53Kqs/sr9Zgrfem/6OEo50n6lt//fwNOXDSw8MDP//8MzZs2IAPP/wQe/fuNfn6169fx2uvvYbVq1fj119/RdeuXRusnkRERFR/jNHMs3btWouUs27dOjz00EMWKQuo/zWiLa85a2P79u149NFHZfVzc3PD+PHjMWnSJPTu3RshISGyfRISErBixYqGrqrEFvGMSqXC2rVr0bt3b1y5cgUAUF5ejkmTJuHQoUMWn03TGvRXr7fG57Zo0SKMGjUKb775JrZu3Yri4mKj+fLy8rB69WqsXbsWq1atapQ3ZRMRETVWjJOso2nTplixYgWysrKwceNGafu1a9dw7tw5qV9h9erVePXVV2X7enp64v7778eYMWPQq1cvBAUFyZ7fsWOHxeI2R3Du3DlMmjQJRUVF0jalUom7774b//rXv9C3b1+EhYUZTByxdOlSi9dFv49o1KhRePbZZ+tcXlRUFAAYrAjt6upa5zLrY9q0aThy5IhspcTVq1eja9eu9XqfDaUhYqy+ffvizJkzWLp0KVavXm1yVUIhBPbt24d9+/Zh0qRJ+Prrr2s9ERARERE5B8Zc5rHXvilr0L/+158A0lrsKbYyl63up/vkk09w5swZHDx4UNr2yCOPoH379rj11lsbpA710RCx0ezZszF48GAsXrwYmzdvRm5urtF8xcXF2LRpE7Zs2YK33nrLIWJLImpYHEBHROREIiMjMXHiRGnQ14kTJ7Bx40ZMnDjRxjWzX5UryqWmpgKoCNxOnz4tDVLZsGGDlFetVhusWFcpISEBX3/9tWzbY489hqVLl0KtVlup9hX8/f1laZVKhSFDhlj1NS3Bz89PWqmvrKwMRUVFaNKkSZ3K0v8M2rRp4xCfgTms9d78/PxkaUdb4Uy//rm5uUZn4DRFP4jW/5wbwsSJEzFx4kTcvHkTu3fvxp49e3D48GHExsYa3GR67do1jB49GmfOnIGHh0eD15WIiIjqhjGaefQnLqmrmJgYpKWlGdzsWVd+fn5ISUkBUBGzlJSU1Cq+s4drTnO89tprsg7BLl26YMOGDejUqZMNa1U9Y/FMixYtrP66/v7+2LJlC/r16yfN0JqVlYXRo0fjwIEDDbJqQ33oz/iZn59vldfp1asXNm7ciMLCQuzfvx979uzBoUOHcODAAYOVLoqLizF9+nR06tQJkZGRVqkPERER2RfGSda1cOFC2QA6ALh48SK6dOkCIQRee+012XODBg3Cd9991yDX047i7bfflt3g2bJlS6xfvx79+vVr8Lrox5Genp4W6SPSjw0stQJFXbzzzjs4deoUtm/fLm2bO3cuOnfujBEjRtisXuZoqBjLz88Pr776Kv73v//hzJkz2L17N/bv349Dhw7h/PnzBvnXr1+PsLAwLFmyxCr1ISIiIvvGmMs89to3ZQ36/VXWWFXNGHuKrcxlq/vp1Go1Nm/ejJ49e0p9k6WlpRg3bhwOHz6MVq1aNUg96qqhYqP27dtj1apVWL58OQ4dOoQ9e/bg4MGDOHjwoHQfaiWtVov//ve/6NSpE+6++26r1IeIHJOy5ixERORIXnnlFahUKim9aNEi6HS6WpejPyuEs1KpVAY/EFQGyEeOHMGlS5ek7SNGjDB5M9w333wj+5zvvPNOfPzxx1YfPAcAgYGBsvTly5et/pqW0KxZM1n6woULdS5L/zOo+r05Omu9N0t+/rag/8NTQkJCrfbXz6//eTSkwMBAjBs3DkuXLsXu3buRnZ2NX3/9FXfddZcsX0JCAtasWWOjWhIREVFdMUar3okTJxAXFyelR4wYgZiYGLMfVSc50Wq1BjeK1oczXXOakpSUhJiYGCndpEkT/PDDD3Y9eA6wbTzTrVs3rF69WrYtLi4OkydPtvvjNCAgQJZOTEy06ut5eHhg2LBhWLhwIbZu3Yr09HTExsbi3//+t+y8WFZWhrffftuqdSEiIiL7wjjJerp06QJ3d3fZtsobFvfu3SvrQwoODsaWLVvsavCcrb/TsrIy2UoUCoUCa9eutdkNntbqI9K/YbbyBk1bcHFxwfr16xEeHi5t0+l0mDx5Ms6dO2ezepmjoWMshUKBrl274t///je++uorxMXF4caNG1i2bJnByvHLli0zuSIDEREROT/GXNWz574pSysvL0d8fLyU9vX1NRgkZg32FluZy5b9Ty1atMCmTZtkK0mnpqZizJgxKCwsbLB61EVDx0Zubm4YMGAA5s2bh++//x7Xr1/H2bNnMW/ePIMFHN544w2r1oWIHA8H0BEROZmOHTviX//6l5Q+e/Ysvvvuuxr3q3rhDUA2+4ezmzJliixdOYBOf6YZ/XxV6QdLDzzwgIVqVzN/f39Zp1J6ejrOnj3bYK9fV1FRUbL0/v3761xWz549Zeldu3bVuSx7Y633ZsnP3xZ69+4tS8fGxtZq/+PHj8vSPXr0qG+VLEatVmP48OHYtm0bJkyYIHtu586dNqoVERER1RVjtOqtW7dOln7ggQcwZMgQsx8zZ86strz6qM81Z2FhoWwWeF9fX7Rp08ZidbOUixcvytIDBgywy3rqs3U8M2HCBLzwwguybdu2bcPcuXMbtB611a1bN1n6xIkTDfr6CoUCPXv2xCeffIIPPvhA9hxjHSIiosaFcZL1KBQKg5nfNRoNAMO+rDFjxjTIjZPVsbfvNCkpSVaHtm3bon///jarj/6AyBMnTlhkUJT+pCm2HqgWEBCALVu2wMPDQ9qWm5uLMWPGGKxibU+6dOkCpfKf265Onz7d4DeZazQazJkzBwcOHJANjCwqKsLhw4cbtC5ERERkPxhzVc+e+6Ys7eTJkygtLZXSffr0gUKhsPrr2ltsZS5b9z/deuutWLZsmWzb8ePHMX36dAghGrQutWHr/iegIs5dvHgxNmzYINt+4MABlJSUNHh9iMh+cQAdEZETWrRoEVxdXaX0K6+8UuM++iur3bx50+L1slf9+vVDWFiYlD5//jxOnjwpu5j28vLCqFGjTJaRmpoqS1cd0NYQhg4dKkuvWLGiQV+/LgYPHixLf/3113UuS//9//jjjwbfiaOy1nvT//x//PHHei877+LiUq/9a2PAgAGy9KZNm8zed//+/UhOTpbSHTt2NJgJx17MmDFDlnaWdk1ERNTYMEYzrerEJW5ubrj77rtrtf8dd9wBLy8vKb1nzx5cv37dInWrzzXnDz/8gPLycindr18/2U119sLasay1YgT9eGbNmjV1mj23Pl577TWD9rp06VKsWrWqQetRG/qDQrdu3WqzDtcHHnhA1knPWIeIiKjxYZxk3OnTp7F58+Y675+VlYX09HQprVQq0bVrVwDWv/6vusKFueztO7W3GEmtVstWaCgvL8cXX3xR73oEBATI+kavXbvWoCsrGBMZGYmVK1fKtl26dAmTJk2Sxdf2xNvbGx06dJDS2dnZ2LNnj03q0rJlS9x+++2ybYyziIiIGjfGXKbZc9+UpekP7hsyZEiDvK69xVbmssb9dLU1e/ZsPPLII7JtmzZtwqJFixq0HrXRq1cvWZ/P9u3bbbZq3siRI2UrCWq1WmRkZNikLkRkn+zvrg0iIqq31q1bY9asWVJaf0Z5Y1q1aiVLHz161KzXunr1au0qZ4cUCgXuu+8+2ba5c+fKli8fO3asbNZDffozdJobFFuq42L69Omy9PLly+s0k8e+ffssUh9zjB49WjZr5r59+/Djjz+avX96ejoSEhIAAKGhobIAtqSkBE8//XSt65Sfn4+TJ0/Wej9rstZ7a9OmjWzVtaKiIrN+LKtUXl6OY8eOybbpz2przZmoBg0ahIiICCl97Ngx/Prrr2bt++abb8rS999/v0XrVp1NmzbJZnaqibe3tyxt69mAiYiIqG4Yoxl3+PBhXL58WUoPGzbM4PqnJpWr91bS6XQGMwvW1bhx42T1+emnn3Dq1Kka99NqtXj77bdl2xrymrM2rB3LWitGGDBgAJo3by6lk5KSDGbkrE5hYWG9V25XKpVYs2YN2rdvL9v+6KOPYu/evfUq21p69+4t66S+cuUKNm7cWON+Wq1WtqKiMTExMbX6jcPDw0M2qJSxDhERUePDOMm49PR0jB8/HnPnzq3TSlaff/65bHKJgQMHIjAwEEDDXv+XlJSYNclFy5YtZTfZnTx50qz3Xdk/ZGn2GCPp9wG+/vrrskkCzaXfB1g1lgZg9sC84uLiWr+2uSZPnoznnntOtu2vv/7CU089ZbXXrK+JEyfK0kuWLDFrvzNnzlT7fGZmJn777bda1YV9SkRERFQVYy7j7L1vypJSUlLw6aefSmkXFxeDibytxR5jK3NY4366uvjoo48MJvp89dVX7bKdAUBwcDAGDhwopQsKCvDxxx+btW9N/XWxsbG4dOlSrerD2IiIqsMBdERETmr+/PmywUk1ufXWW2Xp33//HdeuXTOZPy0tDRMmTMDq1avrWkW7MmXKFFlav0NC/3l9vXr1kqVr+lzy8vIwe/ZsWZBaH0OGDJEFTcXFxRgzZgxOnz5t1v7Xr1/H7NmzDTrLrCkoKAgPPvigbNuDDz5o1g2pMTEx6NGjB44fPy5tmz9/vizPd999h+eee86sDlohBDZt2oRu3brh999/N+8NNCBrvbcXXnhBlv7ggw/w7bff1ljmlStXcNttt+HLL7+Uba86oA2AVW8aVSqV+M9//iPbNnv2bFy5cqXa/T766CPZQE0PDw88+uijVqmjqdfv3bs3/vrrL7Py//LLL7J0nz59rFEtIiIiagCM0Qzpz3p577331qkc/f3Wrl1b5zpV5ePjg4ceekhKl5eXY+rUqTXOUjh37lxZ51hISAgmTZpkkTpZWo8ePWSDmP766y8kJSVVu8+6detw5513mlW+tWIEtVqNZ555RrZt3rx52L59e437Hj9+HH379rVI7Ofr64stW7bIOuJKS0sxbtw4JCYm1rt8S1MoFJg9e7Zs26OPPlptZ+7u3bsxYMCAGo+rnTt3olu3bvj8889RVlZWY11+//132Y3RjHWIiIgaJ8ZJpr399tvo3r07Nm3aZPaqwTt27MDChQtl2+bOnSv9X78va9OmTcjPzzdZnk6nw0cffWQwgMuUqtf/5eXlOHToUI37+Pr6onPnzlI6Ozu72tW/S0tL8corr8hiNUtq27YtmjZtKqXPnDmDw4cPV7vP9u3bZTdYVqcuMdL9998vmwgjPT0dI0eOrDF2q3Tx4kWMGzcODz/8sGx71ZupAWDZsmU19ivu2bPH6n2Jb775Ju666y7Zto8//thifaqWNnPmTNnKLr/88gv+97//mTxuU1JS8PTTT2PMmDHVlpubm4sRI0bg4YcfNmvAZFFREXbs2CGlVSqV2e2SiIiInBdjLkP23jdlKcXFxZg6dSpyc3OlbVOnTkWLFi0a5PXtMbYyl6Xvp6sLV1dXbNy4ES1btpS2CSEwY8YMswe2NjT9VfPmz59f7aQgJ06cwMiRIw0mJdV3+vRpREVFYcmSJWatanfu3DnZpDtdu3ZFkyZNatyPiBoPDqAjInJSISEhtRoU0qxZM9xxxx1SuvKGr6qrsAFAcnIyXn31VbRv377aDixHExUVhY4dOxp9zt/fv8abAydOnCjrHNm6dSseffRRpKeny/JlZWXhk08+QceOHfH555/Xv+JVfP755/D19ZXSiYmJ6Nu3L55//nmjs3AUFRXh+++/x9SpUxEREWEwK2lDWLhwoSzQS09PR//+/fH2228b3JRaUlKCrVu3YtSoUbjtttsMOgaHDRtmEIi988476NevH3744QejM82cP38er7/+Orp06YIJEyaYPWPpgQMHsGPHjjo9ysvLzfx0rP/exo8fbzAj0vTp0/HII4/IZlsCKoLwgwcP4vHHH0enTp2we/dug/IGDRokS8+dO9cgaC8pKcFPP/0k+4Gmrh577DH07dtXSicnJ6Nfv3744osvDALmhIQEPPzww3jyySdl2999910EBATUuy61cfLkSdx+++3o0aMH3n//faOzLF27dg3PPfec7EcCDw+PGgfzEhERkf1ijCYnhJDNkqhUKmu8ecyUkSNHyuKxAwcOWGy201deeQWtW7eW0qdPn0bv3r2xefNmg5WFz5w5g3vvvRdLly6VtikUCnz22Wey+tmToKAgDBs2TEoXFxdj+PDhOHjwoCyfTqfDH3/8gTvvvBOTJ082+3remjHCnDlzEBkZKaWLioowYsQIvPjiiwbX2FqtFjExMZg2bRp69uxp9mQz5ujUqRO+/vpr2aoZaWlpGDNmDAoKCiz2OpbyzDPPoF27dlI6MzMTffv2xYwZM/Dtt9/ijz/+wPr16zF//nzccsstGDRoEA4cOGBW2Tdv3sTs2bMRERGBF154wegEObm5uVixYgUmT54s226tG6CJiIjIvjFOqt7Zs2cxYcIEREVF4YMPPjA54/qZM2fw5JNP4o477pD1F4wePRp33323lO7Zsyc6dOggpVNSUjBixAjExcXJyistLcWWLVsQHR2NJ5980iD2MUX/+v+RRx4xqHN+fr7BDatTp06VpR9//HHZQKDK/VatWoUuXbpg0aJFdVqdzxwuLi4GK4rde++9Rm/6279/P6ZMmYJhw4aZvZqC/me0ePFigwn3ysvL8ddff0k3Kru4uOCrr76SxZUnTpxAVFQUFi9ebHRwVU5ODr755huMHTsWHTt2xPfff2+Qp0+fPhgxYoSULigowB133IFNmzbJPl+dTofdu3djwoQJGDhwoNVXF1Eqlfjuu+/Qpk0b2fYnn3zSoF3Yg/DwcDz//POybQsXLkR0dDQ+/PBD/PLLL/j555+xbNky3HPPPQgPD8f7779v9iSZn332GSIiIjBp0iT8+OOPKCkpkeXR6XTYu3cvbrvtNtm5cPTo0QgODrbMmyQiIiKHxZhLzlH6pswRHR2Nr7/+Gjk5ObLtOp0O27dvR3R0NGJiYqTtQUFBePfddxusfvYYW5nL0vfT1VVwcDA2b94sGwRbWFiIsWPHIiUlxWKvYylTpkyRfS8lJSUYMWIExo8fj9WrV+P333/Hpk2b8MYbb2DAgAGIiooymFjelIKCAjz//PMIDQ3FE088gYMHDxpMWlJUVIT169fj9ttvlz3H/ici0udi6woQEZH1vPDCC/jss8/MvmHrlVdewfbt26VOkcOHD6NNmzZo3749AgICkJqaivj4eNkP+k2bNkV2drY1qt/gpkyZYjAzJwBMmDChxpsdw8LCMGfOHLz//vvStuXLl2PlypXo2LEjfHx8kJqaisTERNlM7Jb8/Dp06IC1a9di/Pjx0uChwsJCLFmyBEuWLEHz5s3RokULqNVqZGRk4PLly3UazGVJgYGB2LhxI4YNGya107y8PMydOxcvvPAC2rVrBz8/P2RmZiIxMbHG5dY/+ugjXL16Fdu2bZO2HTp0CPfccw/UajUiIiLg7++PkpISJCQkGAxwNFd9BjFlZWXJZtgxlzXem0KhwLfffot+/frhwoULACqC/hUrVmDFihUICwtD8+bNUVBQgKSkpBrb6rRp0/Dyyy8jLy8PAJCUlISePXuidevWaN68OYqKinDu3DkUFxcjPj4ePj4+tf4cqnJxccGaNWswePBg6ceOtLQ0PPjgg3j88cfRtm1beHl5ITU11ejKdDNnzmzQ1ef0HTt2DMeOHcPTTz+N0NBQtGjRAiUlJbh+/TpSU1MN8i9ZsqTBZoIiIiIi62CM9o/9+/fLVujq169fnW/s8vX1xdChQ2Uriq1fvx7PPfdcvevp7e2NdevW4Y477pA6IePj4zF+/Hh4e3ujTZs2cHd3x7Vr14x2wC1cuFB2Q6I9euONN7Bjxw4pVj179iyio6MREhKCsLAw5Ofn4+rVq7JOWHPbmTVjhCZNmmDz5s3o168f0tLSAFR05i9evBhvvvkm2rRpg8DAQOTk5CApKUmqgzWMHTsWCxYswCuvvCJtO3HiBKZPn46NGzfKBtfZmru7O9avX49hw4YhMzMTAFBWVoYvv/yy2llRW7VqJZvIprrfSa5du4Y333wTb775JgICAtC6dWuoVCpcv34d169fN7jZecKECRg7dmw93xkRERE5KsZJNTt58iSeeuopPPXUU/D390fr1q3RpEkT5OfnIyEhweh769WrF9asWSPbplAo8NZbb+Gee+6Rtu3ZswedOnWSrtGzs7Nx9epV2fdh7uf3yCOP4MMPP5S+m5MnT6Jdu3Zo3749AgMDkZubi3PnzqG8vBz33XeftN9jjz2GZcuW4caNGwAqJmYYOnQoQkJC0KpVK+Tl5eHy5csoLi6udZ3qYv78+Vi3bp00yUdycjKGDx+OwMBAtGnTBiUlJUhMTJRNBGlufe6++26EhYVJN9bm5ubi9ttvR4sWLRAaGory8nLExcUhPz8fMTEx0iSUAwcOxPLly/Hwww9LfXuZmZl48cUX8eKLLyI0NBTBwcFwcXFBWlqawTFgyscff4yePXsiKysLQMWgygkTJsDPzw9t2rSBVqtFfHy87L0plUqrT8jp5+eHLVu2oF+/ftIqiWVlZZgwYQIOHTpksNqErc2fPx+xsbEGfXjVrcIYGhoq+12kuhirtLQUGzZswIYNG+Dm5ob27dvD19cX6enpuHbtmsH5s1mzZnjvvffq8Y6IiIjImTDm+oej9E2Z4+DBgzh48CCUSiUiIiIQGBiIsrIyxMfHG0xa36RJE3z33Xdo1qxZg9Stkj3GVuaw9P109dG7d2/83//9H2bOnCltu3btGu69917s2LEDarXaaq9dWwqFAl9//TUGDx4sTfQvhMDmzZuxefNmk/vVJjbKyMjAsmXLsGzZMvj4+KBt27ZQq9VISUnBtWvXZPflAhUDTefMmVO/N0ZETocr0BERObGgoCA88cQTZufv16+fwZLIQgicP38e+/btw+XLl6Xg18vLC59++in+85//WLTOtmRqUJS5g6WWLFmCu+66S7atvLwcp0+flj6/yot0b29v/N///Z/FP7/hw4fjwIEDshlEK924cQNHjhzBvn37cP78eaOD57p27WrR+pijb9++OHDggMFMklqtFnFxcdi/fz/Onz9vMHhOpVLJVtwDKgKon3/+GS+88AJUKpXsuZKSEpw7dw579+5FbGys0QFmnp6eCA8Pt8wbszBrvTd/f38cOHDAoO0CwNWrV3HgwAGcOnXKaLDv7+8vS/v5+eGzzz6DUim/xIyPj8e+fftw7NgxWQe3JURERGDv3r3o1q2bbHtRURFOnTqF/fv3GwyeUyqVePHFF7Fy5UqL1sUcUVFRRm+eTUxMxIEDB3Ds2DGDwXNubm744IMPGNATERE5AcZo/9BfcaDqDZx1ob+/fvn10bt3b+zatQuhoaGy7Xl5eTh+/DgOHDhgMHjOzc0NH3/8sdFJWuxNr1698OmnnxrEGcnJydi3bx9OnjwpGzw3adIkg1k8TbF2jBAREYHY2Fj06tVLtl0IgUuXLmH//v04e/as0cFzfn5+dX5dYxYuXGgwCGzz5s122QaioqIQExNjEEcZExoaip9++gmzZs2SbdePxzt27AgPDw+D/TMyMhAbG4uDBw8iKSnJYPDc9OnT8e2339bhXRAREZGzYJwk17lzZzz00EPw9PQ0+nxmZiaOHDmCPXv24Pjx40Z/u589ezZ27doFLy8vg+fGjh0rm/ihUuU1+tmzZ6Uba5VKJebMmWMwEM+UDh06YPHixQbbL1y4gL179+LUqVNG+6aaNm2KdevWGdQ3OTkZBw4cwJkzZ6S4QaFQ4IknnjC7TnXRqlUrrFu3zuD69ubNm9Lv+FVv8Bw2bBhOnDhhVtkuLi74+uuvDW5yvH79Og4cOIDY2FhpwJi+mTNn4s8//0Tz5s0NnktMTMThw4exf/9+2TFQVZcuXQy2tW7dGtu2bTOY+DErKwuxsbE4duyYrI11794dP/zwgxnvtP66du2KL7/8UtankpGRgTFjxlh1gpS6cHNzw5YtWzB79uwaJ1Bxc3PDs88+K7vRGjCMsby9vdG2bVuD/UtLS3H69Gns3bsX58+fN7gRvl27doiJibHb/k4iIiJqeIy5/uFIfVPm0ul0Un9IbGysweA5f39/bN26FbfddluD181eYytzWPJ+uvqaMWOGwTF84MABzJ4926KvYwmhoaHYuXMnBg4cWGPeZs2aYeXKlQa/UejHRq1btzbap5ebm4ujR49i//79iI+PNxg8d9ddd2Hbtm1wceFaU0QkxwF0RERObu7cuQYXldV5+umnsWXLFrRr187o856envj3v/+Nixcv4pFHHrFUNe1Cu3bt0LNnT9m25s2bGyz5bYqrqyu2bt2KN9980+QKY76+vnjsscdw/vx5q6181a1bN5w+fRpff/01+vbta3ATpL7w8HA8++yzOHLkCA4cOGCVOtWka9euOH36NJYtW4b27dtXm7dNmzZ4+eWXcenSJQwdOtTgeZVKhTfeeAMXLlzAo48+isDAwGrLU6vVGD58OFatWiXNrGmvrPXe/Pz8sG3bNvz0008YOHCgwc2tVfn7+2P27NnYv38/FixYYPD8fffdh99++81oR2wlV1dXiwanoaGhOHr0KD7++GOT5y6golNy9OjROHr0KF5//XWbrALx/vvv49y5c5g3b57BoFF9rq6umDx5Mo4dO4Ynn3yygWpIRERE1sYYraIzb8OGDbJt9e2kHDt2rOz67siRI7h06VK9yqyqe/fuiIuLw+uvv17tLJUeHh7417/+hXPnzuGxxx6z2Otb26xZsxATE4MePXoYfV6hUGDYsGH4448/sG7dulp1/lk7RmjVqhUOHDiAr7/+Grfccku1eVu0aIGnnnoKp0+fxgMPPFCn1zOlcmbNzp07y7a/+uqrNuk0r0n37t1x9OhRfPXVVxg9ejRatWoFNzc3eHl5ITw8HOPGjcMXX3yBixcvYtSoUQYD3/R/95g8eTISExPx3nvvoW/fvtXGlUDFChq//PILvvzyS7i5uVn67REREZGDYZz0j6CgIHz22WdITk7Gl19+ibFjx5q1UrNarcaYMWNw6NAhrFixAk2aNDGZd8GCBfj+++9Nfn4uLi645557cOjQISxbtqzasvQ999xzWLNmDcLCwkzmMVbewIEDceDAAaP9PkBF/8jdd9+NI0eO4MMPP6xVneqicsLK6m4y7dOnD9atW4c///zTYMKV6gwcOBD79u1DdHS0yTwqlcroSgKDBw/GlStXsGzZMnTr1q3Gfo5OnTphwYIFOH/+vMm4pE+fPjhz5gzuu+8+k3FZ27ZtsXz5chw5cqRBJ+McN24cXnrpJdm2M2fOYOrUqVZfBa+21Go1VqxYgUOHDmHOnDno1KkTfHx8oFarodFo0L9/f8yfPx+XLl3CO++8Y/BZ68dYAQEBOH/+PH788Ufcd999RgfEVtW8eXO8+uqrOHHihE0mTCUiIiL7xpjLMfumqhMTE4Phw4ebvC/Qw8MDs2bNQlxcnMk4qyHYa2xlDkveT1dfS5cuNfgev/76ayxZssTir1VfoaGh2LVrF77//nvcd999aN26NZo0aQIPDw+0atUKd999Nz788EPEx8dj1qxZNfY/DR48GImJiVixYgWGDh1aY39iVFQUvvnmG2zbtq1W5z0iajwUQghh60oQEZH90el0OHLkCI4ePYqMjAw0bdoUrVu3xtChQ+Hu7m7r6tm94uJixMTEIC4uDoWFhfDy8kK7du0wdOhQq3fq6cvNzcWBAweQnJyMjIwMFBUVwdPTE2FhYejbt2+tlihvKNeuXcOBAweQmpqKrKwsuLq6IiQkBP369atx0JExZ8+excmTJ5GRkYHs7GwolUoEBASga9eu6Nmzp10tZ15b1nhvOTk52LdvH/6fvX8NkuPM7zvfb2bWvavvN9wBAiDIIUECI2ou9swsZixrbYdDlrzW2JLDsRG7DoePxg7tC63s0It94YgT6whJdngVltaOsNeXE8dHjlmtR6KuI2mGpGbAIUBSaA4I4tLdQKMb3V1V3XWvysrrc15kdxENoEkABAig8fsgENVV9TxZT2VlVVd2Pr/8Ly4usr6+jjGGiYkJXnnlFT772c9+7ERISM4+NTMzw9mzZ1lbWyOTyTAxMcFzzz3HZz/72Ye6zq9cucI777xDqVSi2+0yPj7O/v37+cpXvvKxBxg/bcvLy5w9e5bl5WVqtRqpVIrh4WGeffZZPve5zzE4OPiohygiIiKPCe2jPV7ee+893nvvPSqVCp7nMTExwTPPPMOXv/zlJ3r/ApLn9uabb7K2ttbfF/vyl7/8kRNg78antY9QqVQ4ffo0KysrVKtVLMti165dfP7zn//IEJ98tH/0j/4Rv/Ebv9G/XqlUmJiY2LZ9s9nk7NmzXL16lWq1ShRFDA0NsW/fPr7whS+wa9euT2PYIiIissM9LftJxhiuXr3KD3/4Q9bW1mi1WrTbbQqFAmNjYxw6dIgvfvGL9/yc4zjmzJkzvPvuu1SrVXK5HPv37+drX/saU1NTn2jMURRx5swZzp07R61WI5/PMzExwYsvvsjLL7/8kRPeZmdn+f73v8/q6irZbJa9e/fy1a9+9WNPKviwzM7O8sYbb7C6uorjOExPT/PFL36R559//hMv++LFi/3jYZZlMT4+3j/h53ZVCG+2vr7OD37wg/7+j+/7FItFjhw5whe+8IV7fh2r1Srf+c53WFxcpNvtMjExwRe/+EVOnDhxv09RtnH27Fk+//nP96//6q/+Kr/wC7+wbfsoijh//nz/c6DdblMsFhkfH+fkyZO8+OKLd3X8TkRERORePC37XE+CQ4cOsbCw0L++OfW/XC7zgx/8gKtXr9JutxkdHeXgwYN87Wtfu63y26P2OO9b3Y0HMZ9Obvcrv/Ir/JN/8k/6199+++3bimDczHVd3n77ba5cuUK1WsXzPIaGhti9ezef+9znPvHxTBHZ+RSgExERERERERERERGRbX3xi1/krbfeAuDw4cPMzc094hGJiIiIiIg8uf7Nv/k3/NzP/Vz/+htvvMFXvvKVRzgiEREREXmcbRegE3nS/czP/Ey/Ynoul6PZbJJOpx/xqERkJ1PcWURERERERERERERE7ujMmTP98BzA3/gbf+MRjkZEREREROTJFoYh/+bf/Jv+9enpab7whS88whGJiIiIiIh8+hYWFvjt3/7t/vW/+lf/qsJzIvLQKUAnIiIiIiIiIiIiIvKUePXVV/n2t79Nr9f72LbvvPMOX//61/vXbdvmH//jf/wwhyciIiIiIvJEWVxc5N/9u3/HysrKx7Ztt9v8vb/395iZmenf9g//4T8kk8k8zCGKiIiIiIg8dG+88Qbf+ta3aLfbH9t2bm6On/iJn9hyrOrnf/7nH+bwREQASD3qAYiIiIiIiIiIiIiIyKfjj/7oj/j1X/91crkcn//85/mRH/kRXnjhBSYnJykWi7RaLebm5viTP/kTvv3tb2OM6ff9pV/6JY4cOfIIRy8iIiIiIvJ4KZVK/IN/8A8AeP755/n85z/Pyy+/zL59+xgbG8P3fUqlEj/4wQ/45je/Sb1e7/d97rnn+MVf/MVHNHIREREREZEH58yZM/ziL/4iqVSKV155hVdeeYXjx48zPT3N0NAQnU6HhYUFXn/9dX7nd36HMAz7ff/u3/27fO1rX3uEoxeRp4UCdCIiIiIiIiIiIiIiT5ler8cbb7zBG2+8cVftf/qnf5p/9s/+2UMelYiIiIiIyJPr4sWLXLx48a7a7tu3j9/6rd+iWCw+5FGJiIiIiIh8esIw5K233uKtt966q/Zf+cpX+Lf/9t8+5FGJiCTsRz0AERERERERERERERF5PE1MTPAv/+W/5Jvf/CaO4zzq4YiIiIiIiDzRbNvm61//Ou+88w4vvvjiox6OiIiIiIjII1EsFvmlX/olvvOd7+jEIiLyqbGMMeZRD0JERERERERERERERB6+tbU13nzzTc6ePcu7777LjRs3WF9fZ319nTAMGRkZYWpqis997nOcOnWKr3/96xQKhUc9bBERERERkcdSEAS8/fbbnD17lrNnz3LlypX+Plar1aJYLDI6OspnPvMZvvzlL/P1r3+do0ePPuphi4iIiMgT5NChQywsLPSva+q/PI6azSY/+MEPOHv2LG+//TbXr19nfX2darVKr9djeHiYiYkJPvvZz/Lf/Xf/HT/zMz/DyMjIox62iDxlFKATEREREREREREREREREREREREREREREREREZEdyX7UAxAREREREREREREREREREREREREREREREREREXkYFKATEREREREREREREREREREREREREREREREREZEdSQE6ERERERERERERERERERERERERERERERERERHZkRSgExERERERERERERERERERERERERERERERERGRHUkBOhERERERERERERERERERERERERERERERERER2ZEUoBMRERERERERERERERERERERERERERERERERkR1JAToREREREREREREREREREREREREREREREREREdmRFKATEREREREREREREREREREREREREREREREREZEdSQE6ERERERERERERERERERERERERERERERERERHZkRSgExERERERERERERERERERERERERERERERERGRHUkBOhERERERERERERERERERERERERERERERERER2ZEUoBMRERERERERERERERERERERERERERERERERkR1JAToREREREREREREREREREREREREREREREREREdmRFKATEREREREREREREREREREREREREREREREREZEdSQE6ERERERERERERERERERERERERERERERERERHZkRSgExERERERERERERERERERERERERERERERERGRHUkBOhERERERERERERERERERERERERERERERERER2ZEUoBMRERERERERERERERERERERERERERERERERkR1JAToREREREREREREREREREREREREREREREREREdmRFKATEREREREREREREREREREREREREREREREREZEdSQE6ERERERERERERERERERERERERERERERERERHZkRSgExERERERERERERERERERERERERERERERERGRHUkBOhERERERERERERERERERERERERERERERERER2ZEUoBMRERERERERERERERERERERERERERERERERkR1JAToREREREREREREREREREREREREREREREREREdmRFKATEREREREREREREREREREREREREREREREREZEdSQE6ERERERERERERERERERERERERERERERERERHZkRSgExERERERERERERERERERERERERERERERERGRHUkBOhERERERERERERERERERERERERERERERERER2ZEUoBMRERERERERERERERERERERERERERERERERkR1JAToREREREREREREREREREREREREREREREREREdmRFKATEREREREREREREREREREREREREREREREREZEdSQE6ERERERERERERERERERERERERERERERERERHZkRSgExERERERERERERERERERERERERERERERERGRHUkBOhERERERERERERERERERERERERERERERERER2ZEUoBMRERERERERERERERERERERERERERERERERkR1JAToREREREREREREREREREREREREREREREREREdmRFKATEREREREREREREREREREREREREREREREREZEdSQE6ERERERERERERERERERERERERERERERERERHZkRSgExERERERERERERERERERERERERERERERERGRHUkBOhERERERERERERERERERERERERERERERERER2ZEUoBMRERERERERERERERERERERERERERERERERkR0p9agHIE+ver3O66+/3r++f/9+stnsIxyRiIiIiIg8aTzPY3FxsX/91KlTjIyMPLoBPWTajxIRERERkU9K+1HajxIRERERkXuj/SjtR4mIiIiIyL15HPejFKCTR+b111/np37qpx71MEREREREZAf51re+xU/+5E8+6mE8NNqPEhERERGRB037USIiIiIiIvdG+1EiIiIiIiL35nHYj7If6aOLiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIg8JArQiYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjIjpR61AOQp9f+/fu3XP/Wt77F0aNHH9FoRERERETkSTQ7O8tP/dRP9a/fup+x02g/SkREREREPintR2k/SkRERERE7o32o7QfJSIiIiIi9+Zx3I9SgE4emWw2u+X60aNHefHFFx/RaEREREREZCe4dT9jp9F+lIiIiIiIPGjajxIREREREbk32o8SERERERG5N4/DfpT9qAcgIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiLyMChAJyIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiO5ICdCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIisiOlHvUARHamEJgHVgAfyAC7gcPobSciIiIiIpIIw5j5+RorKy18PyKTcdi9e5DDh0dJpXTOHxERERERkbsRRyH1lWt0qiWiIMBJpxkYm2Zk9yFsR8elREREREREROT+hVHIfGWelcYKfuSTcTLsHt7N4cnDpPR3BxEREXmC6JuLyE1mZ2cBOHr06H0uwQAzwDmS4NzNLgGngZPACcC6z8cQeTQ++ftDZGfSe0Nke3p/iDwd7ue9boxhZqbEuXOr+H605b5Ll9Y5fXqRkyd3ceLENJalfaeniX53yIOk7UkeJG1P8iBpe5IHSdvTk+VBv17GGCrz5ynPnScKth6Xqi7OsnzhLFNHjjN5+Lj2rQTQZ4Y8HrQdyqOmbVAeB9oORe6d3jfytHqU274xhpnFGc4tnsOPtv7d4VLpEqfnTnNy/0lO7D+hvzvIA6fPfXlaadsXebgUoBO5ybe//W3gfn/pGOA14MrGdReo8GEFuqmN288AdeAUCtHJk+STvT9Edi69N0S2p/eHyNPhXt/rxhhee+0aV65UAXDdkEql069ANzU1AMCZMzeo13ucOnVQB1yeIvrdIQ+Stid5kLQ9yYOk7UkeJG1PT5YH+XoZY1ic+R61G/MAhH6Pbn2NKAxwUmkGRiYAWLn4Lr12g/0vf0n7VqLPDHksaDuUR03boDwOtB2K3Du9b+Rp9ai2fWMMr116jSvlZD6s67tUWhX80CeTyjA1lMyHPXPtDHW3zqljp/R3B3mg9LkvTytt+yIPlwJ0Ig/MDEl4LgZmgRJJqG7TAjANHAUuAyMk1ehERERERESeHjMzJa5cqRLHhtnZKqVSG3PTrtPCQp3p6SJHj45x+fI6IyM5Tp7c9egGLCIiIiIi8hiqzJ9PwnPGUFuep1urYG7auWqVlyiMTjK65zC1pTlyxWGmjrz0CEcsIiIiIiIiIk+KmcUZrpSvEMcxs+VZSs0S5qb5sAvrC0wPTXN06iiXS5cZyY9w8sDJRzdgERERkbugAJ0IACEwD3RIQm+vA7uBw9zd2yQEzm38PAusbvw8CgwCLaB20+3HSAJ3x+9y+SIiIiIiIk++MIw5dy7ZL5qdrbK62gZgdDTH4GCWVsujVuv1bz92bJyZmVWOH58ilbIf2bjlwQrDmPn5GisrrX7lwd27Bzl8ePRRD01ERERE5IkQRyHlufMA1Jbn6VTLAGSLI2TyA/huB69d798+uvcI5bn3mTj0GWzno49LxVFIfeUanWqJKAhw0mkGxqYZ2X3oY/uKiIiIiIg8aGEUMl+Zp+N1MBhev/Q6u4d3c3jyMCnto4g8FGEUcm7xHACz5VlWm8nx3dGBUQazg7S8FrVOLbndgmPTx5hZmuH43uN6X4qIiMhjTd9U5ClnSIJs7wDLQLBx+6vAMLAHeAU4AXxUeel5wAdckspzAC8AEze1WQMubNx/4KZ+xz7pkxAREREREXkizM/X8P0I1w0plZKQ3AsvTDIxUei3KZXanD27TLncptsNKBTS/OmfzvNjP3ZYIbonnDGGmZkS586t4vvRlvsuXVrn9OlFer2QXE5/rhIRERGRp8f9BNbqK9eIAp/Q79GtVQAYP/gc+aGxfhu3WWV94RLdWoWhyb39fmP7jt5xmcYYKvPnKc+dJwr8LfdVF2dZvnCWqSPHmTx8HMv6qGNmIiIiIiIin5wxhpnFGd5ZeIflxjKBF4CBV997leH8MHuG9/DKwVc4sf+E9lFEHrD5yjx+5OP6LqVmMh/2hT0vMFH8cD7sWnuNC8sXKDVKHBg70O93bJfmw4qIiMjjSzOS5ClmgO9u/F8kCb8d2rjvAjAEzAHXSKrHfZXtQ3QrG5eVjeWOsjU8x8b10Y1llUlCdCsoQCciIiIiIk+LlZUWAJVKB2OSynOb4TljDEtLTRYXm7RaHt1uyLVrdcbG8vzxH8+zstLm5MldnDgxrQOhTyBjDK+9do0rV6oAuG5IpdLpV6CbmhrYuD0gimKMMXqdRURERGRH+ySBtU41mbzWra9hjCFbHNkSngPID42RLQ7jtRt06msMTe2jUy3dMUBnjGFx5nvUbswDJMG8+hpRGOCk0gyMJMe8Vi6+S6/dYP/LX9L3dREREREReWiMMXz34nf57qXvslhbxPVdDgWHALiwfIGh3BBzlTmurV+j1q3x1ee+qn0UkQdopZHMh620KhgMowOjW8JzABPFCUYLo9S6NcrNMgfGD7DSWFGATkRERB5rCtDJU+wc8HvAKknwrQrs3bjvOpAnCbwFQBcYAT67zbL8Wy4Ht2k3SBKgu7W9iIiIiIjIzrdZdWzzcnAwCyQHQi9fXqdU6gCQStl0Oj7GGACGhrL4fsSZMzeo13ucOnVQB0KfMDMzJa5cqRLHhtnZKqVSm42XF4CFhTrT00VGRpLtY2amxMmTux7ZeEVEREREHqZPGliLgiC5DJPLTH7gjo+TyRfx2o1+u81+t6rMn0/GYgy15Xm6tUp/fwygVV6iMDrJ6J7D1JbmyBWHmTry0idcCyIiIiIiInd27vo5fu+Hv8dqY5VKq0K1U2VvlMzru169Tj6dZ7QwShAGdP0uI/kRPntwu3l9InKv/CiZ1+qHyeVg9s7zYQdzg9S6tX67zX4iIiIijysF6OQpFQKvAiWSanBLgEdSPc7iw9Bc+6bbXgVe4s5vm8wtl61tHrd1S7vMNu1ERERERER2nkzG2XLZankALC01KZWSqnSVSofFxSael4Ts1tddwjCmUEhz9OgYly+vMzKSU7jqCRKGMefOrQIwO1tldbUNJBUIBweztFoetVqP1dU2hUJENuswM7PK8eNTpFL2oxy6iIiIiMhD8UkDa046nVymkkvf7dzxcXy3vaXdZr+bxVFIee48ALXleTrVMgDZ4giZ/AC+28Fr1/u3j+49QnnufSYOfQbb0aFmERERERF5sMIo5NWZVyk1S5SbZZbqS3iBh8kZLCyCKKDrdWl7bQwGy7J49b1XeWnfS6S0jyLyQGScZF5rJpVctrw7z4dt9Vpb2m32ExEREXlcaRaSPKUuA/MkQbkbJGG5zTN3GiDeuN7duD8Erm70u5PdG5eTG/1qwNotbdY2breAqVv6iYiIiIiIPFnCMOby5XU6HZ922+f1169x+fI6YRhv22f37uTshJOTA1gW1Go9SqU2i4tNIAnPlcsdPC8JUe3ePUihkCKfT7G62mZ2tgrAzMzqRz7Og36Or79+jT/+47m7eo5yu/n5Gr4f4bohpVIygfeFFyZ56aVpDh0a4aWXpnnhhUkgWedxDJ4XMT9fe5TDFhERERF54IwxRIHHxdf+G+sLl7g+82dUl+aIo4hscYTByb1kCkP0Ok3Kc+9z7c9fp7o0x9Wz3yH0e/3lDIxNA1AYmcCyLLx2HbdZ3fJYbrOK125gWVa/ot1mv5vVV64RBX5SBa9WAWD84HNMPvMZhncdYPKZzzB+8DkAurUKkd8jCjzqK9cexioSEREREZGn3OXVy8yvzxNEATfqN+h6XSwsMMk+VRzHWFh0vS43ajcIo5Cra1e5vLrdvD4RuVe7h5N5rZODk1hY1Do11tpb58OutdeodWtYWEwNTW3pJyIiIvK40ik35Cn1Lkkobp0k2NYDsnzjG/+ZJDxnb/z3AHejza6Nfi/cYXmHgdMbP08Dq8AFYBQYJKk8V7vp/hyQ3egn8mT4xje+8aiHIPJY0ntDZHt6f4jsTMYYZmZKnDu3iu9HDA9/BYBLl9a5dGmd06cXOXlyFydOTGNZ1pa+hw+Pcvr0IgDT00VWV9ucPbtMq+WRStn9ynPDw1nGxvJEUUy3G5BOO9y40WRlpcWuXQMMDeWYn69x7Nj4p/Icb/Zxz1Fut7KSnH2yUkmqDI6O5piYKGxpMzFRYHQ0x/Xrxzh0aKTf72G9xvJ00HcReZC0PcmDpO1JHiRtT08GYwyV+fOcenaMZvkGtaVl4iigWVrCGIMzmSY7kJxwJPQ62LaN320RuO1kotrSLKXZ9xic2M3A2C4KIxO4jSrZwWEKo5N0qmXWFy6RLQ6TyRfx3TZeuwFAYXQSJ5PDSWcZ2X3otrF1qiUAuvU1jDFkiyPkh8a2tMkPjZEtDuO1G3TqawxN7aNTLTG27+jDXXHywOkzQx4H2g7lUdM2KI8DbYci23v3+ruEUch6a5219hpe6DGUG+Jb3rf6bcIopNlr4gYua+01dg3v4t3r7/LC3jvN6xN5sj2K3xmHJw9zeu40ZGB6aJrV5ioXli8wWhhlMDdIq9ei1k3mw04PT5NL58imshyevPN82DAKma/Ms9JYwY98Mk6G3cO7OTx5WJUjHzOP02ul70vytNK2L/Jw6ZuHPKVKJEG5y0CTJEzX2bhtk01SLc7faDe10e9OUsBJ4AxwlKSK3SxQBiLAAfIb920eTDyB3oIiIiIiIvIkMcbw2mvXuHIlqWzguiGVSgffj8hkHKamBgD43veu8+1vz5HJ2PR6Efl8iuefn+DUqUMcPz7FH/zBFeLY0OuFLC838f2YKIrxvIh02iKOYxYWGsSxYWAgheuG1GouS0stFhYanDw5TTptsbLS6j/27t2DHD48Sipl39NzCsOY+flaf1nptM316006nQDHsW57juPjeUoln/Pny/zJnwzwoz+6hz17hu7rsZ8WmyHEzcvBwewd2w0OZqnVere1FxERERF5khljWJz5HrUb8wC4jTW6zSrdaoleu4mTShOFAauX3sXEhnS+AJaN32kRRSH1lWvYqTTZwiDN0iKZQpHCyCS+2wYMk4deID88TmN1gU6tgjExlmWTzuUZ2X2I0T3J5LWpIy9i32GiUxQEyWWYXGbyA3d8Hpl8Ea/d6Lfb7Hc34o3n0amWiIIAJ51mYGyakd2H7jgmERERERF5epVaJeI45kr5Cl2/S8bJ0At7uF2X2MTYlk0hU8CxHLp+lyulK0wNTlFqbTevT+TuPU7hoUcp5aQ4uf8kZ66d4ejUUbCg1ChR69b6wTkLi+nhaY5OJvNhT+w7cds6CsKA3//h7/Pm/Jv0gh4pO8VwfpiJwQkulS5xeu40J/ef5MT+Ew/kpKUP8vV72rYFYwwzizOcWzyHH/lb7vskr9XTth5FROTxp98+8hRbACokVebuZDNMF220WwBe+YjlnSCpMvcdksp2eSAgCeFtBujWgQLwlzbai4iIiIiIPDlmZkpcuVIljg2zs1VKpTbGfHj/1as1Gg2PWs0lDA0TE3lGR/MAvPXWEr/6q6fJ59OkUhbtdkA+n6JQyNDrubhuiGUZjLFotQLiOMb3I2o1lzg2GGOwbYswjHnttQXeeWeFL31pP+PjBdJph+HhLHv2DPLKK3vuqjLcdlXmFhcbXL1ax3EsjIE4/vAJ1moutVqPYjHD5OQAq6ttGg2P/fuHVZXuI2QyzpbLVuvO++Gbt9/aXkRERETkSVaZP5+E54yhemOOlYvv0qlX8DtNQs8DExObm07wWE8ujDEQR2A72I6D322TLrRIpTMEboeh6X24zToL594gky9iOyn8bos4DrHtFE4qhdtYp5UrsP/kV5g8fPyO43PS6eQylVz6bueO7ZLA3oftNvt9lM3Ke+W580TB1slX1cVZli+cZerIcSYPH9d+lIiIiIiIJAxcr16n43cIooBe0LutyeZtju3Q8Ttcr17nlYMfNa9P7tfTEn55WOGhJ9mJ/Seou3Uuly5zbPoYB8YOUG6W8UOfTCrD1NAUuXQOgGPTxzix/8P5sMYYzl0/x2+e/U1u1G8AEEQBrV6LKI7IpDJ8ZtdnODJ1hDPXzlB365w6duqu1u2dtsldQ7toeS3O3zj/sa9fFEcfuU0/jduCMYbXLr3GlfIVAFzfpdKqbHmtgXt6rZ7G9SgiIk+GnfMNVuSejJJUlbt9B/vOehvtRz+mndnm5036oiciIiIiIk+mMIw5d24VgNnZKquryeTJ0dEcg4NZGo0eP/jBEtVqj3w+RTab4vLlKiMjWXw/wnVDgiCZFDo8nKVQSLO83MJ1A7LZFIVCmlKpg+8HOI5NtxsQRQbLsrAsiCJDHBssC9Jpm14v5NvfnmNkJM/oaI6JiQLj4wXm52u8916JAweGCIL4jtXptquk1+uFXLq0zsBAmnLZpdHwGBrK8txz49Rqbn9M1apLs+kxPJyl2fQYG8sDGc6cuUG93uPUqYP6Q/9Ndu8e5NKldSYnB1hYqFOr9Vhb6zIxUei3WVvrUqv1sCz6lQx37x58VEMWEREREXkg4iikPHcegOqNOSpz52mtLSfV5cKAOArYclaSOy+EOI6IA5/Q6+Gk0vRaDdxWg3Quj99t0V5bJVMoYll2vwKdiSO8bgsnk73zIasNA2PTVBdnKYxM0Cov4bXruM0q+aGxfhu3WcVrN7Asi4GRiX6/j3Jr5b3Q79GtrxGFAU4q3V/OysV36bUb7H/5S9qPEhERERERRgujSbAl9AmipPK1ZVlb92usZJ8jjmL80Ge1scpo4ePm9cm92Ay/vLPwDsuNZRpugzAKSTlJBbE9w3t45eArOyL88jDCQzuBZVmcOnaKkfwI5xbPAXBg/MCWNtlUlhP7TmzZDjbX53cufocb9Rv4oc/16nVavRaWZZFP57Ftm0qrwrXqNf7Sc3+Jy6XLjORHOHng5Lbj2S6QZYzhd2Z+h/X2OvvH9jNRnLjj6/fW1bd4+9rbOLZDEAdblr0Z6Dqx7wS1bo3Zyizw9GwLM4szXClfIY5jZsuzlJolzE0fugvrC0wPTXN06uhdv1Yf9Z4aL45T8kqcXz7Pn3zwJ/zowR9lz8ieHRfMFRGRx5N+08hTyiWpBncv1jf6bWcGmAX2Ai1gEWiQVLBzSCrdvbRx/xWSMN7JexyDiIiIiIjIozE/X+sH4TYrz01PF7DtJOy2sNCg2w0wxlAqJRULLAvqdZcgiAnDmHTaxrZtajWXwcEM09NFwjCmVnNxHKtfgSyOQ+KNAgzGJNXnPrwOnhcTBDG+H9LrRdRqPVZX26RSNgMDGd56a4kvfnE/Bw4MA3Dp0vqWCnHbVdJrNj3K5Q5RFNPtBgwOZhkYSON5IZZlsWfPENev17lxI3l+YRjjODavvXaNZ58d5+jRMS5fXmdkJMfJk7s+3RfoMXb48CinTy8CMD1dZHW1zYULlX74stXyqNV6/ftzuRTZrMPhwzrYLSIiIiJPtvrKNaLAJ/B6rF58l9rKVYKeSxh4mCjiI5Ntd2SI4whCn3Z1BQsLJ53GGEPguThOCsu2cdIZsCBbHCb0esyf+Ta5wWGmj7582xJHdh9i+cJZAAqjk3SqZdYXLpEtDpPJF/HdNl670b/fyeRw0llGdh/6yJHeXHmvtjxPt1ZJquptaJWXKIxOMrrnMLWlOXLFYaaOvHSP60NERERERHaaKI5oe23COOwHOMytJx656WoYh7S8pKqVPBjGGL578bt899J3Wawt4vpuv3KYYzsM5YaYq8xxbf0atW6Nrz731Sc6RPSgw0M7iWVZnDxwkuN7j991JcKZxRkurl7k+vp1ys0yS7Ul3CCZd5tJZQBIO2kyToaF9QVOz53my89+mZmlGY7vPX7HANVHBbKq3SrtXhvHcXjr6lsATA1O9fsurC8wNTRFbGIqrQrPTDyzbcju//nz/4eu3+XZqWefmm0hjMJ+QHK2PMtqMzmh7ujAKIPZQVpei1qnltxuJdUGP+q1gu3fU8YYat0a9W6dYrbI5OAkq41VGm6D/WP7VZVOREQ+FQrQyVPqNPdzUDLp94/ucF8InLupzSWgDsQkVecMSaiuDVSBL5EE7o6jt6GIiIiIiDwJVlZaAJTLbapVl14vpN32cN0Q34+4cqWKZUGj4RFFSbAslUqqx/l+RBhGuG5SUc5xLFw3oN32Sacder2kOl0URRgD0V0c44zj5GCJ70dEUUyvF2Lb0O0GeF6I513j85/fRz6f6lc0e/PNJc6dW+WDDyp4XsTKSgvXDSkWM4yP5wFotTwqlS6uG5LNphgYyPDBB2scPDhMpdLF92PSaQcwZLMOmYxDtxv0K/IdOzbOzMwqx49P9Sve3SwMY+bna6ystPD96I4V8naaVMrm5MldnDlzg6NHkyoWpVKbWq3XD85ZVhKe27z/xIldO3Z9iIiIiMjTo1MtAbB68R3qq9cJvR5x4GPi+wnPJftAyVEnCxP4xFFE4IFl2dhOCitbwLFtQs8jCoONkF4y4WjuB99m8pkXsG+Z3GQ7KaaOHGfl4ruM7jkMQLdWwWs3+sE5y7L6YTeAqSMv3racm91cea+2PE+nWgYgWxwhkx/Adzt47Xr/9tG9RyjPvc/Eoc985HJFRERERGTnq3VrBFHQrz73cYIoIIxCat3aQx7Z0+Pc9XP83g9/j9XGKqVmidXmKl2vS2QiHMthIDvA9NA0QRjQ9buM5Ef47MHPPuph35dbw0M36jcoN8sEUYBjO0RxRNpJE8bhXYeHHjc9v8frl1/n4upF3MAln87z/K7n+cKhL/DWtbduu/3UsVPkMrkty0g5KY7tOsaxXcc+8rE21+dae42VxgrVTpVe0COTyrBraFdyYla/C0DGyeBHPrPlWT57INl+5ivzd3yM7QJZsYm5unYVYwxhFOLYDlgwPjDOMxPP9MNfF1cvEkQBk8VJ3r72NmMDY1sCWgvrC0wWJ1nvrBOZiEqrQmySs7t+kiDZxwmj8K6DiQ/LfGUeP/JxfZdSM/k71gt7XmCiONFvs9Ze48LyBUqNEgfGDvT73em12i6QN1IYodap4QYukYmodqo0e02G88M03AZjA2OQ3XnV/URE5PHzZHyDE3ngXnvA/eZJKszNkAToGoBNUn3OkBycdEjCc+vAIPDyRr+P3qkQERERERF5HPh+hDFJxbbr1xtEkaHbDWi1fDwvCcA5Dvh+cjChULAwxiIM440KcptV5JKfLQs6nQDLCogiQxTdz+TRD38OwyR8F4Yxvh/T6fgMD+f6Yb04BsdJxpPJOAwN5VhYaGAMZDIOIyM5bNvaWJah0wkIgohaLamgV6v1aDaTCnm7dg3Q60UUixkmJwfIZBx8P6JUaver3s3P1zh2bPymsRpmZkqcO7eK729NCN5aIW8nHgw4cWKaer3H5cvrHDs2zoEDw5TLnX6IcGpqgFwu+TPVsWPjnDgx/YhHLCIiIiLyyUVBQKtyg0Z5kbDXJfQ94sDnfsJzAJiYOPQh9G+6DQwxsWVhjCEzMAixIfC69NoNwCI/NEJj5RrVpVkmDj5/22InDx/HbVa58X5SiS69UXnOSWcojExQHJ3C2Zg8N7rvCJOHj3/kMDcr74V+j26tAsD4wefID43127jNKusLl+jWKgxN7u33G9t39P7WjYiIiIiI7AgXVy+SslN3XVFusyraxdWLD3lkT4cwCnl15lVKzRJzlTmuV6/jhz6O7eDYDr24R7PXZL2zTttrY1kWr773Ki/te+mJCZTdbDM81PW6vHX1LVYaKxSzRbLpbDL1E2j2mixUF1iqLbF/dH+/38eFyR61OI755tvf5I8v/DG9sNe/3RjD//3O/025WWZqaIoDYwf6xybPXjvLN9/+Jj/+wo/z9R/9OrZ9bye73Fyf5WaZZq9JL+wxlB9idGCUvSPJvn/ba7PSWCGIArJOFi/yuFy6zGcPfJaVxspt6/WjKqT5oU8unaPltqh2quQyOY5NHyOXzrF/bD+O7VBulvn9H/4+sYkJo5CO3yHtpDk4cXBLMG62Mksv7DFaGGWxusgzE8/w4t4X7zpIdi9hOGMMM4sznFs8hxu4rLXXaLgNwigk5aSYGJjgL7/wl3nl4CsP/bjxSmMFgEqrgsEwOjC65TkDTBQnGC2MUuvWKDfLHBg/cMfXCrYP5Lm+S71bZ8/IHq6vX+dG8waQfIbbts1rl17j2alnd1R1PxEReTw9ed9YRR6ItQfcbwW4Dnxno02PpPrcrQE6GwiAPwVGNvo9ih2pkCS8twL4QAbYDRxGHwsiIiIiInInmYzD4mKTq1drLC016XYDjGEjGGe2hNkAXDfEspIKdGEYb4TnEsaw0Tfmk4pjQybjYNvgeSFRFJNK2biuYXGxzthYgdXVNr1eRC6XIo5jut2AkZEscQzj4wVyuRRXr9b7Ya7BwQyZjE0QxFSrLgDVqosxUCh8uM/kOMlBo7GxPJ4XUqv1KJc7HDgwzMpKqx+gM8bw2mvXuHKl2l83lcrW8BjAm28u8sMflti/f4ggiHdUdTrLsjh16iAjIznOnUsObG2GDTdlsw4nTuzcEKGIiIiIPH0s26ZVWcbvdgiDHnEYcN/huY9hYoOJArx2k1xxmNzQGJ1qGa/bpNdqUBhJU55977YAnTGGyvx5muUbxKFPt1ah12kSej2MiWlXVvB2H2T62Al2PXuCycPHP/b7+mblvW59DWMM2eLIlvAcQH5ojGxxGK/doFNfY2hqH51qSQE6EREREZGnXLVbxQ99zF3uOxkMfuhT7VYf8sieDpdXLzO3NseN2g0W1hcIooBcOpcE6CyHyEREcUQv6LGwvkA+kydlp7i8epkX9r7wqId/z1YaK8RxzO++97ss1ZaSqmihT7lVJo5jbNtmpDCCYzks1Zb43fd+l7/1I39r2/DQg/RJqpPFccyv/tGv8kfv/xENt4EbuLi+S8pJ4Yc+sYlxbIdr69dYqi0xPjBO2k7jRR4dv8Nrl1/jX3/3X/M//oX/kZ/93M9SzBc/doxu4PJnV/6MlcYK8+V5Gm4Dy7LIpDLkUh9WtCtmixQyBbp+N6nsB9Q6SQVJP/Jve4xbA1mxifvV7FYaK6TsFLZjE5uYKIoIwoCl2hJxHDM5NEkQBqSdNB2/Q7lVTiooDk/z0t6X+o+x1l7juxe/S6vXAiAyEbZl31WQbLm+TNfvcm7x3G3jv1S6xOm505zcf5IT+09gbZz86LVLr3G5dJml2hJzlTnq3Xo/DDyUG2K1scrF0kW+fPTL/M9f+p/vOch4LzbH7G+crGkwO3jHdoO5QWrdWr/dnV4ruHMgb7QwyuXS5f7tfuSTTqUBSDtpsuksru8+0Op+IiIi29FvFnlKhQ+4nwv8GVAC2vRPP9JnSAJ1m8soAd8DvnIPj/sgAm+GpEreuY3l3OwSSfW8k8AJktCfiIiIiIhIYnJygHPnVrh6tU6r5d8xNHezMDQ8rImhmywrCdBFkcFxrH6lO9+PsG2LIEjCdVFk6PVCWi0P27aIY4PnRf2Kc7lcisnJAXq9kE7HZ3AwQzrt0OkEdDo+hUKGMIxxHJs4hl4vxLJgaCgLwPBwFtd1qNV6/epyN1eZm5kpceVKlThOKviVSu0t6+7atRq2bWNZEEWGZ54ZYf/+JFy2k6rTWZbFyZO7OH58ivn5GisrrX6IcKcEBUVEREREbhZHIXEUEgU9TBSB+eQnEdmWiTGWTRyGeJ0W2eIgqXSG0HPxOi0KIxN0qpWtXYxhceZ71G7MY4whDDzcVh2v0yCOIlLpLLFl01pbIZ0rMH305bsaShQEyWWYXGbyA3dsl8kX8dqNfrvNfiIiIiIi8vSysen63Xvq0/W72Oj4woPw7vV3WWuvsdpcJYgCIhNhYWFbNgaDbdnExP0KgaVGiUKmwLvX330iA3R+5PPOwjssN5bxQo9qp3pb9cOm28SxHQayA9yo3+CdhXc4MnXkoY1pZX2Ff/j//Ye8e/1d/NgnY2c4MH6AnzrxU4wUR7YEsqI4ui1kNz00zb/+zr/mD9//Q8I4pOW2cAMXYwyRiYjjuF9RcDPQVW6WCU0IBlJOiqyTZbW+yntL7/G/fet/4/DEYf6nL/1P/OznkzDdzRXUvNBjqbbEYm2Rxeoiba9NuVnGCz3yqTy9oEdsYsYGxvrHOXOpHF2/Sy/okU6l+wGxjJO5fX1sBLLKzTLrnXX8yMe2kva1To2216bttml5Lbp+l2vr1yjmilhYRCai3CxT7VTpBl0yToZCpsBAZuvfKSaKExQyBZq9Ji03CdGZbQ6E3xwkM8Zw9tpZhgvJcV3Xd5OAWOiTSWWYGpoC4My1M9TdOqeOnWJmcYbLpctcXLnI+8vv0+w1CaOQXpisJ9uymRqcYvfwbl679BoY+Ptf+fsP7Rjx5jrPpJLLlte6Y7vNcOFmuzu9VnDnQN5ae40wCgmigKbbBGDX0C56YY/B3CCTg5NJeDXy71jdT0RE5EFSgE6eUvc7iXO7fsvALNDh9vDcraKNdlc2+n3c4z2owJsBXtt4XEhCfxU+DORNbdx+BqgDp+5imSIiIiIi8rQIw5gf/rBMq+UTRQ83GHe3jEkCZ64bYNtWf1y+H2EMLCzUKZc7pNM23W7Qvz+dtkmn08RxTK3WwxhYX+8yOpqnVnM5dmycdDo58NLpBPh+TDqdVKQDw8hInqGhLKmUTTptMzFR4MKFZCJqJuNsuQzDuF9xbXa2yupqG4DR0RyDg1mazR4XL67TavkMD2cZHU0qtHW7Ifl8ql+d7syZG9TrPU6dOvhEh+gAUimbY8fG+xX6RERERER2KttJYTsOoe895NOLACYm8lysXJ6o52M5DpjkxCdR0Eva3LIrUboyw9L5t+i16pRmZ3Ab6xtjThEFPkG3TbpQJD84Qqda4sr3fhev02T/y1/6yP0SJ52cRdzZOJu473bu2M5321vabfYTEREREZGnl4VFEN/byTWCOMDSPLcHYrm+TK1Twws8gijAsR1STopMKkPaTvdfG8tKXqde0KPWqbFc/7h5kI8pAxdWLuD6Lg230a8CZls2ju0QxRGxifFCjzAOyaayfLD6wUM5h6jv+/yNX/8b/NmVP+tXZouJMbFhtbnK2WtnOTB2gP/lL/0vvHX1LU7PnmauMsdSfenDwNbgFAvrC/zg6g9I2SlavRau7xKbGAuLeKMIRBRFECWBVdu2McaQslMEUYAf+XRJQqx2YBNEAeeWzvFPfuuf8H/86f/BXzzyF/kLh/8CvaiHbdn8cOmHzK/NE8URjW6Dttem1WvR8Tq0nTZpO03H6/SDmPVunWavSRAFZFIZ9g7v7Vd62z28+/b1EiVBtbnKHOuddcYKYwRRQKvXouk2cX2Xjt8hiiO8yKPSqtByW9zgBpdKl6h1ariB2w8OdrwOz08/319+FEestdfoel0abgMHh1QqRbOXBL2CMOBy6XI/VFppVcg4GfaO7GWptoQbuAzmBpktz1JqlrZUz1xYX2B6aJqjU0e5XLpMMVvk/I3zLNWWeH/5fRpug2av2V//URzhhi7XvGs0e02e2/Uc35/7PicPnORHD/3ox25D91O1cPfwbi6VLjE5OMnC+gK1To219tqW6ntr7TVq3RoWVj8UeKfXCu4cyNsM1bV6LQyGQqbQb+/YyTH1sYExvNDbUt3v06j0KCIiTx8F6OQp9aADdBdIQmd3u/MebLS/8DGP9RoPLvA2s7GsmCTsV2Lr81kApoGjwGVghCScJyIiIiIiAm+9tUSt1iMMH2LFhPu0GaTbFMdsVJiDIIjJZp2kmkIYk0o5xLGh1ws2KtaBZRl6vTSWZeF5Ee+9V8KyLHI5h1TK3qi4Z9NuB4Ahm3WYmhogjg379g1Rq/Wo1XpYFv3A2+TkAJcvr3PmzA3OnVsligzXr9cZGMhw/PgUExPJgYHFxQbFYoZWy2NpqUGt5mLbNra9zuBgloWFOtPTRY4eHePy5XVGRnKcPLnrUaxmERERERG5RyaOGZzcC/HHnXzxwYijgMBLpo264TqWbeOksthOEkwrjE4m4zKG0pUZzv3ufyDyPerLV+nUKhhjMHGMMRG2k0omRHoufrdFcXw3luNQvX6FXHGYqSMvbTuOgbFpqouzFEYmaJWX8Np13GaV/NBYv43brOK1G1iWxcDIRL+fiIiIiIg83ZYb9xfEut9+stV6Zz2pUmbifphsOD9MNp3tt/ECLwmbRVFSjc5ErHfWH+Go79/16vV+mCuMQmITk7bTZFPJ803ZKbzAw4+TEFcQBTTcBter1x/oOHzf50f+3z/C/No8YRwSRuGWIBYABubX5vmnv/VPOXngJOVWmUK2QDaVpRf0MMbQdJs0eg1MbOgFvaSqXL/77XNfY2LiOMbGToJqt7SJiXEDFwsrCRFWQ1abq/z++d/nR/b/CKEJk9feQMNtUG6V+xUkNyuOObaD8QyVVoWUnUqCiSbCGEPaSeP6LqMDo5zcd5LDk4dvG2PGybBUW0oCbQZWm6vUujUMBj/yqXardP0uXb9LFEX0wh4mNmz+2/J84pjF2iL/15/9X7x07SX+8vN/mdX2KmEU0vSaeIFHLp2j5ba4UrrCv33t31LtVgnjEAsLP/LxfA/LtpitzDKUG+InT/4ks+VZlhvLtHvtpIJfKpusrygkMhFYcGz6GH/6wZ8ykB1grjJHs9ek2WuSTWXJprMUMgVyqRx1t85qY5Vqu8pKfYU9I3v40w/+lJP7T24bgru5IuBmWG3TpdKlftXC56af440rb3Bx9SJu4JJP53l26lkwkM/kmR6aZrW5yoXlC4wWRhnMDdLqtah1awBMD0+TS+fIprJ3fK3gzoG8zTDdZnXH2MT0gh4WFkO5IQCG88O4gct6Z53Vxiq9sEe1U+0v86NCgCIiIvdCv01EHoh5koDbvXA3+m3n5sDbe8B3gXWSCnYOMA58DXiZjw+8hSRV7CAJz61u/DwKDAItoHbT7cc2Hv84+pgQERERERGAP/qjWYIgemyqz92NOE4OhARBjG1DOu1gWdDrRf3rUWSoVnuk0wGeF5LPp/H9CMexGRvLMTZWoNFYI5WyyedTRJGh1Qq4fHmNsbE8URSTStlYlsX0dJFs1mF1tc2bby4RRTGXL6+zttalWnVZX3cZHAxw3c3wnmFxsUmxmMH3I1w3wrZDJicLDA4m1ehqtV6/at2xY+PMzKxy/PgUqZT9iNfu/QnDmPn5GisrLXw/IpNx2L17kMOHR5/Y5yQiIiIish0nnaY4sYd0cQjqa5/KY5rQx1gWRBaWbWFZFk42h+2k2HX0BMYYFme+x9L5twg9l059jdryVUwcYzsOtpPGSadxUhmcbI7Ic4n8Hl67jmVBt7FOee59Jg59BnubiUsjuw+xfOEskIT2OtUy6wuXyBaHyeSL+G4br93o3+9kcjjpLCO7D30q60hERERERB5fpUbpU+0nW6XsZD/PtpJjNrG584k1N2+3sbf0e9LUOjVc38ULPSCprGcwhHFIyk4RxkmQbbMKuxd6uL5LrVP7xI9db9f59dd/nXeuvcMbl9+g5ta2Xd8360U93rr6FlODU7R77SQEZ2Isy8L13X5w7U6Bue1sVqbbjsFgjKHttel4HdJOmu/Nfg/Hdijmigxlh6i7dcIoCZoZkzx2bOKk2t2GIA62VDG0Y5swDjm/fJ7fnvltlmvLvLv4Lt2gSyFd4JVDr/C157/GYm2Rwdwg19au4QYuw/lhBjIDlJolys3y1ud6F+eC9Y3Pu9ffZa40x185/ldo+23avTZ+6JNNZel6XW7UbxDFURKAuwPXdVlPr/Of3/zPjBXGyKaz7B7Z3a+ulkvnKLtl5ipzzJZn8QKPjtdhIDtAvVun5/eotCoE0YfrI5/KM1wYJoxDvMDj2to18uk8pUaJ+cr8HauxGWN47dJrXCknhTpc36XSqnxYlXBoijAM+d9//39noboABjp+B2MMmVSGQrpALpPj0PghXjnwCljJ52mtW+sH5ywspoenOTp5FIAT+05sG2Y7PHmY03OnIUM/kLdYXSSMQ/zAp96tAzBSGGEoP0TKSZF20owXx3nj8hssVBcYLYzSC3tgkgDgZgjw+N7jDGYHWW2u3nWFPRERkVvpN4bIAzH7gPttBt4C4NeA6yTf7C3A3vi5AVwDDgA/z0cH3uZJKte5JJXnAF4AJm5qs0ZSEa+0sczNfiqBLCIiIiIiMDdXf6LCc7farEoXRTFRZLCspGrd5gGcMIzx/YhczmdwMMPU1ACtVsDqaouDB4dx3RDHCWm3fYIgIp9PEceGa9caDA1lePnlaY4cGeXy5XUKhTRRFOO6IcvLTdbXXZpNjyiKSacdrl6t0+0GDA9nCcOYIIgIguRozthYjr17h5iYKPDCC5OsrXW5cKFCqdTmwIFhAObnaxw7Nv7I1uX9MMYwM1Pi3LlVfH/rgaZLl9Y5fXqRkyd3ceLEdP8gpIiIiIjIk26zEtvkgc/QuLGAIfz4Tg+CMYDBxDYGC7/dYGT3QUb3HaF0ZYal82+xdP5Nqtdn8ToNosAHyyL5Km6TzhUYGB0glU6q18VRQOh7eN02bmONgdFJ6ivXGNt39I4Pbzsppo4cZ+Xiu4zuSc5I3q1V8NqNfnDOsiwKo5P9+6eOvLhtIE9ERERERJ4ebb/9qfaTrZ6ZfAbnkkMmlcGxHQDW2msMZAZIO2mCKKDjdwBw7I12lsMzk888ymHft9XmKrl0rh+IcyyHtJPuP/eUncLCIoqTqnxxHJNL51htrn7UYj9SGIb8wjd/gT88/4f4kU8YhVS71XsKvBkM5VYZx07Gm7JTRCbCC7xtA18PymblN9/1yTk5LMui6TZpe22MMcm6upsUm4EgCoiiiDAK+YPzf8Abl99gpDDSb/Lu9Xf5tT/9NYwxTBYnWe+sE8cxa621JAR2D+vsTs+j7tX53ZnfZWp4CoPBsRwWa4u4vvuxy+6ZHvhJGK3cKjOUG6LarvYrGkZxRDqVxpikEt5ae43B7CBdr8taZ426W+8vyyIJbjZosNpaxbGS7a/pNmm4Dc4vn+fa+jX+4tG/yK6hXfzIgR/h2K5jpJwUM4szXClfIY5jZsuzlJqlLWN/d+FdZiuz1Do1ekGvv31sPt9itkghW+Da2jWur1/nf/iR/4EDYwcoN8tbQni5dA5IKumd2H9i2/WSclKc3H+SM9fOcHTqKFjQclustlaJooggTAKDGSfD+MA4rV6LodwQr868ysL6AulUml1Du6h2quTSOa6vX2dycJLF9iLfufgdUk6K0cIoURyRclIM54fZM7yHVw6+won9J3ScWUREPpaOQog8EM0H3G8e6AC/CmyWlzckwTpDEqRzSIJ01zba/a9sH3hb2bisbPQfZWt4jo3roySV6MokIbqVbZYnIiIiIiJPm27XJ46f3ADdpjBMnoMxSXW6TbYNlmUIgqRineuGDAykyeVS7NpVZH6+RhwbhoezpNMOnhcSx4bJyQJDQ1kKhTTLyy3AYu/eIS5fXqdUarO25tJoeHQ6Pt1uQBTFjI3lKZU6VCpdAFqtJJSXyTgUi1mAfjW2iYlCvxJdudzhwIFhVlZaT1SAzhjDa69d48qVKgCuG1KpdPoV6KamBgA4c+YG9XqPU6cO6uCGiIiIiOwIm5XYihO7SWWz+BtntP/0GEwcEQY99n/2q5TnznPu1f9Ao7TI+sIH+G6XOPAxG2e4N5aFZRlC36VTLZMfHsdOpUhnckQEhF6P9YVLWLZD6Pf6z/FOwbfJw8fptRvUluYY3XuEocm9dOprRGGAk0ozMDKBk0kmX43uO8Lk4eOf2loREREREZHH183Hbj6NfrLVMxPPMFGcoNlrUsgU6IU9ekGPIApwbCepyBVHSbWsdJ6Uk2JicIJnJp7MAJ0XehQyhX7FPcd2GMoP9Su4WVj94GAcxdiWTSFT6Fesu1dhGPK3/s+/xXs33us/fqVVua8gmCEJqw1mB0k7aard6l1VsHuQelEPr+3d9/gBIiKiMNmmGm4D13eTBlZSCdEYQ2Qimm6TFCk6UedBPgU6YYe11hrFXDGpRhjc+/PxQo9Ku0KlXcHC+vD5eZtPJQkZ2pbdr8B3s1sfbzPkFkURXtej0W1QapQ4c/UMk4OT2LbNRHGCLx35ErZlMz44zlx5rh/sHB0YpZgp8sHKB7y3/B7rrXXCOCSKo/5jbY6zF/TIeTkmihPMVeZ4deZVjk4fpdQs9QN0La/F8T3H+dyhz20JqYVRyHxlnqXaEgvrCzR7TQayA6TtNAtrC7S8FplUhhf2vkC4FBJGISknqexYd+tJqDA3yI3aDdY760mlQ9/w3tJ7FLNFRgujXFu/xlvzb9HyWliWRRAF5FI5BrIDyfs1N8RcZY5r69eodWt89bmv6jiziIh8JAXoRB6I9QfcbwX4jyTV4KKN/zczfFhr2tlo9x9JKtDdKfDm33I5uM3jDpIE6G5tLyIiIiIiTzvbtnZEgG47cQyOYzAGut2Aq1dr7No1yNBQlmrV5bnnJjDG0Gr5dDo+jpMcSAvDmFTKZnm5xb59wxw7NsaVK1VWV5MznU5PD+A4FtmsQ7cbUKv1uHRpjbGxPOvrLqOjOer1Hp4XUSxmGBpKAnTDw9n+2AYHs9RqvX7ltlsruH2UMIyZn6+xstLqB9Z27x7k8OHRfkjvYZuZKXHlSpU4NszOVimV2pibNqWFhTrT00WOHh3j8uV1RkZynDy561MZm4iIiIjIw7RZia2xukg6V8Tv3O8JGe+TMcSBj53KsHDudXqNKpVrH9Au38BrN4njKAnPGQADxgIbTBQRmh69dh0nnSEKvOSM6VGEk07jNtbBGBZnvs/yhbNMHTnO5OHjWyYoWZbF/pe/RK44THnuPABDU/u2DM9JZ5k68uJtfUVERERE5Om1WZ3o0+onW+0f3c/L+16m5bXoeB9WmtsMZm1WPIviiFw6x+TgJC/vfZn9o/sf5bDv256RPViWxUh+hLbXJjYxXb9LyklhjAELun6X2CThuZHCCJZlsWdkz3093i988xd478Z7xCam0qrgh/4nqhhnMIRxSBAH/Upnn7b7fUwbe0ulOrNx8NCLtoYTbw6keTycExN5gUfKSdHoNT7xOrxTf0MSArzf1zoiIooibjRusNpcpZgrstJYYbY0Szad5cD4AWxsRgdGeXHvi0wUJ7i+fp1mr0mz28SP/NvClf0Ao4no+B16tR6FbIHvzX6P67XrZFIZAPKpPF2vS8tNKsW9vO9lAGYWZ/jzxT9nvjLP1bWr3KjdoNQs9d9HxWyRodwQaSfNeHEcGxvHdjg8cZjL5ct0/S6FTIEojlhtribbrzFkUhliE/cfP4xClupL9IJefxuP4ojB3CCO7ZBP5xktjBKEAV2/y0h+hM8e/Ox9rWcREXk6KEAn8kDc71kttutXAS5x5/DcrTbbXN7odyeZWy4bJKG7BklVuxQwDNS3aS8iIiIiIk+7YjGzJfS0EwWBIYpCosjGsixKpQ6NRo9uN2B0NM9zz42TStksLjZZWWlRKnXodHwOHNhDKmVTr7tUq10++GAN27Y4fnySI0fGOHt2mTCMabU8FhebtNs+jUaPMDRUq116vZBeL6loV6l0yGQcomiMKIpxHJtWKzkYlMk4Wy4/ijGGmZkS586t3ha4u3RpndOnFzl5chcnTkw/1ImqYRhz7lxytsPZ2Q+DhaOjOQYHs7RaHrVar3/7sWPjzMyscvz41KcW8BMREREReZgmDx+nNHueTL5Ax3LgE0yMux8mjmgsX+Xcb/97BkYnaa+vEPRc4ijcCM9t7uhZYBlMnExfsy0IvS6B2yGTL5IpDBCbmDiO6TbWwLKINqrQrVx8l167wf6Xv3RbiG7qyEtMHPoM9ZVrdKoloiDASacZGJvetnqdiIiIiIg8vbp+91PtJ1sdnjzMkckjdP0uru9SbpWJ4ggHB8dy+gGgbCrL5OAkn93/WY5OHeXw5OFHPPL788rBV/i9H/4e2XSWTCqDF3h0vA62ZWPbNnEc9/eFs+ks2VSWjJPhlYOv3PNj1dt1/vD8HwL0w3MPQttrk3bSn3r1uU/q5vDcR/k0QoG+8Qnc4JEEEO9VZCIaboO21ybjZBjOD+NHPmknTSadYXxgnCAMOD17mivlK/0A6N0st9VrYWNztXKVkcIIaSeN4zh4oUdMzKvvvcpyY5mX977MbGWWiysX+cHVH7C4vkjH6+BFXj8Iud5ex7EdRgojhHHISGGEKI6otCvsGdrDMxPPsFhdZK29hjEGx3ZwfZcgCtg9vJtj00khkZXGCtlUlnq3Ttfv4thOv2IkwHq8TrWTVF+0LItX33uVl/a9ROqmvzdtVspbaazgRz4ZJ8Pu4d0cnjzcb9fze7x++XUurl7EDVzy6TzP73qeU8dOkcvkHuRLKCIij5iOSIjcZHb2CABHj87dY8/7/eK8Xb//ShJsu9uDqBEQbPT76Tvcv5skkDcJnAPmgSmgeFObWaAMjG202+x3N8KNZa6QVK3LbPQ9jD5mdo7Z2VkAjh49+ohHIvJ40XtDZHt6f4jsLHv3DvL22yu33X4k2Y1i7l53ox5TcQy+nxxE8P0I17VxnKTC3OxslVTKZnAwg+eFNBo9VlYC5udr2LbFyEiO8fE8nheTz6eYm6tx4cLaRhivTbcbYtvQ60VUKl0sC+LYkErZxHFS+W5hoc6xYxPMzla5dq1OsZihVnOxbYupqQEAdu/erqp4whjDa69d48qVKgCuG1KpdPoV6KamBvD9kP/wH/6cKDLs3TtIoZDm+ecnOHXqELncg9uPm5+vbazHkFIpCcm98MIkExOFfpu1tS4XLlQoldrs3u3jeQ7z8/s5dmz8gY1Dnk76LiIPkrYneZC0PcmDpO3p8WdZFsO79jO65xmqHkSBT6p+/VMdQxT4eO0Gvtsm8j0s207CcwCWTVJ9jo0wncFEcXJyETvEwiJMB+B2MHGEBXjtJk46y+rlcxRGJxndc5ja0hy54jBTR1667fFtJ8XYvqOM7ftwO42jUKG6R0CfGfI40HYoj5q2QXkcaDsU2V5IeMfbj2STA1Jz3p0PSG3XT+5Nyknx2QOfxY988uk8by+8zWpjFT/yMRgsLDJOhl3Du/jRgz/KgfEDnNx/cktY5UlyaPwQz+96nj+7/Gek7BShE2KMSUJz0YehI8dxSNkpgjjguV3PcWj80D0/1q+//uv4kY8Xevhhsj4H0gN0/M5Hhsk+bts3GILoyQh/Pc6etPUXxRFu7NILewz0Bshn8rx/431W6iu0vTaVdoW2277nqncxMd2gi9/0STkp8uk8jW6DSrvCs1PP8scX/pgLyxeYLE7y++d/n/X2Oq7vbqmmuPlZYVkWXtOj4TY4PHGYz+z+DNer18mlczS6jeR9RoxjO4RR8t7LpXPk0jkq7QqT8SRxIyaVS9ELev3tPJ/Ok7JTWJaFH/pU2hUa3QbP73ke27K5cOMCuUyO5foyF1cvcm39GgPZASaKEzh2cqLaS6VLnJ47zct7X+Zy+TJ/cuFP6IW9Levi7LWzfPPtb/LjL/w4X//Rr2Pbdz75690E9ETuhfYVRB4ufTKL3OTb3/4rABw9+huPeCTzQMy9BejijX53chj4PkmIzt9ov7RxX4okAGcB9sb914GXNvp9FAPMkITybj0jyiXgNHASOLGxfHmSffvb3wb0pUzkVnpviGxP7w+RncVsU37uryS7UfzGo96NegiMSSqolcsdarUe2axDFMVEkcGYJPwWx4bkb+UW6+sui4sNHMemWMwwPV3EcZLba7XkD+6eFxKGcXLwbaN/NpsilbIJgphazePatTpBEG1cd0mnHQ4dGub69QaTkwUOHBgmDGPm52usrLT6wbjduwc5fHiU8+fLXLlSJY4Ns7NVSqV2v6hEHMe8/vo16vUehUJSdfzq1Tyjo3nOnl3mm9+8wI//+GG+/vUXtj0IcC9WVloAVCodjEkqz90cngOYmCgwOpqjVuvRan1AOm2zsvIZBejkE9N3EXmQtD3Jg6TtSR4kbU9PhjgM2fX8K1yIdxNHIak//y+PYAw+m/NJTXSniXl32OeLI4xlEXSbxJkc+eExMoUh0rk8gxN78btNOtUyAKN7j1Cee5+JQ5/5yACcMYbK/HnKc+eJgq3HlqqLsyxfOMvUkeNMHj7+UKtlP630mSGPA22H8qhpG5THgbZDkXv3V0aSA1K/UdqBB6QeMyf2n6Du1rEsi31j+7hRu8HC+gJe6JFNZTk4fpC9o3txbIdj08c4sf/Eox7yfTs8eZh9w/so5oo0e03COCSMwi0Vu2zLJmWnyKQyFLNF9o3su6+Ke29fexs/8vvVshzbIZPO0PE7H9nvbrb9Jy38JQ+OMYa236brd2m4SdAtZadwfRc3dO97ufHGPzd0SdtpAK6UrzBSGKHpNvmB+wPW2+t4gZdUqDPxlu3QYDAm+e/6LlfKV+h4HXKZHMVskV7Qo+N1yKfy5FI5/NAnl86RclKsNlZZb69zPHecCWeC/9b6b/ihT2xicqkcju0klRdTabCSddALe8yWZvsBwv/+hf+eK+UrlJolAIIooOt3GSuMsW90H9PD08RxzD//w39OvVtnemiart+l1CwRhAHpVJpdQ7sAePW9V1lprPDzP/bzW46fG2OYWZzh3OI5/Gjr37g2A3on95/kxP4T9/U3LgXznl7aVxB5uPQJKvJY8rj78NymaKPfnaSAAlACJoDqxs8hyQFRa6PN9Mb9JeDzfPRHhAFeA65sXHeBCh9WoJvauP0MUAdOoRCdiIiIiMiTa3W1/aiH8MjEMXhehOfdeT8timBzsqnvR1gWuG6A54U4jo3rJrNUwzDGdYN+mM22k32kXi+5P522yefTlMsd6vUkcJfNOuTzabrdkNXVNrmcwy//8veBJHi2vt6l0fAIw5hUymZ0NI/vh0xPF3n77WWWlppEkWF4OMvERI7336+zvNzqP24cGyqVDrt2Fdm9u4gx8F/+yw/5sz+7zk/8xLPkcul+MC+VuvdAne9HWy4HB7N3bDc4mKVW6/WDmpvtRURERER2AiedpjA8jm2XiKPH7bvux0yyMxsT8UxMOjfAwPg0o7sPMji5F7dZZX3hEt1ahaHJvQDUV65tqTS3ZVHGsDjzPWo3khNChn6Pbn2NKAxwUmkGRiYAWLn4Lr12g/0vf0khOhERERERkU+ZZVmcOnaKkfwI5xbPcWD8AAfGD2xpk01lObHvxH0HQx4ntmPz3PRzeIGHG7hYlkXaTmPbNnEcE5sYy7KYGJjguenn7usElMYYlmpLeIH3YTjPgjAOSdkp/PjW4gUi9yYmxo98ol608XecT7a8zWqTBkPaSRNEAU23CYAf+izXl5NtN/L727SFdVuYc/P6ZqW4QqbASmOFodwQI4URMqkMnV6HOI5pe22MMUQmIoojgnSAhUW1U8WPfGzbpuN1iEyUVK2Lk2PsQRRgjKHrdwnjkA9WPiDjZGi6SSi22WsSxRG2bVNulVluLDM9OE3drVNpVTAYluvLuL67Zfwr9RXGBsY4tusYby+8zTff/iZ/5/N/J3lexvDapdd4f/l9rpSusFhdpObWsLCYHprmlYOvMJQf4sy1M9TdOqeOnbrrz8qHFcy7NZBnWzZhFJJ20kQmUkBPRJ4a+oQTeSzZ3F+AbrudsxDokoTa3iQJ0G1WrbP5sNpdFbgK/AWSQFzI9h8TMyThuRiYJQnd3fzld4EkkHcUuAyMkFSjExERERGRJ5HnJcGwbQrRyQZjkv+eF1OpuDhOEpSLY8Ot82SjKFmZtp30iSJDHMdEEQQBpNMOqZSDbVtcv95gZCRLvd6jXveo1Vw8LySddohjg+PYDA1luXhxjdnZdSzL2qiOZ7N37yC5XIoLF9ZZXW2RTtusr3fxvIhsNoVlJYG169cbpFI2Q0MZrlypMj9f5YUXphgezrJnzxCvvLKbEyem7+kP8ZmMs+Wy1brziV82b99c9mZ7EREREZGdYGBsmuriLLaTwgqetElxBsuySecGCHtd/E6T4sQeAPJDY2SLw3jtBp36GkNT++hUS9sG6Crz55PwnDHUlufp1ipbqp23yksURicZ3XOY2tIcueIwU0de+lSepYiIiIiIiHzIsixOHjjJ8b3Hd3QFpPnKPNND01RaFYq5Is9OPYtt2UngJopwHIeh3FC/Ytz44DjTQ9PMV+Y5tuvYXT/OzOJMP+wDSagojmLCKFRNAnmgIvNgTtwUmYggCkjb6SQkFycV5lq9Fu1eOwnrxVGyDZNUatx87FuDdJvV6Vq9Fn7oYzBEGwfOwyjEDVyCOKDnJyeYtW07OaGTMRhMP9gWxRGxFWPbSfArjEOMMf2xxUESdq12qpy5doaB7ABRFCXBWCyGC8NMDU5Rd+vUujVu1G+QcTIEUYAf+gzmBhnMDVLMFml7bVq9Fuudda6UrvDcruf4kw/+hJ88+ZPkMjn+/Pqf81/e+i9cWLlArVuj5/f6z/nq2lXOXjvL87ue56+/9Nf5YOUDGt0GI4WRj/0c3QzmXSknhU1c36XSquCHPplUhqmhpLDJvQTzbg3kbQZ6F2uLhFES4t0/tp99o/seSOU8EZHH3ZP/DVZkR9oD/PAe+5iNfncyT1IZrgesAS2SKnHORj+HZE+svfGzT1LNbh64045eCJzb+HkWWN34eRQY3Fh+7abbj5EE7o6jjx0RERERkSeT41gKz92HKPowKLedeONEk8YYPC8mlTJksw6eF9HptCkU0gwOZllYaHD+fIVeL6TXCwgCQ6GQJpdz+n3bbY8wNERRstBs1qHbDZibW6fbjcjnU9TrXVw3xLYtHMdicDCD64Z0uwFhGFOruaTTDpVKh0qlS6GQJptN8Z3vzPO5z+3hr/21ZzlyZIxUyiYMY+bna6ystPD9iEzG2VKxbvfuQS5dWmdycoCFhTq1Wo+1tS4TE4X+819b61Kr9bAscJzkxDC7dw8+nBdEREREROQRGNl9iOULZ5OzZzxRrOTwkQVR4FEYmcBrN4iigFQqA0AmX0xuCwMAoiC445LiKKQ8dx6A2vI8nWoZgGxxhEx+AN/t4LXr/dtH9x6hPPc+E4c+g70DJmWKiIiIiIg8iVJOimO7jt1TWOxJstJYwbIshnJDjBfH8QKPXcO7bmu32lglm84ylB3CsixWGit3vU7CKOTc4jkOjh9kvjKPYzkEBBgMYRzi2M6911oQ+RR4oUdohdi2jW3ZGGPoBb1+xbfIjohJjknfHNzbrgqdwfQrn7W9NgbDcH6YIAoIwqTaXGQigiD5ebPP5mNsPs5m+M6yLCysfkAPoBf0iE1M2kmTttOknBSZVIZcKkcQBdyo32AgO0C9W8cPfXp+Dz/ysbDYN7KPF/e+2A+NlZtlrpSvsN5ex/VdAF6//Dpfe+5r/PIf/jJX16/S6rVo9Vr0gh62ZZN20mRTWaI44v3l9yk1Szw//TydoMOh8UPEJiblpBjOD7NneA+vHHxlS1BtZnGGK+UrxHHMbHmWUrO0ZX0urC8wPTTN0amjXC5dppgtMpQb2jbkfGsgr+t1eXvhbSqtCo7tkE/ncQOXlcYKV9eu8rlDn4PMvQX0Pg23Vs/baWFuEfl06VND5LHkPuB+K8Ai8A4QAFk+DMltVqHLkYTqAuBtkopxK9w5QLcZyHNJKs8BvABM3NRmDbiwcf+Bm/rtzJ1pEREREZGdrt2+8yRIeXDiGMIwwhibVssnk0mqz6XTNlEUc/HiGsYYXDfcqHRnqNUscrnkpChBEBEEMZYFcWyIY/B9mzA0BEGI58W0Wh/+gTuXc5icLGBZFr4fkUpZdDoRxhhsO8AYOH++TDabIp9PMT5eoFRqs7bW5ciRMQqFNN1uQBDEW57HpUvrnD69yMmTu3jxxUlOn06qyU1PF1ldbXPhQoXR0RyDg1laLY9arde/37aTgx2HD49+autdRERERORhs50UU0eOY715/okK0VmpVL8MeRQGhL6HZbdZ+eAdBkanMFFIs7xEHEcMTu4FwEmn77is+so1osAn9Ht0axUAxg8+R35orN/GbVZZX7hEt1ZhaGN59ZVr21a0ExEREREREfkk/CipEh9EAaOFUfaO7qWYKdJwG4RxUplpOD/M3tG93KjdIIiCLf3uxnxlHj/y+dzBz/Gdi9/BsR3STpowCvFD/7EIp4hsJzYxcfRhQM2ObWKzEZqL7j35udnXGIMbuP0qc5ZtEUfxljDcrUG8W28zt5z91xhDGCWBv0wqQzqVxrEcJgcnCaKA5foyFhYZJ0PH6xBGYT8MmE1naXktLq1eYjA32K+U50dJyO69pfc4OH6QNy6/wQ9v/JCr61cJwoDl2jJe6OHYDo7t4Ic+ru+SS+cI45Ar5StUO1VGB0ZZb6+TS+dw7KSy5Vxljmvr16h1a3z1ua8SxRHnFs8BMFueZbWZFDAZHRhlMDtIy2tR69T6t+czec5cPcMrB19Jgrgbbq4iZ4zZEsj7YOUD1jprYKDZa+IFHrl0jsHcIHW3Tr1b5/ldz3N06ijv33ifC8sXCKIAN3DJp/M8O/ks+8b2UevWPpUg263V826manmfPgUZZafQ1iq3qdVqfP/73+fGjRtUq1WmpqbYt28fX/nKVygUCh+/AHkAFh5wPxd4j6QyXJukEh0kwTmHJETX2bgtBzQ32n95m+WtbFxWSCrYjbI1PMfG9VGSSnRlkhDddoE8ERERERF53G1WNJOHK6lGZzAmIpWyyWYdgiCm3fZx3ZAgiPsV7ZKwGbTbHx5oiG95mXw/xrbDjZCbIQhijEkqCnpezNpal14vJAzNRv+YOL65Kl5EFCWhPdcNabc9Uimbdjtgba3L9HSRAweGqFS6/Qp0U1MDAJw5c4N6vceJE9OcPbvM0aPJxNhSqU2t1usH5ywrCc8dPTrG+jrkcilSqSdnUrGIiIiIyN2YPHwcy3b6Z9B+EpgwAMsByxAFPp31VVLZHG6jytDUXrBtvFYdJ50hnStgOw77Xv6Ld1xWp5qckLFbT04Mki2ObAnPAeSHxsgWh/HaDTr1NYam9tGplhSgExEREREReUR2+mT5jLNRXX2jynrX73Jk8gjTw9Nb2pWXylvabfa7GyuNZK6lG7jsHtrNSmOlH4YJo/C2EJDI4+TWENtmAO6TiE2cVJuLIzp+BwzYdhLMM8bc99/ONscahiGNboM4jnFsh0K20K9K1+q18JoevbBHFEfJfxNhBRZtr40buFjN5PH90KcXJO2q3WpSHS8MqHaquKFLpVWhF/SwLIuUkyJtpwniAC/08COfMEoqTJZbZYIoSCq+ZfLYlk0+nWe0MIof+tyo3WC2PEvKSfH+jffJpXL96pgv7HmBieKHc7PX2mtcWL7AzNIM4wPjpJwUS7UlLCz80CeTyjA1NAXAm/NvsrC2wDOTzzBbnmW5sUy1W6WQKdD1uv2wYmQisKCQKVDtVFluLHNp9RK1bo3YxByaOIRt2dS6Nf5r579iWzaf2f0ZXjn4CrZtf6Ig20f9jnFsZ0v1PNdP1vmtz/Nxq5a3EynIKDvNk/8NVh6YS5cu8U//6T/lD/7gD/D928+QUSwW+emf/mn++T//5+zadXuZanmQ7v4MJXfXr0QSduts/I+BNBDe1MYmqT4XbbRZ48Pqcts9zubl4DbtBkkCdLe2FxERERGRJ0212vv4RvJAbFaPa7d9Oh2LON44y565td3mT9sfWItjQxBExHESkNs8EWAUGYxJzpLpeeHGY5r+YxjDRiU7gBhjLNptH9+PqNeXWFxs8swzo6yutvnggwqplI3rBsSxwbIshoezHDgwzIULFY4fnySfT9Fu+xw7Ns6BA8OUy50tgbtcLvkTVSbj9H8WEREREdl5LD7q+/tjyUT9IYe+S+i7WLZDr1UDCxwnTbpQhIXLNMs3SOUG6HzmFYrjuxjZfQh7Y0JlFCT7H1GYXGbyA3d8uEy+iNdu9Ntt9hMREREREZFPz9MyWX738G4ulS4xOTjJwvoCtU6NtfbabYGVWreGhdUPbOwe3g18dPgDkupzby+8zWJ1kVKjxJHJI0Qmot6tM5gbxPVd3MD99J+4yCNmMFvCo/FNZ4n9JCefMhiMZfBCj2yUJQoiumtdxovj+KFPEAVJdTo7TWiFm50ITUjX7+LYTlLFzrKxrCSUFpsYK7DIprIs1hZpe22CKKAX9DAYMk4Gx3aIicmmsqSdNA23sXHi2hgsqHfrDOWHGGCAIAroel3W2+vcqN+gmCuy1lnjyOQRKq0K1U6VerfOwfGDjA+Mb3l+E8UJwiik2WuSslNEcUS5We5/NgEsrC8wPTTNUG6IpfoSkYkoNUu0e22mh6bJprIs+AuMFEYYzg3T6DWwsJgenMYNXN5bfI+u32WsOEYUR1xcvkg36BLEAcO5YWzb5s35N5krz/HFw19k10iSJ7iXINvd/I7Jp/PU3TrGGGbLs5SapS2Bzs3neXTqKJdLlxnJj3DywMn73nbkzowxCjLKjqMZSQLAf/pP/4mf+7mfw3W3/zLebrf5j//xP/L7v//7/OZv/iZf+9rXPsURPm26D7hfmaTynEsSmtv8v3mgdvMyJvlYcEmq1ZW3WV7mlsvWNu1at7S7+zOviIiIiIjI48V1NWnx07ZZje6TMAbCMKk6d2sALwgMYejfdvvNLCvplwTjIAgiwjBmdbVNq+UTRTFxbJieLpJO27RaPp1OQCplc+nSOgcODFOvu3z+83tZW0v+5jA9PcCBA8NbHiebdThxYhenTz/e+41hGDM/X2NlpdUPAO7ePcjhw6OqmiciIiIi2zLGsPDu68RRAE9QBbrtmI0zdANEVkAYePRadfJDo1z/89cJ3DZDU/tYvnCWqSPHmTx8HCedBsBJJZe+27njsn23vaXdZj8RERERERH5dDxNk+UPTx7m9NxpyMD00DSrzVUuLF9gtDDKYG6QVq9FrVsDYHp4mlw6RzaV5ZmJZzh3/dwdwx8XVy/ym2d+E6xkmSv1FdbaazR6Dda76+wf2c9IfoSLqxeJ4igJ8sThbZW+RJ5Wn/S9EMcxURwRREG/2l21U6XT62AsQy6dI+WkiLwIx3YwxiTVIGNDykkRxiEWFrGJ+xX3giig2WvSs3t4kYeJDVEcYTAEUdAPA3p4WJZFFCX3xSYmZaewbZuh3BADuQF6QY+216brdXEDl0wqw7W1a3iBh2M7eKHXD9peLl3m2PSx/mdsFEe0veRvZ2vtNWzbppgtMjow2q9sWevUWG2uslRbIuWkuLR6iWKuSMpJ9avMGQyFTIGpoSmCOKDrd2n2mrR6LRpuA8dxuFG7kTw3PqwKuNZaI2WnGMwN0vE6BHHAofFD9xRku5vfMVEc8drl1/oBwlIzKQZzp+eJBcemjzGzNMPxvcd3RHXUx8nM4gxXyleI41hBRtkx9Ckh/OEf/iF//+//faLN09CTlMM9cOAA09PT3Lhxg6Wlpf595XKZn/qpn+LMmTM899xzj2LID803vvEbj3oIG8KPb3JP/TaryjVvarNdKeWQJPg2uNHvTnYDl4BJYIGkytwaMHFTm7WN2y1g6qZ+8qT6xje+8aiHIPJY0ntDZHt6f4g8HX7jcdmNko+0XUjuo8JzkIT4No95GpNUrrNt6HY9PC/ZZ0ynber1pEKh50XEcUy3G9Pp+IRhzNpal1wuRbGYxfcjPC/g+ecnmZwcIJ9PbQmgHT/+/2J+vsbrr1/bNqC2XYhtz55Bvv/961y8uIbrhuTzKZ5/foJTpw7dU1W7Oy1/164irZbP+fNlfH/rvvKlS+ucPr3IyZO7OHFi+ok9SLwT6buIPEjanuRB0vYkD5K2pydDZf48yx+8zfHMGtcv/Nl9n0bxsWRi4jAGQjq1Cl6nSXu9zIs//nXsTJazv/V/EnTbWLZNt7FOJjdA4Pdor63Qqa4SxzGB1yHyfcAQhSGF4XHyQ6MADIxNP9Knt9PoM0MeB9oO5VHTNiiPA22HIvfuN0o6IPVpeZomy6ecFCf3n+TMtTMcnTpKbGLmynOUmiViE2NbNhknQyad4fr6debKcxyeOMz5pfP4kZ8EZeKIMAoZyAyQTWepuTVu1G7gBi75dB4MrHfXyaVyyTG0sAtWUsWu43VY76x/5Bi17cvT6n63fYMhiANc38WxHCKThM6iOCJlp/BDn2jj5FCO7WBZFgZDZCKiMMK2bCJz03x6y06qvUURvvExxtCLemA+rJZnjAEruYyiCGNtrbCHgVQqOV69GeqL4ohGt0EQBRRzReI4ZiA3QMfrEMcx+XSeUrNEIVNg/9h+IAmwdbwOURzRC3oMZAc4PHmYl/a+1H+otfYaF5Yv9KtpeqEHPRjIDgD0T4qVS+X6l12/ix/4rDRWsB2bltsijENSTgrbshnKDtHwGh+uN99hanCKaqfKvtF99xRku5vfMWknTRAGLNWW6HgdRgojvLDnhduqg15YvkCpUeLA2AEgqfp5bNex+9puHqaPqlZ6p/X0uOwrhFHIucVzAMyWZ5PXGQUZ5cmnrfMpV6lU+Nmf/dkt4bm/9tf+Gv/qX/0rjh378JfIO++8wze+8Q3OnDkDQLPZ5G//7b/NuXPnNDHsiVAHfMC7y/a9jbb1be4/DJze+HkaWAZ+QPKRkt3oGwJFYA+Q27j98D2PXEREREREHg+5nEOvt91JNuRxFm93/pSPcadw3WaILorAtpNKc7ZtUS53sG2LVMomjg2+H2FZ4Psha2td1ta6HD06xuTkANWqi23bRJHh5MldPPvsGADnzq1y7tzqtgG1EyemCcOYP/3Tq6ytdQnDmFTKZmgow8JCkytX1ikWM4yO5vp/qzh7dplvfvMCP/7jh/n611/AtrevEmeMYWamdNsYjDH8zu9cYn3dZf/+IcbHC6ytdfvhuqmp5GDDmTM3qNd7nDp1UH8rEREREZG+OAopz53H6zRxm+s46ce76vL9M5goJPQM1aVZ3vr//StsxyGTHwTLwrJt/G4LExvCwCM5AaPBsmws28Ky7I2bDK3SIt36GuMHjrHnxc8TRyG2kyKOQuor1+hUS0RBgJNOMzA2zcjuQ3d1v4iIiIiIiHy0p3Gy/In9J6h1a3zn4neodqvkM3mCOCAIAyrtCs1uEywopAsM5AaYq8zR6rWwLZtCpkA+nceyLWxs3MCl6TbJprMAeIFHIVPADVwgOeaUTqVZ76wnwZ6NAA9ATAxmI4BjdExW5BMxSdW4yIqSCo8bB74jE+GFHsYkleg277Ox+wG4zapzlmVhYZGyUzi2Q9pJE0YhYRSymffarDJnjOkfH7758SAJzDmOQ9pO0+l1qHar/b6RieiFPfJxnmKuSD6TJ4oiqp0q5VaZkcIIS7Ul9ozswbEdrlev0w26eIFHLp2jkCn0w2ObJooTjBZGKTfLNHtNHNvBDdx+BbrNz5xe2Nty2eglAbkgCPBCj5STYiQ/QiaVYSA7gMGQttL0wh6xicmkMqRTaXKpHEEc3FWQ7W5/xyzWFrGsZN3Xu3UOjh/cEp67+XnWujXKzTIHxg+w0lh5rAJ0xhhmFmfuWK30UukSp+dOc3L/SU7sP/FYzi+Yr8zjRz6u7/arAD7JQUaRTU/mN1Z5YH7lV36Fer3ev/5jP/Zj/PZv/zbpdHpLu1deeYU//uM/5otf/CIffPABAO+99x7f+ta3+Jt/829+mkN+SgQPuJ8Bqve4rBqwXSmCFHASeIskGLcOrJKE9AzJEc4MsAt4ZuO2E9z9R04b+K/AOaALFDYe7++QhPJEREREROTTNjExQL3uf3xD2XE+qnpdGMZEG2fYTCrEGcLQbJxdzxDHhmwWarUely+vs7LSYu/eIQD27BnkzJkb1GouxhhmZ2sAuG5IpdLZElCL45h/+S/fpFLpMjFRIAgiWi2fMIxYXGzS64UUixlaLZ/r1xvk8ykymRS7diXhtldfvczKSpuf//nP3zFEZ4zhtdeuceVK9bYxVKsu7baP49i8+eYSrhuQz6cwBmzbolBIc+TIGMeOjXP58jojIzlOntz14F+IT2i7yn03V/cTERERkQevvnKNKPAJPRe/2yaVzbMZHtuJzMZZrAO3g+WkCH0PDMRxiGU7YAxxHG20s8CykwkiJgYLnFQGsGisXif0XE7/f36ZTL6IiWMs2yFXHCJbHKEwPI5l21QXZ7nx/hnS2TyB5xKHW4+VrS1c4sr3fo/88BiDk/tIZTLkh8exsOg21hS0ExERERERucmDnCx/rxV3HqV+2MUkoRYTG67XrtPqtUg7aUxkWO4uQz0JuqXtNGEcstZeI5/Jc3TyKF7o9cMgba/dD5jExEwPTlN36/ihT61bIwgCIjui63exsMilcqRTabzQI4gCrNgijMNHt0JEnmCbVeFSToowSsJs/YDbRkg17SRz5MM4xLKs/vHjmCQMZ1v2h9XpNvr7oU9s4v5702CwsIjjuL9soB/A22SMIWWnqHVq+JGPHyZV7DaDfGk7TcpOMZAdYP/YfurdOh2/Q8/vcaN2g0a3QdbJkk6lmV+bByCXzmHbNgOZgduCZQCDuUHy6Ty9sMdIYYT19jphFNL22gzmBql2qnT9LuVmuf85FMURQRT0A3WFTIFsOkvKSdELehgMQ4UhbM/GCzwavQYTxQm6fpepoam7CrLd7e+YlcYKnV6HgexAUhkwunOoeDA3SK1bww+TeSy3htQeJWMMr116jSvlKwC4vkulVcEPfTKpDFNDUwCcuXaGulvn1LFTj12IbqWxAkClVcFgGB0YfSKDjCK3ery+hcqnKggC/v2///f967Zt82u/9mu3hec2DQ0N8cu//Mv8xE/8RP+2f/Ev/oUCdA/F/e78bNevQ1JV7l64G/228zLwHZKQWwtwSAJ00cbP+Y3bzwETG+0/TgT8KvB73F4t7wzwn4C/DvyvG48hIiIiIiKflt27B/oBJxFIAnTGgGVBJmOTyaSIohjHgSAwxDEbVegi0mloNHq02z6tls/gYIZ02uYLX9jHd75zFYC9e4eYna1SKrW3hPauXatTLndoNDzAsL7epdcLiWNDo+HRbvvEsaFU6myMxSGfT5PNplhZaTE2lufYsXHefjupRvd3/s7x/rI3Q2VvvLHA+fNlHMeiVuvheUkFPWPg6tUaUWRotz1cN8QYGB/PMzk5QK8XsLraoVxOqux96Uv7mZlZ5fjxqccmlLZdZT34sLrfyZO7OHFi+rH7o7yIiIjITtCpJpNBfLeNMQYnW8ByHEy0syfCGRNjQp8P5/tZ3H4iSAMmvilKaBFGPcIgOUlH6Ll0G2ukMjkwkMpkyeSL2Ok0mVyRwcndjB96gdbiLN16hcLoJIOTe3Eb64SBj9euE3m9ZMcEyI9MkMkVaFVuABaDk3sYnNxLHEcsvvcmoddlaHo/Y/ufpTi+S4E6ERERERF56jyIyfJPWsWdmcUZZiuz7B3ZS8frMFeZY6m+RMNtYIyh1Wv1wxkGQxx/GI5xbAdjDAvVBTJOhlw6R9tr0+l1cGyHXCqHhUUv7DGYGySMQppuE8u2MJh+VavRwiiGJFCTSf3/2fvTGEmSxL4X/JmfcUfeWVlHVnd1dXZPT3GqpOEMRQ7JJp/IoQ5AWmmxAp8IaCHqCZBGeE/6IEACBejjAgJW0FsJ4pcFuFhA0KNE6FELUkNyZkj1SM2mpqenWdVHddeVVVlZlZmRR9yHX2a2HywiMrMqs+s+ust+jezKjHAzN/fw8Ahz85/9A9BGwtNf0Ml3LJYnjSMcXOEiPIFKdxPlHMch9EJCPyTOYvJenr7uo5VGKolAjBMlBWI3jW74u1RynyA3SpET+vBz2UjK1RiJL/AC+kl/LO46wowpp1nK0epRMplxpHKEjfYGURrhOA7L28vMVeZwHZdqvoonPHb6O5RypXGi3F46UYdSroSKFL7rM12cxnVdrm9fJ+fn0FrTHDTZbG8SeAEThQma/SZxFiMQuI5L3s8DkPNy9GJzL7nv+OTcHHEaI4eTaCUyuW+R7X4/Y6q5Kt24S5Sa+943O5sH1teJOgDmvAkEbnDo6/C0ubB6gSubV1BKcXXzKrV2bd85fWVnhfnKPKfnTnO5dpmJ/ATnFs89uwYfwOh1HL2u5bB84HLPs8hosRyEveL/AvPWW29Rr++mkn3jG9/gjTfe+Mwyf/kv/2UWFhZYXzcfYn/yJ3/Czs4O09PTT7StLx4P2/E5rNylh6hTD8sdxgXg1nC55vBnr/QWARPDn1vD5f/MZ9Qngf8V+NHw7wEmNW8k5I2Osf8TWAX+X1iJzmKxWCwWi8VieXr0el/smzstj4YQ5sdxBEqBUqYPqpSZkc91BVq7+L6D1tDtpnzwQY2JiRyNRoQQ0OulbG6ai++TkznK5ZBOJ+bq1TpXr9YJQ5d+P6PfTygWA5TS1OsDlNJIqcYyn+s6ZJmiUAApNTs7A65c2eG112b43veW+at/9XXC0B1LZYNByg9+cJssU2NRz3UFJ09WqVRCwtBlba3Dzs4A33eZnS2QJJIsk+TzPsViwNZWn8uXd6hWQ86cmWN5ucHS0rO/VvJZyXqjdD+Ad9+9TbMZ8eabJ5+LwWqLxWKxWCyWLxIyNdKY65sbOFQao9WLeAPc/WzzaKpuiRaCNOqRxQMc18PPF4l7LQbtOl6YxwvzDDoNtm98ip8vUZiYZvv6RRqrVwmKFfrNLZJ+16Rlh3lcL6C+egUvCCnNLICGjcvnWb/0Pq7r4+cLOK5PZ2uNxu1lpo6fZu3iD5l75Qyzp87Y78kWi8VisVgsFovlheBRb5b/vCXuZDLj/Op5AK5uXmWzs0khKCCVZLo4ze3mbZIsQSo5luW01mhhkqdGMsROd4dyWCZTGVIbqcR13HF6U5ql5PwcnuPhOi5xGuMKF0c4FPwCjuOQZime4yGVPFQ+2LtOi8VyMKP0ON/10VqTihQtTKpcMSiSD/IUwyI5mWOruzUW5xyMyKa1BjFMmNMChEmqy1SGUurA9+C93peDdEApX8IVLolKxql1o7Q8gGq+Ss7PMV+ZZ6e7QyVfoRSUCP2QUljipemXeGn6JW7s3CCVKalKcYXLdnf7rgS3Rr+BIxy+dORLrLXWeOPoG3TiDq1+i+3e9ng/jWQ5NEgtCbzAbH8KcRYzV5lDaTU+T6cqJZJGahuJe4Eb3LfIdr+fMbOVWW63bht5L+nRilqHbqdAjD9bFqoLn/k6PC3u/GwZpZNOFicph2U6cYdGr2EeF7A0v8SFWxc4c+zMc5XQOnodR69rJ+4cuNzzLDJaLAfx/LzLLE+dP/qjP9r391/6S3/pnmWEEPzFv/gX+Y3f+A0AlFJ897vf5Zd/+ZefSBtfXB63QPfBQ9Z3WLkM+B2gBuwADYwwJ4Y/GugDCigDG8Plf4zDTzv/T4w8p4Cb3J1+1wSKwCLww+Hy/+TBN8lisVgsFovFYrE8FHGcjRO5LF8MXNe8nnsmynwotDZJbkLIsThnHtdobaQ6xxG4rkOaKsIQKpWAXi/l/ffXWVgoo7WmXo8olwPeeGOWmZkCYAS4y5d30Brq9QFZpoeSnEBr8Dwjy6WpWZfvO/i+Q7EYUCgEKKXY2Rlw61ZKPu8zOZnjD/9wmULBH0tlt2512NzsEccZm5s9cjmPhYUKruvQaETk8/74uI/jlHY7Hg8S5PP+MGUvIwhcrl1rMDGRY32981wIdBcu1LhypY5S+sB0v5WVJvPzJU6fnuLy5R0mJnKcO3fk2TXYYrFYLBaL5QuI6/sA5CvTJFGf7vYaDz8O9AXmzg7n8HetJVIplMwQjotwzFiUEAIdFui363hRj7jbQjgOwnFwcwUc18ML8/Qbm/QaW7vDVwIG7cb4FZBJjJ8v4Pk5hOsSFspEnQaO4zJx9GXWP32fqNvixFe+YSU6i8VisVgsFovF8oXnUW+W/7wl7lyuXWa1vspmZ5NP1j/BEQ6lsEQ5V6Y1aJHJDCHEvoQnIUyfVCmFUgqpJVJJ2nHbpFeJ3R+pJKWwRDEsjsW6ycIkacdMtqMds2+mClOstdZwhEOijbBnRTnLFx0HB8UjDlTfwUhIy/k5imGRXtwzkys5HpVcBd/1EULQiTp04y6ZzMbJkp7jkSnznh8JdI7jIJUkk9lDtVUM/5Na0ot7RpDNEjKV4QoX13URQuC7PuV8mXbUZml+iduN2zQHTUI/ZKo4xZHKERanF5FKstHe4OWZl+nHfWqdGhfXLjJZmKScK9McNLldv80gHVAtVJFaUggKTJemWZhY4MTkCd678R6bnU2mS9Pk/TyDdDA+V7WiFlJJVuurZl/o3f3Zj/u0+22iLDJJeLkqAIWgcN8i2/1+xnjCwxEOoR/iukbw27udnahDo98AYL46T87PEXohp2ZPPfBr9CRY3lomkQm9qMeVzSsMkgHHJ48TuiF5P8+JqRM0+g0url2k1qqxOLU4LjdKc30eWKgucKl2idnyLCs7KzR6jc+VyGixHIYV6F5g3nvvvX1/nz179r7K3bncH//xH1uB7rmn+5jLXQauAWsY2S0FCphTiotJjcswiXQrw+f8YbmDUg67wH8Z/r5XnssB4bCeaPj4KnAS+DbwD4DSQ26bxWKxWCwWi8VieRA8z8VxBFLawZovDgLH2RXdHgWtIU3NwJ/jCPbeV+o4giBwx48liSRJFPm8x/b2gEIhQAgj4S0uVsbyHMD2dg+lNJ7nEMem/mLRJwhcsixFCMbpc6Nt6vVSkkTSbkcEgUeSSIQQ3L7dJo4l//bf/pCvfnWBo0fLXLvW4IMPNmi1Enq9hF4vJU0V/X5KsRiwvd1nZ6eP7zvj9SSJpFwOyOc9CgWPfj8jTRVRJJmYyHHrVpvBIH20HfoYyDLF+fNmNrurV+tsbJg+/t50v0YjGj++tDTNhQsbnDkzh+c5z6zdFovFYrFYLF80ilPz7Ny8Qhr1SAddVJZhBboD+MxOiUYraQQ54Q2XFST9Nl6+SNrvkA765CqTlKfm0FlKvjJFr7GF6wekcYRMYnKlKsmgR5KmaK1xXAc/XybpdUidPgBJv02QL3Pr4x+gZMbU8dM0bl0jV6oy98qPPZVdYbFYLBaLxWKxWCzPike5Wf7zlLijtebC6gV+84e/ya3GLeq9Op24QyEocLNxk3q3TmNg5AyBkWnUcEZKx3FMWhMSqSVRamSSNDNjQ0III8JlCYlMaEdtMpVRCAo4wiGWMQpF6IbIVNJNumx2NkllSiKTceLdQTjCQWv92KUji+VZ8CSOY43GdVykkqQyJfRCojRCIEhlikZT8AukencsVyuNRiO1RGuTLqm0SZrLdDau92HbIzDnBKlM/Y7jkHNz4/e5IxymS9M4wiGTGTu9HTzX49TMKV6eeZkoi/jywpc5NXuKheoCX3vpa7x/832TYucIaq0ajX6D5e1lGr0GSisq+QqBF1Br13hp+iXqvTpoI5v99Ks/za3GLVYbq2Qyo5KvcHzyOPPleX7zh7+J0oq58hz9pM9aew0pJYEb0I7aRKlJn/NdnyRLiLN4LNTdj8h2v58xrajFVGGKcq6M67rkvBxJltDoN8binEAwX53n9OxpAM4eP/vcpLetNddYra9yfvX8ONk0kQkb7Q022htc27rGiakTTOQnaA6abLY3WZxeZL21/lwJdKdmT/HOtXcggPnKPBvtjc+VyGixHMbzcaawPBM+/vjjfX8vLd3fSfe1117b9/eVK1ceW5ssT4rHnWj3PrCFSaBLMcKcM/zRe34fdeQ2MDLc+xws0P0HjCQ3YFeeOwLsna1/Z1hPFyPTjcr9nfvYjgxYBtaBBAiABeAU9jRosVgsFovFYrHcHxMTIZ7nIOXBAzaWzx9Sah5HgIIQo5/RjJpm4HH0XBC4SKnxPDFObIiilMnJHIPBgE4nplj0kVJTLof76m61YpQys/6ZNDvzuNYwGGRDodMk3IFGSjXcNjVMplMkSTZM2lNUqzlqtS7Ly03ee2+NLFNsbw8Ak2rn+w6u69BqxYBJXux2E4LAHdahKRZ9JibylEo+Cwtlut2ETz7ZIk3VUCRUbG/3H33HPiLLyw2SRDIYZNRqRpLbm+4HsL3d5+LFLWq1LouL1XG5h0nPyzLF8nKD9fUOSSIJApeFhTKnTk1aIc9isVgsFssLzcTCS3z61m8Td1u4foDWykZ7PxTC3MQkQKkMrRVJFJH3Q3Ojk8pAayPI9dr4uSL91jaO6xMWyyR9c8Oj43oI4SBlguN6aGWS7bwgRCuFEC6uHyDThMbaDYTjMHnsFTavfczMS1/CeU5uxHnaKJnRXL9Br15Dpimu71Ocmmdi4aUXdp9YLBaLxWKxWCxfRB7lZvlR4s4gGVBr1wB44+gbd4kRzzpxR2vNW5fe4srmFaI0IpUpjV6DbtTFFe5YfEuzlEwZecYRDjigtEmdE8KkSmm0EW2kEXCEELgYeUdpRSpTfMdHSsnt5m36SR9XuGRZhoORZTKVmaQ+beoaJdUdxOi50botFsvdjJIj00FK4AYorfCER+AFJFlCJKLxWLZUEgQILcaS7N731uN4n2k0mczANwKukorQCxEI4izGcYxwu9PdoR/32e5uA7AwscDi9CKhF/IrP/ErYzlMa0037nK5dpml+SVOTJ7ghzd+SCYzJgoT5PwcURqx3dlmrjzHbHmWfJBHKpNGd2LyBKdmT42FPd/1kdpIcqlM+eHKDwG4UrvCTneHRCe0ohYAruPiOR6FoEAv6XF88jie4923yPYgnzGvL7wOQL1X58df+nFSmbLZ3iTJEgIvYK4yR87PAUbIPnvi/kKEnjRaa35444dc374+FqLjNGars4XruFRyFQCub18fXusUJFkCQCKTZ9n0u/Bcj3MnzvHujXc5PXcaBGNh8/MgMlosh2GP0BeUJEnY2NjY99iRI0fuq+z8/Py+v69du/bY2mV5UuQxctrDlDuINaCBEdlSTOqcxohqDqCGf4vh8xHQHJY7iPPDf+vDf0OgCHSGdTnDv0dpdDvAsT3lDkMDF4bL3fnF4hLwDnAOODtsq8VisVgsFovFYjmMP/NnFnjvvTXi+Fm3xPI4eRz37RphzshtjmMEslFSoeMIkkSilMZ1nWGSm6bXS2k0BuPkOdd10FrR6ew/wLJM4TiCNFVjSS/LNFrr8To8TyAlKLUr2EmpUUqSZQqlzIXnfj/jypU6pZKP4wh2dgYUCj4TEznSVNHrSaRU5HLmclm7bdqiFCSJqcdsrxhv2569cOdeefQd+4isr3cA2NrqobVJntsrzwHMzBSYnMzRaERsbvZYXKyyvt55IIFOa82FCzXOn98gSfYP6l66tMM776xy7twRzp6dH+87i8VisVgslhcWrRCOnVzg4dAwTM/WUpIlsRmFivoIxyGN+8TdFlk8QGtNlsRkcYTrSZRMkVky/prueB7CdZFJTJb2cL2AfGUK4Xpk8YAgX8QpT5LFffqNLSqzxwBo3LqGcN0XSiLTWrO1/BGb1z5CpvvH2uqrV1m7+EPmXjnD7Kkz9vu+xWKxWCwWi8XyBeBRbpZfb60DsNXZQqOZLE7uk+cAZkozTBYmafQbTyRxJ5MZy1vLrLfWSWRC4AYsVBc4NXtqfEP/hdULXNm8glKK9eY6K/UVunGXftInUxlRGjFIBggxTKEaJphrbcanRolSB0k2WpvEKgezfCfq0I26+K5PpjKkkviuj0bTT/rjtLpMZZ8pzt2JlecszxIH57lOQVQoI9EhyGSGIxyEI8YpkY5wGKQDMpmNBaaclyNVKUqr8ft7JLXCo0mrGj1+/wdegOd6KK0oh2VCPwRtxp/r/Trz5fl7CklCCN5cepOJ/ATnV8+z0l6hPWgjlWS7s80gHRB6IfPVeZRWvHfjPeYr85yeO80gHTBRmODc4rkD2/ozr/4M//oP/zXvrbzHa0deY5AM2GhtsNPbIVUp1VwV13EZpAPmSnP8uVN/jiMTR+5bZHvQzxghBBP5CQbpANdxWZxe3Fdf6IWcPX6WsyfOPjfXpS6sXqDWMVJ0a9Ci3q3je/74HF/v1ankKsyWZ1lrrlEIC7w0/RIAgRs8w5YfzNkTZ2kOmmNhc3Fq8XMhMlosn8UX80q+5Z7UarWxQQ/g+z7FYvG+ys7M7O/U3Lx587G2zfIkOMGunPag5Q6ijhHbJEZMczGC2+iU4mBkumS4zOjnsDaMZubPhvUqoH3HMoM9z2V3lDsIDbwFjBISB5jUvFEC3dzw8Xcxct+bPA83OFosFovFYrFYLM8r584dQT2/18EtT5C915pHlxJG0pzr7gplWu9/flTOCGy7jzuOkdKazZhCwSOXcymXA6JI0mhEbG/3x6KX5zlovSvZKaWQUpEkEt8XpKkAxDCBgrFUN2rPSHoDTRBAkkjabcWtW22CwKXXS6hUQno9kzLX76d0OglZpiiXQ5RSOI5Johul68WxpNkcEIYut2+36fczPM/Bdc3zvu/cJao9C0Yy2+jfO9P9RpTLIY1GdNfy94PWmrfeusGVK6a/PxhkbG31xgl0c3PmWtO7796m2Yx4882Tz83ghcVisVgsFsvTorl+g+LkHP3mNjLLcBwP4bhoZdO9HxStJCpLccIcWmYgBFpJsjRBpQlKSoQrUVlGlkaoNMMLQrIoRSYJWim8IGf6Ja5HOuihUbiej+sHOJ5PFg9QSpLLF2F4s1SvsYVwHD7+3n+geuTkvjZ9kSUyrTWrF96mcXsZgCyJhsdxiuv5FCfMmPH6p+8TdVuc+Mo3vlDbb7FYLBaLxWKxvKjsvVn+ldlXyHk5VnZWiLOY0As5OX2SY5PHcBxn383yo+ScUZJOOSwfWH85V6bRbzzWxB2tNRdWL3B+9fxd9V2qXeKda+9w7sQ5vnz0y5xfPQ/A1c2rDNIBGs1UcQqAVKZ4wiOV6bBikzo3SrQaSXSZzvgsNBrP9ZBKjmWT0f26SisCNxjLPUIII9DYVDnL5wgXF8nze21rr/gGEKcxWZaRC3LjxxzhUAgKRpoTAtd1UUqNkyfjNB7X8ajvTaUVUWqS7/JBfpwiN1OeYa48FJA0nDl65r6ENCEEZ0+cJU5j/ssH/4Uoi6j36wzSAYEbUC1U8RxvLG1ttDdAmPou3LrA60de52b95oGy8f/25/83fuu93+K7F78LwMuzL/Py7MtGcus1cB2XcyfO8dWTX8UZThT2ICLbgwpZby69iVTynnL04+R+ZOzDyp1fPU81X+WD1Q9M8uCQnJfDcRz6SZ9W1GKQDkhkQpzFTJfM5LYL1YXHvi2Pyp3CJvC5EBktls/CCnQvKI1GY9/flUrlvsveuWySJKRpiu/7j6VtFthNcXuYcgcx9ZDtOKzcKHEuwbRTYAS1lN3EOJ9d4S0ZLu8eUt/oxsKRaDeqN92zTMB+IW9vuYO4gJHnFHAVqA3bMGIFmAdOA5eBCUwancVisVgsFovFYjmI06enSJLPHgyyfLEYSXB7pbi9eJ4YXxQvFFykNKKb5zlkmRoPJI7KpalJeJPSPFcqBQSBS5oqCgWfY8cqbG72uHhxi8nJHOVyyMZGl3Y7JghctIY41iiliaIMpYwgl2X3NziTJAohNEo5tNsJnicoFgM6nZh+P6XfT5FS4ziCZjOi308oFHykVAwGGb7v4DgC1zWJeFG0K9UFgUsQuLiuw/HjFfL5Z3/JLQjcff/eme4npWZ7u8enn27TasUIAeVywOnT938N4cKFGleu1FFKc/VqnVqtuy/VcGWlyfx8idOnp7h8eYeJiRznzh159I2zWCwWi8Vi+RzRq9cACApl/FyRQWsHre3sJA+LkilyOJGGcARZEqNkhtaKZNBB97RJmBMCrRT9VoLWCjEcQ5NZguuHqMyUEcLBcT2E45Al5juz4wy/S+fNhBDN9es4rk++MvXEJTIlM5rrN56LlLut5Y+MPKc1jbVl+o2tfRO0djZvUZicZfLoKRq3rpErVZl75ceeahstFovFYrFYLBbL40cIwc+++rPUWjW+e/G7RFkEQOAFaDQ3dm6w0d7gF7/0i/zsqz877gONknMCz/zbiTsH1t+JOvuWe9TEHa01b116iyubZqL9QTJgq7O1T8YAePfGu3x4+0PiLCZKI2rtGqVcicALyPk5cn6O1qBlEpc6G6b/I0ArTapTHOGME+g+i71CnOd6ZCobJ9m5jotGI7XE93yQRriw4pzl84Q2Bzi+8M3kp49ZpHscwtreVEiBAMH4fTg6pxWCAuVcmUEyoJf0yPk54iwep9AJIRD68YitjnBQWpHKFJ1oCkEBx3GI05jZyiyD2CTD9dM+N+s3mS3N8ue/9Of56smvHnidaXTee/vK24R+SEmXWGuuIYRgsjTJkfKRseiV83MMkgG1Vo0TkydYra/yv3/vf2eqtH9MeK9s/De+9jf4q+f+Kt+//H0+3fiUQTog7+d5dfZVjk8dNxL0PcSyz5LQHlTI8lyPpSNLjy2t9DDuV8Y+TBRb3lomkQnFoEg37uK6Lscmj5HIhCiLKPgFcn6OjdYGaZYyXZqmWqzSjbpMFac4NXvqiW7fwyKE4NziOc4cO/NURUaL5Ulhj9YXlF6vt+/vB5HfDlq21+sxMTHxqM2yPDGuPuZyLwMxRkgbiW4JRqQTw8dHz41ku3hY7iDOYdLiRrPhJ8AmRsTTwzpHyXPOcLk+hwtvGXB+zzZsDH+fBMpAB2jseXwJI9ydwZ4WLRaLxWKxWCyWg/mP//FjXNdBSnuj5+eZkRC391/HMRd3d9Pa9j83SnXTendZxxGEoYPWgkLBo1QK6XZNclscZyglkFLhugLXdQCxZz0ghMbzBJVKjiBwCUNvmO6W0WrFdDoxpZLpI7quYGLCpKRFkSbLTAKdSaaTSKn3iX4HbfNo+1zXbI+UEikZyn6aQsGn202G9WikVPR6Et/3EMKhUPDJMkUYupRKAZVKSLHo47omeW5zs48Q8MorUxw/XmFh4eBZVZ8mCwtlLl3aYXa2yMpKc5zuNz2d59atNqurbZrNiPX1LkJAmiouXdrBcRw6nZhqNSRNFUHgsrBQ5tSpSTxvd+KeLFOcP2/61Vev1tnY6AKM5cdOJ6bRiMaPLy1Nc+HCBmfOzO2rx2KxWCwWi+WLjkzNZIGttetomRm5K3XQ+vmdpft5R2bpsM8igAjHNRNuyDQd3swIruuQxTEajeO6OJ6P6wVkyQCVJcgswXEchOsNBTxNFg8QQhAUSoDpY3S318iSmCBfoLuzTqt2Ez80EzwmUY+NJCYolqnMHqfX2CLIlziydO6Bt0lrzdbyR2xe+wiZ7r9Bp756ldsf/Q9ylSnCYgWVZU9crFMyY/PaRwA01pbp1TcBCEsTBPkiyaBH3G2OH5889gqb1z5m5qUvPXXRz2KxWCwWi8VisTxetNZ8//L3aUUtvvrSV7nVuMXNnZt3JdC1ohb/7cp/482lNxFCsFBd4FLtErPlWVZ2Vmj0Gmx3t5kpzYzr3u5u0+g3EIix2PaoiTsXVi9wZfMKSimubl6l1q7tE15WdlaYr8xzeu40F1YvjNOfNJrp0jQT+Qmub19ntjwLGHmnGBRpDVo4whmLL3fKc6MUK40e/y4w8pxGmzJSj2UcjTYpV8Il9EO00oReSCEo0Ik649Qri+VzwfC2Xi00j8P/FAgjqe4R3x4H4/emEHiOR87PGTFKwERhAt/z6USd4aSwgsANSLKEWMb3JczebxsCLyD0QoQjkEqSypQTlRNILdlp7zBVmmKqOIXneFRzVSr5Ch/d/gjP8Q6UtUbnveagyWZnk/XmOr24R+AFDJIBN3ZuUMlXmC3PEqURUklw4Ic3fgjAkcoR8kH+UNm4OWjy5tKb/NKZX+KXzvzSA23vg0ho9yNkPWwa3IPyIDL2aP/c+bqst9YBqPfqTBQmGKQDjk4cZauzRXvQpp/29y3vOi6z5VlagxZnj5997iW0pyUyWixPmuf7nWZ5YqRpuu/vBxHowjC867F+v//IAt25c+fGM9fvxXXdQ2dq/LVf+zX+2T/7Z/es+9d//dfveORb+/765jf/gNOnr913Ww9ex7c+8/kHW8fBX7ruvY7vcPr0Qc+073O9d67DBfbvu29+85ucPn2S3dS5UVtHN9EK9rdfD5cTwMnhOu58PSTwC8Nls+G+uoqR5Ub1jZLuRul2CfB/PWQrlvn1X789LBMAixjpbnTKK/LNb85z+vSnmGS6xXE5I9Pdi2y4jv8fu4KfN1zX7rFq9tWBL8h9c/e+2o9dh12HXYddh12HXYddh12HXceLzdPsRwVBg7/7d9VYUvqDP4Brj9aN4luf3cWx63hC63AcI7G5LjiOMxTcNH/n78ixOLfLbv/ue99zWF425XM5nyBwyec9pqfzZJkml/Po91M6HYHjZCSJGYwIAo8gcBBC8D//z4NxfUL0cJw+nufg+xtoDZOTC7hukXY7pl7vk897TEzkxslwWu+Kfkmixu3bO4by2ftK853vwPKyxnFclNIkScb0dIE4zuj1UlxXEIYuUmqmp/P0+ynHj1eo1wdsbfVIU8VP/dTGWNpTSvP66ybprVBosbMj0LoKTN/fC3IIj3pOXFysUq8P2N7uE0VGTGy3YxwH4lgSRRlf/eptTp3Sw2S9LQD6/cv84AdGLpyZ+TFyuTkuXdrhnXdWOXfuCGfPziOEYHm5QZJIBoOMWs1Icm+8McvMzG5a/PZ2n273jwGo1XwcB/7Nv/nvhOFuQv3n5fPDrsOuw67DrsOuw67jRV7HF42nOx4FadQnjXqkyQylYAL05iMl0PX/zN/8zOeD62/jNW8+dP2fi3VojdYSrc3rKBwHxwtQmUlsA9NT6JzZP44kxN7XXVPa+oCwu0GcJLitbTw/RDgeg3aTQbuOTCKSqEehOkO3voHj+qRRH43A9QKE43K98Dok4KxnCLfJ29f/T3KlP8ILc8D9vQe11qxeeNukvcH+lDvX43+sZ2gphzKgh+uN0hk0Wim+8tIcp19dwguCh5bq7jx2ZZqYbdWaLFGc8AJOvfwy+cru7OSDdp2dlUv0G1tUZo8B0Fy/wdTxg7f3i3JOtOuw67DrsOuw67DrsOuw63gReZr9qG/N77/I/wfNP+Ba/Kj39X0xjquntY4ojRgkAzSaJEuQUrKgjeR2PbzOh4MP6cd9lo4scbl2mYn8BOcWz3Fq9hTvXHsHApivzLPR3uDi2kUmC5OUc2U6UYdGv8FibRHP9eg0OnRFl+9++F2+J773UNuRyWycYHR18yobbZMcd3LT3Kc4Et/EhmDt2hoFCkgtyeaNrFYOyxyfPE4/6VNr15grzzFVmAINn2x8glQSRzhIJY3gNpzMRSD4e3N/b9wOgUChxrIOwB92/pBr8TUERpqTWuIKl0qugu/6dJIOWmk8x8N1XKSSd8k6d74f7mT0/niUxK77XcejYNfxxVqHHv6n1OHXtx7k2AWT0Oa53lhkS7Lknsf0/axjOV5GaUUmMwSCVKaEXkiSJTT6DUphiUJYINMZvbiHRpvUSKVQqEfeV0IIHBx81zdJcWHJCLMyo96r47keP+79OEVVRDYlSitiHbMm1hAIllnmB2d+wK/+xV81qZXsP+/drN+kNWihtCLwAqaL04R+SD/p0xq0AJgrz/HS5kvj/ek6LnpDUxM1ADw8Nqub+2Tjvef2+2X0GdWLeySZEeeUVuNzmzqqmD1mROW9EtphQtZBIt7WD7b27dtReuiIR/kcHEmJmz/YJMmSsdTs4aFQbLCB53hMvzbNZQ7eP6N2JlnCZGGSSSaNMD78bGlHbaSS/Gz2s2hf40oXt+aSq+d4Z/sd3uGdR96OEV+k7yV2HS/WOp4GVqB7QXFdd9/fB3VwD+Mgs/+zvgjdL1n24DNo3CkCfnF42FkLDiv3sLOYHlbfSGZTByy7t4z4jOX3krGbKnfneg5qUxP4OUxK3cQBy6wP/x1t9+h4j/cs4wEVjFy4iZHo1vlsgU5jkurOYwS+vbMjJBhRMDf8sVgsFovFYrFYnjxPsx81SiGzfH5xHPB9QZqOXkuBUhrH0cMEuP19RzPobQYptDbCnZHdHCYnc5RKAS+/PInWmigyx+LaWocsk7iukfSkVGSZwnFG1x4ErivQWg+T6EydIzmu04lptz3K5YB6fcDt213K5YAskwixm0SXpgohzDoetA+t9ehHMRhkbG31ieOMMPRI04xeT1EsBkxM5KhUQubmipTLIbOzRV59dYpWK0aI1lg29DyHIHAJAtP3zOU8XHd3gDTLFMvLDdbXOySJPDDR7aBl4liOxcMH2z7NhQs1zp/foNdL2NjoEgQeEHP9eoN+PyWf95FSIaUa15+mcljerDNJUt5++yZhOODkyQmOHSvz7ru3aTYj3nzzJLdutanVuly+vMPaWpdqNRzWqcfbPzNTYDAYpf4pHMchy+Q+gc5isVgsFovlafO0x6Mc10VmJuFMpikqTQ6PT7bcN1ophOvguB5aK7J4gOv5uEEOLTNUlg6/64qxsKi12ifRuc7wxizHGSepuUEOGQ3AEbiuj5IZvXoNJTNylSm8MI/QGpUleEEO0OhhwrWjfYTjkAy6yDTG8XxqVz4g7NcOFduUzLj2g+9w+6P/gUwz+s0aWRLj54oIIejVa6TBaRACIRxkmiLdBMdxxzc+bV3/GK99i6njp6mvXmXt4g+Ze+UMs6fOHNifUDKjuX6DXr2GTI10KNMEx/PHyyuZDfez+dfPlfbJcwD5yhRhqUrcbdFrblOZO06vXjtUoLNYLBaLxWKxfH6x9/W9OGitidIIMOk7sYxBG7lFCJOctNHZYLO7yXZvm2+c/gYXbl3gzLEzeK7HuRPnePfGu5yeOw0Caq0ajX6DRr8BGNHMcz0C10wMkvNzDzwOspflrWUSmTBIBmy0N2j0G+S9/Ph5RzgojDwjlcR3jYASZRG40Ik7CCFYml+iEBRYbawCkA/zHJ84Tjtu0x6Y8IKDhKGRTKfRCL1/O/bKKo5wQJnfhSNwHRff8cnIxpLeoyRdPYpAZ7E8SxzhjJPeRsLrSKZTSiH1w977bNAYSXX0HovSCNdxQRvZSSBo9BtG2NOaVKXjtjwqAiPPBV5AIShQCAtU81WEEDR6DZRWTBenUUoxSAdIJcf7AMz5wnVcfrTyI2rfrvFXzv0Vzp44u++8N5LkZsuzCvD4DQABAABJREFUDNIBoR9ybOIY3bjLemud9qDNVGEKqU3dnuOZNDrAFe74/FTKlejTZ6O9AQKW5pf2ndvvlyiNxvLjXgkNYLu9zY3kxn1JeoelwbnSNVKy6+Joh0Fi9lsxLD7sywTslxL3tnu0f0YiYKYy1lprvDLzyoH7Z/TZFniBubehMMFkYXL82TJVNNfWRGc3lTRwA/J+HovF8vQQ+nHlnFo+V7z//vt89atfHf99/PhxVldX76vsYDCgUCjse2xjY4P5+fkHasPHH3/MmTNnxn/ncrkHEvng/mequZuH73QdfGPe817fFNB4iLomgfoBj/8+8L8Onzvo+YPWPw38a+AvHPD894H/L/DbQBcj1B2GB5SAvwb834E3D1jmu8B14ApwEUgxktwORqpzh+2Zw6TZvQG8CrwM/OIh69XAW8M6wchyWxhxLhjWNRLnlobtepTX0WKxWCwWi8VyP9zZr/joo4/48pe//Axb9GR5lv2o1177N1y7Vkc+2jVqyzNmlJomhBHqtDZCW6WyKz+NpKogcAlDlyxT5HIeUiqU0uRyPvPzRWZnC0xMmIu5aSpxXcGVK3VqtR79fsJgIBn1UYUQ+L5DtRpy+vQ09fqAwSDj+PEyQhiR78iREkpput2Era0eSSKZnMyztdUjy8wgRa3Wo9OJx3+PZLjDttVxBJ5npK07j13XBdc1CXyOI4ZCntn+QiFgZqbA7GyBX/mVH6NcDul2E1zXIYoyNjd7Y9Ftbq5ILmcujC8tTfPmmyeH0uGuyJYkd79xgsDl7FlzLeXChdqhy+xNfbsXWmveeusGV66Yvnq/n/KjH62xudnDcRy2trpEkaTbTRACpqfzlMshSSLp9VJ6vYR6PQI0QeDheYKFhTKOI5iYyPHVry5w4kSFyck87723xvp6l62tHs1mzORkSBh6xLFkerrAkSNFJiZydLspt2+3OXq0zOnTU7z88gS/+Iuv3HNbLF987kcufRxlLBaLxXI3th/1NMejYHvlU97+//w/6Gzdpr15m6jbRMsHv/nUcghDSQ4hcIMcvu8PU6tNx8d1XGSWopTCD/M4roefLyBcj6TXxvUCsjQiS8xNoSpLUMpM/qCVRnjDGx0RuEGAF+QRQpAlA7IowvH9YbdH4/gBnh/ihXkK1SnKc8fJlydRaOJuC5UmFCZnqR45ydSJJXKlKtsrn3D7wz9BSUmvsUXS7wDg54topYaSW0KWRGglwXHQaYoTBAT5EqWpI/hhHqUklbljzL78Bm5gxqsmj7/Cia98Y9yXkFnK9Xe/y9on75HFEcL1CIsV8lVz807S65CvTlGePc72jYuk0YCk16bX2KQ8e4zqkcW7dn9r4yadrdsUp48wefRlqkdO8tJXf+6Jv+wWi8VisVgsTxvbj3p6/Sjxdx/+fiv9/7a3wj4qlzcu818v/Vc+vPUh7628h0YzW5odywMjmWCru4VA8LWXvsaZY2f4+dd+nqUjS2it+f7l73O5dhkwMsVm26T5BF7AXGVunBa0NL/Em0tvPpJA9/1L3+dS7RIr2yu8e+NdMpVxbOIYqUzpRJ1xm7tRl1jG5LwcgRfw2vxrtAYtNJo3jr7BTGkGAKkkV2pX+PD2h0gpQcDKzgpKKdpxm17cA4YioONRDM3kJ0IIOgOzPqmHCeJDMWi0fQJB6IemXFAkVSm9uIfruCb1Lx08ykv3xLBynuVJMpLMxrfaimEanfBIZPLIAh0YUcxxnOH1HSNFAWNxbyysCdcIdNoIdHdKdA/zXhilTuaCHLOlWeYqc+x0d7hZv0klVyH0Q/JBnuniNJnKyHk5enGPer+O1ppyrsxL0y+RD/J8/eWv86WFL4GGy5uXublzkw9vfUg7bjNXnmNlZwWNZqG6QCkscbtxm37aJx/kqffqZFnGlxa+xO3mbebL8/zEKz8xPvcBbHe3ubh20ZzbX/4aOT/Hzy393IHpcAeRyYx/9z/+HYlMuLxx2ch4wGRxknJYphN3aPTMfexHqkdYml8i9EJ+5Sd+5S5J7/zN87x7412UUlzdvEqtXdu37wViLOI5jsPXX/r6A6Xl3cnljcu8dfktBsmA9268d9dnw/3un8PqmSxMst3dpjVoUe/VWa2vUvAL/NzrP0cxLD7QfrZYPm88j/0om0D3glIs7retkyQ5ZMm7OWh2mDvrexjee++9Z/6G+OJS5eEEuuohj/8pRhpr3Wc9beDIsNxBAl0X+BRw+Gx5juHzDnBpWO4gAsxo5W3gR5jEOjX80Zhv27XhOieGP6eH5Q7jAkaeU8DVYfm9X4ZXgPlhPZeHdZ67x7aMiDAS4acYMS8PvI6R8GyancVisVgsFovlcJ5mP2pmpsDly/czgYbleWYkm2kNUoIQGiEc+n0zGOD7LtVqjl4vxfcdFhZKtFoJaSoJQx/HMVJXqxUTRZL19S5f/vIsrgubm33C0KVcDsb17cVxHLrdlJ2dPp7nUC4HdDoJWkO1GjI5maNcDmm1Yra3+3ieS7MZ0e0mKKXJMpNmZwYijfx3r/S50ZjrYZKdEewgSUwa26idaSpJEkkcS370o3V+8RdP8RM/cYwPPjCpFIuLpr8spWZ7u8fqakwUpXzwwQa/+7uXOHq0QpYpCgWPIPCGSXf7pTutNf/u330ACJaWpogiedcywL7UNyEEWaa4fHmH999fo1YzA7Xz8yX+7J9doN9PuXKlTpYp3ntvjVu32mSZYjBIabUiBgNTt9kvgnI5ZHGxyvXrTZJE0mzGxHGG1kYmdF2H27fbTEzk0Bp++MM1rlzZoVDwmZzMk6ZqLDzWal1mZws4jkOjEbG52WN+vsjGRpcwdDl50uyzUVLf88YXTcx6nrfns+TSS5d2eOed1bvE0YcpY7FYLBbLYTzt8ahBa4egUCKNI6TMjARleXzooSyHQGUpBCGe7yKlRCYDlHDwghChFI4f4HoeSkryxQpojNiWpQhApjFSZgjhoJU0yQJxCp6PlysikxiZxCiZDdPsXHRqUu2kzCCOSF0X1/NIB10aazdwPZ9k0MVxXBzPJyyWKUzOs/yD75AlEaXpI2gNcbdJa2MVrSX56jT9+ib91jauH5LGEVnUMzeROT7CEegkoR9t0W9skatMUqjOsL3SJU1iSlNzTB49RePWNXKlKrOnzrB57UM+feu36W6vA6BkStLvDvdTRJArEhQrpHEfL8ihlSTuddBS4gUhYWkCpSSDVp2410bLDOF69BqboBSuZ1IcXN+/r5ftoBS8w1L6LBaLxWKxWCzPHntf34vDemudW41bLG8vo7UmkQnb3e27xIUkNULcta1rTBQmWG+ts3RkCSEEby69yUR+Ypzmszi9fzKO0As5e/wsZ0+cfeTruYN0QK1d472V91htrFIJK1zfum7Sg/ZU3Yt7KKUoT5TpxT0a/QYL1QU22htcXLvIZGGScq5MJ+rQ6DeYK8+RqhTfMX2cbtQlF+RYV6ZP5bu+SZpXEle4SIw4lypzb60QAt/xjUynNFpoMpUhE4nneLjCRWk1TvVzhIODScuzWF4kNBqFGot0AjNJqRLm/fE43E2pJUoqc07QjCdCHa3fwcF13X3Jb1rqu96To/Y8iETnOi4KReiFhH6I1nqcyBl4AXEaE3gBxbBIMSiy1dkizmKklDQHTXZ6OzR7TaZL05yYPGHqG078lGQJpVwJqU26ZiVXoRW1WG+tUwgKxFlMs9+kE3XQWpMP8gzSAUIISmGJerfOZnsTz/Go5qvMlGeYLEzS6DfYbG+yOL04PrffD3uT8WrtGsChElqtVWNxanFcbu869qbBXd28eqiI96hpeXtZb5lz+1ZnC41msji5r90AM6V7759Ts6d459o7EMB8Zf6uz5g4jUmyhPnKPEeqRyiGRUIv5NTsqYdqt8VieTjs1ecXlFKptO/vfr9/32Xb7fa+v13Xvau+zytXr5oZ0E+fvvaMW/K4edib0w4rtwasY9Lc7odsuPzaIc9fBDaAzn3W1xnWdxH4ywc8vwD8AfBfge1D2jl6bBv4I+Ak8POHrC8Dzg9/vzpsK5iEvvKwPY09jy9hhLszfPZpVgG/NWzrNkaeUxhB8A+B/wD8EvB/Gz72bLl69SoAp0+ffsYtsVieL+x7w2I5HPv+sFi+WJw4cXC/75VhkNS1L1o36gXBiHTmhs+RNGVEOgchYGdnAAjC0CEIXPr9jF4vpVgMyOVctIbz52torZmayiGlpl4fDOsxiXZKGZFNCCPK7ez0cV2Hqak8Wgscx+HMmVlef32WON4kl4uZmyty61abWq2L45gEuZGUN5J/kkQeKsbtbt9uot7eEZZREh8YkdC0l3G7kwS63YSlpSniWPK7v3uFH//xHt/61o9z40aLtbU2n366w/XrdW7caHL7docs260/ilKU0lQqIZOTearVACF2+3UrK00zKCpNma2tnpnlcM/2rKw0mZ8vcfr0FJcv71CthgD8zu9cZnm5MU7hG/Gd71yj3Y6ZnS2wutqi0YgBKBQ8JiZyDAYZnU5CkmS4rsP0dI6JiTxKQb0+oNczqRyjerPMyIRKQbsd0+2ahLpGY8DsbJFOJ+HWrTaNRkS7bdaVpoowdMnlPHq9hDhOiWNFtwvtdoLWmoWF8v0dnI+Be30XyTLFtWt1/vt/v8mlS9tjmXNmpoDrOp9LMet5F83uTEk8SC6F/eIo8MBlnsS22e+2lseJPZ4sjxN7PD3/yDQlLE0Amjg3g/SreI2VZ92sLx5ao7OEqNvC9Xzc4U1JqIx0IBGOgxfm8fyQ/OQ8WqXofheZRmTxYBQiN6xKmRscAdfx0FqTDrpG7BImyQ3AcUFLgRAKrRQoRSZTZCpI4gidZSAEjrs73hZ1mnS2NyhMzJArVVn/5EemPuGg0gSNJu60xpJe3GubuhEgQCuFcByEcHA8H5VlxL0OudIkYZgn6XfpDdc1eewVNq99RL+5w60P36G7vU4zcem1tvFbt8bbItMULVOE4xLkS2i0kQ6FgwZatZu0t9fo7mzgh7sTP6ZRj+5ODcdxKc8uoLWmODV/j5dJs7X8EZvXPkKm+yd4ra9eZe3iD5l56Uv4+RL9hpXrvqjYzy7Ls8Yeg5bnAXscWiwPziuhGZC6FtsBqSfJIB2w2lhFKkk7auMKl8ALKAQFcl6OKIvoJ31SmRJlEROFCW41bu1LTxNCcG7xHGeOnWF5a5n11jqJTAjcgIXqAqdmT40lh0xm91zmILTWXFi9wFuX3mK1vsp6a504jVmP1/EcDyEEU8UpZoozxNJIJEmW0I27TJemqffq/NQrPwUCaq0ajX5jLLUIxG7iooCjE0e5tnkN3/PJ+3l6SY8kS3Adl9ALGaQDkixBCIEjjADkuA6e6yEzSaYzk7AFKKVIVEJdmnQpz/VwhIPSCs81iVt38qyP/ZFgZOU+y5NADP9DAw54jjcWUV8OXkZp9ViOfW3MN/P7HQPMGo2SRkoLvGCcPHfQMf+gKXQaTSpTHOHQGXSI05gojfBd3yTiCSj4BUphiVqrxnp7nX7Sx3d9AjcgyiLacZtYxvz+x7/PL335l0hlysnpkwRegBCCcs6Mvc6WZ0FAe9Cmn/TH571iWCT0w7H81Y/71Pt1hLM7lrbR3uDa1rVxOl+SmXPRQeekw3hcEtrjEvEehNF2jra7HB48nl3OlWn0G4fuH8/1OHfiHO/eeJfTc6cP/YyZr85zetb0A84eP3vX553tK1gsTxZ7hfkF5ciRI/i+P06T6/V6SClx3XuLVtvb2/v+XlhYeCJtfBZ85zu/BMDp07/+jFvyuIkeczmJSXV7EFocLtxtYxLd7pU+NyIbLr99yPOLwG8DW5+xzhFyuNx/Bv75IcssAwlGcBslz81jpLY+EAJzw+dqw/WPyh32hUwB/wojyjUw+7o9bI+LSf/bwkh5a8A/5P4lumy47vVhuwOMVHiKRzntf+c73wHslzKL5U7se8NiORz7/rBYvlisr/cOfPyXTDeKX/+idaNeMLSGIHCQUjMYZPi+QxRJpATPE3Q6EtcV+L5LPu8hBNRqPXI58/vWVp9+35QbDFLiWKIUjKbyU0oTRRlZpggClyBw8X0Hz3MJQw8Q1GpdhLhIlklKJfPZkWUarTOiKEMpPZbmRmlx99omI+/pA2UaIQSuK4bt1GOJbjRo0u+nXL5cp16PWFqa5r331vjt3/6Uv/E3vszt221Ac/16k+vXm0RRRhwbQW3UzjB02dkZsLbWYWoqz5/7c8eoVvN0OjE7OwOuX29QLpsk9G434eWXJ5maMil8nU5MoxGxsWGS1199dYrf/M2PSBJJrdaj2TQJb71eguMIJiZylMsBKystPvkEHAeKxYBSKRgmzpllADY3e6SpYnq6QJJkXLvWpd83cly/b/bzSO6TUiGlIJcL6PcT+v2E+fkSN2+2mJ0tMBhkCAHlckCzGdFqRTiOIAhcXNehVusyM1Pg+PEK9Xqfixe3OH16ipWV5lNJRDvsu8hIMvvTP13no482x0l+aaq4eNHIgEePlvmxH5sD7l/Metapbw8jpz1tie7ChRpXrtRRSnP1ap1arfuZ4ujouH3QMufOHXnsbbffbS2Pk3sdT8/6fGL5fGHPT88/ru+bG++EQ3Tia0ZOsgLdk0NJZGJS1cYzZwgXLwxxHEGuPEWhMsnmtQ9NAluagHDQWTpMJzCTiWjAEUZaU0qilUQqaXo4SiMAhRzPWq4ZzmCeZZhnh2kH2qQJmHaAcByyJCKNevTzRVSWoqXEHQprSmXmMWWkPK3VMGBPAMKsWxuhTmuF43homTFo7+B6HvmJabTW9BtbVGaP0dm6TWtjlfbWbXqNLW74pyA8zmx8xUx6kiYoKVFpbG7kjHp4fo5IG1HPzxXRStLbqZFFPUrTC2bijSRCZSluEBIWy3R3aiBcqkdOHvrSaK1ZvfA2jdvLAGRJRL+5jcxSXM+nUJ2ms3Wb1Qtvk6tMMXV897w2kuvmXjnD7KkzCCHuSrETjoOSGY7roZWy4t1zjP3ssjxr7DFoeR6wx6HF8uD80oQZkPr1mh2QepJsd7bJZIbWmjiN8T2fheoCpXB3os1u3OWT/iekWTqWQ7Y7d9/H57keS0eWDhQaRgLc+dXzdwkIl2qXeOfaO5w7ce7AlDqtNW9deosrm1coBkUavQaZzBgkA6IsohgUmS3P4jouUksquQoNv0GapUglKYUlikGRer/O0vwSi1OLbLY3SbIEz/HQQvOnN/+UVKYorSiHZaqFKrksx9HKUa5tXRuLEFprXMfFESbBKufl0JhkulSm4+elNAl1uxth+pCZzExZx8VzDhbonodj38pzlifJSEgTCPM+0aC04pvVb6LRT/zY12gcxxnLt1odLMgpbZLyDmIkAmphhFONmbRWKYUWmk7UIR/kibMY3/UphkUQELgB1XyVJEu41bxFlEZU81U81yOTGa5yTeqcVnSiDldqVygEBQpBgdnyLCs7K7iOS87PEaURc+U5pgpTrLfWh9exBBOFCaIkot6r4zs+uSBHL+6NEzBdx6WSqwCwsrOC53qcnDLXdwI3uO/9+LgktMcl4j0Io+0MPPNvJz44DKYTdfYtd9D+OXviLM1Bk8u1y3d9xgRewFxljpxvxj+X5pc4e+LsXXXYvoLF8mSxV4pfUFzX5eTJk2NLWWvN5ubmfclwtVpt398nTx4+EGJ5Xmjfe5EHKvcBD56NrIblDuIWRvS63zr1cPlbhzz/AXCd+0/Ikxjh7APg6wc8vz78dxOoAzEc+EW4hpHpaphEu3UOF+j+I/B7mH1cA7rDduhh3U2gNHzs2xgB7pfvsR0ak3x3HrN/9nIJeAc4B5w9pP1Piycj+FksFovFYrFYniwjkcfyxWGUCmdEMwW4KKVwHAhDlziWJElGHIPrmpv1jRhnZLgoymi1IjzPMSkCW12CwCVNh4McwxtJR309rTVZplDKJNM1mzGFgs/kZI7NzR6bmz1OnkzHYoznmfJJYiZbSRI5lrtAj+W3O5PbDkLdMdAhBASBkcRc16Q3CCHH7fY8IwtmmWJnZ8CVKzu89toM3/veMidPTnDlSp333lvj44+36PUS6vUBcSz3zVg4GJgbXPN5IwzGseSllyYA+PTTba5da1CvDxDCJL3Nzxd4/fXZcfntbSOcmRQ+wUcf1eh2U3Z2+tTrA9J0d7CyVuuRZRLPc/F9lzSVDAYpruswGJj91+lEgMD3HXq9lNu320xO5mm1IgaDbLx/HYex4GgkQwfXFWjNWBSUUtPvZ8zNmSS6djsil/OBFCnN6+w4pkySSDqdhF4vpdNJuHy5juuaPumzSETbK5mtrra4datNu52wvd1jMMjI5Txc12FnZ8DKSpOvfGWeV1+d/kwx63lJfXsYOe1JiGaHEUUZv//7V9ne7rOy0qTVisnnPY4fr1Kt3i2OLi1N8/776+P31dWr9fFzk5MHy6ZLS9NcuLDBmTNzVjKyfC55Xs4nFovl8VKcmkcpZa7K741Ctjx5Rvt6KJw5fg6lUrr1DbywQL+5bWS18fiUGPZj1DCFDsZjNxqQ2XhJLQQCFxBmZnKth5Ib7E5pPvqfGMp0Gi31MElOkvQ6CEfgegFZbNK/heOglUbJbP+xos1U7I7rDvtAGpVJMyejgiwe0G9u44V5hHBwg4BufZNevQbCobu9QdxtwoSJCC/PHaPf3EJlGSoboLRCK0kWD3BdHwCVZfQbWwjHwfV8Bu0GWZLg+ubmIHM4K3RpAo3G9Tx2Vj5l7pUfO/Dl2Fr+yMhzWtNYW6bf2Bp/19Nas/Hp+2bm9YlZultrJL02YXkS1/MpTpgbpdY/fZ+o0yIsVdha/hiZmqTr7vYana3bKClxXI/y7FHKs8cOFO+eB+6U/6zsZ7FYLBaLxWJ5kdgrwAEMkgFbna19cgHAuzfepTlo8ubSm/u+y19YvcCVzSsopWj0G6zUVxikAzKVkcmMTtTBEQ6VfIVmr4nvGVmlKqo4jsMgGfDm0psEXoDnmO/fJ6ZOcKtxi5WdFW43b1Nr1cj5OXpJj7pb59TsKWbLsyilmCnPcHPnJsvbyyitKHpFSmGJOI3pJT1CL8RxHZLM9FcSldyVeDXaD77r4zkeOS9n5Jz0wdKtLJbPOxqNK4wgJpUcJzlKdb/3/j4eMp3haAeZSZRS4xS6g9p7J65wyft5XMclUQlSyrFA57v+OG2uFJYoBIXxNpvLRYJYxqy11ojSiMALSGRCe9Cml/SQShJ4wTiVrz1o4zgO17ev85Ov/CTzlXk22htEaWTOf3GHzfYm9V4dpRU5P0cqU3pxD9c1Mt5OeweNppqvEvohwFiuS6RJ00ylWd9C9f4Ddh6XhPa4RLwHYaG6wKXapbGU2Og12O5u35V61+g3EIjx59RB+0cIwZtLbzKRn+D86nkAFqcX9y0TeiFnj589UBK3WCxPHnv19QXm1VdfHQt0AJ9++ul9CXSffvrpvr/feOONx942y+PmcSfQ3XzI+g4rd/Eh6zus3L8F0gesKx2WO0igG8l91zCpd1PD5TvsJsZVAH/4/DVMCt1hX8gi4D8My9cwCXQZJmHOHf6e7NkGgRHu/i9A7pA6NfAWcGX49wCTYDcS1OaGj7+LkfPe5OlLdJ8Xwc9isVgsFovFchBR9HQvUlueDq7rjAW0OM4IApckkaSpQmuTZKYUZFlGlgmCwENrTS4XIISg2YyGgpapwySSiTsGAgVCMEx40ziOEeDi2CTq9PsZ9fqASiUcp8vVal2yzCSgJYlpS5apYZvNxEBGptPDuu99H/Lo2rPW4LqCMPRJEjm86dO0y8hzDvm8z+xsgVIpYHt7wM7OgMHAyH2/9VsXefnlKj/4gUnxqtcHSKkQwpRXSg23w9QZRZAkih/84DZnz84Thr5Jvsi5rK31yTJFpRJy+3aHyck8MzMFXNdhZqbA5GSOej3i449rrKy06HZTkiQjSRSg8X0XIcy64lgSxwrHSRFCEIYmLTCf94milChyabd3+2I7O4Ox2JemRv4byXyjlMAsU6SppNeDNDWCXaeTkM/7SCmZny8ipWJrS5LLeczMFGi3I5JEUSh4FAo+7XbC5maPl16aIJdz+eCDDcrl8Jkloo0ksyxT/PCHazSbEe12PBYNs0xRreYoFDza7YRPPtlGCHGomHVY6lsUZfR6Cb7vDgXITT78cJ5f/uUz+L772LcryxTnz28Az59oNhKCfv/3r/LRR5ukqWR1tY3WUCj49HoJU1M5zpyZY2dnMBZHFxertFrm2lSlkqNWM21/441ZZmYK4/r3yqaLi1UAlpcbLC1NP9HtslgeN5+HFEmLxfJwTCy8hOcHPPjEhJbHh0amMXGvRVisEDd3iPsdsiRCy9HkhkMcF60U93y9RnOFODBK3taH3dwlQAgXLRQoDcIBLUBLtHRQIkNJaeQ5KU2BQ1dv+ldojeO6QzlTI5OYzPVJ4wG5UpVBa4e1i+/ieAFp1CPutVFZhph0EI5LWKySxRFpv2cS9obrB4FwXXLFKkopevUN1PBGJOG6aCXJFStG1HNdZJqQ9DvkKxOUZ4+xee1jZl760l0SmJIZm9c+AqCxtkyvvglAWJogyBdprt2g19xCpimt2iqO6+F6IdOLpxGOS2fzFoXJWSYWXuba//gD/Fye8uwx0njAxuXzDFrbOI6LF+TIkojuzgatjZscee3PAEPxrtvixFe+8Uw/P7XWbC1/xOa1j0z64R6eV9nPYrFYLBaLxfJiMVOaGacw5fwcwhGst9YpBAVyXo4oi+gnfTzXw3VcBALf9e9KB/os9gpwVzevUmvX9kkpKzsrzFfmOT13msu1y0zkJzi3eA6ATGZjIeHq5lU2O5uUwhKZyijnykZ8QY2FupyfI1MZR6pH8B2fer/OZGHSJCxNn+TnX/t5rm1e49sffpvlrWV2ejt0I3Mtut6rm0S7sEitXSPOYqaL0ziOw+L0Io7j0Og1SGRCL+7hCIfJ4iQoqPfrJp1PpSZtjoPFuExlCASZypBSGnFI2zFZy4uF1HJfstto4qCnKpNqxuKbcIWZAOk+cIVLMSwSuAGe61F0ikRJNE6wDP2QicIEE7kJ5qvzVHIVEpkQZzEvT7/MJxuf0I26NHom1XIkg40EtsALKIZFerGR6ba6W0yVpsyEtUpyeu40CKi1aniuR5zGJFlC6IUEXkDohXjCY7o0TSpTOlGHQToY1+06ZsyyG3dJsoR8kOf45HG2ulu8vvA6p2ZP3fcufFwS2uNMg7tfTs2e4p1r70DAWEq8uHaRycIk5VyZTtQZJ4/OV+fJ+TlCLzx0/wghOLd4jjPHzrC8tcx6a51EJgRuwEJ1gVOzp/DsBEoWyzPDvvteYH7yJ3+S3/u93xv//aMf/Yif//mfv2e5Dz7YnyL29a8fJBxZni8etlN1WLneQ9Z3WLkIHjjmW3G44Pc2Dz4QrYflDiLApN2NEvnWgTV2xToxXEZgEujaw+VfP6S+PwI2huV3MKJcbvjjYvZ7NPzZwQh7G8Nyf+mQOi9g5DkFXMWIeXv3wQowD5wGLgMTGFntafF5EPwsFovF8vgYpY32MJ8B38emjVosn39G8pLli8NeKW34CHFs+hGOI3Ack/Am5SjhzUEIjeu6RFFKtZpjMEhJEomURhozoQt6KKuJPWKakdak1OM6QSGlotmM0FpTrw84edKIaFtbfdrtmCiSZJkc16WHCQ676xLD+vW+7YLdhL299xyq4eY6jkMcy2FKmh6Xc93RdmuSxCS6lUoe3W7GxkaPmZk8t25Jut2E7e0+vV46TG1zhvKZIMt2ZUGz7yRRZAY5/uRPbvHmmy+xvt6hXo/odtOxALe9PeDSpR2uXWtw4kSF48crlMshN2+2uH27Q7ebMhikw3ZDqRTgeWZQI4pG9SiyDDzPwXEE1WpIuRwCeSqVkA8/3CSOJZ7njNP1skyRZWo8GGXS5czrao4DGAyMnDfaL7mcN5T3BLmcEeWyTFEo+Git6fVScjlvnG5YLufo9RL6/ZRmMx5LIIclomWZYnm5wfp6ZyyOLCyUOXVq8pFkr72S2XvvrdFoREhptqtQ8KlUgvEx4vsuCwsmHXF9vXOomHVn6tvGhnltG41oKHlCpRIyO1tkY6PL9etN/spfee2xp0ctLzdIEslgkD2SaPa49/1eIWh7u0+aKm7d6tDpxOTzPrmcR5Yprl9v0u9nLC1NMTmZo9GI2Nw0IiIwTHg0QuDebQLGsumozOJilfX1jhXoLI+FJ3U+OojnPUXSYrE8PI7rUV04iZ8r3HthyxPCfO/Poj6d2k2UUmTx4EBR7lAJ7i40WmVo7YwKHr524eC4HkqmaJTpmIy/CipUNuyTKJOUB+qAtEIxTK4blhXCpNQNt0ApiUwTBs1t4m5rnKzn5wqoNCWJ+qgsNaIe0G9vG4FQm9vRtFbmpk7HNcu4LmG+SJbGxJ0GWRLhhTn8QpHS3HHCQgmALInIkgjHDZCJGbdrrt9g6vjpffuguX4DmSZkSUS/sQXA9MnXyJUn6WzeoltfRwhB3GuhZYaXK6B9SXenRnFqDsf16NU36Te30UrhuC5p1Kdx6xr91g6gSfpdZBrjBiFBvkzcaxN1W0wvvsrk0VM0bl0jV6oempD3pNFas3rhbZPCh9l3/eY2MkvvTtl7DmQ/i8VisVgsFsuLST7Ic2ziGNe3r6PRJGlClEagMdKccPE9n8AJxvLF8cnj5IP8fdV/pwC30TbX7CeLk5TDMp24Q6PXMI8LWJpf4sKtC5w5dgbP9VjeWiaRCYNkQK1dA+DHjv8YKzsrrLfWAZMQNZJQ8n6eYlik4BfoxB0quQrHJ48DjIWXftrnVvMWCFDapNp1og6DxEh4/bhPe9CmGBSZLEzy4yd/nIWZBdCYxKnUSBEazVZni17cQynTxzpIAnKEg9AChcLBwXM9MpWZiQ7t/XKWFxQ9/G/0dnF5/JNR3mv9GeY6y4Pcbi0QlMISgRcwXZzGdV1agxb9uI/WmonCBEeqR6gWqrw0/RLVfJUjlSOst9aZr8yz1d1iu7tNN+mSyQypJJ7rEbiBEZf9HJV8xST0STlOmpufmKcUlhikA5bml1icWuSDWx/gOi5HJ44SZzH9pD8+/4xE30a/YaQ61zMpnEOJK+/nSTMj/E4UJkhlynRx+oEkr8cloT3ONLj7xXM9zp04x7s33t0nJTb6jXGbBYL56jynZ801r7PHz95z/3iux9KRJZaOLD102ywWy+PH3r36AvPNb36Tf/7P//n479/5nd/hH//jf/yZZbTW/P7v//6+x+5HurN80XjQdLd7lcvxcALdYWlsDR5OoGsc8twssAqUgE8xgpyPOYWOhLcMs30V4CWMQDd7SH1/PGz/xrCMO6x7NF3p6O90+LOBSbT7Yw4W6DJMqhsYeW4d6A7rCTCSmmR3Hy9hhLszPL2Pgedd8LNYLBbL4+HOtNHRLMqXsGmjFsvnH+fJBhRZniGjezKlBDDCz0gKyDI9TCYTZJmi00nJ5TSeJ4CIJDGpZErtr8+k1+3Kc6MEulHam9Yaz3PwfYdi0WcwSBkMMtJUIQRsbvZIU0k+75KmkixT43VIuXddpvFK3S3L7X18xOh3I02JodQnUUqMpcFRvUpBq2W2MY4zkiRjMMhwHIcLFzZIEjVM6tMopXFdZygG7q5rtC9arZhczufq1TpzcyW2tvokiUnuS1NFqxVRKgVjodHIRClxnNHrpXQ6CWlq2qE1BIFHoRCMRbgoMu1K02y43UaKq9cHQ4EOyuWQUsmn3Y4JQxff98gyPZT+1B6xEUANxUAxfH31WDA0Ep1pu1mXplgMmJgICUOP1dWMMHQpFgOSRLKwUKbTiel2E0qlkHzeZ3GxemAi2vnz62SZ4qOPNhkMMra3e7RaMVmm8DyTyvcLv3CKr3514Z43kmaZIo6NgPnd714jCFyiKBtKn4pbt8wkOaVSgOs6FAoex45V6HQSbtxo0OkY0W8wyNjY6LK+3uXllyf2iVl3pr6tr3eo1XpIqZiYMNJgvT6g3Y5pt2NeemmC69cb/Mmf3Hrs6VHr62aWxa2t3kOJZqOUuPPnN0iS/SODly7t8M47q5w7d+SBxb+9QtCNG01u3WrvSfwT3LjRHAuGtVqXQsGjXA5pNMx7zxybmmbTtDnLFJcv71CthszMFHFd05a9ZYC7tsFieVCe1HviMJ7nFEmLxfJ4mDrxKpX5E4ieuGdysuVJYHa6zFLThxACKdPPlN7uv+p716GVQjtq2AyTVrd/GEvvPj76/c56h16dFhJwYCz6CYTrIIQDjkOaDFC9Do7v4QUF+o1ttFaoLBumwmm0lPR21snSBJlGqDQ16x312WRK0u+S9Ds4jgPCwfV8vCBHWKjg+j7FqTmCQoVCdZrtlU+Juy16zW0qc8fp1Wt3CXS9eg2lJNs3LtFYu2H6mHFEGg3IksGwDQKZJWgp8bTG8XzSqMegtYMX5EAIBq06lflj9JtbDFp1Bp0GXlggi3vjfouWw8TusEDUadDdMTfVTh575dCEvKfB1vJHRp7TmsbaMv3G1r709lHK3vMg+1ksFovFYrFYXky01jT7TW41b+EIh3bUJk5jXMdFKpPMFHohpcAkvhVzRb4++3WOTx6/b3HhIAHujaNv3CVGXFy7SK1VY3FqcVxu6cjSWJLb6myh0UwWJ5krzRGlEUIIrm1eQ2lFzsuhMRMgOo5Da9CiGBaZKkwxX50HjGyRyYzfufA71No1aq0atxq32OpsEWexSYUb9r0G6YB+3KfRb7DR2eD1+dfRaApBgdANaQ6a7PR2SDIjHCqtUFodmKCl0fiej0AgtUQqiVJmWfXA91BaLF9MPg/vhVGyZC/pUclXCLwA3/WJvRjP8SgGRZbml5ivzPPlY1/m1MwpZkuzIOCda+/w0e2PKPpFlFJ4jkc/6ZPJDOGYZM/QD6nkKsRpbAQ3JyXn52hHbb5c+DInJk8wUZjg/Op5pJJkMmO2PMtme5Ne0sMVLovTi7i4rLXX6MU9NBqpJfMlcx6cKkyhtMItumZdMqYbdfnSwpeo5qsPtD8el4T2uNPg7pezJ87SHDS5XLs8lhI325skWULgBcxV5sj55p71pfklzp44+0jrs1gszw4r0L3AfO1rX2N+fp5azXRE3n77bT7++GO+/OUvH1rm29/+Nmtra+O/z549yyuvvPLE22p5VBweXFAblTuIh53d4bByjzsh72G/PH9WOY1JTGtjkuGSA5YZld8ETn5GXVuYRJ7+8G8BxAcsN7r5pj9cfuuQ+paH7RlgBL8doMh4NBVn2P5NoAWc2FPuacxscKfgtzH8fRIoAx2MvDh6/FkIfhaLxWJ5dA5KGx3efMNNbNqoxfL5J5fzn3UTLE+Aw27eNclhepz6ppRJhnNdSNMMKQWDQUqW6X3S2F5MOpz5Xand9LdR4prrCiqVkCNHSnS7CVGUodRuXZ7njtPs9GfcZbxXklP36A6OEueM8DZqlxhLgiPRz3Ud4jijVPKJonSc7FUuKzxP0GgMUEqNb9AciYdB4I5T2kxbzPMj0bDVirl+vYFSmnY7IUlMgweDjFYr2icTXbtmEsX6/RTXdYbrMxJbtZpjYmJ3Upksk/T7yTCVz2xnmiq2tvp4nkMu5w33L/i+g++75PMecZzhOIJWKyLL1Fj6M8l5aiyF7Kb/iXG6YL+f0e0muK55kZNEks/7BIFHGHpMT+fZ3h4gpRHZCgWfhQWTnPTSSxPA/kS0EycqXLrU4ubNNmkqWV5ujBPiXNehUgnZ2Ojy6afb/PRPL/Krv3rO3Mx7B3ull37f9N2vX28CcPnyDtvb/bF4WCh4BIHLYJCRy3k0GgMajYgokiSJZHvb9NvX1rr86Z+u0WpFtNvROIVqr5BXq3VpNIwIWSwGbG31himGDq1WTBRlSKmYnMyztdXDdcVjTY+6UxwbiZN3cpBotjclDszxOGp/ELjjxMB33739QOLfnUJQqxWhNRQK/lhYHQmmAHNzRW7dapPPm88b33fY2OiyudkbHqcxaWr26cZGd19aY6dj6ggCd9+/FsvD8KTeE5/F40qRtFgszy+l6SNMn/wS4tMa4l5fWi1PBqVAOEiVDDtCT9Nk1Ggl0XrvuNZImLvjz9Fnyh0JdEI4Jr1O6/1ynRCghZHk0gQtBSDI4ph0MEDJBOF66DRDinjYt9Kk0QCZJSiZmfQ5pcEFreU4kU44LsmgP0zlE7heQL4ySXnmKJPHdseHg3yJuNtCZmYiTZnun1BTa832jUtcf+97tNZXSKMBfi5P3G+TDvpkaYTKzAQLWkqUzIh7nfFywnFIBj3SqG+SA9GgFFJmBLkCaEky6OEFIYW5oyT9LkIICpMzZElCMujRb2xRmT0GHJyQ96RRMmPz2kcANNaW6dU3AQhLEwT5IsmgR9xtjh9/1rKfxWKxWCwWi+XFQ2vNW5feYq21Nv47zVKTpqYVAoEQgl7co91vk/NzFMOikTweQFw4SIDbK88BzJRmmCxM0ug32Gxvsji9yHprnaUjSyTSXPcfJcyVwzIz5RmubV1jrjyHUoqtzhatqEUmM5MEBziOw1RxiiPVI/tki8u1y0bqyxKubV6j3q8beU5m+wS4RCakMsV1XOIs5nLtMq7j4jgOeT/PVneLNEuRSpprhZ/R5RTDlHTXdVFSGTlxOPnk50EaslieBgfJp88rg3RAa9CiG3XRaDzXY6Y0Q7VQZemIEbH+5tf/Jh+vfcy7N94lkYk5BzgusYyRWuI4Dp7jjc9ZruviCpfmoIkjHMq58r5xiJnyDKlKObd4jjPHzvCHn/wh17au0Y/7bLY3mS/P87WXv8Z8ZZ6LaxcRjplUthf3cF13PH9T4AWUc2XAnPezQcZsaZal+SVS9eBBK49DQntSaXD3QgjBm0tvMpGfGCelLk4v7lsm9ELOHj/L2RNnH9skqRaL5eljr7a+wDiOwz/8h/+QX/u1XwPMzXD/6B/9I37v934Pz7v70Oh0OvyTf/JP9j329//+338qbbU8Kj6M4oUfuNxBlDA3vj8opYco8zCUMaLYw5Q7iC3MvriBEQFGM+3v/ZIuhj/pcLlXOFx4ExgpbiS4jQZMXXYT7UY/arjcgMMlg/VhW94drnuUhhexO2tpHiOqdYbL/eyw3NMQ6PYKfrXhY28Aey9+bAMXh88v7ilno4stlocnw7yP1jHvwQBYAE5hvwJangwHpY2OpO2b2LRRi+XzTxDYC4AvClozTEIz/Ym9kphSGimNGKe14LOuCxuxTozlt9G9n1qD5xnJq983CWvVasjkZA7X3UZKPUzvSun3E3I5I6WZtLfD2/xZjKQyxzEimpECYdSvM9usUUoSBOa7UppKtrcH9Pspvu8MRauUfL6M45i0udEghhCCIHAJAne8/0aJe6P6TZqdx82bbaIoJU2NiOH7zjARDxqNAd1uwtZWnyBwcV1BEDh4njOW57TWpKmk3Y7H4t+ovzhan+OYdL3RPu73s/E25fM+jgM7O320Bt93h9uix8l7o3t1HUeP9+1IdhqJdlGUcfu2kZ16vYRm08hnYehRqYQkiSRN5VjUmprKUyoFVKu7YtfeRLQPP9wkijJu3mzRasW0WhG9Xkqvl4zT8CqVkJmZAv/H//ERly5t87/8L3+WV16ZGqcv3Sm9mFQ9xdWrdYLApd9PyTLF+nqHdjtmZiY/lvA2Nrrj195xGKb97R77a2tdGo2Y7e0+5XKIEOIuIS9JJFNTeTY3e2MpzBzXgm43HSYYxly8uMmRI6XHmh51pzg2Esru5CDRbG9K3NWrdWq17r731MpKk/l5Iz9evrxz3+LfnUJQPu9TLAaEocvKSgutoVoNabVMQt/UVJ5uNxknJ7bb5jgIAhfPc+j3E7rdGK3hyBFzjen69Sbr612iKEMIxmLTwsJh13gslnvzpN4Tn8WjpkhaLJbnn4mFl4z0JATCxns/I/QdAttTXru6c913dGK0BuEcKvftLz96ftQhM8eWUhmO8NEyRWbZMKXbGacaoPS485QMusP9sSfNTo9mJtFkUR/HC4xgpyTCddFa4QZ5HHf/ZAXJwMjfrmfGFV1/d3xRa83N8/+d1Q/+eJyGlyURaTwALRGOh0zioXw3msjDRbhGGEzjAb3GFkG+RDowM6V3tm6jtcYP8riePxTrIlxPkkZ9lFI4jiDpd8mVJ0njPlrrz0zIe9I0128g04Qsieg3zPjh9MnXyFemxssM2nV2Vi49c9nPYrFYLBaLxfJicmH1Alc2ryAQ7HR3+HTjU+IsRmkjeKnhpHsCgXIUrnLRWvPBrQ/4+ktfv6e4kMmM5a1l3lt5j9X6KrVWjV7S4/jE8QOXL+fKNPqNsSg3EucCNzD/eubfTtzBdVxOTJ3g+vZ15ivzOI5DlEUIxHgMwHd8jlSP3CVbvL/yPpkybat1auP1yQP6jxo9TqXbaG9QyVVwHZde3NtXzkzYeLhEN3p+r2xn5TmL5fOHHv6nlKI1aCEQuI5LMSziOR4LlQVmSjN85dhXePvq21zZNBOSD5IBW50tHOGQD/KUc2UGyYDAC1AoXFxSmRIlEZ7rEXohSisczDWeoxNHcR13fD70XI+cn2NpfombOzeZq8wxWZxkvmJS5jzHnJ9LuRKhb8ZpJ4uTBG5Azs8xU5oZn8Mni5OcmDphxr6H9T8Ij0tCe1ZpcEKIsZS4vLXMemudRCYEbsBCdYFTs6ceWdSzWCzPHvsufsH5B//gH/Av/+W/ZGdnB4Dvfe97/LW/9tf4V//qX3H69O7F+D/90z/lW9/6Fh9//PH4sdOnT/O3//bffupttjwMBYy89DDlDuJxJ7w97KnosHKvArceor5XD3l8JH71MRLKqHd7p0Cnh8/3h8sfts+rw2UDoMuuKOezmxiXDh8fLaeG5Q4iAVYxMkJvT5tHqT9iWMco6e4y8DJGonkarA//3Rq2p4rZtssYwccbPlbFiI+bGInuaQl+FssXDY0Rmc5zd1rmJeAdjLR0Fpv+ZXl8HJY26mI+1yaxaaMWy+efTufBZxizfD4RwohaUu5NHjOMkumU+uxUuBFS6gMlO60hTRVTUzmEgGYzplIJcBwxlrlcVzA7W6DZjNBaoFRClj38bIN6OAAZBO5QxjPpeY6zN2XN9O2yzEh2g4ERz/J5dyyaVas55uYK3LzZGifWaS1IkuFAJ3en5jmOSfoKQ49eLyHLFJVKSKUSEobeeB9FUUarFSNEyvR0nmo1T7Ho02hEw8Q4SZoqms2IUknhee6wXEocy3ECHQiCwBsnvSWJZGOjS6sVEcdmFkPHMf3FTicevqa7r/Wd/+5uh5HoKhUzuNJoRGaQVyqSRJGmMdWqEffW17vjenM5j2LRx/cdZmaK++osl0N2dgasrXUQAtbWOqSpol4fjMW5OM5IEsnWVp/btzscOVLi7bdvEgQur746zblzRzh7dv4u6SUIzHlrbc2IKZubps/sec5YkHzllSlu3WrT6SRUKkYybDRMIp+UiigaHQM+QeBSq3V5551VTpyo7hPyTPlwLDcCLCyUKJUCgqBPlnXQWtNqRVy5Ijl9eppjxyqPLT1qYaHMpUs7zM4WWVlp0mhEbG/370qvMq8ZTE/nqdW6hKHDRx9toTXU6wPiWCKEkXfK5ZBOJ6bRiNjYMDdFLy1N37f4d6cQdOJEhV4vHR//RpSMGQwSpDQpda7rUK2GVKtGEqpUQmq1Hu12TJYpokiystJifb3LxERIPu8zGGTMzOT50pdmyeU8wtDl1KnJR96nlheTO5MTR8f+43hPfBaPkiJpsVg+PwjHwXFcssz2rSx72DvrhvnlAQqb7/SO6yGEmWzDcT2SJEJriRfkUVKilcR1PdRQlNOAltIkz40ncjTyGlqAAKUVKh6gVIrjuGg1Gm+CoFAZt2DQrhN3WwghKE6YiROLU/Pj57eWP2L1wttk8YC41yHuNkmjnqlv5OvJDCEcs14pcT0H1/WRWWJS8rLUSHdR3ySje2bMS7oeadQnGXRRWYYXhGilkMmATCmCohlXc4c3hx2WkPdZKJnRXL9Br15Dpimu71Ocmmdi4aUHSobr1c0Ek/3mNlprwtLEPnkOIF+ZIixVibutZyr7WSwWi8VisVhePDKZjUWHy7XLrOyskMiETO5O2H+n5JBmKdvdbUI/5NLGJTKZHSgVaK25sHqB86vnSWTCenOd7e42rajFTm+HftrH93yOTx7ft45OZK4vj0S5kcixUF3gUu0Ss+VZVnZWaPQabHe3OT55nH7Sp9aukfNzBG5AmqX4jpng45XZV3hl9hUcx9knW9TaNeq9Ostby8SZmbjwXslXGo1Ukm7cJXCN8OI5npHoRv0ppQ6tRyppJv4QzrgvZ+U5i+XzyUiIVUrhOi45P8fR6lEj1qF4/cjrIODK5hWUUlzdvEqtXdt3fpgrz9GLeviuPxblHBwKucI45TKVKa1Bi0JQYKowhdaaherCuI6D0jlHVPNVNtoblHNlfNenF/foxT1mpmeYKc3wxtE32O5us9HawBUuc5U5gH31P+g+eVQJ7VmnwXmux9KRJZaO2PuXLZYvIvZu1RecSqXCb/7mb/IX/sJfQEozaPK7v/u7fPvb32ZxcZH5+XnW1tZYXV3dV65YLPKf/tN/Igge3DB/nvnWt379WTfhCeHee5EHKve4Bbqdh6zvsHIvPWR9h5WrYZJz9ibGOexKAWrPD8PlbrKbtnYnX2I3bc4Z1tfFJMaNEuiyYX2j5bxhuYNwgQ8w0ly0p569iXYjUS83XO4D4H86pL47MSlW3/rWlzEyzvd5sBSrkcATA3VMeuGdCYEbw8fVsO695SyW55tvfetbz7oJe9DAW5gUMDDv9y12E+jmho+/i3nPvYmV6CyPh4PTRr/1rVHa6DFs2qjF8vnnMFfq17+o3agXGJM8Zr4jjES5OyW6e7H3HtCDlhfCSArtdsLiYn4sh333u9PEsaRQMClm5XKA57lsbfWIonQswakH6JZqbYRA3zezoXqeQy7n0eulCGEqMkKZEb/MYCX4voPjmOdyOR8pFWfPHqHfTzlypDSU50bbp0kSOU7u27vdjmNkNiFgairEdV2q1ZBSKRjKFoL5+eJwf8QmKSGRTE7mmZsrEseSubniODlMCCNM1OsDXNcZS3xSmtlffd/B901yYL+fkKaK1dX2WPZKU4njqLEwJ+XdO9MkVYx+390vJgHPpJgdO1ZFKUUQuJw4UaXdjpFS4TgOjUaE77vj9mlt5MDjxyu47v7vn51OTLeboLURrer1AUmi8DzzmkVROly3kd76/ZS1tTbVao4PPqhx/HiFd9+9zc5On5s3TV9zV3pZYnIyx+KikV46nZiNjR7Fok8u57Oz06ffT4dpiUawS1M5TtkDB60hDF1arYh2O+b48QpXrtTJMs3W1q6Q12gMSBI5lgwLBY9SKaDRGHDzZpMokhSL/ljMfP/9dW7dauP7Dq++OvXIAzunTk3yzjvm+t38fImNjS4XL27dJf2MXtMLF2oIYV7/9fUuaWrENMcRfPWrC5w5Mzdu0/Z2n4sXt6jVuiwumpuQ70f8u1PwqVZzTE3luX69yeysESnb7RiloN83kwCVy+Z9v/f48zxnnDrX72djEXRzs08+b84VSumxNHf27JHHkup3J89X38/ypLgzORHgjTdm75JRH+Y9sZc7j6dHSZG0WOz56fNBc/0GhYlZ/uzUOh9/97fsbXEWRtKakbCEkdv0rqR2XyKdcHA9Hy/IoZUCocjigUk7BJQeSnFoI5FlKYUP/yNoPQybE8NkRBfhDJOtx6nWHlkWoaTEC8z3M9f3GbS26dc3yeIByaBL3DXfwQuTs7hBDtcPTeIiRj7buHKBztZtsiQi7rdRUuJ4PkpKlJJoaW4cFajxXJVKZqRR3zTHcUFrZBKjsgyt1Vi+kzI1KeNZhkwTBt2mWa+SqCwji/sAyDTGCQsHJuQdhtaareWP2Lz2ETLdP15VX73K2sUfMvfKGWZPnbmv7/IjaW8k8QX54oHLBfkScbf1ULLf5wn72WV51thj0PI8YI9Di+XB+fWaHZB6UixvLZPIhEEy4MrmFRr9Bnk/P06gGyXPjSYO1FqT6pQ4ixFC8KPVH3F54zJvHHtjX71aa9669Na+1KVe0mOrszUc61F0og4f3v6QftJnaX4JIQTb3W0a/QYCcZfIcWr2FO9cewcCmK/Ms9He4OLaRSYLkxSDIludLa5tXUMqST7IE/gBrnBpR21+tPIjfvFLv8jPvvqz4+/xUkmubl6lm3RR+sF661JJMidDK7MtCtNfCdyASEWf2a3TaJNydx9dP3vsW15UnvdjXyDQSiNcged6BG6AIxz6aZ8TpROcnDpJKVfiwuoFAK5uXmWjbSbwmyxOUg7LdGIzAWc5X0ZrTZIl9OIegReQyhSVKdqDNkorqvkqxyaOsdZaw3EcfvUbvzpuy0HpnCNmyjNc27oGMJaKG/2Gkdg0fHjrQxr9BgDz1Xlyfo7QCzk1+2gBHY8qob3IaXC2r2CxPFm+mGcOywPxC7/wC/zGb/wGf+/v/T0GA5OYpZTixo0b3Lhx467lp6am+Pf//t/zla985Sm31PLwPOzgytMalGk+5nIjwe1BOrUj0ewgNjACmmZ3Js4QcwodrSfDiGujdXbZTdm5kwWMSPDRsPyo3r03xojhcw5GSDjKrlh2JxFGkPEx6XcjUa4ybGMGtPe0bwEjMUSH1DficaVYBcO61jHSYwEoAp1hW91hW3vD9m8Ap4flLBbLg3EBI88pTApYjf1X21aAecx77DIwgXkfWyyPyp1po5PAzB3LzLCbRGfTRi2WzyNpahNOXiRMStkome3+ytxLmrtjaTzPIcsUnU6C4wgKBZ8kkVQqAaVSSLeboNQo+cvDdR1cF4LAGyeSKTUarL13u0APJSwjZzmOwPd9tFZICbmcR6USDNPvnHESVq+XjoW2r371CD/60TrXrjUIAodoT7dqlM5n1ikQQg/FL8aJX5VKHt8XpKmmVAo4e/YIALdutQGYmsqjtaZeNylhI7lqdbXN2loHz0vIMomURn7LsmGCxHAHuK4gCFx832FqKmR7u0+zGZGmCteFwcCUHSX5KaXGUuJoX4325WjGxCBwxlJlLmcuJUoJvV7C/HwR33eZmjKyX5Yper2Eqak8+bw/TA/UrKy08Dx3XH7EKBEtilI8z6VeN21VSpFlDkrtym1me/WwzRohEj7+eIvZ2SJf//ox3nlnlSSRzMwUD5Ve5udLfPvbV+j3U4pFn37f48qV7WHCoabXS1BK4/tGsswyRakUkM+7tFoJYeiO0/QcB/J5byzkgUlwG21jLudRq3XZ2uoTRXJ4M4AmTTO0doljI+p99NEm3//+Cm++efKRJDrPczh37gjvvnub06dNkkWt1qXRiMbiHBiZzfddlNIsLJS5dq3B1laPbjdFSkU+H9BoRFy+XGdpyYh9MzMFJidNItzmZo/FxSrr6517ykIHCUFnzszR76fUaj3m5opMTeW5etWkBk5M5DlxojI+F0xM5Gg2B0xO5jh6tDxOA8wyxcZGl83NHo4jOHasTD5vhMif+ZmTnD07f2ibLJZ7cWdy4uRkbt95BHjo98Rn8aApknNzxXE5i8Xy+aBXr5mJGpRGOI9f9LY8DYZ212OpSuxJLxP4uQJZEiPTe43b7MdxPdwwBwgc30dlKZpsNw1bK1zXQ3i+SaBzPEgjZJrgOM5wOYEQDo7rIxwHLwgRrovA/C4zB+EICpVp/HyRXHmSuN8m7reHmyIoTM4yedTcVDX3ypfH29Zcv0F3e8PIc922mRwhDMlVpog7TbJ4QJrGqFihtUJgZvLQSpGlCUEuD46LTPbuF4FWJj3PcU1iXVgsE3WaqEwSdZtmn4Y5VJYS9zvDbTw4Ie8gtNasXnibxu1lALIkot/cRmYprueP61n/9H2ibosTX/nGPb/Lj6S9kcSXDHoHLpcMuvuWux/Zz2KxWCwWi8VieVTWW2a8f6uzxU5nh0xlCMQ4gc5zPIQjUNJIYgKB0ooojejHfbY72/zwxg9ZOrK0T3JY2VlhvbnOdGma5a1lau0aShtpTmpJL+6ZFCYNrUGLZr9JIShQ79XpRl3yQZ7lrWXyfp6ffuWnxyl3506c490b73J67jQIqLVMitwn65/QiTtMF6dNHxxNJjNmqjO8PPMyxyaP0Ypa/Lcr/403l95ECIFUciz0PQxKKVJp7rF0hOnvZ2S4jjsOtLBYLF9chBAUggKVfMWIu36eudIcXz76ZRanF/mjT/6ISr5CkiXU2mZC8jeOvsFMafeequ3uNs1Bk5v1m0yVpnAdl0E6IM7M/cSu4+K7/nDSW/Pjuz4fr33MucVzwOHpnDOlGVzH5cTUCT68/SGBF5AP8uT9PP2kTztqD+dTEsxX5zk9exqAs8fPPjdymk2Ds1gsj5vn4+xmeeb8rb/1t/j617/OP/2n/5Tf+73fI0nuTn4qFAr89b/+1/kX/+JfcPTo0WfQSsvDk917kQcq97wLeZs8uEAnhuUOYhszKJrtWdbDCF57xbvR4Gm6p9xB5IFXMfJK/47n9s4uOqozGC6fP6S+reFyowHEUTreqDzspt0xXC43LHcYjzPFagH4Hrv7ZZQ2t1eQWx+2qzJc7hbw85/Rvr2YhDxTx6h9D5KQZ7F8UcgwwisYeW4k8U4CZYy02tjz+BJGuDuDfa9YHp3kjn8Pu4mzjDkO71zeYrF8HhgMvpiznlsOxiSTPfhgodZ3Slj7n3McxslQYegCmnp9QKsVUSqZPoLnOYShy2AgiGNz3I0S5DzPoVQK6HQYJ7WZ9LWD2yoE40SwLNN4nlkuTTVB4A4lOvNdKAhcjhy5+zMsn1fMzRWYny/yve9dZ329MxZ37lzXnb8LYaSzqakcr702jVKC2dki3W7M8ePVcXLRsWMVtrd7tFomJa1aDTl1apKvfOUIp09P8pu/+RFHj5bZ3u6Pk+BG6zBJcqY/OpIXg8BldrZIrdZDKYbiltonzsFustwoOW/0Ou1ugyYMXUqlEMcR47Q613UoFgOOHi0zN1ekUgkYDEzC2sxMEdc1y/7gB7cRApaWplFK88kn22xsdO9KRKtUcjSb0R5BSuN5aiwzSmmkOZOAt7ujB4OUlZUmU1Omv7yz0yfL9KHSy9xckcXFKtevNwlDj4WFMisrTZJEkqZGLAMolwN83yFJFMWiTxRl5PMeU1N5SqWAqak88/MlXnttZizk5XIeUSSp1bo4jqDTiZBSkyRqvF1CCKIoIwyN3Oa6grm5Ipcv71AqBVQqIevrHZJEEgQuCwtlTp2avO80tbNn52k2Iy5f3mFpaZrFxSqbm71xfUkiWVvroLWRotfX26yvd+l2UzqdmCjKxu+XWq1LoeBx4kR1uE9CGo3orlS5z+IgIWhnZ8DS0jSFgs/qaptuN8F1HSqVkBMnKnieg+87HDtWRilNsxkxNZXjzJk5bt1qs7pqbtQ+fryCENDvZwwGGZVKyMJC+ZFFRIvlzmO8XA4PXO5h3hOfxYOkSM7Pl8jlPMLQHScvWiyW559RilSvvo7juIdO52d5nnkc8txu1LPWCiEc3DA3TFmTOI6HUtnu6oTARMXdOd41FM20QiYRXphHK4nMUrQyMprjuEawcz0KEzPgOMS9DjJLzHOeh8oyEOB6AV6QIyxWCAolsiQe1m3SJvywQJAvUp49yvEf+8m7ZDI3yAEwefwVZk+dGbeyV68R99ok/S5ZEuHnSvhhDtcPULnCbvS1UiblbTwrCziuEU5l0h9OoDFKC1coZfaVcD1kEqHCPF6YIxn0SPo9hOPg+gFRt41MM6ZPLh2YkHcYW8sfGXlOaxpry/Qb+2+m7WzeIl+dJixWqd+6Rn31CtOLSxSn5plYeGmPHLlLcWqe+upVChMzdDZvEXebDNp18pWp8TKDdp2423og2c9isVgsFovFYnkcJNKM2ydZQitq4QiHbtRFKonruIReCMKIYUorHOGQypRMZez0dijnyrx16S00elyXVJIfXP8BmczYvraN67hMFiaZKk2R83Msby+DNilJnagDAj5Z/4RqoUqr36KUK1HKl9jubvPyzMu8fe1t3r3xLudOnOMrx79Cc9Dkcu0yS/NLLE4t8sGtD3Adl+nCNFEW0U/MPXlTxSkmC5Os7KwQpRGn505zuXaZifwE5xbPsdXeIlUpUj1YT12jUcOEbD3sLyqtTLKclGaCEIvF8oXHcz2OVI9wYuoEpbDEV45/haubV9nqbPHSzEtsdbdIsoQ4i9FoJouT++Q5qSRSSXzHpz1o4wgHRziUwhKBFxB4ATk3R6JMMt1qc5VMZ7x25DXev/k+Z46dwXO9z0znLOfKtAdtenEPBByfPM5UYcokf84tkQtyzFXmyPnm+s7S/BJnT5x9VrvUYrFYnjj2bmnLmNdff53//J//M/V6nT/+4z/m9u3bNBoNZmZmOHHiBD/zMz9DsVh81s20PBR3SlqPWu5xC3kPFn9+73ItdmWx+8UZljuIHiY1rc5+OS1iV3hzMKdUOfzJD8sdxCxGGJgfrnM06CbYL6GN6p7HSGWzh9S3jRFkNjApdC5GIkvYFROCYZvksN2THC74weNNsRolDPl71h9hJIoSJq1vFBldwuzHjWG5z+JxJeRZLF8UljHvhQHmPQvwBvtTwLaBi8PnF/eUszO0WB6V4I5/O4cs17ljOZs2arF8nojjh/3ebnmR2OutOM7+ZDjXFYShOxSiNJ7noLURijzPwfMyJidz5PM+5XKIELC+3h2nunmeQ6Hgk8+bBLos05RKLlGUEccZSu1vh+OIoVxm2iKlEbLM/ZlGoPM8h0olYGqqyMJCkZMnJ9jY6JKmCt93OHKkRBxnnD9f44MPauRyHu12NBTSNHv7SftlQXODp+87lMshP/VTi7z66hRSamZmirz33m1ard10IdcVzM+XcF2zfKUS8qUvzeK6ZhuOHi3TbsdUqzni2KTIOY7AccBxHJIkG6bouVSrOXzfGYtGSmmUYihxacLQYzRvku87jPpLWaZwXUGaqvHrFoYek5MFPM+h30+QUpPLeWPZsVQKeO21GV57bZpvfGOR5eXGPgHs6NEya2tdhICrV+t3JaIJYUQQpTS3b3fI5z263Zg0lbiuRxia5MFeLyEIXFx3dyf7vqBYDIZpZkbKS1PF1pbpix8mvbz88gQ7OwOUUszNFQlDl0YjYm3NfE+pVnNUKkZW8TyzzkLBJwxzeJ47lgizTO0T8srlcPjaKJJE0e3GhKE3ljtzORchNIWCj++bJLtWK6bZHLC62uLdd2/z1a8e3beNly7t8M47q5w7d4SzZ+fvKYYJIXjzzZNMTOQ4f95MnDGSNKXU/OAHt/D9/z97fxYjV5LY98K/iLPmXplVWQvJKrJJNntjD6kZzcjyjKYl+fMVrGv74pMhD+ArC7Ct/UV68MNnQ4AfbMMvtnAN2IOLC0gj2b7AjAzB3ycDFq7WkazpkXo0M81pDqe5VbO41JJZVblnnj2+h8hMssgqNrdmk93xQxNZnXninDgnT0bmORG/+MtxnfR7X6l4uK5NmmaMRgntdkizqdPhbt7scuhQGcsS9Hp6lsu7U+Xux/sJQYWCw+7uiHLZpVLxOXKkTL2e5/TpOrdu9blyZXf6XgohWF6uTEXSTickTTO2t4ccOlTiU59a4ujRipHnDI/NfsmJ+/Eon4n78SApkpM2c/L6mTOLDyzYGgyGD59JilQahWQPOSjP8FFAi2KW7aLUWHCzLISQUykMBUiBQILS3pyUEpUpGC+Xpcl0ZpJJWQCVpmRpqgduKv17VQiJyjKwIBz0cAtFXC9HEgxRWYq0HEAn4VUWVyjM1IlGfWzPR2UZYizcgSI/U6dQW8AvzWC7PuX5I3v2znI85k+8Rv346T2/x9I4RqUJ2TgxzrItCrV5hJSkcUwShdhejjSJSONYT1OplE7As+3pIFRpWfrYZSkkOnUOS+qUuTQhSyJ9WCwbKSUIQZYkCCGxSy7F2YV9E/L2I0sTGlfPA9BaX2Wwqyff9IozuLkC4bBPd3ON1vp7uLkC+Zk6QXcXFOzeuML6hW8wf+L0PcdiZukY6xe+AUC+Wmew22Bn7SJesYKbKxKN+oT9zvT1B5X9DAaDwWAwGAyGJ4Fr6Xv+ru0SpzFhEk7T5zKVEaWRFsOyFIXCEhbZ+NojTEKavSarzio/ePIHGUUjmr0mm51NGt0GOSdHe9hGoViqLHH6kJ50YyY/w9XmVejoSf8qfoXWsMUwHLJSW0GhaA1alP0yWabT7gDeuvYW7VGbz7/4eWZyM7x9423SLCXJEuqlOo1eg0E0wBIWR2ePcmz2GP2oT2vQYrO7CULLIedunuP04dOsd9f3SHAPg0LtmWzjznU8yvoMBsPzhRAC13J16lxpnhfmXuDQzCF2+ju0hi0a3QZJmtAZdaYJlSVPT+aqlOJm6yY3WjdI0oTdwS5SSJRSdMMutrR5aeEl8m6e1qiFJS1ybo4oiRgEA/5i9S/IVMaN3Ru8ceoNDs0c4vTh03zr+rf2pHO2hi1awxagxbqlytI0ffPM8hmWa8vT/fFsjzNHznBm+YzpbzMYDB9pjEBnuIdarcbf+Tt/58OuhuGJ8qidsQeVe9LC26P+2DqonMPDzwSqxuX2owwUAA8tFabsTYqbJM9NnvfGy5fvs702erCay8HJfJP0OQud1nM/qmhBrotOl5tFSzSTek7kucH47/vNTv2kU6yuoxPhLo33JYc+Ri63ZUMLCNHHJAEWx+UOknqeZELeB4lJxzM8TTbGj030Z6TKXnmO8f9X0Z/hBrcFVyPQGR6XJbS8XEdL1i20sHm3wNlCt8fzd5QzGAzPC3FsBnka7s/dqXNZNgkU0Glpti2wbYmUYpq2Zds6XcyyJAsLRRYXizSbA44cKQElWq2AjY0+aZqRJBndbjhOItMy3USKm2xX38xX42Q5SRjq5LIsY5zOpsYJW7pTM44zbNtmNIrJMi0mvPba/HSfms0B//2/X6LRGFCr5Wg2h1ORLI7TqSCVptk4kU4ghL4Oc13JCy/M4PsulYrHD/3QUa5f7xDH2UOlC2nREG7c6DIcxpRK7lQqmxzjctnDcSzCMEEIyOVsBoOYKMqm6ZGOYyGEFhm1sCgRgvExEKSpfs9uHx99zDqdYJwopygUXHzfZmbGJ0kyCgXdqR5FKbYtOXVqllOnZu84JxR/+qdrByaizc8X8H2bra0+vm8xM+NPBcXJ+sPw9mQ8liWBVHfspIpCwcFx9PGZyCyT5Q+SXvr9iIUFvd0kycjnHSoV/R6sr3eRUktlpZJLLmcTBAndbkSSpHfU4XaS4kTIA8XMjI/rWrRaI8IwmZ4b+lhrgbRc9qlUPPJ5h62tPmtrHYZDLZHeutWdHs/J8QF4661btNvBA6WrCSE4e3aR06fn9wiNW1sDTpyoUii4fPvbGwghePXVOmmacfHiDuWyS5pmU4Fukuq3vT3AsiStVoAQTOu0tHRQ4vBtHkQIqlQ8Tp2a5eTJGlIKPvOZw3Q6AdDfV2CatBULC1putSwtulqWfGyB6cMmSbJ7JNSHTSE0PD77JSdOZOcJ29vDR/pMvB/vlyI5aTNBJ3ueOWMSaQyG54lJ+pTt51GpmZzk44VASInt+TheAaVS0ijEcj2SKEClKUiw/RxpHJFmGUIKLNtGJRnCAlAIIbU4BuMf7qAQCOFoUW7cTyWlRZoqLdsJSUJEmsTEUYgAsizFclyEZWEJgbRtLfe5Lisvv4GQkmjYZdRtA7ewvRzLn/gcjp/jyOm/hrAsBrtbpHGM5Tj3TV2zHAdh2UipZcE0SUijkOLcEl6+xM71y6RJSBKOSKROvRNSAgoVJ2DZ2J4WyVBaDhS2QxwMEEpgOS5uvoTtemRpgpsrkOaLxKMh0tbJe/WTn6B6+ARwb0LefrQ3rpHGEUkUMGw1AZg9+hK5cg2lFK2bV7EcfcyD3mRiTkHjve8yt/wiABvvfoug32H5E5+d/n6Xls38idNsvPutqcw3bDUJ+52pOCeEIF+tP7DsZ3jyZGlCe+PaA5/jBoPBYDAYDB8VlipLXNy6SL1Ux5Y2URKB0PIcatzPMxl3pfTzaZZqIWScIudaLpc2L7HV3UKh2Opu0Q104lGWZcyX5wnigJutmxyaOUQlV6Hsl1nbWSOMdfq1LW0cy2F3sEs/7DOTn8GSFmu7a1zfvc5CeeGeBLmXF1/m//7L/5tRNGIYDafS3Run3mBxZnG6j9v9bS6sX2Crs8VKTU84vdpcpRf2pjKgwWAwPAwCgWM5bHQ2WKos8bmTnwOg5JdoDVtESYRt2SRpQtErArq9VEpxaUu3lwBxGtPoNgiSAEtY5N08OTdHP+rTDbvMFmZxLIdMZVzbvsb6cJ1+2KeUK/G1K1+jG3Q5tXAK13a1hCfUNJ2z0W0QJRGu7U5T5tIspegVWa4uE2cxruWyVFnieP049kNc+yZpwmpzlY3OBlEaPfJ6DAaD4WljWiiDwfAIHCR8PWq5Kgcn1dyPgySwPA8v0E3K7ccrwJ+ixTSBlr72S+fL0CKYP3585YD1bY7r1xo/Tpriiex2p5yn0Ml3h8blXt1nfZPBMofQsliIPtZ3JkaGaIHLAw7fVe5unnSK1QZwBHjvju0uoGW/FH2syuN1DdHH4wj3l3qeZELeB4FJxzN8GER3PR40eK+Ebn/uXt5geByOo9s20O3vJvp74m75evK6j/5OOv50q2kwGB6LzPQdGR6QO0U6KQVCCKTU8lC1mmM0SlBKyzWFgjsVA5IkZXd3OJURKhWfU6dqbG31yTItdaWpot+PcBwtlgVBMk340tu8/Xea6jpMRLBJvfRsoDrZrVRyKJc9BoOIwSC+R2i7cqVFsznA82yazeFUJlPjDmOlFI4jx0lx4Hk6WaxQcMgyXYdq1eeTn1ziR3/0Bc6d23qodKFPfGKBP/iDq3z72xv0etEdQpbCcSwcx2I0ilGKsTwn8H0by7Ko1XTC2WhkTQVEIbSko5TCtgWuaxPHGSCQUpKNP+h6/ybirCKX06lphYKWzYSAmRl/KnIcJC7dLxFtgudZ/K2/9SLvvdfmu99t4nkOw6FOFZyIU1GUjs8lxqIi2LaF59mUSv54PVp2K5Vcer3ofaWXT3xiAcexcF3J9763TbnskaYpvu/w6U8fotMJ2dzsk6ZahhuNEqpVi3LZG5+fHmmqxkl/aio4xXFKvV4gijK63YA41rJmoeCQz2uZsl4vIASMRh7tdojnhSRJRqMxmJ7/AGtr7en5cOnSDjMzPmfP3u7wvx93C41/+qfXGA5jrl/voJQ+L+fm8qRpxtWr+ndavV5gOIxpt0OuXNmlXs/z7W/H5PN6wqE7xc7jx+83Mc9tHkUIunx590MTmD4MlFKcO7fF229vEkV7ZfWHTSE0PD7vl5x4kOz8oJ+J+/GgbeaZM+Z8MBieRybpU1LaCONFf7wQIB0X28thuS4oRRyOEEmMGA82TeMIVDZNJ1RZpkXL8W9fpRQq1YnSk74QNZlNQymEY0OSoK9z0umsJpZtk6UpmUohiXWyG+PpLpMYr1DGzRWQ0mLQalJoN/EKZZIoJEuicfLcPI6fw3I8qkdOIC2b2pGTD7TrhdqC3ka+iO36xMEuQb+Nk9e/22zXIxr2xulxFioTICUqSVACLMvCzRVw/LxOqLMs4tGQLIn18mmCXaiQn5nFsl2CfptRt4XtehRnFygvrOCO675fQt5+DHZ1v9iwvY1SCq84Q66sr8/62+sM201sP08aR4SDLkkU4Ph5OuvvkYwGUwGudfMqfrHC/InXp+uuHz9N0O/QunmV6uETlOuHGbS3SZMYy3YozMxhufr65kFkP8OTQylFc/U8javn9efxDu6XLGgwGAwGg8HwUeF4/ThvXn0TXJgrznG9dZ0kS6YpammWTgU6IYROXhunr8VZjINDmIQ64Q2oFqrTVLhe0GMUjxjFIwDO3TjH2s7aVFpbKC2w3llnd7BLzsmRZimHZg4xV5qjmq+SZAnNXpPOqMNmd5Pd4S6fPvZp3r7xNkmWcP7Web67/l1G0YhGr0Ev7JFkCd++8W1eTV5lZXYFIQRzRb2+1rDFRmeDvJPn987/nk6IypJ9jorBYDC8P0mWUHbK7A52ubh5kZeXXqYX6LHQru3iOR6dYYd6qc7azhqtQYt3br0zTeZs9po0u03aQZskTVBSEcQBruViSQtLWfSCHgpFd9SlG3SJkogkTRjFI5I04Xsb38OSFifnT+qJaIWFJS1wYGV2ZU99n0TKnFKKczfO8faNt4nSvdfQF7cu8ubVNzm7fNYk2RkMhmcWI9AZDIZH4Ekn0J1Cp409LAfJVWV0ktnDIDg4Me7TwG+gOyUlWk47aF8m6XfOuNx+rKHFsRSdUCa5nX53pzwXj1+fLLt2wPo+CfwhUAMqaAktHK/HHq8jRIsK+fFyzrjcfjzpFKtoXJclbicP2eN63ElxXL+l8TIHST1POiHvSfO8pOMZPnq4dz0eJCb37lrOPWA5g+FhsNFi8FtoeRm03NzitjgnuC03g5aIzeWIwWAwfBSY3PdW6t7nhdBJbFmmyDJFGCbk87r9n5nxAcVolNHvp8zOVqhWtTTX6YRcurSDlILFxdI4kQoGgwiltKQURelYnpukykGW6b9t25qm091dr4lM5zgWtZpPrxdy9GiFNFW023o7rVZAmmZcu9YmSTLCMKDXi6dpbwDdbkgYpuN908luep8hCBJ83+bkyRo/9mMnOHp0BiHEQ8tESin+6q822N4eMRrFRFF6RzqcGv8/2LbeZi7nsLCg07ikvJ0gF4ZavNPvi05vC4J0nGAnSNMMx5EkiU6km+wHgJSSctmjVsthWRLf1/JireY/kLh0UCLa3elaP/ADR3j33W0qFY/hMGY0igmCZLqvMEnR00JmPm9j2xLH0df/8/MF1td75PMu+bz7wNLLF75wmi9/+TxRlJLPO2xu9rl4cQeAnZ0Rg0E0Tj4Ex5HT9L7RKOGP/miVGze6CAHHjs1QrfqEYcr16x3KZZdczqLXi6nVcszO5qapiwD1ep5WSw8YaDYHSCkpFt176ru52Z+eD+fObXL69PwjpZFNxKzJY6mkz2PLkiwvl3nvvTb1eoFORyfQjUYxu7sBxWJGoeDsETvPnFl84Do8ihD0pAWmZznZTSnFV796jcuXdwEYjRKazcFjpRAaHo8HSU68W3Z+mM/E+/GgbabBYHj+mKRPXX7z95CWQ8r+abmGg5hMPvhhbfvOKjxcPaRlIaWFyjKklMRRgOPlbiezSZtRb4csTsYpa3r9WqYTkKUooWc133NxI9ACXqZQaYq0HbJUJ1ILKcfiXIa0LLJUjSW8FIVCCAvLdbEcl+rhE6RxiGW7RMMe0VDfP34SaWgzS8cozi3S2XgPv1QhDgYMOzsMdps6xQ2IR33SOEZaNhkJQlrgWoDAdnNYbg4hLaQtSKIAadlYtqNf9/KU5w9jOR6l+iGiYY/25g2klNQOH8fychz95A9z9Ps+/8B1T2M9GWia6Ec3V5i+H73mLQCGrW2yVL9uOQ5+aQbL8VBKMdhtAFA9fILG1e8yd+yV6baFECx/4rP4xQqNq+cBKM8f2bP9h5H9DE8GpRQ3zv05rVurADp98C6xEfZPFjQYDAaDwWD4qGBbNmeXz/LWtbd4of4C79x6h1CFCLQsl6lsTwKd0nnY04n5BGIqob166FXminNc2rqEJS0UirXtNdrDNrfatxhGQz0ZoOPTC3o0eg2COCDn5Mh7eYbhkGE0ZKW2Qj/qk6QJeTdPpjI2OhtcWL9AEAU6mW5njSRLePvG2zR6DfpBnyiNEAjWO+tsdjc5OX+SH3zhB9kZ7LA72OVK4wqXG5dZLC1ydO4oo2g0vQ4zGAyGh0EgdGInMIgG/OV7f8nq9ir9sA8KKrkKlrAIkoDuqEu9VGezu8k3176J7/gMwyHtUVsnxFkuOSdHpjKSUMvHju3o/uAkmr7mSIcgCwiyQIvOSmFbNn9++c9JkoRTi6fIRMbZI2cp++Unng6nlOKrF7/K5YYeGzuKRjR7zT0pdwBvXXuL9qjNG6feMNfQBoPhmcOMWDUYDM8ANbRE9jBinuReAWvCoYdcF+PlDx3w2nG0mBaMlzuoo3Yyb2eATjw7KFVnIhPcKc3Z6CQ2i9vC3EQ8c9CiVevuFY05Nd7WpfE+rN9R14lAF6PltMPj517gYAHxSadYTeQcDy25VYBFoDOumz1+bgOdSufdVe5unnRC3pPmWU/HM3x0WUInHNbR51kL/Vm4+7MxEVnn7yhnMDwJzqC/ry6h29sVtGR9p0Dsj5c9NV7eYDAYDB8V7u5blPL2o+87CKHFnV4vIghSZmY8dnaGSCkoFl0qlYkYE9HtRvi+zaFDJRqNAZWKSxgmFAoO3a7DaBRPRTrb1ilwE0Fv0sk5kefuRgjwfYtSyWN+vkA+75AkOp1tYaGIUorl5TLr6z1u3epP0+r6/ZhJEpsQgiDQHcG+b5Nlaix66Tr4voPv66SyYtFFSjFNaHsYmei11+r8m3/z5wRBQrcbMBhEhGEyFgQlUgqCQMtQWZYRxxmWlTI/X6DdDvB9m62tAWmqkJJp+txENtSpdTphbpLIp5P0BCBwHIlSUCw6OI5O+9MJez61Wo7FxdJDJS/dnYh2Nz/8w0f52teuc+FCk3LZm54zAEmipol/E3muWvXxPIssUwgBi4tFLEsf63pdD3J9EOnF9+19ZZmJUKnfUz2AN4oybt3q4vs2a2tthsNknAgoabVGeJ7ND//wUQoFl8uXd3EcQa1mk8/b1Go5QEt4R46UcRzJcBiTptlYLHU5fnyG11+/nRa/vT3kwoUmW1v96Xmyuto68Bjej8k5OHmcpPsBHDlSZjiM2doaTOvqeTbFosP8fIFPf/rwPSlxD8PDCkFPSmB6HpLdzp3b4vLlXbJMceXKLltb/T3t6eOkEBoenUdJTnzSvF+baTAYnk/qx0+Tr8zy4YlgzzlC3Hvh8YFty2LSH2Q5LuMRomRZikonvyserC5ZmiLtDJWlJFGIShP8Uo1cZRaVpdheHtmwGbYaJHEESQRCoLJsnOzAWKy7q99LKRQpConKMqycq8tISTpeB1kGto3j5UiTeCqF2Z5Pef4IaRzh5goUjug0tGFn54mmoUnLZvHFM3Q3r5MmCaNui2DQIUsT0jTSKXsopG1jOz5ZGpOlKY6f00kX2Th5z3ZwcgWyJMJyXZTKSMIAVEY0GlAqlPQ644jS7AKF2jzVwyewHO+h5DnQQhwwlvQgGg0AGHV2tZSYxESjPmmS4BZKFKrz+KUqhZp+3Fm7yLDVpFw/DEB749qexD4hBPMnXmfu2Cu0N64x2N0ijWMsx6FQW2Bm6dhDi4qGx6O5el7Lc0rRWl9l2GruGUDda9y8b7KgwWAwGAwGw0eFM8tnaI/afOfGdyh6RaI0IoiD6aXPVKBD/67Vk3zoSfiEEDi2Q7VQZa6ox6hUchU2O5sslBbYbG/SC3vcat2imq9yq3UL27IJ4oDOqEMQB3i2RxAHFL0i24Nt3tt5j2q+SpzG9IIeaZaSjlO7r+9eJ0ojrreu41oum51NBtGAYTQkjEOG0ZB+0KfgFfja5a9x/tZ5Xl58mXc33qU9alPwCtzKbtHsN+mHfX1/2FyqGwyGB0QicWwHiSRRiU6/DHr4ts/1Xd0u+a7PKB4xV5zj9OHTXNy6iCUthuGQTGX0Rj12B7soFDO5GfJeniRLSLMUiaQX9ugOu9iWjRCCjIyck6M76qJQONIhyRKSLCHLMhBwpXkFaUlOLZziu+vf5X//gf+dU4sHj5dN0oTV5upDSXbnbpzjcuMyWZZxpXGFre7WNK0UYG1njYXyAifnT3Jp6xIzuRnOrpx90m+BwWAwPBbm7qvBYHgEXA6Wpd6v3H5MpK6HWac9Lrcfj3pFe1C562ixTbA3KezO5cUdjwIt+F1nf2ErRHe8TtbpoAWycSfsNH0tGf+bSHUHzUhrA38H+C/cTslroQWzSRpeGS2v1dHy1t/h4K+AJ51idbfU00G/d3cem220PPcgUs+TTsh7kjzr6XiGjzbHgTfHfy+gz7ML3Hv+TV730cLqQbKvwfCwCHSq5gy328KVu5bx0OLcGUz6psHw/PE0xyoani8maWVK3X6UUlAqeZRKLlJKlFIMhzHDYTxNbOt2QwoFl3JZz9S/ttamVstNE7eEgHq9wLFjFS5caNLvx1SrOaQU9PsR29tDABqNPv1+jOtK4hjS9E6hbm89HUdSLHrMzRX45CeXKJU8dneHtNshnU5IEMRsbw9RimnC3WgUo5ROmMvnHUajhDBM7kifU9N9t23o9yOyzKZc9kmSjJs3u/zIj7xwRz0eTCa6cKHJ6moLz7PpdALSVJHPaxnRsuT4uKfTlDbb1s+NRjHFostoFE/T2e5M49OpfZPndL2llFOxznUtikUb29ZyYLnsYlmS2dkchw6VsG35gSQvnThR44d/+BgA3/ymvu7r9cKxICdIEp2Y53kWnmePU/QSlpZK0xSyEyeqLC9XuHq19VDSy0GyjONYNJsDjh6t0G4HdLsho1HCcJhM6wdQKrm02yGzs5Jvf3sTx7E4dmyGTmdEqxUgpSCXs1lZqTA3l8eyJN/4xi2Gw2ScHKglu7tlyrm5PNWqT6sV0GgMWFmpsLHReyShZmmpxMWLO9TrBdbW2rRaAdvbQ+bm8gghOHVqljBMuXq1hW3rVLqJwDMRJe9MiXsUHkYIelyB6XlIdkuSbCrSXrmyO237PqgUQsOD8yjJiQaDwfAwCGl92FV4TpH6PynJkmR88fGwkyk+AEIgLIkQFkJIpOOiknjcI5QiLGssfk14nwtlBVmSIKVFHIXYtk5+s8dyWjTq4xVKjDrbSCFIGUdJk93nGnwy0aNOwZaWDQr88gzhoItluzieg3QcLMsmjQKEZWN7OVBaoBNCUFlcYfGlT+IVK2RJ/IGkodWPn2bUa9PZuoG0bEqzSww7OyTBEGVJpG1jOa4egGsVpsdMqRTHy+OXq9iuh5QWufIMw1YTIQOcXB6vOEMSjgiHg/GxePzUvEJtgd0bV8jPzNFr3CTstxl1dwkHXUC/X2kU6N4918fNFwFw82Vy5RpesULY7zBob1OeP8Jgd2uPQDdBWja1Iyf3fc3w9MjSZJoG2FpfnSYIesUZ3FyBaDQg7LfvmyxoMBgMBoPB8FFBCMEbp97ga5e/RjVfZRgNiZIIhULK2/cjpZBIJKnSMptv+xTcAnESU/JuT9I+V5zjqnUVgFKuxM5gB6UUo2iEtCS+ra+JCm4BS1qkWUqQBCgUBbdAa9AijEP6YX8qZwRRwCAcgICCV2Czu0nZLxMmIUEcoJQiTmOyJCNKIjqjDo7l0At77PR3GMUjLGGhlKIf9CnnywyjoZHnDAbDHibCsNqncRAIHMsh7+RJs5QszciyjFE0IkxCpJD4jo8lLdbb63RGHT2Ba22ZbtBlEA3Iu3miOCLn5si5OU7WT2JJi/e236OcL4OCYTykH/WxhIXneCRpQqIS+mEfKfU2kizBsRxG8QjXcmn0GpRzZVZqeqzWanN1X4FOKcW5G+d4+8bbROneMdsXty7y5tU3Obt8ljPLZ/bcD0pSnfgJcKVxhc2u7j+pFqqUvBK9sEdr0NLPCzi1cIpzN89x+vDpx0q9ux+PIgEaDAaDaR0MBsMjcJAo9ajlZnj4K1E1LrcfNx9xfTcPeG0NLWHl0Mk6cFuUuzuNTo2Xa47L7SdsedyW4iYd5dn4n4NOi5t0vt65nMfBnB3X7Y/H66ihhbRJ2fK4XkeAH+X+iWd3C2+7wLtoMW+SGJeNn5e8v/D2pKWeJ52Q9yR51tPxDB9tbPRn+y10wiHo82ySegm6zVq44/UzmJ+DhieLQJ+Hp9Ft2wa3E+iW0G27OecMhucVI88Z9kNKcByLNL2d/iaElrBmZnzm5nL0+zH9foTnWYAiTRVRlGLbgqWlIkIIOp2QclkncJXL/lQcaTQGSCn4G3/jOFtbA5aWimxu6iSq8+cbZJkiirTMFAQpjiORUpEkGZP7+ZNzV0pBoeBSKrl87nMrnD27gJSCP/mTa7TbAeWyRxSlDAYx5bJHozEci2vZNLyh14vGQp0ijtU0/WwieYWhlu5sW5BlOplsc7N/j3gB7y8Tfetb6yRJRqcTIITAsgSLi0WiSCeWKQVxnE3T70Cns+3ujvj854/yP//ndWzbwnEs+v1ous0s0+Lc7c+0QEqBZWlhq1bzsSydPvfaa3WOHp0hy/Qx/SCTl2xb8slPLhHHKYcPl/na165z82aX4TAep+fJOwQ/F9e1qNW01DeR+c6eXeLMmQVmZ/MPJb0cJMssL5e5dGmHra0Bhw+X+MQnFrh4cZsoSul0QvJ5B8uS5PM6MbFa9Wm3Q4IgodUaMTeXRymo1fKMRgmNxoDRKKHXC1ld1b/RczkbKSXFosvcXOGe41IqebRawTRB7e4ktQfl+PEqb755A9DJbZubfS5caO6RtdrtgBdemMH3dQqdEPDZz65w5Ej5npS4D5rHFZgeNdktSbIHSsl7EqyutoiilNEoYWtLS3Kvvlpnbi4/XeZJphAaHo6HTU40GAyGB6G5ep5Rr2UEugdm8v0+vs6Qk+FLAmHZqCz5ADYpEELe7vaRQiegjUW1SSpZSoza+6P6oBUipESpDJVlWv5LE+JggMpqxOFI72Ga4Hh5siRG2jZKpdN0tv3WqetpjbupJMLS30lKge14KAVevkhxbgnb9UiTmCyJEVIy6rbJkojC7CLHvv9HqR97mcOv/cAHloYmhODI6b/GzXe+Tjjo0NlYQwiJkysibRfL1kKiHG9TKYVl23Qbt3A8nzQKEUIiXEkSRaRJjJsvUKwt4JdmiIOA2uHjWK73RFLzZpaOsX7hGwDkq3UGuw121i4SDfukScSg1SQc9HC8HG6+iLQcpGWP0yXBzRUJ+51p2l8axw9dhyxNTDrdU6K9cY00jkiigGGrCcDs0ZfIlWvTZUbd3fdNFjQYDAaDwWD4qCCE4OjsUV47/BqpSgmTkExleI4HSr8uhcSSFqNoRKYyCl6BnJsDoBfenqTdkhbL1WXe234PicSWthbokhFO5lDNVfEdn3KujFKKZq9JL+jRHXWxpU1r2GIQDvBdn7ybx7d9RtGIOIu1bBcHAOwOdpkrzjGK9fVVwSswikdESUSURDiWo/uhRh0c6SCFnJaVSOI0JlEfwPWlwWB4bhGIfeU50NKwZVlEaYQQAtdyidOYOI2RSrd1/bDPIBzg2R5CCM6vn+f67nWWa8uoTDGMhkghKfpFavkatmXjWA6vHXqNUTwizVJy/RzDaEis9Lon9ZFC4lkeqUqRQhImIZ7t6bYvGrHV3WKrs8XRuaNsdDbuEeiUUnz14le53LgMwCga0ew1iZII13aZL+uxwG9de4v2qM0bp96Y9sGtNleJ0mi6HYBXD706TR4F2O5vc2H9AludrfcV+R6HR5UAn1eMKGgwPFnMp8ZgMDwDrPHwKTRiXG4/Go9Yj4PK/RW30+AmCW8e9ybQhePnErQE91fA39xnfdXxv1207Ma4DNyWvCaiGuNlJmUOQgA/PF7mm8A6Oultsp4KOvXtk7x/6s9EeJuk4b2HTlPLo+W2ABiixbyT6GNxP+HtSUs9Tzoh70nyLKfjGT4enEHLtJfQ59QK+jybCEzz6M8x49fPPP0qGj4m2OhzzLRtBoPB8FHGssC2LWxbYlm3U99Ai2r9foTjCBxHp4WFYUKSZGPBLMO2Hba2BniexaFDJT73uRVqtRzb28OppHDjRodOJ8C2JY3GgF4vHKd5Ofy1v3aE69c75HIOnc6ICxeaBEGK71sIIabJcaDT1nI5hxdemKFWy3P4cAkpBZcu7UzT3cIwpdUKcF2L4TDGssT47wwptUA3GsXE8WTCEy0NanlNjI+J1MkJQktpSZKxuFjk+vXO+wovd4s7b755g15PJ+M5jpbGfN/B9yFNHYIgwbLE9LgKIUhTLbrlcjaVisfW1gApdb1A4Xk2cZzdkUinpTvHsfB9i6WlIq+8MseRIxWOHq1g2/KO/b3NB5W8NEkdE0KwslLh5s0Ob721zu7uCMeRlMselqUlwPn5At///YfI5fR19UTme1Tp5aByL700S6cTsr09Yn29S6XiE8cZnU6IZemkNn3MygghpsKTZen3v1bL4/sWUaTPr1ZLd8xblqBS0fuzuzuiWHSxrHuP5STlznWtPY8Pi21Lzp5d5K23bk2Fw62t/p46CcFUSJRS8JnPHObs2cVH2t6T4FHfy0dJdnv77Q2SJOP8+cY9kuLFizu8+eYNzp59suf8xoa+b9FsDlBK1+9OeQ6ebAqh4dF4mOREg8FguB+TlCPbyxEND7qnbbjN+Pt2OisGqCxDWJYW6SyXLMxQ6tEmF9iz7slsGexNB5SWnuhAIRBSIC2bLI3J0hQhBGoa0y7Gcy3uM7Bq6gAqkBbSdkjjmCgYMuzsaCFPCC1k5QoIyyLsd1EqJRMJWZrolD0h7qibQggLy8uRxdFY7HOxvRyW7SBcX1dJWji5It44IW2C7eVBKapHTup0ujj+wNPQOptrFGsLuGc+B8Co08IrlHH8PG6+RHn+MNKy2b1xmbDfwcnlmTv2MlkSEw37qCxFZSleoUxxbgnLshAIsixl/sQJSmOpCR4/NU9aNvMnTrPx7remSXbDVpM4HBENe1pEFGA5DvmZOgCl+iHEOJEjGunfmBPZ0nKcfbayP0opmqvnaVw9TxrvHfy1e+MK6xe+wfyJ04+VCGjYy2BXD/gbtrdRSuEVZ/bIc8BDJQsaDAaDwWAwfBSYK83hOR6HZw7rFLo4Gk9oIqZJcQqF7dtaAPGKFL0ivuPTGrTY7m9PZYoj1SNsdDboBT1yTg7XdukGXWbyMxyaOUTZL2NbNr2gR71UxxIWnVGHftjHtmxKXokXKi9Q9Ir0w75Oa4q0VDKIBuSc3FSmK/kloiQiiAPiNCZUWv4Lk3C6b1JIMpWRqpSck2NnuEOYhPeVZQwGw8cPIcR04ti7n48zLbNNpOAkS3S7ko3vFzHpf5UoFGESUvAK9MM+zV6TnJtjobTAdn+bglsg5+R4aeElaoUaO4Mdzt86z3p7nfawTZrq9jZFy3K2tHXKZpZR9IukKiXNUnpBb9oed4MuN9s3OTp39B6xDODcjXNcblwmyzKuNK6w1d3a0/6t7ayxUF7geP04//PS/+RK4wpHZ4/iWi43dm+QZinNXhOFolqo7pHnQKePVvNVWsMWjW6DldmVfUW+x+FxJMDnjY+bKGgwPC2eikCXjWfUMxgMHxUe9Yv2oHKTdJqHIeK2rHQ3nfts6yDEuNx+rKOFscF4OYmW2iazf06emwh2g/Hy6wes7yhaotoebzMbl8+4nTgnx39LtPxWH5d7v304y+On/thoqea/jOtSRMteEylMoNPsKuPXLwE/9T7rfpJSz90JeS30sbw75a01ruv7JeQ9SZ7ldDzDxwMBvIFO6Hx7/NzKXct46M/Y+8m0BoPBYDAYDPdn0m9g23I65jRJUpJEp8xVKi5CSIbDGNuW2LYzFtPUVPQqly08z8b3LUajmL/8y12S5Law1WqN2Njo8/bbm1QqPktLRRYW9ABQyxI0GgOE0MLesWNVBoOIJMlIkox83iFNFWmqU9psWxKGKaC4dq1NECRsbd1OBNvdHZIkCtfV0lgUpXieFgT7/Wic3KY7Pe5M3JsgpR57W6l45PN6Xx1HcuRI+b7Ci1KKc+e2ePvtzT3iTqMxZHNzwPb2gNEoxnUlSqmp3FcouBQKLq1WMJYSJa6rRa23394iyxS9XkQYphQKNvm8Sxxn+L4il9NSY78fEccZ+bzN0aMVXnmlzg/90FE++Umd5Jam6qkmL92dOnb06MxYpOty40aXJMmmx3QirB0k8z2q9HJQuSTJ+PKX36HTCVlf71EquSwsFPnsZ5fHgqJmIjxN5EQtRuVYWanQaAymx/HYsRmuXWsTxylpmmFZku3t4T3pY61WgBAwP6/T6ZaWDrrOfH8mguKlSzucOjV7T50+qHTBx+Vh38uHTXZbXi5z8WKHGze6LCwUGY0Sms29xwXgrbdu0W4HvPHG0SfSCXV3qmCp5O273JNKITQYDAbDh8sk5ai9/p5OLjPcnzuSghkPZBRSavkLUFlKJnQS2yPFpQs5FZ7IMhR6wgmUQkgLISXSspCWAyik4yCQWqDLEqRlo9Tt2b/1g4C7B1wqhUJhOS4qTUhivb0sSRi2GkjbwbJdQJGlMY5fgDQlCgYomWEJmyxNtUCHnqhDWDaW42q5DgVCkqUpcTAEPz9NQnP8AgsnP0E06qPSBGHZeIUyg90tomEP29GTDj6M4PWoTCSloNvCy5cpz69Qf+GVe5drNVBKTX9rlRaXKNcPM2hvkyYxlu1MU+ayLMXNFSjVD5MlyRNNaasfP03Q79C6eZXq4ROU64fZvn6ZzuY13EKJsNdBSEk0GjBz6NhU4Bt1dwn7HX2NOqP7rAq1B/tNrZTixrk/p3VrFUAnot213wAb736LoN9h+ROfNQOjngCThMBJYqCbuzcVXD//+MmCBoPBYDAYDM8LOSfHcnWZRrfBfGmeMAlRKKIk0tdmCFzb1Y+WS5AEzBZnKXn63vWF9QtU81VKfole0GMUjSj6RS2TKEXOybFSXaFW0BMXTFKXbrVv0R11cSyHONOJS7a0CeOQzqjDMBoCUM6VpwlySZbgWA5BHLBYWeRm66ZObEr177U7pRAhBGmmJRRLWCil92kiBBoMBsOE9IAJm5RSKKGIk5hUamEuUxmZykDoVEuVKWzLpuAViNNYS12Wi23ZBHFAEAd4tsdybZkgDsh7eRq9BlebV4nTmLXdNbb72wRJQKYyLeRlao/APLmNZY0nW7Itm2E81Gl0jsfFzYvMFmbJO3mSNJkmlCVpwts33gbgSuMKm109GWW1UKXkleiFPVqDFt/b/B7fXf8us8VZVrdXidMYS1pcWL9Ae9ietpmTdv9uSn6J1rBFlOgxsfuJfI/Dg0qAJ+dPcmnrEjO5Gc6unH2idXgafJxEQYPhafNUBLqVlRV+5md+hp/5mZ/hyJEjT2OTBoPhA+VRO3cPKrf5iOs7qJzg0QS6g8o4aCFOcFtyAy18TYS3yY+8bLzckNvpcndzBC20jNCy3e64nM3thLtkvO4acAxYHpd7ED7I1J/byQoPx5OUeiYJeaBT6zaBC+hUtxI6ea51x+s+90/Ie5I8y+l4ho8PT0qmNRgMBoPBYDgYKUFKgWVJlALHsaZCmVIpcZzS7UZkWYjjSJJEkSQpaaqwLInvS0ajhOEwwfMs1tf7hGFGrZYjjlN6vYhGo8/6eo8w1NLUzs6QXi+k14solz1qtRxRlDIYxGSZlpWOHZuhVsvR70c0m0M2N/vTemWZTsHrdiOuXWtz6dIOjiPZ2uoThimOI3FdLaYNBhGOY5Ek6TihTct3SnFH0t7kWIhxCp8WCV3Xmqbg1esFhBAHCi9KKb761WtcvrwLsEfciaKUfj9kNEoYDGLiOCWfd8nndfpcvx9h2wLbFmSZZGGhgJSSfN6h0wnp9yMsSwtmnmdTr+dRCnI5G9e1SBJFuz0iyxQnT9Z44YUqr71W5x/+wzNTOc62xVNPXtovdez48SqWJYnjFNuWZJn6wGW+u7FtycJCkVOnEqTUCYMrK5U98tyEifC0uFjE922CIMH3bVZWKtNl0jRjc7PPCy/MMBzGbG0NuHCheU9KGsDCgl6P51kcP36/dPr7c7egCOypE3xw6YJPk4dNdnvnnQZBkADQ6YRsbfX3jMNfW2uzsFDk5Mkaly7tMDPjP5FkvrtTBSdpg3fzpFIIDQaDwfDhMtjdIk1iels3PuyqPB8o3Z+klJjOVCGlJI0jpNTCmMqyR5PnAGlZCKF/xwnbGSfLKT3YybKxXBcvV9JJbkKiVEaaJEjLQSQxKt3v9/3+dZlIb0JlWNJGiVT3NiUJSRwhZQAobNdHICgtHGHUaxP22qRxAMQgJI6XQ1gWlm2TxBEqDrVspiBLYmzPQ2UJCkUSjshValiOQ232xLQuo+4u0bD3SILX4/CwklK+toDjeiRRiOX6lOf39o9ZjsfSY6TMvR9CCJY/8Vn8YoXG1fMA1I+/ShqNtNCoIA4GZGlMGkd0Nq8TjfqEfT1RZ75ax3J9LMdjZunYA22zuXpey3NK0VpfZdhq7pm0pde4Sb5ap3roOK2bV/GLFeZPvP7E9/3jxkQgnSQGRqPBvss9TrKgwWAwGAwGw/PGUmWJI9UjtIYtdge7eI5HvVifJixZ0kIKSbPfRCB4delVLGlxauEUvbDHVmeL1rBFa6jHbkkhOT53HCEF6611giTAcz0WK4tUchXminNY0sKSFm/feBvf8RGJmIoXu0PdfyIQlHNlsixjp7+Da7m3E+ZsaPQaRElEnGr57m4pTilFqlKUUFPhZbJPBoPB8KBM2oyJkKvGkycJdDrdRC6eyL5BHBClEUIIhtGQaqHKVneL2eIsnu2x1d3icuMyeSfPZneTre4WSZrc7nfPdNuVpZm+B6J0eziIBhT9IrVCjUxlNHu6TS75JfJunquNq1QLVf7LX/yXaULZanOVKI0YRSO2unqyo1cPvTpNkVNK8Y1r32C7v41AkHNzBHHAN699k8XKIpnKSLKE3cEucRozk5/Z9xj1At1P59p6TKxrPbmxsQ8qAW52N0HAqYVTnLt5jtOHT09FwueFj4soaDB8GDyV1mB9fZ1/+S//Jf/6X/9r/vbf/tv8wi/8Aj/2Yz/2NDZtMBg+EB51oM5B5bYfcX0HlatwUEflwahxuf3wuC22gRbm9mPy/GS5/WcO1/LKcbRk1wYKaJEu5nYSXWH8r4IW507wdAQw0PLeObSA10TLXhKd+OYDwbjufWBxvNx3gNe5/9fKk0zIOwu8BZwcP7eFluYm4pxAy3OT18884Lofl2c5Hc/w8eODlGkNBoPBYDB8nJmEPOjEM0m1miOXcxgMIrrdkDTVwlgYpliWIEkkaZqRpgohdDml9HpGo5gk0SlPUsqxNBYxGETs7Izo92OiKEUIkFJi23Kcombj+zb5vINlacHNcSS5nEO9XmBxscjMjD8V3m7d6tLvR9MUp1LJI451Ml0UJczM+FSrOQAKBQfH0RLc7q6ug+/bDIcJWaYnXxFCpyJICb7vUCi4JImWu4pFl0rFI4oyRqPxANEDhJdz57a4fHmXLFNcubK7R9xpNgc0GoOprBUEKWtrbcpln3zeIcsyOp0YKQXlsk+x6OG6Fp///FFu3uzSaAywbS3UTerk+zaLi0Ucx6JS8djY6NPthhw7ppPenpaM9iA8aoLcB8nDCk+eZ7O8XOHEiSrLy5V7kvw+/enDfOtbG2SZPp+2tvq0WsFUnBOCqbgFcObM4mO/P/sJik8jXfBp8jDJbjs7I9bXe9RqOa5f7+B5+t7B3SLj5qYeMHvq1Cznzm1y+vT8Yx+npaUSFy/uUK8XWFtr02oFH3gKocFgMBg+PNI4pnVrlSyJH1n6+tii7gyay8iUQkiBZTtayFIPP+mjkBIhrLEYF4+T5wSW6+L6RS2zCYFbKOEXqwS9FpbtMOq1SMKhnvH7QZMEFag4wsrlyc/MkkQhSRxApiCJyJJYpxePxT2/VCUJA6zqHFkSM9jZIssyLNfFshydNKeUFnmSWF8rWRZeoYLlOAgEluORxjE7axfxihXcXPGxBa/H4WElJdtxKdUPM3PoBUr1Q1pAjeMnmjL3fgghmD/xOnPHXqG9cY3B7hYCQXvjPaqHjxMOeow624T9zvS4CiGmkhvA/InXHqieWZpMRb3W+iqD3QYAXnEGN1cgGg0I++3p89XDJ2hc/S5zx175wI/DR51CbYHdG1fIz8zRa9wk7LcZdXfJlWvTZR4nWdBgMBgMBoPheeR4/ThvXn2T1w+/TnfU5XLjMs1+k7ybx7d9RvGIYTTEEhYn50/y10/8da7tXGO+PM+SXGKltkKj29iTkNMZdri4dZHXj7xOe9AGAbVCbSptAPiOjyP1Nc1MboZhNKToFZnJzWBJi7JfxrbsaUpdzs0xjIaMohFJqidIG8Uj0ixFIPZMSDFBoUUUiZzmAJj0OYPBMEHcEfpgCUtLt/dpI7K77kllSktuiUoo+2Uc6SCFxJY2SZYQZzGZysg5OfpBn6JfnE4MdG3nGtv9bS2ppYm+9zRux6SQOo1OaVEvyRJUoshGGSidxjlhIsg1+02KXpEojaYJZZNdafaaKBTVQnVPO3yzdZMgDsg5ORrdBv2wP03SC5KA3qjHKB4xk5/h+u513tt+j0Mzh/asY7u/TWvYQiCmCWlLlSc3Nvb9JMBJHS6sX2Crs8VKbWVa7tTi8zOG8uMkChoMHwZP9VOSpim/+7u/y+/+7u9y7Ngxfu7nfo5//I//MfV6/WlWw2AwPDYHiWGPWm70iOs7qNwJ4M8fcl3ZuNx+1IA8WnIb5x+T3vGP8eMkxc4CcuNy+2ED34eWx3LAN8fl7vyxLdCJap9Cp8+d5ek12avjugXjOr2AFuUmyXg2+nhtjl8Px/Vd5cFEnSch9ZxBy4eXxutZARrcFvLm0bIf49fPPMa2HoZnOR3PYDAYDAaDwWB4MiilQyBAoBS4rqRScZFS0W4HWJZAKUGSaGEujtOpcDdJD0uSlGo1x2iUsL09Ip+3GQwiikV3LLelpGlGHKckSYYQYFlQLGq5zbZ1gl0YJriuTbnskmXg+zbz8wVGo5g0VVSrPpcv7xAECUrpug8GMcNhjG1b0/0oFFwKBQfXtabjmaUUzM3lSZIBQZBQKDhT4U8IOU3g8zyLfN6mXq/g+xbtthZuikUXx9Gi1X7CS5Jk0xSwK1d2p4JOteozHMa4roXr2vT7EWmaoZROqEuSEZ1OgBBiLA9aLC0VmZ3N4Xk65Syfd1AKZmYy1tbaRFHK8nKF11+fn3bEbG8P6XZDI+Y8BI8qPC0vV/aVAZVS9PsRly7tcOrULCsrFRqNwVRom58v4Pv6XsCpU7OcOfPkBmk+i4Lik+JhRMd+X89iHMcpnU7I/LzNq6/W73lPL1xosrXVnyb2ra62HvvYHT9e5c03dQrRwkKRzc3+B55CaDAYDIYPD8txGOxs6oEvt20ww/shQEgxToFLEcJGCAtQetCQFCgl4YFktkk/jCBLUqSELNMzegshxr+vXVSW4VfmcD2fUv2QThlLQoJeG9v1kK5HksQ86ESOiows00l2xdlFus11bMb7FVqkVkQWJwjLQtouaRwxe/QlOptrxMEIYdsQRSRRQEKghbw0Ict0v5SQFpbjkSUxluMihKB2+ASj7g7BWOx6XMHrcXlUSalUP0TtyElqR04etOoPHGnZ0zocef2vc+M7X6N18yqF2gLpwhEG7W3SJMayHQozc1iu7puqHjlB/fjpB9pGe+Maaazf42GrCcDs0ZfuOT47axcZtpqU64en5T7MY/NRYGbpGOsXvgFosXSw23hmxFODwWAwGAyGDwvbsjm7fJa3rr3FXz/x15krznG1cZVhPCRKI2xps1ha5MT8CU4tnEJKyRc+/QUEYjrYf2V2Zc86i9UiSikWKgtc3rrMZneTC+sXqOarlPwSvaBHa9hiqbKEbdk6WS4Nybt5cm6OolcEwLEclqvLXN+9TjpKyTk5ekEPpRStQYs41ZMaZip7X+llei2IMBKdwfAx5c4EOSnktD2wpY0lLUiZvj55PIjJaxPBbau7hSUtgjjAczzSNCXJEoIoYL42j+d47A52mS/NE8cxw2iIFPJ2vYQCodcrhEBkglTtDf7IVEZ71MZ3fC3SqQRXuQyjIQWvwLfWvrUnoSzLMj2h7Tjhs+Td7hdOs5S1nTV6ox5bXZ0k6ts+RU+n3FULVTKV0eg3QEA5V6Y1aPHdW9+lVqjtacsBFioL+I6PZ3scrz+5sbEbnQ3gYAkQYK44RzVfpTVs0eg2WJldYaOz8VwJdB8XUdBg+LB4KjaG4zjEcTwdoKOU4r333uOf//N/zr/4F/+Cn/iJn+Dnf/7neeONN55GdQwGw2PzqNHlB5V71KbooHJ5uGM2iAdDjMvtx6voJLj++N9EoAvRslyKFsrs8XpywMy43EFMBDCBTh87D1xFS2s+WuY7DTg8XQEMdDIc6PQ5BcwCL++zXIyWwRpogW2Dp5d0JYA30Mf57fFzK3ct46GP2xke/nx4VJ7ldDzDs0/C46UzGgwGg8FgMDw841s1DzV+VwjG93j0DfskUXiezWCgk9qSJBvLc4osU9PkuYnABhCGKc3mECEEWZYRBCmDQcxgEBOGt//WyVxMZTHfd7BtQbWaIwxjOp2QIIgpFBxsG/r9iPPnGzQaAxzHYmOjS6+nOwHKZY9i0SEIEtJUkSQZliVwXYsoSjl8uESSKOI4ZXd3xHCY4Ps25bI3TsDT97TCMEVKnXqXZQrL0il81apPozGk0wnJ53U5KcWBwsvqaosoShmNEra2tDz36qt1qtUcf/mXN1lertDpBFP5x/et8cDbyXFU2LbFzIyPlFqw+gf/4HUqFZ+bN7t0uyFK6US9IEhotwPOn29QKnl0OgE3bnQZjWIqFZ/r1zvU6/mpHGTYnwcVnrJM4fs21693EIJpgtzd6W5CCN544ygzM/5Uprz7PfA8izNnFjlzZmF6b9Vwfx5GdAyCmFotT7cbksvZVKv+nuUA5ubyVKs+rVZAozFgZUWnCT6uQGfbkrNnF3nrrVvTc+RppBAaDAaD4cOhUFsg6HewHE9LX4/azfJxQylUNh74KIAsJU3TsQunpgMeH+RyRkiJmswMrtRUngMttzFOKLBclywOsMszDNtNomGfLNODK5Mw0LORH3gBNfm9dsfravx0prC8HPlKjcFuA8tywQWZ2aRyLPUP+2TFCsXZJdob7zFsN7EsBzmeVCGJQxw/D5lDGkcgBV6hQq5cJVep4+WLjLo7jLo75GfqKKA0f5gsTe8reGVpMk1Z+yCS3j4qkpIQguVPfBa/WJkmxpXnj+xZxnI85k+8Rv346Qf+/T7Y1QOhhu1tlFJ4xZk98hxArlzDK1YI+x0G7W3K80cY7G4Zge4xkZbN/InTbLz7ralYOmw1n0iyoMFgMBgMBsPzzJnlM7RHbS5tXeLlpZc5NnfsnlQ53/FJMy2xdYYd4ixmpbZCnMZTCc61XJYqSxyvH+f8rfN8ffXrlP0yN1s32e5v0+g2yDk5in4RKSQvLrxIrVAjyRIOhYcYRkN6QQ+JZL40j7QknVGHxcoiURppMcXyCNOQOI3vSYO6HxMhxmAwfHwRiOl8S1JIpJCkWUrezWNJSyfBKX0vKkxDhNKC3USWk+j+mjufU0qRqYyt7hZFTyfMebZHlEREacTucJfD1cPknBz1Up32sM3ucBcpJEW/yCAcoJTCd3xcy6Uf9onSSEt0SkzrrZQiyRJydg6JJCPDsRxc26VeqnO4chiF2pNQtra7xkptBdd2AeiFvWmd37n5DlcaV4jSiNagRZIluL6LQtEZdji1cIrF8qKu72B3Kkr3wz5CiKk4JxAsVBY4Wdf3K84cObNvIlqSJqw2V9nobBCl0Z7vi/slqEWpvoe2nwR4JyW/RGvYmi43Kfcsst+xuLF7gzRLP/KioMHwYfFU7uxtbGzwn//zf+Y3f/M3OXfuHMD0hnEURXzlK1/hK1/5Ci+99BK/+Iu/yE//9E9TqZgBO4anz5UrOoHs5MmrH3JNnnUe9cfEQeWedKLdDrfFtgfFGpfbjyJahuug96GH7vFUaOEFbifPFcf/Xhk/HoQAPo+Wq/4ALc7N3/F6D/g28DfHyz3NQXLRXY/6R+aVK3rQ5smT3h3Pt/ZZ/mkh0LLaaZ4t6ehZTcczfFBcuXIFgJMnH7WjWgHn0DLo3Z+ji+hUw7M8XRnUYHgyPP7nw2AwPA+cGAc5XzWXUc8dk7F8Uuqb7HcKbgctL+XtezpCCHzfQinFaJQQRSnVqk+7PaLX0wNMpRTjNAd98z2OE+D2/0dRilJaslMKXnghw7KGbG5m0xAJKcX4URJFKVLadLsBvm/juhZpqgiChGrVJ5fTSXa9nk5t63YjcjmbmRkf33fIMsXx4zm63ZCbN3tEUYJlKVzX4ujRGdbW9AC5ctmj0wnZ3OwBWpazbQvLSsnnHYQQzM3liOOUXM5hMIjp99sMBvr3XLGYp14vYNvyQOFlY0N3SjSbA5RiKu5sbfVJkow4zvA8LeLFcYrjWFiWxLK0TDgY6JS6ctmjWs3xfd+3xPd//yGEEJw6NUutluOtt26RZYorV3bZ2uqzuzvi6tUWrVaAUopy2cPzbDY3++RyNl/+8nnOnv3oyFpP+rfI+wlPSukUxjRVzM7m2dzs88ILM1y5ssuVK7u8+eaNe46vEIKzZxc5fXqe1dUWGxu9aQLd0lLpHunO8P48TLJbuexPj2+x6FEq7X+vqVTyCMMmaZoAFaLoyVgPZ84s0G4HH0oKoeHDxVwrGZ4k5nx6PphZOgYqIy4fJhV55M7qh12l5wc1mUVC3BbgJmMipbz/gEchxgKbLisQIAUgUFmmr1WkTq3V61bEoxEqvf1dnyUxlu3i5gok0mbUa3Fw+tx+z+vnMpURdFtYjkuuUsNyfbI4YtjZwfFySMfFsl3SKOTWd/8ClML2fNIoxHZc0jjGRull4gi3WGZmcYVCbZFCbZ7q4RMEvRbb194lGnRhLBfabo5CtT6tTXOQMLN0lOVPfBaAxtV32Lx8jv72JuGgi0oThGXjFcoU5xZZfPHMQ8lg+/FRkpSEEMyfeJ25Y688MekwjXVKRproRzdX2Hc5N1ck7Hemy03KPY88S99d9eOnCfodWjevUj18gnL98BNJFjQ82zxL56Dh44s5Dw2Gh+eEpzukroamQ+qDRgjBG6feYCY3s2+qnFKKzY6eFE4KyaXGpT3lXcvl7PJZziyf0ZOejCdAWdte42b7JrZlM1ecoxt0CZKALMh4ZfEVTsyf4GbrJsNoyIvzL3KleYWtzhYKRT/SExEKBK8deg3Xcnnn1jvMlebY6m6RpAkSuSchSgp5T2LT84g59w0fV57GuT+R6FzbRSCwLZucm7stySmJJSxSlZKkybTMZFnQ93yyLCNDTwKVpAlCCIbREM/x6AZdoiTCsz1826c9apNmKT/xyZ/g5u5Nrm1fIx/lSdMUS1pIIcnZOVzHJUgCkizR0pxUqExPMiWFRAiBlLqdi9OYmlfj5cWXmSvO8fLiy1iWtSehLO/m2e5tUy/VWdtZozVo0ew12R3scqV5hVSltAdtgiRACoktbbIsw7Vd3tt+j4XyAi/MvkCcxvSDPvOleWqFGmW/fI9gDVraO7O8d2ysUopzN87x9o2375HaLm5d5M2rb+75/rgb19Ly390S4N30gt6e5SblniXudywuXb7EIBww9IYopT4SoqDB8CzxVO4612o1fvmXf5lf/uVf5tvf/ja//uu/zpe//GV2d3enyyilePfdd/mVX/kV/tk/+2d84Qtf4Bd+4Rf49Kc//TSqaDAA8Pu//2MAnDz5xQ+5Js86zhMuNw+sPcL65g94voNu3h7mx4A9LrcfS8CngG205OKiOzwHaEnPAgposUUCL46XX7rP9hTwp+Ntfgq4CVxHp9p5wFHg8Pj1P0OnrT2twYvuXY/6x+Tv/34XgJMn63uev3f5p42NFtGelZkTntV0PMMHxe///u8Dj9q5oYCvApfH/z9Cpz/eKVyCTjVs83TbAoPh8Xm8z4fBYHhe+DF9GcUXzWXUc8XkfrPrSpLk/WfktG0tkSmlhTbLkmPZTuA4FmmaUal4dLsRo1GKEFqek1KQJNk0OS3LIMtSJtP5ZZmOY5BSr/eNN1Ig5eJFC9Bind6eGIt6eoCg51nEcUaSaMksl7PJMp08lWWKOM5otUbk8w61Wo6Vlco0Faxa9dneHtLvR8Sxo1MmLMn6eo/l5TLvvdemXi8wGsXEsT42jqPlvZkZnzTVcmCWKfJ5F8+zGI0SwjAjTbWMB9BqjfixHzt+oPAyEXAmjxNxp9PRk5fo5DnB/HyeKNLbtG05Tbzb3R2SZYp6Pc/3fd8iKyvlPR0Jd4s5y8tlvvGNddI0m8qGo1HC9vaAer3A3FyeKEp5661btNsBb7xx9LmX6D6I3yIHCU9hmLCx0adU8rBtOZUegyDh+vUO8/N6EOxBx9e2JadOzT52qpnh4ZLdskzRaAw4dKhEECTTxMe76fVC5uY2xp/vE9PP+eNiUgg/vphrJcOTxJxPzwfSsqkdfYnLdoyazfB33uNgCcswZSLAgRbpJs9NnswyDj6O46Q4HSWtE+tAzxauJuUEKkunyyVRgOW4BP0R4aCL4xcozi5gOfq3urDk+PtY7LNdce//qnH8nBCQpQy7O+SKMyAkxdo8SRRNI6ZL84cZtbfJlMJ2PZ1EVigTDfuMem2EtJFWkTSOsD2f4txhyvPLlOqHKM7piTRy5Rp+aQYhBKX6YWwvh1coUVk8OhW8/vz/9/8gti/xqc/9Da6//T+5ce7P6TVvkUTBOG0vRUoLN1+ks/Ee3c3rjHptVs587rF+i3zUJCVp2dSOnHwiCXCWo/tPLVs/RqPBvstFo/6e5Sblnkeepe+uDypZ0PBs8yydg4aPL+Y8NBgenh+b0R1SX9wyHVJPAyEEZ1fOcvrwaVabq9xo3eD67nU6ww7r7XWSLKGarzIMh+wMdvbIEwBvXXuL9qjN51/8PH966U+53LjMC/UXSFXKu5vvEiURlrSo5qvYls16Zx0pJX//+/8+nVGHy43LnFo4xUptZZp+Z1kWlrAI4gBb2swWZukGXSxp4doucRprYW6cJjWRXNRzfv1tzn3Dx5UP+tyfXN9J9ARNkxS6OI2xhG5XFIogDvZcC04kN0ta2NKeCmxZqu9dKRQoSLIEK7Wm6ZhJluBYDijIOTk2Ohs6Rc7NMVeYoxf2iNKIJE1IVIKt7PFEtQLXcrGVTZRG03pmKiNMQmxp4zs+R2pHqJfqOJbDXGlu2sZOEsoOVw+ztrPGQmWBhfICm91N3rz6JsNwSD/os9ndpD1qEycxtrTZ6m4hpSTJEo6oI2QqI+fkmC/NY0sbIQVSyD2CNTBtn1Hwh9/7w2m63AtzL/DnV/6cyw09TnIUjWj2mgd+f7xx6o17rsGXKktc3Lq4RwLc7m9P09nSLOXy1mXe3XwXpRS1Qo2t7hafO/G5hzo3HjUh70FRSvFH3/sjvr76dTqjDsNQJ656tsd8aZ5cI4ebuawV14jTmGqhuu96ngdR0GB4Fnnq07Z93/d9H//hP/wHfu3Xfo3/9t/+G1/60pf4wz/8Q9R4FjyA4XDIb/7mb/Kbv/mbnD17ll/8xV/kH/yDf0A+n3/a1TUYDPuSe8LlHnX27IPKSR6t4/mgGd2PoxOg/he0RHcRPb2phRZcUrRMJ4GXxsvlxuUO4hxamMmAq+gkOsVtOW8NnUp3Ep1kNoNOoHoaLKH3sT6uRwu933eyPX5ecFvwuZ8w+HHjWU3HMzx73NkWXOF2WzBhDd3WfRhtgcFgMBgMho86UgIIlGKa9nYQWaam6WeFgkuaKsIwQQgtqygF/X5Mtxvi+zZxnI7HqOpkOSG0dJemCVmm0x3G40SxLAC1J/0uSdQ0SUJKgW3L6X2jOE4ZjRJ832I4jMnlnKkA5vs2QZBQq+VIUy3uFQoOjiM5cqTMkSNaMjt5UrGzM6LZHJKNd351tYXn6US99fUeUZRRq+WwbUmp5NFsDjh1apZWa8TNm93p/sdxxnAYEUV6n3zfxrIkti05dGj/2eCAqYAzeZyIOxOhMR13sgghKRS0+Oe6FrmczdJSie3tId1uOJbjKlPZb8LdYs6NG3rSmLm5As3mgFu3ekgpqFb1INW/+qt1FhaKnDxZ49KlHWZmfM6eXbz/ifEx5CDhaXJ8LUuyszPEsiQzMxYbG3qQ69pa2xzfp8iDJrttbfURQrCyUuav/mqdVitge3vI3Nzt+9Db20NarYBSSb+/oGXdJ4VJITQYDIaPDyd+4H/hrf/v76EyhbQdssTMCPy+TC4S1D7P3fPCXQhA6YsOIeXYv1PT2UQkchyzLW6H3KUpSToalxeIaER/t4Hj+vraBjVNdttTDSGQloNK0/HAzL11VOiJRILOLgKBX6wwaG2TxiHl+WUsxyHot0niiMrCCsPOjpalxnWvLh0j6HdI0xjbz5OGI/IzNRZf/iRS7hX7JyllWZZSqNapLB7l2Kd++I6q6sH6javvsPqXf8Cw3WTYbhL0OiRRML5Wk9iuj1+qkKUp8V/+Pn6xwsLJT7zfO3bw22EkpQMp1BbYvXGF/MwcvcZNwn6bUXeXXLk2XWbU3SXsdxBCUJiZm5YzPBk+iGRBg8FgMBgMho8KlrQYRkNu7N4gTmN2Bjusd9ZRKM6vn6cf9KkWqlTzenD/2s4aC+UFTs6f5NLWJbY6W3SCDlmWcaVxha3uFiW/RD/oM4pHbPe3mS3M8uqhV5kvzyOF5Idf+mGq+eo0/W65tszN1k1u7N6YCig5N8dLiy9xtXmVZr+JzCSu7eoUnvHlhEDcP7XcYDB8bJHIaULm5B6EQmEJ3eYlWYJruVRyFeIknrYlQggsYeHYDp7l6bs+4wyOJE2mwu5EfENoqcm1XCxpTRPCTs6f5GbrJouVRaSQ01Q5x3IIogApJUEckGWZFvakJEszBGKaDpdkyfS1kl8i7+q+rSPVI1jj+0V3JpRZ0uLY7DHSLKXsl7m+e51r29dIs5RGr8EwHOo0PfR2JuLyjdYNOqMOC6UFMpVxon6C5doyh6uHKXkllmvLRGmEIx06ow7b/W22elts9bamx/vi1kW+/I0vE6cxhyqHuNq8ylZ3a4/gfPf3x0xuhrMrZ/e8b8frx3nz6pvgMpUAL6xfYCY3wygesbazNk2lq+Qq7A526QU9vr76daI0OjDZbsLjJuQ9CEopfvsbv83vfff3iJOYZq9JN+jeTj0Ukh+KfwgEFL0i13evs9pc5dDMoakoCLDd36Y1bCEQU/lwqWLGcBsMD8KHdpfPdV2+8IUv8IUvfIFbt27xpS99id/6rd/i6tXbUatKKd5++21+/ud/nn/6T/8p//Af/kN+/ud/ntOnn+0Z5wyGjz5PWqB71E7ig8rl0TLKw5COy+2HjU4K+y/oJDEXnRbXBxK0SFcBloFFtATzUxzcxCbcTia7AqyP12Wjk8nC8TKTCPlTaMnm9H3W+SSZCIOgxZ1N4ALwAloSfActz01e98f1vp8w+HHlWUvHMzxb3N0WbI7/rgIldMpj647nn3ZbYDAYDAaD4aPMOICBMEzff+Hx8lGUks87zMzkAEWnE2BZFr5vkaaKYtFFKUWjMQS0AJamatrxoIW226KcGo9dnYh5SaLu2J4etCmlGK9L4XmSfN4lDBOiKCFJMuJYS2vlsseLL9b4e3/vVb71rQ3efnuTLMtQCubm8nzmM0ewrDtmBrQExaJLszlkbq4wltUU7baW2HI5hzBMqVRy1OsFhIBjxypjcc+eJtH1ehG9XkiSpOO0PJ1UF4YJhw+XuHx5l7m5wr6i1NJSiYsXd6jXC6yttafizkSUsSxJGCaMRjHVao6ZGR/blrz00iwLC0XeeUd3Ovi+/m24XyLWRMx5+eU5/o//4y9YXCyyttYGYGGhwJEjFSoVj14vpNUK2NzUstepU7OcO7fJ6dPzRtzZh7uFpxs3Oly+vMPiYpHd3RG1Wh4hoFr1KZXM8f0weNBkt7/1t17knXe2iOOMhYUim5t9Llxo3vPegZaFpdTljh/ff6bHx8GkEBoMBsNHn8riCraXIw5H2K6vB/UZPkAE0nFQaYIePZntTa8bD2RK0xRUpp+9a2BlEkGWpqRRiLTscZo2SNsmjdLpdoSQWI6DsmxUluhrkez2tZYUEiEl0pJIqSeBTMIR+cospfoSlcWjrL/7Tcpzhxn1dkFlePki+Zl5inNLxMGQ7OZlwkEPhMCybKJ+d9+9nqSUSWkxaDVJIv1bZiICTQZ8Xf2L/4dhu8mg1aS/vU4ShUjbxbIt0iQhDnaJg8H0kFz9i9+n/sKrjyURGUlpf2aWjrF+4RsA5Kt1BrsNdtYu4hUruLki0ahP2O9MX7dcH8vxmFk69iHW+qPJk0wWNBgMBoPBYPgooJTiqxe/Ok0L6gd9LRUkEZ1RhzRLkVIyjIbM5GaoFqq0h202u5sg4ET9BH/wvT/gU0c/xdXGVf08MFuc5djsMXphj9ZAj0HrhT2W5BLnbp7j9OHT0/S7q82r/N47v0cv6FEr1BhGOilpvb3OKB5hSYv54jw7gx2dGuWMBZXx5I5JlvC8J9AZDIYPAIFOVLNzOLaDQpGkyVRkQ2khLogDFDqdzrZs0iwlzmIspSW6KIlQqGmCXUam2x8EtrSp5Cp4lofneOScHFEaMVuYpeAVaPabWFjknTydUQdL6pRNhE5SC5OQOI2xLZssy3QbJy2KflGLdUon4N2ZlrdQXuBI9faERXcmlCmlsKTF1cZVbrZvEkR635r9JoNwQJqlWshTUsuAUi8fJzGdYQcUZGTYls0PHP8BLGnxmRc+w6nFU9Pvi4k0d3e63GxxltXmKkmWcGnzEral0/WqhSolrzT9Pph8f5xaODX9Prgz8c22bM4un+Wta29xcv4kCNhsb/Lu5rtTcS5NU11Gwe5gl9OHTpOq9L7JdnDvd96jJOQdxCTRbr29zl++95f8ycU/wbM8OoEWDjOVkXfzVPNVkiwhizKyLKM1bFH2y7SHbc7fOs9sYZaSX6IX9GgN9ffnQmUB3/HxbI/jdTOG22B4EJ6JO9CHDx/mV3/1V/nVX/1V/uzP/oxf//Vf53d+53cYDofTm/jdbpcvfvGLfPGLX+QHf/AH+cVf/EV+8id/Etc1cZMGw9On94TLtR9xfQeVO4QWUx6GZFzuQRBoaSxBi3oSLZA96IwCq2j5bwh8D9hFi2gTgS+PFureAzpoMW9S7mmIWDY64eotdOoV6FSsdPxvkjy3cMfrZ3hGvlIMhueISVswQn/GAF4F5u5YZhstsG6hBd5JOSNlGgwGg8FgeHzeL3XuTpTSSWtBkJDLWfR6EY5jUSi41OtFdnaGlEoug0FEFCVYlhwn26VTWW+SRncnUgosS+A4FlJmCJFOE/EsS023naZa9hMiJo5TwlCXy+UcfN8ml7M5fLg8FU/ee69FGOZpNIZsbQ24fHmbF1+cm0p0E1GtUvGoVDxsW3Ls2AygRcEXXqgyO5uj34/odEIWF4t86lNLXL/e4Y/+6D0qFZ/19R6DQYznWdi2JJdzyLKMKMoYDhOuXm0xGiU0m0Nee62O4+wV3I4fr/LmmzcA9og7ADs7w2min1LgODrRznEkc3P5aSKWEDA/XwDun4h1/XqHWi1HLuewtdXH82xefbV+T8rWhQtNtrb6U9FodbVlZJ77MBGeAF58cZbRKBknmmGO7zPAgya72bbkrbducfKkTvjY2urTagVTcU4I/RmdSKpnziwa8dFgMBgMj8TM0jFsL4fKUtxCaZww9rCTARoeGKW0xCa04KZIIVPTgZOZUGOXbiLU7bOKLEPYWrqTjouKRmSZIk2SsYynZwhXQJYkSMtCCQulUj1YSlp6+5aFmy8xu3IKy3bIspR8ZY7FU2exvRyDVnMs0x0huvw2hdoCs0df2pNAJm2b9e++hUq1mBeN+rRvrVJbfnG6zKi7S9BrEw260xlLqkdO0tlcA2D3xhXCQRchJe3BGlka09/ZIIlCvEIJvziD5XqkUUjQbxMOevR3NsiVZ+hsXGP35hXmjr782G+NkZT2Ii2b+ROn2Xj3W1QP6YFOw1aTsN+ZinNCCPLV+vT1+ROvfSxlQ4PBYDAYDAbD0+XcjXNcblyepsdd3rpMo9cgTVN2B7sAHJ45zKHKIS1C5KscmjnEhfULbHW28G2fIA642brJVlePi3n10Kv3JOhMll+p6XExq81VTi2ewrZsRtGInJuj4Bb45vVv0h62UShG8YjeqEemMkbRCMdykEJqwURZKKVIsmSaMGUwGAwTxPhmjmd7lHIlXEvLZ3EaM4yGWNIi5+qwkCRL8CyPRCRkKiPJbo9LjtMYKSU1r0Z71Nb/rySuo9PmFsuLVPNVin6Rkl+i6BUZRkPybp4s0yJakAScqJ+g0W9M5TwhBEESkKYpSiliYhzp6Ho5uj1MsgSBnhwqSROSNKHiVzi1cGoqdd2ZUFYv1bm0dYmSVyLv5YmTmHO3ztEetUkSvU8K3W5O2sxMZVOpUCAYxSNm8jNEScR2f5uT8yenwtbd3xd3p8u9c+sdXT43w/Xd69QKNT734uce+PvgTs4sn6E9anNp6xKnFk4hhWR3uEtFVOgGXd3uo+gEHcp+mfXOOpnK7pts9yD78CAJeXdzd6Ldjd0bfOfmd2gNWrRHbXYHu7i2S71Yx5IWvaBHOVfGtmyiJGKzs8krS6+AgEEwQAo5FecEgoXKAifr+v7amSNn9siGBoPhYJ65T8rnP/95Pv/5z/Mf/+N/5Ctf+Qq/8Ru/wde//vU9P2S//vWv8/Wvf51f+ZVf4R/9o3/Ez/3cz3HypLnBbjA8PXaecLmHld3er1wLLbU9WJKCRnI7VW2/7ZwDXgQuAtfG63YBB4jRwtsILdb9EPAd4HX2b2Y30N2pf4WWY/JoAW+XaZ4z5fG6tsfLfW5c7mlJM2fQguIl4MS4Ltm43gI4ChxGH7dT4+UNBsPDsTF+bKI/W1X2ynOM/7+Kbp8aaInuabYFBoPBYDAYDLeZSHRrax2EELiuxPdthIBSycVxJJ5nY1mSLMtwHEmWKeTYM4njvddoQtwWw3zfxrYFUibjJLfJ6FWBlIxTGrTcNrlHZFkWMzM+5bLHkSNlvu/7Fjl/vsE3v7nO1astkiRDSkGnE/K1r93kO99pcPRohVzOnibNfeITC+RyNhsbfQ4fLmFZe6WYWi3HmTOLnDmzgBCCixe3uXJll9XVFoNBRJZBqeTheTZpmhHHKYWCTqFrtUbUajkuXdrhy18+z0/91Cf2zEJn25KzZxfvEXeyDDqdkDRV+L49Tf+7davL8eNVLlxoTsWehYUivm+/byLWxoae0KbZ1AkS1aq/R+4CndRXrfq0WgGNxoCVlQobGz0jeD0A5vg+27xfstuZMwu02wGXLu1w6tQsKysVGo3BVLabny/g+zbNpk56PHNm4SnvgcFgMBg+KkjLxnY9UIri3BL97Y33L2R4dIQeDGW5HlkyTqGbSnPslReFuCd9brKMkBKVpagsQUgLFU+SAwVCCj0rudADYtIkRQiQCDIhEFJiux6OXyQ/M0e+MofluJTqhyjO6QGmluNRnF2gUK3TbdxEKYVXnNkjzwHUDp9ge/WCFi/H9W2+9z3SJJ6mlAW9NsN2U193jK+bkmhEa/09LNuhMDMHShGP+vT7myggCQOk7VJeWMHNFabbcwtldq5fIgkDgl6H/IxD48p3nohAZ7iX+vHTBP0OrZtXqR4+Qbl+mEF7mzSJp++d5foAVI+coH789IdcY4PBYDAYDAbDR50kTXj7xtsAXGlcYbO7yTDW4kcURzi2A0CURTT7TeZL89xs3eQzL3yGar5Ka9hibUdP5nF95zoKRbVQ3SNLAMwV56bLN7oNVmZX2OhscGrxFEma8O3r3+bS1iXeufkOnaCjU8QF5OwcXXQyt5SSUTzCljpxyJY2QRyQZumB8txEPAEtiRgMhmefSarbk0iW9ByPhfICeS/PMBpSyVVYKC1wo3WDRq9BpjIEAs/2cKRDa6RFtEmSm1KKMAnJOTniNCZTGba0kVKSc3LknBzff+z7saSenNGxHI5UjxAmIRc3LrK6vYolLdZ21nj98OucnD/JxY2LjMIRvbRHluntK6GQSKSQzBXnqJfrRHFE0S9OEzzLufJUGj5/6/y+CWXNXpPLjctUchW2Olust9fph33CKCTJElJ1ux9fjGeZUkpN0/VAC3adYYf50jzfXf8u/+sn/ldsy973+wLYky7X6DboBB26oy4KRZRGVPN7+7bv/D7YbG+S83L83vnfY213DddyWaoscbx+HNuyeePUG8zkZvjm2jdp9BrUCjUavYZOC5SSsl9mpbZCzs3tSUY9KNnuQfbhQRLy7uSgFNfNzibb/W2CJJgeW9d2ybv6XOyMOiilsKVNlmR0gy7zpXlqhRplv7wnEc939L2iUwunOLNsxnAbDA/KMyfQTSgUChw6dIilpSVs2yZN0z2DjJRS7Ozs8O/+3b/j137t1/iRH/kRfumXfom/+3f/LpZl3WfNBoPh8YmfcLndR1zfQeU6PHga3AQxLrcfq0AInEcLbbNADgjQ+1Qc//9w/Pp3gdMcnBIVATfR0gzAAHh3vK5Jop3D7VS7xnj5pxmvK4DPo1Ov/gC9ryvj5xVaItwE/uZ4uYc93gaDQbcFdz4elBhSQgt0dy9vMBgMBoPB8PRJU0W7HeD7NpblEQQJnU7AsWMz3LzZZTiM8X2b4TAmDPUMdVmm9k2fUwosS6eq+b41DkgQCKEQQotzjqNfz+cdgiBFqZQkUViWoFDQt7Vc1+Lzn1+h1Rpx5YruCJidzfFXf7XOcBjT70coBUEQ0+uFlMs+CwsFFheLnDxZQ0rB//a/vUy57E0TqixLEscpti1pNgf82Z+tsbRU4tatHsvLFZJEcetWlyjKqNV8Op2QONayTRSldDoh29tDBoOIEydqfPvbm7z++gJnzy7uOQYHiTu2LWg2hxw9WqHdDuh2Q2xbEgTJOIlPy3MT8e79ErGiKN3zWCp5+y5XKnm0WsE9yxvujzm+zzdCCN544ygzMz5vv607xCYpgRM8z5omXt55j9pgMBgMhofFdn1UlpGlCZbtkMbhh12ljzaC8SzZ41jsgwZX3SeNIA4DpLTIhgOkZZFlKUJIkEoPKBIC2xu/r1mqe1GkRAKW7eLki1QWV3j1R/8e5YUVpGWjsgzLcSjUFijPH+F7f/I77N64THfrJuGgg+0XdPqdvP0bX0hJqX6IrSvvYNkOSmUEvRbdxk1cv4CQkmigZ9nOVWYZtJpYjkuvcWu6jl7jJmmygMoyomGfOBwB4Obye+Q5/VwBN1cg6LUJhz3yM3MMdpsYPhiEECx/4rP4xQqNq+cBKM8f2bOM5XjMn3iN+vHT5jepwWAwGAwGg+EDZ7W5SpRGjKLRND1uubZMlEQ0e00SleA7OmGuO+pSy+v+iu3eNiW/RGvYIkxCXNudPpa8/cfFTJaPEj0eJkqjaR1Wt1e52bpJZ9ShG3TxbR/XcQEoekXawzZJqvujwjhEochUhhQSgSBjfznOkhYoSNSjTvxvMBieJoI7JjF6THkOtGgbZzFKKV479Br1Yh0EvLjwIlebV1ltrCKkYLY4S5ImLFQW2O5vk2YpvaBHmIRIIclURpRGWNKi6BWp5qt0gy6LM4sslBewLZtKrsJsYZaNzgbfWvsWvbDHbGGWar6KlJJLjUt0hnoC25ybo4qWyCZSnFIKx3LwbI8wCpkrzrE0s8RMfoY4jakX6+wOdqdt6d0JZcdqx/jv7/x3bGmz2d7kZvsmm51NojQiVek9ErFCTdvQO+U5lE7k2+puMVec40/e/RN82yfn5O75vrg7bXQQDOhsdOgFPXJuDkc6bPe3WSjvnbSy6BW52rzKbn+XWrHGXHFumgZ4cesib159k7PLZzmzfIazK2dxbZf19jqNXoPNziYVv8Lpw6d5ceHFqbz4IMl2+33nPUxi6n4clOLaGenjkGQJjuUwk5tBCEHezVPJVdjobJBmKVJKin6RnJPTcqaQrMyu7NmGZ3ucOXKGM8tnzL0ig+EheOYEuitXrvClL32J//Sf/hPr6+v3vH7njBDTGSCyjD/+4z/mj//4j1lcXORnfuZn+Nmf/VmOHDlyT3mDwfAsEjzhckMeTaAbHvDaBlpgW0V3rkbcFsns8eNo/LwLXAVmODglSgI30ElzjfF++OOyNjrxbjR+PocW9m6Oyz0tFPCnaKnwU8At9k+g6wB/BryBkegMhofFveuxd8ByvbuWcw9YzmAwGAwGg+HpMBHiSiWXQsGh0wl57702SilGo4RczmYwiJESwjBDKZBSi3ETJrd30jQjn88hhBgndvXRqXMCz7OwbT3iNQwTpBQkiSTLUrJMMRwm+L7DsWMzvPnmTZIkY34+zx/90TUuX96h14uI4wzLEliWIIq0fOc4FocOFTl5UqdRnTo1y6c+tYQQghdfrHHu3BZvv715j9x08eIOly/v4Ps2UZQQhhmLi0XSNMOyJGGY0O9HSCmREpIko90OuXKlRRim/O7vXuS11+o4zu2Jnw4Sd5aXy1y6tMvWlk7GO3t2EceRxHG2JxFrUv/3S8RyXWvPY6+3/0DtyfN3L2+4P+b4Pv8IITh7dpHTp+dZXW1NZVrXtVhaKnH8eJX/6/9688OupsFgMBg+Ijh+fjKP84dck484KkNloBI90GiSJPfQZCkZIFSmU+uy8aAiBUiBtB2ktBCuh0CSpTFpHCMtSwtyC0d46Y3/N6/9v/7+PZPFNlfP8+5X/xvb1y4ybDWIgwHhoEf75hWyOKRUP0SpfhiAXvMW3eYtsiRCZSmOn8fxc6g0IRh0KFTncfMlhJQMWlp084sVvOIMbq5ANBoQ9ttkaUKW6uOQhKNx3/v9+3fEPX8YPgiEEMyfeJ25Y6/Q3rjGYHeLNI6nsuXM0jHkAbOaGwwGg8FgMBgMT5qNjk5Nb/aa0/Q4z/bY7GxOpQQp5DQxpxt0qRVqdEYdwkTfC/dsD4WaPvbC/cfF9AL9vGvr8TCupR9vtG5wo3WDXtCjG3TJVIbr6JQe3/ZJ05QsywjjUItwSqfJWcIiybQYJxD3yDZyPAbPJM8ZDM8XAkH6KPd27lqHEIIgCbADm1qhhkQSJiFCCDKV8cmVT1LySqztrmEJi5yfo+yV8V2fzfYmTsEBAXESI4VkJj/DbGGWbtglzVJyTo7F4iKDcEDBK9AetlltrrI72KUX6nS5JEvY7m9zbPYYnVGH7cE2CoXv+loUBIbR8J60zMPVw8wWZxEIXll8hYyMRrfB9x/7fuqlOo1u456EsrdvvE2WZeT9POdvnac76k6Px34pnRNxbtJ2Th+VFpTDJERKyU5/h7euvcUwHJJzc3u+L+5OG60VauSdPINwQBAHBElAZ9TZI9AppXh38112BjvMFmaJ05id/g5Xtq5M9wfgrWtv0R61eePUGzR7TRYqC4RJyGJlkWqhystLL+/Z9v2STifs9533MImpd3O/FNdBMMCSFpnKUErRDbrTRMEX5l4g7+Qh1m4MlpYKf+D4D1DySlpkT6N7EvkMBsPD8Ux8aobDIb/927/Nb/zGb/C1r30NuN0oTxp+pRSe5/ETP/ET/JN/8k+4cuUK//7f/3u+973vTdejlGJjY4N/9a/+Ff/m3/wbosgktBgMHww+elDjo5Tbj0edyeWgcgkcMHvMwWT3Wd8ILbylQBctvrlAHr1PAVq+i8d/z6CFt9F96pegpZjJjYEKt2U8B90L2Ruvsw/U7lO/D4JzwGX0cbmKTqJb5rY4uIbe15PAJfQ+n32K9TMYPgosAReBOvoz1UKnWN558bU9fl4A83eUMxgMBoPBYPjwEAI8z2E4jBECCgWHJMmQUt/DGQxiQCGlRIgMoUMZsCxBmqo960kSRbcbUig4TAYQCzERixRZBgsLeSxL0mgMSVO9Hde1qFR8fN9CCMHqaotmc8jqaosgSBBCC3hKKYbDmDRV5HIOnmcRxxnf+U6Dl16a41OfOsSZMwsIoTsCvvrVa1y+rNPOR6OEZnMwlWjm5wsoBe+916bbDckyxWAQEYYp3W6A59nk8y5pmo1FOkEcZ4xGMUmScenSDl/+8nl+6qc+sWfg7EHizksvzU6T7O48bhM8z+LMmcVp/e/H0lKJixd3qNcLrK21abUCtreHY2lRs709pNUKEALm5wvTcob3xxzfjw62LTl1apZTp2Y/7KoYDAaD4SOO5fkIy4bY9GU+EcQ4am5PypweYJRlqZbnkscYGKkyFAKEjbBshNKTigghcfwctpvTqYKOQ5ZYuPkS+Wqd6qHjzBx6gVd+5CfukedunPtzWrdWAbBdj6DXIokj4mCIylKCfocsTYiDEaBob6wRjwbYfgHLsohGA2zXw80XkZbDqLtLEgbkK7NYjotfrDB79CVy5dp0u6PuLlzeQV9rpViOTkGMR33iYIDj306hi4MB0Wigr8/yRQDy1fqjH0PDAyMtm9qRk9SOnPywq2IwGAwGg8Fg+BgzSYGbpMKVvBI5N8dmZ5OSX2J3sMswGuLbejzgRGrZHewSpRECwdHZo1zbucbK7ArXd67TGrTY7m/fk+jTGrYQ6KSnre4WeSfPH1z4A/7oe39Ea9BiFI0I45C8m2epskTRK7LV3cKSFnk3T2vYIk5jpJRTwWNSn/2SqjIyhLpXrDMYDM8uCvVEEiMVConEEhapStnqbNEZdpBCMlucZamyRJRE9MIeSqlpW9IetfEsj5Jfoj1sI4Uk5+ZQKMIkJExDXMulXqnTD/s0Bg0agwZ5J0+URmz3t4mTGADP8ZBS12Ftd432sE3BLTCKR/pvr0DBK9ANtJBX9IrUS/qezHx5nuXq8lSOU0rx6uKrWNIizuJ7EspsaTOKRiyUFzh38xyDcADitoy4XzuoUIg7ZlGaiMgKNZ1c6WrzKiWvxMn5k1zbuUbJL+35vribSq6C7/j4js8oGjGMhuwOdvcs886td1jvrIOCIA7YHeyyUFqY1nFtZ42F8gIn509yaesSM7mZfb+r9uOgpNMJT2o9E+6X4hqnMYNIS3TtYZtRNGIUjci5OfpBX7+vjO89IijlSljS4jMvfObAtDuDwfBwfKgC3Ztvvslv/MZv8F//63+l39cyju5sENOBS0opXnnlFX72Z3+Wn/7pn6ZW0zf5f/RHf5Sf+7mf43/8j//Br/3ar/HHf/zHANNyafp4lrnh48kv/dIXP+wqPCcUeTSBrnjA8/vPzP7+HFTO4+FnblXjcvuxjZbX1HibDlpguXN/+sD30MKbGj9uH7A+By3itcZ/h+NlrfG/9I5/PrCLFtSch9ynRyUB3h7/fQXQKQi/9Es9oARUx3XfHC9zCi3cneYZ8bINhqfKL/3SLz1iyePAJMFgAf2ZuoD+jJXQEm3rjtd9dDt1/JHrajA8bR7982EwGJ4nvmguoz5WSAmua+M4EiEUti3xPJtOJ5wKdUmSEccpcaxTrJVizz85DtcWApTKCAJ9vdVoDPmd3ykQBCnFopgm1w0GMUGQohR7Bp0OhzG5nM3XvnadONavb28PcRyJbUvCUF8XFosuUZSORbqUhYUCrmtRrfqcPbs4Xd+5c1tcvrxLlimuXNHpb3dOure21sZxLJTSSWKjUcxgEBHHKSDwPJteLxy/loyPl6Dfj9jZGbK0VOLcuS1ef31rz3YnHCTuJEl2YCKWbT9YUvnx41XefPMGAAsLRTY3+1y40KRa9SmVPHq9kFYrmL7u+zaeZ3H8ePWB1v+s8rR+i3xcj+/HDfPb1vAkMeeT4Ulizqfni8n79dv/nz9GSpNG+2QQultm7NDd7h5SKJUhhHX7YuRRUQoh9SQfKtODhdx8kSyJUQr80gxZmuDkijiuT65SZXblZXIzsxx+9dNY9t7+nebqeS3PKUVrfZXBzhZBv4PKMi3P9VrE4ZD8zDydzTXSJEYISTTqAQKZK+Lmijj5EkGvg5svYTs+ILA8H19KvOLMHnkOIFeu8anaJt2tG3STGMfLEwcj0iSmvXkdvziD7XokUUjQb5MlMbbn45dmkJbN4skzj34MDYY7MN9dhg8bcw4angXMeWgwPDxf3DIdUk+TSQrcJBWuF/ZYri1z1boKQDlXpjPqsNnV48csYRElEY7lMF+eZ6GywOHqYTa7mxypHiGMQza7m1xYv0A1X6Xkl+gFPVrDFkrpSRnP3TyHQDBXnGO4PeS95ntsdjfZ7e8SJAFFv0jRK9IatuiOunSDLu2gTZqlZCojS7N7xI+DSNXzM77YnPuGjxsSiULxf279n2R3BGnslyj5MEzaBqUUURKRZAlBHFD0iggh6AZdGr0GBbfAIBpQ8kocqhyiE3TIsoy54hzlXJkgDugGXYQQVPwKruPqNjCNWO+sa2kuiRiEA7qySy/oYUv7djqn45F38xyrHeNG+wYKxXpnHSG0LFX2y3zy6CcZhANWm6u0hi1SlTJfmkcKyeHqYSxp4dkeZ46c4czyGdIsZbW5ykZnY09CWZIlfOfmd7jVvsVuXwtrtrBRKCypJ6NN0uSe46oYuxzjYzZ5TywsHOmQZRmbnU2uNK9gS5ubrZsslXUowH5po3OlOeI0xpIWJb+EQnFj9wYFt0DJL9EZdvjWjW8Bun0eRAMsYXGkdoRKrkIv7NEatPR3joBTC6c4d/Mcy9VlYO931X7cnXRqCYtLm5emx+vC+gW6oy6WZT3UeibflXdzvxTXkldCCoklLXJOjlE8Yru/raU9BaN4xLvBuxS8Aodyh8i7eTzb43jdjBk1GJ4UT9102Nra4rd+67f40pe+xKVLl4C9aXMTAS6Xy/GTP/mT/OzP/iyf/exnD1zfj//4j/PjP/7jvPPOO/zbf/tv+cpXvmKS5wyGD5wSt+Wphy23H4/6o/agcnM8fAKdYm/q0wfJpI2a1FFyW5iTdzxv3bXc02rbVsfbGqGT5wBe5d5UrAvj11fuKGdmODAYHhwbndz4FjrNEfRnqsVtcU6g5bnJ62cwoqrBYDAYDIYPC8sCy5LU63lee22ebjcgjhXt9oggSBFC4PuSIJDT8anZ+HJGp9AJLEs/pmm2Z/KkNFUEQUIuZ2NZgtEooVrN4bqCfj/BdS3SNMN19Q15LaxZOI5FpxPQ7eoOh0nim+/b4+3pm/q2LfF9izRV7OyMOHKkwje+sc7f/bsvY9uSJMl4+219nXvlyi6bm3rSmLsFqCBI2N0dIaUgyxRpmrG7OyKfd2g0EobDhDTNsCxBPu+SZRnDYUwUpTSbA+r1POfObXL69PwDy293inV3ynRra+0HlulsW3L27CJvvXWLkyf1INqtrT6tVjAVu4TQctfk9TNnFh+4jh93zPE1GAwGg8HwsMyunGLr4rc/7Go8Z0zsuD2WnJ41W0gQEpXdPRO5QEoJDzB48v1QWUYKWJa+1kApLMfHdj0sxyNXrpGv1lk6dRbL1QkM1SMnqB8/vWc9WZrQuHoeQMtzuw0QgtL8MtGgg+3lGLYaJGHIsNUgHacUWs54YE6+gO3lqSyu4Ph5wn4bgCQO8fJFhjtbeKUZ3FyBu1FZRpokJFGAylLiIMbx86AU8bBHEgZYlk2aJqg0xvY8SrNLSMthZuko1SMnHvs4GgwGg8FgMBgMhueDpcoSF7cuUi/VWdtZozVo0Rq2WK4u8972e9RLdUbRaJqoFKcxqUpZzC2yWFnkZP0kUkr+5it/k07Q4eT8SRCw1dmiNdTrAkBBnOl1ZCrjUOUQt1q3tHwSDciyDEtqOa8bdOmOurQGLQbRgNawxTAckqlsKn88rmBjMBg+XCQSZzwRUZqlCKXv6aRq/7S0B2HSLkykpSiNtBCmFBkZw2iIbdnTRLBu0MUSFv2gT5qlBElAyStxYf0Cg2iAYzm4tkucxvTDPgVRIIgCBtEAgCzLkEKSkRHEAWmW4lgOmcqmMtSR6hFeqL9AmIYkacL1neugYMafIefkyNk5TtRPcGjmEOdvnWcQDKgVakghKXklPvPCZzheP45t6XGEtmVzavHUPQllf3rxT7GlTaPbmB6DJEt0gp6TIyBAocjSfcZbj2/DCbTbYQkL27Ip5orThLatzhZHZ48SpzFCauFuv7TR1rCF53j0wz4rtRXaozY5Ozf9PuiOuiilyLt5htEQgE8d/RSvH3l9uo7t/jYX1i+w1dlipabHLMep/v6487vqfkmn9VKdG7s32O3vcqV5ZbpMN+hycesiSik6o8603EHrmS/PA/q7cj/ul+JazpXJe3n6QZ+ckyMZ38+cJBWGSUiqUiq5Ckqp/z97/xojR5Lgd4I/M3/GOyLfySSTZJKV1V3NrmR3T7fm1NPNeUAn7OkB4WYPA8zq9sMc1ID6gIU+ngBBwH0Q7qRd6IsAASvghBW0AnZutXuLnTtoNJrRVM+Oamaq+lHsrmYVWWQWk0wy3xnvhz/M7T5YRGQmmUkmWSwWq8t+VURkuJubm3tEeIS728/+JGnCV858ZfxaWyyWT85L+TQppfi93/s9/uW//Jf8/u//PkqpY6U5rTVvvvkmf+fv/B3+9t/+21QqlVOv46tf/Sr/6l/9K/7xP/7H/LN/9s/4F//iX3xam2OxWGi84OWOt/CfzknL7WIOb88inDmcnBg3NaxPYBKgBLAB5IfPB0BvWMYZzvc4WcjbBcrD5R9iBLkyR6U/iUmpS4GF4fyT2vcoKUZm28DsAx+TmLfE6Q77G8PHHcyv4Nox2zLFQRLdNkai28AKdBbLs7KCOTbewnx+FjGfqdFndwZznGE4347wa7FYLBaL5bNBCCMJ+b7L9HSBer0/TJiDwUAhpaRY9HBdSbMZ4ziSLNNkmR4nyZnljQjnuoIoUuPrQkpp4ljheZJ83qVY9EnTjG43xfMcSiWfbtekO9RqIZVKQK9nkuuEAKWyYX2jYAnBxEQOIQRxbEYR1RqUStnfHxDHin4/ZXW1zvLyJKur9fG0rS0jz73xxjRTU/nxPtjd7XHjxg6OI4hjKBR8ms0BWkO/n5Jl5lpXLudSKgWUSgGNxoAwdHEcSasVkWWaKFLj9Z4WrTXXr2/x3nub4+0ZcfPmHm+/fZ+rV+dYWZk9ktJ3mJWVWRqNAbdu7bG8PMniYoXt7e441W5mpkAYmnPG5eVJVlZmT92+z4IXkcz3IvlF278Wi8VisVg+XS5849e58Uf/78+6GZ8jBMKRaKV4bHBFrU0HqkwNPblHBDvEcBCOT46UDm6QAzSZUriub9omBfnqFLnyBI4f4ngBM5e+wvTSlcd+nzc27qKSmDQe0KvvADB5/nXCUo36gzv06juExTKtnYfEvTbS9UwHJOngBXmKk7NU5i9QW7iEEIJ+a5+9tZvE3TayJEFA3O8S97tH1tveeUB75yHNrfukUZ+wWKHfqoPOENLB9UMjIeoMx/Vw8yXCUoVcdYp8bZqlX/6ryBfcUSdTKY2Nu3T3t1BJguN5FCZmqc5feOHrslgsFovFYrFYLM/G0vQSb995G3yYLc+O0+OquSpam7SkWMVMFCdwpUslV8F3fX719V+lEJgBPZZnl/nua9/lTz76E25t3WJ5dpnFiUW2W9vEaYzv+iaxqfEQjR6nN4G5L7Lf3edB44ER5LSmM+jwwcYHCCHoDDp0+h0SlZBpc843kmSsRGexfH6RUoIGz/EQCNIsJdMZEnkkje5Rnva59xwPV7pkOhsLYVKYVLU0S8ePqTIyk+/4IGCzvUk5KNNP+gzSAVprBulgnKa239un2W+itCJwA1Rm7uNKIankK0gh6cU9EpUYYU9nnKmeQSK5uXWTj3c/pj1oj49jraiFQvHnH/8539Tf5GztLJOFSaSQlMMyi5OLnJs495godxKxiqnkKvTiHp7jEaex8TckFPwCURohhTx2/2qM1yGFxBEOvuvjSAff8cn7eSaKE2g0Sqtxwt7h74tH00Zr+RrFoIjneCxUF3jz7JvsdfaI0xiBIO/naQ1a9OIeZypnuLJwdFCqqeIUtXyNeq/OdmubxclFXMc1r9Uj31WPrhvM/Hv799jv7vOti9+iH/fZae8QpzGudNHapO7FKmarZYJHjq2nMkvohU9MhXtaiutceY51tc5+16QC5r08g8S8r3zXpxJWCLyAbtRFCsnP1n+GK11Wzq2c2BfAYrGcnpdy5XlhYYGdHXMD4LA4N3peKBT4rd/6Lb73ve/xrW996xOta25ujn/0j/4R/+Af/INP1miLxfIEWi94uSqw/xz1VU+YnmAEtoTTpduNhLfkhPk54BxGailhxBaBkeZ6h+rwh/8c4OxwudNw+Gbu4dFTn/WHjgauA+/xuDx4E3gbk3a18pS640ceT0oOLGEEukfLWyyW0yOAa5jj2XvDaYuPlAkwn9unfXYtFovFYrFYPj2kBJP65iIENBoDfN+h04lpt2MmJ3OEoUOzGROGLp1OPBTZRulz5m+tIQhMEhwYcW4k0XmepFbLoYYj3E1MhOzt9fE8h1zOQylNuexz6dIkQsCDBy329/vj9Zi6wHUF+bxLrWbOyaIopdmMSBKFlGYQp62tDouLFTY22iwvT7Kx0QZgZ6c7lvQOy3MAU1N5arUQrTWuG9PtJuRyRvbrdhOEEOTzHjMzeaSURFGKlFAu5wgChyhSJIm5aTJa72nQWvPWW3f56CNz3tzvp+zsHBWzAN555wGNxoBr184fe+FcCMG1a+epVsNx2t7i4tHBq1xXMDmZBzR/+Iern7mUdhwvQib8NDjN/g0Ch5WVl982i8VisVgsrx7l2bM4bvj0ghaDEEjhkDniBIkuAzH8vTqW6EynK60zdHb0d+NzNwPQSiGkwPUDpOsa2SzIkytPUJlb5NzKt58ogHX3TQecXmMXrTVBsUpQrAyfm5S4JIqQ0kFKByEds4lK4eeKTF34MsWpM+Pfk7nyBEGxQtRrE/c6+Lkig06TqNOg39onV55g//5teo0d4n6XpN8hjSPc6hR+voh0vWEyXYKUDkGhjHQc/HwR189Rmj7D4tXvMnPpq8duz/OgtWZn9X2277w/TtgbsX//Ng9vvMvMpSvHCogWi8VisVgsFovl5eA6LlfPXeWdu+8cSY9r9BsA5LwcURJRKVSYLk4jhODi1EUKQYHADVg5uzLu6H9t+RrVXJX37r8HwOKk6RejMsVffPwXeI5nkqYcMZ7eHrRR2gzEmCSJSegRsNXaIvRCYhWT6vSgP/LwPPDwo5XoLJbPFxJpAnnQSGmkLq00aJ76eT5pvivd8eMo6Md3/XG65QiBQGUm5S7LMmJiPMcjVSk5L8dWe8vId0KYtDUhyHt5XOmSZilRGhmhN8sIvZBckCPn5ejTp5av0Rl0iFVMMTDpbQ8aD0zKps5IVToWhXtRj9ALSVTCx7sf04t7FIMi9V59nGY2Sjc7Db7jM1WawpHOWITTQpOqlEEywJEOURqduLxA4EojqbnSJefncKRDrVCjEpr7oEopzk2coz1o86W5Lx2bNioQzFZmuTx9mQeNB3jSoxAUxsL1KH0NjCj3pbkvHXtNqBSWjuyLTGfHflcdt+7QDbm7d5fzE+e5s32HrdbWkfdNo9cgUQlTpSl2O7s0eg2AY7cBYOXsyompcE9LcZ0pz9BP+rT6LaI0ohf3UJki5+UoBAVc6dIddHlt9jUuTF0gyRLeufsOjX6Da8vX7PUyi+UT8lIEuu3t7fGH9XDa3Ne//nW+973v8du//dsUi8UXus5c7rTiisVieXaed6TOk5Z7E/iY08luI8RwueOoYIQ4CZzmpqgclj8p9XIeI8Q1MKKfh5HjesP6neHzbNiuS8Pyx8fzmvS2FtAfLhdzIOJJDvaTixHy+sPyJyXagdl3bwEfDZ/3MQlyh1OsAN4Zbsc1ThZx/Ece2yeUaz9S7nmTBC2WLzoCI7de4ZOlR1osFovFYrF8OohhB9R83qNWC+n3U/r9FMcxkphSGa1WRL+fUih4tFoRcazQmnEinEl/y5AShHDGiXMmQc4hCFzOnStTqYRsbXVxHIHW4HkOvu9QqQQIIajVwrGMF4YecdxBSkGWHUh6JmHioP1G+ovGgp3vO/R6CZVKMBaw4lihVMbmZoetrQ5KZdy6tUelEjA1lcdxTGfcUimgXh9w+fIEWhuJL5dziWM13p5eLyXLMlxXUi6btDzHkaTpgELBH6/vtFy/vsVHH+2TZZrbt/fZ2uqMpUGAtbUGs7NFLl+e4NatParVkKtX5054LQVXr85x5crMkfQ2z5M0mxG7u322trpsbR2kVXyWUtqjvCiZ8NPipP37KoqIFovFYrFYPlvq92/jF4r06ofvCXzBkc7w5OGR/SEEjushpMTBRenoGCHO/MYS0kFnpjMTQiIcSaYUR05OnhMhTZ06U0jXR+uMLE1QgOcHAITl2lPrUYkZzFGlZuTxZNBj88MfmXYCQkpypSpp1CMZ9PHCHG6YRzous6+tUJpeeKxOP1fEDwsMuk2k6+HnzcCIe2s3yVRK1G2RxhG9xjYqjnC8gHTQM+di+RJZpnBcH5VE5CqTFCdn8fNlSlPzzL725gsV2bTW3L/+p9QfrAKYJL7GLipNcFyPQtXcC9v48McMOk3Ovflt2ynIYrFYLBaLxWL5jFg5t0Kj3zg2Pe7i1EUmi5N0og7NfpO58hy/dP6XOFM9w9L00hGpQAjB1cWrXFm4wurOKhvNDZPw09zi0tQlikGRH679cCzNDZIBUkhq+RqNboNBPEBlCt/1SUnpxT2T5JQ9npY0SpbSz3D+Z2U7i+UVQYDONAhIVEKs4nFi3PMwEvJG8lecxgfhP5hBXgM3IHADEpXQjbsIfXAMUZki0xn36/eNxDtEo3GkQyfqmCTNNEZnmpTUDBrreOSDPAjwpIdGUy1U2e3skqiEB40HJFmCUopu3KU9aBMlRmIbpAP2O/ugYa4yx1Zri1SlJmltmGY2Sjc7DSOR68LkBbZb2ziOQyYyUEZWHol1KemRY6FA4EgHIQSucyDOBW7AdGmaWv7gGpjv+pytnaWf9JFSHps2OlOeIfTMYGK/8eXf4NuXvs3Hux+Pvw/6cZ/JwiS9pMf9/ft04s6x29MetMfrHO2LJ31XjdbtOR5/sfoXzJZnGSQDttrDhLlCjVJQoh210Vqz3d5mt7PLTGkGjebcxDmUUo9tw/LsMivnVk7c76dJcU1Uwnx1nkEyoJ/00ZmmFJbG6YZTpSnyfp4f3v0hs+VZLs9c5tbWLaq5KlcXr576PWCxWB7npfbG1lpTKpX47d/+bb73ve/xta997WWu3mKxvDCe90bVScv9H4A/4EAiOw354XLHMTecf/yPqOPbVRgudxxLmPS2r2BEvw+Ah8PlHIxEpzEpUV8elguHyx2Hd2i9GnNz3Dn0Tx36dziJzuNkrmPkuQy4DWxxVEhcA2aBy8AtTNrV1RPqmsck1k0Pl6sDuxwV+HaH0wUHct5JwqDFYjkdLrA8/GexWCwWi8XyauE45mZBr5cQxwopTVpbux2jtR6OAJqRptlYDpNSMJLZRssnSUYUqSMDLUlp/jUaEZcvT3LxYo2f/3yHXs/UHUXpuM7B4ODmxGCQoDWEoTtsA7iuRGvo9RIaDZNelyRqvNwo7c5xBFNTBXzfQWvN2lqTv/iLB2xvd2m1YtI0w3Ekm5sd7typc+5cmbNny7Tb5uZFLuexsjJLEDgMBil37tTZ3++TZRrXFYShEf7K5YDp6QIPH7aoVkPC0FyK8/2DEQ2fRJpm4zSz27f32dw057m1WkipFNBuR9Trg/H05eVJrl/f5MqVmSeKWq4rWV6eZHl5ciyljaS5V01KO8yLlAk/TQ7vX4vFYrFYLJZHyVTKxs0f4Ycm+dcyJFMI4aCFPJDohDQCnefh+DmSfgfpuKhHBToJjuOZDpLmNATpuOgsGcpzfLJdLUyl0nFw/ZA06g+lMw8E9Jr7hKUaSa/L/ev/6YkJao5n7vVIx6XX2CFTGaWpObI0Ie53yJRCOg6g8XI5hDBJdF5YIIn6xzYv7ncQUlKcnEPFEeWZswgp6Oxv09peR2cZcb9NGkW4fkC+NoPrB/iFCo5jpEM3CAmKVZMa8c3foDR95olJes/Lzur7Rp7TmvrDVXr1nSMdW9vb6+Rr09TOLFFfv0NYrLzQ9DuLxWKxWCwWi8Vyep6UHjdiojBxJG3uSbiOy/LcMstzpl/MD27+gG7c5d2777K6u0qSJsRZTJImdKOuSXPSGZk2SVGj52AEltF/h9GcLq1qvI3D/6SQKP1i0sstFsvzobWR0Bwc4jQef94RnEqKHQlgI+HOcRxcxyX0Q5I0MdeLkGMZzpUujjRlRp9/wTAkCI3OtJHLdDpOnztorDlGxiomzdLxcURKiSMdqvkqnuPR7rdpD9pU8hWkkHSjLttsUyvU6Cd9BslgXK8UEt/10WgSlbDT3iHv59lubXNx6iIzZdNPd75y+n66I5HrjTNvcHv7NjudHeI0NnIcgiRLCL3QJPBpZVL4tMaVLlLIg67LAvJ+nunSNAvVBQbJgMANkEIyU55BCMF/duU/ox/3T/y+eDSd9PD3wfmJ87x16y36cZ/1/XXq3Tq7nV2migd9lnc7u9R7dQTiyL44zXdVvVvn3MQ5JguT/GjtRwC8ceaNx+rngUmiG/V/yHt5ZqdmT9yGkzhtimspV6IruxSCwvj9WxAFFicXuTh5kU7cod6ts9naBGHEvevr17mycOXE9DuLxfJ0Xtqn5y/9pb/E3/k7f4ff+q3fIp/Pv6zVWiyWzwXfxggjNzCpS0/DB14bLnccXwd+H3OIS08ocxgPI799/YT5LrAC/GuMoBZg5LzB8LnECHPl4fNbwP+Zkw+xKVACasAmRpqbGpYf1ZdiJLUUmBiWP2lbUuC94d+3h3UyrL+ESYqrH5q+jBHurpzQxpEwCEa628S8No/WN5ofDvfJScKgxWKxWCwWi8Vi+bwh5UFIg+dJHMchilKSRJHPe0hpZDohBFmm6fWSYSKdwnGMEKdURpbpsbR2+HmWHdzk8H2B50mKRZ+1tSYTEyG5nItSGYNBSpqatDohoNdL6XTMeWOvlyKlaavnSdI0Iwxd4jjDJMEluK65sZJlGikFrisRAs6fr7K72+XePY//5r95mw8+2GV/v4/vO3S7Me12hNYwN1cE4OOPG2xsdOj3E6QUzMwUCAKHUingpz/d4qtfnWV1dZ9+P6VcDimVfMrlANeVdDoxriuZmAjHMtr8fOlUr8Pqap04VvT7KVtbRpJ7441parUcu7sHktv6eot2O2ZhoQT4rK7WTy1vfV6ktE9LJrRYLBaLxWJ52dQffsz++h3SODI/Zh9LU/viosmMNKcZJ8YJKUnjmDSO0ON0gZERJ4b/CxzfByFRSUymFFqbDj9CSjN6+fOmzwmBkB5SmDWqNEGlRszTjotWGb36NvnaNK3tdfLVSbr1HXY+/oDCxA+YW75KcXJuLKMVJmbZv3+bTCUk/S5aZ7S27qNUOm6jSiKibhshJUExh84UOkuJOg36rX1y5Ylx8/qtfaJOEw3kq9M0Hn5Mv7VPvjqJny8SFMqoNCYZ9AjLNcrTZ/DCgpHUFi4xaNdNUl2aUJlZwPFDStNnmDh7+flfyBPIVMr2nfcBqD9cpbu/DUBQrOLnCsT9LlGnMZ5eW7jE9p2fM3Xhyy9c5LNYLBaLxWKxWCynQ2WKvJ/n3MQ57u3fo9VvUQ7LnJ88z9na2cfS5p6FKI24tXWLe3v3aPfb1Ht1NJooiVBa4Qgjtmg0mc7Ie6bfcT/p4zgOSikyDoS6Ec8iz40kPKFt8rXF8iowErkOPx+LdE9ZbpygJowcJxAIbYQ4KYw4N0quHMlPoRcyUZjgQf2BuYd9SNJFQ0Z2MO3QtaVMZzjCMcenLENKeZBcN2y/7/gEbsBOukPWy0hVSpql5qijNUmWECURjnQoBIXxNa5RW+/t3aMYFk3ymxcQeiGBG7A0vUSq0iOJnr7jM1+Zf+yYPBK5+kmfNxbe4NbmLe7t3zOpeYdkQ8/xkFoSuiGudEmyBDQEXoArXVzHpRyWqeaqPKg/IB/kCb2Q2crsuF2Xpi/hOu5jaaMnte0wJyW21fI1SmGJ9sB8RwBH1rk0vTR+PY9LOh2t+379Pnd27nBv7x4aTa1QOyLPAUwVp5goTCCEYLG2SC7IUQ7LXJy6eKpteJTTpLje3bvLjYc3yPt5enGPnJfjmxe/yWz5QNrb7exy4+ENtppbLE4YMXB1Z3UsH1oslmfnpVxprtVqhGHIv/7X/5pvfOMbvPnmm89Vz+///u/zT/7JPwGgUCjwe7/3ey+ymRaL5dQ8b8ezk5ZbBv4aJkHtNAKdB/x1Tk5p+k3g/z4sNzhFfSPR7jefUEYD94F7GHlsMGzr4YS4OmYbizx5KFNv+K+Ike56GCHv0UQ7F5OkV8BIgycl0K0O29LHJM8BvMHjiXE3hvMXDy133D50Mel072AS6xguV+dAnBMcJNqBEQztzUuLxWKxWCwWi+UXBSO9mb+lFCSJEdgKBX+cMmdkOACNUpBlKXrcL/VAnDuQ6cy8w/KcEEaM2t8fEMdqKJZpkkTheS6VSsD+/oB6fUAYunS7CQ8fttFa43kSKQX9vqJUCgCB1hAEDrmcS5JkCGFkuizTw3Q4OZTsFKurdfr9lHv3mmSZ5s6d+jjVLstMKt3mZodKJSSfd+n1UiYnc7zxxjRh6BIEDv/lf7nCf/1fv83qap1aLYeU0VB4M/UkyUGK29xcabzc0lLtVK/DxkYbMGl/WkO1GtLvJ9y6tUeaHtwsShJFsxnxR3/0MYuLFXq9mLW1GXzfYX6+xNJS7ViJ7PMkpZ0kE05NHQzUtbvb48aNHba2OiwuVsbL2SQ4i8VisVgsrwpaaz74j/8TjfU7DDoNyJ7eAeiLhHQ8NBhRbtgpSWcafdwAg0LgeL6R44AsTY2QyLATZKbMPKkR0kFrBVoAz7jPtUaToYVEolGJEfmk46AzRRr1cD2f7t4GzY27CAS56iSF2gy9+jZxt0VpemGcSjd5/kvc/+l/ov5glbjfpdfcJUtTHN8nV6zheD5pZO5tOa6HiiP8fAnXC9BZxt7aTYJiBT9XJO53iDpNBp0GOssQgOuHFKfm6e5t0N7dJBl0kVLihXncIE9QqFCaPkNx6gxCCHLlCYJihajTpNvYpTxzlu7+1qci0DU27qKSmDQe0KvvADB5/vXHhMC9tZv06juUpxfGy30a7bFYLBaLxWKxWCwno7Xm+v3rvHf/PWJ10J8v5+dIsoR7+/eYKEzgSOeZ6j0sffz++7/Pzx78jK3mFlutLaI0wnEcBvHACC9SEuhgLHggTGpPpjM8x6Mf98cyzHNt43NIdxaL5dNh9DkfS3BDTvvZHJUTCCQST3p4jkchKJjEOQnduHtkmVjFJu0yS+jHfSPYHZL1RqLbievURp4bS3SOJFUpaNhubZskO6GJ05goiUBAohIjyKkU3/XxXR9HOARhAECUROSDPHEaE6cxbuJypnqGaq4KwJtn3+T9B+8/dmwGuLl1k7fvvM3Vc1ePJKSNRK6HjYdkWca5iXPc2rpFs98EjOgnhaSf9AncgHMT54iTmIyMgl+gNWihMoWUknq/TjksU8vXmKvMcXnaXK9ZObsyFsseTRs9DSclttV79bE4JxDMVmaPXefheo5b99r+GgBxavZZKTh+sNtSWKLeq5NmKbPlWS5OXeSvvPFXTr0dhzlNMl7ez/PLS79MlmWs7a9RK9SOyHNgxL5avka9V2e7tc3i5CIbzQ0r0Fksn4CXYjvU63V+8IMfANBoNJ67npWVFd566y3AHFhWV1dZWrKJRxbLy+d5TxhPWs4FGpwuLY5huTonH8IeYlLbNk+Y/yiDYfmHQPWE9f3ecJ37QHM47fD2KCDBiGX7wP8XePOENirg3HB9o45+ybDOUR0jeS4/LH92+HgcG8PHnWGbahyV5xg+rw23YRsj0W1wsoS4gnlNbg3LLA6XizEy3wwmeY7h/JUT6rFYLBaLxWKxWCyfJ0bSnNZ6fFE9ihRSCqSUJIlCKSPOKaUPhTjocd/fkSDnOIwT39JUIyWkj5z2SWlEPSEEUaTY2OgwM1MgilImJyXT00U8z2FrqzuWp5LEnBsp5RAEDr1ewtxckdnZAuvrrWEbzLZEkUIp0zDPkxQK/lCI85iYyPOzn20Rx0Y+G22DSdwzKXlRpNje7hKGRubTWnPxYhWAlZU5cjmPv/k3X+fP/uw+29tdbtzYYW+vhxAmVa9WC3EcMU5wGy13WvksjtWRx3q9T6NhOtMmSUa7HaFURhQpOp2IbjdmZ6fH9naHXM5DCMHNm3u8/fZ9rl6dY2Vldvy6wudLSntUJqzVwiPtBJiaylOrhdTrA7a3uywuVtjYaFuBzmKxWCwWyyuB1pq1H/+AjQ9+iHAcVGx+g1oOyNKEx/aJVhxOnBNSDM9DhJHGpGtGCFcpEtBKGXlOD5fKNEKYJDohJJlK4RQjlx8gQCnTGSoV4w5RDNflBDmcIEemFGkck6UxSTwg6nUIC2WibpuwZM4FNj78MRs3f8K9n/xv7K7eIFMpKo6GiXmaXrqD4wUEpQr56hQqTUiiHn6+SK4yieP5ZGlC1GkSdUwnp259ByEgV50iUwmeH5CplMLEHCpJ6AGDdh0Q1M4uMXPpCvKRDq5+rkjUaZpkPUAlybO8bKemu28Ggew1dtFaExSrR+Q54KUKfRaLxWKxWCwWi+V4tNa8dfMtPtr+CIB+3GenvUOcxviuz0x5BoB37r5Do9/g2vK1I/ceTqrzsJCnMsXd3btsNDfYae/QiTpkOkOoQwlQmaYbdxEIXMdFZYo0SwncgEa/cSSl6tPiUZnHYrF8OggTv3aqtLmTGCWqOdJBa03ez3P13FXu1++jMgUa2lGbNEtRmUIrTU/36MU9Mp2ZMpxe2svIEPog+S7TGQgj6nWijknQ1JpEmTQ3KSSBF1AICvTiHo50WKguEHgBvbgHQL6SJ+fm2O/t04k6zJZnmSnNkOmM12Zeo96tc3vnNnD6Y7PKFPPlec5PnDfiXK/JhYkLBF5AJ+qgMkXgBrw+9zqBG7BeX2eiYK7XbLe3mSnPkKqUTtQZS4nlXBk07LR3+MuX/jIr5z55/+EnJbaNti/0TJ/l5dnlZ1qn7/jm0TWP7ah9bLn2oH2k3Gi55+VpyXiLtUXu1e9xe8u8pk8T+0YC4KPypMVieTZeWlzQ4Y5Xz8v8/DyXLl3izp07APzkJz+xAp3F8pnwvCefJy3XwQhnp61XAf8/4P+JSXF7lB9jbqSe9sd0Nvz3Y0xy26PcAn6ISZ9rcpA8N0qfGz1mw/n3h+VvnVCfDywMl+sOn1eA1nDbnOHz7vCfHpY/6cdY/Mjj8T+izPT6MeWPQwDXMELhe8Npi4+UCTDi3AoHKXwWi8VisVgsFovl885IaBv9bVLlzAh7UXT0vM1c72GYRjc6P4LDg/EZ0e7ojYbDl4hcVw5T7jKiKKXZHIyXK5d9kiRlZiZPp5PgeZJeLyFJTLKc1jA7WyAMXUqlgNdem6TXS4iilChSDAbG2KtUAmZmCrRaMbVaSJJk3L69x/Z2D6Uy9vf7ABSLHvm8Bwiq1YAoUuzsdJFSsLBQIpfz2N/v853vnGdlxYz+trIyS6MxwHEk8/MlBoOU7W0j/I3S58LQXIJbXp4cL3cafN8ZP9brfXq9hDNnyuzsdGm1ovF+fviwRb+fUi4HhKHL/ftt3n57nXPnyszMFAB4550HNBoDrl07P359P09S2qMyoUkdfJxSKaBeHzxW3mKxWCwWi+WzZmf1fR78/B3ifpdBu04y6D59oS8co/MGwVGRTo8fdaZBSFNEOOa3rQDpuGQqNfIcIB0HIQWZysx5jXCQjkDrDK2esTOWABim2wkj0aE10vWQroNKIvpJjBeEaCkZtOqkgy5kCiEd7v/0T6meuYjOMnbvfkjcbSNdl6jXIssUSDFsr+ngpZIExw8RjoufL5GrmEETg2KVyswC3cYuKk2I2nVy5SrS8eg1TKKbkC7d2Aww2W/tmyTx6jT9dp2423pMngOI+2YwDcf1zKPnPdv+OSUjMW8k6vm5wrHlXpbQZ7FYLBaLxWKxWI7n+v3rfLT9EVmWcXv7NlutrSNCydreGrPlWS7PXObW1i2quSpXF6+eWN9xQt6HGx/SHDSpd+ukKjXnQkN5RQiBK92x0DISYhKVEKuYclAe37f6tLHynMXycvikfsGjdY3qq+QqIGC3s0vez3Nn5w7dyIi5QhhhV2kj1z3P5/3wMlES4UhnfCyLk3g833HMNZ8oiWiLNrV8jUxnJCphaXqJVt8MElvOlQHoJ300msAN8ByPKwtXqOaqvLv27qmPzZVcBYE4klZ3bfka7z94n9XdVfpJ36TIzVxmujSNIx0CN+Bvfe1vUQpKbDQ3+HDzQ+7u3qU1aOG7/lhwbPVb9OM+OT/Hvf17XL9//Ujq3fNwmsS2wA1YObvyzOuar8xzc+sm06Vp1vbWqHfr7HZ2mSoeBJXsdnap9+oIxFhGnK/MP/f2HOakZLyNpglPedlin8XyReelCXQv6sttbm5uLNBtbW29kDotFsuz8qIT6P4VsMWzJdBtDpf7vx4z/y5GYpOcTsqTw/J3T5j/LrAG7GLS6jIOhDF96DEbzt/BpLO9y/EC3Tzwh5hEuAImsa6HOSSPRLydYdsnhv8eAL9+Qvv8Rx6P/xF1MP3R8ichgKvAFWAVk1g3SqCbB5Z4iV8jFovFYrFYLBaL5SXgOALXlWSZHqa4HQyIZCQ5xklz5uYkh6YdPedTSpuOpWgevYc5Wm4k35kymjg2qWph6FIuB5TLAQ8etDl/vsoHH+xQr/fH6xcCpFSkaUavl+D7Dt/97iJpqvnggx3iWOE4knI5QErBxx83hoJYjiyDRmNAPu8SRQrPcwBNPu8P6xW02zEXLlQRAnq9dCyozc+XjkhoQgiuXTtPtRry3numo+ooqW1EEDisrDyeAPc05udL3Ly5x+Rkjnp9gFKae/caxLHZCfm8S6sVjSWxbjem30+Zns7z0Ud7JIliba0xTsC7dWuPajXk6tU54PMlpR2WCQHa7ejYcqPpj5a3WCwWi8Vi+SxRacLtP/t9Hn7wQ3qNHaJu57Nu0ivOk+5DmZG9peczEu1UbDoBjQZ0dVwXISRaa1w/ACHIkhgVp+hTD754qC0atErJtETrDJBIx8HxAqTrk8YROlMk/Q7CcRGOQ6YU0vFw/YA06rN//yMGrTpaa7r1bdIkIo0iMpWa0cC1JpMObpAjS2P6jR3Kc+fxcwUKE7OmnjjC8UPKM2fRWcZGYxfpePRb+0jHIyhWCEs1/FyBuN8l6rXp1XfwwjwIQWt7nV5jl3z1oHNQv7VP1GkihKAwnF6YOP2gH8/CSMwbiXpx/3iJ9GUJfRaLxWKxWCwWi+VxUpWOxYXb27d52HxIZ2CSlAI3IEojUpUa4USYFKDr69e5snAF1zm+H9lxQt5ma5Odzg6JShikA5McJcRYjEuzFCnkONkpUQmZznCkw353n+yZz+0sFsvngU+a+qgxMq7nelTy5n7tl+a+xNreGq1+i4uTF1nbW6Mbd0mz1AhhL8CT1aP/Mn1kG0apeACOdPCkh8oUrnSRUtKP+0wVp/j25W8DsNve5d7+PaSUlMIS5yfOE/omde13f/i7FIIC9U6d7c42ALVCjVJQoh21qXfrbLY2QcBrM6/xu+/+Lucnz+NI50ha3URhgtdmX6MTdWj2m+T9PF+e+zJnqmdYml4aH8tfn3+da69f448++CP+bPXPaPab9KIe7UGbwA2YKc0wXZomyZJnSiR9Ek9LbDvcvmdhaXqJt++8DT7MlmfZbG1y4+ENavkapbBEe9Cm3qsDMFuZJfRCAjdgafrTDXk6jdi33drm3t49+mmfcq7MIBlwfuI8qUqfa19YLJbPofnQ6RzcUGo2m59hSyyWLzLPewJ60nL/FiOePQuD4XLHCXTvAY+ORikwotzhtLjDv3wTDpLWHuV9YA+TlPe0bc+G5XaHyx3HIkZG8zGinYfZnnT4dzKsJwRyw2mbPJ4AN2IeuAlMY0S/+nD9U4fK7A6nC2Dm0HKnwQWWh/8sFovFYrFYLBbLLzKOI02HU0fgOJAkRpTKMo2UBxe7s+xAijtugM+D6+J6mGD3eBkpQUo5FO0gTbNx3a7r4LqSJMn4zncWee+9TZIko1bLDctAlmVkmcZxJHNzRYLA4fr1Lf7aX1vm4sUau7tdms2INM3o9xO+9rU5Ll+e4Cc/MSO5nT1bJo5NwpxSmjB0x4l1Z8+WiaKUMHSZnS2yv9/nzJkS3/jGGc6fryCEIE0zVlfrbGy0x2lz3/rWAmAS3UbT5udLLC3VcF35zK/H0lKNt9++z9ZWTLHos7/f58GDLp7nMDdXQOuRCGiS+gYDRZZlVCoBxaIRB7WGzU1zPW15eZLr1ze5cmUG15WfKyltJBNOTxdYW2tQrw/Y3e0dSczb3e1Rrw8QgnHy3vz8SSntFovFYrFYLC8HrTUf/vH/TH39DioeoJIElcZ2DPtPgNaKLIlhmJhNpg7NA505SN9DZylCStJ4gFZqOIIHPJ5wd9K0I2sdynPCDAbimI5OQjq4jotWKYNuC5Gm5CoToDXCkRSn5hGOS/3+R/Qau0jXJe530FrjeD7OWATM0Eqh0hgvzOEGOeJ+By/M43g+pekFqmcuUpo+Q3d/i/0Hd4ZJfAKVxAjpUKhNU11YGqfMFWrTrL7zH0ijPl6QIxn02Lj5E8ozC/i5InG/Q9Qx99vztWkcP8TxAqrzF17MC/UIhYlZ9u/fJl+dor29TtRp0G/tkytPjMu8TKHPYrFYLBaLxWKxPM7qziqxiulFPT7Y+ID93j6z5VnyvrkWn/fzdKIOH+9+TLPX5Fzt3Hi5R5N14HEhb7NlBiLMB3ly/RyBF9CNu2Q6M0lzjkOqzL0aRzp4jkeURmitTVJUqg7kFHtibbH8wpDpzMhl+pMN4jmS1ZRW9OIe9V6d7yx/h+XZZdb21njrw7dwXZcsysYpdMBzJ9CZRfV43SORboQUEokkyzK01BSDIpGK6MZdLs9cpp/0+XjnY1SmxiJXL+4RuAGZzmhHbQbpgPX9ddbr6yQq4f7+far5Kt++/G2mS9Pjde12drnx8AZbzS0kkofNh+S8HO1B+4lpdVJKqvnqscfw6/evs7q7ynRxmmavSXvQRqMZpAPu1e9xv37/mRJJT8tJiW2fpL6r567yzt13uDxzGQRsNbeo9+pjcU4gmK3Mcnn6MgArZ1eeKKilKmV1Z5X79fvc279Hq9+iHJY5P3mes7Wzp5L9niT2FYMiH+9+zL39eyitqOQq4+S/1d1VNv58g6vnrn7i5D+L5YvI50qga7VafPDBB+MPerFY/IxbZLF8UXnRCXQfP2d9Jy33kINEuBEeRqAbkWHS1EZ/6+Fyx3EfaHE0ze5J+0ANy98/Yf49DqS3AQepbqNDsoOR6WKgjxHqLg6XO+4H4RLw9vDvWYxsdwOTcFfCJM/VD80PgWC4nMVisVgsFovFYrEYTCKcGd0TwHUlSgmUOhDbhDhehntSndkx45AcrkdKGKV8j6aFoUu7HTM5mSNNM+r1AeVygO87JEk2LhdFKa1WxMOHLa5cmcXzzMApb7wxTRzXxgLb+nqL27f3uXevidZQq4UEgcvmZgfHkeN25PMuvV5KpxMzMZFjYiJHoeDhukbScxyB50nee2+T997bfCyJ7ebNPXzf4erVZ0+bOw7XlVy9Osf7728zPV2g1RoJbprBQDEYJGhtEu5AkySaajWgVAqYmMgxN1dkYiLHjRs7bG11xsl4q6t1lpcnP1dS2kgmBJidLbK52eHGjR1qtZBSKaDdjqjXB+P5YegSBA5LS7WX3laLxWKxWCyWw+ysvs/Oxz9Ho+k1dhh0GuhMoTPb0+9UPHYSMhzBO1NGINOPnnAIEJClCdLzQJjOUBqTInf8Oob3j0ZR2UfWN/pNrw/aA+gsRWuPLEnIRvUKiUCTRn1cPyRL0+Fkk4aXZYqk2zfynOuQr86QDHoAuH5A3O+g4ohMKZJBjyQamAS6oUhWmj5DbeESadSn+fAuWRozaNdJBj3cIE+vscugXac0vUBx6gz56hSlmbO0Nu+ZtDzHQcUDok5zLM4JIcjXpqmdMfeMZi59BfkpjV5dnb/AwxvvAkbY6+5vs7d2k6BY+UyEPovFYrFYLBaLxfI4G80NtNb8cO2H7HZ3yft5Ajdgv7uPyhSOdCiHZUIvZLe7yw/v/pBfee1X2GhuHCs6jIS8ftxnq7UFwBtn3mC/u09n0KESV+hFPVJlkqDGyeLSIdPZOHlOaz0+j5ZIhDTnfnL4n0KN729ZLJbPHxqTPPm8iOF/hyqkMzAJa7udXWZKMzR6DfpJH6VMgqYUEqEFQgoj7urH6zyNVHdcOYFACokjHYQwfwshiFRE3s/TS3qozEhR/bQ/Frm01my3thFSMF2cJlEJoRfy4eaHtAYt0swkgPaTPvvdfaaKU+P70VPFKWr5GvvdfT7Y/IBKrsKNhzfwXA84Oa3upCTRkwToZ63nVWHl3AqNfoNbW7dYnl1mcWKR7dY2cRrjuz4z5RlCz6T9Lc8us3Ju5dh6tNZcv3+dn9z7Cau7RqBLD11zdKXLuYlzLE0v8bVzX3ui4PYksW/0mgsEBb+AK1x22jucmzhHohIc6byw5D+L5YvGq3eEOoEoivi7f/fvEsdGeBFC8Prrr3/GrbJYLC+GnRe83OjQdvhHaQqHfyDz+M3Wkw+JDR5PtGNY32hE0kd/KCfD5Y5jA1gA/hzoAmWgADQx8p2DSZPrDv/tD8tvcLxA5wJXgXeAy8NpWxhpbiTOCYw8N5q/wufoK+AppMAqZv+MZMR5jCD4i7KNFovFYrFYLBbLp894gL3h6Y1SJt0tSbLh/Ec6jj6BJ6XTHZ6epgopJZCNU+7MOhVnzxa5dKnGv/t3d9Caoaxm2pDPu+PEuH4/od9X3LvX5PLlCe7fb/G97/0SrivHKXE/+ckG9++32Nzs0O8nLCyUKRY9Njc7lEoB+/t9er2UMHSG2262eX+/TxyrsTymtebevRa3bu0D0O+nR9LmRoLZO+88oNEYcO3a+RPT6k6bTLeyMssf/mGBzc0OlUpAmmYEgUOx6NNsguc5DAYpUSSoVHwqlXDc/jTNmJrKU6uF1OsDtre7LC5W2Nhos7w8OZbSlNJ4nsP6eouNDbOemZk8UsqxtPdZS2kjmfCddx5w+bJJqNja6lCvD8binBCmnaP5Kytzz5X8Z7FYLBaLxfKiyFTK9p33yZSiV99l0GmRpQmO65kUuk82qPYXgOMEuUMcO08jNEjXQUqHLImR0kXp+Jiyhxc74SRGmPtAAmeYcJDBsPOT4wboTJEpI9HpLCOTzlCgC3D9wFSB6VyTxgNUHA3rFCa9zgtIk4g0HiYqZBlxr0OWpgTFEq4fjkWyytx57l//U+oPVknjiCxN6LcbxP0OQjpkytzLam7eI4n61BYuUZldZNDaR2tFvjqNny8Rlqqo4fuwUJ3C8U3noNrZS0wvXXnqq/K8SMdl5tIVNj788VjY69V3PjOhz2KxWCwWi8VisTxOrGLW6+vstHdAQy/qsRavHZFD9rv7Y1ltu73Nen2dpenjB3LfaG4AsNPeQaOpFWpMFadQmUIKSeiFiOHAJw7OWIpTmRonQo3WNUqpy0SGo805mkCgUKcWXSwWy6tLxhOuAZ2C0bEEQEiB0oqt1hY/XvsxeT/PjY0bNPoNkizBlS4SSTK8ljKS7w4fS04rz40YlZdIHMckaAohcKVr0jSTiEEyMDKUdGn0GpyfPE85V2YiP0Gcxuz39pksTuI4jjkOA57jsdPZoRN16Aw6ZDpjIj/BVmuLvJ/n3MS5cRtKYYl7e/eI05hEJex195irzPHGmTeYKk6Nyx1Oq1ucWAQeTxI9SYB+1npeFYQQXFu+RjVXHYuBi5OLR8oEbsDK2ZUTpTetNW/dfItbW7e4tXWL9fo67UHbvLbpgNALCdyAQTKgF/eI0/ipgttxYt9P13+KFJKJ/ARRGtGLe3TjLuWwTD/u8+7H734qyX8WyxeFF3a1+Xd+53dOVe7v//2/z+Tk5DPV3e/3+fGPf0yj0RiPhF4qlfiVX/mV52mqxWL5xIyksedZ7jiectPyRE5arsrjh7fRj+uT2u4OlzuOPsdLcjxhmh4udxwx8GDYlgLQw8h2ejgt40C+KwynPQAunVAfGCGuAdzCSHaLwDYHQtkMJnmO4fzjR0f4fKGB68B7PP5euIlJ5buK2VY7uoLFYrFYLBaLxfI0tDbimJSgtSDLNEodpL1JqY+UPR0CIfSx5Q9EvezQfE0YuuRyLl/72hx7e33iOEWpjCTJ8H2Yny9SLPrjerIM7t1r0m7HpGlGv59y584+/X46Tonb2Oiwu9uj1YrY2+vT7SZ861sLOI4AJOVyQLMZsbnZBTSuK4hjhetKZmeLY3lsc7PD9HQBIeD27X22tjpHtm1trTEWuG7d2qNSCRBCnJhW9/bb95+aVieE4Jd+6QzNZkSzGeE4Et93mJ4ukKaaTsecDxUKHr4/7Mg7TNUbyWOlUkC9Phi3YfToOIJczuWtt+6ORcluN6bTiXnwoI3jCCYmcnzpS1OvhJS2sjJLozHg1q09lpcnWVyssL19VGAMQ3M9YHl5kpWV2c+knRaLxWKxWCwjGht3UUmMzhTd+hY6SxGOY35D2n59T0do0M9+TypDIzKFihX6uEjscf1ieEvn5DJCymGKnUSnplOV43pIx0WlkZHmlEIrhVIpQqSgPTKVIl0f6bgkUZ9ufWucLicdB+m4xL32I2M1apOsB2gyXD9HvjoDGJFsb+1D6g9WQWu6+5s0t9dJ+l3SaECmMrTO8HNF8rUpevUdvCBHMuiSr07jBiFapXhhjvLM2SPb6HgBM5e+wvTSlU99tOrppSsMOk3q63eoLVyiPL1At7H7mQh9FovFYrFYLBaL5XGkkNyv38eRDq1Bi0xnVPNV8n6e0A0ZpEYKaPQbSCGZLE6yXl9HiuPvG8TK3MOIU/NYCkqASUoqhkVagxY5L0cv7pFkCVmWHUmYy9TB+dpIVNFak5HhSAeVmeQ5K89ZLF9sDie9jQRdRxop90HjAUII+nGfbtQ10pyGOIvHy0okWZqhhUboZxdypZDjY5HruLiOS87LEXohg2SA1toka6qMbtylGBTJ+3lcxyXv5VmcXERliu2Pt3Edl73OHp7jUcvXqBVqoOFB8wHdqMsgHrDZ2hwff89Uz5htBdqDNv2kj+u4tAdthBBjcfkwo7S6eq/OdmubxcnFx5JETxKgn7WeVwkhBFcXr3Jl4QqrO6tsNDeIVYzv+MxX5lmaXnpiet71+9f5aPsj7u3d42frP6PZb9IatIiSaCx1h15IKVdiv7dPzsshhHii4Pao2KcyRapSpkvTbLe26cZdHOGwOLnIxcmLdOLO5yr5z2J5FXlhn5T/7r/77554QX00CsSf//mfP1f9o+VHhvjf+3t/j3w+/1x1WSyWT8rznnC+rBPVLwF/xvHS1HFtEIA3XO44JMeLdydtz0iEO6lDoQTuYw7BaviYG053MYlqGUbAG81ff0J9o224hpEA3xtOW3ykTICRyX4RhDINvAV8NHzexyQSHhYGwaTyNTD75vO+zRaLxWKxWCwWy6eL1pBlGVoLhDAJdEqNrscYUU2IYR9TfZBYN1p2VG40z8hpRsYb1S9HXuIAAQAASURBVHOYw8uP/hYCpBTMzhYJAo+trS6OIxkMUpJEkc+7R+Q5ACkZimPQakUsLJT4d//uI/J5U67fT+l2Y3Z2uuNtbLdjbtzYoVw2iRDT0wX6/YQkMZ1Vo0iRppq5uQJzc0aIG6W6OY7g1q09Njc7ANRqIaVSQLsdUa8PxtNfe22C3/3dn3P+fAXHkadOqzuOM2fKnDtXoVbL8YMf3KXXS/B9h6mpHIWCRxyHbG526HZjarXceLsqFfPYbpsUOd93xo9aa9566y6NxoDJyRzr621cV1Io+AwG6Thtrlj0x6/pZy2lCSG4du081WrIe+9tArC4WDlSJggcVlaeLCVaLBaLxWKxvCy6+2Z0ZpXEpIM+jmtGnlZpPL73aXkCp91HQoCQkCmQjpHZdAZI85tQcHCyMr7fI55e/7ADqEnNFggp0BmoNAEhcBwHEGidGVFPD7tXSUmmFMmgh1Ip7e2HZGk6rjZTqek45XqmLkC6HjrLEFIipUtYrJAr13A8l9rZS0ye/xIf/Md/C0D94SpJFIHWhKWqqTNNUPGAWGuEgHx1mr17Hw1lP4eZi28gXI/q/AVcP0AlCY7nUZiYpTp/4aWlvAkhOPfmtwmLFbbvvA/wmQp9FovFYrFYLBaL5SipSklVSuiFYyGgElaYKc+My2y3ttlubSMQ5LwciUpIVXpsfb7jozJFO2qz3dqmPWgTpzGVXIXXZ15ns7lJMSzS6DeIh+fKGRla6bGMMGIktLi4KK0gO11ClMVieXV40WmRAnEg8Gpz3cGRDpnOyHk5FioLxCrGlS79pE+iEgSCRJvrMZ7jobQiGw2upE9/XJHD607aLIQY/ScErnDH7RvJvpnOyHRGohKkkMxX5/lLF/8SS1NLhF7I6u4qU4UpQjdEa40QYpz4ttXcAgEFv8CNhzdo9po0eg2q+Sq7nV1my7Psdnap9+pkOqMclqn36uS83FhcfpRSWKLeq48F55HwPOIkAfpZ63kVcR2X5bnlZxL9UpWOBbcf3fsRzUFzLJrn/TxSSpQ28lt70AbgR2s/YqG28FTB7bDY90cf/BF3du7Qi3pst7aZLc3yzYvfZLZ8cI/+85T8Z7G8inxuVNNR8pzWmr/xN/4G//Af/sPPukmWX0Bu3zYJX5cv3/mMW/KqM5K8nme5l1Hffw78vzgQ1E5TTzZc7jgmOVmiOw4BOMPljiMd/guBaFjnBQ6kLzDpcR8Ny+WAhKfvI4FJXLsCrAIbHAhl88ASz3fYT4FVbt/+OZBw+fLsJ6zvRXAds38y4DawxdHXZg2YBS5jUvmqmH1jsbx4bt++DcDly5c/45ZYLK8e9vNhsXwxuDQMSr5jT6M+95h+iWIoymWMghpG/RVHEpWUEj28iSCluQkwSi8z08xjlmmkPP486rg+kELA0hIUiylLSxVmZgo8eNCmVArQWhPHGVl2tK5OJ6bXS/E8SS7nopRJoLt7t8mXvjQ1TolTStNqxWSZptuNGQ2w0WwOyOU8+v2EOM6YnMzhOJJKJSAIXH71Vy9QKBgRL5fzkFLQ76dsbRlJ7o03ppmaOhjgaXe3x40bO2xtdZBS8PBhG993WF9vsb7eRCmzT3I5j1LJZ36+NE6rq1ZDrl6dO/a1WVqq8fbb9ykWfV57bZLNzQ5xrPA8h1YrottNaLUitAbPk7iuxPMkU1N5dnd71OsDhGAs7c3Pl7h+fYuPPtof9xnudIwAONrH3W6M4wQ4jmR/v0e1euaJkt/LQgjB1atzXLkyw+pqnY2N9lhKnJ8vsbRUGyfk2d8ilheJfT9ZXiT2/WR5kdj306uNSkxnnJE8FRfnUW4Fdu9gI+heAEKAcEBnJiFOgunppNFKIyQIx0UIaebrDK2U2fNaH3oJnvxaaC1AK4xEZ5bNUjNauZQOOlNkpqeU6QiWKVQcEXVb1O9/hEoTdJYOpUlNphRpPEBKB+l5gCCNeqg0QUoHN8zhBXm8XJGFK7/MuTe/Tf3BHSNixgN69R38XAHHPYPrh7h+QNRtkyYRg06TZNAjjQeoJCFfm2bi7CUcP8TxAtLyAko6L+2YkamUxsZduvtbR6S9qQtfZurCl4+d9zKFPstng/3usnzW2Peg5VXAvg8tlmfnUmBuSN2J7A2pTxPP8XClyyAZEHohSiuagyZJlhxJoPNdH0c69JM+5VwZz/Eeq0trTaPX4C9W/4J+0qc1aNEcNBFCUAyKOMJhojBBo9fAd3wGYmDOqYY3LhzhjAM3ssyIJxoNEkQmyHT2md+zeBnY977lVWUkw0kkGdlTy0ohkVLiSc+It5m5XnacsCYQLAVLwJPf+xo9ls1GMpsjHTzHo5qr0hq0ACNMqUyhtMJzPNIsHa9XaHMckcJsx7MMeiWEMJeihD5IodN6OBgT9JM+mc5IVUqUmgFPQy8k9EMm8hPk/Ty/8eXfGItViUq4t3fvseS4qdIUd3buUM1XqeQqNPoN7u7dZTqeBm3E5nqvbsoWp3Adl8ANKIZF2lH72LaPJC/fNffCfefoILaj56P5z1vPLwqrO6vEKma9vk6j10ApReiG+J5JrysGRTpRx6TaJTFZllHv1XlQf8Di5OKpBDfXcQm9kPPuebb727TKLWqF2hF5Dj5/yX8Wy6vGC73yfJovjecdTVFKydWrV/n+97/P7/zO73whfvhaXj5/8Ad/FYDLl//5Z9ySV50XnUCXBwbPUd9JKZQ5oAh0ebr0NjqWFIfLHccERkKLOZ2QJzGJdhMnzPcwh98BRqJTQBMjyYXD6b3hOh1Mulp5uNxpcIHl4b9PgsaIau8BMX/wBzsAXL7cAG4Cb2OktJedaJdykLJ3G9gc/l0DSkAbqB+avozZjit8jrxxy+eIP/iDPwDszQ2L5Tjs58Ni+WLwV81pFP/cnkZ9rhklyx2W5aQ8CGQYyXMmwc1c9DepdObm5OGyjybVjeoazRvVN1rv4ed/5a+AlDHr6wkzMwXC0MXzJKVSQK+XsrnZRUpBGHoMBgm9nrmx4nmOueHiOXQ6MTMzBW7f3h+nwU1O5sjlXFZX60BAqxWPU9miKKVSyRFFikolx/R0ASHg4sUqhYI/TjRrNPrcurU/TrKr1cIj8hzA1FSeWi1kf3/ABx/skGWa3//9vfF1rHzexfdd2u2InR0jtmmtef31Ka5f3+TKlZmx/HUY15VcvTrHO+884PJlc665tdUhy6DZjFBKE4YuWkMcKx48aLG0VOPGjR3qdXO+PTtbHKfKLS5W+B/+B5P2YCTDLrVajgsXqqSpZmenQ7MZobUmCBy++c0zDAYpSmlc99W4Jue6kuXlSZaXTxq8xv4WsbxY7PvJ8iKx7yfLi8S+n15tHM9c11cqwQ1ztCa/CmiK9TVSdZr7DZYnIiSO45ApI6YJDoXMMTopEQjHgSxDOC7Sl6gkMfestSJT6Qm3kcz9Ja0zk2yHhkyD0AjpGolumLBgZK+E8T2ITCMcBxUPUPHAJA86LtIFdIZ0FDrLiHptpOMiHAedZWiVEhRK5CuTlKYXuPjN3+DSX/rfI4QYpxn2GrtorQlLNcJimebmPfLVadPiniCNBiSDHgB+roAXhNTOmA5nM5e+wr/9938EfPrHDK01O6vvs33nfVRydOTx/fu3eXjjXWYuXWF66QoTZ+3x64uG/e6yfNbY96DlVcC+Dy2WZ+evVs0NqX++ZW9IfZoorTg3cY6N5galsDQeKKQX9+jF5lxDIKjmq6BBZYqztbMmEe4QWmveuvkWD5sPj3Qr6ww63I5uM5GfoBAU6EU90JBmKa7jkmUmnUkIMRZAXOkSpeaexSAZjPsgj8SZX3Tse9/yqiEQuNLFcRxSlZJlT5bnDiOFJNMZUkpc4ZrUSW2kNYEgIxsnT572vS+EwBGOOR4Mj1nTxWlmK7M0e02qhSr1bh3XcfGlj5SSWMVjqc2RjkmxExgx9ykpeaOUuZEUKKQw6WuCcfqdyhQIcyyMk5hUm4GVXMelGBSp5CosTi6ycnZlLM89KfHNkQ7nJs7x8e7HzJZniZQ5JvbiHhutjfF2z1ZmKQdlbm3f4vU5k/JZ79bZ7eyOZTxgnFYnEOOE0fnK/JHtnK/Mc3PrJtOladb21p67nl8UNpobANzbu2feHwJ8zyfv5ykGRQCKQZG8b/oPqEyh0aztrT2T4BarmNbtFlJJmPrFSv6zWF4VXphJ8Md//MfHTtda8+u//uvjjkL/9J/+U65evXrqel3XpVwuc+HCBUql4w8CFovlZfO8N3VPWm4W2H+O+mZPmH4dOAvsnLIeOSx/HfjqMfMvYQS7GCOzPQ1/WP7SCfMVcA6TEDc6rgmMNNc79Lx6qPxZnn+/Pw8aeAuT8gZmu5Ph9HscpOW9AzSAa7w8iW6Vg9diazjtDWDqUJld4MZw/uKh5ewICxaLxWKxWCwWy6M4znBUPWlEtCwb3XA005NEDZPkjDyXZRohNFIyHPVzODrfIRludL9yVGY0TYijNxtGy5gkOwCNELCx0eHGjR1++ZcX+Lf/tsXiYoVWK2IwSKnXBwRBOl7e8+T47/n5Iv1+ShC43LvXAA5S4rTWVKshd+7UgQ5ZllGpBAgBFy5UWF5eotOJaTYj5uYK/NIvneHMmfI40ew//AczumEcm3OzUik4dn+WSgFra002NztobZLcCgWfYtHH9x2EMDLbYJCysdHhpz/dYnGxAsDqav1EIWxlZZZGY8CtW3ssL0+yuFhhe7uL6wp2dnqcP1+h0RjQakW4rmQwSIkiNV7fSLxbWZnj3r0mcaxOlaaXJIokyYgi9cT2WSwWi8VisVgepzAxy/792/i5Il5YGI/5J10Pkvjgh7Pl+cgyMpEenaZHUdqjcxFFpszfnufjFSpErX2yTIFw0TFopYavxej1OBhhRAiBdOSwY2gCWiOFkfKkdPCLFdCapN9F6wzXD9Fa4wQh0vUQUiCkQ640QaaSodQHUa+FiiNUEiNSkJ6PG+YoTi9QmVukOnee+de/Nk5iG6UZqtQ8+rkCpekFkqhPr75DvjpNWKoihGTQbeLnCpRnz1KozYIQ1M5eYnrpCvC/feovi9aa+9f/lPqDVQCTmtfYRaUJjutRqJr7ORsf/phBp8m5N79tB8+1WCwWi8VisVheEXzH52ztLB/vfkyj3yDv55ktzdIatFCZwpEO5bDMVmuLXtJjujTN2drZxxKHrt+/zkfbHxkhJstY21sbizJRHNGLeoReSCksUc6VidKIeq/OIBkYmUVKcl4OKSUSSd7Pm/QqIRmkg7Hg8kUQ6CyWVw1HOniuh+/4+KFPo9cYyzsnyWca8/kfDc6aZikCge/544RJT3r0kh4aPZboToMQYizx+tKnFJY4Uz1DP+5zeeYyu51dmv0mURIhpaQbd9HZsD06g+xQmp6QaPRjUvBo2xzp4EjHXCfSysiAyHECnu/4JFlilldGyBu3zfUpBkWqhSrTpWm+89p3WDm3Mq7/aYlvZ2tn6cU9HtQfUApLVHIVXOlSCStcmLzATHnGJIdmil7c4+L0RbTWbLY2ufHwBrV8jVJYoj1oj9PqZiuzhF5I4AYsTS8dWd/S9BJv33kbfJgtzz53PachVSmrO6smvU3F+I5JdVuaXhoLhp81o/f4KEnQlS4aTeiGR8qFbkgv7o3nj8qfVnAbvQ9Gn4EvevKfxfJp8MKOKteuXXvi/FFE6te+9jW++93vvqjVWiyWXwhOSpJ73uUeAhlQwUhfCiPJwdFEOj2cXhn+/fCE+q5g5KwuJh3uaYl2wbD8lRPK+Bgh7mOMfJbHyICtYVsdTOLcFkaomx6Wf5k/cK5j5LkMk/K2hZH+wAh0a8M2XwZuYWS/qy+pbRvDxx3Ma1HjqDzH8HkNk0S3jZHoNrACncVisVgsFovl88Qowe3TqBcOS24CrTWlUoCUgjjO8H1JGLo4jqTfT+h2E9I0QynTGVUpPUya04fS5MRjNyqNbHcwfTTbcQRSmuS6LDNJdgeDEwqU0ty71+S73z3P2bNl1tdbnD1bpl7v0++nSKkIQxfXlUSRuelw/nyFcjkgTc0ohY+mxAkhWF6eJJ/36HRi2u0Y15VMTOQoFHwKBZ+JiRwrK3OsrMw+1oHT950jj6MEu0dptyO2t7v0+6Yjb6+XoDXDfWmm7e/3KZcD8nmXVivmZz/b5lvfWmBjo32ioCaE4Nq181SrIe+9ZxK3FxcrnDtX5tatfba2OiwslLh6dQ7PkyRJhu874yQ/gOXlSVZWZvmTP1kDOFWaXr0+YHu7y+Ji5Ynts1gsFovFYrE8TnX+Ag9vvIsX5vBzRYR0yNJ0KEHZTn6PIQRmeG4w9yeehkZnw5HBdcaRgf60mYeUuK6LG+Rx/ZCk30G6Hq6bIxn0kNIBx0erBIYjnpuOWhLpugghARPJLR1tpD2lEBocL0BKCQiCYgUhBV5YII0jMpWi0hgyU19xYo7y3Hl6jW2Sfhc/VyCJevRbDbRS+IUiYamGH+Yp1GZYvPrdofBmGKUZOq55jPtdACbOXsYLcrR3zD0u6fn4uSJhqYp0PNwgx/yXvs700pWXJqntrL5v5DmtqT9cpVffOXKu2N5eJ1+bpnZmifr6HcJihZlLxw1wabFYLBaLxWKxWF42o8Shb174Jo1eg/3uPoN0wERhYlymE3WI0ojp4jTfvPBNhBBHEodSlfLe/fcAuL19G5UpSmGJNEuZKEzQjbvsd/dN0pMQXJi8QKISfMdnt7tLohJyXo6cbwS60A3JeTm6cXcsrAgESZaMk56elBZlsViejZG4c9znapy6hsAVLr2od2wCnSPM/dRsONDRqK4kS0z9Ahwcs6xmnDY5SAZkZM/0mc50hitNYuVcZY6JwgRRGvHazGtstjb5ePdj+kmfTGeEXkg/6RPpyKTEgVmfHspzw+sXh/fBKHFOConv+kYM1hkqNccejTaJfNIx14CGaWSDZECmMxzp4EqXQlAg5+eYK8/x29/6bX79S79+5FrNdHGaP/noT2j2m2w2N9lqbeFJj9dmX8ORDkIIJgoT5IM8URoxkZ/AdVxen3udqeIUu51dNpobnJ84z+WZy2y0Nrg4dREEbDW3qPfqY+FtlFZ3edqkIR9OwhvhOi5Xz13lnbvvcHnm8nPX8yS01ly/f5337r/3mGB2c+smb995m6vnrrJybuUzH3xpJKgFrhlkN81SHOkwSAdHyo2ej+aPyp9WcBt9nzrSQSC+8Ml/FsunwUvRcr/73e+OD1zVavVlrNJisXyueNGJdvuYG6sB4A3/BcPyoxQFBxh1dhzNOykFrwh8HbgzfH5YwjvM6AdaOixfPKG+eeAm8E2MQLeLkdJiDgS6xnAbpoflxHC5l0EKvDf8+zawOfzbwQiHIzFtNH0ZI9xd4eV8rcSPPJ6UTlrCtPPR8haLxWKxWCwWy6uP44ixBPaiOVynlAxFNkmtlqPbTQgCl4sXq0xM5CgWA0Bz48YOd+7UiSKNlAKl1DhVziTLMU6ig3FYw/Dvwxez9bjs4fIjmQ7M9IcPW+zt9fn5z3f4zd/8Mv/r/3pznJTnOBFaG4lPKYXjCC5fnuAv/+VzfPjhLmfPlsdS3aMpcUIIzp2rkCQZN27sUCh4TE3lmZ8v8qu/emGcNncc8/Mlbt7cY3q6wNpag3p9wO5u77HUtv39Ae12RC7nsbvbQymN60ryeZcwdBkMUnq9lGbzQMB7+LCNUtk43e4khBBcvTrHlSszrK7W2dhoE8eK11+fpNmMxut7lCBwjoiBo/WcJk2vXh88Vt5isVgsFovFcjqk4zJz6Qqt7Qfka1PInoOWCjGUrqxEdxiBENJ0S5KAFujsuN+fj+y3ofA2fHKk5Kjzk5AuaE2aRGitEEIiHRfp+SAcHM8jS2LSqI8YJiIIQGcZmsykyAmJG+QAjUoihDCji+ssw8sVCIpVyjMLxJ0W3cYu/ebusLlmWb9QxHFdKnOL9Bo79Jv7+LKEEJJk0Mf1Q5PONjHHG7/xf2Lm0lePnEuN0gzz1Sna2+tEnQb91j658gSl6QWKk/PsP7hDr7GDlAWqZy6Sq0zx+nf+BpPnX39xL9NTyFTK9p33Aag/XKW7vw1AUKzi5wrE/S5RpzGeXlu4xPadnzN14cvjtD2LxWKxWCwWi8Xy2XE4cehLc19io7lBZ9ChF/XwPZ84idGZ5uLURear8+T83GOJQ6s7q8Qqph/32WptIYTgV1//VQbJgPv1+6TKiHQbzY3xMp7jMVOeQSB42HpImqWEXojneoRuiBCCaq5KN+qSZRmu45r0nQwykR2RXkbCi5XqLJbnw5EOUkgjrGYHMttIJBulUQ7SAWmWjgUytJHRJJLAC9CZJtUpKlMILcg4kOmEFmipTaplUKYYFtnv7uO7PlEanfrzK8wQSOT8HGcqZyjlSuT9PGeqZygFJX7a/imZzqjmqzR7TRKVAIylv1GSpRmcyQwMO5LeMm3kPt/1x3LdaB9orQ8uUQnG6WsaTcEv0I/7RqjLNI5wxolxVxau8L3vfo/f+PJvjK/7jCSyH639iDvbd0izFCkkzUGT/3TnP/HT9Z9yfvI8OS9Ho9+glq/xpbkvmWNi3GUiP8Ha3hoFv8DixCJSmteu0WtwZ+cO52rn+KULv8ROe4c4jfFdf5xWB7A8u3wkCe8wK+dWaPQb3Nq6xfLsMosTi2y3tk+s5ytnvsKtzVunSpLTWvPWzbf4aPsjAPpx/7E2Arxz9x0a/QbXlq99phLdSDBfnFw0bdYQJ6ZPcifqUAyKdKIOvbhHnMS4jotAcH7y/Hj507A0vQTCvEdjFbPb2WW7tc1MeYaF2gK9qPfCkv8sli8qL+Uq9FtvvfUyVmOxWD63dF7wcs7wUWCELxeYGz7PhtM0JpEs5SCdzuF45jFynTssk55QTg/LuMPyJ/3gWQLe5mD01B2MzDcS+0ai3yjJLhj+e1k/cFYxslkfkzwH8AYHN56/ipH+bgznLx5a7mUkvPmPPB4fUXww/dHyFovFYrFYLBbLq4257mvkuVFC26exDiFMKhqA60ocRxCGLhMTIefPVw+X5itfmaHXS1lba5AkwxsK+kCSO9p2024hBEHg4vuSJNGkqULrA/FuVN5IfKD16C6DSbdbX2/xs59t88u/vMBv/MYSH3ywy+5ul52dHru7XbLMJKctL09SKJjf+xcuVMnlXO7fbwEnp8R1uzHlcsCFC1UWFyu8/vrkU5PVlpZqvP32fQBmZ4tsbna4cWOHWi2kVApotyPq9QGdTkQ+76E1pGmG60qKRZ+FhfK4rk4nZmOjQ7M5oFg0bd/d7fHGG9NPbMMI15UsLz/e5jTNjoh1vu8wP196TAx8ljS948pbLBaLxWKxWE7P9NIV+q19mht3ka65NeuFBVQSo9Wn8GP/c4cYj0/oeD5COqg0MelxRwZSHJ18nKYD1fDcQmt0pkiTCBVHuLk8XpAnSxOTKCckwjOJd8JxkK6HSk1nUCGkEfiEQAofN8xBZtIRRvKcO0yLq8wvIh2Pbn0H0Hi5AvGgi1aJ6VClIY0G6EyhYkV1/iKzl6/S2l6nvn4b6fqUpheYvfxVzn71f8fs5Tcf26JRmiFAvjZNd3+bvbWbBMUKfq5I3O8QdZrkq9MUJmaoLVzC8QJqZy89/0vzHDQ27qKSmDQe0KvvADB5/nVy5YO0in5rn721m/TqO5SnF8bLTZy9/FLbarFYLBaLxWKxWB7npMShkcziBu5TE4dGYtxOeweNplaoMV0y9z/OVM+w29ml2W+itaYX96jmqlycvMj7G+8TBiGe9EizlGa/ied4NGlSy9fIuTmkkARuQC1fQylFpCJITarV6HTRynMWy/MzSphzhJHoUtJxUhswTlobiXRCCDzHM4ls2oh1OS9HohIj1gnXJLwJI80dJtMZjnCoFqp4joc7cHGEgyMcUn1SH93H25vzc8xV5tBopovT/PU3/zrr9XV+fO/H+I6PyhSD2KTBtQftcdLZ4eOExshzUkqklniuR5RE42NO6IVkWUY/7hOrmExnRhY8tK8KfoFaoTY+9nmOR+iF5vqTEDiOw9cXv86vvf5rR+S5wxLZTGmG9x++P942lSnaUZv3H75POSwzW5plrjrH5enL41Q8jWZpeol+3OdB/cFYQFucWCTv57m/f59e3GN5dvmIgBa4AStnV56Y7iaE4NryNaq56jhZdHFy8UiZwA148+yboOHf/MW/OXWS3PX71/lo+yOyLOP29m22WltHXpO1vTVmy7NcnrnMra1bVHNVri5ePdX74tNgJJifrZ2lmq9S79Xpxl16SY/uoDsWF1Nlkud8z6eWr7FQWzi14Ka15v0H75OqlCiNcB3zeWv1WzQHTVZ3VqkVatTyNeYqc09N/ktVyurO6qmERovli4R991sslleA5+2Ad9JyFzFSXHCoTAfIYw57KdA7VIc/fLx4Qn0zwAdAmcelveNGiC0Py8+cUJ8LvAn8PzDyXIAR1gYcCH654fQd4D8C/zde3iF7NLqPudFrEuemhs9HTHGQRLeNkeg2eDkC3SjBbxpYG7Zhd9imEbvD6YKD1+E0IzikGBFwA/Oa+MPllrBfmRaLxWKxWCyWl4VJVzv4+1mQ0qSNpalJVRjJbiOMsCZwHEmWmTQ4zzOClxp23j3pAvlgkAzXcXBBfyTRmRsKZoi90eK+7zA1lUepjH4/NekPMkMpfSidbpRid7BOrRmmtCVsbXX4wQ/u8au/ep7bt/dptSJ83+HLX55maqowTqUbJazlci4/+MHaU1Pi6vUBQsDMTAEw6XJPw3UlV6/O8c47D7h82XT+3NrqUK8PqNcH4+3J5Vzm5op8/HGDcjkgy8x+6nTisSxXLPoIAVGkcN2Ucjmg2YxO1Y6ntfE4se5RTpum9zz7yWKxWCwWi8VyFCEEi1e/S7+5z8/+5MdI16U6f4G6Shm065918z57xIEYl6kUsgydqaFA90iZJ54fiSN1mfsDYnxSJYQgSxPcUhWnUKbX2EPrjEwptDKdsnSWmfVqTYZCHJL2hJRGjOu2ka6LlC5SOjiej3Q84l4bx/UQjktn7w7poIuQ5h5VphSd3YegNeXZc/Sbe/i5ArWFi2RpjBCCueWrOH5IafrMsVs3SjPc+PDH1M6YDje9+g5Rp0nUaQ6bqXF8M8L73tpNpi5+mcbGXarzF15ault33wzM2GvsorUmKFaPyHMAufIEQbFC1GnSbexSnjlLd3/LCnQWi8VisVgsFssrwrMmDj2aXDSSJ+LUPJaCg3sLjnSYLc8yW57Fd3zW9tZo9BsIaQY3cYQDEqIoIk5iPM/Dl/5YuNNaUwyLFMMiURrRjbvETkyz3zSSjhXnLJZPhEabdDYBqU6PpDtKaQbrzHRG6IT0VR+l1LiM4zi4wiTR5f08SZrQS3pmMCIESpsb4KOEu5EANogHVCoVpgvTtPvtx7rkHlyf4bHPuJAC13WphBW+vvh1vnr2q6hMsV5fR2WKbtQdC36+64/XeZKgJzBJeYlK8BxvtFKixMhMZmCl4WBM2uwTRzqUwzIIqPfq5hhFkVa/NU7rO1s7y9L0Eu8/fJ9/9h//Gf/Vb/xXSCkfk8g2W5skKqE1aB1pUzks4zouZ2pnjNwMSIywpTLFD+/+kPWG2WZHGImxGBaZr8zzrYvfYq+zhyMdzk+ef2aJSgjB1cWrXFm4cqyMdXHqIn96+0+fKUlOZWos5I22G6BWqFEKSrSjNvVu3UwX5rvm+vp1rixc+czEr8OC+TcWv8G7a++ChtagRS/ujdNPQz8cJw5+4/w3cKRzouB2mMMypStdUplS79bN658zA/WOkhJrhRqvzbyGEOLY7+FRquF79987tdBosXyReCFHkXv37h15vri4eEJJi8ViOY5pjBD1PMsdx9JwXhsjzQ0waWoxBwlvCvNLO4c5FE5xcsLb/wR4wB4HN12Pk/dGyXE9oDRc7v9yQp23gMawfHe4zGikDoUR6QRQxIhgt4Cvn1DXiyZ+5PGkDpIlTNseLf9pM0rwA5gFNjFpeLVhm9rDdo3mhzw9wU8D14H3eHw7bg7XdxVYAewPRovFYrFYLBbLq4uUAq0hCDyEgDTVQ3FtJLmZpDkpBUqZdLTJyRwgCEOPXi+h3Y6OyF5g0uB2d/vDvqd6LIUN75OMRbhRsp3vu+TzLrmci+dJPM/Id1mmybKULHt0mdG5lmlnHCv29/vU633+l//lA7JM4ziCpaUau7s9ms2IVivi9den+M53Frl0aQLXlaRpxp/92Trw5JS40fwwdAkCh6Wl2pH9eFKS21e+Mk2jMeDWrT2WlydZXKywvd0dl5mZKbC6Wmdnp0c+7433DcDGRod83iUMPQaDhHbbnHvkci6uKxGCx9rxaXHaNL2n7SeLxWKxWCwWy+kQQvD6tb+F/6PbpFGf+S9/HZ0ptj/ukcXHpwF/IRACx/PI0hQ0ZCpDiGyY2jY8RxAHEpw5ZZCgH0/uE1IipGPkO60R0kEAWZahlUL4IY4X4LjBWGwzSXJmfWkSo/Xo3oyGzHTJEo6L1hkqGlCZXQQNKk3wc2aQiUxn6MzIf0k0oNfYJo0i/LCIBhzXBeEQ91q0dzeIB10KtRm6+9vka9MIIcjXpnGG7avOXzhxd00vXWHQaVJfv0Nt4RLl6QW6jV3SJCbqNFDRAJXE9Bo75GvT6Czj/vX/xMMb7zJz6QrTS1de2Et3Eiox534qNY+j/fQofq5I1GmOy42Ws1gsFovFYrFYLJ89p00cOim5yHfM/SXfNY/tqH3setqDNvWe6eNVK9QohSXu7t1FZ9oILllKGqcMGBjZBoHneviOz0ZzY5wK1Yt7eI5HohKy4fmiFekslucn1emxgxhprccSXCttHZknhRyLaSpVRwQ8Kc3nVwvzd87L4UrXfE419JM+vbhHISjgyOPT545LlnSliytdZgozXJ65TCEs4DouP7r7I5OApzWDZIDneEyVpri3f4/ADcw2qhSl1ThxDw7upYtMjBPkXMc1iXNZxiA1907V8NqTlHKcwNeO2hT9IpV8he32NipT4+Vdx2W7tU2qUpbnlvnh2g/5H3/4P/Kb3/jNYyWy1+depx/3Wdtbox21zXYLmChMsNPe4UtzX+LNs2/y0/Wfsra7xrt33x0fS/N+Ht/xaUUtdjo7NPoNAJbnlvEcj197/deeW0BzHZfluWWW546GbLx3771nTpLL+3liFdOP+2y1zGBMb5x5g6niQYjGbmeXGw9vsNXcYnHCfAet7qw+tv6XyUgw11ozSAc8qD+gNWgRJRGDdEDohQRuQDkss1Bb4NzEuWMFt+M4LFNGaTROfmwNWmQ6G4uUtXyNerfOVmuLv7nyNx/7Hn401fA0QqOV6CxfNF6IQHfhwoXxh0cIQZoe/fJaWnp67OSzIoTgzp07L7xei8XyWZDn+CS3JyGGyx3HWUzCWxsjp4ER3rLhOhyMEKcwctXMsPzZE+p7b/g4uok9Sq073F6BEa80Rtg7vNyjDIA/xMhdDzHynAAKw/YMhuvqDdu/DPwR8LeG8z9t/Ecej7+IcTD90fKfNi5GZnsHGI1GuoWR5kbinMDs39H8FU7+ytPAW8BHw+d9TNreKIFulGD3DkZ6vIaV6CwWi8VisVgsryomvc7cHDRJc4JR31MjrZlOqJ4nKZd9gsBjfr7A9naPiYkcWZbR7yvu3m1Qq4WEoUu/n3Lz5i5pajqWjoIgfF8ipURKU/9o/ugakVIaz3OYmyvSakUolZFlmihKx211HIHrSlxXDmW6g/OsRqPP1laHWi3HgwfmJsxIVFtcrBCGLlmm2djojBPXTpsSNztbHM9fWZnDdeWwTZrr17d4771N4lhxmJs393j7bYeVlVm++c0zXL9uLuYvLlaOlMvlXJaWqoShw/vv75DLufi+Q6sV0eul9Hpm+9M0I5dzmZoyHUpff31q3I5Pm0+6nywWi8VisVgsz44QAj9XQDoO0xcv03iwSlCo0I+3P+umfXYIgc4yhJBooU1XqMzsq1FHG/M3mGv5cujTPXpPSSCkxPF8hJBkKkGlpuPkaGRwNwiRjouQEj9XIA5CskyRRn0jykmJ0GI4arpEi+GJjzbtzJSis/MQx/MI8kWCYoUgXyJXniDqd+m36uhMoeII1w+onb1MphLQEJQqtLfWjUDXbSGlg5AOXi5PbWFpnCg3c+krT0yKE0Jw7s1vExYrbN95H4DS9AL19TuoODL7U2u8IEQISWt7nULVdDza+PDHDEZJdZ8ijmcGEnFc8xj3u8eWi/udI+VGy1ksFovFYrFYLJZXg6clDj0puWi+Ms/NrZtMl6ZZ21uj3q2z29l9TIzY6+7R6DVYnFhkp72D7/r4rk+mM3IiRySisQQzOrcTCAbJACGMSDBXmCNOY9q6jStdksyUz3RmJBcr0lksLwTNcNBWIc1gQo98tpRW4/yITJsEt1HZTGVjUU0KicpMalrgBiBNauVuZxdXmoQ3OfzvuDaMEAgc6RD6IRemjcMwEq0SldCJOhwqTM7L4TkePd1DZWoszQF4joeUktAN8V2fOI3NcYRsLOnFKiYhIVFmAKBRO0M3JO/l6SU9ekmPbqM7Pl5NFacohSU6UYf2oM1ed4+Ptj7i9bnX+cMP/pAvz3/5iRLZ1xe/zg/v/pCfPfwZO+0dikGRc7VzfPP8N/E9n58//Dnr9XUavQYqUxSDIr5jUvZmS7MM0gEbzQ1++uCnnJs4B7x4AS1V6XMlyZ2rmfbstHfQmES1w98RAFPFKSOL9epst7ZZnFxko7nxmQp0hwVz3/HJ+3nu1++TqgNvxnM8ztbOcmn60qlT3h7dj35m+mJfmrlEwSuw3lxnq7mF0oo0S7mycIWF6gJXFq48VvejqYanERqvLl59MTvIYvmc8EJzLEcxrI9y9+5dc3PjhPnPg7VdLZ8G3//+P/+sm/A5YZTi9jzLHcdJCWdP46TlloBLGAFtgJGrDstzo/Q5HyNZXcWIVifJvh0OJDeGj6MUOjms+9CopAiMhNV5rCbDD4bt6g3LFYEzGIFODevtYuS6/vDfaLm/ekKdL5J5TOraNLCGkdJ2+f73Dyf+7Q6nCw4Es/mX0LYRKxiZ7RZGMFwEtjkqvY1kw+Vh+ZO4jpHnMuA25v1y+PtqjQMZ7xZQxbxnLBbD97///c+6CRbLK4v9fFgsXwz+uT2NeqXIstE5iRHdTFKcHqa8GaHO8yS5nMfMTJ4gcKlUcnieQxC4LCyUWV9v02pF9PsJnufQ7SZ0Osmwo6pJnnNdSaUSjpPhfN+h2RzQ76djiS+KjAR39myZMHRwXSPbmZQ80ybHkeRyLo4jkVLw3//3kiTJhmUEzWZEELi8884DZmYOkgvW1hpjuevWrT2q1ZCrV+cAWFmZfWpKXBiaS2LLy5OsrMwCw9HY3rrLRx/tA9Dvp+zsHF0O4N13H7K8PMl/8V98lY8/bjyWUvcrv7LIn/7pPaam8ty/36LZjKhWQyYmcmORMIoUWebjOJJKJWB2tsh3vnN09NZPm+fdT58n7G8Ry4vEvp8sLxL7frK8SOz76fPF97//fbTWrP3kBwTFKo7rg3BAP889l18AtEbrDOm4aJWhh6N1mCA4kzyn0UjpIF2XTCl0pjhyDX80Srh0kNIx0pqZMuyw5OB4IW4QUp49T3Vukb17t8y5TabJlEK6Hrl8kTSOSKIeQhjRTqUJaG06ZXkeKo3x8yXytWnSqE9l/gKT5y6zces9VDwgGfQISjX8XAk/VyA3lNf6jV3Ks+dAwKDdRDouYalKeeYstYVLANTOXjpVQpwQgplLX2XqwpdpbNxl/Wd/htYZ+eo0g24TlcSkcUS6bzpetbfXydemqZ1Zor5+h//8r36HmUtffSEv33EUJmbZv3+bfHWK9vY6UadBv7VPrjwxLtNv7RN1mgghxoJfYeLzd75heX7sd5fls8a+By2vAvZ9aLE8O/98y96Q+iw4KXHoSSxNL/H2nbfBh9nyLJutTW48vEEtb1LmRslznUGHYlhEo2kP2mituXruKh/vfsxmc5PADQjcwCTRqRSNHktx1XwV3/MpBkXOTpwlTVPqPZPIE2cxcHxi1ecR+963vAqMBLgnfabUI9e3Hn0OB0l1Qgj6SR80OI5DqlJ81x+nrQkh+G+3/1ukkLjSJdOZker0gUgnMWl2OS83Fq02G5skWcJGc4Msy1Ba4WiHB40HxGl84DII8KSHRuM6LoEbMFk0A7aOjkcCQZqlFIMi3bg7HGg2QzqSgl/AczwynRGrGI0mVjFRElEMisyUZliaWqKUM32ct1vbfLT9EXudPfqx6Q/873/+76nkK49JZFpr1uvr3N+/T5qllIISvaTHIBmw193j37zzbwjcgK3WFq1+i1bfJJQ50jH7FNjv7lMOy+S8HM1+k589+BnfuvitFy6gre6sPleS3NreGgBxao7XpeD4vuClsES9Vx+Xi1X8wtr+vDwqmN+v3+fe/j1a/RblsMz5yfOcrZ19omj+KI/uRz2reePMG1woXgBgaWZpvB8FgkquQpqljwmRzys0Xlm48tzJhBbL55GX+m5/UdLbixTxLBbL85C94OUU5nCUnDD/OFxOlvhc4GsYmSoPvAtscpAQN5Ln5oBvAucwQtRJh8SE0cimBsGBvDeqD2B/+DiS6k7ang+HjyNRqwRcPKZce/hvczj/Q16OQLcEvD38e3a4/htADdPWNgdJb7MYUS3gZAHx00BgkuCqHCT9PdrZNMCIcyucnBiXHlr+NmZb4fFtHU1fxgh3V3jJX6EWi8VisVgsFsupMGlzmiQxYpsR6himuxmhzvMcikWfNNWEoeDy5Rrlss/GRocoMgkN9Xqffj8ly4zo5roCrSVJopESwtAhl/PodmOUMusIQ5coUuPEO6WyoXwXMxik+L7DYKCQUiLEaBAS0y7Pk2SZRinT7tH0TiemVsuhlKZWCymVAtrtiHp9wOamGbRkeXmS69c3uXJlBtc1N1yuXTtPtRry3nvmt/yjKXFB4LCyMsfKyuz4etX161t89NE+Waa5fXufra0Ohy9BnSTtjdLvRqRpxjvvPADgq1+d4cMPd9ne7hIEDmHoEseKfj9FSkmtFvLaaxNcumT+vUyedz9ZLBaLxWKxWD4ZO6vv09xYQ0iJ1tnB2HxfULRSZAiE44DO0JkGsuHtF4l0XKTjIF0fSFDZaJDEg/szRpSTKJWa+lRqRkV3jHjnBgFekKdYm8bPFQ5+22qFdIejm7s+MtPINAW0kRvBCHaOi+vncDwfP1/E80NK02fw80UcPzRymNb0mrtkKsULc1TmFilOnQGgE+Zp7zzACwuoJMEvlAhLNYR0cLyAmUtfYXrp8RGjn4R0XKrzF3h4410mF5epP7hDlsQIIChWTcpev0vUadDdNymHtYVLbN/5OVMXvvzEpLtPwqhNAPnaNN39bfbWbhIUK/i5InG/QzRMwsvXpnH8EMcLqM5f+FTaY7FYLBaLxWKxWF4+ruNy9dxV3rn7DpdnLoOAreYW9V6des/0ORMIcn5uLEcEToCQgtALyft5zk+ex3M84jRmv7tPN+7iOR5KKZRWREkEwHp9nUEyIMMkYvmuT5qlNn3OYvkUSHX69EInoIf/ATjSIU7jsRTl4g4HcTWpbyN5DQFSSnONB5NmJ6Qwjwg81yN0QzzHoxgUubNzh/3OPmlm2jlITVrlIBmQqpQkMwlyQghc4eJIB9/xCbyAol+kFJQQQtCLevi+z5nyGfppn37cp5/0x6Kd53gmPW8o4e20d0hVao49w4SwUq5EP+mPBbqZ8gybrU3agzabrU0uTl3k492Pubp49YhEprXm1tatsYyWqIQojegMOkgk5bBML+7x47Ufo9E0eg36SZ98kCfv5wndkEE6oBf3aA6a4/3/sPEQlakXLqBtNDeAZ0+Saw1a5Pwc/vD6WztqH1t/e2Cmj8r5jv9C2/9JeB7B/CSedz8+KkQ+r9D4opMJLZZXnRd2ZfxpUpuV3iyWXySe9/N80nIdTOraswh0DicnvMFBQpkAFoAHmCSxCCNWnR9Od3h6QtmZ4ePox1eGEa+Kj2zDSBAMHlnuUUaJcqPtLZ5QrogRuEbl+ieUe9G4GKHwHUzqGhjZr86BOCc4SGUDs/9etlAmMO28AqwCGxwk0M1jhL6ntWl1uEwfs40AbwCHf3zuYgTCLQ4kvVXM+8ZisVgsFovFYnn1yDLGaXFSghqOPSKERmtBrxfjeQ6FgsvVq3NcuTJDEDj82q9d5Ac/WMPz5JG0tHq9T5Io2u14KLiB5zlIKfA8hyRRw+Q5k043ku4cR+K6kihSdDoxpVJAGLooFeM4DkoxTKQzqXNCCMLQGYt0RvozqRFLS1W++tWDRILd3R43buywtdUZS1+rq/WxzCaEGG/b6mr9sZS4paUarivH9aVpNpbIbt/eH8t5p5X2DuO6kqtX53jnnQe89tokQgg2Njp0OtFYnKtUAs6dK/ONb5wZl3+0npfBs+4ni8VisVgsFssnI1Mp23feB6C+vkrUqpsf8F9UhvePtVJoNUqWE8MTGpMqJ6RAZxlq2DlSgzmRyJQpKgWOGyCl+d2qxOi+tDaSmJCgNUGxjJAS4bg43lCO0xopXaTn4+dLaJ2hswDpOAjpGMGRGMf1cDwfx/MRUpKrTXHmy9+kMnuOyvx50ngwHrXE8QJKUwuUphfGm1maXqAwOceDn79DphS50gT52gyzl6/wpV/9Pz63zNbYuDtMnBvQq+8AMHn+9cfS3vbWbtKr71AetqmxcZeJs5ePrfOTIh2XmUtX2Pjwx9TOmIEXe/Udok5zLM4JIcapeAAzl77yqQl9FovFYrFYLBaL5bNh5dwKjX6DW1u3WJ5dZnFike3WNnEa47s+M+UZVndW2e3sUg7LJCrBla5JfkJTDIssVM05zF5nj493PyZOY5pxkyRLxkk5jdjIIypTuI5LohIybWS6cdKUxWL5xLyIREelFXESk6iDfsJCCFSmEEKQDfvfeo5HTIxE4kiHLMvIzPBLR+S3nJcjH+TJeTk+3PyQve4ek4VJXOkiELiOSz/qGxFPSCPgZgpXuiitjLCnM0phiUquwnx5nq32Fq7jkvNyRtDzQ2ZKMziOQz/qE6URjnAo5op4wiNSEUorc9zRGjSoTNHqtygGR/sFF4Mi7UGbJE3G+wM4IpGt19dNApnW7LR3aA1a4wQ2IQR39+6axDkyGr0GjV4DgHJYHh8zATpRh43mBo1eg3JYBmC3vcsb8298otfwUUZC3rMmyZVz5rg/XZpmbW+NerfObmf3MdGr3qsjEMyUZwCYr8y/0Pa/KjzvfnxUiHxRIp7F8ovOC7kS/cd//MdPnJ99kW/8WCyWU1Dm2eQ5huXLT5j/aELZIs+XUAbwK8D/ByPbuRhRroWRrlyMTJcM63AwCXTecLnjyA0fveHjKGmuj0nVc4Zl2o+UGy33MhgJiLcwotgisM2BoDaDSZ6DpwuInzbusA3P8wNuY/i4g7ntXuOoPMfweQ0jD25j9sXGc67PYrFYLBaLxWL5dDDC3MHz0d9SCoTQ4zJKZTiOg5QwNZXntdcmhhLVPCsrs0xNFfjRjx7y8GGbZjMiTTM2NtokSUYcm3S5JFEkScZgkBAE5tJSkiiiSI0T76SUhKHHhQtVJidzVKsBjiPxPMmdO/skSYbW4DiCIHAJQ5cgcIhjNVyvQggolXzyeZeFhRJbW51xm0ZSl1Ka7e0ui4sVNjbaj6XBua5keXnysemPsrpaHyfDbW0ZSe6NN6aZmsqPyzxN2jvMysosjcaAW7f2WF6eZHGxwvZ2dyynzcwUCEOz75aXJ1lZmX2sjpfJafeTxWKxWCwWi+WTMRKe4kGX1tZ9lEr4QsfPjdFH/9YAYjxIh5QShEQPO1QJIcg0IDRSOggpQUCmsqF4JwGN1hlSCxzPpzg5B0BQKCOkA4DrB8RpglYJQoCfKyKENMKcH5BEfaTj4AYhrh8QlKpUZs5RmjpjOmwF4VhEu3/9P5HGA7ZuvUfca9Fv7R8R2aJOEwEUJ2aYW76K44fMvf51pOOSqZTGxl26+1uoJMHxPAoTs1TnLzxRLOvum4EBe41dtNYExeqRdQLkyhMExQpRp0m3sUt55izd/a1PTaADmF66wqDTpL5+h9rCJcrTC3Qbu6g0wXE9CtUpHN/cY6qdvcT00pVPrS0Wi8VisVgsls8fzytpiCf2/bK8bIQQXFu+RjVX5b377wGwOHm0717Oz3Fx6iJZlrHT2WGQDsbpQqEbjssNkgH9pE+iEnN+qIxkEKt4nGKllGKQDADItOmvbBPoLJYXR8aL8QAUCpEJpBhey8kypCNxpTsW2nzHxxEOUkoCNyBVJlEuVkaqk1LiOA45P0c5LNMcNI04pM3xoht1afab5tigFYN4YAZhwqTXjQQ+Rzo4joPONINkwFZ7i63WlhG2SjMIISiFJVxphDqpJWmW4jkeSZrQSTrjZD2VqXHyZZZl43YcphOZe9Cea/oDTxVMP9WRRLbf2WejvkHoh+y0d2gOmuO0zUJQYKIwQZRGNPtNEGZb0ywlcAIyndGJOmNprxgUEUIQpzGDZGD2U795agEtVSmrO6tsNDeIVYzv+MxX5lmaXhoLzHCQCPesSXKLE4vc378PPsyWZ9lsbXLj4Q1q+RqlsER70B4nls5WZgm9kMANWJpeOlX7P2887358NJHvRYl4FssvOi9EoLt27dqLqMZisXxhyfHsN4g1TxfKRglll4HfxYh0PSA/nP6bnJz+dpgK8FXgz4ECB6JbwlHxzx22SWBS0Son1Pcl4F1MgtsasDms7/CPlXWM1BUMy42We1k8KiDC8wuIrzLxI4/H/2A00+vHlLdYLBaLxWKxWF51BJ4nyTKT8DZKjatUQqSUNJsR165dYGVl9tg0sihKeffdh+zu9qnXB6SpJo4VaZrR6ST0egm+76C1Jk0zpBS4rqRc9vF9l5mZAsvLU1QqAbdu7VEs+mxtHdwsUMqcCzqOIEkyWq2IKFLk8y6+7xAELkppVlcbYzlvxN5en0ZjgOc5nDtXJo7Vc++ljQ1zsXlnp4vWJnnusDwHRjis1ULq9cETpT0Y3hi+dp5qNRwn242kuxFB4LCyMjfe9xaLxWKxWCyWX3xGwtP+vVvE/Taf32vrLwONGCYGCOkgXRe0RxL1jUgnBUK6uH5gOlgpNR5JREqHTCkypXD9PGF5Asf1kY5rxDfPRwiBXyiRRiY9rru/g3AkaRyBzhDCNcMmhjny1WmyLCNXqiEdh0LVdHAqTJj7N9X5Czy88S4A+do03f1t9tZuEhQr+Lkicb8zTl/L16Zx/BDHC6jMnWf7zs/YvvM+Kjl632H//m0e3niXmUtX/v/s/VtwXFlinol+a99y5z0Td5AAyAJZqEuzimh3qdSels0OXUYR9pzReZBCjhmFPeGnCT/IfrMcMbYcfjmO8INHdoReHA47Jk7MaNTHPo6w4kjWtdpWl6QqdTdZF1bxWkTxAiQSQN4z93Wt87AyEwAJ8AqyWOT6qtkJ5F5r5dp7Z27k3nt962d6+cyB5wxpPJyxfDhzuZfNH7glvWyBsNsalxvVe1oIIVh8+zv4hfI4cbE0s7CvjO1mmDn1jUPXzWAwGAwGg8Hw8vK40pORpZ4/hBCsLq1y5viZA0WMnzr9U/zp1T9lEA2wLZvuoIt0JEEUsBFvaEEujqh1aqQyxbVdBtGARCaIVBCn8VhaGaXOGQyGrwd60qThfWK0DBenMUoqEFpuA31sH8lCQohxymRGZPAdnyiJuLF1g4ybIVUpvag3FskGtj627PR2CJOQRCVY6ElaLWFpSU9YdKMukYzoBB0EgsnCJPPleXZ6O7wx9wY7vR1ubN9gkAwQCDpBB8dycGwHz/HwHZ8wDseC3kjaC5MQpfS1rc325rj9uZKe5Ok7p77DZndzLJFdqV1ho7OBZ3s0+g3iNCbrZqnkKpSzZWaKMwRxwHZvm37Y1/f/EWTcDADrzXWdvIkWAtuDNnEa4zs+zvCa2IMENKUUF25e4PzN8/dIVZdql3j/2vusLq5ydvEsQgjmy/Ncql165CS5xeoik/lJPrjxAadnToOAWqtGo98Yi3MCwWx5ltPTehKoswtn98l7T4OHFQePmsfdjncLkUcl4hkMLzpP90hiMBgMD8UdHv0msRjWux8S+B7wX4AttPgm0Qlxa8APgJ8Hfmn43GHMAz+HFto+QyevKSBkNzEuM+yTAE4Nyx82W8M54LeB2rCuGv68hU6bi4ftCvRhugNMDOs9S0YC4hngOjp1bZRANw8s8/X/M+Ld9XjwF8bd5+8ubzAYDAaDwWAwPB+oA+4JCqHFNCnVWJ7TAxPVWEYrlzOcO3di34DFURrZq69O8N57N5iYyI4T4LrdCMuCJFFIqVPigiBBKX3TwnVtSiWPXM7lG9+Y5u/8nVUmJ7MEQUq/H5PPu3iezZUrO0gp6XYjgiCh14tJU4nr2vi+Qz7vYdtimAoXI6UijlM6nWiYomfR60VIqajXe1y+vM1rrz1+etpIvhs9FouZA8sVixkajeCe8gdxkJA4SqCbny+yvFwdJ+kZDAaDwWAwGF4ORuLSzs1rKCl1kvRX3KfnGTVKuB7OzJ3Gob6bJAS2l8GydFIcKGQSI9MEmUQ6iU6AsBxsxwUlGbR38PIldm5ewcsVyU/MINMUN5MlCgdE/S4CUDJFST3w0rJsMm6ZsN/F9TJ4ueI+Aa4yf1L3z3aYOXWG9c9/RPWYHojUb9QJu62xOCeEIFedHi+fXn6T25/8OY3b1wFIooD+XSltAOuf/4ig22Lx7e/cI5rZrt4u9nD7RIP9M5uPiAbdfeVG9Z4mQghmTr3F1Mk3Hitdz2AwGAwGg8Hw8mIS6F48HNthZW6FlbmVfXLCIB5wvX6dvJdnrjTHja0bdIIOQRxgWzZb3S0t1kVdXEvLc3Eaa3HFcogTLdIYec5g+Hqx9/NqWza5TA6BoOgVGSSD8cSwGTeDEEJLslJiCZ1IZwlLiz8CncDmZMh5OfpRn37UZ6Y0w7HyMS7VLtEP+zoxLo2RUl8vcm2XjKPbdiyHjJMh62Wxhc10cZr5yjwCwXdOf4fp4jSThUn+/PqfEyXRWOKL05iSXdonArqOC6lev07YwWpboCBV6VhYmixMkvWyZN0sP/3GT/P5xudjiexW4xYCQaPfoBf2tJzn+pSyJaaL0wC8Mf8Gn97+lH7Ux3M8BvEAS1gIBPVeXa/jkH7UxxIWYRrS6Df47sp37yuBKaV479J7XNm8AsAgGlDv1ImSCM/xxtLWBzc+oDlocm7lHMvTy7x/7f3HSpKzLZvmoMnl2mVWZldYmlhis7257/V8V6eRrsyucHbx7FG9BQ9c90cRB4+aJ9mOezkqEc9geNExV6UNBsNzQPIYdcQD6kngXwJ/hE4OC4A2u8JbGS3EbaBFvL/P4RLdMvA+8LeAfwV8OWxfDNuS6GQ7CzgxLJcb1jsIH1gBPgFmgJtA94ByBWB62O9Xh/W+Chx0f1e+otd/mswDl9DbeQ39XtkCpvaU2Ro+L9D7a1TPYDAYDAaDwWB4PhDiYIEOIEn0RXLb1kl0USRJhqdSJ09WqFT8Qy/yXrhQ48qVnT3L976IIk33inngeTaVik8+77KyMsX/9r/9NX7iJ46Pa8zNFfjgg9tMT+eJ45S1tRalkk+hIBkMtIRXLHpMTGTZ3h5gWdBqhViWYG2tSRzL8XqGYUK7HeL7NidOlKnVerRa4WNvQ8+z9z12Oge3NXr+7vL3YyQkHpRUZzAYDAaDwWB4uRiJS4P2DiBQqbx/hZceSRqFyFRiOw7CEli2h7D05IRSpriuixqKibaTAQUyHWDZNrbjkSYhUdDHTxIsy0YIQX5qjtLsEjd++MfYno+rFEk4QMYhUikYJt8hIOp3QSkqx96mMDk7FuBmTn1jnwA2vXyGoNuicesa1eOnKE0fp3eXEGd7+j5PdeEUgJbnlKJx5zr9Rn084Aqgs3lrLNw1bl3DL5SZOfXWvq2Tn5hl5+ZVcpUpOpu3CLtNBu0dsqWJcZlBe4ew29LrfVdy3rPAsh0mFk4zsXD6mb2mwWAwGAwGg+HrjSMcYvXoqcmOMENhn2cOkxMcy+HPvvgz1rbWaPQbKKVIZUqYhPSjPqBlF2GLsSgyXZwel0Ga9EGD4TAEAktYKKWQfDXXoEZy80GfUyF0/0ZJa9lMFiV0eloqU6I0wrEcXNsFG+JU/23wHI+Z4gwzhRlcx6XoF2kHbfphH8/yOF45Tq1VI4gD4jTWotzwGk6q0vFj3suTc3OcmDyB53iU/BKO7WBbNq/OvMpPnPgJfvuHv0037BKnMYNogFSSRCZYwqIX9Uilbi/rZVEobMtGKi0AhknIRnsD3/XHyXavzr4KwM++8bP4ns/ZxbNjiWyurJPp1rbXkEpSzVZZnFgc9322NMtCdYF6u87t1m0mchM6sbO9QSFTwBY2iUqQUqKUGguHGSczltJGiXgHceHmBa5sXkFKydXNq9TatX37bW17jdnSLKdnTnO5dplKtsKZ42eo5qr8t6v/bSwWBlGAVPKhkuTOrZyjkq1w/uZ5AJYml/b1KeNkOLtw9qmJa/B44uBR98WxHVYXV584ke+oRDyD4UXHnDUYDIbngMc5iVUPqPfbwO+i5bMa0EILdwotQm2jJboU+P+hhai/dUhbDvA28P8CKsP6m+hEuxQtzuXQclUZ+D7waxx+iE3QwtYJtETnD9vcO3OBh06166ET4GaG9cxh+2gZyZEAs2ih8iJQBYro5LnGnuU+er+YL4wGg8FgMBgMhueHw+Q5EMMBmII0VeO0NCH08/V6j2Lx4HTlIEj4vd+7ytZWny++aHDrVpvBICGT0QNOwzAhjlOkBMuCXM6jWPSYmyvy6qsT/C//y1neeefYvjbPnp2l2Qy4fHmbn/7pV7h2rcFnn9WJohTbtiiVMjiONZ6pz3EsCgWPW7faBEGK51kUixmUUmPhDgTNZsDx40W2twckiXysVLf5+SKXLm0zPZ1nba1JoxGwtdVnaio3LrO11afRCBACZmby43qPQpJIk0ZnMBgMBoPB8BIzEp52MYP8HoxCpRGJTLEcF9tWiOHgEMfLEPe7KCkBiYwHILS0hRAI20IIPdu3sCyKMwsUJ2awPZ/25i2Kswu0bn9B2G+j0t0BRgBCWAhh43o+jufj5YpUji2DEFQXTjG9fGZfL4UQLL79HfxCmc1rnwBQmlnYV8Z2M8yc+gaTJ17nsz/+/wDQuHOd3s4mAJlCBS+bJxr0CLvN8fPV46fYvPYpUyff2CftVeZPcufihwDkqtP0djbZXrtEplDGyxaIBt1xAt5ByXkvOzJNTDqewWAwGAwGw3NI1s0SR48u0GXd7FPozdefvYlvURrh2R7z5XmWp5fvm0R0lBwmJ4RJyJ3mHertOv2oj2M59MIeqUrH52YKLdNESTROjcp62XHqVJRE93tpg+GlRyiBEAKpvhqBzhEOknuTIhUK/T81lrqa/Sa2sHEshyiJqOQqlPzSOEnNEhau7ZL1ski1m0hX79bphl0UiqniFFEScat5iyAOmCpMYVs29U6dXtgjIzK6rmUxV5ojY2coZ8sIIUjShDiNmS/P0w/7/F8f/l/Uu3W2ulskMiGWMVESIaXE93wsYWE7Nr7jU8lW2OptMYgHOJZD0S+SqhTXcpksTDJXmiPr6b9T75x4h19655f0/hFiLJFdr1/HsR2q+SoSied6OLYWCBeqCyxUF7R0aFtYWERpRJRGJGlCs98klSkKhZR6ezvW8PqZ7TBfnqcX9bhw8wKrS6v37KckTcYS29XNq2y0NwCo5qsUM0U6YYdGr8F6a51Gv0ElW+EHV37AbHmWQqZAKlO2e9taePYEnaDDRG6CherCWNSCe5PkhBCsLq1y5viZx/5b9aR/5x5HHDxoGz4pe2XKx03kOyoRz2B40Xnid/x//a//9Sj68Vj89b/+17+y1zYYDEdJDDyqkS+G9Q4iAP5vtPx0E2iiU+Ls4b8ULb+FaGlNoIW7/yeHp7xdHrajhnUFWqTa258BUEILV5eBv3JIW9fRMty3gSvohLPMXa+doFPtqsBfHa7rdV7MFLivEgdYBT4ARrOf1tD7cCTOCbQ8N1p+FiMyGgwGg8FgMBi+DkipEAKEUEipf9dpcfrCea8XkyT7B+wqpbhwocbv/d5VPvlkkyhKuXhxiyBIKJcz+L5DpxPhOIIosonjFCHAcQSOY/HOO3P83b/7V1hdnbtn5jUhBOfOnaBS8Tl/foPTpyd45ZUqW1s6PS5JJNmsw7e/vUAcp/yn/3SJbDbl9u0OQkA262LbWjKrVu1xol67HbK6OjeW0x4n6W15ucr7798EYHa2wMZGl4sX61SrPsVihk4npNEIxst93yGTsVlerj5U+6Ptev78xlhkHHHp0jbvv3+T1dU5zp6dfWqz5xkMBoPBYDAYvnpGwpPjZ7Fsm9SywKTQPSQKlERYLrbtkCmUQCkG7QZSpsg0Gc69qLAcVw8OS2IyhQrZUoWo16a7dYfy7CLCsgk6DWQcE3QapFGESlNAp2ujFEpKJDHgky3rhLfeTo1Xv/M3mF4+c+D3diEEM6feYurkG/cVs3ZuXSWNI5IooN+oAzB54rV7kuO21y7Rb9QpTetk7+b6jX1JbpbtMHPqDOuf/2icjNdv1Am7rbE4J4QYJ9nBvcl5LyNKKerXP2Hz2iek8f7Btjs3r3Ln4ofMnDpz6H42GAwGg8FgMDxdRulAz6rei8phiW8Al2qXeP/a+6wurj7VVJ8Rh8kJjX6Drc4WW90tgjigH/V1WhRCSxhCEKcxSmjRxrEcZsoz2MLG93w21eajDzk0GF4iBALXcUlk8pXN4ZSSjuU9gbhHolNK37eOkxjLskhJSdIEx3II45DtdJtEJvqYgCCRCd2gi+d4rO2sUclXmC5M49kea9trdIIOvuMziAdask0jgkFAmIQIobeHlFKn2iloBS1ygxxnF8+y09shSiIu1S7RGrTwbA/P9uiFPfpRn4yjxwuHcaglOt9nMj+JbdsAvD73Op2ww2ZnE8/xyGfylP3yOMEs62b52Td+ll9655ewrN2JVUcSmWd7/Icf/4exNCWEYKY4w6uzr2Jb+jW2ulu0+q2xXAzoZLFBh0QmepJa28GzPFzbpZwtj1PyAP7Lp/+Fnd4OqUr3iWbX69eJ0ohBNKDWrgHw5rE3mSpM6X2lFJ/c/oQfrv2QVKbkvBz9uE9z0MR3/XFiKAq93tkyqUoJkmCcgne/JDnHdliZW2Fl7uHHRx/F37mHFQc32hsgtLh24dYFzhw/c+TS2V6Z8kkS+Y5CxDMYXnSe+NP73e9+9yu5cCyEIEmSZ/66BoPhaVBFp7g9Cvaw3kH8MTpJbIddeS6DPuRZw98TtEDXBArD5/8Y+BsHtBcAf4iWqO6gxTYB5NHSWzBsq49OjFsB/ojDhbx19BnJj9BJc6+j5btNdlPm5oDssN0fAT81rGcEuqPnLPp9cBm9fZfQ+yJC758ZdvfjyrC8wWAwGAwGg8Hw9UApuPuyjVLQ6USsrPg0GrupbUop3nvvBleu7LC52WNnp8/lyzvs7AxwXQsh9IVo2xY4jkMuJ+h0QkAwM1PgxIkyZ87M8s1vzh/aHyEEq6tznDkzsyeJrXpPEtt7733B7GyBzz6rUyxmmJrKUSh4pKncl1Z3+3Ybx9EyHcD6eucege5hUt8cx2J1dY4PPrjN6dN60Gqt1qXRCMbinBBanhstP3t27qFS4/ZuV4DBIKFe7437Mkqz++CD2zSbAefOnTCDNA0Gg8FgMBheUEbCU2n6GO2NL7HThCQ19zsfCiWRaYLtlshWpsiWp0jCPkkcETfrKCl1apxl4XgZEJYeRyklYa9NYfIYg9Y2fmmCeNAl6LZp3vmCJApQSqKE0OWFNRzEJFAyJYkjwk6TiaUVbNdj6uQbD/y+btkOEwun98lue+nt6IFI/eYWSqmh5Dexr0y2NEGmUCbstug1tyjNLNDbqd3T5vTyGYJui8ata1SPn6I0fZxec4s0ibEdl3xlCtvT9zgOSs572VBKcfPCn9K4fR1AS4x3bS+A9c9/RNBtsfj2d8z5mcFgMBgMBsMzJk4fPX3uSeq9iOxNfEtlyq3GLb7c/pIwCck4GU5MnuB49Tgf3PiA5qDJuZVzT+1772FyQjlbptlvIhAEiU6YU0qRy+RwLRfX1tLP6Jw5ljFRGhEnMSdnT1LxK9zYvrFPDDEYDPuRSMIkRPJ4kzdZWI9dd4RSaizOqQMsPqUUwhJYloXv+PSiHkmaYFs2YRICWshybZcwDhlEAwAquQr5fJ6d3g5xEjORm9ApcWnMdm8bW9igGIu4wFhq6wZdgjhgu7fNbHkWqSSNXoM7zTt0wy7b3W3CJBwLahkns+/3kfgXJ/q4NF+Y59T0KY6Vj/F57XNOTp6kkq2w099hsbrI4sQir8+9zrmVc/jeYQEfsDK3wmJ1kdnSLBknw0Z7g432BpudTVDQCTv0oz5RElHIFOhHfYIkwLVdFArbsvFsLc4V/SLlbFmLgwi2ulv86ZU/RQhBlETMlmeBXdFsJN/VO3UUimq+uk+eu1y7TKPfIONkqHVqbPW2yNgZOoMO+Ux+LAQWM0UsYeF7PnPlOQSCudIcf/Ptv3mkwtlhyaZ7JTHggX/nHiQOgpYWL965SK1VY2liaVzvUWS/h+UoEvmOSsQzGF5kjuxoNIpMNhgMhkfnGFpUepRIdXdY7yB+gE6fa6BludHxKUULaqM/+Gq4vIEW7H7AwQLd99GSXB8tuhWGr50ftmmjxbk7w+WDPfV+/oD2IuAWWtLqAfXh8xZ6OwBsDx9z6ES0W8DyIetreDIEcA6oAOeHzy3dVSaDFufOYqYuMhgMBoPBYDB8nbAssCzB6LKNZQksSxDHilIpQ6Hg8Ud/dB3fd/jsszpXruzQ78d8+OFttrcHNBoBSSKJopReL8a2LSoVn3zeJZ93yWZder2YTMamXPa5enVnLOTdD8exWFmZPDQtLghSyuUMaSqHkp5HtepTrWbHQqDrWiwvVwnDlDjWN2/2prs9aurb2bOzNJsBly9vs7IyydJSmc3N/aKb7+tLaSsrk5w9O/tQ++DChRpXruwgpeLq1R1qtS57L6OtrTXHYt7ly9tUKj6rq3MP1bbBYDAYDAaD4evH9PIZXvnJn2Pj0o/vSb8yPAAB2fIkXjaP7Th0NreIBj0dTqcUCD0oS0pJaXoO2/PpN+qkcQwosqUJbn/8Z1i2TXd7nX5zmyQc6PQ6QFjWsC2JEDYIgVKSKOyTJiFBp3FPCtzjoPsDaTIcwJXNH1jOyxYIu61xuVG9fZtECBbf/g5+oczmtU8AKM0s7CtjuxlmTn3DJKoB9eufaHlOKRp3rtNv1PeNc+hs3hon9jVuXcMvlJk59dZX2GODwWAwGAyGl49RUtGzqvcicuHmBS7XLvPl9pf88Msf0uw394krVzavUMlV+NbSt1BKUclWWF1afSp9OUxOSNOU1qBFL+rhCIeBGmBbNhP5CSbyE8wUZgiSgOtb1+mFPVzHZRANUErh2i5XNq/QC3pmvxsMD+BBAtxwOqGD5TbUPalxR41UkiiNyDpZwiQci1xxGmMJi6ybxXd9wiQc9yORCbVOjVbQouyXxyJZmITjJMtUpvTDPr7n49keOS+H7/qUsiVdJo7pBl1SmWJZFuutdQqZArebt4mSCCklwtLbxhIWtmXvE3ZjGZPIhF7YwxIWO70dWoMWQgiOV4+zMrtCxsnwP//k//zQ4phjO6wurvLBjQ84NX2Kzc4m1+vX9yesKuiGXUp+idagRc7NESQBju1QcAv4rk+URIRJSC/ssTS5xEZrg63uFqDT6i7XLtMJOvtEs4t3LmJbNha7ItyIW41bOjlUKXphj3q7juM49JXe1u7AJe/lmchP0A26WuCzi7i2y8rsCs1B87HfH4dxd7LpemudTtBhEA+QSmILm4XqAt868S0u1y4f+nduvbUOcKA4OGKqMEU1V6XRb7DZ3mRpcon11vpTEehGPE4i316OQsQzGF5kjuTdb+Q5g8HwZMyhhbhHwR3WO4gaWnaL0IKbQItyFrsJdCOxTg7LDYb1DuLzPe0qoAi8ckC5zvDfxnD55xws0FnAl0ALLcpJdhPO7GGfQUt7A7Sod5NHT+kzPDwCWAXOANfRaX+jBLp5tLxovjAaDAaDwWAwGL5eWJa+OGpZAikVSmmBzvcdPM9ia6vPhx/e4Ysvmpw6VeXP//wWt293uHOnQ7MZEMcpajgQNU118pxlaUktl3NxHItCwaPXiwmChCSRKAXXrzcOFeMexEh6e++9G9y61ca2LYpFDyF0cttgkDA3p2Wz6ek8Fy9uEoZacAPGj4+b+nbu3AkqFZ/z5/UMqEtL5X39y2Rszp7dle4eRJLIcVtXr+6wsdEFoFr1KRYzdDohjUYwfn5lZZILFzY4c2bmodLtDAaDwWAwGAxfP4QQnPnZv8Xnf/QfWf/8LxlGPX/V3fpaIIRApQlRrwOA6+eIel19iV8phBC42RyZQgXbzeBlCwig16jTb26RLVfZuXWNXGWS9saXpHEwlOfUMLFuOCO6VLpNATKJSaKA7naNiYVXD0yBe1RsV98Tsx39GA16B5aLBt195Ub1DtouM6feYurkGzTXb9DbqZHGMbbrkp+YpTJ/EssMikGmyVgybNy5Tm9nE4BMoYKXzRMNeoTd5vj56vFTbF77lKmTb5jtZzAYDAaDwfAMMQLdk5GkCT/+8sdcrl3m41sf0wpapGkKAhzLIZF6ApFGv8GHax8SJAEZJ8OZ42eeymD6w+SEyxuXAegG3bEUk6qUXtgj62Xpx33my/PEaczNnZuAvvcTpREXvrzARnuDWJrUQYPhSXmQHPek8tze+gfJeAqFlJJu1CXjZPT9VwEoLf9FSUQn6KDYlepSmSKVJIxCAidgKj9FKlPKfplu0EVKSSpTYhnjOi6u55JxMxQzRRrdBv2wT5ImxCpmkAxwLIdO0KHltugE+ppTKlNc26Xkl0hViiUsHNshSiJ9fUopUpmSyIQ7zTvs9Hco+SXeXnib09P6utHZhbOPfFw9u3iWRr/B73z0O0glWZpYYqe3M+6XZVtkvSyxjOlFPXJejtnSLN2wi+/6FPwCURzRDtr4nk8qU6IkIpEJ9U6dnd4O+Ux+vB/WtteYLc1iWza1dg3f1eOYO+Hudhgdg+udOvVufXztLExCEOAL/TrdsEvRL1Lv1sfr8zQS2/Ymm16pXeGzjc9o9Bv4ro/v+ARJQDfs0lpvcad1h584+RN4tnfg37ko1ZObRYl+3CsO7qXoF2n0G+Nyo3pfJUmaPFCOe1IRz2B4UXnib7x/5+/8naPoh8FgeKn5JhAz/ub7QAQ6Se6bhyzvo6W0dPhos3u4U+yKdCG7Ml06rHcQo0S50Ul34ZByBbRANyo3OKRcgk6di4Zl42F//D39C4b/3OHyzWE9w9PFAVaG/wwGg8FgMBgMhq8Pd4+5FQJsWyCEhRBanANFJuMMnxc0mwGzswX6/ZiPPqpx+fI2rVZIrxcRxylBkI7bHbUtJcRxymAQI6Ucyng2vu/QboeUyxnW1zuPJdDtld7yeZc4liSJpNuNEQKmp/OUyz5SKlqtENsWNBoBQjAW4ubn9UXtx019E0KwujrHmTMzXL/eYH29M5bu5ueLLC9XH0lsu369QRSlDAYJtZoe/Prmm9NMTeXGZba2+ly8WKdW646FvSeREA0Gg8FgMBgMXw8KU/M42QJJGPJw90YMIIgGXfxilSQKCXsd0iRCSQlC6NQ4KUmjAPIlon4Hy7axHBelJP3GFpbt0GtsEgd9lJIoQCiBZdsIy0agkGmql0m9X2QaEwc94qB3YArco5KfmGXn5lVylSk6m7cIu00G7R2ypYlxmUF7h7CrZy7PV6bG9e6HZTtMLJx+YsHvRaW5foM0jkiigH5DD+aaPPHaPdt9e+0S/Uad0vTxcT2zTQ0Gg8FgMBieHQ9KSzrqei8a1+vXub51nVuNW7QGLS1ROD6e66FQ2JZNFEf0Qp3mfbtxm5yXO1K5YS+HyQlxGrPT22Gru0UQBwBIKRnEAzqDDkmSkHEy+I5PLpOj2W+ScTKEccggHpDIxEiTBsNT5mES6B4loe7ucqP0O4EYp0umMkUJRSQjHByk0DKc53hIKcdtCCGwbZ0KN5GfIONmkEpS7+3KW7GKSVWKbetktTutO/TCHnEaI5UkTmMtg9kKpRTtpE2cxvv6N4gHxGlMxs3odRiKc5awSFVKkiaEScjxynFK2RI5L4dlWazMrnB28ezDbei920QIKrkKOS+HbdlsdjZpB+3xerf6LcIkJOflyHm5fcfB0XE262XHKXzrrXViGROEAUW/SD6Tp+yXWZpYohN2aPQabLQ3yDh6/QaRHvPc6DXY6m6RploSjNOYeqdOEAdYwtLb37LJZ/JknAzdsEuURPiOj+u4NPoNnRTYqnFi6sSRJraNkk37YZ+Pbn1EO2wzX54n42R0sp7toTxFN+jS7De5UrtCP+pzbfMar82/tq8tz/b0o6MfR+Lg3YwExlG5Ub2vAqUUF25e4PzN8/eIfJdql3j/2vusLq5ydvHsQ00IbDC8jDyxQPfv/t2/O4p+GAyGl5qtx6ij7lOvhJbTRqRoWc6+67lR0psali8d0l52+Dia2bN7SLnuXeWyh5SzgDZajFPDf8Hw95Ewl+5ZFqHFvIcdpJlgUtQMBoPBYDAYDIaXi7sDK5RimBqnAIHjaJFOSkkcQ6HgEYYJn3++hRpW3tzskaaKXi/GsnSC3Si1bpRgF8fpOGmu1xNMTvpUKj4Mb3BMTeWJopTHYa/01mgE3LzZIk31rINBkPLpp3XKZZ/Z2Ty3b7fJ5Vyq1SyzswV83yGTsVlerh5J6pvjWKysTD6xxLa+ri+m1+s9lNJ92CvPAUxN5ahWfRqNgM3NHktL5ceWEA0Gg8FgMBgMXw+++OAPUDIlX54iaD7OPZKXFYVMElw/S9BpEgd9ZJpogQ4twSmlUGlKNOjgZYsM2g0s29Gp1p0GjpshGvRIIj1AU081ogdKWZaFEJZuQ6bD2UQAqUhjPYnIYSlwj0Jl/iR3Ln4IQK46TW9nk+21S2QKZbxsgWjQJey2xsttz8d2M1TmTz7xa7/M9HZqAPSb+jw4U6jsk+cAsqUJMoUyYbdFr7lFaWbhSFIHDQaDwWAwGAwPz6PIGHfXM8DNxk1uNm7SCTq0gzZSSTzXI+flxsk8AP24Tzto0w7a3Grc4mbj5lMR6A6SE5RSrLfW2e5t49quFlLSlFSmiFRoCcP12e5tE8YhFhaO5YzTjkbncE+ajGUwGB7MUSfU7T1WjwQ9ANuy6Ud9HMtBKYVQgkQlZKwMnuNhCUsLwMM0NUtY47KtQYszE2ewLZs7zTvUkzoZN4OwBAJBkib0oz5hHGpBD0WURDpZDouYWMt0UiGRCKHrSSVJggTbsgmTcHxPfSSQoYbHNgGJSnBsh43WBr+w+gt868S3HkteStKECzcvsDixSC/s0ew1wddSXDFTZL29TjfojoU1BKy31/UkUMPjY8bN0I26tPttELq/URyRLWaZL8/zzaVvMlvWkzRttjf58IsP2Yg2UEpL1kW/iO/6XLxzkX7YZxAPqHfrNAdNpJLYlh6HPRLrRqmAqUzZaG9QyVYoZAr670vzFiemThxpYtso2fSTO5/QDtvkvBz9qM9Ga2Pf+7EbdBFC0B60cWyH/3b1v90j0M2X57lUu8R0cZq17bWxODhVmBqX2epu0eg3EAhmSjPjel8FSineu/QeVzavAFp4rHfqREmE53jj/n1w4wOagybnVs4Zic5gOABjUhgMhueAj4ePD/tlelTu40OWnwX+I1qYG6Xaxeym0e2V58Se5w6b8eF14ENgFi2lddCJcDN7ymwOnxfA3J56B3ELKKMFwFFKHsPHaE+fR8l4CVruu3VIeyMUcAE4z36BEOAS8D6wil5P86XIYDAYDAaDwWB40VEKpFRYw7k4RslzcZzSagWkqcRxbIpFjyhKSFPFYJAQxzpxzfOc4U1LiW2LocymSBI5LmNZFtmsy2CQcOxYEdsWeJ59/44dwN3S2+Zmj0rFZzCImZiosLHRo9UKaDYDwjChWMwQhimvvz7F6dN6wOPZs3M4jsXly9vPTerbSCYcPRaLmQPLFYsZGo3gnvIGg8FgMBgMhhcPmSbc+ewvQQj6rW1M+txDIgQICyWgu1Mj6vdIk0if+AwHgsg0Rdg2SkmSMMSyHNI4Ik0iLFuLbyJvjeU5mcrh4Kfh4EspEcPzJjlO4tZDb2zH0dLjA1LgHgbLdpg5dYb1z39E9dgyAP1GnbDbGotzQghy1enx8plT38Cyza39J2GUHpgm+tHL5g8s52ULhN3WuNxRpA4aDAaDwWAwGB6ex5WijEyl+XLnS52IFIeEsU4pmi/PU8gUxmW6YZde0BsLJXEa8+XOl0+lPwfJCR/f/pgwDkFpmSZIApI0GZ6LSVqDlhZX0oR20MaxHGbLs9Q7dZRUBHFg0ucMhq8pltA3rkcCWqJ0muToX8bJYGOPk+BGx4UkTUhVOv7sK5ROl8NGKi29TeQn+KnTP8Uff/7HxGmMIxxs22aqMMV2d5s4iUmkTozb204ik319HIlyQolxuumovBBa8raFjed4HCsdI0j1daaTkyc5Xj1OyS89trQ0SlcbiVHFbJGfPPWTY6Hr8sZlrtavcrV2lX7URypJzsuBgDAJ2exs4touUkq6YReFwrEc8pk8Bb9ANVdlqjiFUkrL0zs3aQdt+nEf13aJoxiJpB/1sS2bQTygG3bHyXSWZeE7/jiRbZQOaAlr/HqDeECYhkwVptjp7egyR5jYFqURqUy507gDQD/sj4dD75XFe0GPXtSj3q0zUZjg0sYlklSLjiOWp5d5/9r74MFsaZaN9gYX71ykmqtS9It0gg6NfgOA2fIsvuuTcTIsTy8f2fo8ChduXuDK5hWklFzdvEqtXdv3/Wdte43Z0iynZ05zuXaZSrbC6tLqV9JXg+F5xlxlNxgMzwF3uFf4ehDRsN5B5IAKsIFObZPsCmmjk2edwrCb6lYe1juIc8D3hj9PANvAlWH7BXTy3Ci6dxKdPJcd1juI9rB/Abvr7bEr+VnoJLrR8nBYvn1Ie6P1eW/YL4ABUGc3gW4k+30ANId9+6okOpOQZzAYDAaDwWAwPCuEGN6AQBGGOjnOcSykVKSpQqmUctlja0vieTZxnBKGWmgrFDziOEUpfV7lODZBEGPbAtsWFAoejiMYDBLK5QxvvTWccW2++Mj9vH69cY/09p3vLLKzM6BW6zE5maPZDLhxo4lSinI5w8RElkrFx7IEKyuTnD2rB7I+T6lvI5lw9NjphAeWGz1/d3mDwWAwGAwGw4tHc/0GcRjQqd8h7Da+6u58bbBsF+E4gCDq6XOG0XSElmUhpdRCnQAZxyi6xEEPlNIDsPIelu2iZIpMEoSla+uBTwBqmGaXotTwvpLQM6ELIXCzeZSUR5YCN718hqDbonHrGtXjpyhNH6fX3CJNYmzHJV+ZwvZ8AKoLp5hePnMkr/syM0oPtB39GA16B5aLBt195Y4iddBgMBgMBoPBYHhWtAd6fFmQBCh00vZeeQ6gkClgWRYKNU6kG9U7au6WE+607vDDtR+ScTLUO3V6UW983uVYjj6nk5JeqAU/13axLRvf9nFtl07U0UlRRpg0GJ4JArEvcW0krh1Ubs8vYwntnjKC8Wf+bhHWsZyxYGeJ4TEqDoiTGMuySKSW7ZTS13NSmZJaKb6jr584toPruMyUZrAtm0avgVSS5qDJVneLVKUEcbDv+DFKwTvomKLYfZ1RKp1SOqVOodPalFC8Mf/GuI5t2ay31h870XOUrlbv1FEoqvnqvjS0crZMIVPAczziNEYIQS/sjVPh4jRmEA3Gx0nf8VEoPMfDd3wWqgtYwuJy7TK1dm283XrdHlk3i23ZJEnC3MSclrGTkHK2rPfNcKz13hQ6z/bIulkGakDOy+E6Lv2wTxqnyJwk7+XZ6mwx//rRJbZ5tsdWdwsEpGlKN+xSzpXHsrhUkm7QpUaNQTRgu7tNo9dgpjDD9fr1ffvGsR1WF1f54MYHnJ45DQJqrRqNfmMszgkEs+VZTk+fBuDswtl9Et6zIkkTzt88D8DVzatstPXkxNV8lWKmSCfs0Og19PMCVmZXuHDrAmeOn/lK+mswPM+YT4TBsIerV08BcPr0ta+4Jy8b6+wmwj0s6bDeQdjAaaCFls8E+nA3EukEWlBLhj9nh+UPG6DoAz8H/GdgBS2pbaOluZE4J9Dy3KvD3392WO8gSkCD3XWWaFmOYf8Uu8l01rCfjWG9w7gw7JcEPken87WG7dhoQfAtdCreZbSQt3qf9u7l6tWrAJw+ffqR6u1iEvIMLyZP/tkwGF5czOfDYHg5OKVPo7hmTqOeW5RSJIkaBzOM0uQGg5hSySeKFEGQ0O1Gw8Q6ffE/jlMcR8tzg4EiSRKSRN88sCwtzjmOxeJimTfemCabdclkbJaXq4/cx5H0trV1i2y2SyYzzfR0nqmpHLmcy82bbSoVn+npHP2+fl3Hsej3Y9599zhnz86OZ/J7nlLf5ueLXLq0zfR0nrW1Jo1GwNZW/540vEYjQAiYmcmP6xmeHPNdxHCUmPeT4Sgx7yfDUWLeT18vrl69Sv2LiwTtHTqbN5GJSR5+WCzLwsvmsd0MsVIomSJwUIk+j1FSb8s0ChGWhZKSNA4RQmC7GdIowvJtkjDAsh30GC2FUhJhWXqAlgCUTqMTAMNBW162gJvJUV04dWQpcEIIFt/+Dn6hzOa1TwAozSzsK2O7GWZOfYPp5TOPPXP53bzMx4z8xCw7N6+Sq0zR2bxF2G0yaO+QLU2MywzaO4TdFkII8pWpcT3D0fIyvw8NzwfmPWh4HjDvQ4PhcCysceLPXk5l9A2pa+HBN6Ss8STqLzclX48v8x0fgSBVWi64O4EuVSkCge/6++odBUmacL1+nfXWOlEakciEWqvG8vQyO/0dlFJ0gy5hGpLKlEquQpIm4xQoy7KIEj22rJApMFmYpNat0R60CeLgfi/9QvKg977B8DSxhIXneDi2Q5ImxGmsj9N75LeRgDaehMh2iZLoHilNoZBSYglrLMKNnkdBLpPT6WnDRLlld5lUpdyIb4wFvdGjlJJUpKCg4BfGz7UHbSbzkxQyBRari9xu3OZq/SqpSg+Vb+8n5I6T55QYS31CCaSQuI5La9DCsRwSmYyPW1H6qGEiu4zqjtoqZvbfM54qTnGpdole2EMpRZREOonPsqlkKziWo9PjbBsUuLaLYzukaUrGybBQXeBW45ZOLlOKeqfOlztfjl8v7+UJkoCt7haT+UlyXo5EJixUF/i4//F4H2S9LKlMcSyH7e42URrhWA6O5RCn8Vh+dmzdn6NMbJsvz9MatCj6Rb7c+ZIwCbGERd7Ls9PbodFvMIgGDKKBfs8pydrOGhknw3+98l95dfbVfdfZzi6epTlocrl2mZXZFZYmlthsbxIlEZ7jMVOaGf+tXJld4ezi2SNbl8M46FxhbzrhSH5889ib+wTLre4WF+9cpNaqsTSxNK73uEKnwfCiYgQ6g2EPv//7Pw/A6dO/+RX35GWjz+MJdP1Dlk0B08AiuwluAi2SjeYjBX0IzAzLzQzrHcYvoYW9vwReQye8baBT41xgDi3iAbwzLH8YC+xKg4LdZLxRIl66p482u7Lgwj0taRK0lCaB30ELdCk62c1Fb6dtYA24CvwPaJHtDI/yZ+D3f//3gce9gPt1SsgzPD4vZ7rgk302DIYXG/P5MBheDn5en0bxm+Y06rlDKZBS4TiCTMYhjlMsSyClPt8QQjA56TMxkSUIYjqdUA88HZ6OdDoRjmNhWQLLEsPEOoUQWjZzXZsTJ7Q8d/q0HnB49uzcULp7NEbymmVdY2pKIuVxarUurVZIkkgmJrKkqURKRa3WpVzO8Nprk/zETxxjdXVuX1vPU+rb8nKV99+/CcDsbIGNjS4XL9apVn2KxQydTkijEYyX+77z2BKi4V7MdxHDUWLeT4ajxLyfDEeJeT99vfj93/99okGPua11wn4XDhgUajgAYeFmi7h+ASVTLMclCWKk1CnbKIkQFkpJlJRDmW44q7ntIpOYJBwgHAcvW8D3fKJBF6VSUhmjpERaeiZ1MZpVXQ/7wnYdssUqmUKFhTM/ed9uyjShuX6D3k6NNI6xXZf8xCyV+ZMHindCCGZOvcXUyTceqd6T8DIfMyrzJ7lz8UMActVpejubbK9dIlMo42ULRIMuYbeFUgrb9WjXbwMWlWOvjOsf9f54WXmZ34eG5wPzHjQ8D5j3ocFwOIeJDD9f0TekfrN28A0pk0imOTF5AsdyyLgZfNcnSRPWW+vkvBy+4xMkAf2oT5Im+J5Pxsng2i4nJk888Wsrpbhw8wLnb57fJ5AopWgOmlyrX0MqyYnJE9xq3KKcLZNmUkp+Ccuy6AZdBvEA3/HHyXQFv0Cj16AX9sh7edqD9ku3rx/03jcYjpKRDDeSxUBfvyhmiri2SxAH9KKeFrj2fBZtYevzacvGsRwiEXHQR3Vvgp0Y/gdaVMt5egLSifwEvbDHT5d+GoHg/2j9H/uEvVSm498Vim7YZaO1gVRaznt97nUUiiubV1iYWKDZb9IZdA49dhyWQHd3v0eCoFIKhaIz6FDKlLjZuMlcaQ7P8QCdkPa4jOqO2uqEnfEypRR3mne407xDc9AE9HYTCGxhE8QBju1Q8kvYts0gHhDGIRP5CWzbRipJvVPn5o6+d13v1NnsaFEs42SYL8+TyIRipkjBL5BxM8yUZvh8/XOOVY7RGrTY6e2w3d2mG3bJe3mdeBcPAMYpga7tUvSLYzH7xOSJI01AW55eRqBFzaybpRf2aA1afLr+KUmSEMtYJxemOrkwSiOklGS9LJ/c/oTvX/4+51bOjSU6IQTnVs5RyVbGCW9Lk0v7XjPjZDi7cJazi2ePbJKr+3HQucKD0gkBpgpTVHNVGv0Gm+1NliaXnigR0WB4UTmSI9Ly8q4ZLITg2l3Tzv/dv/t3j+Jl9iGE4N/+23975O0aDIavgsf9wnhYvSywhBa0AnQS2wAt9Ci0pOYNy5XR8tYiuwLcQVjArwLfA/5g+NwrB7zuz6LlufsNGI3RN8VtdlPx7GGfrOFzEbspdKP0vPiQ9q4P1/P3gIvD9nLD58Jh23mgN1zuAj8/rPesvhjtTci7CtTYf4a0BsyikwAfLyHP8FVi0gUNBoPBYDAYnmds20IpcByLJJFYliCbtSmVMpTLPpOTWVzXIggStrYGxLEkTRVSKmxbICXjZDrXtXEcge87FAoe8/NFXn11AiEEKyuTnD37eDPz78prWtT74Q/vMDdXuKfc5maPTMZhebnK7GyBbNYdL0sSyfXrDW7ebHPxYp00VWMp8KtKfXMci9XVOT744PZYMqzVujQawVicE0LLc08qIRoMBoPBYDAYvh7INKHXqJMmjz8b9cuG5Ti42TzVxVMMmtt0tzZQMgGpEJYFykamyfC2w+jegwIlUFJiuQ5KgF+oUJiYJey1KUzO0d/ZJJRdlEyHk4XoYVvCdrAsB4ROnytMzzP32irF6ePjPu2V5ZIoolO/xaC1g5cvYlm7k3Ps3LzKnYsfMnPqzKFJcpbtMLFwmomFZzOAXinFzq2rz0TYe56wbIeZU2dY//xHVI/p8Q39Rp2w2yLstgAIui2UTPFLVXo7m5Tnlmje+YLmnS8euB8NBoPBYDAYDEeDJayxXPGo9QywUF1gcWKRQTygmC3SCTpEsT7/7Ed6svoojrAteyw4LFQXWKgeNrH7/Rmlzd1p3uHDtQ+ptWqUs2UKmQLbve1xgs/SxBI5L8dffPEXKKXIZ/IkMmEiN4FlWbQGLU5OnaScLdMZdFjbXqMVtHRankzJeTm2elvjlDqDwfB02CuSWVg4toNt2ToNsjjJ9c3rpFInnqVy91gthMAeXg+J0oPlub2Iu8YQuo6LhUUxq0W9UeLXqKwlLFJSkjTRryVsbKFlvW7YZbo4jS1sZsuznJ4+jVKKfthnkAxoB1q8tbD2ve5Iihu9xv0Eu+EPWMOJlwSCRCZ0oy69rR6pTHn3lXcBnZD2uMyX57lUu8R0cZq17TUavcY4De5y7TK1dm1f0p1lWTiWQzVXxXM8UpmSz+Sp5qrs9HboBl2WJpaQSII44MMvPqQdtHFsZ5w8V86WmSnNMFOcwbVdlqeXubRxiTiJeWXqFQqZAp7t8Y1j3+Dj2x/TD/taoox65LwcBauAJSwyXgZb2Hi2h+vo5LvZ0iyvz73+2NvjIBzb4bW511hvrTNVmKIX9fS+HibOhXGoU/AcVycVypQojah368yV57hcu0wlW2F1aXXcphCC1aVVzhw/sy9B1bM95svzLE8vH6kE+Dg8KJ1wRNEv0ug3jiQR0WB4UTmST/ONGzfGVvVBF4v//b//90d6EXn0OkagMxheFAZHXG8endbWAG6ihbEcWuyR7Ap0MVrmOTUs/6Avrhbwy8AvAN9HJ70N0OLc6+jUNP/Q2rvUh/1pDn+3h/UsdgU6Cy3AMexjbljvINaBH6LFNIlOnOvcVaY1bDOHFtmmgDd4NgLdKCGPYR83hj9XgSK6r409z6/wOAl5hq8Kky5oMBgMBoPB8LwzSp1TSo3luWo1h+ta9PsJ3W5EoeAxMZGl348ZDGKk1Nde0lRhWbs/68s7At93mZ7ODRPhevyP/+NrnD07O77+M5LZ1tc7RFGK59nMzxdZXq4eKIfNzxf5/PMtfRE7lXQ6Eb4fIKUiTSW2rZPwOp0IIaDdDlFKMT9f1DOaXqhx/vwGUZSSpopmMyBJJINBwuZmn2YzYHm5QqnkP/PUt298Y5qPP65x4UKNJJFUq1niOCWX88hmHWZm8vi+Pvd5EgnRYDAYDAaDwfD1II0C0ijAXCd9eCzLBiWZOfkmNz/5C5RKEbYDMkKlKVKmoA5K81M6kU6BwELGEV6+SJpExEGXbGWSNE1Ik0ifywgL23GwbBchBG42R2l2iamTb1CeO0ESBXz6h/83m1c/pru9gZPJUZo5TthtM2hv61dUCifjkylUcFyPfEXPBL3++Y8Iui0W3/4OQohHTqs7CpRSJFFAEoXcvPCDfcseRvR7EZhePkPQbdG4dY3q8VOUpo/Ta26RxhG9nRpeNodlu8g0RtgucRTS3rx16H40GAwGg8FgMBw9jnAeS6BzhBljBDqZZ3l6mX7Up9FvAIwFAsdySGSCYzt4rkc5W+Z49Tinpk+xPL38gJb3c3fa3M2dm3yx9QUKxUe3P6IbdKnmq1Rz+t7L2vaaFilmX+fT9U/pBT2iJKIX9vjm0jc5NX2K5qDJ1c2rOjlIxjiWQ5iEDKIBYRISxMFLlz5nMHxV6PvKFq7tallMJXSCDjkvRz/qI6VECbWbBKcvvqBQSHnQNZpdbGyUUOMkN1vYuLbLVm+LQqZAvVMn42R0Ct6wH7Zla2nPSlEoHMvBtV0KfoHZ0izfXPwms+XZsXiXdbOsLq3SC3v84MoPtNwndHrdKCkvVfpneLgUutG6WsLCFjaJ1NukkCnQC3t8ufMlbx1/65GPp3tZnl7m/WvvgwezpVk22htcvHORJE1oDVoM4gE3GzdJZToWzqWS421ezVVBQMEv8MrUK9xp3kEqyXRxmiiJaA1a9OM+vW5vnDw3U5phujgNaAl7tjTLZntznGK2OLHIINJjtWeKMxQyBdSGYhAP8ByPYqaIZen7/67tEicxtrA5c/wMp6ZPcaxy7LG3x2H8tVf/Gp+tf0acxhQzRQbRANd2iYbX+AoZLfUFSUDGyVDJVWgNWjT7TQAu3LrAmeNn7pHiHNthZW7luUxsu1864V46QWdfuSdJRDQYXlTMWYPBYHgOOGqBbhn4AVreyaOFspGMZqOT3fYms3lAZljvYfDRCW4//1i9hi20PFYbvrZi/+F4JNJ56Bvo9rD81iHtdYHPhu100OvnoNfJZzeJbpRql0fLf93H7P+jcn342gP0OgO8iZb4Rmyh0/Fq6PTAUb3n74uo4W5MuqDBYDAYDAbD806SSGx7d2BfFOkL6JWKT5oq1te75HIOljUqsztBkk6hs8jlXGxbX/j2PBvfdygWM7zxxhTHjxc5c2ZmPLnSXpltL5cubfP++zdZXZ3bJ9sBLC9X+a3f+mQo7Ana7YB6vYfrWriuTRynxLEkk7FZWCjRaATUaj1eeaXCe+/d4MqVHQAGg4R6vacTFXYGVCr6JsnOzoA4TpmZyetZAZ9B6tvebRGGCdmsw82bbZJEjvu6uFgik7HJZGzOnr13uxgMBoPBYDAYXiyUUsjhTNnIRx8Q+lIiLGzHo3zsFWwvQxJ0kUmCAp0cl0pQCn0/Ze+1aaH/JwTCsrFdlyQK6NTvUJ5dRKYJaRzhxxFBW59PWLaLZdu4fg7Hz1KYOsbc6bdBCGqXf8ytj96nu71B1NcDUZRMuf3pn6NSSW5iGtvxSKMApRRerkCuMk1n8xa56jTVY8s0bl0jky8hhGDz2iek8f4ZoJ+mxKaU4uaFPyUJ9f2yJAroN7dIkxjbcV8aQUwIweLb38EvlNm89gkApZkFOvXbgH4PDNo7WJaNly/R39H3te7ej36hzMypt76y9TAYDAaDwWB4kclYGUIZPlY9gx78/83FbxIlEVk3yw/Xfkij30AN/7MtG4GgmqvyrRPfYnFikdXF1UdK1lFK8d6l97iyqSfb7gZdLdIN5YxUpliWRT/qU8lWqOarNHoNLq5f1Il4w3Qqz/EI05C1nTWagyapTNnp7bDd26Yf9QnigEE8IE7isSRiMBieDQo1lssKmQK+45PKlOniNL7rU+vUGEQDoiQai3CpTMepbqP7xndjYWHbthbtUolEolDESYwQgk7YIZYx/aiPyqmxmCUQlDIl8pk87aBNP+6Tz+RZmV3hjbk3ODF1AoCMk+Hswlma/SaXNy+z09thMj+pZSMFSZKQyGS8fqP+Sg4/vowkPxgGAFlatkvTVK+/pyj6RWrtGu+efPeJksoc22F1cZUPbnzA6ZnTIGC9uc6XO1+SqpTOoEOURLi2Sz6TH6ekZTNZLdIpybHyMSq5Cr7jM5Gf0CIiihMTJ+jHfW5s3UBJvW/my/PMFHVAwmxpdpxGujfFTAjBm8feZCI/wdr2GgDHK8dpBa1xIJKFRcbJ4NgOE7kJTs+c5vTMaTJO5omEwsM4NX2KM8fPkPNy3GneARiL1rZlj5MCJwuTzJfmyWVybLY3CeKAINbXxq7Xrz+XotxhHJZOOFXYHYe91d2i0W8gEMyUZsb1DAbDfo5MoDvoD92jLDcYDC8zwYOLPFI9B520tomW4hK01JOgb56KYZmp4fIa8C4Pf0hM0HLXOrspW/PDth62jSpabhul45WAHrvpc3mgjZb//GH5w7iITtMbiYEWOvVrb0RvB7g17Hs67PdF4G8+ZH+fhPXhYx29/avsl+cY/l5FJ9FtoiW6dYxA97xj0gUNBoPBYDAYnneEgDhOSRKBbVs4jkWSSLa3+9g2WJaF4+zewIhjiWVZZLM2aaqTGqan80xN5ZiYyFKt+vR6Mb1exMxMjnLZJ0kU1683ePXViQNltlEC3cxMHoAPPrhNsxlw7tyJQwdk7j4v9FjYYTrH3eUvXKhx5coOUiquXt2hVusyugQVx5Ivv2xRKmVYWirT7UY4js3iYumpp74ppfZtiyBIUQqmpnL0ehGua2NZgsEgIZdz+Vt/6wyuax9pHwwGg8FgMBgMzx8yiQGwvQxKSYRlo4xId18s28ZyPTK5PHc++yFhr41SKWk4QEqFZQuUtBBKgbBQUjIS6ezhTMu2bSOGA67CbhM1PU9x6hiW7YJSOI4Lw5Q7N5snPzGDny/j5cvs3L5OPOiSKZQJOg2623dIopAkCkGp4T4VBL0mtuORyZfIT8xi2Q5SSoQQ9HY2AagcW+bz9/4TxeljBJ0m/dYWQWsHhSKTLzOxoAcUPQ2JrX79Exq3rwOQJhG1y+f33b9/mQQxIQQzp95i6uQbNNdv0KnfoXH7OrnqDGG3iV+oICyLTKGCl80TDXqE3eZ4P1aPn2Lz2qdMnXzjqaUFGgwGg8FgMLzMSPF4ktTj1nsRObt4luagiRCC49Xj3G7cZm17jTAJyTgZTkye4Hj1OLZlszK7wtnFs4/U/oWbF7iyeQUpJVc3r3KldoXNziZpqgU40HLFsfIxhBBUshWCOOBq/SoonQAVJMFYsLnduM2txi22ulukaUoiE6IkIkojgjgYSyECgSUsI9IZDM8Ix3aIkggpJb7jE8uYXtijH/eRqcS27HGy5UhIE0LotDcgSZN9YpottNjk2A4WFtKWhEmoxbZhOmaj3yDn5XTdYcqda7nYtk6QGyQDUpmyVF3iv3/zvydRCd+Y/wbL08vMl+dZnl7GsR3+4OIfABAlEQW/QDFTpBf18ByPJE7GfR1JdAch2L0mMxLtLMvCsRwsodP5cl4OIQTtoM03S99kEA9I0mSfRJekCdfr11lvrY+Ft719vZvRMfxy7TIrsyv4jk+j3yCMQ3phj6n8FLZt49gO/bBPwS9QyVZoBS0EgqybpTVo0eg1KGfLvHPyHba6W+S9PFvdLSbyeoLZ7d42iUxwbZeF6gIL1YXxdai7U8wyToZ3Tr7D//rd/5Xf/eR3mSnO8GXjS9r9Nr7rU/B14ptAMFue5fT0ab0uC2efSCg8jJEsHqcx75x4B6kk6811hBA4lkPRL+K7PuVcmenCNEII/AlfT2rV3mRpcon11vrXSqA7LJ2wmqtS9It0gs44eXaUxvi0BEaD4evOkRyVfv3Xf/2+y//kT/7kKF7GYDC8sMRHXC9Bi2ezwMfoBLfRYEhnuJzh81vAW+h0tIT7HxYVWv45jxbQ9nIJeB+drHUWuN8Nzdnh8uNAa9iWg5beRowS4zLDcmLPOtxNc/g46tMovW4v3vB5uadck2dDdNdj8ZByRbRsdXd5w/OLSRc0GAwGg8FgeN5Ralc6S1OJEPo5KRW9Xozj2HiehVLgODa+b2MNZ2mNopTp6Rzf+taxcXuua7G8XKXRGNBshmxu9lhaKrO+3qHfjw+V2QDW1prj1LfLl7epVHxWV+cAuH69wexsnlu3BFGkKBYznDpVJU0VaSqxbQvbFmxu9ul0Il5/PcvUVJY//MPrTExkuXp1h40NnbJdrfoUixkqFZ8vvmjQaOjJV2Zm8lgWHD9exLatp5r6dj+xD9iXgDcYJHz6aX28LQwGg8FgMBgMLy4yTUBYyCRBCBultHzFIQN1DKBSSRIGdHdq9LZrpFFIGsd6WwL6Xg8wFORGm1MME7aF7SBlilJSL5OSqN/FL1axHJtsaQLLsilOHyMKetiOh+vnUErR2bzJoNMkjSPamzcZNHdQSiLTBJmmjEU9N4NME1QqyeQK2I6j27UdKsdeYefmFfqNOgDba5dp3LpCHPSJ+t19EtvW9U+pHH+FY2/8xJFKbDJNxmlraRLpvtrqpRfELNthYkEP6KoeXyaJAmrNOsKymDzxGtnSxLjsoL3D9tol+o06penjADTXb4zrGwwGg8FgMBiOjjB59PS5J6n3IiKE4NzKOSrZCudvnmdpcomlyaV9ZUYpTWcXzz7SPZIkTTh/8zwAVzevstHeoB/3yXk5ojjCdVwAIhlR79aZKc7w0e2PKGaK5NwcG+0N4jQmlSm+6wM6MacTdnSaUxqRjM/3hsEdw9Mmhf7ZFjapMpPRGAxPmyRNKPklFGqcEul7PkW/SMkvcbtxmyRNsCyLVKYIIXBtF8d2SNJES28SpJJaOHNcXMvFd30UikE0wBEOsYrHkmyqUmIZj6U2pRSNfgPXdrGERdEvUvSLZL0sYRpyduEsv/LtX7lH0vJsPX7WczxyXo5ytowlLKIkIlGJTrxDHCjkCnSi2igdzxLWeJklLBKZYAmLrJel5JeI0oiCV2BpYokojcbJZkopLty8oBM60/1jYS/VLvH+tfdZXVy95zh89zE8iAMm8hPs9HbIZ/Jk3azeN9kScTamHbZpBS0G0UCLzfWr2JZNyS+xMrdC1styeuY0v/zOL/P9y9/nDz77A0p+iSRN8F2f5ellZku7Y5Pvl2L2rRPfoht2uVy7zOvzrxPEAZvtTaIkwnM8Zkoz42P74wjaj8JINLx45yKvTL2ikxHbNQqZAhP5CUp+afy+mC3N4tkeNxs3iRK9L+7eJ887B6UT1lo1Gv3GWJx7VgKjwfB155kIdOfOnTuKlzEYDC8sRy3QXR8uWwQ+R4tj80BhT5kuOunMRUs9EfeXehTwHnBl+PsAnag2SqAbyW8foMW0cxwu0f0V4A+BCaCMlv1CdpPxkuHvPjqdbnLYz79ySHt59A1iOXx00GKeN6wXsyvpqT3l8oe0d9R4dz12DinXuavc3RKg4fnDpAsaDAaDwWAwPO9ogY7xoEwpFbYtiOOUdjvCcQSe5+B5FpZlISWUyxksS5CmktXVOaamcjiORbmcYWoqh21bpKmi2QyJIn2DcjCI+eKLJsCBMlunE9JoBOPnV1YmuXBhgzNnZnAci/X1DkLoWfts26JY9CiX/XvWZzBIyGRsSiWP7e0BrVZINutSq+l233xzmqmp3Lj8sWNFPv20TrcbMTGRxbIExaLHu+8usLxcxXGse17jSUkSyfnzG4+9LQwGg8FgMBgMLyZKKdI4QsmUOOhjuy5JFGDkufujVIpUKb3tGkGniVJaAmOcOAcoqR+FAMRYppMyxXEc9PARQTzoEdNDAc5ODdv1qcyfoLpwirDbJux1KM4fR6H3Vb9ZJ+q3SeOYoL1DHAZYjoOwbOxheqBMU9IkwrJsbMdFpglBr4NfrAz7r8gUygxaO9z+5AOUkiiZooA0CrEcF8fzsWybNI7YuXmVJApZWv1rRyaxNddvkMYRSRSMxUMjiO3S29ETBPabW8P9Vdm3bQCypQkyhTJht0WvuUVpZoHeTu2l2D4Gg8FgMBgMz5pEJQ8udIT1XlSEEKwurXLm+JlHSj56ENfr14nSiEE0oNbW36UXJxaJkoh6p06itJARxAHtQZtKtkK9U0coQT/qE8QBWTeL53u4lkvBL/Dlzpf0wz4CQZRGKKXwHE9LcnvucYGW6A5LizIYDEeLQo3FOKkkWTeLbdlUshUEgtagRSITwjhEIrEsncoG+hjkCAfH0il2CoWFhRBCy2IKXNslTrXIZls2vuvrhLg0wbGccR/iNB5La1EaESQBjuXw59f+nLnS3Djxbi/z5Xku1S4xXZym6BdxbZep4tT4GKOkIlUpArHvmGKh75kLIdgTnqdFOwFS6kcbe5yc57s+WS/LZnuTE1MnWG+t8+rsq7x36T2ubOrxxoNoQL1T3yeaAXxw4wOagybnVs7dI9GNjuH//gf/np3eDv2wT5zGzBZmOVY9Nk6JE11Be9AmVSn9qI9EUvJLlHPlfSKV7/n8zBs/M/57kPO01Hxp4xKb7c2HSjG7W+4DjkzQfhjuTvNzLb1fd3o7ZJyMFgy97Dhlb2+63ie39eRSo1S9kWT5deLudMKliaWvTGA0GL7OGK3UYDA8Bzzul6TD6o2kni20uHMSmENLZaOUuTKwMXyuzoOlngtoeU4CV9FpWntPxtfQCXGngctABZ1GdxArwPKw3DHgNloe67KbEqfQiWzHh/195T59yw/Xs4YW5kBvm4jdFLfRtnLR8lyVZyfQzaMT+qbR26mB3jd3p5Q1hv2c2VPP8Hxj0gUNBoPBYDAYnmf2Xo/WNyP0o20LPeg0lSglkDImigRTU1mEcJiezpPLuViWYGoqx5tvTu9rN00lX37ZYn29Q7MZsLbWpFTKUCxmyOVc1te7CHGvzLa11efixTq1WpelpTKgk+dWVibHIh5owe9b3zpGoeDSaoUkiRwLfMePl7h9u00cS8JQL6vXeyilBbW9rwcwNZVjYsJHCCiVMiwtlVlcLLOyMvlUtvlonaIoZTBIDhX77rctDAaDwWAwGAwvHkopbl74U9IkQggLBESDHvtiig2HIhQEnaZOTksSnSYHWpwbb0PF7r0Q/bMQApmm2I6DlJIoGCCUIolCLNsei2u26yHTmNmVs6RxSL9RJ+h16DXqhL0O8aBLEoXYrodlu1iOg+fnkTJl0G6QxgFSKZxMVp9rRcE45S7stfGyBepfXCTst3E8n0FrG2HZZPJFbMdFyZRUSWzHJU0iOpu3aK1/QeXY8pFIbHsFMQBh2UYQ20Ma6wk700Q/etmD75952QJhtzUuN6pnMBgMBoPBYDhaHleOMlLVwTi2w8rcCitzRzPR9XpLj8urd+ooFNV8lYyTYaO1MZZYLGGR83L0oz61dg2ppE5IGrQAmCnNcLxyHMuytHSXajEmTvekUMl0nDh3NwclRhkMhqNDILCFjWVZ48TIIA6IkxjbsrU4lyYMYp14Zlu2Tpkbymee7SGEFmLTNCUi0vMdCYtcJgcKJBJb2ONjd87LUfALZO0svbhHN+yO+zM6FigUUkkG0YD11joZJ8PFOxf548//mJ9+/af3yVrL08u8f+198LRM1+g32O5uM5nX92KTNCFIAn0PXWmJTiDwPV+nzKUJnuMRy5gkTfRyJbQoiIWyFBk3QyITPDxubN9gEA8IkgDXdsln8lzZvKIT4TavUmvX9v2dWtteY7Y0y+mZ03y2/hmtfotKrrJPdH5l6hU+vfMpV+tXtfCWyTFIBnSiDt2wy3ZvG9uymSnOMJGb4Gr9Kiio5CosVhdZmFjAsqx9ItVRpJjdLWjfatxibXuNdtCmlC2xUF0g5+VIZXpk6Wf3S/NTUm/XY+Vj478jWTfL0sQSU8UpbMu+b6re14mvWmA0GF4UjEBnMOzh7/293/yqu/CSkkentj1OvYO4W9Ipo+W22bvKDdAC3YOkngQ4P/z5Klq066JFNG9YL2V3yokVtHB3hoMPsw7w/wD+38AOWppz9rTDsF0LLbzNDssfdsh+HfgQLeO19tQfJc6J4TqMOI4W6F4/pL2D+Xt/7+89UvldloH3hz/PosXFi8M+FNHyYGPPch/IDOsZnm9MuiA8yWfDYHjxMZ8Pg+Hl4DfNadRzzSiBznEshADPc3AcC9e1SBJJGKaMBpb6vsvSUpnt7QHLy1Xa7YBGI2Brq8/UVA6lFLdutbl4sc6lS9sMBvEw1c3CcbSUN0quO3mywuRkFoA0VWxt9Wi1QjqdkMEg4bPP6rz99hzr6x1WVibxPHtY9h2+/LJJtRpx6lSV2dnCvvXZ3NQDPz3PptuNcBxrLN8Vi5kDt0GxmKHRCMbldmW9p8P6uv7++yCxr1r1aTQCNjd7LC2Vx9vCcHSY7yKGo8S8nwxHiXk/GY4S8376elC//gmN29f575ZyXPuz36M56KHkaDI9w4NIwgFYFpZtDwdK7tluYvx/QxRIPSTJchxkmiAsCxUOUGmMQmAJkCiUlLRqN9m5eZXC9DGSKCRNYrxsfijYZQh7IFM5dh2FbSHjCJEvYduWlu+SaJwwaLsZZBIjU33eodKEMBwwaO0ghEXQaZKmMZ6XxS9UsL0MaRQShwPSJCZNYmzHY/vLK5TmThyJxLZXEDvjbVEcJszdzcsqiNmunpzSdvRjNOgdWC4adPeVG9UzPDrmb5fhq8a8Bw3PA+Z9aDA8Or9ZMzekngdG4kKU6MdipkjWy7LR2qDoF3VKUtTHd3QCTj/qY1kWO90dwiQk42SYK80hhKCYKZLKlJyXY4cdEpnoZCgUKlX3pM+9rJj3vuFZMkqJG6WwKaET4Cxh0Yk6OJZDxs2QqpQkTcayq0InukkpsV0bx3LoR32UUljCIpUpYRqiBgrf8QmSgETqMa2O5eC7PkoqLNciTEJSmfKbtd8cS2cjeQ4JCQn9qM9mZ5N6p877195nMj/J6tLqeD3uFsUUio9ufUQ7aDNdnCbn5tjp7zCIB2Np17IsfNfHtVx816ferRNHMZZl6aHBgnGCnlSSdtDGsRw6QYeSX2Kru8Vn658hleQHV37AfGWeftin1tH3t6v5KsVMkU7YodFrsN5aZ7Ozqbc1gndfeXcsIn++8Tn/9k//LZ7jkfNyOoUvTegGXXphj4JXYKowRaPfYKuzhe/52JZN0S+yWF3EsR2mC9O8e/Lde0Sqo0oxsy2bftTny50viWVM1ssSpzHX6te4Vr/G+9feZ3Vx9YlFLqXUfdP8JguTWMIiSAImchM4tsMgHrDZ2WQQDx6Yqvc8cr9zhaeVMGswvEx8ZZ+QKIr44IMP+PGPf8yVK1dotVp0u13y+TzVapUTJ07w7W9/m29961tkMgcPgDIYDC8Ks+gUtsepdxBHLfVcR8ttA+BztPQ2A4wGQDpooe4LtMC2uKfeYbP3nAX+ZNheefjabbRAZw+f89E3fReG5Q/jHPA94MSwbzV0oltm2EYAhOymuy0B2WG9Z4GDTuP7AJ3Qx7CPDXbFOcFugh/o9TVf4p5/TLqgwWAwGAwGw7NgNzlO/x7H994svPuas64DILBtPdsfKEqlDJYlkFIRx3J4sVoRx4r19Q6+7+D7DrOzOXI5l42NLhcv1qlUtIR2+3abWq1Pvx9j24JOJyJNJbmcS5oqkkS32WwGXL68TTbrcutWmyTRE45EUUqrFXL9eoPBIEEI+Ot//QTz80UuXdpmejrP2lpzn7g3YmurT6MRIATMzOQJgoRyOTOUAKHTCQ/cfqPnR5Le6PFpcbeo97yIfQaDwWAwGAyGrwaZJmxe+wSA5u3r9BubSJkihLWbpGZ4AAqUGs8ovS+5TwHDwUtq3zKBTPRALJmmqDQcTjAiSIfbXSYJlm0jLIfe1jphp0GuMo09cxwn4+NmC7iDHkk40Ol3w7aVgiQM8HJFPcjJtlFJrJPk4hDHy2ANT+DisE+vUQcpsTIZkjjAEjb5iWkKU7vXyqNBj95ODZkkCMsmTSIGrZ0jkdiMIHZ/8hOz7Ny8Sq4yRWfzFmG3yaC9sy+lb9DeIey2EEKQr0yN6xkMBoPBYDAYDC8bnq3H13mOfuyEHRYnFrlmXwOglC3RGrTYaG8AYAtbizNJiBCCcq6MYzvYlk037GqxJk33zYsyTmlSJlnQYHhWiOGEqwKBbdkIIcafd6kkQRyQyhTf9UllSjScTCiRiRbKpEShfw+SAN/xqeaq9MIetmUTxiEKLeONykolsYRFxsmQypSJ3ATNQZMwCXUapRD7JNqx2Dc8YHTCDpdql3h9/nUu3LrAmeNn9olDe0Wx1+ZeY2liiY9vf8ydxh2mClOcyZzhxs4Nnag5FP1yXg6Foht0kVIilcS1XEIV6r4Ixsl5o76FSUhr0ML3fG41brE4sUiQBFyuXWant8NMcYZvHP8GU4XdMZX1Tp0/+fxP6IZdTk6eHAt+xUwRz/GI0og7zTsoFGEScrtxG6l0f4Io4NM7n1LOlpktzRIkAUEcUPbLlHNlFqoLTBen+fs/8/fxPf/efX0EKWYPktpGKW8f3PiA5qDJuZVzjy3RXbh54YFpfvq6oBr/fVFKPVKq3teRo06YNRheJp75p//GjRv883/+z/ne975Hs9l8YPlCocDf/tt/m1/91V/l1VdfffodNBgMXwGHJck9br2jlnrW0XdgPwTqaHEug5bVRsJbafhcfVjurw3rHfbl5KNh/1eBvwR6aIlulBiXotPZVoev99Hw54PwgZ8D/jNaPLuMFtSSYbsCLczN7unPzw7rPSvOolMGLw/7sARsosVED70PRv1Z4f7CoOH5waQLGgwGg8FgMDwLhADb1heUHcdCygQp9fM68U3hONa4bJoqds8t9MV7y4JMxtE3MhJdPo4lQZCM6yllj4W4995b4+23Z4njlCBIxvJarxfRbA5GPaPdDslkbLrdeE87UK+7fPRRDc+zqVazxLGk0wmp1XpEUUq5nCFJJFev7vD976/xne8s8v77eoDp7GxhLO5Vqz7FYoZOJ6TRCMbLfd9hejpHqeQTRelDS3cA8/PFp7q/7hb1nhexz2AwGAwGg8Hw1dBcv0EaR8RBn+adG8g01QN9Hn/i5ZcUBXenz42eH57/CCFA2IxOmMbCWxIPB1cNBzcNm5AKpEyxrBSZJiRhgF+o4ng+vUadsNtGCAvLdhFWOEwN1CSRFuiU1O2J4eCcJBxgOQ5pktDZWsfLFUjCADebI4lCLGHj+lmE2P/938vmCTNZgm4LAMuyCXvtI5HYjCB2fyrzJ7lz8UMActVpejubbK9dIlMo42ULRIMu4XC/5KrT2J6P7WaozJ/8CnttMBgMBoPBYDB8NcyX57lUu8R0cZq17TUaPS0oLFYX+WLrC6aL0wyiAfEw2Vo4QifjOB6O7eA7Pp2gAwItqChJkATEqS5vhDmD4atBMby+IXYFOtuySVU6Toa0hEU37I5lM0tY4/Q2iUQgiJIIgZbv5kpzbLQ36Ed9cpkcAkEn6IwlvVHqm5SSjJPRol0SEifxONluhGu72JaNa7kkMhnLZO2gzZ3mHV6ff53r9ev7ZKJ7RDEP3n3lXdITKVvdLVqDFgW/QJiEFDIFrm5e5cudL0lliud4FDKF8fqP2rOEBUIn9VnCIkoiUqknSR1EA2Ir5uNbH1PwCzjCoR20mSxM7pPnAPphn07YoT1oc+HWBQSCaq7KiakTANzYukEhU0AqSSfs4Nn6GDqRm2CjvUGr39KyYRpS9IvYwuZbJ7/FqzOvYlkW755890B5bu+2eZIUs4eR2mZLs5yeOc3l2mUq2cq+hMCHIUkTLm9c5rc+/C2COGC9tU4QBRT8AhOFiX1pfkopkjQZv0/eXnib7e72I6fqGQyGl4NnKtD9i3/xL/in//SfEgTBPVb43YyWdzodfvM3f5N/82/+Df/kn/wTfu3Xfm04a7rBYHhxKAEWOuf4YbGG9Q7ibqnnDvDn6ENeBp3GlgAF4BgPlnoi4BZajgPoo8W8vSfsO3t+rw/LH9ZeApxH3x0Pgcnh6x/Uv1Fy3AXgDIcftn8JLez9JfA6Oo1uA4gBF5hDS3QA7wzLP0sEOvGugl530BLdXjJoce4sjzZyIEGn/a2zK+TNo7f/13uWiOcfky5oMBgMBoPB8CzQKQlqfD3EsvRAUNe1cF17LNBZlpbngkALdqNzFCmVnjFQCHq9CKUgDFPiWO67PpMkkmvXGpTLHuVyhmzWZWIii1KwttbC9236/ZhMxiEMU6SUFIsZikWPfj+m04kARZoq1taaJEmRbNYjCFK2tnp0uxG9XjxOx5NS8eqrE1y+vE2l4rO6OscHH9zm9Gk9iLNW69JoBGNxTggtz42W/8zPLPPJJ5vYtnho6S6TsVlerj7V/fU4aXqjeob7kySS69cbrK93iKIUz7OZny+yvFwdS6QGg8FgMBgMzxu9nRoAO7evEYcDnVamFCo1CcSPhFIoddA2G4pzlkAIe3jeJEiTCJQ+FxqOAUNYYigvWli2RZokqDTVA7ZsBxB0t9fJlqs4XhaZxiglsRxHz6aeJsg0xXIcUIqgs0MSD5BprOsLEJaFbbtE/Q7Csshk57BdD8fzaa5/gZcvIoRFEvaJgx6uv2eySCWRSYxtO3i5AipNjkRiex4FMZkmNNdv0NupkcYxtuuSn5ilMn9yuC+eHZbtMHPqDOuf/4jqMX1vr9+oE3Zb4+0ihCBXnR4vnzn1jWfeT4PBYDAYDAaD4XlgeXqZ96+9Dx7MlmbZaG9w8c5FKtkKSinutO4QpREThQkcy8GxtECyPL3Mtfo1bjVukcqUrJelG3bphT3COCRO4333rIxIZzA8e0afO4XCsz0UCtdyiZIIe3g9K0kSfZ/advWwQAFKqnEqnFSSKImI05gwCZkrzTGIB/SjPlJJvLw3FuDCOCRVKUW/SDVbZbOzST/sEybhvmOALWx9bUfp++VJnOgEu1QiLcnNnZsArLfWWZlbIUmTe6Swd195FxTUu3WiNOLN+TeZL8+zNLHEb334W0RpRD/qc6t5iziN6fQ7us9SkqrdybCE0MKgJSySJMG2bGzb1oKb5TCRnyBIAtKBvpduWRbdoEuURDT6DZr9Jnead/jkzicEUUAn6GBZOoXPjVzagzYKRSpTdno79OM+Rb/ITHGGpckl6p06k4VJmv0mN7ZvoJSinC0zkZugkq1gWdYjCWKPk2KWpMk4ue7q5tVx4mg1X90ntW20N0BoYe2ghMDDUEpx4eYFzt88z83GTW419D5Z215DoVi0F6lkKyxUFxBCsNXd4uKdi7i2y7HyMTY7m3TD7iOn6hkMhpeHZ3ZV9x/8g3/Av/7X/3qfiT2e9U8d/mV3dJCKooh//I//MX/xF3/Bf/gP/wHHMRekDYYXhwqPPtWqGNY7iJHU8xfsJsU12S+8CbRs9crw+ftJPTZwc/jYQafDVdDJcD4QoKW65rDMJFqgOyw94PrwtQdo2cgCvs29CXkXh8uX9tQ77IuqBfwq8D3gD4bPvXJXmSw6ee6XhuWfNQK9X85wNMKbQouF54ft7OUSWqJc5dGFPMOjYdIFDQaDwWAwGJ4FcaywLInjWHp2O0vgujbFoofn2SjFUE6T2LaFUnKcBgeQppJOJyVN1VC0k+wJT2D30oyk3Y5IEkUu18ayBFIqMhmHbjdiMEjwPAvPsyiVspw6NUGh4NFuh3zyySZxnBJFKf1+zOZmHyl7w+s+Ou3Bti1sW9DtxgwGTebmCszNFbhwYYP/6X96i2Yz4PLlbVZWJllaKrO52RuLUjMzeXxfnzOsrEzyrW/N4zjWI0l3Z8/OPXXRanm5yvvv6xs1z5PY93VGKcWFCzXOn98givYPmr50aZv337/J6uocZ8/OmhseBoPBYDAYnjvSWM+iH3ZbyCQiiQItgumvyIYnRQiEZeH6ORwvi2U7eltbAstykVKOxTuBjbAshGUDCst2SKVOtdODsARJHNBvbpGrTOFksgxa27iZLFG/g0oUSdDHdjOgFHE4QEmJEBZCWNiOi1+aoDS7CCiK08eZeeVNWpu36e1skMmXUFIiE31Po7tdw8lkcbwMSRTS3dkEwM0VsGwXJ5M9EonteRLElFLUr3/C5rVPSOP993Z2bl7lzsUPmTl1hunlM8/0u/308hmCbovGrWtUj5+iNH2cXnOLNImxHZd8ZQp7OHN7deEU08tnnlnfDAaDwWAwGAyG5wnHdlhdXOWDGx9weuY0CKi1ajQHTQCybpYwDinny0wXplEoOkGHXthDSUUukyNIAjbbmyQyoR/1CeJgnHD1qAiETsbCQj7S5P0Gg+EglFIoqUjTlFwmh2u5SCVJZIItbAQCy7LG5+wW1j4fQAiBGE4GG6URr8+/jmu7pDIlSiJagxZb3S3CJKRYKRKlERknQ2vQojVoEaUR6QETKEklcYRDlETj44VUkjAJaQ1aKKUIk5DzX57n/M3zROn+aw6XapfwbI/VxdV7BKrVxVX+7PqfIYSgmCmO+5HIBEtY2NhgaZFPCH3MGa2za7v4jo9lW0zkJ3ht7jW2u9vs9HcI4oCMk6HWrvFHn/8ReS9PrV3TglfQHUvEnu2R9/JM5iep5CrU2jVcx6XX6xFEAVP5KbJelmq2SiFT4GbjJpVchelomn7U17Ky7dCP+rx78t2nLohdr18nSiMG0YBaW08c9uaxN/el7I2ktlqrxtLE0rjeg0Q9pRTvXXqPK5tXANhsb7LT26HRa9ANu0zkJvA9ny+2vqAf9VmZXWGqMEU1V6XRb+A5Hj+5/JMUM0UWJxYfKVXPYDC8PDyTI8Fv//Zv86/+1b8az3Y++kP5zjvv8N3vfpeVlRVmZ2fJ5/NEUUSn0+HatWv8+Mc/5nd/93fpdrvjer/zO7/Dr/zKr/Bbv/Vbz6LrBoPhmdBGH44eZbZVZ1jvMN4G/gSdFDeBTre7w24i27Hh82vA9LD8YcTolLORLKeAMloMGrE5/CfQolo8/HcQ68PH+rCtPPA5WtIbSUeLw+d7w3aXhvXu9wXSAn4Z+AXg+8M2B8P+vI5OgDs8lvnZ4aDX4+FnrbgXBbwHXBn+PkBvz73SFuhktCZ63c0gyqfD00wXNBgMBoPBYDDsRUpFkmhBznH0DQjbFrz99iydTsSXX7bY2RmME95s2yJNJUpBFCUkycHt7r1+LqUijlOCQLCx0WVxsUyrFZCmkiTR52yuazE5mSeXcygUPABKpQwTE1m2twdDSc+i242QUktzxaKHUjopz/N0al6SSH70I31+9N/9dwt88UWTc+dOUKn4nD+vZ6pbWirv62smY3P27K4odfbs7CNJd2fPPnl6w4NwHOuR0/Sehdj3dUUpxXvv3eDKlR0ABoOEen3/Pgb44IPbNJsB586dMBKdwWAwGAyG5wrbdQE9qC+JAtIkRkljzh0ZSiKlQEqJly+TyRfAsrAGXdI4REYhAJZt4Xj+cCBYihwmAApLoFKpxTZApJKw38XNZMnki8SDHjJNsF0PJVOUgjSOsB13mEyn5T3LtnG8LKWZBfxiRctox09pMa08iZvxKUzOc+uTP8dyPGzHRaYJSTjQ/+IQlcY4GZ/yzAIAx9741pFJbM+DIKaU4uaFP6Vx+zoASaRlxb19AFj//EcE3RaLb3/nmX23F0Kw+PZ38AtlNq99AkBpuB9G2G6GmVPfeOZyn8FgMBgMBoPB8LgEUcD3L3+fzzc+ZxAPyLpZXp97nXMr5/C9xx9DdnbxLM1Bk8u1y6zMrrA0scRme5MgCij5JV6ZeoVu2CWIA05OnsS1XD6+/TFvLbzF1c2rbHe3GcQDojQiSrSE8SSJcyOJzmAwPDkSOU6JrOaqICCWMSrRqWi2ZY8lpDiNkUgcy0EqXQ/0Z3L0ueyGXWaKM7wy9QoL1QU+uf0JjX4D3/UJ4oAwDrnVvEU37AIHB/KkKsXCIk7jcR9BS3WWsEhkwqWNS/TDPjf8GwAMogH1Tp0oifAcj5mSHk/6wY0PaA6anFs5Nz63P7t4lo9vf0wqU6YL09Q7dXD1ekgktrCJkohUpkglUUqN19GxHCzLopgpMl2YBmC+PE8QB6RpynZvG4CMm6Hv9VlvrdMNurQGLYI40NvNSumEHba6Wzi2Q6pS4jQmkTppL5H6Jn87aLMyt8KxyjG2ulugYL29Ttkv89rca/zEyZ9gdWn1qN8S97De0vf36506CkU1X90nzwH7pLbN9iZLk0vjhMD7ceHmBa5sXkFKydXNq3y2/hmdsEMn6DCIBgD4rs90cZpau0bOy7E4sUjRL9LoN3RaomUzW57l3GvnHnndDkovNPKdwfDi8Uw+zf/wH/7D8c9KKX7u536Of/kv/yVvvvnmA+sOBgN+4zd+g3/2z/4ZYRiilOJ73/sev/iLv8gv/uIvPs1uGwyGZ4YPjzwDjOT+MthHaHHMB/4cLVGlaPFKDH+voJPf/GH51UPacob/ArQIJIEWWpDbm0DnoSW2AVDi8EPsaHaLAfAJsH1A2RtoaW8SmL2r3oPwgZ8f/ntRuYCW5yQ6+ewaenum6OS/LHAKLeldRu/r1a+gny8LR50uaDAYDAaDwWDYy+g+gRBacBNCksm4Q3lNsL7eZTBISBI1XK5n/ktTOayv9qXN3a99pXZ/j6KUwSDC991h2+D7znC5GotpI6amcvR6MUEQj9saSWEjMa/bjccinetagOL8+Q3a7RDPc3j11QlWV+c4c2aG69cbrK93xqLU/HyR5eXqPtFMCPHI0t2z4HkR+5JEPtR2fJ65cKHGlSs7SKm4enWHWq3L3ntna2vNsYx4+fI2lYrP6urcV9dhg8FgMBgMhrvIT8yyc/MqfrFCGkd68E2awAEDggyPiVKoNCEOOiRhHwQ4nq+3t7AQtoWwbYTtYCGIowApU1Bqd8q34cmQTGP6jTpJFFCaWURYNsmgg+NlyeTLCCGIBl1sx8P2PJxMDsuy8XJFpk6+Tq46Ta48SXF6AcfzyE/MUppZ4PP3/r+kcUR78xbt2k0tjbkuKpXEcYBKU/xiFb9YwXJcitPHeOXdnzuyTfQ8CGL1659oeU4pGneu02/U9w2M62zeGqfgNW5dwy+UmTn11pH34zCEEMyceoupk2/QXL9Bb6dGGuv9lJ+YpTJ/8qmk8n2dkGnyxNvmKNowGAwGg8FgMNwfKSXf+8vv8QcX/4AgCfYt+/DGh3zvL7/Hz735c/zSO7+EZT36vQIhBOdWzlHJVjh/87yWSYRgs7tJa9BiEGvJYa40R9bNsrazRilXYqO5gWVZTBQmCOKArc4WkXjY8XAHo1BGoDMYjhCBwHVcpgpT2JZNzsuhpKIdtOkEHS1zCX3/OZUpAoFt2TqlDbCEPqbEMsa1XTJOhndOvIPruGx1t2j0GwgEbx1/i7XtNRr9BtVslZpdw3M8ojRCqHs/0xKJlBKxZ/L+RCbYyqacK3OpdokgDnh74W2ubl6l1q7ta2Nte43Z0iynZ05zuXaZSrYyls2EECxWF3ll6hUa/Qa2ZVP0iziWQ2PQIFEJUkocWyfgSSVBMU5+y3pZqvkqpWwJgKXJJTY7m2z1tsbHxy+3vyROY4QQdIKObmco52XsjL5eKCWtQWssKqYyRaEI4mC8voAWxEqzbLY3QcDJyZPMlmbJutmn86a4i1G6X5Tox2KmeGC5vVLb3nqHkaQJ52+eB+Dq5lU22ht6YiovhyMcUqnFwlbQAgEzxRluNW5xrHKMTtABwHP05L+e7T3SOimluHDzwqHphe9fe//A9EKDwfD15KlfgfyLv/gL1tbWxgeMX/iFX+A//sf/+NAHkGw2y6/92q/x7W9/m7/xN/7GWKL79V//dSPQGQwvDC488kmsGtY7iAT4MVqc+gQtt8nhP7HnsT9cXkJLZ2c4+LAo0Ylw68Oy7Knf3/N7ZfhzCixwuBToDcv8CXALLXwpdNrcSADLowW9W+iktdPDel8FCc+XFJWgk84U8D5wFb3dcuwKjS10It0W8B20cHfY/jUcHUeRLmgwGAwGg8FguB+WJbAsQbXqk826OI5FHKdYlqDbjVBKl7FtgVKCNJWkqSCO7z9pyd2XaUYJdlEkef31CT76aJMkSZFSy3BBkBAE+yPtwjChWPTo9UK6XYllWUipsCxBr6fFOd03LfdFUUqvFwOCer3HRx/V+P731zh37gSOY7GyMsnKyuQDt4kQ4pGku2fBVy32KaW4cKHG+fMbRNH+tPdLl7Z5//2brK4+W6nwcUgSOd5+V6/usLGhZ5+sVn2KxQydTkijEYyfX1mZ5MKFDc6cmfnaCIIGg8FgMBhefCrzJ7lz8UOE7eBkskT9DqhHnVTQcF+UJE1T0jgCBI7noZREyRTL9VBpolPm0gRl2Si5KzCq8b5Q+pwFCyEEcb9Lu7ZGcXqBXGUGy3F0Wakoz58gky8RDfrIJCJXneb4N36Shbf+KtVjrxwoAc2cOsP65z9i6exPceezD2ncuU4a65nTbdvFdjwyuQL5yTlK08d59af+B2znsPtgj8fjCmJHJU2NxL3Gnev0djYByBQqeNk80aBH2G2On68eP8XmtU+ZOvnGM5OqDlrP0uyCEbvQ55j165+wee2T4edsl52bV7lz8UNmTp25r3x5FG0YDAaDwWAwGB6MlJL//Q//d3705Y8A6Ed9au0acRLjOi5zJT0B3X/+6D+z3lrnV3/mVx9boltdWuUbx77B//kX/ydr22tstDd0IpWUeI7HVneLre4WzX6TQqZAO2gjhGChukAQBex0d8jYGQIRPHDo4EiaGQkxo9+NPGcwHC1CCKTSslo5W6aaqzJXmuPTO58yiAY6FU0qJDr9LeNkKPiFcTrYSPyK05h6u04QBQRxwImJE3RCLTnNlmfJelkq2Qq+69PoN8i4GTzbw8ICoVPn4N7P+N2fd6UUg2hAs99kqjDF5Y3LbHaH1xbyVYqZIp2wQ6PXYKO9AQJWZle4cOsCZ46f2U3TkzGLE4sMwgHdoEuto9PN+nGfNE2JVEQik3H6nSUsFIp+1Ge6OE05W8axHVzbZbY0q+uGfQqZAp2wwyAe6OtOwhpLda5wsYRFSsp8cR7XdlFKadFueIxL0oQojeiG3fHxG9gnI47S9ebL84+8v++XuAYcuGwkSY5ktdF+vZtHldqu168TpTqVtNauAfDW8bfY7GwSpzGpSsephW3aTOQmALhSu/JE20IpxXuX3uPK5hXg0dILDQbD15OnfqX3008/BRgOkrL4jd/4jcc6cHz3u9/lH/2jf8Sv//qvA/D555/z8ccf89Zbz27WOYPB8LTYREtjyYMK7sEe1juI6+hEsh8DNbRQZd9VZpQUVxuWyw3rHST+eGgh7gY6uS6HToVrsyu8lYZt9YGZYfnDvvDNA7+BTp5TaNkrvatMl12Rbhv4A+BnDmnvaaHQ4tl57k2/u4SW11aBs8Cz/EJ4HQiBj9GSpAKm0cJiik6fK6DfH5eBMrvJaEbsMhgMBoPBYDB8/RiluQkB+byLZQnCMGVursjkZJbt7QFCgGXpMvqfwHEEQgiEkAzHZR7K3eEXcZzi+w5bWz3SdJIgiFEK+v0Ix7HY3u4ThilxLJmY0LPZ9fsJcZziODaeZ5PN2jQaIWmq++04FmGYkqYKpbQcpRQ0GgFSKl57LXiiBLFHke6eBV+V2KeU4r33bnDlyg4Ag0FCvb4//Q7ggw9u02wGnDt34rm9yH/9emOYhJhQq2lJ7s03p5mayo3LbG31uXixTq3WHUuK1683npv3gcFgMBgMBoNlO8ycOkP9+qc4mSxSjib5MwP8jhKVJsSDHiBIowCEQKbp7hBLmRCHw3sxSh0iMSqkSrGwtDAlJSqNOf7WX2Vy6TV6jToyicgUKghLkKtOM3f6LNWFUw8UrKaXzxB0WzRuXeP4N36SmVNvs3P7KmG3hUCQLU+QLU+RK08ysfTqU01es2yHiYXTTCycvm+5u4UnJSX91jZRv41MUxwvw/wb77D87s89UPZrrt8gjSOSKKDfqAMweeI1sqWJcZlBe4fttUv0G3VK08fH9R7UzyfFiF33RynFzQt/qtMDQe/D5pZOUXRc8pUpANY//xFBt8Xi29+5ZzsdRRsGg8FgMBgMhofje3/5PX705Y+QSnJ54zI7vZ19wsl6c52J/AQrcyv85dpf8r2//B6//O4vP/brfXLnEz66/dFYdukG3bEoIoQgSROEELQHbVKV8o1j32C+PM8ff/7HpColTMKH/u43ElZAf8e0LT0eUAiBUgop5VhuMRgMj4dAf57KuTK/8u1f4fzN83SCDlOFKfpRfyyRWcrCtV1ymRxBEhCn+mZ0kibjtPkgCUj6CT/+8sdcrl1mvjzPu6+8y+np00RJxFZvC8/22OntjGUl3/VRaIksSqJDBdlR8p3n6PoZJ8MgGnCtd41itsj/n70/i5EkS8wz0e/Y6ruHx+YRmZGRmZFZUVt2R7LXGbag7BHJ4Wg0ggToCjMPAgjpvlAEAUFPo0eCAKEHgsA8XPHpEoIAPjSuoJmLqxlgRLXIEkWVxOpmdWZ3VVblFrlHhIdHhO/utp/7cMwtlozINXKrOl9VwMPNzzl2zNzD0s3sfOf/4MQHTJems/Jb/S2url2l0WmwOLkIKGFreU6NJx3LXTknR9Etkh/ls0S87qiLjU2URCopTiZZCl8iE2zDZqY8A8BCbYHWsIUXejiWg23ZmIFJ2S1jmVZ2TJRIbMOmM+qk1wrBNm2Q4FouXa+rEvYMk7ydZ72zTskt4VgOPa9Ha9gClIyYs3O4lptJb0/D4xLXvtz4kh/95EcgVft7j9HXGtfY6e8wCAZMl6ZViuCgxVZ/65H9/axS23pnHYBmr4lEUivWeKf+DjtDdc+7kq8gkbSHbUbhKBM4N7ubzFZmn3tfXLl/hRubN0iS5JnTCzUazdvJSxfoNjeV4CKE4J133mFxcfG52/qt3/otfvd3fzf7x+Ly5ctaoNNovhKYPLuAJXhUihtzH/g5KoHMY1egG//EKCFsLK010/L3OVywmkcJY98GdlBC2xa7aXZJ+twDpoHvpK8d9YVvFvgcJfEN2JXTRLosQd04H/evkpafPaK9gxxHYpxEJd/dSJ+PUPtp3N64L5+gpMJLvDqJbh2VzLea9jNA7f+9J0tiT19vodIB19ECnUaj0Wg0Go3mbWN8PdowRCbGFQo2rmsxOZkjihKKRZs7d1qMRlEm2kGC56U3J6NnH5gbx5LhMKTTCbh3r0On49HrBYxGUZaCF4YJ3a7PnTstpBRYlkGhYCEEuK6FbZsYxu75zmAQEsd7ZgiUSqSTUq3r5s0Wv/zLi1+5BLFXLfZdudLgxo0dkkRy8+YOjUZ/nyB5926ber3E+fOTLyQsvgrW19XMhM3mAClV8txeeQ5gerpArZaj1fLY3BywuFhlfb2nBTqNRqPRaDRvFDNLFyjW/gwhBIZpEgsD5MGJ9TQvShyFICVxBOp+CySBjzDU7N4kj9nnholhGEhAxjESsEpVgtEAtziB5eZ55wd/85klqoOpZsIwGHW2cYtV6gckOdN2mT334Rshah0Unlprt9m5d504DDBME6dQwjBtes3/H2tXf8p7P/y7zJ77xpH9HuyomcOH7S2klLiliX3yHEC+MolbquL3OwzaW1RmFxjsNF6qQKfFrifTXP1M7R8paa2tMmw1s8GQAL3NBxRqM9ROLNF6cItcqfqIAHocbWg0Go1Go9FonowXePz7q/8egOsb19kebANQzpUpuSX6fp+e12N7sM2Nxg3enXuXH3/xY/7Oxb9Dzsk98/qiOOLfXvm3NLoNGp0Ga+01vNDDtmws0yKMQ7qjLgglp4RxyC8e/IJROGIUjsjZOfq+mjzvYMLcXsavJTJR59WpSCcQqP/VhJJantO8qYg94yrf9MREU5jYlo1jOURJxC+d+iW+2PiCgT9go7tBLskxCkfEMiaWMQN/gBAik2gdyyGIAvU3mSTExOSsHDlb1bu/c5+8nWezu8kwHKqkul6TRCbkbTVpayITpJRKrIsPBj/sEicxURwRJzGjYMRaZ428nWdxenGfzAUwXZqmVqjRGrbY7G6yOLXIemc9E+hmyjP8+fU/pzVocWfrDhKJF6l0TNuysaQadzsMhviRjyEMTMOkkq/Q9bo83HnIydpJWoMWt7du44Uep2qnGIZDel6PglMg7+Tpe30lCEYhru2qbUgitvvbBLkAy7CIkigTEqdKU9SKNVVPSu7t3APUZ6perXN+Rl0zWVlYydL0nsTjEtds06brdTNBb7O/STVXJYzDLI2tWqjy5caXDIMhs+VZGr0GV9euUivUKOfKzy34jd/rIFKPZbeMaZicqp3i9tbtTFIc+AMG/oDOqEMpV6JslJmrzj3XvojiiMv3LwNwc/OmSink2dILNRrN28dL/+udmJjIfp+cnDy64FMwNTXFO++8w5dffokQgvX19RfsnUajeTOoPEcd8Zh6t1FCVYRKhAMlUjnsF+jC9PVqWv72Ee0todLWJDCFEuiaqJuvVrqeBJV8NgXkADetdxj/BrDTdsapewbjm7mqj2MxL0Kl0dXTev/PI9qE402Mu4KS5xLgJipdb+/J2920T+dRKW8TaduvghFKdoyBHmpbHFQyYA4lMg5R+8BP+/YgrafRaDQajUaj0bz5GAYkya48J4SSsJJEYlkGpZJDoeBw8eI8a2tdPv98k34/xDAESSKJY5XsliQSSJ5LoJMSwjDB8yLW13t0uwGep+S5OE5IEpHJdKZpIAQkiUmhYFOpuBQKNjs7IyzLIAiSVJ5LME2BbZskicQ0DaQE01Ry4M7OiMFATYShE8SejyhKuHxZXdi/eXOHjQ1147lWy1Euu/R6Pq2Wly1fXp56o4XFIIj3PZbL7qHlymWXVst7pLxGo9FoNBrNm4IQgsJUHbdYxTBt9PXq40Zk0d1SJiAFu5MUgkySNJHg6PqGYWDaLhgGSaDusRimheW4lGdO8MGv/D+emDK3l8elmjnFCv6gS746SXlmActxKE7WmZg/80zreJmMhSeZJNy7/J/oNh+q/ZvERIGPlBKnUKI6e5L+1ho3/uL/xB90jxTM4jQWPY7Uo5MvHrpeJ1/C73eycvGT4tRfEC12PZ4kjti89RkArbVVBjtq8mS3NIGTLxKMBvj9dra8dvIcm7c+Z/rM+9ln+Tja0Gg0Go1Go9E8Hf/x+n/EizyGwZCdgUrseWf2nSz9B2Czu8mNzRts97cZBaOs3q9f+PVnXt/1xnVWm6uEcchae41ROKKar1Ir1shZObzII45jWqMWQ3+IZVhqEovt+3ihhx/6yESlMEkkcawSwQ+KcGPhKJPspExPA4UaziaUSKMFOs2bypsuze0lQclrD1oP+GT1E96df5cPT3zI+3PvE8YhX6x/ASjJyTAM8nYeL/Iy8W4s1wm5K772/B6mqZLUPl/7nCiOODtzlo7X4UHrAaNgpBLZLJXyFsURYRJiClMl4h3Yf2Np1jAMEEqoci11D9Gu2JTd8qHbVs6VaQ1bmaAVxEGWxPZXd/+KW1u32OnvgIChP2TgD7AMi8niJHES0/W6lNwSJbekBDeh2oziCIlKo7u3cw8v9PAilUCHhPMz57FNGz/y0wlmJSW3RMEpkLNzWcJaEAUM4oFK9kuFu4n8BLPlWS4uXMzkxLHIlrOV+LxcX2bl1MpTv8ePS1xrDVts97cpuSUEgpubN5ksTjJZVP7HOI1tobbAne07nJ48zVx1jkanQWvYysS55xH8ximAjqUee76aaHWhtsAwGNLoNpgtz+IFnno/3TK1Yo3zs+dZri8/175Yba4SxAGjYESjqyZ/etb0Qo1G8/bx0q847k2c29jYeOH2pqZ2B0+Z5lHpUxqN5u1i4jnqyMfUu426MeqjJKqxbDc+5I0fe2k7flr+KIHOQklnf5yWK6Gktm763EyXldLn14F/wNGH2Mvp4xAlqI2T5yTZWT1m+nuCSqnbW+8w9ibGxShh7F66bS5wGjjJ0yXGRXvWdRMYH7trQBm131p7li+jhLsLvIJ/VtiVIyVKlrNRCXulPWX6wBcoSVKmj1uvoG8ajUaj0Wg0Gs2Ls3dQpxBkgpppquS3IEioVATz8yXu3+8Qx5Ji0WYwCIkidXMwSSRCsC/x7Vn7kCSSMEx48KBHEMQkiRLnpJSYppL1bNvENAW5nEWl4pLPW9RqeXw/ot8PCMME31cDV8ey3V5RK0lUCl0+r84lrl/f5pd+aV4niD0nq6stgiBmNIpoNJQk98EHM/tS27a2hly92qTR6LO4WM3qvYn723HMfY+9nn9oufHyg+U1Go1Go9Fo3iQMITAsG2HZr7srXzHGiQPsik8y2f868jHyHCAEQhjqbo1hIc0YwzCRMqFSP0UUjJ5ZnntSqlmuPIFMEkzbZuEbv/xGpZrtFZ7Wrn5Cd/OBWh4FxFFEEoXEUUjkjwiGPcrT8ximyfa960cKZqatPvdm+vkPRoNHyqjl/X3lxvVeBlrsejLt9TvEYaA+w60mAFOn392XHjjq7rB99xrDVpPKzMms3jg58Dja0Gg0Go1Go9E8HV9ufAmQyRDlXHmfPAcwW5llo7tBz+ux0d3g7PRZvtz48rkEuk/vfkqURLQGLbxQySJnps9QcnfHcJnCZOfeDlGiJpmPgoh7rXtYhoUf+cQyxhQmjukQyHQyk3QS+jiJH5HnDGGARCVbiThbh0ajOR4SmSAQeJHHra1bIKA1aDFZnGSuMsfOYAdn6NAZdTCEoWSyVHbzQiU22aaNbdiUcqVMGguigNZQtbPZ20QiWe+s0/W6RElEIhMG/oAgCrK0uoQEQxhZut0YgUqitE1bHQtkTD/oY5kWfuhn4tVBep5aPha0bMPel8Q2U5pRgqBUyWRSSiQyS8w8NXkK27TJ23nubN0hIWGuMsdseZZhMKQz7ICAyeIkO4MdOl4HgaAz6jBZnGSmPEOtWOPu9l0lDJo20SgiZ+XI23miJMrkuuX6Mjk7R7VQpZKrcHb67CPXjlzLZWVhhZVTK099XelxiWsFp8BGZwOJZK29hkRSyVcI4oCFiQUG4SBLY5urzFGv1FnrrPG9s99jcXKRze7mCwl+89V5rjWuMVOe4e72XVqDFlv9LaZL0yzXlyk4Bb5Y/wI/9im5JU5PncYyLWZKM8+1LwDWOyrIqdlrIpHUirVnTi/UaDRvHy/9yu6lS5fI5XJ4nse9e/doNBrU6/Xnbm84HGa/z8zMHEcXNRrNa6fObhLb0xKl9Y56TaJmcE1Qh7oEJZONBbXxT5yWk0/RB8muONZnN+VtvD6JSkJ70jFugJLYxjdw5Z7fx89jdhPfkrT84TcTFVdQ4t494KdpH8O0rgH8HJgDvsOufHjxiLZW020boZLnAD4A9n4x3AKupq8v7qn3tn8pjFDbsY7aBw5Kzlvi1ciBGo1Go9FoNBrNrkA3foxjlSpnWQZxrFLhcjmL1dUdvvxyi9EoZDAICYI4E+3G6Qrq8fklOt9XF+oty0QIkabaqUQ8w1DJcYWCnV2Inp0tUig4OI56/Re/2EzFOdUnyxJZUh6QpepZloltG7Tb6saKThB7PtbX1Y2fZnOAlCp5bq88BzA9XaBWy9FqeWxuDlhcrL6xwuL8fJlr17aZmSly926bVstja2v4iBDYankIoT5/43oajUaj0Wg0bxpuaZLB9gaxr9PnjhNhGAjDSJPn4FFTLr0vJA57DRAmwhAYtoNpOZiuixAQ+h5JFOEWq0S+90x9ettTzcbCU+gNaa2rySfHQpthOVhuASljBjtNIt9j1GsDMOrsHCmYFSfr7Ny/SWFimt7mA/x+m1F35xGJyu93EEJQnJjO6r3s7dRi19EMdtR9wmF7Cyklbmli3/4ByFcmcUtV/H6HQXuLyuwCg51Gto+Oow2NRqPRaDQazdMxCtX5ZpgmOu8V2fZSckv0vF5WblzvWRmn9fS8HhKZJTPtZaY8gyEMBIIoiRAIEpmoYVhCyTokZFJKQkIURxTsAoNgkNURQmSP46Q5iUQgCOLgYNc0Gs0L4Ec+juWw1dui5JYyiQkJlmlRK9SIk5hROKLrdQmjECFFJsoWrALlfJm8k6cqqlRzVR62H9IZdqjkKvS8HsNgiG2ppDWBoOt1lSALWUJlnMT7rqcIBKZh4liOSp2UCXESYwiDKI7wQo/OqMPVtat4gcfi5CLT5WlMw2Srv0Vr2EIgMrG4M+rQ6DWyJLaNzgZhFGbyHoBlWOTtPIZhUCvUmCkrb6FeqdMatUjihNawhUQyX50njEO6Xhc/8rFNm9nSLGudNbb6W/S9PguTC1RyFTpeh77Xxw99oiTCMiyiJKJSqDBXmSPv5Mnbef7RD/4RKwsr3N66zXpnnSAOcEyH+eo8SzNLT0x1O8jjEtcanQZz1TlywxybnU2iJGIiP4GUks3+JmenzzJbnuXaxjUa3QbfOfMdCk6BzrDDZGmSxanFfet6VqltaWaJj299DI7avxvdDa6uXaVWqFHOlel5PRzLoV6uk3fyzFXVfvp73/57LNeXn3lfANm/H+NUwmdJL9RoNG8vL90GKBaL/N2/+3f50Y9+RJIk/OhHP+Kf/JN/8tzt3bp1K/v9W9/61nF0UaPRvHbWjrneFEqWi9iV5Frpa2qmUcU4/S1Kyx81WHBvItsOu8KdjUqKG8tuo/R1UELbNzj8MOunP+PUuXG/xj9yzw9puXGdo/r3M+Aa8DHQZFcGHPcPlPTXAX4ZlUp3VGLcevrYTPtQZTdZL0rrVNOfDrCJkujWeTUC3TTZVRRc1DauAwUgh0qlG6LeHyMtZ7NfADyIRL1nl9kVI8eM9+tFVBLhmzMLrEaj0Wg0Go3mq4+UuykKUZQwGoWYpkEuZ/Ef/+Nd2m2PXi/A9yOEILv4rJLdxj8vsv4E0zRxXZMkkUSREvlyOYuJiRxJknDyZJkgSCiVHH7pl+aZny/x6afrnDxZ4fbtNr4fEccJUkIYqkS9cULeOCms0/FTEU+tVyeIPR9j8XD8WC67h5Yrl11aLe+R8m8aS0s1Pv74PgD1eomNjT5Xrzap1XKUyy69nk+r5WWv53IWrmuytFR7nd3WaDQajUajOZRu8z7+sEcSR4eLXJpnRhgGhqXuF8hYHkieG5cxEYY6v0jiGGSsor7T98AwTfUjDKSURJ5HHPoYpolpO/j9Dpaby9pL4oj2+h0GOw0i32PY3UYAufIUdi5HoTrNxo0rwNubajYWnnYe3kLGCabtkIwH4E7VsXNq4gohDPx+mzjwCYZ9Rp0tirWZQwWzifkzrF39CQCF2gyDnU22717DLVVx8iWCUR+/38leN50cpu0yMX/mpW+nFruOJg7V+x6n77+TLx5azsmX8PudrNy43nG1odFoNBqNRqM5miiOWG2ust5Z597OPTa7m0RSjRvr+/1D64yX2+lEGXk7/3wrFwefPjqmahgMsU2bUThS8otpYmFhGRZSykyYEULgWI5KZIqjLHFKjCdEAUxDTYBiSxsv8pDIR5KpNBrNizFOXYviiK7X5cv1L1mcWqTklmj2miRJwigYUclVANjsbWb1kiQBAbGMGfgDwjhksjBJTIwf+YRxyHZ/m0QmeKHHiYkTFJwCYRxSzVWVUAsM/AGJTEiSJBPZQB0DHNPBNmxs085kJiklQRgwEAMquQp9v8/PH/6cm5s3KbpFSm4pk6vq1To5O4dlWGz1t4A9SWwCTk+dJu/kedh+SBiFSgoUUHSL9Lwec9U5FicXaQ1a2XFru7eNa7v4kU9n1CFv5TkxcYK723dZ66wRxRGmYbIz2mGwMWC6NE0QBXRHXYQQlHNlHNMhljHvzL7DmakzTOQn+Jvf+Jt858x3AFieWz6WxLPHJa51Rh2klLSHbUbRCCklPb9HQsKD1gOCKMAyrWx7mr0mi1OLnJ85z0Jt4YUFP8u0uHjqIp/c+YTzs+dBQKPToDVs0Rqq8d+mMFmeW+b8zHkMw+B7Z77HByc+eO794ZgqjXCcSvi06YXjehqN5u3klVyF/53f+R3+9b/+1yRJwu///u/zm7/5m7ju4QN4HsdPf/pTul31D8bZs2e5cOHCS+itRqN59ayiDkfPkkJnpfUOYzwbpc1umpvBrkw1TnxLUPKVfaDeYf1bBR6ymzLnpG2NE97GN7slSuwrcnQiW579ghxpWxa7CXl798W47FEXK1aBWyiJroESyMy0b+ObSwZKDGuk5QqP6d9YIPNRQmAbJcrtZYPdFL35A/VeNnngFErcq6TrFShpbpxSOpbmiqh9scDR+08CHwE30ucjlDw4TqCbTZd/gtrmS2iJTqPRaDQajUbzOhACkgRGo4jLlzcolVQyQhwnBEGCEGBZavbNOI5Jkhcbl6uEPAPLUjcvbdukWHRIkt1EvHI5z7lzUxSLdiYy2bbJ5GSe9fU+i4tVfD9iMAgJwwQpJUJIdUPBMdUA1SjBcQyGwxDPU4l3OkHs+RiLh+PHXu/wiVjGyw+Wf9OwLIOLF+f45JOHnD+vBrI2Gn1aLS/7vAmh5Lnx6ysrc9lnVqPRaDQajeZNIY5C7v/sP+1ZogW640BKNXkIMkbG48kOD5ZR93FM00LKBJkIhDCQ6QAskYpypuVg2DZx4KvzFsAtlPH6bSZOLCGlpLn6GZu3PiMOA3rNh/Saa0qIRIl45ZmTCNOmu3GH/MR0Jsm9balmY3FpLLTJWM34brmFTJ4DsByXyHZBhEgpGXXUJJOHCWaGaTF77gLrX35K7cQSAMNWE7/fydYjhMiS+QBmz334UqVCLXY9GdNW91DHCYTBaHBouWDU31duXO+42tBoNBqNRqPRPIqUkiv3r3D5/uUsCcc2bTqeEiD6fp8gDtjsbmZpSwCb3U16Xg+BYK4yB8B7c+89Vx/qZTXWrpwr0+g26Pk9+n5/XwrdzmCHRCYIBIZhkLNy1Ct1dgY7WIalEqZQE0L6oY8QKmEqjmPMdDIU0zARCCxTiXdhHOJaSlbRaDQvAUEmt0ZJxFp7jdvN27i2i0BJY5095/JBFBBFEVJIbGGrRLgkIokS+n6fnJ1DCIEf+WwPtnEtl2peCXPDYEgQBervWaoksESO7ykLkEqkNYSR9UkisYzd44FEZscJiRL5vNAjSRKG4ZBmv0k1X+WbJ7/J+Rl1vWKqOEWj13gkiS1OYq5tXOPExAk+e/gZ7WEbP/SZq8xRzpU5O3UWx3a4vXU7O26V80qAC+KA2fIstWItSzJb3VrFNEwSmVBwCvS9PjvDHRzLYao0hWmYVHIVLNPiwskLShwDluvLfPv0t4/9rX1c4loYhzS6SlgbTzQ19Ifq/UgkkwV1basz6hAlESeqJwAlTB6X4LdyaoX2qM31xnWW68ssTi6y2d0kiAIcy2G2MkvOVhNdLdeXWTm18kLrm6/Oc61xjZnyDHe379IatHYTF1MOSy+cr84f1aRGo3kLeCUC3fLyMv/sn/0zfu/3fo/19XV+53d+h3/+z//5M7fzr/7Vv8p+/8f/+B8fZxc1Gs1rxePZhSSR1juMGZQgZkA2A8VYnhvXHb82lugKab3DuJ/+9IAuSsjLp22Mxb8EJV51058HaZ3DvhSe2bPusdAXpu2M+7U3mW5c9sxj+vdzlPTlsSvQjX9ilAw2nnGnmZY/qn9Ouv51YBu1b4rp9sdpmxVggBLWNoDzab1XwTxKiGuhBD8HlS6X7OmfgdpOAZxLyx/1pfUKSp5LgJsoyXDvTfa7KLnyPCqFbwKVRqfRaDQajUaj0bxa4hhMU130D0PB1tYgTZpTr0sJcSxxHAPXNVMZTRDHzz44V8lzYKQeUhgqYW5yMke/HzAYJHhelKWAzc2V9iWavf/+DEkCvh+xutrCtk1MUxAECUkiMU1BGMYEQYwQAtdVKXdRJGk0BjpB7DmZny9z7do2MzNF7t5t02p5bG0NmZ4uZGW2toa0Wh5CwOxsMav3prKyUqfd9rh+fZvl5SkWF6tsbg4IghjHMZmdLZLLqUucy8tTrKwcNTmORqPRaDQazetj9ZN/j9dvYxgmMkn2JaBpXgCZIKMnTe4nIJHESYBM1PmKzO7PgEyUHIYhkElCHCkhTpgWGAaGYVKeOcH9K39B66Ga2LF5+yqd9Tsq0W48MaJQSWam42I5ebbvfEkchdQW3nmhVLO9iXdxGGLaNsXJOhPzZ16aXDYWl8bpEVHoYZg2lrP/PlAUqMGqlpNT+zG9t3KUYDazdAGv36H14Ba1k+eozJxk0N4ijkJMy6Y4MY3pqEFQtYVzzCy93Ml0tdj1ZIqTdXbu36QwMU1v8wF+v82ou/OIEOr3OwghKE5MZ/WOsw2NRqPRaDQazX6klHx07SNubKrJwkfBiGaviSlN/NDHNm0KToGBP+AXD3/BTGeGUq5E3+9nKTpTpSnyTp68nefS8qXn6se3Fr/Fj7/8MbVijZydYxSOuLN1h1pBPfdCj7XOGnES41ouru1iCpNTk6cQCLpeF4RKmwrCAIkkTMLddDrDwDKsLIHKMqws3SqMwyytSvP1ZSxMHfxd83yI9D/LsDKJbRAM6IzSxPiogG3ZWYJcEAdEcUSURJkIG8QBkR9hGzZ5O69k3jRtLZEJQgrCJCRBJdl1R121viTJ2gnjUF1qEQIDdbPaMAwcy8nS44QQ6hiQXoIwhQkSvMijkq/g2i6jcETezjNdmqaar5J38hiGwXJ9GSQ0eo1HktjiJOaWeQuAU5OnSGSi+u91cS2Xnz/4OQVX3Xd1bZcgCpRIFykB+IMTH2Ty1emp0xTdIr94+AtMYXJy4iSjYIRru0RJRNEp7ibjVeqcmzmHa7msLKywcmpFCYTHzOMS11rDFj1fCdajcEQcxwhj9+/qzvYdKvkKYRQyDIe0Rq19bR4HQgguLV9iIj/B5fuXAVicWtxX5jj30dLMEh/f+hgc9R5sdDe4unaVWqFGOVem5/Wy9LtxeqFruSzNLL3QejUazevlha+q/+7v/u5TlVMzizsEQcDv//7vE8cxpVLpyRX3sFegKxYPnwFOo3kRbt48B8D587dec0++bjzvF6ij6uXYlcBclFB2VLqdixKnnLTeYdxL63soOU6gpLLx+h1UWtswXaeP+mZ+7zH9LqEENNiV6AD2ntjv/XJX5ujtvQ1spX0cpvVyKOnNTvsyAPrp69W0/O0j2psHfsxuep1Km7t58wRgcf78Fkqu81AiXYgSBv+7I9o7bpaAj4FvoN6PGyhZroDa7hFqO02U9HYhXX7Yl9YIuJz+fhO1rQA11D7voUS98fJllHB3gVfkoGveAm7evAnA+fNvxuzAGs2bhP770Gi+HpxTp1Hc0qdRrwQpZZayEMcJ47G3lrVflDNNg1zOYjR6lqRv1db+9QmEANdV33/7/XEC9H4OJpqdOTOR1jO5fHkDz4tS2U/9xLE69zEMMAxBFEmGwxDH6dDpQBQlOkXsOVhaqvHxx/cBlcq2sdHn6tUmtVoukx3HyW31eolczsJ1zTdaWBRCcOnSaSYmcly+rM7NFher+8q4rsnKyhwrK/V9N0r0dxHNcaI/T5rjRH+eNMeJ/jy9+SRxxPoXPwUp8fJTRImD2bqrBp/owX4vn3TA1/5lEjWFuaGmMYwiIjnCMG1M08S0LOxcgTjwqZ//JhvXPlXio5Q8/Pwv2Xm4ClISjHppYp1KY3MKJYJBD6dYxSmWCYZ9In90aLeelGp2MPFuLzv3b7J29SfMnrvAzNKFZxos9DTHjLHwlK9O0t64SxyGaiBbsNuPYDRQ2yYEhmmoAbFF9T39KMFMCMGpb/6AXKnK5q3PAKjMLuwrY9ous+c+fObteh602PVkJubPsHb1JwAUajMMdjbZvnsNt1TFyZcIRv0sQbBQm8F0cpi2y8T8mce2sXr7NnZuk3q18FRtaDTHjf7+pHkT0J9DjebZOeeqG1K3fH1D6sr9K9zYvEGSJNzcvEmj28gEh5JbYq29RsFWgsfAH7A93M4kCYFgqjTFO/V3APjV93+VnHPUmLnHszy3zNLUEtc3r3Ny4iQP2g/ojrqMwhG2YRMmIUN/iG3aWWLQTHmG757+LpOFSX5696f4kU/ezhMnsZJnpMzkOFe4RFItGyc4GahUpGeeq/8tRn/2H89YnPs6yHMGxrFu6zjZTQhBnE46NE4eC2KVCrc3Da4v+5iRSZREWYJkkhx23UWlxMVJjG3Z9PyeSj6TSoT1Qo/OsJMJb1EcYZs2juXg+R62aeNaLjPMkCQJt/xbmMLENux9/fUCL+uzYRjknBxnps5QdIoMgkGWYhnLGMu02Ohs8Hcu/h2+ffrb/PiLHwOPJrGZhsmp2ilub91mpjxDZ9Sh2W0yCkbsDHcouSWKbpF6tU6SJGz2Nsk7ebzQyyS8bP8KwXfPfJe+1+fezj1G4YjJ0iRz1TnOzZxjq7fFMBhyeuo07829x4mJEyzNLGVS3cvgqMS1WqFG31MTCA2DIWF6vcqxHApugbJbRiLZ7G7iRz7VfBUv9IiT+NjT2IQQXFy8yIWTF1htrrLeWSeIAxzTYb46f6z7yDItLp66yCd3PlHpfwIaHZXCNxbnBIJ6tZ6lF64srLzU9wj0uYJG87J54b/g3/md33mmi9dCCJIk4Q/+4A+eeV3jf4SllPz2b/82v/mbv/nMbWg0j+NP/uTXATh//g9fc0++btTZL449DUla7zAClNg1vkFnogS1vV/UBbtn0nZa/qhZSrvp4yZKjnNRh88B2cyi5NmV5xooCa37SEu7655NXw/T59aePo77Np65NI9KxzvqWHub/SlzFiqRzd1TJo8S6PaWO0qgW0QJcnZaTqXa/cmf/A3A4Pz5f4cSy0CJgBZKMFs8pK2XgYVKgPsE+GXUtt5CSXNB+vocKnluGbXfVjj8n7zVtM4I9b4BfJC2OWYLuJq+vrin3otHTmu+GvzJn/wJoE9YNJrD0H8fGs1XC8OA5JCv7b+uTqP4Q30a9cI8LoTCMJQUZ1nqpsA4Ec62DeJY3ZhwHGtfW65rMhpFh7a7d9ne36Xcfa+FANs2st8Ber0gTaUTWeoX8Eii2cJChcnJPA8edPnOd05w+XKDtbUelmXgOOa+dai0vJgoSlha2sGy2vxv/9t/5X/4H84/IkS9aqIoYXW1xfp6L0s8m58vs7RUeyMFP8syuHhxjk8+ecj582rQZ6PRp9XyMnFOCCXPjV9fWZl7I7dlL0IILl6c48KF2Wd6P/R3Ec1xoj9PmuNEf540x4n+PL35tNfvEAU+SSLpza4gk4Ri5376hThNpPsaDPJ6vRy9f4VhYZgmdr6I5eRwC2XiMCD0R+Qnppk5+wFrV3+CW6ywdfdLWg9uIYSRxXYbhoUUBsIwVHqdIRh1tpBIBNDbfEDy7kWMdNDWmMelmkkp9yXeRYHH8EBSG8D6l5/i9Tuc+uYPnvq86WmOGWPhKV+dxsmXkHGE12sR+R7IGISRiYGmaRGHIYZpMrmgJjJ8nGAmhGD23DeYPvP+K0/WO2o74fnlsK86hmkxe+4C619+Su2Een+HrSZ+v5PtGyEEhdpM9vrsuQ/3vYeHtfHZRgJ9KAQPn6oNjea40d+fNG8C+nOo0Tw7vz6hbkj9YePrfUMqiqMslefm5k02umriuVqxRtktU81XGYUjdgY7FN0iU8Upel6PicIEjuUwV5kj7+QB+M7p7/D3v/P3n7svlmnxt1f+Nn/8l3+sxvYagtagxSgckcgE27SZLk4TE1OwCwyDIdOlaWzLZqY8w8mJk1imxU5/R9VHZOc2Y1EGoYQb13LxIx8/Vgl746SqrwP6s380ApElFH5d0ugMYSip7Ri2TwiBYRiZACdQz+MkzsbqA2ofJ+p6RZIkKgkyiYni3b/Dvf2SUpLIBD/2ib2YIEnH5aYJklJKDGFgmRaOdIiTmFE4IkrUxLCxjCnlSvyq86tIKVlvr2MZFpZpZQ7CeN3jdizD4tTkKf7Ge3+D6dI0W/0t7u3cY7W5ChLOTJ3hZO0klVxFBQI9JoltobbAMBjS6DYoOAUmS5O4lkvJLTFbnuW7Z79Lzs5xde0q9UodQxisd9YzCe/gPl6aWcI0TPJOnon8BNOlaT6Y/4D5945XBnsaDiaurXXW+K+3/iujcERr2GKjs8HAH2AIA9d21d9YkjCRn6DttemMOggEhaqStLuj7ktLY7NMi+W5ZZbnXu443ZVTK7RHba43rrNcX2ZxcpHN7iZBFOBYDrOV2UwCX64vs3Jq5aX2B/S5gkbzsnllR92x/AY898CnvfUeMdY1Gs0rZG9i2rPWO4wPgf/vM7Q7LvfhEa9voYS4cbqcQKW3xelzAyXVhenzXFp+64j2KqgUsnFyw1iS23sI7aTLScu10nqHMZv2ZxYl4cXpz3j/yLRfMu3n3vKHMe7XeDTzUQMfjQPljkqiuIcSAK+n68+j9uV4v+fT5X7aZoQS1u7x6qSyFaCd9vE94AxKcAzY3Vfj2ZGW0/KHsZ4+NlHbVmO/PEf6vIZ6TzfZFQy1QKfRaDQajebrxWHynOZ4GUtlh13yME2B61rk8xaeFxFF6txGCXVK9DIMgZQQx+r3IEgwTfHINRR1eWV3+WFhDOMyQRBlUp1lGfi+mn1QJdJJul0PzyvgutYjiWamKfjoozuYpsHZsxMYBgwGYbYNSaLS55JEYtsS1zWzPm1tDfnkk4e02x6XLp1+5RKdlJIrVxpcvrxBEMT7Xrt2bZuPP77PxYuPJp69Cays1Gm3Pa5f32Z5eYrFxSqbm4NMOJudLWby4/LyFCsrb096gmUZLC9Psbw89bq7otFoNBqNRvPUDHYaGKaJlOp7pRACYajvvlqee83IhCSOMCybXGkCO6cG/8ShT3l6nurcIvcu/yf6Ow2QCf2tDUJvCIaJjEMM06ZQm6ZQnSYOPBACt1im23hA5A2xnBzBqE/74SqTp97JVvukVLPm6mdKnpOS1toqw1Zz33ldb/NBJhu1HtwiV6oye+4bx7ZbxsJT5HuUpucQAkJ/ROR7dDcfYlg2pmVjWOPJIQUTJ85i54pPLZgZpsXkwnkmF17fQKDjkMO+DswsXcDrd2g9uEXt5DkqMycZHBA6zTSxpLZwjpmlC09sw9p5gEwiilNzT92GRqPRaDQajUax2lwliANGwYhGV00W/sGJD/alHs1X5/m/P/u/2ehuUHSKKvGoPEc5r+SOvJ3nV9//Vf7+d/4+hvFiE+xdXLxIe9TmT7/8U2zLZrIwSdfrEicxpmGqRLzOGpVchaJbxLVcPr71MUN/iGu5BFHAMBgihMASVpZCZ9s2jukQy5i8k6dWqHFv5x5xHJOIREk8mq81ApENZzRQsuXec2dTpNdevkLpdAkJJmYmjo2373kRUmSyG4AwVLKbRGJgKNltT/uJTFQSpDAQhsjWbwh1HBk/AiRJQkJCTIxhGJiGSSxjYhnjWi5hHNLsNVV6nDCI45ggCnAtl3KujGVYmIaJEIK8k8+SKU2htj+MQ/U6Qh1rciXerb/LdGka0zCpV+rUK3VyVo7twTbb/W28yKPn9ThRPcGD1gM+X/ucgT9gvbNO0S1iGzbv1N/BNEyW68v4kc+t5i0l59VOKaGrvkzOzuFaLhdOXiBOYu7v3Af2S3h76Xk9hBDMVeZYnFrk3fq7XHr30nO/by/COHHtL2//Ja7lsjPYoT1UYpwXegRRQBiHOJZDyS2BVKl8rZFKY3MsB9MwcS0V7jFVmnqlAuDLQAjBpeVLTOQnMkF9cWp/mIhruawsrLByauWNGxug0WienWM5aj2tzKalN43mq4KBEr6ep95RjAW3pxXo7CeUaaMkLzNtd5z0RrqOkF1BzUjLH8UCSpAb3wgM0+U5lFjmo1LagrRfFipdbuGI9urAFPAgre/t6dfeBDqx5/Upjk7cm9qzHeMZTDuofWqn/R2n6+0td9SAw/W07+OEunr6M257CiUHNlCpb1Za/lVKZQK4BEwAl9NlBxPwXJQ4t8LR8mZw4PHRWUB2l7cOKa/RaDQajUbz9eFx6WiaF8c0RSqtHb6TpVRlDEPsK2sYIISBaapzCCHANHeFR8exECLKJDvS2TvVhV1JFCWPyJFjYU6I3XY8L8I0laxnGAa5nMloFFOpOFQqOebmDk80++CDaba3h+zsjCiVXBYWqvh+yObmkCSR+H6E65qUSjbDYUQcS6SMuXu3zfnzk1y/vs3ERI6LF+eOd4c/BiklH310hxs3dgAYjSKazf0CGvBaBb/HIYTg0qXTTEzkuHxZzTy7uFjdV8Z1TVZW3kwBUKPRaDQajearRhyGOIUKpuWoGdDTSUcNwyBBIp/ndovm2JDpLCambVOZXcDKFYlDj1Fnh3A0oLv5kCj0CQYdvH4bmSSIdHZ2KSVer00ceAjLIVcsYzk5LNtFJjHCNEFKmre/II7Cp0o1S+KIzVufAdBaW2WwswmAW5rAyRcJRgP8fjtbXjt5js1bnzN95v1jFbvGwlN/ex0Zx+RKE3Q2HxAO+yAEpuNipAPZyrMLnHj/u8DbJ5gdhxz2VUcIwalv/oBcqZp9Niuz+++BmrbL7LkPmVm6cOg55sE2hBAI06Z24uRTt6HRaDQajUajUax31GThzV4TiaRWrO2T5wBmK7P80uIv0ew3EVIldE3kJ/jgxAe8N/cel5YvkXNyhzX/zAgh+OG7P6RWqPFXd/+Ktc4anVGHKI6wTItqvsr78++TyISTEye5sXmD1eYqsYxpdBtKmLFdXNsljmMGwQBQqXMSiWmYjIIRplDj1iSSMAqJ9cn0155x0plAKJkMmclUSHU/0zIsYqnErHGdtx0hBIZU92FfdHsSkkyiM4ShjhcywTIt4uTwvzGJJJYxSbyb/GdbthLm0uRJIQRhHCrJEbL0rmEwBJRoF8tYrVtIpCGzv2nTMCm6Rar5KmZkYps2p6dOc2/nHkEU7K5XCCzDwhY2ju2wMLHA6anT6v0f91VKhsGQ21u3KbtlbMvmyv0r2KZNa9Ci2W+Ss3PESUyj12Cju8GV+1c4M32GvJ2nPWpzdvosOTvHZHESgeAH53/AQm2BpZklVpurfHT9I2bKM9zdvktr0GKrv7XvmLzV36I1bCEQzFZUgMZ8df6F3rcX5ZsL3+TPrv0Zd3fuMl2apugU6Xk9JBLbtCk4hUyKqxarzJfnlbxpmFRyFbpel0Qm1Ct1FicPjtl9OxFCcHHxIhdOXmC1ucp6Z50gDnBMh/nq8SUFRnH0UtvXaDRPxwv/tf3Lf/kvj6MfGo3mrcJFiVPPU+8wtlCJYffZTUd7HEZa/qjEuBpKiBul7Znp4ziNbvw4Xj5CCWe1I9pLgCoqLW4sttnpT5I+7pX0HJRgdtS25FFC2ljiG4t545lmRbqN48S3MC2fP6K9E+wmpI37Mk6XG4teUdqWjRL/amm9wwjSdc+nbYq0j+OTi8n0sQQU0nKCVy+VCeAicAFYRQl84wS6eWCJJ/8z5xx4PHwWkN3lB8trNBqNRqPRaDRPz+MkxDhWMtxR9XZ/F1nqXJJILMsgihIsy6BUconjhNEowjBEtr5eT6apckp8syyTKEqyNLkgePTcZZxmN24jSdQ5S6FgU6m4VKs58nmLlZU5vvnN+pGJZq5rcepUlTiW/PznDTwvpN9XKXS+H+M4LrmcSqQrFGwMQ21sp+Nz8+YOy8tTXLmywYULs5mU97K5cqXBjRs7JInk5s0dGo3+vvft7t029XrptQl+T4MQgosX57hwYZbV1Rbr671MAJyfL7O0VHtl+1Oj0Wg0Go3m645p2xSqU1iOC4maHV0YJnEUpgl06BlLXidSksQRMkkwbAcZhwTDnkpdG/UZdbYJRgMif0gShUgBROr+jUwSdddIGBD4JFGAW6ySq9QYdXdwC+W0nHzqVLP2+h3iMCAKPIatJgBTp98lX5nMujzq7rB99xrDVpPKzMms3sT8GdrrdxjsNIjDENO2KU7WmZg/88xS21h4cosVvvzo/6C/tU7txFmSOCQY9kmSGNNymFp8h+r8WYQQb6Vgdhxy2NcBIQSz577B9Jn3n/sztreNP/vi/0USR1TnTr/Q51Sj0Wg0Go3m60gQq/FZYyGo7B4+WXg5V6Y1bHGieoLz9fOcnT7Lr33way+lT08SD85On+U/3/rPXG9cZyI/weLkIjuDHfpen6JbZKY0Q8/v0R61qZpVhBAMgyF+5GMaJqZh4kUepmHihz6JTNQENV8BGUrzYowFrfFnwTRMLMNSIp2pPjtxGGMII0tZe5sRKMFNCPHc2zPeZ0IITGGqRDnTwDEcgjjIhMRIRuoaltz9WxNCgOSRVD8plXglkY/0a5xyGUQBpmFmyZIAOSen3iuh3rdxAqUXeizXl8n38sQy5vzseRYnF3nYekh72CYhQUqZibaJTJitzLJQW9jXp+uN66xurZIkCTuDHUbhiCiJlJArIEoiGt0GOTuHZVj0vT5xEtP3+1TyFerlOicmTnB+5jyGYfC9M9/j4uLFbB1LM0t8fOtjcKBeqbPR3eDq2lVqhRrlXJme16M1VMlt9Wo9S65bmll6rvfuuPj5g59TcAqcmTrDT+/+lPawnQmo4/0ppaScK+NaLsIQzBRnAHjYeogpTE5NnmK5vpwl0R03r0s0s0yL5blllueeLUjkSf2VUnLl/hUu37+c/Ts+5lrjGh/f+piLpy7qhDuN5hXxwkeR3/iN3ziOfmg0mreKAs8n0BWOWO4C08A20Gc3Ge5gIlucPhbS8kd9+RpLXz5KSouOKBejDoP+nnqHYe3pn532zWVXzov3PDdQctUMRx9iZ1DpbRVUUt34pGGvNDf+MdNym2m9w/gW8O9R70k7XTYW8sb9G7dlo2S8mbTeYYzlMBcl2lWBOXaT9+bSZetp/90D9V41Fir57nnS7+aBa6j9cRf1GdhCvd9jttj9TM3uqafRaDQajUbz9UKP5Xxx9gpyacjBPg4mwY1RqXJGljonhJLbpIQwTLBtg3zeYmoqnya6WRiGoFSyaTSGTE3lGQxCkkTiOBb5vEWSSNrtEb6fPLIuIJPnxhdoDWMs7gkqFZfTp6u89940y8tTCCGOTDSbny/z5ZdbhGHCzs6IwSDIJMDhMNwj50GpZOM4JkkiyectGo1+lpy2utpiefmoFO3jI4qSLLXt5s0dNjb6ANRqOcpll17Pp9XysuWvQ/B7FizLYHl56pXsO41Go9FoNBrN4RQn6+zcv8nk4jLc6QNKlhMA6Xd7fcL1qhnfiwEpE+IooLN+VyXBnTyLTBJylUk2rn2KP+wS+54aPISEZHzfSqXFhUiSJMHO5UmGIaE3xLBs7FwRwzTJlWvkyhM4hfJTpZoNdhoADNtbSClxSxP75DmAfGUSt1TF73cYtLcoz5zkwS/+C2tXf0Ic7h+Es3P/JmtXf8LsuQvPLLcJIaif/ybTZ97n9if/nrUvfkrke5SmT+IWK+SrkxiG+dYLZschh31dMEyLyYXzTC6cf6E2TNvBtB3OfPuHx9c5jUaj0Wg0mq8JjqnGZzmWeuz5h08W3vN6+8qN671MHiceXFq+xER+gh/95EdYpoVlWpRyJQpOgVEwIogCCk6BoT9UKVOJOgcL45A4iTENJfog+MrIUJoXYyx6jT8bWYqaEOozJpSQZRlKXkni5BHh7m1CpP9lz/fIbAAGRnZOfpjINm7DFKaSpdL9BGT7bpzelp3by91648S/g/tunApp2iql3jZsAGJitQ5hZal242sr4/WN+x/JiFjGWIbqj2mYlN0y7kiNS12eXWZ1e5WzM2ez9fZGPZr9JtV8FYGg4BTYHmxn6W8PWg+41bzF0B/S7DVJZEIQB4RxiEwkYRJmbY2CETknR9Ep4oUe1XwV27Q5UTvB+Vl1/rtcX2bl1Mq+bbdMi4unLvLJnU9UOQGNToPWsJWJcwJBvVrn/IxqZ2Vh5bUmjUVxxOX7lxFC4IUeU8UpXNOlnCvTHrbxI5+dwQ62aVPJVZgqThHEAZOFSUbhiEquQilX4psL30QIcexpem+baPY0/V1ZWKE1bHGzeRNQn7dmr0kQBTiWkyUTfnLnE9qjNpeWL73y7dBovm7oK70ajeYN4ATqcDSFShCL2BXoxJ5H9pSzODpBbZzAlrCb8nbYQMbx60la56ho9wRYRAljU+zKg2PJbSy+FVFyXwU4xdEJdDFKyCqjhLaI/Slv4/6PE+PKafmj+rcMnEtfHwH3AC9ta9xejBLcFoGTqHS2o4Szg1JZJ60z3ocLKKmsy9svlS0BH6e/14EN4CpKHCyjkudae17PoYTB1zsLiEaj0Wg0Go3m7cM0UTMdmoIgGE9y8fTYtsA0DTwvJgzjTDwbjUKktKlUTHw/ptcLmJjIMzNT4L33pvn003VOnChz+fIGW1vDVMZT6XS2bWIYBkJIomg8eBQKBQvLMpASfD8iSVSKd6nk4DgG3/72PH/9r59hcbGC61qPTTQ7e3aCP/ojlYBWKjlsbw/p9QKSRBLHCbZtZmXHKXamKTh5skK367O5OWBxscr6eu+VSGCrqy2CIGY0img0lCT3wQczTE/vTgiztTXk6tXmaxH8NBqNRqPRaDRvHxPzZ1i7+hNqJ85i3P+CRIYYpkUU+CiNTg/6e3WoBEDDtEjiKBUX00lKgNAfIRDkKpO0H67i97tEvo9MEqSM94iO6X0rmSBjiOIYKWMsO8eou41bqFCanmfq1HmG7S3y1WmKtf2TJB4lncWhGsAVR+rRyRcP3RInX8Lvd4jCgNaDW0iZMLW4rJLr2lv7ZD2A9S8/xUsT8J4V07I5/8v/I0vf/++/0oLZcchhGo1Go9FoNJoXx8AgeY7zJOPQsWFfPear81xrXGOmPMPd7bu0Bi22+luZNAKw1d+iNWwhENnA/OOWHJ6VcUrdRneDn9z5CVcfXsWPfOrlOs1+Eykl7VGbMFbnQqZhYkiDWMZIqQSd8e/ZBCearzVZUlYs09N9dc7vWE6WQmcYBqNwRJwomWtvmtrb9BkSCBzLwTbtbDu8yFP7IJVNxwJc9jdyYLImQxi4lottKcFNJhLLsojjGNdyMU1VV0rJKBoRxiGJTDCFSZSoAIuj9lmCktMswyIhyRLmLNPCNm28UCVIxklMQoIhDCYLk7i2ixd5eKFHEifYls1kcZIwDjPp17Zs/te/9b9yfeM6n977lEavARKmy9M8aD1gsjjJrc1b+9Lfik6Rn979KT2/R9fr4kUejunghz6u7TJKRkriMwws08LBIYgCAiMgZ+foe33OzZyj2Wvy3tx7fGvxW0cKWyunVmiP2lxvXGe5vszi5CKb3c19clTOVpMoHSbhvWpWm6sEccAoGNHoNhBC8P1z36dWqPGXq39JlETc3brLg/YD1tprGMKg6BbZGe4AUM6XmavOvZQ0PSklH137iBubN4CnE81ep0T3tP3933/2vzMMhrwz+w43N2/S6Db2/S3d3b5LvVLn/Oz5LKlVo9G8XN7+K9kazRuBwfPd4HxbT9y7x1zvQ+A/oOSvLkr+ArVPx4KagTpk5YAJlOD04RHthSjJbWz0j0W3g4zFvCAtHx5SBpR4tgDcQclk0yhRbietYwOTaRsjlGi1wNGJbFdQCW476TYV2U1x2ysLjiW4YdrmFeAbh7RnAX8b+OO0fgmVcNdH7UM3XVbf8/O3OfqfgKOksrOo9+EXfHWkMgu4CHwCjG+INlDbN95GgdrO8esr6H8+NRqNRqPRaDRPi2XtJri5rjoH9H2JYQji+OluzCSJSpqzrJggSIgiiWGAYRhIqUQ031evlUo2U1N5pqYKtNse7703zXAYcvbsRCqGhXtkuXGa3W4/HGd8nirSvlt4XoQQahtmZor88Idn+Ef/6KhE6/18/nkTxzEz4c/zIoIgJgwT4jghDBOkhIkJF9M0iGOVPjcxkaPb9VPZkOzxZbO+rmZkbTYHSKmS5/bKcwDT0wVqtRytlvfKBT+NRqPRaDQazduHYVrMnrvA+pefYjk5IikxbAe8QZpmpnk1CBACYRjprRiRCXEyUfejTMth0GoSRwHD9hZh6JMkEchDIsTH953SGd2V+CYY7GwCcPLC95k4cZbJU+8w//63GXW2n0o6M201kM1MB7QFo8GhWxOM1IQffr9NHPgUJmZoPbzFsNXcd47X23xAoTZD7cQSrQe3iAIPK02/e1a0YKbRaDQajUaj0bx+lmaW+PjWx+BAvVLfJ42Uc2V6Xi9LPqpX6y9FcngR8naeeqWOH/qYpgkCZsuzdEYdwijEtmxMYTIKRoRJSM7K4cc+URJlMk8i0rQxDJVmhVTLeVQa0nw1GSeijaU5KVOJTgqiWE0OKoRQ6XRJkqWxmaZ6LhDHLmKO+wTs+2weR7uO6TBZnCSKI2bLs1imxb3te/ixj2mZhHGIaZrkrBxhohLW/MjPBDshBDk7R8EpYAiDicJEdp85jEJWFlbY6G5we+s2kYyUqIdIJxx6um2QUhLFSrRLZJK1PwpGKonOsIjiSP29GiYxMY7tYKTXaaSUmWQnkZnoJ1BJeR+c/IAPTn6wb52X710+NP3t7vZden6POI4J4kCJg6ZN3sljGqZK2kvT7xzToZQr0fN6Wapfz++x0d3g9ORp5ipzXDh54UhRSwjBpeVLlNwSP776Y7b6W1ny4Xi9ruWysrDyRqSmrXfWAWj2mkgktWItE7BPTZ7i9tZtFqcW6Qd9OsMOO8Od7Bg8V5l7qWl6V+5f4cbmDZIkeWrR7OLixWNb/8vo70xphu3BNrGMsyREgFqxRtkt0/N7tAYtNrobIJRkeeXBlWwch0ajeTloA0CjORZMnk+gM59c5I3keQcuHlXvEvD/QQljD9hNhTuYQGcAeZQ8N5/WO4xe2tY42Q2OTncQablRWu8wxols30ZJbzsoiW/vDcI+0EbJdd9J2z1q5p5Gug230+dlVIrbiN1tzQObwPjGaC2tdxQX0/X/KUrom0bJiDHqc1ZJ21wA/kZa/iiOksrGSXYtvlpS2Qpq311HpfItovZ9gJIgZ1GSIOnrr3cWEI1Go9FoNBrN28VYkksSiGM1oBLUWE3LEpnM9jiEUO1EkSSXs4gimaW92bZBsehg2waWZTA9XcD3I9bXe0xO5imVbLa3h5RKDrOzRaIowTQFSSKJopgwlAyHAXuvv0aRRMqYOFYLLctACIiihFLJodXyDuvmI0RRwuXLGywsVLh2bZteL6BYdHAck+EwYjQKEULguiZ7z90sy2B72wfAccx9jy+bg8JeueweWq5cdmm1vFcu+B0nUZSwuqrSAYMgxnHMx6YJajQajUaj0Wien5mlC3j9DuLKXQzbpjxZJxz1iYKn+26tOQaEEuhIB4AJaSBJ0ucGCANhCIq1WZq3rxJ6A5IwOEKeOwQpdxPtjN3zl/o732T69HtP3c3iZJ2d+zcpTEzT23yA328z6u6Qr0xmZUbdHfx+B6Qk9j0QAm/QUf0F3NIETr5IMBrg99uZ1Fc7eY4o8DHtw89zNBqNRqPRaDSaNwFDGNkA82et93XAMi0unrp4qDQyFucE4qVKDi/CwQS9jc4GRbeIYzlIJJVchSRJ8EIPYSjJyTFVotgoGCkhigSRqHSxOI5V0pgwkMnxCEuaN5+x6ARKvJKo5LQo2RW0AEbhKJO2gEzw2iu7HReZ0IdKZBMITGFiGRYSqdLXnkPaM4RBvVpnIj/BbGWW+eo8fuQjhGC7vw0CTGFSdstUChXWO+t0hh1s08aPffzQz/piGibVfJVTk6eYKc2w1l5DSskwHHKydpKBP6DZb2JJK5PMxn0YH5cP6/9YSDSEgWEYOMLBtV1VL0nI2Tn8yMcwDAxhZGlw3WE3S6kbtz0IBkwVp3DTaxePO3Z9eOJDfvHwF1x5cIUojqgVa4RRSBiFTBWniJKIYTgkTmIMYWCbNolMsAwLx3JAQhAHKsVPKunQNm0MYTDwBwRxwJ9e+1M2e5tcPHXxUAFOSsmV+1f47OFnVAtVwiSkM+oQxREdT70P3z3z3UPrRnHEanOV9c46QRzgmA7z1XmWZpZe2jE7iNW1oyBSj2W3nL22UFtgGAxpdBvMVeawDAvLsKjkK0wVp/ju2e++tDS9KI64fP8yADc3byqhjCeLZhdOXngt/749bX9vNm/iRR61Qo37O/c5O32WD09++Ehq7NW1qzQ6DRYnFwEy8VOj0bwcXslR4969ey+l3cXFxZfSrubry2/91h8+Z83nkedepN5XjRzwq8Dvo2S2hF3Zbm8iG+nrbeBX2JWaDjJMy5lpOzL9fe+FkiQtE6MOhXFa7zD2JrK9j5L8NlEi3XgdFkq8WkCJak+TyFZBJdqN5cDigddF2k7lCe2My/4QJdr9FbCWth2lfasCJ4FvoQSwJ81O8KhU9lu/NZbKzvDVksoESsacAC6nyw7+++KitvFp9p3m68Zv/dZvve4uaDRvLPrvQ6P5evCHz3sa9TVB7rl5k/6WymhPf3PEdU1yOYs4lszMFCiVHDodn8EgpFp1M7ltMIjY3h4hBJRKNkIo8azd9hgOQ0xTIKUaMFoq2RQKDp2Ox3jiEsMQmSyXy9lpnwWeF5IkStaLouSR5LyjRKwoSgiCGM9Ty6an80xMuLTbPtVqws7OiCCIieOEIIiYmKjw8OF7zM4WabUGCAGzs+o8aX6+fHC3vBQOCnu9nn9oufHyVy34HQdSSq5caXD58sYj4t+1a9t8/PF9Ll6cY2Wl/tbPbKe/i2iOE/150hwn+vOkOU705+ntQAjBqW/+gH+QL3H53/4Ra1GAYTmgBbpXh0zU7SJDMB7yhWFimhamZWPnS7jFCjKJGbQ2CEYDZBI/nTyXtielxLBzFGqzDNtbTJ1+l5mlC0+smcQR7fU7DHYaRL5HZ+MullsgX51i2N5i++413FIVJ18iGPWVPAeYjkscBiqZPAwQwNTpdx+R7bbvXmPYalKZOcmvfHiCUys/eMadp9EcL/rfLs3rRn8GNW8C+nOo0RyNbdiZ5LKXP2w8/oaUbdgvq0tvHCunVmiP2lxvXGe5vszi5CKb3U2CKMCxHGYrsy9NcnhRDiborXXWlDySTgjihR6GMCi6RUyhEurCKKTklmj2m4RxiCtcvNDbTR0TgiQ90zMwst+/Kjzps/915CiZK5EJMpbZkNMk2S+s7ZXcjlOiG7c1bt8UJo7pYJomApX+1vf7hHGYJaw9DYYwcCyHgl3gm6e+yQ/O/UAltgEThQl+du9nIGF7sE2QBEwVp5jIT/DZw8/oel2QZElo9Uod27JZnFxksqiuG5yYOAHAzmAH27Q5M32Gnt9j4A+wTIskSgjjMOvLk+TmRCbYQiWu1Qq17O+4M+oQJiE2NgW7QM7O4UUekYwwpEHBKRAlEX2vj2M52KbNWnuNkxdO8o9/5R8/sp6xtHb5/mX8yCdv57nfu0+UqH87WqNWJuUBTJem8UIPL/QwhYlEYpkWQgqCOKDv95VIl26fH/m0h212BjtU8hWCOOCTO5/QHrW5tHwpu38qpeSjax9xY/MGoKQ0P/QxMCi5pexY/Om9T+n7/azu3v6PhbYx1xrX+PjWx0cKey+KYzrq0VKPPX83dEQIwXJ9mYJTYKOzgWEY1Io1JouTzFXnskTTl5Gmt9pcJYgDRsGIRlcFjXxw4oMnimarzVWW55aPrR/H1d84ibnRuMGX618yCAa0Bi31Xkv2bROo57VCjdawxWZ3k8WpRb7169/i0rtHBcxoNJoX5ZUIdGfOnDn2g7gQgih69ERJo9G8CsbC2fPUO4oEaKIELSN9Pv7CLdNlRvr6Jo+XD/t76sGu8HSwzt7lck+9w/p9EfhLlEjVRsl2e09kgnT5uXT54xLZ6uljJW3PSn8X7CbGSVTSm8GuQFfn8Yi0nxeAVWCd3RS1eZTQ97SH/a+bVHac+06j0Wg0Go1Go3k8Tz3+MiWOJbZtUiyaVKs5JiZy5HIWp09XWV/vs77ex/MipIRi0SYIYnZ2PLa3R1SrOebniwRBzOJilV7PJwwTkkSSJAmmaeC6Es+TaSqeQank4Djq+6/nRQyHASCoVFyShCyt7kki1upqC9s2SBK1wUtLNd57b5r/8B9u0++rQZ6jkUqiM02Dfj8gCGIajT71eol6vUQuZ+G6JktLtRfd7U/F/HyZa9e2mZkpcvdum1bLY2tryPR0ISuztTWk1fJei+D3okgp+eijO9y4sQPAaBTRbA4y8XG8PZ988pB22+PSpdNvvUSn0Wg0Go1G86YghGBu+SJnv/ffs3X3OvHGfY5pnNbXk2y2+b07UYChJgUhASmTR16XJAgp1CBLDIRhYueLFGozmE6O7bvXibzRnkS5Z+gSgDCIvAHVuUWEYSGTGHHETNhSSpqrn7F56zPicHfAlGFatB7cxDBMhGEgkwS/38nEOSEEhdoMMpEM201sN0cU+LiliX3yHEC+MolbquL3OwzaW1RmFxjsNJhcOP9M26bRaDQajUaj0bwqLMt6rmFplvX1GdcjhODS8iUm8hNZAs7i1P5xXS9LcnhRDibo3W/dZ+APCJMwK2MIg5ydwzEdwlglSfX9PkW3SBAFeKGHbaqJICMZ7Rsi+DzphZqvDmOJLUgClUp4xHn9WHQ7DoFunIAoELvJc4ZKe3NMJYMCZi1/AAEAAElEQVQlSZKlZBrCIJbxvvoHfx9LoKYwKTgF3qm/w187/9f2/S1bQqXE1Qo1yvky2/1tbjRukKCkwXFZIVRao23ZVHIVaoUatmmzUFugNWjRHrU5WTuJF3qcnT5LGIf81Z2/yv7+xuxNzxMILMMilvG+/huGQTlXxrVc5qvznJg4gSEM7m7fpeAV6Pk9JcHaLjknhxd4JCR0Rh0G/gCBoGAXsE2brtel7/f50U9+tE8mOyitjWXaqdIUw2CIbdp4oUd31CVv5zlRPUEs40yui6VKo4viKEugk1IlBEZxRBiFCCEIooDtwTZRHFGwC5yfPc/1xnUm8hNcXLwIwJX7V7ixeYMkSbi5eZNGt7HvM3V3+y71Sn1f3ZVTK/v6PwpGNHvNfQI0cKiwdxwcTAFtDVps9bcyqUsIQd7JU6/UKfpFTk+dxhAGFxcu8r2z33tp6XjrnXUAmr0mEkmtWHsq0Wy9s/5aBLqj+iul5EHrAfdb99XnKQnxQg8/9JFIVrdXWdpZYqG2sO99LefKtIatLBnwoFip0WiOl1d61nDUlxGN5u3nZQhlbzIWcPgs/E+udxge8P9GiWMAIY/eNU7S5XZa7o+Av8fhKXRj4S5inKRwtHAn0nLGIevcyzeBPwPuAlNpe2vsJrydSJffBWbS8kfxLeDHqLS4HDBCyYPj5x5KngtRaXaT6XZ/6zFt7sVCpcK96BfDr6NUdlz7TqPRaDQajUajeXHSCQRJEonnReRyFqYp+J/+p3cxDMkXX2xz61Yb0zSoVHKMRiHttkcUqfOfKErY3BwwHIa4roltm5w6VeHkyQqOY+I4JsNhRBwnxLFHkkhM08AwjFSwUwkKlqWWmaaBaQpmZwtPJWJ5XsSDB0OiKME0BeWyi22bfPjhDLdvt5mZKdJsDlhb6zEYhLRaHuWyS7lsMzdX4vx5NfBzZWUOyzIO3UfHzdJSjY8/vg9AvV5iY6PP1atNarUc5bJLr+fTannZ669a8HtRrlxpcOPGDkkiuXlzh0ajv29M8N27bep1te+vX99mYiLHxYtzr6/DGo1Go9FoNF8xpJR4vRb+oKvSzTSHsztrx1EFdsuNywiBYTuYpo2TLxGOBkiZEIU+MkmycgIBQp3jCMPEdBxK0yfIV6eQUYQ3aCMlJM/6/ggDw7YhiTAsh3xlkiQKaK/fOVRWk1Jy/8pf0Hq4CkAUeAzbW8RRiGlauKUJ/H4bgFypil0ok8QRpmVTnJhOZb9rFGozCGEQ7TRw8sVDu+bkS/j9DnGkBr7FYXhoOY1Go9FoNBqN5k1AyOcTBZ633tuKEIKLixe5cPICq81VleIWBzimw3x1/qVJDsfB3gS9CycvIBBs9be4s30HEsg5OYIwIIgCKvkKruUSRAHSlirZy3Lo+30lzoTqXM80zEekpONKF9O8nRwlU+79XBzH5yQTyNJhqgkJJBCKEDMxM0FrLH/t/ZwCmVgnhNhNeZNquWu5mIZKcLuxeYOSWwLgYfshq81VNSZfqqQ9UMlpURIxCkZESaTS6hK1L9rDNieqJ3h37l2milPcat7ieuM6iUx4d+5dWoMWO4MdlmaWuLdzj0a3Qckt0aevUvOkJJEJhmGofiYJUkr13FDPTWFimRaO5TBZnOTXPvg1Nrub9Lye2u40FTBn55guTRNEAZu9TWQiKThKnMs7eXp+j7nKnCpzIP3tSdKaQFDJqeNGlER0vA6jcETezmfvVZRERH6kZMtUXBuLeLZpYxom89V5HNshZ+fY6G6AUImeVx5c4cLJCwCZwHxz86YqA9SKNcpumZ7fozVoPVI3SqJH+h/LmL7XZxSOlAxYnOKDEx8QJ/E+Ye84OJgCutHd4OraVSVi5sr0vB6tYQshBO/U32G5voxrufwv3/tfXuq/KWNhbCyQld3DJ699U0Szw/orpeR643qWSBfGIXEc40UeJupvYxgMub11m2EwZLm+nEl0PU8lAY6TAcdJgRqN5uXwZn5DPsBBe1qLeJo3jyoqFe156r2NmE8u8kz1/j1wHyUhjm/aCfanmo3/7oO03P203t8+pL3qnvJ7U+jkIY97yz3u/fg5SmbLoZLoBnvq+sBNlGD2/bTMz1Hy2WEso+Sz68BJ4AHQRYl0NmofhGk7J1GH6rO8PqnrTZfKIr4+gp9Go9FoNBqN5utEkoCZnkZJKSmXHer1Mnfvtmk0+mxtDYnjhG7XJwzjTIaTaQqDlGo86WgUYhiC7e0hhYKNbRt8//sLdLtTPHzYY2triOOY6QyEgiCIME0jFeskrmthWSrFYXq6QL1eeioRKwhiLMuk21UTsExOqseFhQrDYUSj0c9EO4By2aFWy3P+/CTLy1MALC9PsbLypDTuXaIoYXW1xfp6L5P55ufLLC3VnkrCsyyDixfn+OSTh5nA12j0abW8TJwTgkwyg1cr+L0IUZRw+bK6eXPz5g4bGyqF/aAcOF6+vDzFlSsbXLgw+1Zsn0aj0Wg0Gs2bzliY2lq9CnJ8/1Pf8zycg4Lcwf0kQRiAQAh10iQMEydXpDAxTf38Cp3GPTobd2EAURRAOrAra14YWG6O6txpJk6cJUki+s21XSHvme9HC+xcEST4vTYb1y9z8sJ/c2TaW3P1MyXPSUlrbZVhq3ngHrhQnxHDwOt3cEtVqvWz2aum7TJ99n1kktDdfABAMBoc2rNgpL7jm5ad1rWfcdu+miRxRHv9DoOdBnEYYto2xck6E/NnMPYMCnvachqNRqPRaDQazevAMi2W55ZfSwLP87I3Qe+nd3/KT27/JEuOGvgDel4P27TJ2TlawxadUQdDGFiGRcEtsDPYwTZshC2Ik5ggCkjiJBOQDgpKGs1h7E1TexGJTiIxDZMkUelzUqY5eFLiRd4Tx7tnop8EKSSWYSnZLpFK0glU2tVHX35E1+viRZ5KabRyTBYn2Rps8bD1kInCBJahBJ1YxsRxjGmYKokPlbC22dvk07uf0vf79Pxetv0/u/czQAl4O4MdFicXGQZDmn11rcIQBjExptgd/+va7q5UJwykkFmy31RpijAOSWTCdHmaMA4xDZNKrrKb/iclURyp/WYIiCFMQvzIp+SWKOVK/PTOT/cluJXcEp89/Ax4vLTmRR47gx2mS9O4losXegyDoRLnkohROCKO493EwjBQArLlUHAKVPNVzkyfwbEclmaWuLZxjUanweKkSvpcbarJkII4YBSMMmHqgxMf7EtN2+pvcXXtalY3TmJ+fPXHTJYmubl5k/XOupLB4gDbsImSiGEwVNsxanFi4gTNXpMPT3yIbR3PtZyDKaAIaHQatIYtWsNW9pmoV+ucn1HXs1YWVl66kD0WxsYC2fjzeZA3RTQ7rL8PWg8yobPZa9IddRkEA8IoBBM830Mis20oOAVOTZ5iq7+lpEVElkA4X51/Ldul0XxdeCVXdP/6X//rLxQh2mw2uXr1KkIIyuUyv/RLv3SMvdNojoN3eT6B7t3j7sgr4nlPMo+q93+lr3VQMpREHZ4Oym5R+tNJX/+/OFygGx/a9g7wG7fDnvY4UO6oQ2IE/Ay4AdwDCnv6M27LSpffQ4l4OVRy22FtWmm//3hPv1oogS5BSXQVVCLdDFBPy+ubcPuRwBXgMkqc28s14GOUxLjCfhlTo9FoNBqNRqN59TwxQOEI4hhAEoYqTW52tojvl7l1q4WUkp2dEaNRlKXFqXWp8wwpZZokB8NhSLnsUKm4FAo25bLD6dNVVlbq/PznDRzHJI4lpikIghgpwTQN8nm13LIEpZLDN785i22bTyVieV7EaORRq+W5f7/D9vaIra0h09MFlpcnKRQsPv+8Saej0u9c1yKKEoQAyxJ861snWFmpP9U1JSklV640uHx5gyDYf+557do2H398n4sX556qvZWVOu22x/Xr2ywvT7G4WGVzc3+6Xi6nzs+eVfB7nayutgiCmNFIyYsAH3www/R0ISuztTXk6tUmjUafxcVqVm8sNGo0Go1Go9Fonp+xMOUPe/jDDnGsB/QdiTAQqFnUjxzEJlEDrKTEsB1Kk+p7+ezSBabPvEd+YppcuUZ7/Taj9hZR4BOHAQIwHQc7V6I0Pc/EibPYuQLD1iZIiWm7aRfMA4Pc5GNP6ISAyB9h54pEwYhBe5P+1hoT82ceKZvEEZu31ICv1toqgx11j9EtTeDkiwSjAX5fJeEVypO4pSqRP6I8s4Cdy2XyVnv9Dvev/GcKE9P0Nh/g99uMujvkK5PZukbdHfx+ByEExQk1iKs4+Xacw7wspJQ0Vz9j89ZnxOH++0s792+ydvUnzJ67wPTZD9m6/fkTy80sXXihsRAajUaj0Wg0mv0EyfOlyTxvPc3rQQjByqkVtvpbLEwu4EUeXuTRHrYxhEEYhwRRkH3XllJSzpeRocS1XAa+mkBkojBBz+uphLr0nM1ACUOGMDKZSaM5iuP4fEiZ3qcVYAoTiSRJ9qS1yYREJpncuVfaGwtlhmFkCXXjxDohBFES8bD1kIc83Ndf13IJ45BRMMIyLXYGO/iRj0BgmRaGY+CHPolMMKUS3xrdBlv9LU5OnCROYgbBIFt3vVwnkQl+5JOzckyVpjCEwWZvEy/0VMpnOtRVoORVIQSmYWKbNoTqOk2URJlYt9XbwjRNXNul7/dZnFykPWqTt/IU3AJfrn+JaZjISP1dV/NVasUa52bOUXALjyS4/Ycv/gOVfIUgCp4orZnCJIojpsvT5J08G50NKrkK28NtTEwSkRAn6v0IZYhpmuTsHKVcicWpRYQQLNQWqFfqbHY3aQ1bbHY3WZxaZL2znq2v2WsikdSKtX39AJguTVMr1LK6ruXS8TpZfxrdBqVcicniJGEcIjxBFEe0hi2SJGGyMMn1xnV+9JMf8Q/+m39wbNce9qaALteXWZxcZLO7maXxzVZmydk5QO33lVMrx7LexzFfneda4xoz5Rnubt+lNWix1d965L19U0Szg/3d7m+z3l4nZ+do9pp0Rh380Mc2bVzbpWAX6PsqzfHG5g3q5TqdYYftwTbdUReAerVOzs7hWi5LM0uvZbs0mq8Lr8TG+Oijj16o/nA45Pvf/z6ff/45g8GA3/u93+OXf/mXj6dzGs2x8F3gPz1nPQ08RKW4DdkV2xL2S27jL38yLVdK6x3GeGCfjZLjEnYT7cbPx20ZaTmxp95BVtOfByh5rwe4QHFPmSBdPt6eQlrnqNl9LgJt4E/T9U+iUuhiVFJfBZV4twD8DY5Os/u6IoGPUFIjKPmwyW4C3Wy6/BPUfr6Elug0Go1Go9FoNG87UoLnRdy61SKOJYNBQL8f4PsRuZxFFAkMAxxHXe4ZjUKSRA3kTBJJv6/KF4s28/Nlvve9BfJ5iySR/Jf/ch/fj7Ftm2JRpdQZhoFhiKzOd797glOnqkRR8lQi1uefN2k2h0xO5imVHPr9gKtXm9RqOUolh9u326ytqfOoYtHGNA1MU1Cr5ZDy6b+/Syn56KM73Lixk253RLO5X3gD+OSTh7TbHpcunX7sDQYhBJcunWZiIpeJgmOZbIzrmqysPJ2Q96awvq72dbM5QEolPO59z0AlDNZqOVotj83NAYuLVdbXe1qg02g0Go1Go3lBkjiicfMX9JoPadz8OcGwj06fewxJhBQGjGdhPwyphDbDtDBNC2RC7eQ5aieXcIplcqWqOheKfIJhH2GYGJaFjGIMy8bK5YkCj1FvRw1IC3ycQonAGyGEwHLzxP6IOI7Smd8f0xeh2gZI4pDQT0jCkF5zDWE8mubcXr9DHAZEgcew1QRg6vS7j4hv23evMepsUa0vYNZmmDhxel+a3cT8Gdau/gSAQm2Gwc4m23ev4ZaqOPkSwaiP3+9kr5tODtN2D5X6juKrlr42ToJsPVSzxUeBx7C9RRyFmJadSYbrX37Kvct/geXm08/H0eW8fodT3/zBW3NuqNFoNBqNRvOm87zpYTp17O3jyv0rrG6t8o0T36DZbXJr8xY5O6eSouIIpEq5KjpFBsEAP/KVWITAsRy8UKV7FZ0ipjBVWhdkwtJYxANAQiSj17i1mq8qEkmUROMn+4Q8mUgSoa4nSCmVXCd3xTlQMtr4dSCTuqRUqXHjcsaeMAlDGERJhB/5AOTsHDJRsmglX6FWrOGaLn2vT9fv4oVeJkclMskS2EbBiCiJCKKArd4Wrq0ktpyVoz1qY5kWU4UpNnobCASRjNQ2kWT9SWRCIAMSEkyUtLbZ2yRv5/nZvZ9RcAvUCjVKbgnbtDk5cZJvLnyT6xvXma3MIqWkNWxhGAbz1XnOzZxjub6MEOKRBLdmv0kQBepY8ARpbZycJ5GcmznHqclT3GzcJO/kGQRKwO2Nelmin2mYVPNVFmoLTBYnqVfqLNQWACjnyiopLlLHmPGxBsiWld3yoZ+PvXW90CNKIpq9JjvDHWIZU3SLbPY26Y662XsdxiFDf4hpmJybPceV+1f4xslvcHHx4pM+jk/F3hTQy/cvA7A4tbivjGu5rCyssHJq5ZVc71iaWeLjWx+DA/VKnY3uBlfXrlIr1CjnyvS8XpaQ9yaIZgf7e71xnUavgWu67Ax3COOQvJ2nVqwxVZoikQnlXJlROMILPPp+n2E4xBAGlXzllSf+aTRfd96Kv7BCocAf//Ef8+1vf5skSfiN3/gNPv/8cxzn9URvajSP8tkrrve6KQKD56x3GBLosyu2ceD3cZm9rz3u5nKCEuz6KBkNlCg3/hF72jdRAlvxkHWOeQDcRwlyPZTk5qAkuRzgpeWG6evdtM4DjhboBPBDVMrcXwFr7CbwWagUu5PAt9AJaodxBSXPJcBNoMH+z8NdVHLfeeA6MIGWEDUajUaj0Wg0r5NnTZ7bixDqx3EMXNdiY6PPYBDgeRHDYYiUEMcJcZxgWQb5vLrcEwQxQkhyOZMgSAjDGN+PCcOEu3fbFIsOf/Znd2i3PVzXYjSKGQxCbFsQRRaOI3Eck3q9yDvvTPGNb9TJ5SxsW51nPUnEmpzM0W7n6HZ9ZmaKRFGMENBqeXz55RbdboAQMDVVIJeziOOEkycrTE4WiOPkqYW3K1ca3LixQ5JIbt7codHo79vfd++2qddLnD8/yfXr20xM5Lh4ce4J+1xw8eIcFy7MsrraYn29lwl58/NllpZqWNajA2FfFVGUPHO/xsl848dy2T20XLns0mp5j5TXaDQajUaj0Tw/rbXbbN3+gt7WQ/x+R8lY+rL/43niSZSa9lwIA2FaxFFIbXGZ7uYDhGkRDLsMW03ylSlOvv8dejubhMMeXq9FHIcgE2wnRzjsIypTuKUKlu0SeEMlTRkGUsZIP00rOELoE4aJaTvYuQJJEhN6QwzTIvRGxFFAEj86QHOwo2ZJH7a3kFLilib2yXMA+YpKnvP7HQbtLSqzCwx2GvsEOsO0mD13gfUvP6V2Qg0YGraa+P1OJs4JISjUZrLXZ899+FTi29OmtL1t6WvjJEikpLW2yrDV3Jc02Nt8oGRD26XbuE+1fooo9I8sVzuxROvBLXKlKrPnvvE6Nkmj0Wg0Go3mK4cpTELC56qneXuI4igTN241b+GFHnknTxiH+JGPa7lK0BEwCAaYhhJzxhJdrVBDCKFEoFQ4Gpd3TAfTMImTWKVbSUkQBVjC2hWdNJqXxEHhLZEJApUmZ4jdZUgy4U4i951zHmwLINkztlVKiZEYBEmAYRgMgyFJklB0i0yXp3lv7r0sgXGtvcYX618wCAY4loOUkt6oR5AEJEmyL+lOhko6G4gBXuhl8qplWEoEjCESEYbYTdaLZYwpTLW+ROJFHsIXtIdKwCu6xUwOeth+iG3YFN0ixVyRmfIMO4MdDMOgkqvwjZPfYKG2kF1nOJjgFsURnVEn249PktbmKnPknBxe6HHhxAUm8hPc275Hs99U0h4GVVEFCaNwRMktcXLiJKcmT+3rR89Tk5Q6lnIWHHPXXRgv6/k9DmNv3b7fxzItvMCjNWwxkZ/I0soACk6BnJUjjmO2o216Xo9mr8lMaYYrD65w4eSFYxOrhBBcXLzIhZMXWG2ust5ZJ4gDHNNhvjrP0szSK5W4LNPi4qmLfHLnE87PngcBjU6D1rCViXMC8caIZgf7e791H4FgZ7jDwFd/azk7RyVfYbo4TbPfxLEchsGQntfDsRxKbolKvsJ3z373lSf+aTRfd94KgQ5gZWWFf/gP/yF/9Ed/xOrqKv/iX/wL/uk//aevu1saTcpPXnG9180pYPM56x1GAZUcdpC9N9wOniAEab3DGKDksyZKjrNQ4lzIriTnsptMZ6blj5IC76LENh8ly+WBeZSkN6af/ozScmFa73EIlNR1AZVWt85ugto8sMRbdJh+hUTA5fT3m8BG+nsNKKMkxtae5cso4e4Cen9qNBqNRnMcROjvLhrNq0cIgW0bdDoeo1HEYBCSJJI4VudK4+eghKc4lhiGuuFhmiZCJBiGgedFJEnCv/t3t/jzP7/HcBjSanmYpoHjmHheSBSBZUmEgErF5XvfO8m7704jhGBlZY5mc5CtBx4vYtVqeaIoQQgywevnP29gGILJyTy+ryTAwSCkUnEYjUJ+8pOHTy28RVGSpcTdvLnDxoZKxKvVcpTLLr2eT6vlZcuXl6e4cmWDCxdmn0qAsyyD5eWpNyaBTUrJlSsNLl/eeERsu3Ztm48/vs/Fi4cn4zmOue+x1/MPXcd4+cHyGo1Go9Fono/nEd81Xz0efvZfGbab9LY2CL1hGhOtE+gez5P2j0AYBsK2sdw8hmXTXP0cIQT+sIdMYmy3wPTZ98lXJtl5cJNhq0kwGtDfWiMKfOxCCct2qM4tEgY+w9Ym1foiwVAlt9luARnHJHEMJIf0KJ3tRBgkcUQchlmZYWcb01ESlpRy3/fzOFSDgeNIPTr5wyegdPIl/H4nKzeut5eZpQt4/Q6tB7eonTxHZeYkgwNJaaajBuHUFs4xs3ThCfv12VLa3qb0tSSO2LylJjdtra0y2FH3Ot3SBE6+SDAa4Pfb9LcbeL0W+cokGzeukCtNIAzjkXLj+rWT59i89TnTZ95/K1P5NBqNRqN5E/mqpeBqng3bsPGyycyfrZ7m7WG1uUoQB4yCEY1uAy/yOD97nlEwYnVrFT/ysQyLntcjiAIEgjAJCeMQQxg0e02kUIleRUedU43CEYlMsA0bx3YwDANTmPiRT8/rESYhIhH7pCSN5mUhkZnEBmAaSjITQhBGYZaOdpg49zRtjx+TJMnkuljGWIZF3+tTyVcQQnCydpLN7mYmnyJhGA6ZLE5ScAps9bcAyNt5gjhASolt2QRRwCAYZOlscRRjmRaJTJQAiBIBpZSEMsykOpGo6wNhEuKFnkqVmz2HEIJfef9X+MG5H3B76za9UY8ojojiCNuwee/Ee5yafHR88d4EN8u0iOKIkqvG7T5JWnNtl1OTp1QCXe0U6511RsGIrf4WcRJzv32fX9z/BaZhstnbpOAUODd7jnqlnrW11d+iNWwhEMxWZgGYr84DcK1xjZnyDHe379IatNjqb+1LxDtY19v2qOarrLXWSGTCIBhkCXbz1flsu7xIJdVFSUR31CWRCX7ks9pcZXnuqECP58MyLZbnlo+93edh5dQK7VGb643rLNeXWZxcZLO7maUnzlZm3yjRbG9/56vzCAR3t+8ipaSar7I4uZgJft84+Q0KToHL9y8zDIaU3BIz5RmmSlNZmt6rTPzTaL7uvFVnlL/927/NH/3RHwHwB3/wB1qg07xBHP5F7OXVe91MHHO9Aoenvx11cjBOkDtKoKsAk6gEsnFinIE65El2xbwkXVZPy1eOaK+bPnppfZP98hzpczN93TtQ70lYKMnr9X8JfTtYRQ3WH6GS5wA+APbGcW8BV9PXF/fU0/tYo9FoNJrnR6Kk9Ms8OvnBNeBj1OQAOj1XozlOhNgfvBDHuzdSVMKcyJ4niUxT5gSWZSKEwLIESaKS6YQQuK7JrVstDEOwtDTJcBiyszNiNIoQAlzXzKS8ajXHwkKFUsnBMATLy1OsrNT58z9Xk4U8rYh17lwNwxCEYYJtm0RRwsxMkc3NAYNBiGkKFhernD07Qb8fPJPwtrraIghiRqOIRkPV+eCDmX2JeFtbQ65ebdJo9FlcrGb13hQp7mmRUvLRR3e4cWMHgNEootkcZAPxZ2fVDeKjkvvm58tcu7bNzEyRu3fbtFoeW1vDR/ZVq+UhBFl78/OHz96o0Wg0Go3m8byI+K75apHEETv3byKThMH2upKpEBiGQRIfdm/kMRw8QfhaI1W6W+ARSoEolhlsb+AWK4TDPgiBnS8x4Y+QUjK5cB7bzdNrruEPugjDxLIdcuUaYeBTqE5huzlylSn8QYd2FCJlQhKFRIFHLBMlPY73v0jT74SBYZjEcYSUCUIYgEDKBLdYZvvuNe7//D/vk8xMWw3sNS31GIwOn+AxGPX3lRvX24sQglPf/AG5UjWTwyqzC/vKmLbL7LkPnzot7mlT2t629LX2+h3iMFBCYKsJwNTpd/el/426O6x98Vd4/Q6Wm8fvdzAsmxPvf+eRctt3rzFsNanMnMza35sQqNFoNBqN5tn5qqbgap4N+ZyTjTxvPc3rYb2zDqBEOCQFt0DRKfKw9ZAwDrENm1jGJElCEAWZaBTFERKZJV4JUxDEAZZhkbdVgh0GCENQsAuUc2XWOmvk7BwiEkRRpAU6zTMxTlp7ViQyS0cc/25ZFoYwiI1YvSZUqtY4ie5ZGPcpS7wTBmEcMgpHjMIRlfzuWNgoiTANUyUyoq5LVXIVNnubDHyV8CgsQZzE9KM+XuiRc3L4vq9S5JwipjBVupwQmMLENm2iOFJSKwZIiGSEZViqH8GIeqXOWmcNwzD4n7/7P3Px1EWEECzPLfOdznco58uU3BJ3tu8wDIaHbufeBDfXdukMO88krQGcqp06VBKL4og//q9/TBAHXN+4zkZ3g2sb19jsblLOlel5vSz9rF6tZ6LT0swSAB/f+hgcqFfqbHQ3uLp2lVqhdmTdmfIMlXyFze6mSisb7GAZFrViLZPn+n6fYTAkZ+dwTAc/9tVxDXXcXJpZeiMS414GQgguLV9iIj+RJZQuTi3uK/MmiWZ7+7vaXMUy1XuZkODaLpZpYZs2C7WFLNGwNWhhCINqvspUaYqz02f54fIPvxLvn0bzNvFW/bWtrKwwPz/P+vo66+vr/OVf/iXf//73X3e3NBpUCserrPe6OSqp7XnrjRPinvYkIGE3We4wFlEym50+Biipbe+JjJH+jMtZ7IpWBxmfTOTYlff6PJpAN060yx2o9yR0isuzsZ4+NlGfmRr75TnS5zVUEt0m6r1dRwt0Go1Go9E8LxL4CLiRPh+h/i0ef3eZTZd/ArSBS2iJTqM5HqQEwwDThDCUdDoecSxJEolpCkD9bhgifa4kO9NUNxKDICGftzAMg0LBxvMitrdHnDkzwbVrW+zsjJBSiXNRlOD7Kr0ujiUbG/10fK7kb/2tZb7//ZMIIZ5ZxKrXS+RyFn/try1y/36HW7d2GA5DNjf71OtFvvvdE9TrpX11n1Z4W19XN02azQFSquS5vf0AmJ4uUKvlaLU8NjcHLC5WWV/vHdrem5wQc+VKgxs3dkgSyc2bOzQa/X1jp+/ebT82uW9pqcbHH98H1HuysdHn6tXmI2l949dzOQvXNVlaqr3S7dRoNBqN5qvAi4rvmq8W7fU7gFRJYmGo3mshMJ0cMhgh44Snuz8iEIaaxEImsRbpAKRExjGRHAEJcegjARnHCMNAJglrX/wV5Zl16ssXKc+cpDQ1j2G7dDfuYOeKFCdnmTr9Lu//d3+PLz/6P4jDgMlT7xCHIYNWAztfyiYuSaREpveCDNNEGAam5ZLEEUkcpe+tEvukTNT7bZiPSGbFyTo7929SmJimt/kAv99m1N15RNDy+x2EEFniW3Gy/ug+QA3YmT33DabPvP/CSS1Pm9L2NqavDXbUpIzD9hZSStzSxL59DpCvTGKYBkiZiYOGYR1azi1V8fsdBu0tKrMLDHYaWqD7GqITkjQajeb4+Kqm4GqenbFw8qrqaV4+URw9Inysbq0SJ3GWvlR2yuwMdxgFI7zAw499TGESxiFREqXnZEkmC8UyJpFJJg2NJTvHdDAwlChnSbzIwxRKHIriKEvq0mieBoHIJkKCZ5fcxuXH7Yw/s7ZpqyS3RCW4PY/UORbhxozb6ww7zJZns+V9v88gUON2LcNiEAyo5Cp0vS5+pCZDzVk5Cm6BJFGpaGEcIkKBaZqMwhFFp0jBLahz5DRpLogDokSNf05I9kmGUkoG/oCe18M2bBYnFxGI/RN/VuefOcHNNm1swybv5J9aWtsrvI3Ze0zyQo+bzZuUc2USmdDsNWkNW1k7AkG9Wuf8jDrfX1lYyUSni6cu8smdTzg/ex4ENDoNWsMW24Nt+p4SESuFCkmS0Og2+LUPfo0v17/ENMzsPeiMOpiGSc7K4UVeJhJW8hVMYRKNIgqO2vefPfyM/3Lrv7DV3yJKlKxYzVeZLk/z8a2PuXjq4hshlr0IQgguLl7kwskLb4UoOO6vYzn8m7/6N2z2VGKeIQxmy7O8U38HM72eu9XfouN1qOarfPfsd8nZOX64/MM3Iv1Po/m68eYcRZ6S06dPs76u5InPP/9cC3QazWth9ZjrdVFpcoenFhxOgaMT3k6hpLgWalB3mC7fe6IhUcl0ZlrOSusdxmL6upv+hCgZq4CS5TxgmC4fl7E5Wsjb2wed4vLsBAcej0pDKLP7GdhbXqPRaDQazbNzBSXPJcBNVMrr3u9Wd1GpvueB66jk4YuvtIcazVcVIcA0BYZh0u8H5PMWhYKDbRs4jonjmGxvj9JkOnWRNgjiTKpzXQvHUalyk5M5BgPVRr8fZPLc3FyRiYkczeaQRqOP78dZut1wGGGaJh99dIdczmJlpf7cItby8hTN5oDl5Snu3eswO1uiVsvtk+fg2YS3cZrL+LFcdg/dj+WyS6vlPVJ+zJueEBNFCZcvbwBw8+ZOltB3cJ8/LrnPsgwuXpzjk08ecv68GvzZaPRptbzs/RoLj+PXV1bmXrs4qNFoNBrN28iLiu+arxaDnQZOocKo18KwLAjBMEykTDBth5gQGcccLtGJdLlAmGp2fTWwSqOQyCRWKQSBJI5CIn+E5bjIRBL5HsIQbN/tMeruMLv0IaXpE5iWRWFihkr9FJXZBSbmz2A5OWbPXWD9y0+ZPHkOIQTb9xxGnW362zGOgNAbqbUmMUkcI4RBEock8Z5zCCkRhsDJlwiGXfxBB2CfZDYxf4a1qz8BoFCbYbCzyfbda7ilqqo36uP3O9nrppPDtF0m5s88dm8YpsXkwvkXkrieNqXtbUxfi0N1vzCO1KOTLx5azrTVeWUchwjEocl/qn5JibFpe+P2NV8PdEKSRqPRHD9f1RRczbMTyOcb3/O89TQvDyklV+5f4fL9ywTx/vfn+sZ1tgZbWIalznOFpDVskZAwCkdESZTJcYk8XDKSqES6sVhnCANpSGIZg1RS5dAfsjPYIZYxUfy2hh1oXidZwhvGC6UXSiRe6GEaJrZhZ//GvUibQggSmewT/LqjLjuDHRzTwYs8WoMWcRJjWzaWaSGEwDIt/DCV5+wcOSdHyS0RxRGxjAnjkDAOcSwnS4HMO3lsy6bqVGkNW/ihr/7W9mAIA4FKsjMNE8uweNh5yEJngSsPrnDh5IVMflqaWXrmBDfXcvnume/y6b1PH5HWnkZ4O+yYNJ406cbmDSzTYn5iHtuws+2frcySs1WgxnJ9mZVTK9n2rpxaoT1qc71xneX6Mqdqp/jFw1+w1loDAZPFSSzTYrO3iRCCL9a/oGAXMA2TmfIMXa+LF3j0/X7WR4Ggkq8wU5phrb1GrVjDtVz+4sZf0Ow1mS5PE8YhPa+X7edaocbSzBJ+5NMetbm0fOmtPw+1TOvQ1MA3leX6MqcmT1Gv1nEtl43uBpu9TcI4fCa5U6PRvBreOoFuNBplv29ubr7Gnmg0X2eax1zPYTfd7elmWVXlnSNeX0QN6t5iV5o62K5M2wnScuOUssM4lf6MUKly3T3tjqOjA1SiXSX9WeBoIW+8/o/QKS7Pg3PgsXdEud6Bckd9XjQajUaj0TyeCCX8g5LnNtLfayhhvYeS1sfLl1HC3QXewlNOjeaNwjDGF+0FYbgrxc3M2JRKDr4f8d/+t6f42c/W2dgYpNIbgMAwBKWSg+OYCCGoVtXvKtFO0O8HSAn1epFz5yZpNPqYpsHUVIFWy6PfD9Qsg4OQblclzO1NSHleEeu4hLcxjmPue+z1Dp+YZbz8YHl4OxJiVldbBEHMaBTRaChJ7oMPZh5J/XtSct/KSp122+P69W2Wl6dYXKyyubl/W3M5dexeXp5iZeXwhAuNRqPRaDRHcxziu+arRRyGFKpTkCQIYWBaqTQXqQF9QhhIkRxIlBO7DzIdBJUkSFOV1wbdAWRCEoOZDrw0LJvIGxIMu/SRFGozjDrbtNfv0N/ZJPJHGIbxSLLbzNIFvH6H1oNb1E6eozJzkn5rk+171xlsb+D1u8Shj9drAyEIQRKFSJQUKSwL07RxixUs2yEYDYh8jzhQ50ljycwwrUzWq51QA2WGrSZ+v5OJc0KIbIA4wOy5D19JmtXTprS9jelrYxHOtNRjMBocWi5OBxGapk0SR0eKccGov6+9o0Q7zVcPnZCk0Wg0x89XOQVX8+wcFDJedj3Ny0FKyUfXPuLGphobNwpGNHtNgijAsRxydo4ojhgFo13ZJ0zTlwQkSUJMTJzECMSRyXFSSCURJUqii5KIwAswDCOTS6IkIk7ifQlZGs3TsFdue5H0QonMkuySJCGQwbF8HveK5uNkuDAOaQ/bKiEujgijkIJbwDEdEpngWi5SSsI4pOgWiWOVBNkb9dTfp+mQt/NsD7aJYpVyJoTAD32COGAYDPHC9H4wYl/KnkCAAMMwEELQGXUQQnB76zYnJk6w2lzNhCjLtI5McHucDLdyaoW+38+ktcXJRTa7m9mx5Sjh7XHHpJyV40T1BJu9Tdbaa9QrdZbrywihZMDWoMVUaYogCvjz63++Lwnt0vIlJvIT/Ozez7i2cw0v9JgsTRLGIV1PBYScmDjB4uSiem+iNq7lIoTg9NRp4iRmFI5wTZdSrkQlV8EyrUyqqxVqrDZXub19m9nyLA/bD9nqbSlxUgjydp6dwQ7NfjNLGpzIT3Bx8eILf740T8/zfp7fpDQ9jebrxFv1l9fv9/nyyy+zi4ulUukJNTQazcvhee/MHlVvGfg/UQLa01zMMFDC2VGzC6yiBncH6TqPWu/4tQAlsq0CHxxSbin9GaIGh8v09xG70p+FGkBeBU4C59I6R/EyU1w84D8CX6Z9zAPvoSS83FO28SYzj0rom0HtpxZKgpzeU2YrXS7YlRHnX2EfNRqNRqP5KrGK+r40Qn1nAfWd6eC/vVfT1xf31Hs7ZoPSaN5EhFCim5SSOJYkSZKly0VRTBwnuK7F/ftd5uZKSCnpdALCUJ1Tua5FLqcG7+XzFgsLZWZmiqyt9fD9mMEgwHFMarU8rdaIbldNEhIEMZ4XEgQxvi+JooTPPmsSxwlnz05kCSnPK2Idh/C2l/n5MteubTMzU+Tu3TatlpL9DoplrZaHEGQy3Pz8bpL125AQs76uJghpNgdIqQbg791GeLrkPvH/Z+/ff+RKEvtO9BPnle/MynoXWSx2F9nVj2E3ORqNdqyW1F5bglbGXsiWr6+99gJe7IUNWDDsa8CQ/wHDBvSL/ZMALyDAhiVd7TVs70K7sq3RoyXNtGY40yNyppvdfD+qyHpnVr7PKyLuD5GZrCKryKpischmx4cgsjJPxDmR55zMPI/4xFcIPvjgNCMj2WHH/oFsNyCTcTl//sWl7VksFovF8kXnqMR3y6uD6/sIxyFXHafbrOF6gbl0rSSp0iiVMhz0b3D4pXn42uAFbRw74bD/8Qi/RAgEjuuC1sg4wvF8krBH2NpCJhF+No/qd7zMlUcZO73wWLKbEIJT771PtlgZduCuTM1RnjxF/f5NaovXaa0vA5D0OiRR12wG4YBw0GmKAqRMUUqiEWwt3wWgMDaNn80xMvMajuvtKut1HhFw3MDc06nOnmFi/tyxrMf9prR9EdPXCqNT1BZvkB8Zp7W2RNTeotesPZaup6SCvsDY2VxBqXTXclHbdAR8VMS0vPrYhCSLxWI5el7lFFyL5ctIKlP+7x/+3/zp9T8lUQkrjRXCJKSYKQ7vO2it2exsMlYcQyDY7GzSiTq0eq3+KbARjrTWTxSXlFZGsusnccVpP1VKCZNO1xfxDoOD80zSlMWyGxo9lOcEz3YfbiCvaTSe65HxMwRuQD7Igwbf9Slny1RyFTpRhyiNqOarNHoNej0zuJAjHLpxl1bYwnVc8kGeOI3RWuM6Lrkgh9aaXtwzQp5MhkLqo+l5g8+j67g0wyZSSfKZPLVOjY32BsuN5R2JYo8muO0lw0klyfk5trpb/P5nv4/v+EyVpthob5D1s8yN7QzOyHiZoWw3+M65vHiZ62vXUUpxY+0Gq83VHe0XCCZKE4zkRmiGTZRS+J5PrVujkq+gtOLO5h0Arq5e5aObH3Hh1AXOnzrPhbkLpCplqb4EwL3aPRq9BjkvRzFbJExCvn/n+0yVpzg7eZbZ6iz1bp1e3KNaqOL0HCIZ4cbuUG7M+BmmylPD+Tk4PKg/oN6to9EEXoDnejR7TVKV0ug12GxvstHaYKu7xVvTb5ENnn9f4VSm3Fq/xXJjmVgaAXO7YPhlYr/7MzyeZmixWI6XL8y3k9aaf/yP/zFRZDpQCSF4++23X3CrLJYBLvsTv3ardxwc9k7qcXWUOwEksO8TTtUvf2KP6d8GNvt/P+19D6Zv9uvtJtB5wFeBCGgAyxiBbvu8Y8z6eg94AyO77fUV+7xSXBTwH4BvYiS67XyvP+3ngL+BkRD3S4rpAL/Mw4S8GYwg+CJ+RuaBj/p/T2HW0xUeX3+D6Vkgw5OFRovFYrFYLHuz3H9cxxz/VNkpz9F/XsX8Bg+SfZexAp3FcngcB5TSqP5p0uDivlKa5eUOm5s9zpwZYWQkz9ZWiOe5FAo+uVwe1xVIqSiVMkxM5LlwYZrZ2QpXr24QRZKtrbBfR9DrJcN0t2YzpNGIiCIj6DmOAARRlHLvXpPf+Z1rfP3rJwgCh3PnJg8lYh2F8Lad+fkqH320CJjEu5WVNleurD+W8DKYns16ZDIu8/NV4GgTYtJUcetWneXl1lAknJkpMT9ffeY0maNM7hNCcOHCNOfOTT639losFovF8mXmqMR3y6vDQNqZmH+Xxspdkl4Px/FQjocjFCLIIeMIPbzPZEQ6IVy0kgzvRWzz66w89ygCjSJNYlzXRcYxQbGElwUVR8gkQasOWmuKo1NorahMnwYeT3YTQjB55l3GX3ubreU7dGqryCRh9NRZTrzzdT75r7+BSiJkEuOkPlqZtAPHcXC8wCSId9vIqIfrZ0g6TYJ8EeE4rFy7jJKSyTPnmJg/95isV56c3fGuXD/D5JmvMDF/7tgGt9ie0qaVorn+AJkmaJkiXI9MoUyuMvqFTF8bmXmNB1e+B2DkuNoam3evkilWCHJF4l6bqN0gyBVQaYyfyZlp2cKu5QbzeVTEtLza2IQki8VieT68yim4FsuXiSRN+N0f/S7fvvFtLi1eAqATdUhVCgJKmRKnx06TC4wI4zou6611JkoT1Ht1HGHuTcRpbBLb+2fB21OudkNqidDiMRlmIOIdlmepa7HshkbvkOaOah9zcChnywCcnTzLSH5kKLKVs2VyQQ7P8Wj0Gviuz831mzR7TcIkJOcbQS5RCVprwiQkkQm5IMdIbgTP9WiFLUYLo6y2VtFy9zYP3pvSilSmuI5Lo9cgXAkJ45Dp0jRfP/31HXWEEMMEt8F3xnYZTmvNSsPcx3WEw7W1azvqu8JlqjRFJVchUcme8lYq0+H8b6zdYKVp5lktVCllSrSiFvVOnbXWGo7j8MbUG9zeuM3psdOMFkcfS9CcLJtAh4t3LrLV2+L9M+/zyf1PmKpM0eg1yHgZJkuTj81/pbkCwshTM5UZxgpjbLY3ubJ8hY32Bo5wCNyA0cIojnCYLE9yc/0mUps0zoE8N1WZopqrstHeYDPeJE5jukmXKIm4unoVqST/+vf/Nf/Duf9hh0R4lGitubx4mUuLl4hlvGPao4Lhl2XAVqkkM5UZbqzd4OrKVTSaSq7CyepJXMe4ArvJnRaL5fg5lit09+7dO3AdKSW9Xo/19XV+8IMf8G//7b/lk08+QQgz+nq1WuWnfuqnnkNrLZbDEGASOQ5T7zh42QW6dQ4uEzr9ervxTYxMtj19TrBTGts+XfeffxP4e3vM8z3gjzBi2ruYlJUHGJHPx8h84/3pYb/8XjyPFBcF/GvgB/3n3X7dQfsG6Qi/g+nM/o94ukSnMeLepX57t3MVI7FdAM5zfPsKmJ+uC8BFTEIfmPda56E4J3iY4AemjfamlMVisVgshyN+5HF3icW8Xt+lvMVi2Q9CsCP1TD7iPZlRNo2kFQS6n5a2xdhYxFe/Oo1S4PsxhUJAuZxhdrbM179+Atc1x/2ZjMu5c5OMjGT5oz+6TZIout2YMEwIApdczmdrKyJJzCid5j/4voPnObiuYGsr5Pr1Gt1uws2bNd58c/zAItazCm+P4nkOFy5Mc/Hifc6eNR0qVlfb1OvhcD5CMEyQAzh/fnrYrqNIiNFac/nyKpcurTwmrF29uslHHy1y4cKzJboddXIfmHW3sDBmO+pbLBaLxXLEHKX4bnk1GEg7pYkZShOztDeX6dbWkGmMUila9UfsHqTODUbjV+nOGWmNkiloxybQPYYGLdAyRWqF47gkvQ4IgdIgUMg0RoTg5wpkSyP0mnVm3/3GnslujusxOnt2R4fs2tINXv/vfp7bF79J7/oPASOOOV6An8mjZEoa99BKol0HlcbINKWxchfH9ciWRpBJzPLnPyBsNzj13vu7ynqu71MYnRqm1T0PlEx3XWauMoa+dx2ZxjRXF1FKkoZt/KwZ3KRbX2P9VkgahWRLI1+o9DXH9Zg8c47lz39A9YQZdLFbXydqN4ZCnBCCwugklek5mquLTL9xnjSJdi03SBiDx0VMy6uLTUiyWCyW58OrnIJrsXwZ0Fpz6d4lfvt7v839rfs0e01q3RqdqEOj18ARDvPj80xXponSiJH8CG/PvM1ny5+x1lpDKkk1X0UgSNKEMA2NgOO6ONpB6qdfM3lURDoKMckKdF9cniZdvkieR7sc4TBWHGOsMMZffusv04mNuOo53lDg+ercV/nR0o/4vSu/x6nRU7SjNiuNFba6W3iuR8EvgIBE9X+LvYDZ0VmEEETrEYEf4Apz33G39Lnhe9MQyxhXuaaujFhrrfGd29+hl/a4s3mHt6bf4sTIiaHodmHuAudOntuRZOY7Pvdq95goTeA67q4SW9bPstpapZKv8LNv/+ye92Fvrd8iljG9uMdq0/TXfefEO4wXH/bX3WhvcOXBFVYbqybtrfGAnJ+jFbYeS6u7u3l3mCZ3bfUajW7jQPOfG51jqjxFPsjjez7TI9OESfhYWlmj26Abd8n7edZaa2g005VpzkycYbW5iuMYcbLerdMNu2it2WhvMFYYY6OzMRT8Plj44EhlLa01H179kOtr1wGeKhge9fIf5UWn4O0mE85PzLPR2qDRbdDsNXlz+k1++uxPc2byzJcumc9ieRk5lk/ha6+99sxffnpbLzIhBL/yK79CJrP7TUeL5fiZBz49ZL3jwGH/6W6P1jsObrJTdnsag3I395j+oP+4vUOhu20Zov883VYuv63ebvywX+Y14PtAE9h+wa7Zn+fXgFy//IU95vU8Ulz+A0aeU8A1oMbO9bkMjPbrf79f/m/uMS/6dT8Ervef9/rtHSTQTfZfvwhsAR9wvBLd+f5yrwFnMClzdzHbMgOcBk5i9uGFfnmLxWKxWCyHI3jksbVHudYj5Y5rsAiL5dVAa5M6N/hb68enm0dNHEu0NnLU5maPP//zVUZGjID2S7/0Fr1eyuuvjzA1VcRxBGmq8DyHb33rHn/2Z4vU6yFRlBKGKa1W3E+6U2gNruuQJAqlNJmMS5oqfN8hiiRpGtJsRniew5/+6T3efNOcxxxExHpW4W03zp+fYmsr5Nq1Tc6cqZLNety9u0UUSTIZl9OnRzh5soTjCBYWxjh//mHHzmdNiNFa8+GHd7h+vQZAr5eyvt4ZioSDBL2LF++ztRXywQenD3WN7KiT+ywWi8VisTw/nof4bvlis13amVm4wIPPFUmvC3SIZYLWygxg4Xkopfq3Mp5wT0cd5n7PlwFzIqWlQmqFkim6vx6FcEE4oBWb967Ra9QYOfE6s+/+5IGOzzu1VVzXozQ5S2NlkcQPkEnc/x8CAsdxSZUiDbvmPM/1SHodWhv3cX0f1w+onpinvnSTbLHC5Jl3d5X1nhdaa9ZvfcLazU+Qyc7Bj2qLNxCOw/Ln30emKX4uT6+1Rf3+bRzPxwuyOK4z7Kju5wo4fmbf6Wt7SXvlyVmaa0vHIhBOzJ8jbDeoL92kevIM5YmTdLY2kGmC6/kURsZxgywAucooXpBDCPHEctXZM3uKmJZXD5uQZLFYLM+H7Sm4AHGvs2u5L2IKrsXyqjMQKf7w8z/k/tZ94jTmxtoNtnpbJDJBKYXneizVl+gmXd6cepPV5ir5IE81bwZPzPpZ4jSm1qkNJR0pJEma9AeY3LtPoSMc1JPOoS1fGgZyFxiBLtXpE0q/WjiOQyEo8K/+X/+KSr6yp0j0lZmv8Ge3/ozbS7dphS0jhQmI0ogwDUGD7/qUc2Vyfo522GamMsNfvfBX+fDah/iuj8AMxDromrqXvCq1BG3S8Tpxh83OJsuNZb5141tcX7vOwtTCjpQyz/VYmF5gYdr0j7107xLX1q4hEFxbufZUiW0kN8KFuQu7rp/lhumvu95aR6OpFqo75DaA8eI41XyVWqfGZyufUclVuPLgCn7/mONJaXLfuf0d5kbn9jX/erfOWnONubE5TlVPMZLfPX0PYDleZqI4Qa1TQ6MJvICR3Aj1bp1m2ASMrBglEUopwiRECMGdzTvkgzxnJ56+bg7D5cXLXF+7jlKKG2s3nmnbPAsvQwre02TCubE5sn4WpRXLzeXh/m2xWF4sx6qxPulA9mkMvry01vy1v/bX+JVf+ZWjapbFMuTGjTMAnD27l5i1F+VDLvGw9Q7KYU8G9qrnHXKee33lrGCS0g5C3K+3Gy5GpNr+nbN9JJpHv4t0v/xeHRRSTAqbwKTLjWEkLRfTMTzuz7/Yny4wyW3n2P09H3WKS4hJzwMjlG1uq18E2pgO7ZsYIe5N4PeBX8SIZ7txuV9WATeAVW7cyAFw9mwXI6sNEt6uASPsLQw+DwTwM5jkuW9i1gGY7aGBO5j94+f65WzcseX5cePGDQDOnrU3Pi2WR7Gfj1eFGUz67ATmGKCOSct9ND23jvnNndxWz/Jl4Iw5jeLmQU+jLMDO5Dkj0Yldr58IwTAJTilIEglohBA8eNCkUPCoVAr0eilzcxX+5t88x6efrnPp0gpRlHLt2ibLy22azZh2O2ZzsztMtANNmj68Aem6Dr7vkMv5eJ7D1FSBMJR0Ognr6x1GR3NcvboxFPMOynbhbWFhjLm5CmtrRjrLZJqMjGQolYyM96jwtvs6FPzMz8yxutrmm9+8RRia89UgcNEa7tzZYmWlzc/93Dw/8zNzOy6QP2tCzOXLq1y/XusnAtZYXW3vkB/v3t0ayoDXrm0yMpLlwoXp3RbxRI46ue/Lgj0WsRwldn+yHCV2f3q1OW7x3e5PXwwG0s7qVhdZPU2uvYWXySCaLmkc4rgeSkvSKASlHop0jzLooCR4fNQNy0OU2rH6NBK0Qqag0gQlUzbvXGXphx9x6vz7O84R9pK8RmZeeyiO+VlkEhHkCsSASlOUVGgtcV0PLVOUlGZ7OQIvyIDS+JkcndoaANWTZ1i7+Snjr719bMllWmu+883/k9bGClOVnEnQekQK6zY2zWt9uS6Nesg4RIcQYdLXvEyW4tgMrufT3njAwk//P574Hp4k7d39wR/Trq1SHJ2iOH5iuC1qizd4cOV7TJ45x8T8uSPr6CSE4NR775MtVli7+QkA5cnZHWVcP8Pkma8w/vpX2Lj96VPLHWX7vix8kX+7bELSq8EXeR+0vDrY/XAnhdEpaos3yI+M01pbImpv0WvWHkv4jNoNkxj7BUrBtRwcFxfJ44ljZzLmhtTNaPcbUu6e/b4sz5PLi5f5fOVz7m3eY625xlJ9iVqnRqpSlFYorfDw0Gg225vcdG5ydvIsS/UlJsuT1Lt1RvOjXJi9wH/+8//M8tYyruOiU40aDDijH6aJPZos9mWQ556271sMGj3cPxzh4GgHhUL0+w2+DIl0z6MtAkElV8FzPc6dPEcuk9tV0tFa8+2b32a8OE45W6aUKRGnMZ20g9bmnrNwBFJLwiTkZOUkp8dO47s+nms+w6lO8VwPpRVSyX2lQyoUcRrTjtrc27yH53jUOjVc4XJ26uyuKWWpTLm0eIloM2KpvsSKMv2EnySxXV66zLmT53ZN9xrIVXFqHkuZ3a/DlrIl7m3eI05jEpmw2dlkujL91DS5XtxjtbHKSmOF1eYqUkmurV6jkqswXhzHddzh/Ovd+rAdiUp2Td8biI9zo3P8/me/z0Z7w+zTjkMv6Q3rt8IWvbiH4zggwHM8AjdAaUWj1+DG+o2nrpuDMtg2ADfWbpht8Azb5rC8LCl4z0sm3M+5wotO3rNYvsh8YT4hWmtGR0f5Z//sn/FP/+k/fdHNsbyi/N7v/TwAZ8/+2gFrLh1yiYet96I5aoGuAbtc+Hgysl9vN6YxQp7g4R3mweP219j2WtKvtxu3MPJaDyNsCeC/4/FO41f60+e21dttxIBHU1ka/XoNzHr1gAomYW238o/yxxiBrItJngN4g4ed18Gk2F3HSHS9bfV+fpf5DYRBMPKcOcj9vd+bAhzOnq1hOsgPBMYFniwMPg80pv0NTOrffXZPoGsAf8LxJ+RZvkz83u/9HmBvblgsu2E/H68K88BH/b+nMMcAVzBpuSWMqF/fNj2L+T0+rrRly4vm5/uHlL920NMoC2D6vAph0ueUAqX0Y/1gB/JcPm+EtjiWRJEkjk06HEC3mzAxUaDRiHjvvSm+9a17w1S0mzfrfPbZBkkiWVlp0WzGCCFIEomUqp94p4ftAY3nOQgBlUqGEyfKrK626XQSwjAlTU2dW7fq+0qdexQhBB98cJqRkSyXLpnzirm5CgDr6z8kDGF8fJbz56c5f37qqReztdb88R/fpdGI+NrXTnD/fnOXBLoyjUbEn/zJvR0pcM+SEJOmatj+GzdqrKyY0Y8fldoGry8sjHH58grnzk0eWDx8Hsl9XwbssYjlKLH7k+UosfvTq81xi+92f/piMJB2/o8/ukgky8xmcnS21pBpDI5AK0kaRyglEbtFUg/QfXtODy26Y3wXX2C0BjRKpiS9Dj3HpbF6j7uX/oRsyaTAPS2Z7cGV7/VT7TRJHOJlsqRRiJYSTV96VP2EBClBgHAcHOGilMLP5VFKkvY6RJ0maRwRd9vU799k5MRrlCdPUZo48VxS1was3/qEP/vzKwAE7ZBufX3HAC7NlXv0WnWypSq1pRt9SbCIWx5FS0mahMgkwQsyDE7TlEwZO/3WnsvUWrN4+VvU798CeCjtJTGd2ipKJjiuT/3+TRor98iPTuH5wbBT/PLnPyBsNzj13vtHKtFNnnmX8dfe3lOWHGyD/ZazHIwv8m+XTUh6Nfgi74OWVwe7H+5kZOY1Hlz5HgD56gSd2hqbd6+SKVYIckXiXpuo3RhOd4PsvlNwLV88HMdBqsf7kf38iLkh9Wuru9+Qcpwv9/Xwo2S/nfIHIsVGe4PlxjK1To0wCfE9n7JfJkojOpE5XvIcj1SlrLfWmRs1fevu1+8D4DouH9/7mF7SQ2k1TLmC/v2rR05/B5LUyyRGPU+etu9bDEorHIxIpFDD/Wa7dPmogHncPI9lO8KhmquSD/L8yfU/4efP7dYf9KHoM12eZrOzSTfuAiZxTmqJIxyyfpZCpkAqU5pRE6UVI7kRPr73MUopMl6GJEnQ/X/7RWtNKlM2O5sIIRgvjfOtG98iVSkLUwuPiUW31m8Ry5it61u4iQtTPFViG9TbTR4MXNPvNvDMYytq7drOVtiil/TwXI9W2EIIsSNNTirJanOVe7V73Nm4Qzfp0ug2QECYhniORzNskqoU13FZaaxw073JqeopZioz3KsZ0XggF+f9PKlMH0vfG7DcWKaSq+A6LlkvSztqU+/WEQg81yOMzTVm13HxHI+Ml2GiNEHOz5Hzc/taNwdlsG16cY/Vpklof5Ztc1hehhS85ykTPulc4WVI3rNYvugcyxXdn/mZnznUhzAIAiqVCqdOneInf/In+YVf+AXy+fzTK1osx0796UWOtN5BOexN1L0+tz4PE78Owl43BhJM0tlBUOydWjcNOOze/l2HbO2X30ugW+4/rvfrV9kpz9F/XsVs0zWMRLfM7gLd9hSXSxjRbhKTFjfgRn8+o/1yg3q78Xn/cbXfvhI75Tn6z1cwHdxXgNf79XY7YXpUGAR4h4fr7l0OJgw+D7Yn5N3k4XsfJNDdxeyjLyohz2KxWCyWVwkP8zt6EfPbCua3t87D41nBw3RagPN8gcZrsVheOIP+sdvT6LYjhPnvug5SanI5lyRRfdlOk8l4xLFkfb1DoeDx8ccPWF5uMzaW58aNGt/5zhJSatbXOzSb0VCA833H3LBINdv76GoNUmpcV1AsBty716DZjFBKk8m4NJsRlUqG5eXWoQQ6854EFy5Mc+7cJLdu1VlebhHHkkbDxfNc/s7feW/f8tf2FLibNx+mwA0S6O7e3SIM011T4J4lIebWrTpxLOn1UlZXTce4d96ZeKzulSvrrK62h5LgYcXDJyX3BYHL5GSBbNZ89+4nuc9isVgsFsvzwYrvlqehZErcbSOEg1YmWRrXR2sFUu6jA9Kr3THwuaI1UiakYY+o3WDj1qeMTJ9m7PRb3P/kOzskr05tjW7DiF6ZXBE3k0PJtD8iuxlYI+o0+6+5oDVKSbSSRoR0HASCNA5x/QCtobV2n7DdIOl1qC3dIFscob25QmPlHmnUI8gVyI1MMDb3BifPfYPqideHgtaTkvH2I3EpmQ6T1GQaD5PwMsURk6TX69BcWyRsbSGTGMf10GlCcXwGP5MbzifudejUVonDLpNj01SmT9NYucvo7O6d/9dvfWLWq9bUH9waSnthe4tewwz6opUcrtOwtUW2NEJrbYl8dYLqiXnqSzfJFo3oeJQ4rsfo7Nk9237QcpYvBzYhyWKxWJ4PjusxeeYcy5//gOoJM0Bjt75O1G4MxTkhxPD4AGDyzFeszP6K4js+iTp4eqvvWGH9WTlop/yBSLHWXKMZNgnTkHKuTMbPACClRGlFL+4RJiFZP0uqUlabq1QLVTpRh4yXodapsd5apx22aUdtwiREa71rutxAnHOEg4NJGNN7DELzomUpy/GjUCaxUO8U5gb7wcuyPwz23Wdh8N5cx6WTdvAcj89XPt9VoNsu+nx892MAskGWXtIj42fI+tnhOvNdn1K2hJQSV7ist9epd+tGTFQK4ZjP325JoXu2VQiTLKk1YRKScTNEMuLm2k0cx3lMLFpumP66A5l6u8Q2YLw4TjVfpd6ts9ZcY25sjuXG8q6S1kxlhqurV5koTXB38y71Tp2N9sZj0le9W0dpRTlbpt6tk/NzlDIlMzhQbZEfLv2QjfYGUks6YYd21KbWriGVxHd9Xht/jU7UoRW20GimS+Z+9A/u/YB2r00v7eEIh9HCKCvNFW5v3uY3vvMbe8pOM5UZxovjjORHqHVqCCHoRt1hwmciE5RWpNKEoZSyJVzHZaI4wUxlhkbYeOq6OSiDbbPeWkejn3nbHIaXJQXvRciEL0vy3qvGy5rm97K261XgWNbehx9+eByLsVheILuPUP/86h0Uj71ls6fV243D3sjfq57H4QS6vdp3oj+tt8f0R5EYue/EHtPjRx53j3A2r9d3Kf8o88C3MRJd3F/+II1wkO43kPpi4B5GWtsrxWXwPgfbuLhHuSJGoBuU22v97CUMrm8rcxBh8KjZPSHv8RScF5mQZ7FYLBbLq8Z5TDruNcxv6xzmGCDGCOyTmOQ5+tPPH38TLZYvOOoJp0SDZLpeLwYEWru4rkApTZIopEz6KXWCQiHgW99aJE0VGxuLhGGKlBrfd4iiFM9zcRxBkii0FoyM+DQaEUkihwKdlBopFd1uzMpKCyEcHEfgONDpmMSF8fECcXzQJPHH8TyHhYWxoVB2/XowfH0/PGsK3LMkxHz72/cAWF/voLVZ5nZ5DmB8PE+1mqVWC/nss3UKhYBWK+LHf/wEMzMl5uer+36vT0ruG5DJuPtO7rNYLBaLxfL8sOK75VG01ty79C2idhMtJcJ10VKipBGtZNRFpwlPl+McBvdTRD9dQe+SzGDZjX70NwKZRkiZ0qmv0Vq/z+2L36RTXwetqd2/SX3xBr1WHd0/URNCEOSL5MpjNNeXUEmKSo30paIeWkegQSk5TLvTSqGEwHFctFI01xZx/QwCTRL3SOOINIpwG5u0Nx8ghIsbZMjW1ujU19i8d43x195m8sw5ANZvfbpnMt7kmXNMzJ974jlAbekGzbX7pElk0t/CdSZef5uRk/M4fXktjXo0Vu/R3lgGAa6fAQ2ZYgXX89FaUxidxM8VQGucfrJWp7a6q1y2XdqrP7j1UNorlInaDfx+EmMaRXhBhnx1CoQgyJeJu81h+erJM6zd/JTx1962neQtLxybkGSxWCzPj4n5c4TtBvWlm1RPnqE8cZLO1gYyTXA9n8LIOG5g7kVVZ88wMX/uBbfY8rw4bJKcTaB7Ng7TKX8gUmy2N9FoAi/Ad31GciM0wya4UMwUidOYXtIjVWZQkgdbDwjTkEQmjOZHuVe7R71TJ0ojI4QoNRTlHhWetifTDVLGvixJdJb9MdgPXGHOdbXWO0Q6gTBCl3BNUphwSXX61Pk6wsERDmj2VX4vBvvrszCYhytcXMcljEMyXoZesnt/0O2iz9LWkklmL01SzBQRQlDOlunEHeqdOr7rc3biLOvtdZphc5gimaYpqTT3iTNexgzS2he59mrjcH33pddckENpRSFTYNQfpRt1dxWLBgLvYFuWMrv31y1lS9S7deLUlH9U/B0wPzHPRzc/ggCmylOsNFe48uAK1XyVUrZEK2wZSRAjf3muSXMrZos0wyZXV67yo/s/ohk2kVLSjbsmcbOfOlcICjR7TT5b/ozAC3CEw92NuyzXl4epqolMyAW5oZyX8TLm+1HGe8pOg3afmTjDRmsDrTXLzWWiJEIqSZzGOI6D53gUM0WTVidc3pp5C4BG2Hjqujkog/kM5vus2+YwXFu5xmJ9kbXmGp8tf4YQgndPvssbU2/g9q9xrTZX+d7t77HWXKMbd8kHef7gsz/gL7/9l49MPHoRMuHLkLz3KvGypvm9rO16lbBXmC2WI+Gwo0E82ygS+6cE1A5ZbzcOezN2r3pHLeSlPBSp9kuxX283gkce95pv65FywR7lPCCPSW4Zx8heNXbeGBfAWH/6KvAT7P2VPRj5czCSUnuPcu1HyuX2KHfUwuBRs1dC3vaDzxedkGexWCwWy6uGAD7ApLpe6r8290iZDEacO8/eScYWi+WwpKnGcTSe5yClQkqF6nfmdByHXM5jc7PH4mKDbjcll/PY2gppNiNGR3M4jiAIPPJ5hzBM0Dolm3WpVLKEoURKMy+TamfEtG4XoqhHELiUyxmyWY8wTMlmPVxXEATui1wlAM+cAvcsCTEDgXDwWCplHmuf1ppuN+H27TqlUsDERIE0VZRKGa5e3eSjjxa5cGH/wtteyX1B4B5YyLNYLBaLxfL8sOK75VHWb33C4uU/RakUrRXtjWXibhslU1Scwh6djR5Hs/2cW2u17bntKLg3JtbbcRyEMMfLSiYkYc+kv8UhlenT1O7fZP3Wp8TdNl4mj+M69FoN4k6DTn2d7tYGWik69TUyxQo6TdFSojHbQis1jPYWjgApUVqTJiHEIOMYJRO0VgjhkEQdhHDxMlmE4+I4Lr3GJknUQ8sEP5Nj4/ZnIIxEJpOI7iOdyAGWP/8BYbvBqffef+z7RGvN+q1P+PzD/0xr/QEqqRq5T0q6WxuErTrF8RNordm4+zm9+gZpHAICP6uoLV2jU18lVxljYv4rlCdO4rg+rfX7yNQM2CiT3Qfx3Fq+g0xi0jikWzeDNI6dfhMlJVGniZ/LE7YbRiT0MxSqYziuT2F0ktLEDJt3r9Ktr1OeODmcn02Bs7xobEKSxWKxPD+EEJx6732yxcpQwi9Pzu4o4/oZJs985amDB1i+2BxWgrLy1LNxmE75Q8mlfx6U83KkOiWWMdV8lc3OJuVsmTAJaYUtojTCEQ6BF9CNu2TcDMtby6y2VkEbIWOQpDTAEc5Q0BmIOANpzhHOw3QxzWOJWHaf+HKjtcZxnOH+4QgHrTWu65L1sriOS5Ime0pnu83P7w8kIxOzrx1mH9ueiHdYNHq4/yutjNgH5Pzd+4NuF32kkuSDPIEb0Et6jOZHGSuagU7vu/fpJl3aUZusl6XWqVEMimitiWREKVuiF/eIZYzv+sOEuN0YCIdCiGEbB+1shS3GimNobdbFo2JR4Jp+twNRsBXt3l+3FZrXA8+UH9R7FM/1uHDqAhfvXOTs5FkQsNpYpd6tD8U5gWCqMkU5U+ba2jXenH6TlcYKt9Zv0Ut6dKMuzbDJVm+LMA7N95VK8VyPXtIzy5amLYVMgVSmtKIWURLhu2a/idKIYlBkq7fFWGGMH9z9wRNlp0G7ozSic7LDJw8+oRW2EAi6cXcogo4Xx6nkKiDgzOQZTo+d5pP7n+xr3RyUwXwG833WbXMQBlLRb3/vt1mqL1Hr1GhFLfJBnrXWGrVujdkRc+y4tLVEK2rRjbvc2bjDaGGUb175JsuN5SMTj45bJnxZkveOihedrvaypvm9rO161Xj5PhEWyxcSl8NJZcfV2fCwBx9Hc9D0dLqHqCOeUK+7rcx+TjYGPx57zW8GkxY3AdzFSGMbPC5s1fvzmtxWbzfS/rKmgB9hRMDR/rRBAh391zcw6XO9/uu7fW2/BXyvP79loAncBgqY/dIFOv3XHWB6W73dOGph8KjZKyFvOy8yIc9isVgsllcVAVzApLrewvy2DhLoZjBpufYU02J5nsSxEeeEEEPRzXFEX3ZLePCgZUZRFA6dToxSJnkuSRTttklAV0rheS6ZjMbzXDqdGMcB13X6nTjNsrQ2iXau6+C6Dr1eQhxLRkdz5PM+UipmZvYabOP4WF425yX7SYGr10PW1jrMzVVYXm4NU+8OmxAzEAgHj63WzpR5rTXXrm1y61YdKc32qtV6SKkoFgMmJwsAXLx4n62tkA8+OL3vi5uPJvdZLBaLxWJ5+bDiu2WAkimr1y8beUmWUFIikwjhOAgcSA/Saeph2YE8J1yBlhor0D0dIQSO66GUNPKbVrRrq2QKZdI4pL54g7jbpjA6Rdzr0Kmvk4RdVBqTRhFxt43jumilaW+uYNa/C0ohHBcthBnoRJsEOgQIrfsd9DxkEqKU2VaO0OAIhGPOxVQUI4XAcX0aK3fRMqG1/oDS5OxQrKM/rwGttaWhpFNfukm2WGHyzLvD6VprFi9/i/r9W6RxhEr7SQ5aIZPIyHzA8mcfE7a3SMIuCIGSEq0l9BSO6+Fn8nTr6yx/9jFp2EP2O/y4/Y6Dru+zG52aGQSxu2VGSc8UR8iVR6nfvwlA3G3j+gF+rojrB8TdNtlSlajTZHT2DJlihajdoLO1QXlyds+kO4vluLEJSRaLxfL8EEIweeZdxl97m63lO3Rqq8gkwfV9CqNTjMy8ZqXkLwOHPbWxp0SH5rCd8k9VTwEwkh+BTXBdF5madKZytkw5W6YZNgm8gIyXGUo344VxU1ZKVporaKWHMopGg3go5Zmn/SQrIYbpQg4OvuvjuR5RGhEl0aNvy/IlR/FwMNJBGh305UvHYSQ3glSS5eYyQgukfnL/XyGMtCkQ+I4PApRWSCWPVdYcJOgN0FozWhglTEPemt69P+h20ccVLoEbDOcRpuGwXNbP0k26Jt1MxoRpyEh+hMALEAhOjZ6iHbW5V7uH7/rEMkbLfhrk9vYh8FwPBwepJUKY53EakwtypMr0jx0IR4+KRTOVGa6uXjWfdwn1Tp2N9saOdK+N9gb1bh2BGAolM5W9+uvC+VPn2eptcW31GgtTC8yNzrHWXNshpWT9LFKZ77DXJ15HSsn1teustdZIZGLkwX5bPdfDdVw0mkQmSGHERM/xKGVLzI7M8qP7P0JrPXzfnuMhHMHZibNUC1W2ultPlZ0G7QYoZApkvAy3N26T83O0wha+65P1jRB6ZvIM7595n83O5oHWzUEYbJuJ0gR3N+8eybbZD9ulojAxCab1Tp1W2MIT3lC+/u7t7wIwWZrEEx6dqINW5vNZzpWfmPh3UI5bJtyeJLnaNNfc3jnxzmPr/sqDK7smO74svCzpai9rmt/L2q5XDXtGabEcCR6HS986ro/gXolkh6132HbvVe8w604/oV6Gh7LYfsRGp1/+8bQAwzzwUf/vKWAFk25W5WHSXX3b9Gx/XvN7zO8WkACngM/7y5/BpOANaGPELx8jf8XsnaD2AfAf+n/nMKlrV/ttyAIhMLhIMNUvk+vX2429hMHtHEQYPGpe9oQ8i8VisVhedTzMMcnLc4HFYvkyISUM7gILYUQ3KTVhmJLL+WxsdKlWc0ipCEOJ1i7ZrE+vlwCCJFG4rkM269HrpSSJwnEEepf7OlJqXBeE0IShJJfzmJ4uIoSg2YyYn6/u2c40VY91FJ+YMMLY+nrnyDqP7ycFbvB6vR4+Vh4OnxAzM1Pi6tVNJiYK3L27Rb0esrHRHQp8S0tNbt6s0+2mtFoRSikcx8HzHO7c2eLu3a1hst21a5uMjGS5cGEay4tjt/3WCg4Wi8VieVas+G7ZWr5Da2OFNOqhVR7QBNkCWivCduPhgf1BECZJTTj9kbyRaLnfFLsvI7of3ucM0+JkmqDSlDQKEa5Hp7ZGr1XHy+SJex3am8vIOML1fDw/MElqUUiagBdkQGm0TnH9ADUYqNERuEIgU8mOtEAlUZjNLJx+YoIG18/iBgFCg8Icbzqeh1aKJOySRqYTm581bapMzZEtjxLkCsS9DlF7i05tDTAJdWs3P2X8tbeHncrXb31C/f4t0JpObYXG2hKUR0Epes26GUQFiHsdkrCDTFLibguZpoBGK41ubSFlQrZQATSrN3+In8mRK1WHCXiF0ald1/ogmW6QVBfkCv3VYc7HVH+k+iCXH6biAeh+p6cgVyRqN56adGexHDc2IclisVieP47rMTp71srzX1KeJrEcdT3L4TvlJ9Ico78x9QaXly4TpRGBGxDLmJXmikmkkymNXoNUphQzRfKZPJVchU7codatIYQwMo3oJ4QJkxqWpMkwqcvBJFdJLUH1k61ch1yQox21SWW6I6nOYnkUqeUOic4VLlJLFIqx/Bj1Xh0p9/4OcYVLxjP3IH3PN8l2/fS0VKZIJUnU8Z2zajRCmzTGwAuo5Ct4jscHC7v3B90u+uT8HM2oyWRpklqnRjc2iXPFTJEwMdchIhnRi3sILShny0ZuzWvyQZ7Z6iyBF3Bv8x6xjBEIEpnsEDwG50CD13zXR2sj2g2EL1OQYbu2t3N+Yp6Pbn6EIxw8x1zjuPLgCtV8lVK2RCtsDZPjpipTZP0sGS/D/MRe/XX794MXPmAkNzIUhufG5naUyXgZzs+e5xuvf4Pv3f0elXwF13GNVBd1iVKTJlfMFHEc873Ujbv0YpNi6LkeWT9LmITUOjUq+YqREdMYqSQTpQnenHqT98++jxBiX7LT9nZnvAxT5Sn+4PM/oB22h9tPIJitzjI7MsunDz498Lo5CINtQwBT5SlWmivPvG32w3apaLmxzN3Nu7SjNr24h1RyeAygtZGw21GbeqdOlJp+05udTVKVkvfzRyYeHbdMuD1JUqOpFqo7lgUwXhynmq9S79YfS3Z8GXhZ0tVe1jS/l7VdryJ2bVksR8JhO1EdV+er8OlFDlTvsCO27FXvsD9we9XbxAhq+z0pVv3ym3tM9zBpKxeBs5ibnjcwgtsg4S3Xnza4eHeevb9iBwlqGxgJbw6T3LLCwxSX05ikuDYmae1JCWpZ4GeBX8ekzhUxUl+nX1/021jqT18F/t/9eruxlzD4Omaf/REHEwaPmpc9Ic9isVgsFovFYjkeRH8ETq0hTTWdTkyjodjaCsnnPZJEkyQuhUKA77t0Okk/uU4jpSKOzTlTHMvhSJ4DSWhwHVJKM6JnPh/gugLfNzeXxsbyuwpFWmsuX17l0qWVoaSmtWZpqcniYhOAU6fKzM6WEUJw9eomH320yIUL08Nkt4PwtBS4AYPXHy3/cF0ePCFmfr7KRx8tAjA1VWRlpc2VK+tUq1ny+YCPP35AqxXTakX9tECHUingnXcm6HRi6vWQlRUzcM3CwhiXL69w7tykFbVeALvttwMe3Udtx0eLxWKxWCwHpVNbJe42iXttEKOAIFOq0mtsoGSKELsPaPFEhMANMjiOi1IpAoXtK/o0+kKYSobCokxjwladNOoRtrfQSuG4Dp36OjKOCPIlkz4XR0ZKE0buSkIJCBwvQLgeDrK/HRUySYZOpDl2NKl0or+NhXBNWSVxXMeMkuJ6ZApFtAatFMJx+klxml6jbubpOBRGJxk99cbwHfWaNTbvXqVbX6c8cRIwwubo7FmUTIdiT/3BLZIoAq0R/bQGgUbGIXG3RRKbaXGvjUxT0wmsL/JprUl6XWSaEIcdXNcnPzLB6OwbuEEW188wMvParmt8kEw3SKqLex0AHLefGNFvS9zr4meyw9dFv8NH3GvvqL9X0p3F8iKwCUkWi8VisTw/xCH7kR22nuXwnfId4VBr19hob1DIFLhfv4/v+kMpbqu7RZzGZL0sbsalmq9SzVcZyY+Qi016Ujtso7QyoozroQcnTy5DKUdj7m05wsETJsHJddyhwFfIFOglPdI0Pdb1ZvliIbUcphkmMiGMQ4QQ9NIeSqvhtN3Q6KEgJ4SgEBTI+lkSlRDFEbGMkbE8FolzKM9hxLTpshmc8yde/wmywe79QbeLPsVskfX2OlEaUcwUWWuvcXXlKsBwnVQLVTzXY6oyhed6ZLwME+MTKG0EuPnxefJBnmur12j2mqAhUQmCfkrkthRJcw1EE+mIQqZALsgReAFhEpLxMjjCeUws8lyPC6cucJ/7BF7AdGWa1cYq9W59KGcJBFOVKc5OmP6652fPP1UgEUJwYe4C506e49b6LZYby8QyJnADZiozzE/Mm+8hrWmEDa6tXqOQKVAICnTjLoEXUMqWmCxN0opaRElEzs8B5vsqkQlCCMYKYwRegOu6tHomJW4kP8Lb028zWhgd3mvcr+z0aLuzfpZP7n+C67hsdbcIE7PdFuuLh143+2WwbS7eucjZybMgOJJt8yQelYrCOESjGc2PAmbd95Ie7bBt0hKFoB22cYRD1s8yU5khVSk5L3ek4tFxy4TbkyThYYLjo5SyJerd+mPJji8DL0u62sua5veytutV5Jm/Ef/SX/pLR9GOAyOE4A/+4A9eyLItlsd52QW6wx6Y71XvsHdh96p31Il2dw85vyfVO4+Rxv4QI9rlMNLdQE7L9V/PA3+pX34vBgckUX+eW8AIJm1ucPNvs/+65mGy25MOZBYwMl6z3wYF9Hg4wmmu/7rol3vSj+WjwiAY6U72/w+S56bYnzB41OyVkLf9ws2LTMizWCwWi8VisViOB9U/ZRMCpFS02zFCCKJI0uulaG1EsTSVlMtZXNfBdaHZDIfJc0JAHCuEEP20OYHjQLEYDMv4vkuplCGOJZ1OxLlzk8zNlR9rj9aaDz+8w/XrNQB6vZS1tTY3b9ZoNmPK5Qxaw8cfL3P9eo0zZ6pMTZkk7osX77O19XAQl/0mgT0tBQ5gY6NLvR4iBExOFob1duMgCTGe53DhwjQXL97n7FlzgX51tU29HnLvXoNWK0b1N1K5HDAzU+Tddyc5daoybNeVK+usrraHiXe3btVtOs0xs9t+uz0lcbDPDPbRDz44bSU6i8VisVgsB0ImCUpKlJRoj6E8pbU2opQ8eAc/1/UI8iW0lrjSJ00ck96l7Gj7T0L1R50WrovWijSOyJVHCVt1eq26EdZaDZKwi+v5yCQi7nXQSqLSwT0hB60laBCeEb5cz8fPFoh6bYSUoIRJB3RcUxaBEIPXPLSSRmTrB+O5jouXyZGEPYRjzne0kjieT5pEOLFHrjIOYud9xVx5lEyxQtRu0NnaoDw5S6e2yujsWbaW75jUvDikW18nyBVwvRM4eGgpTL1Ok7DTRssEpSQqTXF9Dz+Tx8vkkWlskh/CLiqOSLRG5IrgOGQK5pxq8sxX9pSECqNT1BZvkB8Zp7W2RNTeotesEeTLdGprBPki7c1Vkl4bx3EI8ub8MFMo02vWiNoN0zHxKUl3FsuLxCYkWSwWi8Vy9DjO4frTHbae5eCd8ntxj0v3LvGHn/0hruOy1loj42XIBTnqnTpCCLJ+Ft/18RyPUrbE3OgcgRfw+vjrVHIVLt6+CDBMj/M9HzQm6Uo/TK0aSHSi/y/wA3zX9K9zcChlS8MUOovlaQwS49qyTZiE+K5vEhC1STYUQqC0Gu6DgzpKKxzt4DouAsF4cZxzJ8/RClvcWrvFZndzmAS2l4T3NPZTV2BS51zh4rs++cAkOp4ePc3/9BP/0571tos+M5UZ6t06N9ZukMqUKI3oxl1kPyXed31EVzBdnuZrc1/j9uZt3p5+m+XGMkIIzk6eRWvNdHmanJ/j0uIlc585dYdtc4RDIhN810cpRSxjHBwCN0AgaPaawyS6vcSi86fO803vm8RpzMLUAnOjc6w113YkVQ2S7BamFvjKia9wbeXanlLcdjzXY2F6YU/hZJD69vny5/xw6YcgzHrxXZ9SpoTjOLjCpZgtorUmlvFD4befTJj1s+SDPButDbJ+lmquihDisbYcRHYatPuNqTf442t/zLXVawCESfjEdXP+1JP6Mh+c86fOs9Xb4trqtX1tm2dd/qNSUTFb5JR7imyQJetnaYQNmt0m7aiNE5tBqaSWTBQnODV2isnSJL7rc2biDJ+vfH5k4tFxy4TbkyQBWtHuwSOtsLWj3KDei+ZREfJB4wHtsD2UdKM0MomeWj73dLWXNc3vZW3Xq8gz71EffvjhsXca0VrbjiqW58Iv//KvHbJmHiMuHabeceBwOIlurwsLRy3kHdZw36veBubr7SDz9fr1nsTgBCUGbmIS6NJ+3UmeLKVtJ+jPa7m/zDwmGa7Fw0S7MiZBrtsvd5a9E9RS4IcYce//wsh3LjCKEfKSfptjjHT2lzApcu+x98/AeYzAd63/vub45V9e68/jtf77HYxYssCThcGjZq+EvComZa/Fi03Is3zZ+OVf/uUX3QSL5aXFfj4sli8Hv3bY0yjLkTC4PPJQphuctwzS5TSgkVLjug6+76KUSaCTUvQT7Iwop7V57rouShlBzHEc4ljSbEbkch6VSpaFhVEyGe8xye3u3QbLyy1GR3Pcvr3F6mqbWq3HxkYPgDt3tgBNqZRhc7NHsxkxNpZjaqrI2bOjXLu2yV/4C38NIQS/8Rs/3FcS2JNS4EqlDK1WRL0eDqdnsx6ZjMv8fPVI1v/581NsbYVcu7bJwsIYc3MV1tY63LhRY2wsR5oqHMchn/c4c6bK7OxD8XB8PE+1mqVeD1lb6zA3V2F5uWUFuiNkP8cily+vcv16DaU0N27UWF1t70iAuXt3a8c+OjKS5cKF6efYasvLij22tRwldn+yHCV2f3r5cX0fx3VxXJcTq39mEs2kNGlgwsFIWQfoXOU4CM/Dz+b6wtQavcYmaRShD33/5suGGf1cJTFKpjTWFlFJikwikqhHEnZIhUMS9RAaHN8fJsq5noeMVb/TnSJwBUnUI01iHNcz6WlpitYKtBomztFPqHPQIBzTKU4I00nP85D9pIRBAp1wHBzHRSYRWiu8IEDv0iE0yBWJ2g1kakbCN8JmysrVH1Bbuklnc4VuY5N8dZLR2bOcW1sCoFsomYQ3LZFpYpYrBF6QI1seRcYRuXIV18/Q29ok7rVwhIufzRFkc8S9NrOzP8nE/Lk91/LIzGs8uPI9APLVCTq1NTbvXiWTLxO1G8RhF9mXGmUS0alv4Gfz/dTG1rDe05LuLF887G+X5UVj90HLy4DdDy2WvfGd3ZOHf231yTek9qpneTr76ZQvleTe5j2ur1/n47sfAzBaGGWmMkMrbLHYXSRKIqSWRGlEJ+pQyVc4d/LcMKFptjrLL/3YL9HoNvj2jW+bgUaEuTflOz5KK6SSpvN8f5m7tcNzPKQyaWKJTJDS/O3iIp8SDDBIyErVF0e4e9q+bzkYA0ktVSmpSs1+iBGbXMc1AoeSw1Q6p38O7zouhaDAWGGMQraA7/n8xTf/IiP5Eb51/VsEbmD2Ry2H+/X25e3FYJ8ciFeDxz3LDq4zYGS1ubE5fuHcLxiBZw+2iz5nJs5wr3YPpRVRGg0TICUS3/Wp5qsUMgVGCiO04zYnR04yPzGP0oqV5gqfr3w+TNiaG5tjo7XBZneTVtgiTmOkllRz5j5sK2whkeTcHBkvM0yem6nMUM1Xma5M7ykWCSH4p/+ff8rlxctD6WZubG7H+8p4Gd6bfQ80/OZ3f/Mx+ezq6lU+uvkRF05d4Pyp8wfyDoQQvD3zNudWzxElEWEcEqvYpP6VplFFxVp7DSklUklSmeK5nrl25BjBsR21iWVstptrBmGq5MygqlJJNtobfL78OY2wgUBQypU4M3FmX237YOEDRnIjT1w352fPH/h973fdHOfyH5WKRoujjORGuL1xm4nSBAho9czvVi8x/RKyXpZCtsBEcQIwvz+T5UlWm6tHKh49L5lwt3OF7UmSdzfvUu/U2WhvPJZOVu/WEYjHkh1fNAMRsht1+Wz5M2rdGlPlKfKB8SjyQZ521Ob2xm0a3QanqqeG9Y5aDntZ0/xe1na9ihxXXJDF8oozjZF4DlPvODjsAche9Y56ftEh5/ekepr933DeT9nLmNSzTzDJbAPZbZDwVgceYIS3ExiZ68Ie85oBfh8jtoFJd9tipyC3jHl/JYwgtwT893vM7xZGbIv6y/06Rhrr9l8PMJJeyEOx0OnX2+vAQgAfYJLxLvVfm3ukTAYjzp3n8PvEYdgrIa/OQ3HuRSbkWSwWi8VisVgsx8PgWvN22Wfwt5T9mzL9TrlBoElThesKRkZytFoRUmqSJEVrweCY3nUdcjlzk9n3HVzXIQw1UkoymQynT5uL+ltb4Q7JTUrNd7+7RJoqNja6OI5gZCRLFElGR7OsrHTo9czNyExGMT1dJI4lUmpWVtoAvPHGKP/7//4Jp09XcV2xrySw7Slwr78+Qq3WY2nJiHyOI8jlfEqlgJmZ0jAl7vz56R0pds+2DQQffHCakZEsly6Z6wJzcxXa7RjPc1hf7yAEjI6aC7+ffbaB5zlUKhnGx/OUShnq9XC4Hh+VBi3PlzRVw+1240ZtuC8+KmAOXl9YGOPy5RXOnZs8sn3IYrFYLBbLq09hdIogXybIFfGCLJ1OAzAJYwcflNwcu7uuj0oT8tVJ0rBLp76GcAVaHVDG+xIi+iOhCyHwsjkc1yPptlFSEndbJHGEjHowENwAKc39HMf1UFqB44BK0UlE0u/QqbUySXVy270jIYbz8YIsaRyB44JKQQ0EOt2vY8S3QQJdplAhbG3hegFCOKRxbOS8R4h75ljV9Xy01jTXFrnyB/+BtZuf0Gts0mvViLstHNfFdR0j8ilFfmQCmSRErS1kkoDQuH6An8kT5IqIfBnhmLJBvoDqj6Q+2AdHZl7n1HvvP7ETlON6TJ45x/LnP6B6wgxy2K2vE3WbRkCMegS5En6mgHAc0qiHn8kRd1sIIchXJ4b1npR0Z7FYLBaLxWJ5tRDO4fogHbae5cmd8rXWLNWXuPLgCleWr9AKW3iOh0YP07cG0pzsp3UHXkDOz9HsNbl07xLnTp7jf/kL/wv/4/n/Ed/zubZyjcALyPpZHMecn8VpTCFTQGqJUoqUdEcKGIDruuT8HJV8hXq3jpSSSEZIJY3kJDRCPTnFayAouY67q6Bn+fIxCHRRSpHxM0YmU5I4jU36YV+wcx0jriUqYao0xRuTb/Bjcz/G0tYS+Uwer+chtTTzeyRNTmm1637p4AyX7Tru8LOVyOSxOq4wCW+OY5LwZsoz/PhrP47nmuW6jvvE9zkQff7gsz8g8ALOnTjHZyufsdneRAhBMVNECEGYhOSDPOPFcYqZIl858RWaYXPPhK3x0jjlfJnRwiiLm4u0ohapTI2Y5zhorckFOfJBniRNmBub472T7w2T52BvsUgIwYW5C5w7eY5b67ceS5d7ffx1vnXjW1xfuw5AL+6x3lrfIS8BXLxzka3eFh8sfHAgmWu76NeNu2y2N80+4QhKQYmNzgaRitDapBRKKY1sl4QmLa21StbPopSRFcMkZKwwxmJtkcX6IlvdLZPs15eBr65cxXd8xgpjTxXPnrZudkveOyypTHddxrmT545l+btJRbPVWbpxl9XmKpOlSeI0HiaYCSGoFqpUchWEEEyVp5itzpq6RyweHadMuD1Jcqo8xUpzhSsPrgyF1lbYGn4u90p2fJEsN5bRWvP9u99no7NBPsiT8TLUOjWkMt9h5WyZrJ9lo7PB9+98n59646eeS7ray5rm97K261XkSL6dHj1QtVi+fEwcc72DctiTvb3qHbaT2F71Djuiy171pg4xz7Rfb69pHwO/DXyKEdEUO9ePBhrAnwI1jFx2jt2/Zucwgpzfn0cHkxrn8DAxTmEkuEJ/His8LrANWO4/rvfbMQ68u0u5H2EEs7VtbXjSgYXAiGrnMLLdMg+FvBlMotuLuln5eEKeeV+D9r3IhDyLxWKxWCwWi+V4MDdUdr8mM7hUo7Xp2wlw8mSRTidhZCRHPu/T6yV0OjGdToIQRp5TStPtJvi+i+c5tFoRSmkKhQAhBK1WzO3bdZRih+S2stJmba1DNuuxtRWiNRQKPlNTBdJUU6+HVCoZADIZl0olg+c5TE4WWFvrsLraxnEEDx60yOcDms1o30lg7703yfe//4Dvfe8BaaoYHc3TbEZIqUhTk8CRy3kIYQSo8+f3Ovc7/Ha4cGGac+cmh4l8rVaE6wqiKKXRiKjVuuRyD8+fVlba3LxZJwxTXFcQBOam1uDRcjzculUnjiW9Xsrqqul4/M47E4yP54dlNja6XLmyzupqm7m5yrCeTQq0WCwWi8WyX0ZmXqM0Pk1j+Q6ZYoVuY4Ok1yVNIqSMD+i7aeh3yJFJTHP5rulk5fvoNCBRateUMksfIcARCMclUyiTq4wStrZM5ydMehtK9mU4RT92bpgIp6VEpnG/s4tJlJNpjHDcvhDXT5BzXYQjELqv0gmn79MJ1LD+wwQ8KRNcz8PxfDw3i5/N4Wfz9LY2yBRHEEKQRl3QOxMGe80aUbthZLPKGPWlm2SKFQrVCbSShK06cadFEnZx/aAv6mHej3BwPB/hekYM7Mt8Gk1+ZIxscQStFHHYobUWg3DwPJ98ZYzx195i7PTCvjr9TMyfI2w3qC/dpHryDOWJk3S2NiiMTtGpraJkguP6w8f86BSeH1AYGccNsiglCbIFwnaDOx9/iOv7FEanGJl5zQp1FovFYrFYLK8oSh4uWfuw9Sx7d8ofyY1Q79Z50HjAemudbtwlTEO00sQyxnO8YeLUQP5JVEI37iK1ZLI0STFTJB/kuVu7OxR85kbnKPgFunEX3zWDgcQyhoihUKekQvVT1gUC3/XJ+3mmK9MorXCFS0qKUmqHaPS0tK9hGdvl2SJM33dHOAgECPCEh/DEMOlwINc4wiHrZwm8gGquyrmT55goTZCqFN/1mSxNstJYQSrZv8YghrIm7NwvRX9Q037e3FDO8z2fnJ/DEQ6duEOURMN6Qpu0Rs/1yPt5pipTlLIlap0a506eQyrJ5cXLXJi7sPfbFYL3z7zPn1z7EzzHY623Rj7Ik6/mh+2NZUzGyzBZmmS8OM6p0VOESciZiTPcXL+5a8LWxGsT3KvdY7W5yjfOfIO50TlWmiust9ZNapuMaYZNMq4Red6aeWt4PWG/YpHneixMLzwm0Vy6d4nra9dRSnFj7QarzdUd6/ru5l2mylOcnTzLtdVrjORGnriOHmV+Yp4TIye4uX6TaqFKJ+rQ6DX4bPkzipki3bg7lH8yXobAD1BakciEQqaA23apFCpUc1WaUZNO1OGbV75JmISEaUir1yJMQyMch00jfeUrBxL+9lo3R4HWepgA+LR0v+ex/AG7SUVCCBamFsgHeRZriwRegOd6ZHzTH0FpReAGvD7+OrPV2eF6fB7i0XHJjNuTJPcSWgWCqcrUnsmOL5JYxizVl1hvrYOGbtTlbnx3x2e21qkNvzfXWmss1ZeeiwD4sqb5vaztehV55k/F7du3j6IdFssXnBJGNjrImZXo1zsOHOAwFwn2Et4Oewa5Vz2Xw62/vToWvgP8HweYFxhJ7p09pt0C/i/gc6CHkbQelQuTfns0Jqnud4CfYndB7R5GQPscI7RtYda1y8NUOsnOxLjX+/V2m1/8yONe+1Wpv7xHyz8Nr7/c53eQe3Be5oQ8i8VisVgsFovleHhUnhNiGGCwAyk1YSjJZn1OnapQLAYsL3fodmNyOQ/H6dHtJmhtLoS7roPvO8RxSpKYc0nPE5RKGe7fb3HqVAUh4Nq1zaHktrbWodGI6HZj0tQkzDUa0TClS2uT6gXQ7aY0mxGjozkcR1CtZtnc7PHZZxtUKhk+/XQN3zfne09LAvvKVyb41rfuIaXi1Kkyt27Vh/Kc6zqUyxmEECwtNTl9eoSf+Zm5ZxrZ7Ul4nsPCwhgLC2NMTxf53/63j3H69mKrFbO01CSTcYftardjlpfblMsBP/ETJwGYmTmu6wQWgOVlc5Nkfb0z3Ee3y3MA4+N5qtUs9XrI2lqHubkKy8stK9BZLBaLxWLZN47rMfXGeRor95AyIWzWkWmMkyakSjO0rPaJcD0coVFpSmNtkSBXIF8eo4sgTWIQLlrbUfQRJm1NaI0eimf9DmeZHI4fmBHCVYqMjdSm0cgkRggHpWX/5EojcECD1NLczdJ6mAiO1mi5bX33T8oGSXKO4yGANOrh+hm0UrhegJKJEdqEQEuJAoTjARo3yJL02vi5ArnyCABxr0OntoZME4JckbjXJmqbNMN8dYJes0bYqjNy4nXq92/SXFui16yjlSSNurTCLmhNaWoWoaE0MQPCobFyFzfI4GqNShP8TA7H9fur0DGjxaPxfJ9saZTC6CSZ4giF0f0NTCKE4NR775MtVli7+QkA5Ukz6nf15Dyt9ft0amsURucojp8Ynq9prenUzcCRjuNSX7o5nGdt8QYPrnyPyTPnmJg/99zO8SwWi8VisVgsL4bDhjnYEIjDs1en/Fsbt9jsbKKUotapkcqUJE1IlUmHGyT9+I5PJCOiJDJJcGjCOKTWrhGnMSvNFX73R7/LWnON+cl5NlqmM3iURmS8DL7rE6UR3bg7FIrUtgFENBqFkeRyfo7V5iqpMglXSqmhELcfeQ6MWCFsX7IvJYPENzDnq6lOTXC8K8x5aNwZlktVitQm3dD3/aEM6ns+lxYv8WDrAY5wGM2N0ok6BF6A67ikMiV9QvjDYB8fMLweoUySo9Ya3/VxMIPxRGkEGrJ+ltHiKBPFCYrZIlES4bmeScgTgstLlzl38twTZZnbG7eZrkxTypgULjTMVmcZLYxSyVUYL41T79a58uAKa801To+dBkyZscLYnglb7558l5947Sfoxl0SlfD6+Ou8Pv46AFJJ6p06CkXWy9IO20yVp/ix0z/GwtTCoeWeVKbD9txYu8FKcwWAaqFKKVOiFbWod+rmdWFS7vazjrbjuR5fO/017mzeIVEJWmnuN+6b77e0NhQwAy9gJD9CISiQDbKcmTjDqeopTlVP8aDxAK01o2qUVq/Fg8YD0NAMm0RJRDbI4giHzc4mjnC4uXbz0MLfUaK15sOrHz63dL+D8CSp6NToKU6MnODirYss1ZYoZoo4wiHjZXhz+k1OjZ4azud5i0fPU2YcMEiSvLZ6bVehdbI8+dRkxxeFIxwW64u4jkszbKK0YiQ/Qj7Ik/WyhGlIN+6y1dvCEQ5jxTGW6ks44rCBP3vzsqb5vaztehV5ZoHu9OnTR9EOi+ULzkDmOsiongNp7Dg46gS6o57fNHBzj2l7Ifr1dmORg69b0a+3GzcxCXQRD9PndiPtT/OBH/Tr7XYwtAycAH4Xk1qX7dfpYNaRi0meS/rTbwL/PXsnxgWPPO4e2/rw9UfLHzcpR5No9zIn5FksFovFYrFYLC8GI8GZv0U/4cCkywkajRDPcxAC/upffZOPPlrk2rVNgsCl3U7QWpHP+/i+QxRJlNJkMh6eJ/A8F601nueQzXrcuFEbymzVapY0VSSJpN2OCENJt5tSLDq02yGFgul8mc36gKbbTZH9kWDTVFEqZbh7t9EX9jw2N3tMTxf3lQT2u797ndVVIz/1eikg8H2HNFVEkaRW6zE7W+bHf/wESml++MM1LlzY61zy6Gi1YjY3e3ieaUut1mNzs0cQOPi+S5oqhGAo+G1sdDl7dpT5+epzb5vlIXEsdzyWSpldy5VKGer18LHyFovFYrFYLPtlYv4cYatB8t3/Rm9rAxxBt76GlAlaSZRMHx8J41GESUFDK5OUhjCpXcJByxSZRAinn1Jt+42atDYt0I6DuZ8gEIhhalkadk0xDUnYxXFdtAalpOnwMxz3UaCVQguNEA7acRFK9pP++qOY9EeqHwh6ZvEK1w9wgyxohZIS4bi4fgYvyOI4jkmec32UTNFKIlxvOC1TKFOdnUT3O3YWRqdAa6J2YyjOCSHIVyeoTJ9m5eoPKE2cpLFyh05tDT9bIMgVcTzPpNG1m7Q2lonDDoXqJJ3aGrnKGPnKGF6QQWtF1G6SxhGb964R5AqAEfdUmuBlMmRLFbwgR2l8hpGZ1/a9KYQQTJ55l/HX3mZr+Q6d2ioySXB9n1Pn36c8OUtzbWn4uuN5tNbuk6+MIRyHNA7pbm0g0wTX8ymMmFGXlz//AWG7wan33rcSncVisVgsFssrRKoOl6p92HoWw6Od8k+OnOQPP/9DRnIjrDRWCNwAqSRKK5PYJQRhGiK0IFYxWg/ytDSu46K0oh216SU9wiTk9NhpfueHv8O5k+fMdKUoZ8qstFYoZopoNFEaodTDfnkDycgRDr7wCdyA5eYyYRwCEKfxMKVuv/LcgGGy17Y0MMurz2B7B14wFDWVVjjaMUmIaTwstz0BMU5j6p06vuvTiToUs0VSlQ6TyFKZkvNzbLE1rPckNBoHB8d1htdwBEbiG0hxo4VRENCJOggEMyMzTJQmqOarQynm6srVHaLbrfVbT5R3lhvLAGx2NillS8yNzfHuyXd3lBkvjlPNV6l366w115gbm2OlscIHb37w1IStVKbD6VEaca92j1q3RrVQHSZQAnSTLhdvXyRO46emz+3FrfVbxDKmF/dYba4C8M6Jdx5Larry4AqrjVXmRuf2tY4e5fyp89S7dbo/7CIQjBXHqHVrtHqmL24xa4StZtikmCny3ux7LEwtGDFSaxzHwXd9ZiozfPvGt0HAemsd13EZK45RzBbJelmyfpZCpvBMwt9Rcnnx8nNN9zsI+5GKYhkzkh+hmC2ChnbUZq21hlySr5R4JITgg4UPGMmN7Cm07jfZ8bhJZUoqU7J+dpiwWclWhjIjwFpzjbXmGgJBzs+RyIRUHv3x3cua5veytutVxK4xi+VIiDmcQLffBLBnxeFw0tvRm9u78x7w7QPW0f16u1HjcAJdbY9p/w3oYtLnnnaCo/rlvH69X9ilTIwR7HoY2avT/799Hls8FOl6/fJn91jmDCb1bgK4i0mZ2wDGt5XZ6L8ugMlt9Y4TDVzGJMY9uu9fBT7CCHEHTYx7GRPyLBaLxWKxWCyW42Vw7fPRPremAyikqabRiCiVMnS7ku9//wG3b2/RbMYopclmPdJUDf+7roPnCXzfxXXNzCuVDJOTBdbXO2xtmZuTA8nt2rVNPM9Ba7h7t0GjYcQ5KfVQNgrDZNgu1zXnm57n0GpF9HoJvu/SasXDVLqnJYGdPFnmz/5sifn56lDoEwLm5io7UuviWHLrVn2YWnfu3OQwGe95kKaKTz5Z49SpMt/97n1c10iHSpl0vyRRxLFECJMiODFRYGmpyS/+4lvPtV2WxwkCd8djqxXtWm7w+qPlLRaLxWKxWPaLEIJT598nUyzzyX/7/7Jy7c/xswWSKELGPZOUoAZJadsO6vudErVWOK5nOqoo+j6YSQcTrmeO+6U0kpYQttvfEA1KDlPhNGYdK5mgURD3SMKeERCV7CfLmfMaIRxwHo5OYraDNKkGgyQEIRCuZwYvQfRTD7TpIOX2B9JUEscLTMqbl0E4prtevjqJl8mS9DrDtjqeT5ArURyfZuK1t/EyOWpLNwConjyDSiI6j4hkbpClU18nWx4lWx5j7folAMZfe4t05jSNlXvkyqM0Vxdpby4TtZsIx8VxXPxcnursGXqNTXrNOkGuTNxrkUYhYWtr8BbxMllKYzPkRsYpTZxg6o33hiLiQXBcj9HZs4zOPn6/a/vrazd/RH3pJkII6vdv0q2v70gTaa0tka9OUD0xT33pJtlihckz7z42T4vFYrFYLBbLF5PDikxWgHo2Hu2UvxqtUslVSGTCYn3RDNiIwHOM3JOkCUoZ+Wj7uncwIpLWGoRJn2qFLVYbqyQq4cbqDUq5Et24i+d6BE5AM2yitSbjZUjTlFSnuMIdps4orXAch5yfox218VyPOIqR6tkGu7MpdF8+FApPeKAh0cnwXHMg4A72ie0SnNIKlEml32xvDtOdXOEyUZxgsb7IiZET3G/cP/D3kO/4/WsVD+XTUrZEKk36XcbNDFPNBklx0+VppsomFX6tubZDdFtuLD9RDoul6bM5EAVLmdKu5UpZk1A3KBfLeIcct5s8Bw8TuN6YeoMPr36I0orR4uhzSS8byIDrrXU0mmqhukOeg91lwKeto0cRQvAX3/yLjORH+J3Lv8Ot9VtMliaZLD2UfnzX5xuj3+Crp77KSH6ERCXD9fO/vv+/8umDT/mvn/xXhBCUsiVqnRqFTIGZygzVfJXZ6iyz1Vk2O5sHFv72s10OynGk+x2E/UhFjnA4O3kW2b92N12ZRmv9SopHQgguzF14qtD6suG7Pp7jESYhWT+L1JJG2CBRyY4EukGaZy/pUc6V8V3/ubTnZU3ze1nb9arx8n1CLJYvJGYU/YOh+/WOgxzQPmS93TjsBYe96h31+qv3px1EaPT79XbjU0z6XLLH9EdJ+uU/3WO6Bj7DCIoRD9+L239MMMKj7E93gM/Zex3NY+QzgClgBbgCVIESJnmuvm16Fsj06x0XGvgQuN5/3gPWeZgYNzihuIiRBz/g+BIaLRaLxWKxWCyWLz67hVWYTp8aKRVSShoNjVINisUe7XbE+rrpqBmGkihKyWQ8MhmXMExIU4XvOwSBSWsYH88zNmbOETc3uziOs0Nyq1QyrKy0mZoqsrzcJooknU4MCNOpV0jqdSPdZbMe5bJJ+lJKU6+HaK0plzPU6z1yOW9fSWAbGx3CMKXXS1ldNee8+0mtG8h0z4tbt+rEsdzRjoWFMbJZj2YzQko1XD+u6yClYnS0SKn0olLCv7zMzJS4enWTiYkCd+9uUa+HbGx0H9uH6vUQIWBysjCsZ7FYLBaLxXJQhBBMnX2PsbkFvvcff43Fyx+RRD1UGiMchUbhChc5SKMTDCUsgYMbZNBSokWK62dwXQ/XD3A8jyCbN8LT01LsvqwM14tASYlWEY7jotIYGScmdc5x+iW21ekneg+S6VC6n0xnprl+gOdnwHFwXA8ZR6g0QanU3NHRChzXpMgpgXAEheok1dkz5EpV/HyJNOoSNrcICkWyxSq5yihOf1R218/wzl/+GwCs3/oUKQTlydkdb831MxTHpihUJ2iuLZlOp8URcuVRAJKoR7e+TnnqFAgIWw0c1yNXGqE8Ocv4a29TW7xBa+M+juujVUrYahB1WwggyBfJlkZwXJ98dYK5Cz/DxPy557aplExZu/kJAPUHt+jU1gDIFEcIcgXiXoeovTV8vXryDGs3P2X8tbcPJfVZLBaLxWKxWF5CDttdyHYzema2d8r/7Yu/TaPb4EHjAVkvi9YapRWpStFaE6bhY/IcMJQXALTSCCGQqWS9vU4+yHOvfo9Cp0DGz1DKlpgoThCnMYlMiNMYIQS+4+MIB9dxh2KRQNCKWjjCMal2aXgk0uQgDQ+shPllQGP2yUQlu3bF3G0fGCQrDgbOidMYpRWNsMFifXEogiRJsiNB8an0BVPP9fA9n1Saz5aUEt/1Gc2PUswWub91H9/1KWfLKK1IZMK11WukMqXeqdMMmw9TGeWTAz0C19yLDDzz2Ipau5Zrha1hOa01dzfv8hvf+Y3H5n919Sof3fyIC6cu7Ei7Oo70smeRAQ+KEIKvzn2Vd0++y7XVa/zg7g9M6p2AqdIUPzb3YyxML+wpLV2Yu0CtUxtuu0KmQCVb4atzX2W8ND5M5zuI8Ke15vLiZS4tXtr3dtkvx5XudxD2IxVlvAzXVq8BRiyK0uiVFo8GwurzWudHjdSSU6OnWG4sU8qWoD8gWTfu0o27gHk+kh8Bbb4fZ6uz5rjiOfCypvm9rO161XihV5E//vhjvv3tb/Pxxx+ztrZGvV5Ha83o6Cjj4+N87Wtf4/333+frX//6i2ymxbIPXJ6eTPYoql/vOBjjcALd8+tQuJPFI66nMdKZYH9inuiX36tsyEPRbT/ofvlwj+mLGEluINCBEci2r+9NjAgX8TCtcK/362GS2y7yMKVuFSPNDcQ5gZHnBtPPc7w/AZcx8pwCbvTbt3193t3WvmvACOY9WSwWi8VisVgslkcZdODcD0oZic5xjKzWasVEUcrmZg/Pc0gS2b+oponjFNc1qXNOP2khSYxIt7nZZXQ0x/h4HqXAcdghuY2PF7h505x/jIxkWFvr0mzGgEYpNUzAM+0XNBoRSSJRSuM4grGxPJ7nEAQuxWJmX0lgjUaE5zmsr3fQmn2l1s3NVVhebj1XgW552dxUWl/vMjlZYGwsRyZjEv5GRx8OVHP/fpMokhSLAQsLo6ystHnzzfG9Zmt5DszPV/noI3OuPTVVZGWlzZUr61Sr2R0phoPp2ayRTOfnqy+y2RaLxWKxWL7geEGW+a//LOs3P6U4OonjukTtBknYNaOaA6ARwjXpckqbxOn+NMcLcBwP4bo4ngdKogE3yJBEXfRBOmt96dBoKcHRaMdBp3KYJqelNNP7qX8mTE6iB71wh9tm8Nx0VhKuS6ZYIQ27JEoiHAFKoJVCuAItU4Tr4QZZssURtFI4jsvoqTf6gtz/E4Ct5Tt0aqvIJMH1fQqjU4zMvDaUwiZef2fPMvcufYvGyl1kagaCDHKF4TsenT2Ln8nRWn+Any0gk4RMvkS2VEUIx7ThZ/8GWmtufff3aCzfIT/ikx95eG7iuB4jM6eZ/8bPM3nm3efaMWNr+Q4yiUnjkG59HYCx028OhUCAXrPG5t2rRgycODmst1uyncVisVgsFovli4fnHK4/02HrWR7Hcz2mKlMsJAs4wuHW+i0iGRG4AVtqizTpp3g/pS/dQLpzcFBa4TkeqU4J09AITJgO8lJLSpkS9Z7pP5zL5ChkCvjCZ3pkmq3OFotbi0RphCtckjR55vQ5B5PqDgzT9Z5XJ33L4wgEjnB2lTCfN6lMUaiHSfL7QZuUOtdxyQQZsn4WgWCru4XUkvv1+wRegC99VLq/9yQQKG0GU3KFi/AESpm6+SCPQrHV2wLM91szbNIMmwjE8Lz8fuM+3biLxnxuFiafLNLMVGa4unqVidIEdzfvUu/U2WhvPCZG1bt1BIKJ0oQR3PIjTJWn9pUkJ5U8lvSyw8iA2+sdBs/1eOfEO7xz4p0D15VaMlWZohW20GjmRueYqkw9Vm4/wp/Wmg+vfsj1NRNmcdQJf8eV7ncQ9isV/c/f+J9Bw+WlywghrHj0EhG4AbPVWW5v3Gart0U+yDNVmqIZNpFK4jou5WyZ1eYq3aTLRGmC2ersM31mn8bLmub3srbrVeKFrL1f//Vf51/9q3/FZ599tuP1QRzu4Evpt37rtwBYWFjgn/yTf8Lf+3t/z35hWY4Ih4MLb4N6u/GyD30zgxGUDlNvN476/X5+yPntVW+QZuZgUtyexmC7Tu4xPeZwguReo1U0MVJcp/8oMO3cYmcCnYeRzNpAoV9vL873618DFoA5YI2dCW/ZftmFfvnjIgUu9f++gRED4fGEvMHrCxjh7hw2KNVisVgsFovFYtmJEOC65saI1po03d+NnYFwpzU4jkApkFIRx5IgcHEcB9c152yVSpZuNyGKJGkqcV2B1lCvh0ipOHNmlHY73iG5ua7g1Kkyt29vkcv55HIejmPa2W4nlMsZcjlzfB8EDrVaj7GxHK4rmJoy6WvXr9d4++0Jlpdb+0oCu3WrzthYjlarP7LgPlLrgOHj8+LR5bz+epVTpypsbHRoNCLSVOF5DsWiT6uVMDqaQwjx3NtleRzPc7hwYZqLF+9z9qzpkLu62qZeD4finBBGnhtMP39+Gs/b6/qQxWKxWCwWy/7xs3k0oJVCJkn/PqkZCV3371uoNMFIXS6u5yFcBzfIoVVKkM3jeD5oSLrtbYKXHTH/yWiE45iOembEkf66e3jSpPvlGGwTx0Vrse01g+M4aKVIe12UTEBrlErN3wi0cNBa4Xg+fjaLF2RRSpImMbI/OvxA/Br83wvH9fYs4/q+efTMY9zr7JhemjhJcWyGpU+/i1aSXHmUwugkE2fO8fZf/KWhpDc5/xVqSzdYu/FDOrV1EJCvTjB99jzV2TPHkvDWqZmRzbtbG4+l6Q3IlUfJFCtE7QadrQ3Kk7N0aqtWoLNYLBaLxWJ5RcgH+T1FiKfVsxwdgw7rrusSJiHdqEsqU6IkMklZ+zj33F5mIEu5wiXjZohVzEpjZSjQucI1UpVrztdyfo6R/AipSinny5TDMs1ek0QmJCp5OPDJIc+BFQoX17TJMY9Cix1JY5bnh0ZvG0To+Je9/fFJDEQ/IYzsprXGd32kkowWRtlsb9KJO8RpbFIR9c79R/T7y+62rO1yqe/6Q1FKCEE7auOnPmOFMaSSREnEg60HnKyeJFUprbBFK2xR79bJ+TkKQYHbG7dZrC+aNuzRz35+Yp6Pbn4EAUyVp1hprnDlwRWq+SqlbGk4T4CpyhQb7Q1qnRrz4/NcW7m2ryS5fJA/lvSyg8qAA6lsprJXn+jny1EKf8874e840/0OwkGkondn37Xi0UvG4DP79de+zlZ3i1qnRpiGjBYeXvdrR22iNGKiOMHXX/s6Qohj+cy+rGl+L2u7XgWO9VtgeXmZv/N3/g5//Md/PJTl4KEw9+iP9qDM1atX+Qf/4B/wm7/5m/zWb/0WJ0+ePL5GW15RskD3kPV2I+bgUplgb8HqqNlLDHte9Q7KgyOu93Xgv7B/6U1hhLXjSruMMPLYA4wwF/BwfxjsEwLI95/LfvndExgelv8Ak9x2qf/a3CNlMhhx7jwH219T4BawzEMhbwaYZ38/I7f69XqY5DmAd4Dto1JsAFf60+e21bM//BaLxWKxWCwWy3ZcV5DJuOZGjdKAREq9ZyLd9kstWht5TUpT2PNcHEcMhS7HEUSRpFbrEQQuaSpJEkUcKyqVLK4r6HQSCoWATid+THKbnS2zvNym10splzOcPFmi10uHiXmvvz4CQLMZUS5nOHOmOkz1klLR66W8/voISul9JYHlch7j43miyIhn+0mt2/74vHh0Oa1WNBQFp6aKw3I/+tEqQiTH1i7L7pw/P8XWVsi1a5ssLIwxN1dhba0zlEsnJwtks+bcd2FhjPPnHx8N0mKxWCwWi+UgKJmyfutTphe+ysrnPyANuziuC/jINOl3eNH9Dk8OIHAcByfIotMEUAT5IkGxguM4CNcn7jYJ21s4rovUGuyo+U/BdGYbCIw7T6gGkpzo/9foXZMNNFortJKkaTx8TaapqS/McyVThHAIckWUTMkUywg4UvGrMDpFbfEG+ZFxWmtLRO0tes3aDvEsbG8hgEJ1kumFC7hBlpk3f2yHFOe4HuOn32L89FvP1J5nQSb9FIpd0vS2E+SKRO3GsNygnsVisVgsFovli8/8xDyrrdWnF9ylnuXomKnM8PnK56y31mn2TPKVUmooEx3EL1MolFb04h6BFxC7Ma1eiyg1928GYpJG4yiHSERstjdxhMPJkZM8aDwg42fwE59UpWYwk3663WFFt4HY5AgHV7hIJfFcb9iOwfwtzw+NNuv+mK9h7LbPbJfeBvvEYP9yHRfXcUGbgXQSmeC7PuVcmbubd9FoI5aqFIQRHqSSw33pSUKm53o4wsxTCIHneARuQD7Io9HMT8yzWF9kpWHS2h7UH5CohEQmQ2lJaUWtW2OmMkM7anN58fKespTnelw4dYGLdy5ydvIsCFhtrFLv1ofinEAwVZlifnyei7cvcmr0FLc3bu87SW62Ogs8//Syg8qAWT9Lxsu8sN+KoxL+Upk+94S/F5HudxD2IxVZ8ejlY/tn9q3pt1huLNMO23SjLoEfECcxWmleH3+dmZEZckHuhX5mLa82xybQra2t8dM//dPcvn17h+Gutd4h0z3K9nJ/+qd/yk//9E/zZ3/2Z0xN2c4qlmch4HAC3V4/8INEsf3enBH98k9KFDtKFo+43n6T3XartxvhIeb1pHpjGDFtv/PV/fJje0wvH7BdT6uXwwhxRUy6nOgvu9dvi+iXGQiCxX753FOWJ4ALmOS2ZxHeBmhMEtwlHpc9rwIf9Zf3NCFvuf+43p9nlZ3yHP3nVUwS3RpGolvGCnQWi8VisVgsFsvjSKkpl33SVOM4giRRpKnqC3X9vpr9Q/SBvAbgupDL+fR6CUpptJZ4nkMUSbJZlzRVSKn6ZR1c18h2rmvkujBMmJ2tUKt1mZgosLbWeUxyC8OU8fEcSmlyOZ9yOcPXv36C5eU2i4tNhIA33hhldrY8vOaTybicP3+Sb3xjlu9978G+k8C+8Y1ZVlc7TEwUuHt3a1+pdQAzM7uPkndUzMyUuHp186Vrl2V3hBB88MFpRkayXLpkbjLNzVV2lDH76DTnz0/tOWqnxWKxWCwWy37ZWr6DTGIaq/fAEXjZPJ7SxGGnL2Rpc2yvNFrpvlynkXGII1wcx6MwOo2fyZKEXSpTs0SdFlGrgVYKL8gStRsv+m2+1CiZgtAoKbfJcrCzB+jTO2HKOEJJiR9kjfw4vOctcBwPx/VwvQDX94m7bYrjJ3Bc36QOHqH4NTLzGg+ufA8wiXGd2hqbd6+SKVYIckXiXnu4T+SrE7hBFtfPMDLz2jMv+6h5WpregLjX3lFuUM9isVgsFovF8sXnram3+O7t7x5IXnKEw1tTL24giFeR18df59e/9evc27xHxs8gQkGURk/t77sXqUyRSuK4Dt24SyKToTi3/bq71ppUpfjap9FrcHLkJKVMia3uFg5G3vMdn0Qlh5bnoC/QCfOY8TMorfAcD9d16USdQ73HLzLHmbq3fVnHLc89CVe4j4XBODi4jkvgBSTSnL9n/SzlXJn11jqe45FIsy8KIXbImAMBTyu96yWGQQrfQNZ0hYvv+TjCoZQrMZYfoxt3cYTDVHmKRq/BVm8LAN/1jQylQSnFYm2RvG/uQz5Nljp/6jxbvS2urV5jYWqBudE51pprxGlM4AVMlifJ+llWG6uMFccYK4zx8cbHwP6S5O7V7gHPP73sIDLg2QkzcNH52fMvLH3sqIS/W+u3nnvC3xct3S+VqU2b+wKw12d28HvgZbyX6jNrebU5lr1Ka80v/uIvcuvWLYQQCCHQWvPOO+/wS7/0S1y4cIHTp09TKpUQQtBsNrlz5w5//ud/zn/8j/+Rq1evDuvcuXOHX/zFX+Q73/nOcTTd8sqSOeJ6WYwQ57C/1DOB+fjtlWh31Cw/vciR1jsohz0R2qtejb1lx70I+vV2I4vZXgdp55O271vA9zBy2BYmWa4DbD9ZaGGktSwPJbL9Xujx+nWeRT7TwIfA9f7zHkaAGwh5g3TCi5j38AF7S3TxI497dQotYQS6R8tbLBaLxWKxWCyWAUqZGzCO4+C6RoDTWuM4LlIaic7IcaYfqOMIXBcGqRWuK/A8QRzrfj2B6wqkVAgBmYxJdqtUMrTbCcWiSUZLEoXjOLz55hjLy21GRrI4jthVcnv77Qnm56tsbnaZmSlx+nSFr3xlkokJI4qtrz9M95qZKTE/Xx2+j0Yj2ncS2Pvvn+I3f/NHgBHr9pNal8m4zM9Xn+s2mp+v8tFHiy9duyx7I4TgwoVpzp2b5NatOsvLrV33UYvFYrFYLJajoFNbRStF7d41/EyeNI7QUpIplAlyBdKoh1KSJOyhtdrWecshVxlHq5SoVSPuBgT5Ilsr90BKCqNTuO0ArSHqdkClL/idvrwI8TBtwHCIToL90Uq0lCRxaJLs+q87rovrZ/D8gKA4gowjZBIh05hec5MkCilPnwKORvxyXI/JM+dY/vwHVE+YjlXd+jpRuzEU54QQ5KsTw+mTZ76yI33uZWE/aXq9Zo2o3UAIQWFkfFjPYrFYLBaLxfJq8BPzP8FvXvzNA8kUvuPzE/M/8Rxb9eXj0wefEnjBUHAaiHOHTWWTWuIJjyg2SV2DZK/BvB3HQamH83YdF0c4rLfXyft5Ml4G3/GRSpKoBF/4w5Svw6BQuNol8AMCLzDvS5tzJ9d10ak+NqHsuHCFi3DEw/H9NWYd8vC9HpdId5zC3n4QQgzT4jzHM6lz2shwg2mucMn5OfJBnkQm9OIeGS9DN+kO92+NJtYxSj68nrPXZ0YgUEqRiISMnyHwAjKe6Z88mh/l7RNv04k6VHIVUmUEIUc4ZLwMqUrJeBkcxyFKIqI0Yrm5zLeuf4v5iXlurt3kzZk393yvHyx8wEhuZJhkNjc2t6NMxsswMzLDZHmSxdrigZLkmr0muSCH53g0e00+X/mcbtzFcz0quQrjxXFcxz2S9LL9yoBgktjOnzp/4GUcFUcl/C03TJ/uRxP+pJJstDdo9BqkMqUbdUlVysrWCq9NvHaghL8vSrqf1prLi5e5tHjpsWOGq6tX+ejmR1w4dYHzp87bAVJfEr5In1nLq82xXBX/9//+3/Pd7353KMGdPHmSf/Nv/g1/5a/8lT3rfO1rX+Ov//W/zj//5/+c//Sf/hP/8B/+Q1ZXV9Fa873vfY9/9+/+HX/37/7d42i+5ZXEPeJ605gEs4j9CXQO5uM3fch2HJSjTng7bKexveod9uBkr3oDCat/prev+cT9ersxycH3GZeHktmjfAD8h/7f08AmJo0wxAhzYb89RUwyWx6TPvfBAdvwLFzGyHMKuAGssnNd3gWmgLPANWAEk0a3G8Ejj7tHOj98/dHyFovFYrFYLBaLZYBSkCQp7bYgk/EolXyk1HS7KVGUAmooxCnFUPoZ3NgcpM8JIfB9hzg2N36U0n25zqFczuD7Lo6TIgRUq1mU0szMlAgCl6mpAs1m9FTJ7ad/+jQffHB6lwvSE7u+t8MkgV24MM3Fi/f3nVp3/vz0cxehPM95KdtleTqe57CwMMbCwl4J9RaLxWKxWCzPjkwSuo1NZBKjlcTzMhCYJC3H9Ym7LdI4wnE9krCLEA5+vgAIvCBAKQcZR7gItEzM4BlpSq46RvXk63S3NvAyOepLN9DSSnS7obUZnMSkzz1yH2l7jPd+EAzlOSEc/Ex2OA83yBJkcyQCVJrSqa2i0hSZxDTXlnAcl9n33j+S9zQxf46w3aC+dJPqyTOUJ07S2dpApgmu51MYGccNTAeU6uwZJubPHclyj5pXKU3PYrFYLBaLxXI4HByyfvZAAl3Gz+Acuj+b5VFSmXJp8RKz1VmUUoRJSMbP4DouURoRJqFJTz+gTCeVBIdhMhcSHMcZdgEc9C+WStKNu2TcDLV2jZ7fA2C0OIrruNS7dTSaKIme6X0qrQjcAEc45P08oQwR2rThZZK7jgIHB8/x8D2fVKakKkUphUDgCOdhWtoxvO+BqPayIejvf1qilcYRDq7r4rs+cRoPv2OiJKLZa6Ix+6pUEjQUMgW6iUmMk8gn7kcODo7joDHL8RyPwA3wHG8omi1MLdDqtWiEDS4tXjL3dj3f/MdHSkkYh+QzeTzHQypJvVvn9sZt/ssn/4WF6YU9pSEhBBfmLnDu5Lk9k7v+6OofcXvj9oGT5EqZErc3b3Ondoe11towaa+YKbLSWOGme5Nipki9U8cRzjOll+1XBjw/e/6lkKiOQh4a/DYO1ncxKLJYW2Sxvki67TpgL+lR69ZIF1Nc1+W1sdf23c4vQrqf1poPr37I9TUTENKLe6y31nesS4CLdy6y1dvig4UPXvj2t3zxPrOWV5dj+bb61V/9VcB8YU1NTfEnf/InvP766/uu/0u/9Eu8++67vP/++2xubqK15ld/9VetQGd5Bp6HQDcKtA8wr1GOT6BLjrjeUQt0RfZOf3sSxT1eX8aIXwcR6BR7J+69jmn7fhMGB2X3+p7LAj8H/A4mJe46RqLTmKQ3MPLYGPBG//nPcnyJhSlwqf/3DWCl/3cVkxLXwsiGg9cXMMLdOXb/WZkBrmI6yd7t193AyIEDNvqvCx6Khy8m0tlisVgsFovFYnnZkRJ6vZQ4lkRRiuc5pOkgTc7FcRzC0Mh0UppzGJNIp9BaEwQuritwHLFtnopsNiAIXLTWhGFKLudRrWZ57bUqzWZIqZQhSRQLC2PD+cDTJbeDcNAksPPnp9jaCvedWnf+/PGkErys7bJYLBaLxWKxvHhc3yfuNnFclzSOUDKhMDJDcWyKuNchyJeIu006tX6HLd/D8zNopVAyJcgXEfny8O5HtlAiW6rguD65kXGm3vwqzZUluo0aYWMDDpkO8EqjFVo+y3oRCOGitRyO3C+EwPF9HC9AOCAcD8d1SaIQlSREvRYg8PwMmUIJgaC1/oDW+n1GZ888c4cQIQSn3nufbLHC2s1PAChPzu4o4/oZJs98hYn5cy9tB5RXKU3PYrFYLBaLxXI4btduU8gUaIWtfck8AkExU+R27fYxtO7Lwa31W8QyJkxCStkShUyBcq5Mq9ci8ExiWytsEaUHE9g0mnRbWvpAmHMcIxDtSLgTEMkIx3EousXhvpD1sgghiJLo0Olz29sTpiE5P0cv7SGlHIplrxpCCBKVGGmxL2wpoYbr/GVLhDtutq8DKSWOcIxc2E9G1Frj+d6wbKpScn4O1+/fV/XCoZApEHR1l0Qmu65XgRheR3CFSVoM0xCpJTk/x2hhlGbYZKm+xEh+hFOjp+jGXVq9lvm+C4o0eg0SlZD1syhtJNdu3EUgqBaq3Nm8w+XFy1yYu/DE9+25HgvTC8NkslSapLtv3/g2P1z8IcvNZTphB6UVrWj30ITtSXJaa+q9Oou1RRzhkAtyrLfWubZ6jXyQp5qvkqqUbtylnC3z3ux7z5xeth8Z8DjFridxFPLQIKlvsL4/X/2cQlAAIJEJrbCFVJLNzmZ/oXB74zZjhTF+7p2f2/f1oJc9Kezy4mWur11HKcWNtRusNld3fNbubt5lqjzF2cmzXFu9xkhu5KmfB8vx8EX6zFpeXZ77Hnb37l2uXLky/NL9l//yXx5Inhvwxhtv8C/+xb/g7//9vw/A559/zt27dzl9+vSRttfyZcE/4nrvA/8/zEdqP6N5ehjB6mhGlXw6R53wdtQC4gkOJ9Cd2OP1ZR5KcfthINvtJdD5mBS4BJMy+DQG5Z+0n/2N/vK+D7yJEedW+svwMXJlrl/2x/vlj4tbmAS8HiZ5DuAdHhfervSnz22rt1vM8zzwUf/vKcz7vMLjQt5gehbI9OtZLBaLxWKxWCyWvZDSiG6u66CUJpv1SBKJ1iaFDkwSnRAOoFFKk6aaTMZDKU0USTxPoLU59zPTJeVyCSGgXM4wMVFACCgUAoSAIHARQvDWW+O8//7cviS3w7DfJLDDpNYdBy9ruywWi8VisVgsL57C6BRKSoJc0YxsniZGxNrWycNxPPxs3iSZYRLOiuMzw1sfepsUF3VbaK0pjk8TZPPMvvuT3OfPyBaKhK0aPJMo9iVkHx0whRA4nodMTYqdcMz5jwC8TBbPzyBcF5nExL0Waa+LUgrH9dCeQiYx3a11Zt78MRrLd1ivjDJ55t1nbroQgskz7zL+2ttsLd+hU1tFJgmu71MYnWJk5rUvhGj2qqTpWSwWi8VisVgOx0ZrY0/xZDcEgljGbLQ2jqF1Xw6WG6YP3XprnVK2xHR5msnyJHc37rLZ3SRqRXiORypSpJaHWoZADO+NuMIl5+dIZEIsY1zHHYoZrnBxhYsXeIRJyExlhq3eFkmaoPbdN3B3lFZIKY2AlIakMkUqkxz2qgllUkscHFKZGnHLcYcCTpiGxy7Rveh1O0jeA3ZN39NaDwVPjSbjZxgrjJHzc2S8DBOlCRKVcGv9ltmHlBrOR2mF53g4wiGRyVAKdYQzFPKEEGTcDLkgZ8Q7zyQhxjKmFbV4ffx1lupLnJ08S5RGZNwMkYzIZ/K4rjv8nw/yZL0svbiHRtNLTArXTHmGy0uXOXfy3L5EFK01lxcvc2nx0jDhrBt3WWmskMiExdoiW90tpsvTTJQmhvU22hvUu3UEgsnyJEv1JQI3YLY6y8U7F+nGXfP5ikN6cY9au0bGz1DOlhFCkPXM5/wo0sselQFfVp5VHpqpzHB19SoTpQn+/N6fs9HZYLoyTS/uDZMRoySi0WsgEJSzZTSaVtjal1S5vZ0va1LYICUV4MbaDVaa5l58tVCllCnRilrUO3XzujCC30E+D5bj4YvymbW8mjz3b4KLFy8C5gc2l8vxt/7W3zr0vP723/7b/KN/9I8IwxCA7373u1ags7wk/CRGOPKBcB/l/X75n3yejdpGmYOl422vdxwcteDncbgEur2+EgVG7GpjxEfN42l0g+cCIwpOPaF9g/L/CPgPwDf7rz0qF+cwyXN/g4Ol/qUYmW0Zs58FmDS3efb3tT8QCdcx77XKTnmO/vMqRnxbw0h0y+wu0HnABeAicLb/2mq/7kCcG6zjwfTz+2yrxWKxWCwWi8Xy5cRcgxYIMbiJY4Q6rUEIje+7OI4ZGVEIcF1BHBuxTmtIU4XnuRQKPkrByEiWZjMkk/HI5Tymp4tDCS6b9QjDFCFg8v/P3p8GybUk9N3wLzPPVmtX9d7qVktX0u27jOa2mBUDwx0G24Mfe8ARNubBYIc/+PXrAIfBxsRDxOMPNjbYYezAdhgCsMFgwwcg4OEF7IdlwNcwXODOgjRzR3O1Xu29d3V17WfL90Oequ6WuqWW1FqulD+ForpPZZ6TZ6nqOpX5y/+4mcFuaqq0b8ntUXO/qXXPe7ssFovFYrFYLE+WytRRHM9HOi5evkjca7O5dJ12bQUpFUkSk8YRADpNSKIQv1jG8fNIKcgNjWaTZKSEnTZxr43ycuRKwxRHD3H+D36d4tgUlakXaG+sEbYbNoXuDoS5qXrA4yIdx4homWwnXY80DlGuR2Fkgm59HcfNAxB122iMZOflCiAkWqekSUoUmj7F5UtfZvToKwcmt0nlMDxzguGZE/cu/BTyrKTpWSwWi8VisVgeDI2mG3bva9hXN+w+cSHnWaIv0IRxiBCCIyNH6MU9jo4epdAs4AiH67XrRgZK0l2P/b1kLI0mTVOUVCip0Ggc6dCLeyRJQhiFxGlM3svjOR6ucgkKwUAiitOYVth66PMepzEbnQ2TMpb9SzEy2bOGRhshTGuUNEEIqU6RSFJ2P4/PKho9kAqlkAMRtC92KqnMc1LiKMckHyKo5CtobWSkze4mcRrjKhchBUlqRDrf8YmTGI05zgKBI8z9vhACpEkPK/mlgXTnKteIdYgd73tjxTFubNxASCPzNTomXcxzjWxV9Is0e01yXs6Ipsphs7NJ4Ab04h6XVy7fU07RWvPGuTe4sHwBgE5oJLxO1KHeqVPwChT9ImutNd449wYvTbxkEim7DWptM/ZzYmgCV7ks1Bf44JEPcnH54iAhcqI8gSMdau0anbCDEIKCX2C8NM6t+i0+8conHnt62d3op/A96lSsB5WHjo0d481Lb5I4yeC6Pb94nlSnuNJFSnM9e46HkopW2GK9uc7oidH7lsie1qSwfkpqJ+ywtGkCQl499Cqjxa0xzqvNVc7eOstSfYnZ4dlBPStrWSwWeAx2wtKSeXMSQnDixAmCIHjgdeXzeV588UW+9KUv7Vi3xXL/1HddevHicQBOnLh0X/XgT4EKsIaRp+42s4rCfMqtZPU+eY+2HgRTwK0HrLcbPg8m5Pl7LK/tsfxe7FWvlD3u96auX660x/MKmMEIZUn2X7Il04lt/xVGPJzh3kl9Evg24FuA/w28g0l9ywEvA69j0tj2iwbOAKcx4tx2zmFS4E5h5LS73eSHtz2a43LxoknfO3HC37a8tkv53ZgHNoDzGMluFiPe9QW/cbb2dS4rv18eVhi0WB6OixcvAnDixHtzMILF8iixrw+L5fnguLmN4tJet1GWR0JflBNCkKb9Di9wXYkQklLJo9uN0RqiyAwK9Txzj5IkmlzOZWwsz8xMmStX6pTLPoWCi1KSTidmaalJsehRKJj1AExMFAkCB99XHDtWfST79TB/O54Woe92ntZ2PU7iOH0iEqH9LGI5SOz1ZDlI7PVkOUjs9fTeon++pl75EI2VX6c0Nk1rfYmo00anCUIq0jhGkyKlIk1Tk3AmJK31BSqHjjF69GVy5WF0mtKur9FYuUF94SqrV75Cr71J3OvQri3RbWygPB/Z65DGd/v+/nml379z/wME01RDGiOUA2jcIEcSKpTj0mvWSZOEXqtO1GmSRCHScVGukSaFlBSGJ4h6bWrXL1IemwZgY+HKYxHe3ivvGc9Kmt5+SZP4udjPPu+V69Dy7GKvQcvTgL0OLZa96Sfo6NvSoY/7pkPqUm9nh1Q/IWqzs/nY2vis4ynPPDrmMeflqOQrLG0uMV4ap5qv0gybRJsRWmviNN5RX4mtMXN9QWi7UNeX0/ppXXEaE3ZDUy6bIKMXm3FqWmtubtykHJT54OgHubJ2hVSn9OIeKrtvfpgkukQnhLHZdv/2sN++g0xkk8jBvvUTyfa77r2u/f1y+36I7B+wlbr3HMlz29n+XtNPpVNSmeR5IfGUR+AGuCoTk9KEteYagRfQC3sDIbEclElScy1FiXldREmEkoooiXCVi6vcQdJcX3zqReY695SRRItBkVJQYrO7yYsTLxK4AZ7y6MU9ykGZW/VbtHotSro0SBlrh20AxspjRHFkJNRs/Qv1hXsKQ2eun+HC8gXSNOXi8kWWNpcG10OqU66sXaHoFykHRpq7vHqZ4cLw4JhNDE1wYuwEK80VpoamCOOQ5c1lJsoTvDz5Mo1ugziNmShP0Ow1Wagv0A7NZEMz1RlmqjN7TozzOD8v7ZbC1+fc0jnevPQmpw6feuxpa7fjKIdTh0/xG1/8DUYKI/TiHiubK2hMyJHv+iZ5Llcm5+ZY3FwcXIf7lSp32+bTlBS2PSVVo6kWqjvkOYDR4ijVfJVau8by5jKzI7P7ej08Ldh7BYvl0fLIv21tNrckm2Kx+NDr276OVqv10OuzPK/0dl36O79jZLYTJ378vurBlzHyj4dJoJMYeSplqwNOsiXWuRhJ6ss8HoGucMD1HlSE3aveXsf1XuxV70EHcu5VbwIYBqYxgluKOdcRW+e3nyoos3LDWb39EGCug4e5FjTwBnAh+72DEf62C2pgUuA2MHLeXh/kvdseGwD8zu+YL5pOnBjbsfzO8rshsm1WMIIfGIluOz5GnLuX4NfnoIRBi+Xh+J3f+R3A3rBYLLthXx8Wy/PBJ7OPsT++122U5cDRmkFnTjaeFq0xs2NqietK0hRKpYAoivE80+EYhglJkhIELtVqwORkkYmJIseOVVFKEgSK69c3qdd75HIOxaKPyIIZJiaKnDhhOkPm5ycfmfRk/3Y8W2itOXNmidOnFwnDnZMNnTu3xptvXufUqUnm5yceSWeTvZ4sB4m9niwHib2eLAeJvZ7eW/TP1//37/1/uHX2c6xeOYsb5ABtJDptxDmEII5i0iRCeT5CKpKwh+sF5MrDNFZu0li5RZqYQYppmhK1m7RqS4AgTWLcIA86RQiBcDy0lei26H/0lNIodOndJsa8E61T0ArlOtm9mcAvDg0SA4UURL0uOtVIx8MNcgjpIKQkXx2lUB2jVVulXV9j8fxppk9+Na31pcci0L3X3jPe62l690Jrzcrlt1m+9DZJtPM1un79IrfOfpbx4yefuaS999p1aHn2sNeg5WnAXocWy94oqUh2+Yz+yYrpkPrxpTs7pBKdDBK1LA/P1NAU55bOMVYa4+raVTbaG7wy9Qp5L8/19esATA9N0+w2aXQbKKEGApqQRjxypINAbIlwt0mRQoiB2NUXjoCBvJSkCb7jD66HVtjixsYNZodnCdyAbtQlSiJCHSK1fCiJDowI1E+eEwiklHeIgQ+zbqUUBa9ANV9ls7tppKIk3le773bt72fbffpSlEQSpRFJmpjUtIc8dg+DIx1SnQ6kwseNECbZTSJxlUvBN+Nlc16Osl+m0Wug0RyqHqIX9lhprqC1ZrG+SJRE+I6P1pqlzSV8x6foF8l7+cG6R0ujaK1ph21ybo44iWlHbVzlAkZS9RyPol+k4Beo5qrUOjXKQZmZ6gyJTjh1+BSnr59mrDRGrV2j3WuT6IT19rrZTiZLjRXHWG+tk/fzJIl5D71dBLudOIk5ff00ABeXL7K4uQhAtVCl5Jeo5CuEcchmd5Oh3BBHR47SDttMliYJvIDx8jiBa8YEl4ISOTfH9fXrA6np/dPvJ0kTVhur1Dt14jRGYkTE2eFZDg8fZrG+yEuTL+3avsf1eWmvFL4wDvEcj/GyGXv71pW32Ohs8Prc60/0Hn3+8DxvnH8DIQQ5N8dIcQSNZqQwgpKKclAeJMNJISn4hfekRLYX21NSAUr+7sEppaBErV0blLvX6+Fpwt4rWCyPlkcu0I2Oblm9B5EYt30dIyPP78zdloflQT9w71XvZvaYZ0sq6kt022ewTLOf89nvN3k8VA64XpkHa3t5j+UP+la0V71D3P+MoTqrtxsfAD4NHAfWgU22JEiJOa/9G+ZyVs7N6j0uzmDkuRS4CCyx8xhcxQh9JzApcBWMXLYbUxgBbSyrVwNWbyuzmi0XbMl5eyUW9hHZNk/y8IlxBykMWiwWi8VisVgsu9P/3ls/hZMu9qU5IfTgdykFaZoihMJxBEGgKJc9qtUcuZzD4mKLVitkaMinXA4YHc3xyU8e59u+7X28+eYNzp9f4+WXx+h2Y5aXW4OksPHxAkFgPqvPzY0wP7/fyUIszzNaa9544woXLpgOvE4nZmVl53UF8NZbN9nY6PL660eeqQGhFovFYrFYLHdDOS5zH/sUa9fewS8MEXU72WchhZAKISVaaqSjUG5A1G3j5YuE3TZr187Tqa8BkCYRYbtJHHboNesgJEnUI4m6hJ0W0nFxc0XCTuM5nUv+bgjM+M77PTICmZ0jEAgh8QtldJrg5ApI5dBrbSIEOH6AdByEVKBBOi5pnFBfugHZ4MB2fZXm6i0qU0cPegctTzlaa66f+Qy1m5cBiMMu7Y1VkjhCOS6FihlnsfDOF+g26xx+7WvtPZPFYrFYLJbnAtdxjdSyz8/q/XQz13EfccueH46NHePNS2+CBxPlCRY3F/nKwleo5qtMDE1ws2bGDY4WRwncgHq7TpiEKKmQwkzA6EhnIC2IXcZsaa0H8lL/HArM7ynp4Bqod+r4js90ZZooiWiHbWaqM2abcQg6S5F7QDGiv00hBI50SEggNdKJEmqQ5PWgOMLBcz2GgiGGi8Norcn7ecI4NNKY5rHLYxqNTjUJya7nZjsHmcK327qVUAROQC/pESXRI9nO3Uh1OthHRzn4rk/BL/DSxEuESci1tWv04h7Lm8s0e82B3NuLe6RpiqtcRvIjdMIOrbBFvVunkqswlBtio7MBGqr5KgW/gJKKZrdJO2rTi3vk3TyFfIFSYOSf0eIovajHSGGE42PHEULgKY/5w/McHT3KanOVsZIJPtBoKrnKHbJU4AYU/MIgPbKfJrkXl1cuEyYhnbDD0qYZm//qoVd3pHlNDU3x5qU3qbVqDOeHKefKDBWGmCib/mLf8ZmfmWe5scyVtSt3SE1KKiaGJpgYMuXzXp5r69f2Lfk9Dran8J1fPM+llUu0ozapTpFCknfzHB87ztzkHOeXzlPJVTg1e+qJtVcIwatTr7LWXGOtuYaUkuH8MCPFLafCVS4z1RniJOZ67fp7UiLbi9tTUhu9xq7lGt3GjnL3ej1YLJbnh0cu0B0+fBgwH3jfffddbt68yfT09AOt6+rVq1y+fHnw+8zMzIG00fI88qCdC3vVCzFCTw8jVDmY9LYeRmiSmHStFka06mXlH9eHkTZbEt9+EVm93XjQpIG96h3CyFT3y17Cm8tW2t9+SbJ6uzGHkbvOY+S4G0A/XbN/TTgYKW0mW88LWb3HQcxWqttFYDH7uQqUMFJnbdvyOYxwd5Ld/wwcw6S3gZHuFoGzmH2SwJey9fWfDzDX97F9ttfJ2vAwx+cghUGLxWKxWCwWi2V3lBJIKUgSTZrqgUgnpbm/6kts94sQICUkD9HnZpLhTDvSrF9Na4jjrbb6viKXc+l0YoQAz1P4fo6jRyvkcg5/9a++zDd/80skiWZqqsjFi+ucO7eK1jA05DM9XUIpcx/n+4r5+UeXFGZ59jhzZokLF9ZJU83Fi+ssLTV3vF6uXt0YJBueP79GpRJw6tTkk2uwxWKxWCwWy2PGy5eoTh/HcX2iXgfH9VGej3I9XD9HvjpKc3WJ5toiCIHj+rQ3VhBS4eeLtDdWCNtNtNZ0m3XCThOtU3SSIJQi7rVRjk++MkLU26u/5zml/8FU3P9NnVAqO84pqJSgVCEoVoi6LVw/h/J8es06Xr6UyY0hXpAnKFcIysOkUUjU69BtbiKlzBIFb2VCnuV5YuXy20ae05rarcu0ays7EjkayzfIV8eoHjpG7cYlguIQ48ff/wRbbLFYLBaLxfJ4SJLkvvshhBADGcPy8DjK4dThU7x15S1OjJ8AAUv1JWrtGrW2GTN2dPQo5VyZOI25vn6d5cbyjuTAKImIUiNEpaSDz7py2/jBVKcDea4vaSmhcJSDp7wdYlm9UyfwAhbqCxSDIlNDUyzUF3AdlzQ2ksuDiGgDOUyDUAKlFalIB2LfwyCR5LwcvuMzNTTFzPAMjnQoBAVavZYRljTEOjYTZCKI9cGk3knknu3fvvxe+/io5DkwkqIQW/vcb3N/mwOpkoc/F3dDo1FCIRD4yme0MEo36tLoNXCkQ5cucRIjhaSbdAcikpKKMAnphl1yXo6h3BBrrTXCJMRVLqWgxOTQJFNDU/iOTztss95aH2x3rDSGq1xSnTJSGGG6Os3S5hJKqIFsNjU0hRCCv3TyL7HWXENrzXprHY0m5+Uo+kXAyFL9nwVikJg2NXT3QISFuhmzu9JYGaTGbZfn+u08NnqM9dw65VyZglcg7+V5aeIlpoamODZ2DEc5/O9z/xt470lN/RQ+rTVvXnrTiHQ6Je/lCZyAbtxlsbHIcnOZ1dYqX3viazlz4wwnp08OxMUnge/4HB4+TJzGnL15FiUVo8VRHOkwlBtitDSKkoov3fgS8PQc74Pg9pTUWqvGanN1x7W72lyl1q7d1+vBYrE8Pzzyd++Pfexj+L5PGJoPDT/yIz/Cv//3//6B1vWv//W/Hvzsui4f+9jHDqKJlueSgxboDrElqcGWJLddyOqxlVIms/J7CWAHze3pYQ9b70Fn+9ir3oeAzz/A+j60x/JzmPS/+0Fl9XbDAT4F/DxbiYI1TOpZX5DMYYS1MYy49Skew1tsxmWMjNnBiGQArwLbb2ZWMRLcEjC7rd5uEpuDkc3ewghoZPWS7H8/eW5i2/PzPL79PWhh0GKxWCwWi8Vi2R3fd3AcSZKkpKmm1zMdf64rSVMjqsXx/XfY9Dt+hdAPnG6Xplv1+/3I/cc41nQ6MWtrHaamHIQQrKy0GRsrMDGR533vG2N6usz/8X+8yOc/v8CnP32Z1dU2cZwiBKSpplbrsrnZ46WXRvnYx2Y5fnwYx7EDOi37I45TTp8292QXL66zuGgmoalWA0oln0ajR63WHSyfmxvhzJlFTp4cf09cZ3GccvlyjYWFxiBRb2qqxLFj1fdE+y0Wi8VisTwdtGtLDM+cIGxt4vo5csUKxdGdAznylVGSKESjicMecSbaJWGHXisbiCQkynGQyiGNI5IkRugUISQ6TUmiHjrt923YHLo7kBJSza7HRkiTBpimA9FOZwNCU0ATgFR0GzUqU0cZPnyC9uY67Y01/GKZqNNESIehqSMUquOD1bY3VmhvrKIFOF5AmsSkycEMkrS8N0iTmOVLbwNQu3WZ1voyAH6xgpcrEHZa9Jobg+XV6eMsX/oyo0dfQT7BAXoWi8VisVgsjwPf8XdMLLAftNb4jv+IWvR8Mn94no3OBueXzjM3Mcfs8CzLm8uEcYjneIyXx1lprPDFG19kpjpD0S9yZe0KYM5HGIcmTS6T5IBBUqAUEiUVnbAzSHgTCKSQDBdMwlXgBsRJTK1VoxN3aPaaDMfDuMplrbHGeHmcvJcnTmOiJHpgga6fwKbRxHGMkCaRLtHJwwt0Ug4SrIpBcSBUDReGubF+gzAJEQgjVcnsGKSSKIkeetuu4xLFESmPN91uvwgEUkoSnZBzcghH0I2MqLZ93/sS3cMmAe6nPQgje5ZzZeqdOgDFoEgn6iCVaWv/elFC4SoXrTWdqDMYNpx38zR6DdI0JeflBml0k+VJLq9eHog89W6dTtTBkQ5HR46Sc3OsNFaQQjIxNEHgBviOz7ExE2hwfOw4x8eOc6hyCN/xuVG7QaPbQCIZL40jlRzIrbvV34t+GtntqXG3U/AKXF27Spqmg/fa7fJc//ezC2dBw3JjmYX6At2wy+zw7EDmehqlpssrl+nFPb5040ucXzqPRjNWHCPVKUmakHNzFLwCK80Vzi+dZyg3xMnpk1xeuczc5OMK2LiTvkQ2WZ7kxvoNNJrx8vhzIZHtlpJ69tZZqvkqpaBEo9t4oNeDxWJ5fnjk367m83k++clP8uu//usA/NiP/Rgf/ehH+fZv//b7Ws9P/dRP8VM/9VODQWbf+I3fSLFYPPD2Wp4XHvTS36veVwE/kz0vMJJRN3t0MMJPhOlOU9n/MKv3OEi4/05Rzf2nuD0oIUZCu58bNsneCX43s+f3u06JOSc371LmFLAB/D5GjBwGNjHHSAFljEQ3A3yCx5t21k/vW8Gctyo75Tmy36sYsWwZI9EtsHcK3Dxmf89nZWaB9Wz9R4FxTPIc2fPz99HeGCPvLWDOoQdMYRLs9vPaPGhh0GKxWCwWi8Vi2R0hYHKySBgmtFohaWruQTxPEkUpUmqSJHkACe7B0+t2XZs2aXkgcF2JUgLHMW1cXW0zPJyjWPR44YUKH/nINFIKTp2a4Gd/9jR/9EfXieOUKEpoNEKSJEUpSbUacOxYlSRJWVhoMjc3cjCNtTwXXL5cIwwTOp2YpSUjyb366hijo/lBmdXVNmfPrrC01GR2dmhQ72m+1rTWnDmzxOnTi4Thzu9Mzp1b4803r3PqlE1qtFgsFovFsj+SyEw66BWGyJWH0QjiqAeAny9RGpshNzTMu5/9PTr1NRJhPo+0NlYQQiKlwssX0TrFDQo4XkC3Wc+EuRRNinRcwnYLQTbzxkHdhDxL3KUbSQgzNE46LkkS3dbVpkmiLu31ZXKVEaqHTzA8cwJuXKRy6Cg6iekVh9BJSthukiYJjucPREjpuEglicMuXr5kpajnjI2FKyRRSBx2addWABg58hK58vCgTGdznbWr52jXViiPTQ/qDc+c2HWdFovFYrFYLM8KGo0Uct9CVL/so0yoeh4RQvD63OtUchVOXz8NwOzI7I4yx8eOM1Od4c1LbzI5NEmSJiw1lkxSetxFaYVONVqblDlPeYPELU95JE5CL+kN7rUc5VD0ixS9Ip24Q5zG+K4/SLKrd+uMFkeR0iSXDReH6cQdcuSQkSQN0/sWxrYnnGk0Ij247/YFgiRNiNOYZq/JhaULLNQXTJJZ2KWSqyAQRkp0PTbbm8RpjBDiviXS24mT+KmeR6f/eu1LlkPBEI50BlJZN+waifExfo+RpAme8lBCDd6H2r02WmuklERxhO/6JrFOKhxp7uMTndDqtWj2miRJQpiERG6EUoor61dohS3yXp6pyhTdsMtIYYTFzUW6YZdCUKAX9+jFPQSCiaEJToyZe775mfmBnLY9FfIjL3yE4eIwS/UlNJpmaPrh7lZ/L/ppZHulxmmtuVG7weeufo5Gr8FIYQSlzL6/cf4N3rz0JqcOn+K1mdfY7G7y+Sufpxt3AWj2mnzx5he5uHyRgl+g6BcH7XmapKaF+gI3aje4vHrZyL9JyGpz9Q6RM4yMPHxp5RKVfIWF+sITFeieZ4lsPympD/J6sFgszw+P5d3gB3/wB/nN3/xNMzNDkvC3/tbf4vd///f5/u//fubm7v4H5O233+aHfuiH+KVf+iWAwYeRH/zBH3wcTbc8szzobOB71RPAJHAFI1P1Z/KErdQ5wZaopTDpXY9rMNWDxu7uVW8vce1e7FVvHcgDzftYVz6rtxsRWzJjn92Otd72nOLuyXoC+DhGQnsL+HJWvy+ATWASzj6Mkcke50C58LbH3WcCMctru5TfDQG8DlTYSnvrJyqOZY8+Zl/3u78akwR3epdtnwPexIiH91rfoxAGLRaLxWKxWCyWnQhh/k9NFdnY6NJuR+TzDq4rAYGUMWGYIKUgTe8vSW4/8ty9xrb23Rwpzc9KSbQ27XBdSS7n4HkOjiPwfYfDh8sMD+eQUvDii8N87nO3+IM/uIbWcOtWg9XVFmmqEUKQyzmsr3dYWmpx+HCZ8+fXeOedVV55ZdSmbFn2xcKC6WBbWWmhtUme2y7PAYyO5qlWA2q1LsvLLWZnh1hYaDy1Ap3WmjfeuMKFC+a7iE4nZmWlNUigGx8vAPDWWzfZ2Ojy+utHrERnsVgsFovlrkjHobFyk9qNi7Q3VgCJXyii05SwtUm3scHI7BxOkIf6Gq6fRyeJkew0aMczA8mEwM8XUZ5P1Gvj5oqZsBUThT2UVGaDz6w8l9287TWwVoisO2iX/c+68wQiOzzb+o0ECKlMb4WUSK1I0xR01oOhNVIpHC/A9XM0V28xPHOCwsgkTpBn8Z0v4OVKgLnPinsd4l4na5IgKJYBQZoklMYOmZQ7y3NDa91MENneWDVpKcXKDnkOIFcexi8O0WvWaW2sUh6fobW+ZAU6i8VisVgszzxREuEql1bY2lf5VKe4yiVK7jbuy/IgCCE4NXtqkLa0UF8gTEI85Q3Sp5RUVHIV/t+3/19ePfQq/orPSnOFVtgiTuJBgpiUEkc5KKkouaVBOluapoRpCAIc6RAmIYlO6EZdUp3S7rWNDIYRnADyXp7ADQbbjtOYVq9FOVdmvbVOFEcDIe5uSBP7tuN2UaMHKWMPK7JJIbNbVpMyJ4SgExoxMEzCQVLfWGmMgleg0+uQ6pQ4fbiEcnOPqx/v8MUHIE1TpDT9jUXfhKn04h5JkqCUIk3MffKDJAveN9l56kZd1tvrbLQ3cJSDTjWBF9ANuyDMtQfQi3q4rgsCdKrpxT2iJDKJi1rTjbq4PRedmjSzxc3FwT4fGzvGq4depRf37kh1DFwTaDA3Mcf84Z2BBvtJhbxb/d3op5iNlca4unaVWqvGanOV0eIoWmvOL53n0solGr0GSWJk0JXGCqWgRDcyotyfvvun/K9z/2sgCZ5fOo8jHNI0Na/jNKUdtVlprjCUG+K16deeKqmpE3W4XrtOkiZsdjdRQuE5nnmfcQK6cZd22CZKIrpxl0q+wo3aDZM8+AR5UIkM4Pzi+V3fz5/0ubgfHsXrwWKxPD88lne71157jR/4gR/gh3/4hxFCkKYpP/MzP8PP/MzP8Morr3Dq1CmOHj1KsVhECMHm5iZXrlzhc5/7HBcvXgTMIBUhBEIIvud7vocPfvCDj6PplmeWEnvLV/eqtxsuJj1rFZNKpjAvr+2zkXsYmU4Axay8y+Ohd8D1HvTuaq96DlvS4X5uOvvl9noLG2KnQCe2bWP7OuJt23WzevtBYQQtN1uHk9V9UgNIvdseG3uUa9xW7l5ipcAIbScx6W3/P8zxeon7S4wjq/cGcCH7vYMR4PoC4ni2/C1M8t3r7H29PAph0GKxWCwWi8XytPO4wxK0hihKWVpqEcfm3s7zHKrVwHTmhQ7tdkyadjPxDNLUdHyAGLQ3SbbNTifAccRg+b0Euf4693pOCIGUYtt6zWdox5FobZLy4ljT60WsrbUpFFw+8IEptNa8+eYNtIZz51ZZX+9k5RWOI9jc7BFFKcvLLW7davDCC5VBGZuyZdkP/XS2/mOp5O9arlTyqdW6d5R/GjlzZokLF9ZJU83Fi+ssLTV3vIavXt1gYqLIiRPDnD+/RqUScOrU5JNrsMVisVgslqcarTWN5ZvUF6+RxCGtjVXSKKKzmcPxfJTn02s12Fy+jlAuXq6IzgYMeqJM1GnhBnly5SpevohULjpNCUrDgCSNI6JuQhp2wXGzAX/vFYHufqbIF4h+0oSQ2U1jVlf0J7bU3Bkz19+GQEiJVIo0jtE6BS0Qsi/QCXSqkUCa6oGkpxEm4SLV6DTF8XI0Vm7Ra9WZevmD1G5cYnPxGr3WJq6fJ18dNVJjmgySA1u1VeJeh3xllNLYNMp9XH2GlqeBfgJlEmdJlLnCruW8XJFesz4o169nsVgsFovF8iwzWhgdCFP7JU5iRgu3T75tOSgc5TA3Obdn2tLf+PDfYLQ4ypuX3mRqaIpm2OQPz/0hS40lOlGHJE3wHZ+CX8BTHkW/SM7Lsby5TCfqDESzRJv0rjAJiZLIpHwph1bYMlJS2KXVbbGm1ij4BUaLo1TzVbphlxsbNxgKhvAdn0a3QStsESUROtV3pNJJ5ECO203O6j+3XZ4T28ax7SftsJ8+FzgBE+UJOmGHMA5p6uZA/gvjkDiNqbVrSCEpBSXC1sONbxPZ/Wq/nQMZMJso5rHIaPsk0QmkkCQJi5uLRhzUkGLESq31vkTIh0UJReAGSCEJk5Bmr0kYhwgEBb+Aoxwj5SgjVXWjrhkHr1Pybt4Ey+iEKI6MNCoErnAJ4xAlFddr16l36swOz+I5HkubS8RJzAtjL9yR6ug7PvMz88wfnr+jD3Y/qZB3q78bd0sxa4dtLq9ept1rs9ndRAiB6iiUUGx2Nvnsu59lojyB7/hcXb/K0ZGjdMIO6611NrubSCnxXZ9O1CHn5hgtjjKUGyLn5ZBSPjVS02pjlTiJ0VobMdJxmRqaGkidYNL0vtL+ykDOjZKI1cbqE2y14X4kshfHX0Rrzc//yc8TJjvfZ84tnRukCe732nnSPIrXg8VieX54bLrwv/yX/5KbN2/ycz/3c4M3Iq01Z8+e5Stf+cqudfofQPvinNaa7/zO7+Tf/bt/97iabXlmmQCuPmC93UjYSriKgDqm4+12oSoAysDhrPzjGhimuP9M7n4q225UgXcfoB3VPZb3j5PD3VPg+vTluL2EtZeBz2OOd4utztHt+5OwJc8FGInr5bts83YBrIwRDPsC2FC2zv0IYAfNFCbBbQxzXdcwMuf2L4ZWs+WCLVltap/rdzDJbf3Ou9cfoI1nMMcuBS4CS+y8Hq9iXl8ngPOY5LtTe6zrUQmDFovFYrFYLJanESmN2JWmEMfJrkLZoyJJNCsrLUoln2o1YGjIN4Mztcb3FWtrHYSAzc3eQFhzXZNKkKbQbodICVL2vwcBuPdslf3vb/v72v9dCHM8yNIR+sv7iXZKme9PfF+RpppOJ8JxFI6jyOddhoYCzpxZ4syZRaIo4datxkCMm5goUK3m6HRClpbaRFFEHGuSRHP1ap0wTAmCRV55xSRS25Qty93wPLXjsdHYfYKe/vLbyz9txHHK6dNmdtCLF9dZXGwCJlmvVPJpNHrUat3B8rm5Ec6cWeTkyXGb1mixWCwWi2VXVi6/Tdht0a6v0li+SRL2SOKQqNs2QpdUKNdFKNd8xi+UKI7MUF+8gpcrgtY4fp6gZPpdpHIoTR6iPDHLxT/6HygvQAvoNRukSbR3OtvThBBkU7ebGx+tt829uMc9lBBmQKCU6KTf75OhNTv74bZLc2YCEiHEjkGQIJGOQmuNcl10miCkIInNhIxCSKTjIJWDkA6kCSCIwy5jM6+ycfNdjn34z1MDJua+im6zTrdRIw7DwbkCCDstkqhHbmiEyZe+CoDC8F59kJZnkb4wqRzzGHZ2T1cJO80d5axoabFYLBaL5XnAVS5xapLL9isqxWmMq+xnpSeFEIJPvPIJRoojnL5+2khwcciXb32ZlcYKK40VAEpBiUq+MqjXT+uSUpKmKVEc0Q27dN0uGk2r1xpIbn2ZqhW2GC+PIxC8MvUKx0aPsby5zLtr75rxyAtnkVKSc3OESUgn7AzSDPshHq5yzTrT3QU6MOlxGo1EPpB0pqTClS6BG7DaXEUKie/4JDpho7NBkiQ4jsNkeZLl5jI3ajcQwkh3D+qLDcRAtt1Pbxsy6kiHJE2MuPaEkMgdUlyqU5M6pxMjTEpncJ6Ae/apPiz97wTybh6lFCW/xERpgmWWCdyAwAkI05DhwjBpatoqhcRVLlJKOmEHrY1QFaXRIMkOzDWQ9/J0wg6dsMNmd5OZ6gxTQ1McHj7MZHmSSr5yXylg+0mFvJ8Usb1SzNZaa7y7+i6pTml0GwghKPkl8l6eY6PHyPt5aq0at+q3WG+tM1oc5fNXP89wYZjx0jgjxRGa3SatsIWSpu8v0QmOclisL/Itp76FDx75oO1jfkj2K5G9NvMatVaNz179LACdsMNKY2WHaAfw1pW32Ohs8Prc6++Jc3PQrweLxfL88FjfGf7rf/2vfOhDH+L7v//76Xa7d7zBbhfmtj9qrcnlcvybf/Nv+O7v/u7H2WTLM8vmrku/67t+/IHqGTFnBiOV1YFDmIStZbYSysaBHEa6Gs/KPy6hp8CDCXS7z3ZoEvQkd87YeTdkVm83qpg0t+3yXP8Ors/22VH7iXJ7CXn/J/D/YI59F9NBmrIz5a7/swLymH39P+/S/oMUwA6aY8Cb2c8TwCJwFnN8ShiRrLbt+QDws3r757u+67sesH0xcDr7+WLWPnZpX3/5HOZ4n2T3P1OPWhi0WO6PB39tWCzPPvb1YbE8H/z4vW6jHgKTrCZRSpokgAeor5S4Z9rbbiglCAKHfN7lxIlhhodzOI5kbCzP1FSJhYUGZ84skqaafN7FdRVRlBBFpp1xnBBFJoVcKUGvlyDlViLd3RL1+kLc9rb0lyslUUoQxylpagQ38/WJxvMc4jglilLKZR+tzfErFDyiKCWfd7l1a5N33lkdJMxpDZOTBY4fHwZgfR18v0enI2k2e4RhQhQlmZwHzWb4SFO27N+OZ4OpqRLnzq0xNlbg6tUNarUuq6ttRkfzgzKrq21qtS5CwPh4YVDvIDmo6+ny5RphmNDpxCwtmQGsr746dsf+nD27wtJSk9nZoUG9ubmRA2mD5clj358sB4m9niwHib2e3lt813d9F2kSc/b3fpnW2iJhq0EcZpMNZDcBaRKTRCFx2EG6HoXKmEmcm8xx+P1fA0KweO7PSNMExw8ojc2QGxpGSkW7voZXLBFv9CiPHmJT3yLudUg1cJ8JDk8CM6GqQAiV3QNmAwf3uoHq3yfqLKZbw519Yf00OYlOTcKcGYwnEdJB69TId9mEro4XkCYxIktAMOuPQQgcPyAoVpBSEZSHTQLC5hpxr00S9hBCsrlyE+Wa/r+R2Rdpri0RdlpEvTbK9UmiHlprhiaPUByZwPEClOtTmTr6KA7pHdj3jKeDwvAE69cvkq+M0li+Qa+5QWdznVx5eFCms7lOr1lHCEGhMjqo9yxgr0PLk8Zeg5anAXsdWix7s9ZeA7ZSwPr8+NLuHVJCmM/8/XqWJ8PtIoOvfG6s3yDv5REIenGPNE3pRl0CJxgIcSK7lxtIdElEq2ekm27UJUoipJDk/Tyucin6RT5y5CMcGj40SFb6+Msf55v9b+YX3voFXkpfYqW5wpXVKyS9BFe5ONIZTKASpzFRHBmp4rbhlEoY0cdRDp7y6MXZ/Xp67+S2QdKbMAlwjnJwlYtA4EiHUlAiTuNBGp9WmmavyeLmIlEcmUQoDVES3ZGYt9e1f/u2ze1v1qeYpc/JQWo7Axlxv3Lq7ds4qCS4nRPZsGOIaJzExDo2CXSPIX1OCGHOleMSOAGHRw4zUZqgG3WptWvU2jWUVIwURkh0QqvbInADfMdHCmnEuTgiSRJSneIqF8/xcJVLwS9Q8Au40qXeqdMNu9RaZgznemudYlDkL7/2lx9I8LlXKuT9sFuK2VdufYVyUDbXTJoipWRqaIrjY8eZm5hDCMFqc5U/ufQnbLQ3KHgFau0anvL46PGPMlocJUkTVpurXFu/xuWVy6Dh6MhRpqvTlIPyvgStx/F5abQ4OniPCNwAIQUL9QXyXp7ACejGXdphG0c5KKkQGAl3tPh0pJ7uRyJ7++bbXFy5SJqmXFy+yNLm0o7X1tW1q0yUJzgxfoLzS+ep5Cqcmj315HbqPjnI18PTgr1XsFgeLY9drf3u7/5uvvVbv5X/9J/+E//9v/93rl69MwVs+43PkSNH+Dt/5+/w9//+32di4tn4QtjyNLBxwPX6Qs+HMELPLYwstn0QYQ8j9EwBH8Z88n9cQs+Dinp71Stz/wKdyurtxmHM8epwb9GvL9YVs3q78RpGXvssRo5rbmur3vYos+dzwHxWbzcOWgA7aBzM/r6FEfjACH41tsQ5wZbgB2Z/99u2GLiMSVjsJ+5NYQS8/azjclavk7UL4FXuFN7OZs/Pbqu324fa24XBW8CfZG3xMa+1GHONHOJBhUGLxWKxWCwWy5NHZLP0OQ7EsUlyS9P9dZT05TlTX5Ak6b7T6/riXqHgMjKSZ3y8gOtKXnihyqc+NcfJk+P8wi98iWLR40//9Cb1epfNzRDXVeRyLlGU0GppXFehlKTbjdBa43lqW1tMUvbtstxubdHa7LtSYlBWSpEtNzNzOo4kDM2MkWmq2dwMAZOQ1WyGdDqCd9/dII4TkiRlZaVFpxPjeZJKJRjUq9W6+L5DkpjZPJNE4zguQeCQy7lojU3ZstyTY8eqvPnmdQAmJoosLjY5e3bljsS2/vNB4OD7imPHdp8oJ45TLl+usbDQIAwTPE8xNVXi2LHqY7n2FhZMwvnKipFOq9VghzwHMDqap1oNqNW6LC+3mJ0dYmGhYQU6i8VisVgsd7CxcIW412Vj4YoZMKhTpHJwvACpFDpNicIucbcDYASvNCVNYoamjqLThCTq0VpfJu51aW+sEPc6hJ0mvWadytQL+IUyYbtJYXicXqNOt7lBEod3v/l40miywTvaJL8Jgc76hLYGzu5+U6fTBITcSrHr9wX15Tsw65EmXQ6tzbFPIyPKAVKpgcyWxjFpEpljr1MQAuV6BMWqSSvIFchXRvCLFVYu94g6LVq1FYYmZ9m49S6HX/saFt75AtVDx9CpJuq+S9RpEbYaCClx/ByF6jjVQ6bfYvz4+5B2RuznisrUUW6dNTO/56tjtNaXWbt6Dr84hJcrDl7P/efVYxAt0yRmY+EKrfUlkihCuS6F4QkqU0ft9WmxWCwWi+Wx0uw2UVKh4/3dv2itcaRDs9t8xC2z7Ie+yHBs7BhX165yfvk8jnC4sXGDXtSjG3VJkoRW2KIbdfEdn17cw5EO0jEpbalOSZN0kBQnhaQUlJBCmtS5CXMv5Ts+8zPzzB+eH6QvbblkYpC2JoQYyE0KhSZLntNbYlhfnpNSUvSLFIMiq41V4jQmcAPCOCROd5+YRgkj1SBMgqJO9SBxTgpJOVdmtDBKmJq+u7yXJ01TLixdYKOzYdqqzQQy6X47M9naz37CF5jtK6EQQphjnaXNSSEH634QKW27QCfFg6XyAaRsCXxSSDPBTXauUp3uCF951OlzYPal6BWZLE/ywtgLjJfGubB8gbyfBwFhHLLeWmehvkCUmHCIJE3Ie3mUVCQ6QSqJ67ikpCihSNKEnJtjKDeE55jxt1JKXOHSCTsoqVhprjAxNMHllctPXPrZLcWsEBQYK42x3lpHSkk5KPP+6fczU50ZnKO+eKbRLG4umteRVAOxTEnFRHmCifIEgRNQa9cGyxfqC098v/vkvByHhw+z3FimFJQIkxCBoB22aYdtwFz/nvLwlIeSipnqDDkv94RbvpO9JLI4iQfn9eLyRRY3zRjnaqFKyS/R6DWotWpmuYC5iTnO3DjDyemTNr3NYrE8szyRd7fx8XF+8Ad/kB/8wR/k5s2bfPazn2VlZYVarYbWmmq1yvj4OB/+8IeZnp5+Ek20PPP0DrjeMeCPgOsYGWsEaGGEob5o5mbLc8A14P08PqHnQQZribvUO4rZr/2m2vU7LI/u8Xwpe26TrbS422eY6G9LYmSoo1m93XCA/wv4uxh5rsiWVJVm6+jLVi4mLe7/Yu+3xIMWwB4F8xjB83y2zVlMAmJfeBvHiGRkz8/vY50aIwKeztaznXMYie1Utq67zQiykD2uZOussvPYkf1exQh/y1n7F9j9+PWFwT/FnMN1zL5vvxZF1uYXsuX3IwxaLBaLxWKxWHajL7E9ToSAoSEf15XEcY843n9njMzGTvq+Iggcut2YVivac7xoX1Tri3flssfwcI6XXx7hm77pOB/4wCHm5kYGss6pU5P0emadb7+9jBAmFa7bjVFK4nmSkZEcjUZImrItNW5LDJRSDBLp7nYM+mV933SAxXGa7Z/Edc29WZIkJIkelImihKEhn/HxArmcQ6USIASsrnbY3DSJB2GYkMuZYwMmXc6k2qUkiSZNNUHgUC77FIs+L75okvhsypblXjiO5NSpSd566yYnTpgEhaWlJrVadyDOCcEgzRBgfn7yDhlOa82ZM0ucPr04EET7nDu3xptvXufUqUnm5yf2NVPlg9Lfdv+xVPJ3LVcq+dRq3TvKWywWi8VisWyntb5Eu75Gr1lHpwmO6yMdF+W6SOUCpiepXV8lbDWJOm3KE4fxC2VyQ8O0aysD8apdW6HXrA9EGyEEheFxZk5+NfWl6yxe+DN6zTqunyOJeqRJ/BRLdNtmF9FmshEhFdIxx4Q0Nb0AAtI43kqfy/qPhHKQwkwM0i8r+h8vhTCinNZGUkRn6zCz2SvHxfEDlOPhBgWU69LZrKG8wCTHpRovV8T1A/xihfLEDDIboOjlCkSdFkk2kC7udRk7dpJuo861039At1HD8XzSOCIlyUQ9n26jRmP1FrOnvp6xYycfzyG2PDVI5TB+/ORAtITdX8/56tgjFy211qxcfpvlS2+TRDv7A9evX+TW2c8yfvwkY8dOPtL7LovFYrFYLJY+nbCDm90b7RdHOnTCziNqkeVBcJTDp+Y/xc//6c8bSUoKaq0anagzkK+KfhEhBJudTVKdMl2dxlMe9W6dJElQShmpTKe40mW6Os2Hj36YlyZeGiQrOcohTmLOXD/D3MQcK40VlupLA/ElcAOSJKEbd4mTGCUVrnRJdGKEMA0SaZKlhKDoFxktjZKmKdV8lc3uJjk3R6hCOlGHMAl3iF3bk+cKfgFf+XTiDkIIfMcnTmMKXoEoNfeMU0NTFP0iS5tLFP0ijV6DOImNNJgJbvtJexPZP42ZIMZRDiW/hOd6RvZLYoQQKKFMmluqH1h6k8hBQmB/265yBxPhJGnyQIl2kKX+iS0RNtEJjnBIRYrUciBBPiqUVChlEuZKXglPeZSDMmutNRzp4PkeURLRjboU/AJxHBMmRqZUUhG4AVJIumF3cD58x8dTpl6cxuTcHEqYRMVUphQosNpcBXhqRLLbU8waHXNdxkmMK11ePvQyh4fvDLvwXdNfFsURQgo8d/fAjlJQotauEcbmnjNMbh+L+uSYGppipjrDRnuD9dY6nuMxVhwj0QlJmphrRCiWm8sIBMfHjzNTnWFq6GDCU+Ik3jM57iAEtssrlwmTkE7YYWnTjH1+9dCrOxL0VpurnL11lqX6ErPDs4N6T8O1abFY7o9H/Z7yrPDEj8T09PQOSa7VanHp0iU6nQ5xHA/iXy2Wg+VBr6m96jmYJLMljAhUA9rsFHoiTJfnaFbuIzy+l2DA3QWnu9XbjTxGXEqy//eiL73l93j+ZYwwVcckvCWYY9OfTbQv68WYJLsjWfmX77JNBXwD8L+AK9k6VPa/3yYJzGTl1J2rGHDQAtijQACvY2TA09my2dvK+BiR7F7CG5j9fAO4gDkfNzHpir1sPUeAaUzq3Ua27b3WGd72uJf4WMIcv9vL78ZrmHN7FXPsC5gEwAgjRU5iXm9XgTH2The0WCwWi8VisewXz1PE8eOVQUwSnEApSZrqfafPAShl5DJtxk4SBA69XkIcp7uOF92e7BYEDvm8x8xMmf/7//563ve+8TvKz89PsLFhRKBCweXy5Rq1WpckSVFK0m5HtFohtVoPz1OAptdLs+857j4ZiZRbCXNKCXzfyWS7dMfPWptjIwTkcr5JQnCNlJfPK06enKBU8piYKDI3N8zaWofl5RZhmGTrlnQ6Me12nKXUmc67bjceiD+uK8nlHJQSDA35NmXLsm/6r5Hz59eYmxthdnZocP15nmJ8vEAQmO9F5uZGmJ+f2FFfa80bb1zhwoV1ADqdmJWVnfUB3nrrJhsbXV5//cgjG8xpXsNbj43G7hMs9ZffXt5isVgsFotlO0kUEbY3SZOEOOwhlUNuaJTiyDhhp03c66DTBLdXIO51EULQa27S2VzDDQpUZ8rUblyiOn2c8tg0rY1VkjhCOS6FyijKC2is3KS9sUK+PEoaR2wu3kD5edJO4ykW6LZj7pn6gxKFlCgvACHQSUKUtNBabHVLaIxQJxTKcZDKIY0jNCk6SY0k57oIIdFpagbnpTqrI1COi3J9XD+Hcj28XAGdpkYmygYxCuUwNHkEvzi043Nn2GkBoLIBvo5v+tb0YGDituO9y8fV/iBDm/71/DF27CTdZv2er2eA6szxRyJaaq25fuYz1G5eBiAOu7RvawPAwjtfoNusc/i1r7USncVisVgslkdOwS+gpEIKuS9xRgojPxX8wmNoneV+ODV7io3OBr//zu/jOi7D+WE2u5skaUKtVUOj6UQdCl6BodwQCIjTeIfY0ew1CaOQl6Ze4i+//y9zfPw4r7/0+o7t9AWRbtRlob5A4AbMTc5xa+MWnahjJDkpCePQyGSZ9DUgywbwHZ/x0jhJmuC7/iAZTiBwlMOwO0yj1zAiVJaWJoTAkQ7loEzgBjR7JgmxFJQGqXauMulkeS9P0S9Sa9fY7G6i0Vn6uh60SylFkuy87vv3jWLbTaXO/jnSwXd8Sn6JyaFJOnEHiWSttYaUklavZbYjBTrRpHsku++GQCCFNK8xZRLd+/fpUkgc5QzS/XpR775Et/6xY9A/a7aDMEJsilmnEJko+Ai+yxAYwbBaqHKrfovFxiLTQ9OESchqY5VWaO73864Z85qmKUN5M7no5NAko8VRrq9fZ721TjfsDs4JQJRGA4mz3WsTJRGOckh1SjtsD2TETtjh/OL5p0Z06KeYfaj+IUq5EkW/yJW1K4N9uZ1eZPrFXMclTmPCaPfxno1uA2CQyOep3UW7J8GxsWO8eelNTk6fpN6pc3H5IsvNZfJunsAN6IQd2lEbJRQnxk9w8tBJAjfg2NjDhadorTlz/Qynr5++Qyg8t3SONy+9yanDp5g/PP9Q9+ELdTP2eaWxgkZTLVR3vMeCSROs5qvU2jWWN5eZHZl9auROi8WyPx7Xe8qzwoH9he12u4ThzgNeLpf3Xf9Xf/VX+dEf/VH+5E/+ZEcMcbVa5Vu+5Vv4x//4H/O+973voJpree4ZAtYesN5uxBhhbgL4EkbMGs6ec7LnyZavYtLnOtny3V6Giv2JabvV243NB1inyurthsBISdf3uU6Zld/rTfd14Jcxx6WJEdWSrJ7LVipdP0nt/RgZ7/XdVoY5rmeAlzAC2Gb2P2Yryc4BysDhrNwXs/Xudj4ehQB2e3svY4S7fmLcFCah8H7epgUmme3kAazvDCbN7jrwOe5MeLuAkfU+lC2vZNveDe+2x8Ye5Rq3lbvbjdIXMdfA0dva1xctb2KExg9iRLov3qV9FovFYrFYLJb9UCh4tNuPb/ZOKY341mpFeF5KkiSDlLjt9L/b2b5cCIiiFNdVxHGKUslAppNSkKZ61zGjJu3NJBb00+Ta7WhHmThOuXy5xsJCgzA0aXOFgsef+3Mz1Gpd6nWTlLew0GB9XXH4cMytW81sPXpbe+9swNb+mUKOYyTAfieSUv19kEgpKBY9fN8hSVI8Tw2S6lqtiNHRHMPDATMzZWZmygghGB3NMz5eoF7vEscRShkRr9eLWVho0u1GJIlmfb1DtxvjOJJSyUdKSbHoMTpqOp9typZlPwgheP31I1QqAadPLwIMUgv7+L5ifn73BLkzZ5a4cGGdNNVcvLjO0lJzx+v26tWNQYLd+fNrVCoBp05NPpJ9mZoqce7cGmNjBa5e3aBW67K62mZ0dGuioNXVNrVaFyEYyH1TU3t9f2CxWCwWi+V5RrkuaWKSyLRO0UmC43kIIY24lcR0my2SKDQD0dKUsNOkubbElc/9Pq984q8x+dJXsXL5ywCUx2d2rL++cAWkQqembyUOQxDg+gECCDtNSJ+mz/DbRbj+B77s+34hEEqhlIuXLyKlJOp20Tol6mYTWfZD63SKUJ65d3I90jhEOh5axKSJmUREOgqkJI0ipJQI4YAA5QW4fo7h6eP4xQqO79Nt1lm7eg6/OESnvgpC0mvVSeLIbEtI4l6bsN1ESkGhOgbA8OEXWbn8Nhu33qU0eoio22Zj4QpJHJvznWrisEdxZIrS6CE2bl6ms7FKHHZt+tdzhhCCw699LUFxiOVLbwN3vp6V6zN+/H2P7PyvXH7byHNaU7t1mXZtZcf3FY3lG4MUvNqNSwTFIcaPv//A22GxWCwWi8WynZnqDHEa75Br7oYQgiRNmKnO3Luw5UDYb7qJEIKPv/Rxqvkqn7/6eW7Vb1Hv1ImTmIX6Ap2wM5CuXhh9gVcmX+H80nkWNxeJkghXuXTCDgW/wPGx40gpdxVv+oLIl25+iXrHJDrX23W6UZde1MNRDoEO6MVG8upLWUB2b2hEMd/x6UQdAjcgjEIavQa+45P38oPrzHM9au3aIOFNIPBdH42m2WsihKCarzJRnmClsUIxV6QX93CVS5IkLNYXuVW/BRrWWmtm4s1tCXhSSIQWO9oZp/FgX6WQ5lZYaKSQuNLFd3xGSiPkvBxSSNZb64PnHOGgZSbqSZ2Fv2+JXvtCbAlzfYlOCjmQBLtxlziOQbBTTNyDfmqe1BIhjYDXb1c/hQ5t0uEEAlKIdXzP9d4vrnLJe3mSJKHT6+A5Hn92/c8G53C6Mo0Qgka3gYuLq1w8x+Pw8GF8x+dDRz/E4eHD/M6Xf4dKocJKY4U4jUlSc+76yYPtXptO1MHVLkWvSLvXZig3xPX161xeucy12rUd7XoaRIepoSnOLZ1jrDTG1bWr1Fo1Vpurd6SWxWmMQDBZnuTmxk2SNNm1XK1dQyAYL48P1v+04CiHU4dP8daVt/ia41/DWGmMi8sX6YQmcdJVLpO5SU6Mn+DF8RcRQjA/M/9QgqPWmjfOvcGF5QuAESlXGiuEcYjneIPj9NaVt9jobPD63OsPfB30RZp++l/J373v8mlOCbQ8Hmxy2XuXx/me8qxwIFe01ppXXnmFa9e2/pC/+uqrnDlz5p7pcVEU8bf/9t/ml37plwbr2s76+jo/+7M/y3/7b/+Nf/AP/gH/7t/9O5tIZzkADmEEoweptxuXMclXh4F3MOLXFFDcVqaJSSZzMclgYVZvN0v/oAW6Hublfj8fapys3m4MY0S2Jcx+34u++Da8x/MB8BeA3wC+GjiHEaAijDjnYI7bNEZ2E8CfZ++EvMtZ29/GCItjmGPeZUtaDDAS4wrwZbaks93Ox6MQwMB8y3MGkxh3+7k5B7yJkb72kxi3HQezHw86A0QM/BlGoPsSJhmwfz32hVCBkQXfwhxHH3MMd/uzMoXZnzFMIlwNc162z2Sxmi0XmGulX2+v9p3OynaBkWz7CnPMw6y9xex5gTnOe7XPYrFYLBaLxbIf+klRjwulxOBLmzQ1HVhKpYPvDbQ2wpmUAqXErslycZySJJpOJyaKJFJCHOs9RTwpRbYdI6jl8y6/8itf4dSpSRxHcubMEqdPL94hjA0NBdTrXaamSnz0o9P4vkOnE/PzP/9FNjY6JIlph0meM/tjtr+zLVuPmjQFpYyc5jiaIFDEsXmuUgkol30OHSqRJCkzM2U6nZjV1TZrax2CwOEDH5ji1KkplNp5LzE9Xeby5RrlspdtJ6XXS+h2Y3o9Iwz2emb/fF8xNBSglODll0cH67IpW5b9IoTg1KlJTp4c3yaemgS5qakSx45VcZw7v+eL43Qg3V28uM7iopmxtVoNKJV8Go0etVp3sHxuboQzZxY5eXJ81/U9LMeOVXnzzesATEwUWVxscvbsyh3t6T8fBA6+rzh2rHrgbbFYLBaLxfLepzA8gVQKL1c0ElbcpdvcJChVaW+sELabJFGPJOwRRz2kckmiHspxAM3iuT+jOnOcVz7x16kvXt2RWNZr1knThM7GGq31JbqNOp3NdUDg5QoIIYxA9zRxhzzXX2gmRBSYdLYkClH5ovk5jhBSgtaDpDehQacpQkrSNEE6DkkUkaaxWY4g0RrpeDh+gNYpXlDA9XPkhkYZmjxMaXxmkPqVJhFx2MMvlFmJerQ3Vlm/fgnleTiuTxz1SDI5MZ/VcbyA6fd9hPN/+BsARkjaWMXLFSmNzeDlCoSdFr3mBu2NVYSU6FTTbdSYfPkDpHFk07+eM4QQjB9/P6NHX3nsCYRpEg/Evdqty7TWlwHwi5Ud12p/eXX6OMuXvszo0VdsKqLFYrFYLJZHyssTL+8IYNgPqU55eeLlR9QiS58HSTcRQnBq9hQnp0/uGJi/VF/i3dV3KfpFvnDtC2y0N6h367xv+n28b9oEbaw2Vzl76+w9xZswCYmTmK/c+gqrzVXSNB2ITHESD56XWqKFRiAQMpu8Upo+LiWUSZXDTGTTi3v4jm/S3YISlVyFQlBgvblOJV9hvbWO1trIdkkI2qRqTVenKQZFlhvLHB05SjNsst5aJ4xDcl5ukGgVxiGdsGNS56TCxSXv5lFK0Y26g5Q7JdWWcJaNm9ba7IPneLjSpRf3WG+tk/fyRGlEN+kSxqHZ7zQe7CMSFCZJrn/+JEZi669ze4pcP93Rd3yUVKTSpOR1w+5WKpw0IprnenTC+5uIVaMHx7y/X4lOSBOT1pfqdCDzPAqiJDJCZxqb1D9h3kvAPEopmSxPcvjQYVq9FmEcUs1XeWH0Bbpxl8AJeGHkBSaHJinnymy0N0zfq07NdReHO+7h4yQmSiKUVDR6DVqrLV6afOmpFB36qWx4MFGeYHFzkbO3zlLNVykFJRrdBrV2jWJQJEzMtV3NVykGxV3LAUwMTRC4Ab7jP3R620Ezf3iejc4G55fO89LkSxwZOcLy5vKOcxK4Zqzy3MQc84fnH2p7Z66f4cLyBdI05eLyRZY2l3ZIrVfXrjJRnuDE+AnOL52nkqtwavbUA22rLx330/8avd3HPj/NKYGWR4tNLnvv8zjfU54VDuSbzd/7vd/j6tWrg9+LxSK//Mu/vC/R7e/9vb/HL/7iLw5+3+vFlSQJ//E//kcuX77Mr/3ar9kXoeUh2Uu8etB6C9njKib1ahYj8iyylQB2BCMENTDS1mxWby9h60E+/O/1ocVnX1Py7FpvNw6xJSt14K7R3jIrp9hbQAT4Vszx+BzwCiZZbBEj0bnAJCZJDEzq2bfeZV0LwA2MEKcxx7KfPKeyxy5b5+YSJkFtr/Nx0AIYWRvewCS5wZbM129Tfx1vYdLVXuf+JLqH4XL2/wZGnmtgrgWPrWMYsiVY3sSkwe0lIB7DyIBgUhoXgbOY10opW39t2/NBtr29bpQuZ9vvYCROAXyUO8/H2ez52W31bKy0xWKxWCwWy4NSLvvsPZnEw9MX2PoJcP2xk2FokuQcRxLHGqXM89vrACglSZIUKQVab6XIgRmHGcfptoS5ndvtr6e/HbNOTbHocePGJv/jf5xnaCjgwoV1ADqdmJWV1kAEGh8vMDycI001nufwsY/N8vu//y7Ly61BelunE5OmW9s2MzTeKfL10RqSJOukSTVhmFIsehQKLiMjecpln+HhHBMTBebmRrhwYR3fV8zODtHtxnieukOeA2i3Q6rVAK1NquDGRjc7tml2/CS5nDmGuZxLrxfz2msTHDliksNsypblQXAcydzcCHNzI/sqf/lyjTBM6HRilpbMAO9XXx27I/Ht7NkVlpaag2S7y5dr+97G/bb/1KlJ3nrrJidOmMmBlpaa1GrdgTgnBINEPID5+clHIvNZLBaLxWJ571OZOkquPExrfZlcZZR46Rrt2jJxt4XWKUkcDSQ6naYgJDpN6Wyu02lsUNV6RxLU8MwJwMgwZ3/vl5FSsXbtHXqtBnHYRToeXi6Ply8Tdpp06uvZYNQH6Td6BAxuioQRyvqzpWSD99IkRghF2GmSJjFpmqCUIgHSbQPpdFY2TSVS62xdSXYMzez86BQhBPnqOMXhcaJum6BUYfjwi4PjCCb1a+rlD+AXq7z927+AlysQddtEnSZRp03UaQECqSRuUMTLFWhvrPD+b/pOmmuLJFFIHHZp11YAGDnyErny1iSTnc111q6eY+3aBbxcHqlcls6fJo0jm/71nCKVw/DMiR3X4aNmY+HKvq/Vdm2F8tj0oN7jbKfFYrFYLJbnj0Qn5Lwc3bi7r/JCCAI32CH+WA6eh003cZTD3OQcc5Nm7FacxPz8n/w8YRLeVdCBe4s3rnT57JXPstHZoBN2aPVag7Q613EJk5BUpyQkRozSEs/1SHWKpzw0Gk955L08vaRHL+kN5BFHOgN5LXACHOUwWhhlqjzFWmsN13EpeAWUVJSDMo5yUFIxWhzl6MhRfuPMbxAlEe2wTTcy4lmURkRJhEYPRLSUlMALkFKS9/OsbK7skOhSnSKFHKS/OcpBCkmiEzzHw1Me3ahLs9skiiPCJCRKosFwQyUUgRsQJzFxGiNTuW3SUj1IuxOY5EdHOeTcHEIIhvPDOMohTmJqnRquY9LYosQEL/SFMSEEQm+Jk305bq+0O52lyvefF0KgU42Qgl7cQ0mFFNKIfJngeF/Jefegv6521CZNzSSuSiryfh6BoNltciO5MRA4F7uLgzpzE3ODa/F9h97HZ698lpybGxynKIlYb6+jpMKRjvleIhMXR3OjrDZWmapMUWvWOL94/qkTHbansp0YPwEClupL1Nq1wetSIDhUOcQLIy9wdf0qHzzyQbpxd9dyE0MTnBgz95EPm972KBBC8Prc61RyFU5fPw3A7MjsjjK+4zM/M//QElGcxINtXFy+yOKmmVC0WqhS8ks0eg1qrZpZLsy1dubGGU5On3yg47bfNMGnOSXQ8uiwyWXvfR73e8qzwoHs+a/92q8BW/Lb933f9/Hyy/ee0eN3f/d3+bmf+7kdL6bbE+j6CGE+KP7mb/4m//yf/3P+2T/7Zw/dbsvzTPuA6/U76HrAOkZ4qmDELzd7bi1bnrIlVu0lye2V/HYv9qo3wv13hKZZvd14DTNwVrN9FtA72f5cI6u3FxL4h8AvA7+bLXvhtjI5TPLct2bl96IDXMekkDWyNngYySvAyHNttiSwCkYW22sWlIMWwMAkol3AHOeLGNFr+zG8mq3rBCYJroJJo3sc3MAcv0b2P+HO4wfmGDaAzazODXYX1BxM29/C7A+Y/a2xddwEW/sLJnVvrz9RfWF1BXPMquyU58h+r2brX+buwqrFYrFYLBaLZT9cu1Z/pOuX0qTcSSnodGJcV2YynKbbjVFKAhFpar4j6ItvSpkOHiPWmXsQITRKiUzIy2aQzFLqlBI7vntQSqCUxPcVo6MFXFfQ6SQIAdevb3LixDC//uvn+PCHZxDCpGEtLTV3iG9Xr24MxJnz59dYWmpSr/cYHy9w48YmSaIHgl+/HXB3eU4IstQ6I9L1hbq5uVGq1RxTU0VefnmU2dkyvu9w9GiFy5c3CMOEz33uJrVal9XV9h3CUa3WpVrNUa3mqNU6zM0NU6/3suUBS0stfF/RbIaEYUIQOJRKHlev1m3KluWxsbBgZN2VlRZam+S57dcywOhonmo1oFbrsrzcYnZ2iIWFxiMR6ADm5yfY2Ohy/vwac3MjzM4Osby8U6TtJ3XOzY0wPz/xSNphsVgsFovlvY9UDkc+8HHWr1+kODJB1G7Srq/RXF9CSIVOYtI4AiFQnp8lpI0gpCIJe9RuXd41CWq7DNOpm+/eg1KFJAoJShVy5WGibov64jV6zY29b0geK1kfklQopRBSgRDoNAEtTLqcBpRAJzFRt41UyjRdpwgh0WRlSEGb+8g0NoP4hDAz6aPNgC3Xz1EYnsANzGfLQ69+lJmTH8EvDpHG8R2pX2maEpQqhO0Grp8DrYnDLmlqJh9xvMAsxxzr6sxxWutLALQ3VtFa4xcrO4QkgFx5GD9fZmPhCuiUNInNJCfVMZv+ZXls7PtaLQ7Ra9ZpbaxSHp+htb5kBTqLxWKxWCyPlGvr1xgrjhkRKBN0lNhK4eqLPn1hzpUuY8Uxrq1fe5LNfuY56HST/Qo6+xFv6p06N9ZvECcxjW6DKIkG5XpxjyiJkGIrvQ0JOTdHtVAl5+XwHI92r22uqZCBAKcx19uhyiFenniZZmgm/Ku1a6Q65fj4cbpRlyMjR9Ba4yiHseIY3/jKN6Kk4pc/98u4jkvey9PsNmlHbeI0HrSjL8U50kEiidMYV7iMFEaI45jlxjIaPUhHU0oNRDjP8Wj1WgCUghK9pMf19esAgwS9JE1QUg1S7BzlUPSLrDZXjYyX/RNkspve6ld1pYsUkrHiGCcmThAlEddr18nFOcp+2STcJyFFv0g7bKOkGrwm+9KbIx0jLqbJruKbkgqd6sFzWmsSEoQWhHGIlCYBTwiBo4zIGCfxoN0HQZzGA+lPa41ONL2oZ75DUC6NboNb9VsMF4ZxlUuz2xyk4vWTmmaqM1xYukDez4OGwA1Yb60PJGBXuWg0YRxS8kvkvTyJTtBas9zM7vmfQtFheyrb3MQcs8Ozu6ayaa0ZK42R84xwuVc5OJj0tkfFXmmZnvKYGpri2NixAzkHl1cuEyYmgXJp09yXv3ro1TuEtrO3zrJUX2J2eHZQry8g3w/7TROEpzsl0PJosMll730e93vKs8KBJdD1BbfR0VG+7/u+b1/1/sW/+BeDn/uD1z760Y/yT//pP+WDH/wglUqF8+fP85M/+ZP85E/+5KDcD/3QD/E3/+bfZG7u+T1xlodlg72lr70QWb3d6CdzLWBEuRxGjFpnK0FtGCMcdTAC1gn2Toy7vxj6e9cbzp7b7z6LrPzwXcp0uVOe2/57/39/2X5mBZLAtwHfAvxv4B3M8coBL2NS2PaTHrgKxGwlzbkYabG4rUwT+Arm/OjscXWP9R20ABYDp7OfL2KuB7hTyOsvn8MIdyfvss6D5GrWxh7m+OXY/fg1Meenhzl+V9mbeczr5zxmf2YxYtv2xL3+uZ3Lyu9FeNvjXmkXJcxxvL28xWKxWCwWi+VBaLejR7buLFwA31dZipvEcSSep4jjlDjWmTAn0TodfIcgpSCKkmxiHoGU2YyGqcZxJEHgZClqRojr9WKiCKQ0aXQgyOcdhofzjI0VmJgoUCx63Ly5ybVrmzQaPcIwYXm5xQsvtKjXeywums6xajWgVPIHUll/+fHjw/zu717mgx+cwnUlWoPrKopFN0t500SRSXsLw+SuEh1sJdYpJYiilBMnqkxPl/me7/nqgawDJmFvYeGLKCWYmCiyuNjk7NmVO9oJMDlZ5MUXh1laajE9XSIME1ZX29TrPRYWGqystJmZKVMomHvWer1Hvd4bnCubsmV51IRhsuOxVPJ3LVcq+dRq3TvKPwqEELz++hEqlYDTp839ej/5ro/vK+bnJ5mfn7Cz71ksFovFYrkrEy/OM33yo1w/80cMHz6BUIrG8k10mpAkCcJx8Pw8br5AcWSKfHWcIJNY9kqC2i7DIASOn8f1fdphj25jgzRJ0DrF8Xx6T4M7lyGkg8jkOeV6WeJeQlAcortZI0lCM6s+AJo0iY0QJyViMAAyNUlzCHSaIoRCpzFaJyAE0lFI6SCUg3Rc/GKFytQRXv74X2Xqpa/atV1pErP67llmT309l//kt+ls1hBSERQrRq5LYpI4Io1j8pUxZk99PavvfoV8ZQyAJJP4vFxh1/UnqUnHi6MecbeDE+Rt+pflsZJE5hq917Xq5Yr0mvVBuX49i8VisVgslkdFohPyfp5iUCRMQiMmSWeH7CMQkE24WApK5P28TaB7hDyqdJP9Cjqwt3gTJzGrzVWaYZPN7uZATIuTTFRLNVEabetbNOltpVyJDxz5AFJIenGP67XrdKMuRb+IRtONuhT8Ah848gHeP/3+wXf+/UHoWmteGH2BbtzlfVPv49jYsR2STRRH/GL6iwwXhqm36xSDIqJnktXASG5xGpuEOaHIu3miJCLn5qh36kRJZCaEya5zpRR5L48jHaYr00yUJ7i4cpFmr0kYhWhMelqcxggpsvvohDQ1yXtSSDphx0hyGEmuLxX2U/mkMtKbQOA4DkO5IeYm5qjkK2b9QnGtZkTVUmDG6w3nhzm3eG4giaVpOpDw7pY+N8i7k2IrZS9NSXU2CWl/XWytS0oj5kXJtvT2bKhq+oDjbftibr9NGj0QLlu0cJTD8uYy14PruI5LnMZ4juk/7acUEFptLAABAABJREFUCiE4PnaceqfOcmMZpRRj5TGSNBmkCBJCJVdhtDRKL+5RDsqkaQri6RUd7ieV7bWZ1/jijS8+8vS2x8HtaZkHzULdhEesNFbQaKqF6o7zDzBaHKWar1Jr11jeXGZ2ZJaF+sIDtekgZeXnjTiJH6lM+aSxyWXPBo/7PeVZ4aGv4Fqtxrlz5wYfer7jO76DYrF4z3qXLl3iM5/5zEC8E0Lwzd/8zfzKr/wKUm4NvHrttdf4sR/7Mb7u676O7/iO78gGwqX88A//MD/7sz/7sM23PNdI4H5unO82IHAK+DRGImpj0rsUO19iN7PtjWBEnhvAN+yxvgftudyrXh0jKcV3KbOdfmLbXgkTf4ZJWOsj2RLltrdl+7b8rN7dUuj6BMAns/9PCwcpgF3O6nUwIh7Aq+xMUVvFpNwtZdvq13scf7A2s8cu2dSu7JTnyH5XbEmK2+vthsAIkBW25MHZ28r4mOM2z85r6Xa82x4be5Rr3FZuL2HVYrFYLBaLxbIf0ged52MfCGEkMxCEYYwQAt93SFNNoeARhgnNZojjCNJ0qy1p2hfrTFqbwaS9eZ5kcrKI1jA8HOC6iuXlJgsLrYFQp5SkVAo4frzK+Hhh8IW9lALPkwghWFpq4vsOy8stNjbMZ99XXx27I9nt7NkVlpaaBIFDtxtz40aDMEwYGvKZnCywstIepLpFkdmf3eS5/v70vy/R2kwm5DiSQsFFa/jkJ0/skOcAHEdy6tQkb711cyC3LS01qdW6A3Fuu/xmvod5iZMnx7l8ucbCgmmv60quX9+k2YxQStDtxjZly/LY8Ty147HR6O1arr/89vKPCiEEp05N3vG68TzF1FSJY8eqVii1WCwWi8WyL4QQnPzkd6C15taX/xQvV6Q4MkG3uQFSoByPQnWM3NAIfrFCoTrG8MwJVt49u2cS1HYZxvEDkigkTRI6m+ugNUnUQ7k+QkrIBuE9cYSA7B7IKxTx8mWSsAtCkitXcfwc3dYmOg4RUiFV9nlPa5AS5XhE3TY6TdE6JYl6mFRy0EKanisl8fNDSKXIDQ1TGpumeugFhg+fYO3qOSZOvH/XRLd+ol8S9QhKFaZe+iqkG5CEbZIoRrkOysuTRl0j1EU9EiHoNtYAUI4LQNhp7brrnfoKAEloBgT7+bJN/7I8VpRrrtF7Xathp7mjXL+exWKxWCwWy6NiOD+MkkYoajmtgbjTl+f6j0orBIKcm8ORDsP5u00Ub3kYHlW6yf0IOnuJN/22pWlqEguFSTYDk1yYSiOHJTrZIWAmqZmgc6oyxfGx4/zRxT/inYV3BmKZ53t81exX8drMzrGO2wehgxEKjo0d4/WXXt9R7t3Vd3lh7AWSNOHK6hWkkMxUZ4jTmPXWOmma0o7agxQ63zNjMQtegVbYohW2kBipTUlFKSgxUhxhujLNWGmMzc4mh6uHWdpcYqG+gOd4TJWn6EU9Gr0GOTfHZmeTXtwbyGU60XRFl5ybI+klhEm41TeapcZprQm8gLyXZ6Y6Q6VQMecKwVhpjFemXqETdbiydoWRwghTQ1NEScTllcust9cJkxAllJk0Rve11zs7RAfnop94p1wSkZDq1CTyaTlIgds+njzVqZH1tKYTdwYSnk4ePpWuXz9Jk0H6paNMit6NjRvkvTyHhg4xXh4HYGpoCoBzS+cYL48zWhylkq+gpGK1uUqURAwXhknTlM3upjnPjk/RLzJRnqDZaz71osP9pLI9jvS2Z4F+cmE/ybDk7x4eUQpK1Nq1OxIPH4SDkJWfJ7TWnLl+htPXT99x3M8tnePNS29y6vCp94QQejdsctmzwZN4T3kWeOi/SO+88w7AQIL7a3/tr+2r3m/+5m/u+N33fX7iJ35ix4ed7Xz7t387//N//k9+4Rd+AYBf/dVf5ad/+qdR6tEOjHmeaLVa/OEf/iE3btxgZWWFkZERpqen+Zqv+Rqq1eqTbt4BU+bugs5uiKzebswCtzCJc5uYRK6+nKdu+7mRlVvgToFo+7YehL3qSYyc1LmP9QTsLQ1+BZNK1n8LcYA8O4U5gZEJ0+z5XFbvcTCabVNg9lthjnces1/drG0uW/Kfy06B7XYOUgBbyB5XMMesusu2R7PlNYyoN5vVexwfPPrXecBWGmGTOxPo+qmGwW319kJgkvxOYmTABbYExCngGPv7szQFnAPGMKl3NYxweLuAWMu2Ob6tnsVisVgsFovlQZESkkc4eWeSpDSbPZSS2bbMzIJSCnxf0W4L4ngreW67PAd92UxnYpzA81zm5ydot2MqlYA01VQqAZ1OQqMR0uvFphMoUDvkuWYzpN2OcV1FEDi02xGVSsDaWhspJdVqsEOeAxgdzVOtBtRqXa5e3QDg2rUNhBAcPVrBcSSTkyWuXdugVuuSJCmdToxSKWmqByJdP3lPKTmY7bDbjftjQ3Fdh1qts6e0Nj8/wcZGl/Pn15ibG2F2duie8psQgrm5EebmRgbr0Vpz5sySTdmyPDGmpkqcO7fG2FiBq1fN62Z1tX2HuFqrdRECxscLg3qPA8eRd7xuLBaLxWKxWO4XKSWv/aW/xcSJ1zj9G/+VTcxnceV4BEOjlMemUI5HaewQpSx97G5JUNtlGNfP01hZQDkOjusRdTu0N9YQShG2Gzx4P9T+EUKawWcassi4rajtfn9S1r/suAFerkgahTh+juLIJI7rU1+8Rml4gjjqEXVbpHFkkvTSFNfPI6QiTWKU6+HlizTXFknCHlqnKMfF8QO8oICbK1AYnmBo8jBxr0unvkoyMQPsnei2PdFPa01QHmHshVfuKHe71Njfw3xllMbyDXrNDTqb63cky4WtBgiB8nzSTkyusvtnS5v+ZXlUFIYnWL9+8Z7Xaq9ZRwhBoTI6qGexWCwWi8XyKDlUOUQ1X6XerhM4AbGOCdzAyHPZPUQ/IcwRDjk/RyVf4VDl0JNu+jPLo0w3uR9BZ6+2rTZX8V0fJRVSSIQUONLBd33iJMZRDt2oS5zEW8Ka49PsNhnKDaGkYnbYtNeRZltxGjOUG9p1m/sZhL5QXzAThro+r828xmZ3kyRNCGMziYpSiiiOWG+t04t6hHFItVAFATk3R97NE+vYyGg6oVqoMjU0xVhpDFe5VPIVyrky7V6bNWcNV7nkvTyjhVGWG8u0wzYAG+0N87rBJL11oy4dOoOkOIkEARI5SHkbzg8zUhoZJPcdqhzCd/wdks23fuhbmanOsFhfpB22afaaRElEN+oO5Lm7pUIK+hPqCFzpErjBQFoDI7G5jks5KJOkCZ7jUfALoM0+9fevL+C1ddts9yElOjAiXZyYfuS+aKm1RgqJUorADfAdn2NjxwB489Kb4MFEeWKQ4HR89DixjlnZXKHerTOUG+Lw8GHybp5b9VvU2jVWm6ugTRrYaGl0IH7C4xMd9puwtd9Utked3vYs0E8u7CcZNnq7h0c0uo0d5fr1HoSDkJWfF7TWvHHuDS4sXwCgE3ZYaazskA0B3rryFhudDV6fe/09e7xsctmzwZN4T3kWeGiB7uLFi4Offd/n677u6/ZV7/d+7/cGPwsh+KZv+iYmJu7+Zes//If/cCDQtVotPve5z/HRj370AVr9bDA/P88Xv/hFAH7kR36Ef/JP/skDrefWrVv8wA/8AL/6q79Kq3XnzHK+7/NX/spf4V/9q3/Fiy+++FBtfno4jElDi++jjsrq7cY1jIi1jkmh62HkIrltG/3f/azc0azebn9IfIzgdb/4eywXwBBG7tvPiFfJ3SXDftKYy5aEVsjWrbN6CnMs0qzM9nqPmhzmXC1j9iNkS+jrH9e+NFfI2jqT1bsbByWAhbc97jXAr4SRwG4v/6iZxeyHn/2P2F1AjLaVcdlbCL0dB3PdP+iHqGPAm9nPE8AiJq2vijlmDcxx6z8fZG089oDbs1gsFovFYrEAOI7YlvJ2sKQpmTAmEMJ0fvZ6Mfm8S6+X0OlEAzEuScSgPSadjYE8BwIpzXLXFbTbMfPzExw6VGJ1tc36eoezZ1fwPJWtK6XbTbh1qzFIjmu3zT2c66qBzFcseiSJRkoolXa/7yqVfGq1Lr2ekdX6jy+8UCEME5aWWrzwQpXDh1M2N3vUal3SVBPHRqKTUlAsend8wRrHmiQxnViFgksu5+75JawQgtdfP0KlEjyU/GZTtixPmmPHqrz55nXApCYuLjY5e3aFajWgVPJpNHqDZMWJiSJB4OD7imPHnrUJoCwWi8VisTzrCCGYnDvFK5/4a9z88lvUbl6itbaIVygzfHiO/NCISYzLuFsS1HYZZuXS26RxCNlgtSQJSeMYHSbEYc8ktD3qfZMKsxWNEMrct6WJuYkT0iyXJok8jnqE7Sa5oREK1THy1THibpvyxAzScQlbDdI4RioHnSQmfU45g7Q9P18iiSIc10cnKaBxvADHM4l7Xq5IoTqG6+dRrr+vRLftiX4AXq6w637eLrjlyyO0kmXzc3WM1voya1fP4ReH8HJFwk7TCElS4ueLSOUQ9zpIuXv/kk3/sjwqKlNHuXX2s8Ddr9X+88oLUK5PZeroE2y1xWKxWCyW54EPHPkAv3v2d+mEHZPylZgkMUc5A5koTmIc6eA6LpOlScZL43zgyAeedNOfWR5HusmDijdhElLv1PEdH1cZEStJE6SQJKlJNAN2CJie4yGkIEqigSzQ6DZQQg0kplSnDzUIffsxU1IxPzPP4eHDrDZXubB0gZsbN4085rg02g2EFPSiHqmTUslVCLwAIQT1dp1EJ4yXxnlt5jUquQqjpVHOLZ5jtblKN+7iOz6T5UnGSmPk3BxTQ1NcWr1EL+ohEGx2zZjNNElJdWr6VDUDQUoJReAFg/7Wjc4GjnIYyg3R7DUJ3IDDw2bc7O2SzUuTL9EJO1xZvcKN2o2t9d8DIYSR+DLZcbw8TqfXwXM8in6RxcYiSZowUhhhuDBMwStQDIosbS7RCltM5iYJ45D11jqOcmiH7QOR5/po9GBfpJakOiXn5Sh4BZI0YX5mfit57fAp3rryFifGT4AwQly9m91L+XkKfsHIh07A5699HiUV3ahLs9fkZv0mCLi0conDw4eZqc4ghHjkosPzkrD1NDI1NMW5pXOMlca4unaVWsvIlLenftXaNQTijsTDB+VhZeXnhTPXz3Bh+QJpmnJx+SJLm0s73luurl1lojzBifETnF86TyVX4dTsqSfX4IfAJpc9Gzyp95T3Og/9blevmz/0QgimpvZ3MLXWfOYznxmY+UIIPvnJT96z3oc+9CEKhcJA8rpw4cJzK9AtLy9z9uzZh17Pb/3Wb/Ed3/EdrK+v71mm1+vxK7/yK/z2b/82/+W//Be+7du+7aG3++T5BuDXMULUfj449z8EfsMez9/ASHNtoIURyiQ7ZTUn21YrKxdm9Xa76TvCg6W1Hdlj+ShGDnMxQp/GSGOaLeFNZO3ti2U59k5k6/+h7MtzXrasn1Yms/X299O9rd6jZgojxNUwsqKH2ZcUs48qa+NK1ubjWfn9/kF4WAHMu+1x95vtreW3l3/UHM7+dzAC4iZb8l5fQAzZEi3LmOO3l2B60DgYkfEtoN+pvYQ5331xTmDkuf7z8xzAnzyLxWKxWCyW55rDh0tcvHhwk2IotRU+oDUDQa6fvuZ5iiBQdLsJQmyl3/m+Ikk0SgnSdOc649gk1jmOJAxT4jhlZqaMEIKJiSJKSQ4dKnH9+iZDQz6Liy1AU6t18X3zeVEIcN1sMKeAo0crCCGoVn0ajZBGo7fr/vSX+75C663HZjPk5Mlx8nmX69fN8RsezuG6EinFIE3P9xXT0yWiKKXXSwb7GMcJYQj5vEuh4GVt25uDlN9sypblSeE4klOnJnnrrZucOGHSD5aWmtRq3YE4J4SR5/rPz89PWrHTYrFYLBbLe5bS2CEK1TH8Qoml86fNAC2ldshz90qC6sswaZqQpglukKO1vkwchUgpUY5LEguU45AmklSDTu9nosn7Q7oeaRIitEQ4DjqJSZHZvknSJEVIhZQKIQTK9QiKZaRyaK4uIpUiNzSKThPiXpegNIQb5GmtL5NEIUIqlAtxr0fc6+IEOWTPQygzQNDxA5SXw88XCEpmYhGhHDw/t69Et+2JfgBh585JSM3ynYKb4weMHz/JwjtfoHrITOzXrq3Qa9YHMpIQgtLYNHHUQycxQkjC9qZN/7I8VqRy9nWt5qtjg+fHj78PaQfUWSwWi8ViecTMTcxxfPw4cRrTDttcr12nF/eI0xglFUmaDBKpZquzTFXMwP+5CZuG8qh4mtNNPOURJzGucvEcjyiJGCuP0Ut6tHtmnFuUREgpzX9h/gsEw4VhlFSDgeU5L0fOzZmEw7D7UIPQdztmSiomyhOMl8Y5v3Sepc0lcy0rD9/xyXt58m6eI6NHqHfqLGws8NLES4Mx1iPFkUFbHOXQ7DUJkxCBwFUu5VyZlyZeYrw8zlRlioX6Ar7jc2vjFo1uA41GaGHkh+zrBiEEQgriJCbv55FCEsYhURLhKIfADehGXU6MnWCmOnOHZNNv20J9wQiMTkCz17ynzNZPAlRSUclV8JSHk3MoeAWOjBxhpDSCr3yTWp/Jsv1kvf6xKgdl6p26SatT7oEl0IER6PrbVkLhOz6loETey1P0i8wfnh+UnT88z0Zng/NL55mbmGN2eJblzeVBYtVYaYxr69e4un6VQ0OHaIUtaq0azW6TVq9F0SsylB/i3dV3aYdthgvDj1R0eJ4Stp5Gjo0duyO18Oyts1TzVUpBiUa3YeRxYGJo4o7Ew4fFpgTuTZzEg4S+i8sXB4mS1UKVkl+i0WtQa9XMcmE+r5y5cYaT0yffk/Lh0/y33bJ/nvR7ynuVh37FNhpbL5j9CnRf+tKX2NjY2PFH9Ru+YS8xaQshBMePHx+krt1N+nqWSZKE7/3e7yWOH65T6/Tp0/z1v/7X70idm5mZYXp6mqWlJa5du0aajUhsNpt853d+J4cOHeJjH/vYQ237yeNgZKSI/Qt0Hnu/ZK4CqxhBK8XIRX1Jq0/MVhqbxshbV/dY34MO+Nqr3lcDvwgMY5LE+klxMmtnkrVNZMuGMSljX73H+l4F/hCTSKYw+9bMfncxx7WdLVfbyr36gPt1v/QTyt6Pkb8uYI53P0Gtk7VPYQSrk9nyx/UHYQo4B4xhroEa5vrZLiyuZssFML6t3uPgWPa/zZaQlmT/HbbOaxmTbDiNkRAf5x/UeWADOI8RGWcxiYP9RMBxzDkle37+zlVYLBaLxWKxWO4TdSBrEQKCQJIkRngTQtD/eiCKjDiWz7t4nhqkwUlpJj/pp8ABBMHOWfeTxAhzAJ4n8TxFrdbm7beXdyRWHTpUotOJTUfTSG6QPCdlQi7noJSk1zOTixw5MsQrr4zy7rsbzM2N8IUvLFCrdVldbTM6mh9se3W1Ta3WRQg4cqTClSsbzM5WuHZtg1qty9pah8OHhwZJeNeu1cnlXJrNEN93aTRCtDZpc+VyMFhvo9EjTc3+l8sm+e6FF/aXsGXlN8t7nfn5CTY2upw/v8bc3Aizs0MsL7cGQuj4eIEgMN/TzM2NMD9vBxJbLBaLxWJ573IQSVB9GebiH/82ufLwQDKTfUlNKRzPB1Ek7LTotZrobCZ+dHp7kx6aNI7MrPNCZNMuCoSQKMe0J057Zrb9XAEhBVIqkigiTTYJihWCUgUhJTqVOF5A1GnSa24S99okUUQcdhBSkcQhWmviqEcaxzhugHQcQBipTUi8fBEAv1CmvbEC3DvRbXuiX2P5Br3mxr4Ft+r0cbrNOrUbl6hOH6c8Nk1rY5UkjlCOS6EyinQ8Ft75PEHV9AG1ayv3dc7TJGZj4Qqt9SWSKEK5LoXhCSpTR63gZNk3Y8dO3vNaVZ75nqI6c5yxYyefcIstFovFYrE8DzjK4VPzn6LeqYOAUq7EUn2JZq9JqlN8x6foF5kYmmCiPMFkeZJPzX/qPTl4/b3C05xuMjU0haOcgdzUCTt0oy5j5THSfDqQg3pJD51qhBQ70nO+dONLg4HlJ8ZPsNZcQwjB9NA0y83lBx6EfrdjJoRgbmKOXtzj0solHOlwuHoYRzm8NPESE0MTONLhRu0GE+UJLixduGNA/GJ9kYX6AoETkOqUXtKjG3UZLe1c/7vyXaYqU6hNRStsmVS6VKCyyWwc4eC5Hq5y8R3TF6mEohN1iJOYkeIIL068yEx1Zlfh5sz1M1xevUwpVxrIJlKYxLZ7yWxKKqSQ1Do1kPDKxCvmvOmUqaEpRoujLG0uUWsbYSXRCQLBUG4IrTUpKXkvz0ZnA9/x6cW9faXf7Zc0Tcn7eRzHwVHO4Fwfrh7eMfZdCMHrc69TyVUG8s10dZrVxir1Tp233n2L9dY6syOzdHod3r75NolO6IQdkjTh7e7bVPIVJsoT3KzdJO/nqearj0x0eJ4Stp5GHOXsmlpYa9cG7y8CwcTQBCfGTHjE9sRDy6Pj8splwiSkE3ZY2lwC4NVDr97xt+7srbMs1ZeYHZ4d1HsvColP8992y/6x7ykPxkPvvbutU6HX230W9tt54403dvw+NTXF3Nz+3jxKpa0Eq2azua8673XiOKbZbHL16lX++I//mP/8n/8zX/jCFx5qnb1e7w557iMf+Qg/9mM/xoc+9KHBsvPnz/M93/M9/NZv/dagLX/jb/wNLl68SKFQeKg2PFnqGPGngxHH7oXMytf3eL6ffNVgSy7y2JLSNOblFmbPb2Lkn9ou6yJ77kHYq95RTPpbBPhZO/ofevuPfXnOyx5LWb3d+DDwK9l68hjRqsmWOJhkP4vs+TxGDvvwA+zTg7A9oexrsm1fYisRzwEmMdLXXNbOx5lQ1hf8wKSkLQJngSrmuDfYujYmMCKYz+MT1BzgqzDHKgA+j7m2+omFCnPMqsAHMPLaKR5vwpsAXgcqwOls2extZXzMeZ1nK0XSYrFYLBaLxfKgdLsHl0yQy3k4jqTbjel2Y5QSRJFJjwsChyBQKCWBFClNQkG/wyOONbmcS6nkoTWEYYLWUCxu/R4ELkNDPlGk70ismp4u88ILFU6fXmJ8vECvF7O52RsIbHGcoJTgxIlh/tyfm8laLCgUPCYmiiwuNjl7doVqNdgh5oFJw5qeLrO42GRmpkSvF+9avtOJefnlUTqdCMdR9HoJWmsWFhpsbpo0vF4vptWKsnQ6h2LRw/Mk3/RNJ3Y5ohbLs4cQgtdfP0KlEnD6tOl0nZ0d2lHG9xXz85PMz0/Y2S8tFovFYrG8pzmoJKixYye5duaPAHA8n1zZTMDhFyskcYiUCp1qajcvERTLhO0mcdh9BHtk+sZ0moIku6fL+uOEQDgOjpCkaYxOYoLiCPnKKCNHXsYN8oO2r1z+sumV8HxTT0r8QpkkCuk0NtCxqZ+EPdBmBnu/UCYOe5Am+IUSfr6IVC5SOQgh9p3o9jBSoxCCw699LUFxiOVLbwNQHp/ZsX7l+rzw4W+k26wjMOd3P+dcSMXypS+xfOltkijcsc716xe5dfazjB8/ydixk/YzsuWe7PdaHT/+PntNWSwWi8VieaycOnyKjfYGv//O7+NKl9HCKJvdTZI0QUlFOSiT83LMVGf4xMuf4NThU0+6yc80T3O6ybGxY4wWRlmsLzJWGqPda9NLeqw2Vsm5OZOk5jiESYjruOY+K0sRa3QbZqLPbQPL856ZQHO6Mo1ckQ88CH0/x2yjvcELoy8QuAHDhWEEgq898bWDpLe3b76954D4VKcooRgqDlFJKzR6DTpRh7O3zt6x/l7cI01T/K7PemsdjcZTHp7jEbgBY6Uxwjik3qnTDtsEboBE0ok7NDomYGWhvnCHINJPa1ptrJoEOeUQpzGOclBSEcbhrqlwAoFGo1ONVibpTaEo5Up89QtfzaXVS+S9PDPVGbpRl+vr14mSaJBa5ymPOI0peAWOjx3n/NJ5Gr3G4HynaUqiHy6NTiJxlIOWmoJbYLIyyYePfpjDw4eJ0juT7IUQnJo9xfsOvY//+aX/yR9f/mO6URcpJO2wjUDwRxf/iE7YMSmIUlLyS9S7dZq9phEg4y7lXJle3OPlyZcfiejwvCVsPa3cK7VwvDxO4JrJbOYm5nYkHloeHQv1BQBWGitoNNVCdYdMBjBaHKWar1Jr11jeXGZ2ZHbX98f3Ak/z33bL/WHfU+6fh/6LNjJiZjLXWnP58uV91fn0pz89qCOE4Ou//uv3vb0w3OoIyOfzdyn57ODuMfPhw/DTP/3TXLp0afD7yZMn+fSnP71DUASYm5vj13/91/mLf/EvDsTHxcVFfuqnfop/9I/+0YG36/GxiBHi1jBC271ws/KLezzfwwhk/ZQ5ssftUaUhRiwje2xk9XYj3GP5vdir3jrwIeDTGCFKZu27XYjaLtB9KKu3G3PABzECYl/CDDGCXj/NTmbbqmBEqw9l9R4X2xPKXsbIgE9LQtl2wa8/+HWJLRETzPmY2Pb84xT8+tvbyNoxA9zEpOX1MGLaEUzynOLJJbwJzHE8CVzGpCv2z+8URji0N24Wi8VisVgsB8UBTthHqxUxPV1ieDjH0lKLJNEoZdLoKpWAYtEbyHRxnHLjxiagByJdFCU0myHFoo/vm898cZzgOEa2S9MUpUwC29GjlTsSq7TWjI8X8TzJ2lqHlZU2q6tttNZUKgFzcyMUCuZ+bm5uhK/+ap/PfvYWJ06YpIGlpeYdYt7ERJETJ4aRUvAX/sIx6vXeXcu/9NIIm5s9rl/fZGwsz+ZmmMl8IVIaca4vz42P51FK8v73T/DKK2MHdyIslqccIQSnTk1y8uQ4ly/XWFhoDF7PU1Mljh2r4jjySTfTYrFYLBaL5UA4iCQoIQQjsy/R3Vynu1lDSEVQquxITYu6HYamjtDdXCeJQiOxpQk61dmN30Hc/GmEkCBMn1ma9PvHBGhI4gghFcr1cXMFlOsxNHmEiRPvH6yhVVsBBIWRSVprSwSFIeI4QghBt1HD9QOiboc0E/WEVAiN+VkIhOuRRCFJHNHZXMcrlFm/fgHYO8VvOw8rNQohGD/+fkaPvrJnUpyQiutf/KN9n/PRF97H9TOfoXbT9MnHYZf2beUBFt75At1mncOvfa0Vniz3ZD/Xqk01tFgsFovF8rgRQvDxlz5ONV/l81c/z62NW9Q7dSPnSIeh3BDT1Wk+MPsB5g/P28+9j5inOd3EUQ5//tU/zztL73Bo6BCNboP15jqpTmmFrUHbPMekrJWCErPDs/iOz9z4HIEX7BhY/omXPwHAheULDzUIfb/H7FDlECfGTiCl5CNHP7Ij6eteA+JnqjPc2riFRjOSjOAqd9f1p2lKHMestdfQaDY7m0gpUUJR8AoIIfBdH9ERJGlCnMSUc2WiOMKVLkubSzS6DcIkxFMeU0NTHBs7NkhrWm4s0+w1KftlwiikG3cHYmKapsQ6Jk3TQSqdEgohzWtWCknBKzA7MovneCxsLvBXXvsrDOWG+M9/+J85c/0MSZrQ6rXoRl00Zsx5wSvgKpdu3GWyPEm6mdLutfEdn1bYQid6Xyl4eyGEwFEOQgsmKhMcGztGzs0B4Clv1zpaaz5z8TMsNZY4NnaMTtjhK7e+wo3aDVq9Fu2wjUbjOz4CAcJIK2EcstpcpRN2mKnOMFIYoZKrIKU8cNHheUvYelrZLbVwdmRneITv+MzPzNu/cY+RfjppGJvHkl/atVwpKFFr1wbltqeavpd4mv+2W+4P+55y/zz0Vfziiy8Oft7Y2ODzn/88H/zgB/csX6vV+PSnP40QYjB7/Mc//vF9b+/atWuDn2+XvSz75yd+4id2/P5v/+2/3fN4uq7Lf/gP/4FTp04NztmP/uiP8r3f+73v4RdRX1yT2X8AwcWLLwBw4sSlbLneVm57vdtxMTJZv3ya/Y+z56Jty/ryWjd7bjcedPDXXvVCjPB2ESOUBRjxqZ/AJ4EcW4Lf0az8Xn/YHeCbMUl6Lkasat1W3gOKmFSwV4BPYRPKtrNd8JvDtO1pEfzgzuM3y8WLZhbWEyf8rMzTkvDmYI6RvUmzPBkuXrwIwIkTNg3GYrkd+/qwWJ4tPG/3+43jx83jtjla7onWGt9XdLsJUgqkFMSx+WInl3MolfxBWc9TDA8HtFphdg+qieOUMEwJw5ggcOh2Y3q9hDBMcF1JsegThgnj44U9E6tee22cL35xmdOnF5mYKN7Rxu3JVgD1eo/z59eYmxthdnaI5eXWHWIeGOHu679+lj/4g2v3LJ/LOXzmM9dpt0OCwKXVCul0YtJU47rmWBQKHuWyx5EjQ/zdv/tVz7wsZP92WHbDcYwQOzc3cl/17PVkOUjs9WQ5SOz1ZDlI7PX03uJu5+ugkqAcz6M0Nk2aJqxeOYdUitzQ/5+9Pw2OI83ve99vrrVvAKoKIJYmQTTYzQYbmB6px+MZiT2yNdIch+LIOjcUOrbvVUi2Ihx6Y4VDCjusF15eKcJhX/uGLclxfH0le8JafO0bDvl4pDnjmW5rhqPhzLSIbjanCYIgQZAEqrDUvmVl5nNfZKFIkGBzA7EQ/w8Dkays58l8spAFVCLzl/9BdMPAjibp1MuYoTCt8gaapmNHE/hdh26nBUqhfG/X5T4tpXxQfpDJ04IL3DSjd5GcAuV5oOnYkTh2JM7Ym3+RzImT/eCOGY4QTQ1SW79Du17CdR00Tcdp1tANk1AijVLgNboYlk0ongHfxfNcYkPDWOEYbqeF22mjGya6bjxRFb/77UWoUTdMBsamGBjb/T36NN/z9aXLQXhOKUp3l2iW1vvnbgFqxdv97Svdvk44niJ3+tyO5cnPDPEoj9tX95Lsh+KgyT4oDgPZD4V4vO2KTjOjMyytL/HRxx/R9bvkR/P9AI9cxL1/DnN1k0+/8mk+P/V53r36LmeGz7BaXmW9to6vghusRKwIuq6joZGKpMgmspwaOsX4wHh/GfdfWA6QiWae+yL0533Nti+Id7Ycrq9fJ5wO7xiLUgpd07EMi7HMGB23s+vyr9y9wmR2EmfNYUvfImJH6LgdWt1WP2DW9bq03eBGoJZp4fs+judQqBdwfIfh5DCJcHB98dXCVS5cv4Druyil2GwEwbyQFSITz6CjU+/UqbfruLqL4Rv4ehCg8/ExMLBMC4UiZsewTZtqu8pJ4ySWYfG505/jf177nzQ6DYbiQ6yUVvrhs0Q4QT6Zx1c+TaeJr3zCVpixzBiVZgXbsNlobFBtVXE8h673cLW4x9HQ0HUdXdNJRBJBxTylyCVzAIykRnbtN78yz7XiNXzfZ7G4SKFa4FrxGhv1DTpuh0angaEb6JHgXK/ne7S6LWzDJh6K0/W6tJwWZtKk6TR5++Tbex50OGoVtl7mz0sP/o5braw+FFKV33H7azsca5vBtNap7dqu1q7taPeoUO3z2K99/zD/bhdPR36mPJ3nfiXefvttQqFQvzLcP/tn/4z/+B//4yPb/9t/+29pt9s7fqn/xE/8xBOt686dOxQKhX7fgYGBx/QQu7l27Roffvhh//HExMRjvwdvvvkmb7/9Nt/5zncAWFlZ4dKlS3zqU596oWN9cfIE4bEoQZAtqML21a/+JABTU/9vgjCZSxAMivXa5x+xvC5B2Knae6wTBNTM3rK3p/p9z4d6/XbzrFUHH9Vvu6rcZwm2abPXNs69AJ1FEN4a6rXbrkb3KHMEAbBor88GQcW6bm9ZA0CWIBj2Y732++0wVyg77AE/ePD1++pX/yugmJp6k4N//YQ4PL761a8CL+fBuhDPS94fQrxcBgbC3LhReWj+9uHkb/7mky9L0zRaLRfX9TGMIEAXi1l4nh/c8dAIHkciFvG4Tb3uEHw+Vf2/CYRCOrZt4vv0p91ucCIsmQwxPBzj3LkcU1MDj6xY9TSVrc6ff4V0OsylS0Fl8kcF82Zn88EJrSdo/7/9b2f5whdO8vu//xE/+MEGsZhFux0E6LYr8EUiJq+9NsT//r/P8KlP7X5C5mUivzvEXpL9Sewl2Z/EXpL9Sewl2Z+Olsd9v/aiElRsIM/WyiKxTI76+l2UUkTTQ/0qdO1aiW67CbqOYdnopoUybQzTpttp4jodUP7zbaimBRXoeuc2NN3AME10y0ZDB03huy6apmGYFqFYksTQCONvfq6/iJvff5dKe5ny6g1alS3CiTR2NIHntGjXg/Nx4WQaTdNwmjW8bpv4wDBWOEpsILioDaUwQmFC8TSmZT9R4G3nZuxNqPFx63iS77nvuf0xlO4u0dgqAhCKp7EjMZxWg0693J+fGT1N8fpHDJ18fcc+Iz8zxGEg+6E4aLIPisNA9kMhnpxpmEwPT/O1//I1AH72x372gEd0PB3m6iaapvGLn/tFUPDNxW9yIn2CXCJHtV3F8z0M3SATyzA5NMmJ1Ani4TjjmXG6fveRF5bvxUXoe/GaaZrG4p8vopTiL739lx4ayy9+7hf56O5HXFq5hKZpuy5/ZnQGz/eodWrcLd/FUx4hM8RGfYN2t02FCqZh4vs+lmlhG0GgLWJFSIQSdL0uDafBYmGxH6gAuHL3CoZu4PvB3xDCVphWt4WnPJKRJL7y6XpBJfl6ux7c1MaIkoqk0DUdT3mkI2m6XpewFebNsTeJhWJ85fJX+OD2B3gqGHOlWUHTNNKRNCErRKPTIBlJMpwa5ub6TWrtGtP5aVBB5aizI2dZKCxQbVVpqmYQ9HvCSnQaGroWhC195aMTjDNkhQhbYUJmiMns5EP9XM/tf48Xi4usVdfwlU/H7RCzYzScBp7voWlBlb9EJIHv+8RDcRzPwXEddF3H9VymclP8hcm/sKMa4V45ahW2jsPnpe3fcVLh7+CNpEa4WrhKNpFleXOZUqPERn3joQqNpWYJDe2xodrnsV/7/mH+3S6ejfxMeTLPnXywbZuf/umf5g/+4A8A+IM/+AN+/Md/nF/4hV94qO33vvc9/uE//Ic7qs/Nzs7yyiuvPNG6/viP/xgI7pygaRpvvPHG8w7/SPjGN77x0Lzf+Z3f4Xd/93efaXlf//rXdzz+0pe+9ET9/spf+Sv9AB3An/zJnxzhAN0JgpN2Ru/LZ/tizJ1T/b4vrddvN2EgQRAg2267HZrbXp7ZW5fqTZPcqzD2oOgzbtej+o0AVwkCgCeBUYIgWYl7gbJMb2oBw/f1exQNeKfX7/vAXaBCENAzgVRvPW8hFcoe5TAH/O63/frFeo/PH+BYhBBCCCHEQclknvU45WG6Tr/SmmFoOI5Pt+uTSoVJJGw8L6gy1+36rK7WKJVaGAaAjucpdB0ikeDuh4ah43k+tm30g2eWpZPLxTh1KsP58yc/cSxPWtlK07SnCtw9aXulFIODMb773Ttcvlxkba1Ot+tjWTrDw3HOncvzQz90oh/ME0IIIYQQQrw8fM99ZGjqWStBpUdOcvfKdwGIZrI0topsLl8lFE9hR+JUiys0tgroukEolsCMJFBuUIHOddrohoHvKnjCi8seoukYlgVoaLqGhoZh22iagYaOpusYdghP6wA+XaeN53bZXL5KaniiHxgzLIva+h2cZh2AZqlIp15BKYUVjuA6Dm6nDZpGJDmAFU2QPnGS7OQM4USKVmULO5ZA140dw3vawNtehBqfxOOqf5VXb+J1HVynTbO0DsDgK2f6wUiAVnWLzeWrNEvrJLOj/X77UVFMCCGEEEKIF8X1XJbWl2h0GigU7119TyppHJDDXN1E13X+5o/8TeYm5vjala+xUd/A9V1M3SQVSTGUGCJqR3njxBskwgnWKmuPXeZeXIS+V6+ZpmmPHMvjlr+0vsS7C+9ybvQcNzducmPjBolwgqH4ENV2FVe5+G5wk1Lf9/vVlYZTw2w1t6i365i62Z+/vLlMPplH13QK1QKeCirZm7rZD9+FzBCe7+H5Hq7v9qsBGrqBoRn4+KSjaV4ffp1CtUAynGSzvknYCvPtpW/jei7rtfV+pbREOMFwcphyq0y1XaXcKpMIJQhZITbrmzScBqYRjLHULNHqtkDrhfqcINT3uBCdrgVV5wzdwDKCQhaGbpCKpEhH0gDMjs3u+v1aWl/C8RxaTotCtRC8fslhNuobbNW3sHQLy7AwdANTN4laUXRdJxlKUu1U6XQ7xMNxBuIDGLpBxIo8dp94FoepwpYQh81kdpIL1y+ADflknrXqGlfuXiETzZAIJ/o/XwDyqfwnhmqPksP8u12IF2VP9uhf+7Vf4w//8A+BINz2t/7W3+JP//RP+fmf/3nGxsbY2NjgK1/5Cv/8n//zHdXnNE3jb//tv/3E6/md3/md/v8jkQjT04ctDPNivPPOOw/Ne/fdd595ed/73vd2PJ6dfbKSmg+2+9a3vvXMYzh42wGlRYLAm09QcQ6CE4LufW23L4Ac4dEV2dIEFddKQLPX3ycIykEQlPJ6yzIJwnOZXr/dxB4x/3Ee1W8SuMC9QN+t3niivbG0gTu98U4RVD4L9fp9kqMSADvsDmvATwghhBBCiHtMU8cwwPMe3/ZRtq9NVArqdQdNC6rHhUIGtVoH1/Uol9uEQgZKKZpNl04nqFQXDlvoOjiOTyhkYBg6SgXL0nUdTYNYzCIatUilQoyPp/C856yasIsnDdw9afunDeYJIYQQQgghjj6lFIVr8yy//y6t6ha+56EbBnY0STQ1yN0r3yV3euaZqprphknu9AyrH79P5kRwnqdZWqdTr9CpV/A9HzSNaHqIbruJUopQMkPIS9KqbKKUj+92n33j+tXnQDes4Kaqvo+PQjdMdCsEvofCx+hdgGVYFtXibVbmv9Xf9khykNr6XexInEphBbfTxo4lCMczmLaN6zi066UgRGfppEcm0A2T05/5cQZfOfOJ4cRnCbw9LuD2ojW2ggvwmuWN4HsWT+8IzwFEkgOE4ik69QqN8gbJ3BiNrYIE6IQQQgghxJGklGJ+ZZ7vL3+fu+W7dNvBccofzf8RqUiKE+kTfPqVT0tFlANwWKubaJrGD538IebG5x4KAQwnh6l1aly+c/mhalpXC1e5cP0Cc+NzL2x/etGv2Sct//5QyOz4LB23w93yXUzdJGSGaDktOn4HoB/ySkVShK0wlVaFofgQA/EBEqEEtU6NUqPEWnWtH64ydRMdnY7XIR6KU+vUqLVruJ5Lx+3QcTsopbBNG095dLwOITNELpHDNEzioTjxcBzHddioBVXxHNeh2qqilCIVThELx6i2qygUtmFTaVVwug4hK0TH7bBWWWMoPkTbbtNxO1iGRcft9Nfpem4/yPcgjV6wTzewDbu/XbquMzYwRi6Rw1c+0/lpZsd3v9Z6tbIK0A/8ZWIZdF0nYkVou21MI3itFYqu16XVbRELxdC04MZDHbeD2TVJhpNUWpUXUtEKDleFLSEOG9MwmRuf4+LNi0zlpkCDQqVAqVnqB+c0NPKpPFPZ4G9tjwrVHkWH9Xe7EC/Cnrxr33rrLf7O3/k7/It/8S/61eV+93d/96EKaduV4yD4sHrmzBl+8Rd/8YnW8Y1vfINvfetb/f4/8iM/shdDP5Y++uijHY+fNIh45syZHY+vXbu2Z2Paf0PAKeAmO6vPbdsOmmm9581e+yF2N9F7boOgCtt2H/e+ZYd6j3WC6mzZXr/dbIftnuZiT517IcAHmQRV4L7caxMnCPutc29bI71xecAC8Dd48h8REgATQgghhBDiZafrGpGIRb3+HBdSElSf264SB+B5Pr6vEwqZdLs+uu4TXF+psG0D1w0q02maRrvtYpouU1NpEokwGxstPM/DMAyGhiLU6w7ttkcuF2dsLIltG48ZzeHxtME8IYQQQgghxNGklOLDr/wH7nx0Ed9z8d0uTqveD9GFEmnSw6/gdR3a9Qrjb37uqS/ey07O0K5XKN2+Tmb0NMnsKI3yBp7bJZEzqBZjaGg0y+sopdANi0a1gG5auJ3Ws2+cbhCKJkDTUJ6H73UxrBCRZAbf81DKR0NhRVMYbhe/66DrBr7r0qpu4TltAFY/fh/dslDKD05h9QT/3T6fp9jtVdm+o/xBB972mtcNjsW9XrjRjux+U007EqdTr/TbbfcTQgghhBDiKFFK8Y2Pv8E3rn6Dla0VWt0WJ92TAFxZvUIynOT6+nVubt6k1Czxzpl3JEQn+h4MASilePfqu1wrBte7tpwW67V1HNfBNu1+SOjizYuUW2XOT59/qfan+0Mhr+ZeRUPj0sol1uvrGF5Qbc31XGKhGOlomna3TSaWodqqkgwn+Yun/yLZRLa/vI36BlfuXqHTDUJ3hm6QT+ZZra7i+i6WYVFv13F9F9dzgxvrEByvb1d3yyay5BLB674dJLPNIBhnGiab9U0UiogVoeE0aNVbpKPpfkW77anruZiGScftsNXYYjA+GITkFITNMG23TSwUo9PtUO/U6bgdfOWjlEKh0NGxDAvLDIKDETtC2Azjei6pWIqIFcEyLGZGZz5xv9gOZTpuME2EEjSdJvFQHAiq20XsCB23Q6vbQmtpoKDdbeP6QbGPiBXBNEw0tBdW0eq4VtgS4knNjs9SbpVZKCwwnZ9mYmCCYrW44/dF2AoDfGKoVghxuO1Z7PU3fuM3uHz5Ml/72tf6IboHbX94UEqRSCT4vd/7PUzzyYbw67/+6/2+mqbxV//qX92roR87y8vLOx4PDw8/Ub98Pr/j8Y0bN/B9H10/infCjxBUSTMAC+jAQyWatx9vt7N7/XYzThCGaxNUoNskCLRF72vj9pYzCJzs9Rl/xPJiBG9P5xHP78bk2SrXbQfohBBCCCGEEOLRUqkQ4bD5zAG67fMJmqYRChlYloHj+ICi2/VIJGwcx6fTcVEqCM5pmkY8bmMYwd8Z4vEkrVYX11VYlsGrr96723697tDt+mSzUX74h0+gaRojI4k92HIhhBBCCCGE2DudeoWVDz5EoahvFmiVN4JgmaZj2iFatTLN0gbZdhOAcDxF7vS5p1qHpmmMv/k5wvEUxeuXAUjmxlC+T7Oyia7pNErrRNM5dNPE7To0SsXgzueGAZ4B/tOXH7fCEXRdx3O72LEETrOOBnhdBzsSQ9MNuu0mvtul226gaRqmHaLTqGLYYdYWLhHNZMmcmGTz5scYlk2rsokdiWFYIQzLxu20+iE/ww4T0jQM08Jp1smMnqZV2XzqcR8FhmUFUzOYOq3Gru2cVn1Hu+1+QgghhBBCHCWXVi7xf374f7JWXWO9tk6pUWLUGwXg1tYtIlaETCxD1+/S/KBJOprmUxOfOuBRi8NqfmWea8Vr+L7PYnGRQrXQv/kKwPLmMvlknqncFAuFBdKRNHMTcwc34BdgRyhkeJrxgXE+vPMhd0p3gODvCK7vslHfQEPDcR0ysQyns6d3hOcAhuJDZKIZSs0SYStMu9tmMjtJyAqxvLlMOpoGoOt1gxCcFsHr/Y3BNmzS0TQRO8KNjRt0/S6u56JrOhoamhaEx8pWGQDDMOh0OygUW/UtPN9DoXB9l5bTQilFxI4wMTBBx+3g+R5hK0wsHGMoMUS722a9to4ZMhmIDVBpVdhsbPbHY+gGYTNMJpYhE8vQclpBKE83CRthXhl8hZkTM/zoqz/6iaFK2wiq1m1Xr6t1aoTMEJqmkY6maXQa2KbdD8u5vkvDaRCxInjKI2JH+lXgzgyfeWEVrY57hS0hHkfTNM5PnycdSXNp5RIAE4M7C+WEzBCzY7NSAVeII2zPfqvZts1/+2//jV/6pV/iP/yH/wDw0A+G7VDd2NgY/+k//SdmZ58sefsv/+W/5M/+7M/6wTzLsviZn/mZvRr6saKUolAo7JiXyWSeqG86ncY0TVw3+BDnOA6FQoGRkaNYnjcLFAiqwhkEYbf7A3TboUCt93yo137nwcA9k72vJkFlt2jv//dfWBrvzU8BY8DpXp/dvAp8/2k26L5+u3GBeYIKcetAjWAbs0CYe8G/OjDca/cBcI49/DEhhBBCCCGEOMJmZnJ85SvXMU0N1334pjmPo9S96nOmqeN5QYW5cNggGjXxfY1wGOJxm27Xw7YNDEPnh37oBENDUZaWSmSzwU1K1tYa1Osdms0utm3gOB5KKU6dyjAyEicSsQiFDCYnn+x4VwghhBBCCCH2g9tpB+EvG0ori7RrJZQKwk6aoeG0Gmi6BkqxcfMHWOEohhVi6OTr6E95sZKmaeROn2Po5OuU7t7kzuVvU7qzhFKK1IlJwskBWpVNfLeLpkFsIAfKR/keumHSbbdQ+OD7vVNojz8OdDttvG4XKxTBtCMYhommG7id9r0qe6ZJt93EDIWxwhHsSBwrHCWZPUGnUaWxVQTA9zw8t4sZiUG1RCyTJdQL5W1X67OjcTqNGu1aGSuaID504qWtuBYbyLO1skg0PUSteJtOvUyrukUkee/GMq3qFp16BU3TiKWH+v2EEEIIIYQ4SlzP5Y/m/4hCtUChUuBu+S7tbhsVVmhodL0uzU6TRqeB8oN5fzT/R5wbPSchD/EQ13P7IYjF4iJr1TUAMrEMiVCCWqdGqVEK5mtBRaH52/PMjM68VPvTQ6EQG3745A+TS+T4ePVj6p06aDAYHSRiRWi5LcrNcj+k9uC14IlwglKzRCaSwY/4eL7Hj732Y1wvXucHaz8gFUkxFB9itbKK7/vUO/V+eGyrscXd8t1+iG17eVcLV2l1W2w1toLQnoJqu0rYClNqluh63SDwZgUV4jzfC4p/aNB0mkwMTBCzY4xlxvj+re/j+V7wfdRM1mprNDtNUpEUjuvg+i6GZuAql3gojm3aNNrB32TCdpioHSUVSVFr1/jzlT/nM5Of2fV12DaSGuFq4SrZRJblzWVKjVK/wt6J1Ak265vU23UUingoTjQURUMjHorjKx9DN0hFUuSTeX7k1R95MTtBj1TYEuKTaZrG3MQcM6MzLK0vsVpZxfEcbMNmJDXCZHbypfr9IMRxtKfvYNu2+d3f/V1+4Rd+gd/8zd/kT/7kT6jVakDwA+Wtt97iZ3/2Z/nlX/5l4vH4Ey3zm9/8Jr/2a78G3Avg/czP/AxDQ0N7OfRjo1ar4Xk77xiZTCafuH8ikaBUKvUf1+v1PRvb/vIIgm7374cm94JzMYKqdNuvVRwo3/f4QSbwKYKKcWGC8JvGzpOJGpAB3iKoVjfHo9+CZ3i2CnRnHvHcUm9Z7d6YThEE5XSCcJ0J+MBa7/lOb7xLBGE6IYQQQgghxHH3+utZNG37xMDTB+i2maaGUhCJmJw4kQA0BgcjaFpQRa7d9jBNnZMn05imTj4fY2IixeuvD1Eut1Eq+BtDoRCE8oJl6mga5PNxpqaCiwdnZ4cxzRdfMd11fZaWSqyu1nCcIPg3MpJgcjKzL+sXQgghhBBCHA2+59JtN3qV59ZoVYPzbdFMjnA8ies4uJ0mbreD06qBplFeu0V8cITy6k0Gxqaeab2abtDYXEX5PpnRSVynTbO8gWaYGHYIr9NG0zR0wySSHEA3LeqbwQGXApTn4bpd8B4XTNNQ23eUj6XQdZ3kyKso36VZ3uyF9Vx00wTloxsGmdEp7EiM1PAEieworeoWm8tXaZbWCcVTKM8jHM/gtpq4XQfdsAgndt4oxXddIskB0iMn0TTtwCqu+Z5LefUmja0CXreLYVnEBvKkR04+dfhxN+mRk9y98l0Aopksja0im8tXCcVT2JE4TqtOp17pP2/YYQwrRHrk5HOvWwghhBBCiP20UFhgaX2JrtflbvkurW6LVCSFpVlomsaJ+AlKjRKVVoU7lTsMxge5sXGDhcICZ0+cPejhiz3keu5zhxeW1pdwPIeW06JQDQpPnD1xtl/tC2CjvsGVu1coVApMDEz0+00Pv1zXTd4fCrm+fp2vfPgVmk6TydwkITOE8hVLG0tU21U0TcNXPksbS6Sjaabz0zvCY7V2cF14yAoxPjCOoRuYuslUfopT2VNs1DaotCrcLt3myt0rpCIpDM1gvb5OtVXFVz4QXBOuazq1dg1f+Yylx1ivr9NwGrS7bVpOi0Q4EVzKSlDpzfM9fOVjmzbJSBKlFF2vy+TgJBvNDaJ2lDdH32Stuka72yYTzXBm+Ey/2t6p7Cl83ycZSVJv1+l6XTpeB8uwMHUTx3XwfR9TM3E9l5GhEd6/9T71Tp3z0+d3DdFNZie5cP0C2JBP5lmrrrFWXaNYLWIZFmEzTEVVcDyHiBUJXl8/eA10XScTzfBq/lVOZ09zOnv6Re4GUmFLiCdkGibTw9Mv3e8CIcQLKi31zjvv8M477wBQLpfpdDoMDg5imk+/Otd1+T/+j/9jx7zPf/7zezHMY6nRaDw0z3qKE0kPtt1teUfDPEEluC3AIgiSheh/0ibce9wmeJu0CAJn8wRV2XYzSxCy0wgqzN0BlgnCaCHgFWCUoKLddK/9o4zy9Bekql6/3az2puu9dpneV+W+NpneWCtAkSDkt4oE6IQQQgghhBAA1WoHyzLwvKe50cdOQfgtCLxlMhFAQ9MgmQxhmjo//MOjLC5uUSw20HUYHo5z6lSGn/u5GQxD4733lllY2GR6epCJiRTFYqMfWsvlYoTDwd8dpqcHmZ19sXfZV0oxP1/g0qU1HGfnzVauXt3kwoUV5uaGmZ3Ny4kFIYQQQgghBOXVm/i+B0rRLG8AEBvI7gg4ddsN6psFOk4H5bl0aiWalU0aW4VnDtCtL12mdGcJlKJ0d4lmab1/09JthmWTHj7J5vLHRNNZNMOi26zRrGzgdtpo+E9w1kr1T20pz8EMpUGDaDpLOJGm4LTxlQe+wgxHsSMJ7EiMaCZLIhuc34okBwjFU3TqFTzP7Y3NIpLM4Hse0fQQaDrKc9EMs1cxLwjjxTPZ3mu6vxXXlFKsL12meP0yXnfn8fLWyiJ3r3yX3OkZspMzz3VsqBsmudMzrH78PpkTkwA0S+t06pV+cE7TNKKZbP/53Ok39iS8J4QQQgghxH56f/l9XN+l1CjR7raxTZuTQycxy8Fn29H0KKlIih+s/oC202aruUXOyPH+8vsSoHtJKKWYX5nn0solnAfOS14tXOXC9QvMjc89UbhntRJcN7leW0ehyMQyO8JzAEPxITLRDKVmiWK1yMTgBKuV1Zc2NGEaJi2nRTQU5bXh11gsLnJr8xYKRctpsdnYxPd9Gp0GKLi+fp2oHWV8YBwIAoelZgkNjVwyh6Zp/OirP8pkdvJe4DEXBB5LjRLvLbxHsV7kevE6nvJQKFzfxe0d9+uajuM5tLttOt0OIStE1I7iuMH3fns8ESuCrut0vW4QngsnSUVTVJtVhuJDQZgvM06lVWEqNwUaFCoFSs0SpWZwE6N8Ms+5sXMopSjWikSsCLV2jUqrwkZ9g1a3RdgKo+s6m81Nun6X0c4ovu+zUFggHUkzNzG362s6Nz7HxZsXd6zbNm02G5vYpk06kkahsAwL13f74x/PjPPpVz7dX8Z+VLaSCltCCCGOsxf+Gy6dTj9X/+0gntgb3e7Dd4d8mgBdKBTa8bjZbD73mLbNzc0FJZUfYBjGIw90/sE/+Af8+q//+mOX/Zu/+ZsPzNkkCLCdAVy++MXvMTXV5Zd/+X8QnN0bBCIEQbLtkGAGKHzCOn6r97927ysCvNZ//otfTDI1Fe2td5Z7Yb3dhAkqwz24jl/+hD4aX/yiy9Su50+3DyQ7BKHBMjvDcxBUnyvzm7/5BkGgcL3X7qMdrb74xS8ytftKntjD34+dZB2Hcx2//MuftP/tzTqeh6xD1nFQ63ie98aTruNlea1kHcdvHfL+kHUcxnW8bPbzOGpjo8HP/VwLz1MoBX/yJ3D9Ojzm2/aQZtND1x0ymQg/8iMFDEPDMDZ6wTqL06d9JiY8LEtnaOgc+XysX8nt/PlXSKfDXLq0BsDERGrHskMhg9nZnaG1F7FfKaV4992bXLu2BUCh8C6e56NUUKHPMHR0He7cgf/r/zL46Z/+K7z66qtPtY4HvSzvQVmHrOMg1rG4uPhSbIes43CsY3v+Ud8OWcfhWMeDj4/qdsg6DnYdj1uXHEc9bH/PR93TbTeZjHVhfZGK8tFNm1Bs5zGNFY5hhiJ0Ww1cp4PveTjNKt595/eeZr/yPZfi9csAlO4u0dgqAhCKp7EjMZxWg069jNd10BMGw6+9xfqNK9xOz+ElupBVKKXw/Z3nrOwb38Qs33rkGDqNGiOv/xB+10HTdXQsQtE4ftdBKR9N07mT/QzrfhS9bEH5Tr+v50bxPYtXozoRo42u6f2Ka83yxkMV1zRdf2TFtRf9HlRK8f/6f/6zfnBOKYXy3f6xoaabnJsYxOu+T7teYfzNzz1TiO7+7ei2m731hVFqDOW7TCYU2bhFLD2EYYcByIydJjs589CyHvX3upflZ6Ks42itQ47VZB0HtY7Hnbs4Ktsh63g51iF/Z3h51/Gy2c/jqM36JhPdCYbdYc6GzvKx8THxUJxb+XvHIPFQnHgozpa7Ra1VI5fI9auLPck6HnRU9qvjso7863k2jU0AWk6L9do6jutgmza5ZA6AizcvUm6VH1kRbHsd9U6drtvF8AwmvAksw2L99jrJqSShwXvXwibCCUrNUj+09WBw71m2Y69fq93W9yzrcD23X3lssbiIfc1mnKCKnK7ptLwWvu/jGz504WrpKt9uf5uu26XhNO6F0VJ5wlaYkBnqB67ur9bkei5f/rMv89rIa0S+GSHn5Hg7+jZEQKF23Nzn3ca73OreotFp4Hpu8H3QQCf4ueP5Hp7uYWomYTNMyAqRDCcxNIMzw2eIh+OYCya2YWMpi83lTTJkSJHC84LQnn/CJzuaJWyFUUpxJn+GizcvYhomnu+h6zqxUIyoHSVmx4iH4xiaQaFWQNM1pvPT/Pc//O98K/KtR/7cGz47zIa+wXR+momBCQqVAtfXr1NtVzk1dAqAartKMpzkdPZ0/zUEmM5PMzs+e+DvwY/46ND8LJHP7bIOWYesQ9Zx/NaxHyQi/oT++I//mC996UsvZNk///M/z+/8zu+8kGU/yDCMh+btdnD7KA/ekXK7jPBecN2HA2OPs1sg8Ono3Auy6UDsgec1gupxyadY5nb1OocgBKd6y3kT+BxP9rb7//bG87S+CfzNXebbvXGsEoQHowTbWgM8gqp4SYKwoNcb9/0V+YQQQgghhBCH0X4eRzmOH1wAqAUBumehFOg6dLs+9bqDrgdhMwDLMtC0e8eZ2ycebPvecaymaczNDTMzk2NpqcTqaq1fgW5kJMHkZKYftnuR5ucLXLu2he8rFhe3sO0HX1MP09SxbQPH8bhxo8xz5ueEEEIIIYQQe+Rgzkf1zrHpBr7voWk6hqnhOZ2H2pl2CM9z0Q0D3TDwPQ/jKW6Geb/y6k28roPrtGmW1gEYfOUMkeRAv02rusXm8lUaW0VCsSRupw0RDcOw8HGDam9oveJy9x0M6gamFUL5Hp7Xhf45Qw2UT7WwwsDYVBBo03SqxRVMy0YzTDTd6G3fw9ulVLAc3bRIJE/Q7bQPbcW19aV7Vec818H3Hty3utQ375JPTlK6fZ1wPEXu9LnnWqcVjqLpOq7TQQM0wyI+OEAyFQHAsELkTr/x3BXvhBBCCCGEuN9BHUcBaE96/Zp8/H0ptLtt7pbvYmUsFouLFKoF1H3Hosuby+STeaZyU59YEWzb9v6zPfXV7te71to1AGzTDqaGvRebcygtrS/heA4tp0WhWmCccUJmCFMPjqc1NNpuG9dz8VVwA9Fap8aV1SskI0k0NPKpPFPZ4AL52bHZXauVba+n3W3jKx9dC87h+gTL1HW99/cGhW3YxIwYjXaDjtdBoTB1E8M0gpCeESJiR0hGkoTNMLZpE7EiTOYm6bpdyq1y/3scsSIYukG720ZXOnrvXHQykSRkhQiZIWbHZolYEXx8bpduU6wWiYfiTGYnmRiYCCoSNkrc2rrF0sYSxVqRsBkmrMI4nkPIDD20vQDnRs/RCDX6AcVXhl5hYnCC26XbrJRW0NB4Nf8qY5mx/jH79niepKKiEEIIIZ6fph5MRIldHbYA3T/6R/+If/yP/3H/8T/9p/+UX/3VX31sv62tLQYHB3fMc11312DdbvL5PMVisf/4z/7sz/jMZz7zhKPe6aOPPmJm5t6dD8Ph8FOF+eDJ71TzsC8Df0xQYW6RINT2CsGR9HagTAHLBGGyKSAH/CTwN55hfU/r08Bl7lWOexIh4A3g+7s8twD8h970JlAlCPrdf6DnEFTOSwKngFeB/zvwcpYiF0IIIYQQL4cHjysuX77MG2+8cYAjerEO8jjqb/yN/8K3vrXC1laTWs1BKdA0Hhumu7+NpoGua1iWTj4f59SpNKOjSfL5ONPTA2xutrhyZR1Ngx/+4VHCYZN33jnJ9PTgJ69kH7muz5e//AGO47GwsMnaWh2ATCZMIhGiVutQKrUBGB6OMz09SChk8Nf/+pv7Eu4TQgghhBDiceQ4aj/PR92z8sG3WPng26z+4Ls0yht0Ww1CsSSxgTx25N4NHkt3b9AsrWOFowydPEMiO8qb/8v/g4Gxp79z68oH32JrZZFq8TbVwgqheJrsqdcfard+4wqV1WVAEYqnaFW3cFp1lOdRvrtMt9MIquD1LjTUDBNdNzAsu1d1zcfttoMQnaZhmDbR9BBj5z5LbCBHOJHh7g++T7O8TnxwmMbmGpH0ECde/6Fdw3yapjE8PYdhhzFD4SDUB3hOm0Z5A8/tYpgPV1x71gpvz8L3XK78j/+E13Uo3bn+yOp+ALGBHJnR0xhWiLN/6f+2JyE/33Mpr96ksVXA63YxLIvYQJ70yMl9DREKIYQQQhwXchy1f8dRX/72l/njj/6YYrXIYnERy7R4feR14qF4v029U+cHqz+g63aZyk+RS+T4yTd+kr/x2f24rk+8KNsVyxzPYWFtgbXqGgCZWIZEKEGtU6PUCKqfDaeGmc5PEzJD/PXP/PVdA1wAC2sLvLvwLi2nxfdufg+F4uyJswzFh/ptNuobXLl7BQ2NHz71w4StMO9Mv9OvpPayee/qe1wtXOXW5i1ubt4kE8twbvTezV6UUiwUFnh/+X2a3SapSApTN0mFU5zOnSaXzO2omvaoKoD3r+fijYus19fpel22Glt4vkfYCqNrOk2nSbvbRtM0fN/HVS62YWNowTXNg/FBXM8lGooylZsiHopjGRZjmTHCVpgfrP5g1++d67ksrS+xWlnF8Rxsw2YkNdKvlrfb6zBzYiYIu22t4PpBcPhO6Q7NbpPB2CC5RI7Pv/p5/ubn/+Yn/v1ht3Vn41nQCCoq7jIeIYQQ4mV0GI+j5LfuMROLPVhhDRzHIRKJPFH/B+8Ms9vyntX3vve9fXxDvAV8DcgQBMlawPp9j9tACegCEWAAsHr99sPDdxx9PPUJ/SYIqs9ZBAHBdu8rAcSBOkE1OnqPTWCt108IIYQQQghxWO3ncVQuF+uH4TQt+IInC9Dd3y4I0elomsbKSpVsNoZt61y+XOwHz/L5OOGwSShkMDmZeUFb9GyWlko4jker5VIoBOG5s2ezDA1F+202NppcubJOoVBnYiLV73eYgoBCCCGEEEIcV/t7Puqe2ECeSGqAUDxNu1bG1TS8bofGVoFOKIJph+jUKzRLwU1FoukhdMMikhoMqrg9A693Xs9zg+n9Qb37WaEo7XoZOxqnWd4E5ZPKv4Km6bQqWyjfxfdclKehaTqapm8f3KH5Pr7yCG5S2bujv+fSrlf6QTw7EseOxPBdBysUIRRPYYdjbC5fDf4fieO06v3KctFMFsMOY1ghXnvnZ9hc/pji9csAJHNjO8Z+UBXXnqa6X7O0TjI72u/3LGHIB+mGycDY1J4sSwghhBBCiMfZz+Ootybe4msff41MLEPYCtPqtri5cZNMNHjc7rYpNUs4rkPEijAQHcAyLN6a2K/r+sSL8mBlNOCRYbdCpcDEwES/36PCbpPZSS5cvwA25JN51qprXLl7hUw0QyKcoNauUWoGobx8Kh9UOzNDTGYnX/DWHhzHC4o6OG4wTYQSO57XNI3p/DTlZrkfThuIDTAUH2JiMHjNn6Rq2v3r8ZSHqZs4roNCoWs6rudimzau7+L5HoZhYBommqeha3q/GqBlWCTDSZrdJrV2jXgoTj6Rp9wsf+L3zjRMpoenH7lvPPg6xO04C4WF/r7X9brU2jVa3RaNToN4KI7ru1y+c5n3Ft57ZHDwSdYthBBCiIMjAbon9Pbbb/ONb3zjhSx7eHj4hSx3N6FQCNM0d5RVbzabTxygq9VqOx6n0+m9HN4+mgYmCSqyjQK3CaqytQhCZt3eV7j3vElQlW2/PtDqPH1dea3Xbze3gBGC7TUIQoEhggp0Xu+xQRDA0wmq7g33+smHeCGEEEIIIQSMjycxTR2lFLqu4fsK3398P8MI2oLWD8+FQjr5fAyloN12WVmpAsH1l/l8nKmp4ILD2dnhQ1e1bXU1OC5eX2+gVFB57v7wHMDQUJRMJkyp1KZYbDAxkWJ1tSYBOiGEEEIIIY6x9MhJ7l75LumRV2hVNlDKx2nWcZ023XYDz3Xxe0G3cGKA2GAe3TB55VPnn7mimGFZwdQMpk6rsWu72uYqyvdRSuG06oSicYZOvkYkORA8pxRet4vrtVHKB6WD7+E7HRQaSinwvWBhChQK33WpbdwlPpAnFE0QG8iRGp6gWlhh+NVZ3G6HZmmdTr3SD85pmkY0kyVzIrjYLXf6DQzTInf6HEMnXz9UFdcaW8EFdc3yBkopQvH0jvAcQCQ5QCieolOv0ChvkMyN0dgqSOhNCCGEEEKITzA9PM3k4CQLxQVG06PcLt+m2qrS6rawdIuu36XrdglbYUYzo5iGyamhUxJUeQmsVlaBoEKXQpGJZXaE5wCG4kNkohlKzRLFapGJwQlWK6uP/P6bhsnc+BwXb15kKjcFGhQqBUrNUj98paGRT+WZygbHarNjsy91RTDbCIJp2wG1Wqf2UBtN04jaUU4NnSIZSRKzY4ykRziTP/PEVdPuX4+hGbi+i6ZpaGh0vA6mbmIqk+72TX8MG1/5+PiYmBi6gYaGr3wms5OUW2UiZnCd8+3y7WCcz/G9e/B1uLl5E0M3UEqxXlun2q6iUJSbZRzXoVAtYGgGuUSOhcIC6UiauYm5J1qXEEIIIQ6Pl/dT3h4bGBjgnXfeOehh7Inx8XFu3LjRf1ytVhkcfPxFfOVyeUfwTtd18vn8Cxnji2cCPwV8maBym0ZQca4F+AQhuiRBRboskO+136+3zGng6jP2280qMAZsf9/zva8qQYDOINjeAtAk2M6xXj/544IQQgghhBACzpwZIhw2iUQs2u3gwkhNU4+tQOf7wZemKdLpMJ6nSKcjDAxESCZDWJbOyEgC2zbI5WKEw8Fx1/T0ILOzh++Y03G8HdNEIrRru0QiRKnUfqi9EEIIIYQQ4njSDZPc6Rlcp8PQySYbN3+Apul4novndNANA8O0iKaHiA8GN98cnfkM+Vdnn3mdsYE8WyuLRNND1Iq36dTLtKpbD1VJC6reacGtHZUims712ySzJ6iu3cKKxnCdFgDKc1GAr/vouh6E6vqCG0QaloXbaZPMT5A9+RqGHQYgkhrAtCNomkYyO0qjvIHndjFMi1h6qN8uM3aa7OTMjtfvMFVce9LqfnYkTqde6bfb7ieEEEIIIYTYnWmY/NTsT/Hl73wZpRSarlFqlGh1W/jK71ejysQyZONZ8sk8P/XmT73Ugafj4nGV0bYlwol+FcL7+z3K7Pgs5VaZhcIC0/lpJgYmKFaLOK6DbdrkkjnCVnAsOp2fZnb82Y/Dj4KR1AhXC1fJJrIsby5TapTYqG88VOmv1Cyhazqvj7xO2ArzzvQ7TxVUvX89ETuCr3w0TcMyLBqdBr7v47hO//vX6rbwPC+o6maAqZtomobrudwt3+WVwVcYjA+SDCf35Ht3//hubNxgeXOZXDJHs9Ok0r53ox9Lt9BMjbAVptKuUG6VAZi/Pc/M6Iz87BFCCCGOGPnNfQydPn16R4BubW2NU6dOPbZfoVDY8XhkZASrd+fKo2kOKANfJwjMDfBwoCxCECT7sV77/fKXga8QVIN7gpIO/cpzf/kRzzsEJyxHCIKCiiAo1+0t3+89jva+RnrtP/ngUgghhBBCCHF8jI0lSSRsOp0wtVoH1w0q0D0uQOd5QQNdDyrQxWIWr746gFJgmjqDg9F+xTmAUMhgdnaY2dl8cILkkLFtY8e0Vuvs2m57/oPthRBCCCGEEMdXdnKGdq/amhWOUlldpl0v4/seum5gR+PohoVumJx4421mfuKvP9dx0XbVO4BoJktjq8jm8lVC8RR2JI7TqtOpV1DKx47GAQ1N14kN5GmU1uk0qtiRGL67fb5IIzjH1DsQ9D1837/3+D52NAFK4bkOuhXCsELkTr/B0Kk32LjxEcXrlwFI5sZ29Ntul52cOZTHhNuetLqf06rvaGcc6XOrQgghhBBC7I+5iTnKrTJf//jrWKbFQHSAaruK53sYukEynCRiRxjLjPFjr/2YVIF6STxJZTSAWru2o912v0fRNI3z0+dJR9JcWrkEwMTgxI42ITPE7Ngss+Ozh/pYdC9MZie5cP0C2JBP5lmrrnHl7hUy0QyJcIJau9avzpdP5QlbYUJmiMns5DOv53T2NIVqgfXaOr7v43oujuf0/qZAPyinlELXdTQ0NF0jFUmRjqbxlMdmfZOh+NCefe/uH1/IDOEpj9ul29TaNUzDJBFKoJQiFo6RiqSI2lGK1SKdbod2tw3A0vqSVL8UQgghjhgJ0B1Dr776Kl/72tf6jz/++GM++9nPPrbfxx9/vOPx2bNn93xs+0sD3iGoMvd94C5QAVyCt0YKGAXeAmbZvmPm/kj1xlV4XMMe1WufesTz9n1TBXQIQoPb26T1vlpA+IH2QgghhBBCCAGlUouzZ7N8+9u3yWQi1GoOnufT6bj4j7nvh6YFAbp6vUs4bGIYOm++mScWs0gmQ5w6lca2DUZGEkxOZjBN/ZMXeIBGRhJcvbpJNhtjeblMqdRmY6PJ0FC032Zjo0mp1EbTIJeL9fsJIYQQQgghjjdN0xh/83OE4ymK10PEBodpVbboNKooz0UzTKKpQV556zz5V5//or3tqnerH79P5kRwoVuztE6nXqFTv3c39WhqAN2waFW30HSDwuIHxAdy/eVEUllKdxbRdA3lPxiWu/+xBloQFvM9l9hAHs9pExvIcfozX0Tv3ZU9d/ocQydfp7x6k8ZWAa/bxbAsYgN50iMn++0Osyet7tepV9A0jVh6qN9PCCGEEEII8ck0TeOdM++QiWb4/vL3uVu5S6VVwfVcTMMkFUkxmh7lrYm3jkXg6bh4mspoGhq5ZK7f73E0TWNuYo6Z0RmW1pdYrazieA62YTOSGmEyO3lsKomZhsnc+BwXb15kKjcFGhQqBUrNUj84p6GRT+WZygZV4GfHZp/69bl/PdP5aTbqGzQ6DZpOs3/Zqur9QwXr3Ob6Lm2njfIVLafFqaFTDMQHyCVynMmf2ZPv3f3jy8QypCIpVsur/cqGCoWGRjKSJJvIoqERHgijaRrFapGJwQlWK6sSoBNCCCGOmOPxiU/s8NnPfpbf+q3f6j/+/ve/zy/8wi88tt8HH3yw4/Hbb7+952PbfxpBZbkZYAlYJai6ZhNUYZvkYN4mGWAI2CAI9D2OAWR7/XYzAnxMEBDcIjiZGSHYNq3X3wMaBJXoqr02jz+4FEIIIYQQQhwPjuPx6U+PcP16iUajSyYTwfd9VlbKtNsenvfJ/X1fYVk6SmlsbjZpNBxOnUrzhS+cYnp6cH82Yg9MTma4cGEFgHw+ztpanStX1slkwiQSIWq1DqVSu/98OGwSChlMTj7qeE0IIYQQQghxnGiatq8Bsu2qd6Xb18mMniaZHaVR3sBzuximRSw9RLtRY2vlGoYdwq9V8N0u7XoIlI/veZjhCJq+fTPGR22YjqZraJqBbtoYlk0oliQ2MEynXn2ouW6YDIxNMTA2tWfbup+etLrf9vOGHcawQqRHTh7gqIUQQgghhDg6JPB0/OxHZTTTMJkenj72oafZ8VnKrTILhQWm89NMDExQrBZxXAfbtMklc4StMADT+Wlmx2efez2fm/ocjuvwnRvfwfWDanNKKXzlByE6QNeCm6xuh2Jd30VzNTbrm0TtKMaoweemPrdn7/3t8V25e4VcIofneSgU8VCcgdgAyXCyv658Mo9t2KyUVvohO8dz9mQcQgghhNg/cgRxDP34j/84mqahVPCh84/+6I/4V//qXz2233//7/99x+MvfOELL2R8B8MEpntfh8EGoAMDvf9/UjmH7XZar+1uJoHfB8pAArgNrBNUobOAbu8rBIwBJYLqd09XdlsIIYQQQgjx8rJtA13X+Qt/YZRu12Nzs4VlGYTDNpbl9yrSPViJIKDum12vOxiGTqnUplBoHLlgmWnqzM0Nc/HiHaamgsoChUKdUqndD85pWhCe235+dnb4UFfVE0IIIYQQQuy//QqQ7ax6dxmAZG5sR5t4JE5jaw1N0+hG49Q37tIsb6CbFrph0q6W0NCDg52dC2c7VKfpGoYdxrIjaJqGFY7htOoo38Prdiiv3jyyYbndPHF1v0y2/3zu9BtHorqeEEIIIYQQh4kEno6P/aqMJoLj1fPT50lH0lxauQTAxODEjjYhM8Ts2OxzVXm8fz3fX/4+ISvE6yOv8/HqxzQ6DTRNQ0fHV8H1sb7yMTSj39/1XUzdpON2qLarVNtVltaX9uznwfb4FouLfHPxm4SsELFQjIgdYSAWnOe1DIuxzBhjmTEu3wn+rmKbdjA17D0ZhxBCCCH2j3xyPIaGh4f59Kc/zfe+9z0Abt26xVe+8hW+9KUvPbLPhx9+yHe+853+48HBQc6fP//Cx3p8FYEwQaBt+21qEFSjUwQnI02CqnH02oV7/R5nu//9j7dJOXshhBBCCCHE7kZGEly9ukk+n+DkyTRjYynu3KlQqXRotbqEQgau66MU+L6PUhqgMIwgOKaUwveDMF212jnYjXlOs7N5yuU2CwubTE8PMjGRolhs4Dgetm2Qy8UIh4NjuenpQWZn8wc8YiGEEEIIIcRx9riqd8ncGPWNuzjNeq9DkI3TAM/tBneC13R0wwDDQPk+Sil0w0DTDUwrjKYbQYjOtNANAysUBqXwPBeAxlbhpQrQwZNV9zPs4I79mbHTZCdnDnjEQgghhBBCCHG47VdlNLF/VR6312MbNncrd0mGk7S7bVCw1drC933abhulFIYehOd0dPR+pXuNttvGMixWK6vcLt3e00Ctpmn86Ks/Stfrcrt0m+/e+C6e8ojYESYGJhiKD2HoBhv1DUrNEhoauWQOgJHUyJ6NQwghhBD7QwJ0x9Tf/bt/l7/21/5a//Hf+3t/j89//vMkEomH2na7XX7lV36lX7EO4Jd+6ZcwTdl9XhxFEJgzCSrEQRCQM3pfXu+r3XvO7M3fvdoDLAF5gqpziwRV6E7ft5zt5RaBGvBar/0Sh6cqnxBCCCGEEOIgTU5muHBhBQiqq62t1anXu4TDBq7roWkapqljGDrdro9haFiWTiRiUa87uK6PbRuYpk612iGTiZDPx1haKjE9PXjAW/d0NE3j/PlXSKfDXLq0BsDERGpHm1DIYHZ2mNnZ/DPflVEIIYQQQggh9tKjqt5t3V4klsnRLG9QunsDO5IgOnIS5fs0K5uYlo3rtGmWiijfxwxH8T0fXdexonFC0TjtegXPcdA0HSsSBU1H03XsUBQAr9s9iE1+oZ6kup9hhcidfoPs5IwcGwohhBBCCCHEY+xXZTRxz35VeVyvr5NP5ul0O5xIn0DTNELlEKVGqV95LmyH6XpdfOUTsSOYmkmr2wIgZIToel2WN5f3fGyT2UkuXL/AK4Ov0Ol2WKuu0XJaFKtFWk6LWrvWr4KYT+UJW2FCZojJ7OSej0UIIYQQL5YkoI6Ad99996F5N2/e3PH4+vXrD7VLp9PMzc3tusyf/dmf5Z/8k3/Cxx9/DAQV5n7iJ36Cf/2v/zWf+tSn+u0WFxf5lV/5Fb7+9a/35w0MDPCrv/qrz7Qt4kkZQAZY415wziIIu/mA3nus9x7Ta288tKTAKsF9QpPAIEHwTgc6vWWq3vLivfUle+1XkQCdEEIIIYQQAsA0debmhrl48Q5TUwMA/OAH6ziOT6fj4XkKXQfbNtB1Dd9XRKMWtm3Sbrv96nSep9A06HY9fB9WV2tHLkAHvbslzg0zM5NjaanE6mqtX4FuZCTB5GQG09QPephCCCGEEEII8ViNrQIAoWiCSDKD5ziEYimUUrTrFZTy8N0umm6ApmPYYTTXwXddvK5Dt90CFRzr6aaJHUngOR2i6REMOwSAYVmfNIQj63HV/dIjJ9H34I79QgghhBBCCHFc7FdltOPK9dwDeV0dzwmmbjDV0UlGktTbdTRNQ9M1onaUjtvBcR00NGzTxlc+tmnTdoNiE9V2dc/HZhomc+NzXLx5kancFGhQqBQoNUv94JyGRj6VZyob3JRodmxW9kMhhBDiCJLf3kfAF77whce2+e3f/m1++7d/e8e88+fP7xq+AzAMgz/8wz/ks5/9LI1GA4Bvf/vbvPXWW4yNjTE6OkqxWGR5eRnf93f0+73f+z0GB4/exY1HS54gEDcAbH/gHyAIyymCcJsOFO57LtPrtxvngWnoEe1CD7RzHtFOCCGEEEIIcRzNzuYpl9ssLGwyPT1IoVDnz/98DaUUrZaLrmv9SnTxuE0yGaJUatFuuygVVGUzDB3TNLhxo0S77aJp8KM/+sqRvUOkaepMTw8eyRCgEEIIIYQQQsC96nCe5xKOp4kPjdBt1imvLeN1HVBg2CFMN0K308RtNzHDETTdQNcNNMNAVxa6aWFH4rjdDrppEo5niKWHAIgNPOoc1svhUdX9hBBCCCGEEEI8m/2qjHZcKKWYX5nn0sqlfpht29XCVS5cv8Dc+NwLq+xnG3YwNYOp3yscEQvFaHVb6LqOoRvomo5lWMRDcaJWFF/5aGiEzTAAyUhyz8cGMDs+S7lVZqGwwHR+momBCYrVIo7rYJs2uWSOsBWMYTo/zez47AsZhxBCCCFeLLkV+jF27tw5/vN//s8MDAzsmH/79m2+853vcOPGjR3huWg0yr/7d/+OL37xi/s91GPoLYJ862mCanA+UAK6vee7vcd+7/nTBBXk3nrE8myC4N0qsAG0CCrNmfd9RXrzN3rtVK+fEEIIIYQQQgQ0TeP8+Vd4++1RbNvg9OkMiUSIoaEo4bCJUopOx0Uphe8rSqUW9bqDrmtYlo5h6DiOi66DUuC6PouLW7z33jJKqYPePCGEEEIIIYQ4lrarwxlmMC3dvk6nWSOSHCCWyaLpBpqm43WdIDRnmCjXBTQMy8Zz2rhOB9/r4rldlO8RHxwhNpDFsMMYVoj0yMmD20AhhBBCCCGEEOIYU0rx7tV3uXjzIo7n0HJa3Nq8xWJhkVubt2h32ziew8WbF3lv4b0Xct52JDUCQDaRRSMI6HXdLqZhYhkWGhqdboeu10XXdJRSVNoVAEJWiJAVwjIsJgYm9nxs0DsPPn2et0++jW3YhK0wE4MTTOWnmBicIGyFCZkh3j75Nuenzx/Zm8MKIYQQx51UoDvmfuInfoIPP/yQv//3/z7/5b/8l341uvvZts2XvvQlfuM3foPXXnvtAEZ5HE0Dk8ACQTjuNlAHmoABeL12Q8AYQXjuVK/fbkaAr3EvgFcAyuwMyK0CHSABuL11Pr76oRBCCCGEEOJ40TSNublhZmZyLCxssrxc4datKiMjMQqFBr4P3a5HqdRi+9zK9rTdDo5Jul2fUqkFwKuvDrCwsEk6HWZubvggNkkIIYQQQgghjrXYQJ6tlUWi6SGK1y/TqmwSG8jjdpp0GlXcTqsfjFO+B2YIDB3DCuH7Hr7noukaph0hHE+iGSaZE6fInJgEIHf6DXRDTksLIYQQQgghhBAHYX5lnmvFa/i+z2JxkUK1gOJeSG55c5l8Ms9UboqFwgLpSJq5ibk9HcNkdpIL1y+ADflknkqrQqFaoNPtoGkajuvguE5QhU7XcX0XX/lE7SjJcJJkOMlYZozxzPiejut+mqYxNzHHzOgMS+tLrFZWcTwH27AZSY0wmZ3ElL9vCCGEEEea/CY/Al70XfhPnDjBv//3/57f+q3f4k//9E9ZWVlhY2ODTCbD6Ogon//858lkMi90DIfF4uIiAFNTUwc8EhP4KeDLBJXgNIKKcy2CqnM6QcW4DJAF8r32j3pLTxAE5CyC8F2r95UA4gThvFqvbay3nLVePyECh+f9IcThIu8NIR5N3h9CvNxMU+fs2Sw/93Mn+B//o8PKShSlijQaDvW6Q7PpQO/ugbp+7w58mUyYVCqCruvU6w6VSoeRkQTz82vMzOQwTf2AtkgcBvK7Q+wl2Z/EXpL9Sewl2Z/EXpL96Wg5rN+v9MhJ7l75Lsr3g4AcULqziO/5GIYJuo7yPQw7jO92g0vsPA/N1tB1g2h6CN0wCUUT6IbB0MnXSZ84BUBm7DTZyZmD2zixw2HdB8XxIvuhOGiyD4rDQPZDIZ6evG/EcfW8+77ruVxauRQsq7jIWnUNgEwsQyKUoNapUWqUgvkaTOenmb89z8zozJ6GxUzDZG58jos3LzKVm8JXPuu1dTzfQymFoRkoFIZuEDbD+MonHooTD8dJRVKMZkY5nT3NZHZyz8b0SWOdHp5mevhRBS3EfpCf++K4kn1fiBdLAnSiLxaL8ZM/+ZMHPYwD9dWvfhU4LL905giqxH2dIPg2AFQJAnAGkCQI0Y0BP9Zr/yi3CKrQLfT6hntfdm95kd78NkE4zwWGe/3kIEAEDtf7Q4jDQ94bQjyavD+EOB6uX/8e2axDKPQmjUaX1dUalmWgFLiuj+v6AEQiJplMmImJFNlsnEbDwXE81tcbnDyZBmBpqcT09OABbo04aPK7Q+wl2Z/EXpL9Sewl2Z/EXpL96Wg5rN8v3TDJnZ5h8dt/QjiZwes6tCobKAVWKEwkEsMxTVBgWDbtegVNN4gmM7jdDrH0EOFEcDPOaCZL+sQpDCtE7vQbZCdn0DTtMSMQ++Ww7oPieJH9UBw02QfFYSD7oRBPT9434rh63n1/aX0Jx3NoOS0K1QIAZ0+cZSg+1G+zUd/gyt0rFCoFJgYm+v32OkA2Oz5LuVVmobDAayOvYRomH97+kHKkTLFWxPO9/t8QonaUeDjOQHSAtybeYmJwgrnxOakAd4zIz31xXMm+L8SLJZ8khDi0NOAdgipz3wfuAhWCcJsJpIBR4C1glu3KDrtbJQja3ew9HiaoWvdgIK8ANAkCe2O9fhKgE0IIIYQQQnyyWMzmx3/8LK+8kuLChRU++KCIYWi0Wi6tVpdw2GRiIsXoaALLMgA4fTpDp+NSLncoFhtMTKRYXa1JgE4IIYQQQgghDkB2coaV+W+hoWHaIUKJDKARSaTRDYNkfpxuu0G7ViaEhmFaRFIDhGIpzFCYaDpLMj/GwPirxAeHSY+cRJeL2oQQQgghhBBCiAO1WlkFYL22jkKRiWV2hOcAhuJDZKIZSs0SxWqRicEJViurex6g0zSN89PnSUfSXFq5xOnsaTzfo1AtcCp7ikqzQqlZIhaKkU/kOTl0ktHMKIZuMJ2fZnZ8dk/HI4QQQojjR85aCHGoaQSV5WaAJYJAm0NQOW4EmOTJ3sZOb1nDwCZBlTmToKrd/WIE1eiGe+2d590AIYQQQgghxDExNzfMzEyOH/mRV/g3/+b7XL5cpFRq4TgeIyMJhoaiAFiWzthYkrGxJMvLFcrlDo7jAfSnQgghhBBCCCH2l6ZpDEycoVXdolUroesG4USaSPLeuSQrNUR2coZmZZPq2i3MSIzY4DBDr7zGGz/+sxKYE0IIIYQQQgghDhnHC64Bddxgmggldm2XCCcoNUv9dtv99pqmacxNzDEzOsPS+hJn8mf4eO1jbm7eJDYcYygxhKEb/fYhM8Ts2Cyz47NS4V4IIYQQz03OYghxJJgEleCe9Y4edm8aIgjNpQhCcg9WtFvrzQs90E8IIYQQQgghHs80dc6cGeJ//V/P8OqrA3zwQYHFxS1CIYPh4TipVIihoSiGoQNQq3UAsG1jx1QIIYQQQgghxP4zbZtEdhTf89hY/hhdN4kkB9AMk1AsSSQ1gK4bOM0asUyWZH6cZG6M9IlXJDwnhBBCCCGEEEIcQrYRXANqm8G01qnt2q7Wru1ot93vRTENk+nhaaaHp3nntXdwPZel9SVWK6s4noNt2IykRpjMTmLK3xyEEEIIsUfkU4UQx8IIcBXIAssEIblRdgbyNnrzNSB3Xz8hhBBCCCGEeDojIwmuXt3ktdey1OsOSsHAQKRfhQ5gY6NJqdRG0yCXi/X7CSGEEEIIIYQ4GLGBPFsri8QGctQ37qKUIprJ7qhC16pu0alX0DSNWHqo308IIYQQQgghhBCHz0hqhKuFq2QTWZY3lyk1SmzUNxiKD/XbbNQ3KDVLaGjkkrl+v/10f6BOCCGEEOJFkQCdEMfCJHCh9/88cAf4H4BD8GPAJag2lyMI1oUJqtBN7vtIhRBCCCGEEEff5GSGP/3TW1SrbRzHY329yY0bJaJRi4GBCN2uj+f5xOMhhofjhMMmoZDB5GTmoIcuhBBCCCGEEMdWeuQkd698F4BoJktjq8jGzY9B08D3aZTXcRpVdMMikT1Bu1EjEYmTHjl5sAMXQgghhBBCCCHEriazk1y4fgFsyCfzrFXXuHL3CplohkQ4QblV5s7WHVrdFqloilubt8gmskwMTBzouKUinRBCCCFeBPkUIcSxYAJzwJ8BZeBDgmpzLqAIqs6ZQAGIAT4wi/yIEEIIIYQQQjwtpRSXLxe5davCn//5KsVig7W1Op2Oh2Fo2LZBLGYRjdoMDHicOpVGKcXs7DCmqR/08IUQQgghhBDi2NINk9zpGVY/fp/0yCma5Q3Kd5ZwWnXcdgulFKDQdINOs0a1sMLgK2eIJDOcevvHMUzroDdBCCGEEEIIIYQQ9zENk7nxOS7evMhUbgo0KFQKlJolljaWKDVK+MonGUlimzZr1TUidoTf/+7vMzc+x+z4LJqm7dt4lVLMr8xzaeUSjufseO5q4Sp/eu1PGYoPkYqk6PpdCdYJIYQQ4qnIpwUhjgQXWAJWCarG2cAIQYW4J30bnwP+DfAdoEUQnGsDHmAQBOdavedDwC/t3fCFEEIIIYQQLx3X9VlaKtFoOCgF7713k+HhOLdulfmf//MWy8tlbt2qUCw2UAp836fbVbTbLt2uRzodYXAwys2bZYaGorz5Zu6gN0kIIYQQQgghjr3s5AztWoXrf/YnKN/HsEKoegWlFG63jXJdNN3A7bRRnkt1/Q4/+Mb/j+vf+SojZz5NIjeGadvEBvKkR06iy8VrQgghhBBCCCHEgZodn6XcKrNQWGA6P814Zpzv3vwurueSjqYJW2Ha3TYbtQ1yiRxD8SEcz+HizYuUW2XOT5/flxCdUop3r77LteI1AFpOi/XaOo7rYBkWXa9LsVbE9V3yyTzT+Wk0TeNq4SoXrl94IYE/qYQnhBBCvFw0FdwqUIh999FHHzEzM9N/fPnyZd54440DHNFhpIB54BJBcO5BNkFluVmCKnKf5PeBfwusEQTx2r3lb1eg04AwQTBvGPhbwM895/iFEEIIIYR4sY7bccVh2F6lFPPzBS5dWsNxvB3P3bpV4Xvfu4Ou62xuNlldrdNqdWm1XHxfoWkapqljmjq2rXPqVIYvfOEkExMpPvOZMebmhvd1W4QQQgghhDiODsNxxX46btu7FwqLH3Dtm/+N4vXLlO/ewHU6dJpV/G5wAxU00HUT3bIxTJNwPIUVjhFJDTAw/ioDY1MAGJZN7vQM2cmZfb1bvRBCCCGEEHvtuB1XHLftFeI4uL+y2/X169zYuIFSivXaOtV2FV3TSUfTZKIZdE0nn8wzlZtC13XePvk2cxNzL3yMl25d4uLNi/i+z2JxkUK1gCK4xL1QLVBr10hGkqQjaeqdOtl4lvGBcXLJHGErDMB0fnpPAn+fVAkPwDbsA6nQJ4QQQhwlh/G4QuLvQhxaCngXuNZ73ALWuVeBbrs6w0WgDJzn0SG6NvAHQK331e0tX+99+b2vbu/5GPCHwE8ThOqEEEIIIYQQonfXv3dvcu3aFgCtlsv6egPH8TAMnfn5NUqlDtVqm2Kx0esDhhEcq/i+QimFYYBh6NRqHVotF03TmJ9fY2Ymh2nqB7Z9QgghhBBCCHHc+Z7L+tJHxAdHWL36Prpp4TUqKF9hWDa+D8r38H0Pv93ARaPbahDNZOk6LfxuF6dRJXvqLACrH79Pu15h/M3PyQVlQgghhBBCCCHEAdE0jbmJOV4bfo1/8bV/wXBqmJsbN1Eocokc4wPjpCIpap0apUaJteoaaEEgbf72PDOjMy+04prruVxauQTAYnExWD+QiWVodpq4votSittbt7nNbRKRBOVmma7fZXlzuR/4WygskI6knyvw90mV8GzTJpcMrt3d7wp9QgghhHh+EqAT4tCaJwjP+cAiUADuLxi5DOSBKWABSBNUo9vN13v9HYKwnQ+kgCRgEQTnqgThuTIwSFCp7uvA/7JH2yOEEEIIIYQ46ubnC1y7toXvKxYXtygU6mzXta9U2ly9uoFp6mxutuh0PKJRC13X0HWTcNjEcTzabRfDMMhkIjSbDteubXLyZBqApaUS09ODB7eBQgghhBBCCHHMlVdv4nUdaht36TRq6IaJrluE42F03QiCc56L227heV2U8vFch2ZpAzMcRkPHaTfoOh3iAzkyJyYp3b5OOJ4id/rcQW+eEEIIIYQQQghxrN3ausVAfICIHaFQKRC2wpw9cZah+FC/zUZ9gyt3r1CoFJgYmABgaX2J6eHpFzaupfUlHM+h5bQoVAsAnD1xlkw0w3eWvsNoepTljWVa3RYaGkOJIWJ2DF3XUUrtaeBvfmWea8Vru1bCA/Y8sCeEEEKI/SO3dRfiUHKBS73/LxKE2RSQASZ6U9Wbv9hrN9/rt5tvAR5Q6U1NgvBdmqDaXLr32Ow9X+5Nv7VH2yOEEEIIIYQ46lzX59Kl4E5/i4tbrK0F4blMJszERIp228P3oVp1aLXcXnBOIxw2SSRsstkYQ0NRDEOn2/XwPL8fttuuVre6WjvITRRCCCGEEEKIY6+xFVykVi3eBqXwug6aYQThOeUBEE6k0UwTw7TRNB1N0/G94E7wumliWiGcZp3GVpHS3SUAitc/wvcedR5LCCGEEEIIIYQQ+2G1sgrAem0dhSITy+wIzwEMxYfIRDMoFMVqcUe//R7XRm0D13fpel26fhfbtElGksRDcQbjgwwnhzl74iwAhUqBdrdNx+2wtL70TOPYrRLe9ngmBibIxILXZa26xuJ6cO3u/O15XPmbhxBCCHEkSIBOiENpiaBaXIugchzAWeAccLI3PdubXwDaQKfXbzcbvWm7Nw0DoQfahHrz72+3gRBCCCGEEEJAUB3OcTxaLZdCoQ7A2bNZzp3Lc/JkmnQ6RCoV6ofjDCMI0Lmuj2UZAIRCJuFw8P9228WyDNptF8cJLsLcngohhBBCCCGEOBhetxtMnQ4ASvn3pgoM0wLo3eHdR/k+oGHYNpYdQdd04kMjxDLBxXfN0jqe08brdiiv3tz37RFCCCGEEEIIIcQ9jucEUzeYJkKJXdslwokd7bb77fe4Kq0KALV2DYUiHooTskJ4fnBe2fXcPQ38PaoS3rnRc5wcOsm50XN7GtgTQgghxP6SAJ0Qh9L2h/d17lWeG3qgzRD3KtEVH+j3IKM33X7L+49o5z/QznhEOyGEEEIIIcRxs10dbn290a88NzQU3dEmFDIxTR1N0/B9BYDnKbrd3YNx2/Nt29gxFUIIIYQQQghxMAwrCMgZdnAjRuUGd1D3endS100T3+3i+9vhOYWm65hWrz3BsaAVjhGKp1BK0SgHN2zcrm4nhBBCCCGEEEKIg2EbdjA1g2mtU9u1Xa1d29Fuu99+j8v1e3+X8Heebzb04LyyaZjA3gX+DmuFPiGEEELsDfOgByDE4eASVG9bJaj8ZgMjwCQH8zZxHpjufpePYH5pl/YPOgV8H4gDZYIKc7UHllvjXuW5+H39hBBCCCGEEIKHqsQlEjurWm8/jkRMqtUO3a6PpoFSCsfx6XSCkxvtdu+iS13DcXyGhkxyuRgAIyOPOvbZe67rs7RUYnW1huN42LbByEiCyckMpin3GxJCCCGEEEIcT7GBPFsriyRzY5TuLKF0HeW4KN/HVz6+a+F5LsrzUCo4PtR1Hd0MzqeZoUgwzzAw7TCdegXP7VW161W32wu+51JevUljq4DX7WJYFrGBPOmRk+iGnAIXQgghhBDiZeF6LkvrS6xWVnE8B9uwGUmNMJmd7AdnhBBPbiQ1wtXCVbKJLMuby5QaJTbqGztCYhv1DUrNEhoauWSu3+8gxmXqwfvc0A063Q6tbotMNEMynAQgFUkBexf4e5oKfaVmad8q9AkhhBBib8gRhDjmFDAPXOLh8NlV4AIwB8wC2j6Oy35guvtdPu7Nf7D9g34C+K8EwbgQQVDudq+9BXQJtt8DwgTBOrvXTwghhBBCCCEerhJXq3V2PD8xkeLjjzcwTR3L0ul2fZrNLpZl0G53qVY7uK6H6yp0XaPZ7BIKGbz66iDhsEkoZDA5mXnh26GUYn6+wKVLa/0w4LarVze5cGGFublhZmfzaNp+HgcKIYQQQgghxMFLj5zk7pXvkhg6QTiewu20cZpVlOfhtbs4rQZoGr7noTwPUHhuF89x0C2baCq44M6OJmmW1wEwzF5Vu151u+ehlGJ96TLF65fxujvP7W2tLHL3ynfJnZ4hOzkjx3RCCCGEEEIcYUop5lfmubRy6aFgytXCVS5cv8Dc+Byz47Py2V+IpzCZneTC9QtgQz6ZZ626xpW7V8hEMyTCCWrtGpuNTertOhE7wtL6EhE7wuenPo/ruS8suPqocQFs1jepd+pUW1UUCsuwMA0Ty7AYig/taeDvsFboE0IIIcTekFuqi2NMAe8CFwnCYy3gFrDYm7Z78y8C7/Xa75ftD+9ZguBeCdh4oM1Gb74G5B7o96CzwDmCt3yi16cD1IFKb9rpzU/2pjO9fkIIIYQQQghxrzpcNhtD06BUarOx0ew/n8/HiUYtXFcRjVpEIhaO49HpuNRqDo2GQ7vt4fsKTQsq2ZmmzshIHKUUs7PDL7zym1KKd9+9ycWLd3Acj1bL5datCouLW9y6VaHddnEcj4sX7/Dee8sotZ/HgUIIIYQQQghx8HTDJHd6Bk3Xyb86SzQ9iGVH0AwDUHjdLm67hd/tgFIo30cphdt1MAyD+uYqnWYdNOjUK2iaRiwdhOpiA/nnGptSipX5b7L68ft4XQfXaVMt3qZ09wbV4m08p43XdVj9+H1WPviWHNMJIYQQQghxRCmlePfqu1y8eRHHc2g5LW5t3mKxsMitzVu0u20cz+HizYu8t/CefPYX4imYhsnc+BwAU7kphlPDaGiUmiWWN5e5vn6dmxs3abttTN3sV4H75uI3+fKffZlLty69kPfco8allKLSquB4DmErTNgK47gOd8p30DWdK3ev9IN2+VSesBUmZIaYzE4+0zi2g3fZRDZ4XXqV8O53EBX6hBBCCLE3pAKdOMbmgWuATxCaK7AzJLcM5IEpYAFIE1Sj2w+TBNXv6I1hDbgCZAgCcDWC8Nz282GCynKP+tBvAn8L+AFBOC5BEBDsEGyz3usf7rWP9trLjwghhBBCCCFEYHIyw4ULK0AQlltbq3PlyjqZTJhEIkSt1sG2DcJhg3DYBBTFYgPX9TEMHV3X8H0fXdcJhQzS6QivvjrAykqVfD7Om2/mPnkAe2B+vsC1a1v4vmJxcYtCoc7953eWl8vk83GmpgZYWNgknQ4zNzf8wsclhBBCCCGEEIdJdnKGdr0CgOu00XSd+sYaXsShXSvhOV183w2qPPgACpQPmo7TqOF7Lrc/+DaxTJZoJothhzGsEOmRk881rvWly5TuLIFSlO4u0Syt77hor1a8TTSTJXNiktLt64TjKXKnzz3XOoUQQgghhBD7b35lnmvFa/i+z2JxkUK1gLrvur7lzWXyyTxTuSkWCgukI2nmJuYObsBCHDGz47OUW2UWCgtM56eZGJigUClwff06ABMDEygUpWaJZDiJ7/u0u20ALt68SLlV5vz0+T2v/rjbuIrVIqZhsl5b55WBVyi3ylRbVUzdpN1t03E7aGjkU3mmslPBcsZmn7lS3pNU6Cs1g2t39yKwJ4QQQoj9JekYcUy5wKXe/xcJAmrwcEBte/40QeBuhv1525gEYb2LBAE+CAJ+Je4F5zTuBfwAZh8zNh14i2Dbb/Qe2w88bwCjvXZSoFIIIYQQQghxj2nqzM0Nc/HiHaamBgAoFOqUSm1KpeCEycBAhHjcpl53uHMnCMZ1Oi6VSgfX9bEsC10HyzIwzSBQd/JkmkjE5IMPii80rOa6PpcuBcd4i4tbrK3VAXYEAEuldn/+9PQg8/NrzMzkXnhlPCGEEEIIIYQ4TDRNY/zNzxGOp9BNCzMUYY1L1DfuYkcSqJCH0wyCcroVQjN0NHQ6jSp+OIoVieK06sQH82ROBBeQ5U6/gf6MF68B+J5L8fplAEp3l2hsFQEIxdPYkRhOq0GnXu7Pz4yepnj9I4ZOvv5c6xVCCCGEEELsL9dzubRyCYDF4iJr1eDcTiaWIRFKUOvUKDVKwXwNpvPTzN+eZ2Z05pkDM0IcN5qmcX76POlIuv9+03Ud0zDJxDKs19apt+tkYhlMw2R5a5lbW7deeHB1t3FNDE4wPjDOQmGBQrXAaHqUufE5LN2i63WxTZtcMkfYCopHTOenmR2ffeYxbFfCu3jzIlO5KdCgUClQapb6wbm9DOwJIYQQYn/Jb2xxTC0BDtAiCKYBnAWG7muzQVD1rQBM3Ndvep/GOAuUCarfTffGUCQYtw3kuFcxbrrX/lFcggDgGYLt6gIVwCMIyvkE4bk0QRW7M8AHwDnkx4QQQgghhBBi2+xsnnK5zcLCJtPTg0xMpCgWGziOh20b5HIxQiGD5eUKSiksS+fu3TqWZdDteoRCBvF4iETCJhazSSRCtNtB1YIXHVZbWirhOB6tlkuhEITkzp7NMjQU7bfZ2Ghy5co6hUKdiYlUv9/09OALGZMQQgghhBBCHFaappE7fY6hk69TXr3J2Mxf4NJ/+//Q2FzDaTUxQxE810U3dAzTwnO7KN/HsGzQdFL5MTRNRynFwPgU2cmZ5xpPefUmXtfBddo0S+sADL5yhkhyoN+mVd1ic/kqzdI6yexov9/A2NSuyxRCCCGEEEIcPkvrSzieQ8tpUagG1/WdPXGWofi96/o26htcuXuFQqXAxMBEv9/08H5d1yfE0adpGnMTc8yMzrCwtsC/X//3DMWHWK2sEjEjZIeyDMQH9j24ev+4ltaXWK2s4ngOZ/JnqLQqbNQ38JT3UL+QGWJ2bJbZ8dnnroz3qEp4juvseWBPCCGEEPtLkjHimFrtTdcBRVB5buiBNkO9+SWC4NpEr99+HWhrwHmCUNul3ryJB9qECIJzs732j7IdGGwTbO8UQfU6nSBcZxKE6Aq95zu95e1nYFAIIYQQQghx2Gmaxvnzr5BOh/vV3LaDZttCIYPPfGaUsbEkd+/WaLfvkEqFmZxMMzGRYmgohmFo+x5WW12tAbC+3kCpoPLc/eE5gKGhKJlMmFKpTbHYYGIixepqTQJ0QgghhBBCiGNLN8x+AG3yh/8y3XaTlQ++hdtpERs8AcrDadYxQxHcTpP6ZmHHGavYYJ7xNz/33BevNbaCC2eb5Q2UUoTi6R3hOYBIcoBQPEWnXqFR3iCZG6OxVZAAnRBCCCGEEEfIaiW4rm+9to5CkYlldoTnAIbiQ2SiGUrNEsVqkYnBCVYrqxKgE+IZmIaJaZhMZidpOS0265tYEevAg6umYTI9PP3Q8l3P3RGssw2bkdQIk9nJPQvzPaoS3v32MrAnhBBCiP0jATpxTDkPTBOPaJcgCNA92H6/aMAcMEMQZlvlXgW6EYJqcU/yNn4wMDgAvLZLuy4HFxgUQgghhBBCHAWapjE3N8zMTI6lpRKrq7V+BbqRkQSTkxm+9a1bFAoNAHK5GJlMmHPn8juWs99hNcfxdkwTidCu7RKJEKVS+6H2QgghhBBCCHGcbQfYWtUt7EicRHaM7KnXAfB9j1Zli06jivIV3U6LUDxDdvIs4XhqTy4k87rdYOoGUzsS27WdHYnTqVf67bb7CSGEEEIIIY4Gxwuuz3PcYJoI7X5dXyKcoNQs9dtt9xNCPL2jFFx9VLBurz2qEt6LCOwJIYQQYv/Ib29xTNkPTGuPaFd7oJ39iHYvmkkQZHvWD/1HJTAohBBCCCGEOCpMU2d6enDXwNthDKvZtrFjWqt1dm23Pf/B9kIIIYQQQghxnH1SgE3XDWKZLLFMFsO0qK3fwY7G0XVjzwJshmUFUzOYOq3Gru2cVn1Hu+1+QgghhBBCiKPBNoLr82wzmNY6u1/XV2vXdrTb7ieEeHoSXH20/QrsCSGEEGJ/6Ac9ACEOxkhvmiWo8lYCNh5os9GbrwG5B/odNUctMCiEEEIIIYQ4yg5jWG1kJDjRk83G0DQoldpsbDR3tNnYaFIqtdG0oHLe/f2EEEIIIYQQ4jg76ABbbCCoah5ND6FpGp16mVZ1a0ebVnWLTr2CpmnE0kM7+gkhhBBCCCGOhpFUcH1eNpFFQ6PUKLFR33ld30Z9g1KzhIZGLpnb0U8I8fQkuCqEEEKI40ICdOKYmiQIh0WA7RNnV1hc/JjFxWXgQ+BKb34eCAOhXr+j6LgFBsWLsLi4yOLi4kEPQ4hDR94bQjyavD+EOB52e68fxrDa5GQG2zaIREzy+TgAV66s8+GHBW7eLPPhhwWuXFkHIJ+PEw6bhEIGk5OZFzYm8TD53SH2kuxPYi/J/iT2kuxPYi/J/nS0HOXv10EH2NIjJzEsG9MOE81kAdhcvsr6jStU1m6xfuMKm8tXgzFmshh2GMMKkR45uSfrf1kc5X1QvDxkPxQHTfZBcRjIfijEo01mJ7ENm4gdIZ8Mjieu3L3Cx1c/ZvnGMh/e/pArd4Pr+vKpPGErTMgMMZk9qtf1CfHJ9uN3hgRXxWEkn5fEcSX7vhAvlnnQAxDiYJjAHHARmOrNK/DVr4YBxdTUdpAsf9/zsxzdt8wkcKH3/zywRhAQzAAJgspzpfueP+qBQfEifPWrXwVgamrqMS2FOF7kvSHEo8n7Q4jjYbf3+uRkhgsXVoAgjLa2VufKlXUymTCJRIharUOp1O4/vx9hNdPUmZsb5uLFO0xNDQBQKNQpldr9sWhaMJ7t52dnhzFNuffQfpLfHWIvyf4k9pLsT2Ivyf4k9pLsT0fLUf5+pUdOcvfKd4EgoNbYKrK5fJVQPIUdieO06nTqlf7zex1g0w2T3OkZVj9+n8yJ4PxVs7ROp17pr1fTNKKZbP/53Ok30I2jem7vxTjK+6B4ech+KA6a7IPiMJD9UIhHMw2TufE5Lt68yFRuCjQoVAqEi2EUilI+CPDkU3mmssF7aHZsFlM++4uX1H78zpjMTnLh+gWwIZ/Ms1Zd48rdK2SiGRLhBLV2jVIzuL5Ugqtiv8jnJXFcyb4vxIslRw3iGJsFysACMA1MAFuAAk4SVGEL99pO99ofVbsHBoPQ3HZw7mUKDAohhBBCCCEO0mENq83O5imX2ywsbDI9PcjERIpisYHjeNi2QS4XIxwOjoOmpweZnd2bSglCCCGEEEIIcdQdhgBbdnKGdr1C6fZ1MqOnSWZHaZQ38NwuhmkRSw9h2MG5vczYabKTM3u2biGEEEIIIcT+mR2fpdwqs1BYYDo/zcTABFsbWygUJwdPkkvmCFvBZ//p/DSz40f5uj4hDt6jgqulZqkfnJPgqhBCCCFeBvLpRRxjGnAeSAOXevOs3jTbm4YIgmSzvfZH2W6BwSLgADYvV2BQCCGEEEIIcdAOY1hN0zTOn3+FdDrMpUtrAExMpHa0CYUMZmeHmZ3No2lH/ThQCCGEEEIIIfbOQQfYNE1j/M3PEY6nKF6/DEAyN7ajjWGFyJ1+g+zkjBzTCSGEEEIIcURpmsb56fOkI2kurVwCwDKC6/qyg8F1fSEzxOzYLLPjs/LZX4g9sFtwtVgt4rgOtmlLcFUIIYQQLwUJ0IljTiOozDYDLAH/laAC3RlgBJjk5Xmb7BYYnHigzcsUGBRCCCGEEEIcpMMaVtM0jbm5YWZmciwtlVhdrfVDfSMjCSYnMy+8Ep4QQgghhBBCHEWHIcCmaRq50+cYOvk65dWbNLYKeN0uhmURG8iTHjm5p1XvhBBCCCGEEAdD0zTmJuaYGZ1haX2J//r9/4pCcSZ/hpHUCJPZSal+JcQe2i24OjG48/pSCa4KIYQQ4qiTIwghgOCtMA3Eeo/PH+BYXqQHA4Or3KtA97IFBoUQQgghhBAH7TCH1UxTZ3p6kOnpwQNZvxBCCCGEEEIcRYclwKYbJgNjUwyMTb3wdQkhhBBCCCEOjmmYTA9PEwsF1/WdP/OyXtcnxMF7MLi6WlnF8Rxsw5bgqhBCCCFeCvJJRohjaTswOH3QAxFCCCGEEEIcAxJWE0IIIYQQQoiXiwTYhBBCCCGEEEKIl9N2cHV6WK4vFUIIIcTL5WBu8y6EEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEK8YFKBTogjwQWWgFXAAWxgBJhE3sZCCCGEEEKIw8J1fZaWSqyu1nAcD9s2GBlJMDmZwTTlHj5CCCGEEEII8TLzPZfy6k0aWwW8bhfDsogN5EmPnEQ35HyWEEIIIYQQQgghno3ruSytL7FaWcXxHGzDZiQ1wmR2ElP+5iCEEEKIJ6QppdRBD0IcTx999BEzMzP9x5cvX+aNN944wBEdRgqYBy4RBOceZANzwCyg7duohBBCCCGEOCyO23HFYd1epRTz8wUuXVrDcbyHnrdtg7m5YWZn82iaHLsIIYQQQghxkA7rccWLcty29yAopVhfukzx+mW87sPnswzLJnd6huzkjBwTCiGEEEKII+m4HVcct+0VQhxeSinmV+a5tHIJx3v4bw62YTM3Psfs+Kz8zUEIIYQ4ZA7jcYXE7oU4tBTwLnCt97gFrHOvAl2uN/8iUAbOIyE6IYQQQgghxH5TSvHuuze5dm0LgFbLZX290a9Al8vFALh48Q7lcpvz51+RkxdCCCGEEEII8ZJQSrEy/01Kd5YAcJ02zfIGntvFMC1i6SEAVj9+n3a9wvibn5NjQiGEEEIIIYQQQjyWUop3r77LtWJwDW3LabFeW8dxHWzTJpcMrqG9ePMi5VaZ89Pn5W8OQgghhPhEEqAT4tCaJwjP+cAiUCAI1W1bBvLAFLAApAmq0QkhhBBCCCHE/pmfL3Dt2ha+r1hc3KJQqHN/rfvl5TL5fJypqQEWFjZJp8PMzQ0f3ICFEEIIIYQQQuyZ9aXLQXhOKUp3l2iW1lH3HRTWireJZrJkTkxSun2dcDxF7vS5AxyxEEIIIYQQQgghjoL5lXmuFa/h+z6LxUUK1QLqvmtolzeXySfzTOWmWCgskI6kmZuYO7gBCyGEEOLQkwCdEIeSC1zq/X8RWOv9PwMkgBpQum/+NEHgboaX423tAkvAKvcq7o0Ak7wc2yeEEEIIIcTR57o+Cwub/P7vX6bddlldrdFuu8TjIQYGwiQSIWq1DqVSm7W1OgDT04PMz68xM5PDNPUD3gIhhBBCCCGEEM/D91yK1y8DULq7RGOrCEAonsaOxHBaDTr1cn9+ZvQ0xesfMXTydXRj9/M9vudSXr1JY6uA1+1iWBaxgTzpkZOP7COEEEIIIYQQQjwv13NZWl9itbKK4znYhs1IaoTJ7CSmHI/uO9dzubRyCYDF4iJr1eBa2UwsQyKUoNapUWqUgvkaTOenmb89z8zojHy/hBBCCPFI8ilBiENpiSA41iKoPAdwFhi6r80GcKX3/MR9/ab3aYwvgiIIAl4i2P77XQUuEFTZmwWk1LYQQgghhBAHQSnF/HyBS5fWWFmpcPt2lW7XY3m5glIwPm6QTocZG0uiaRobG02uXFmnUKgzMZECYGmpxPT04AFviRBCCCGEEEKI51FevYnXdXCdNs3SOgCDr5whkhzot2lVt9hcvkqztE4yO9rvNzA2tWNZSinWly5TvH4Zr7vzHNHWyiJ3r3yX3OkZspMzaJqcIxJCCCGEEEIIsTeUUsyvzHNp5RKOt/N49GrhKheuX2BufI7Z8Vk5Ht1HS+tLOJ5Dy2lRqAbX0J49cZah+L1raDfqG1y5e4VCpcDEwES/3/TwUb6GVgghhBAvktzuXYhDabU3XScIlWXYGZ6j9zjTe774QL+jSAHvAhe5Fx68RVCB7xbQ7s2/CLzXay+EEEIIIYTYT0op3n33Jhcv3sFxPIrFJltbLW7dqlCvO4RCBuGwyY0bZRYWtlBKMTQUJZMJoxQUiw0AVldrB7wlQgghhBBCCCGeV2MruICtWd5AKUUont4RngOIJAcIxVMopWiUN3b026aUYmX+m6x+/H4/kFct3qZ09wbV4m08p43XdVj9+H1WPvgWSsk5IiGEEEIIIYQQz08pxbtX3+XizYv9sNatzVssFha5tXmLdreN4zlcvHmR9xbek+PRfbRaCa6FXa+to1BkYpkd4TmAofgQmWgGhaJYLe7oJ4QQQgixG6lAJ8Sh5DwwTTyiXQIo7dL+KJoHrgE+QWiuwM6Q3DKQB6aABSBNUI1OCCGEEEIIsV/m5wtcu7aF7ysWF7f4wQ+K1GpdarUOrZYLQDhsks3GKBTqRKMm4+MpEokQpVIbx/EA+lMhhBBCCCGEEEeX1+0GUzeY2pHYru3sSJxOvdJvt91v2/rSZUp3lkApSneXaJbWd1yUWCveJprJkjkxSen2dcLxFLnT517EJgkhhBBCCCGEOEbmV+a5VryG7/ssFhcpVAuo+65ZXN5cJp/MM5WbYqGwQDqSZm5i7uAGfIxsVwN03GCaCO1+DW0inKDULPXbPVhFUAghhBDiflKBTohDyX5g+qjqDLUH2tmPaHfYucCl3v8XgTXuVd6b4F6lvbXe8xAE7tx9HaUQQgghhBDHmev6XLq0BsDi4hZra3U0TSMaNclkwti2TrfrU6l0WF8PKs3dvl3F8xS1WgcA2zZ2TIUQQgghhBBCHF2GZQVTM5g6rcau7ZxWfUe77X4AvudSvH4ZgNLdJRpbxX41u0R2lFA8HVSv2ypSursEQPH6R/ienCMSQgghhBBCCPHsXM/l0solABaLi6xV1/qVziYGJsjEgspma9U1FteDaxbnb8/jyvHovrCN4FpY2wymtc7u19DW2rUd7bb7CSGEEELsRgJ0QhxKI71pFtAIqsxtPNBmozdfA3IP9Dtqlgiq57UIKs8BnAXOASd707O9+QWgDXR6/YQQQgghhBD7YWmphON4tFouhUJw8eO5c3lGR5OMjSXJZCJEIiadjku12sF1fbpdn2vXNiiV2mga5HJBNYKRkUdV2RZCCCGEEEIIcVTEBvIARNNDaJpGp16mVd3a0aZV3aJTr6BpGrH00I5+AOXVm3hdB9dp0yytAzD4yhmyp14nNTxB9tTrDL5yBoBmaR3PaeN1O5RXb+7DFv7/2bvv8Kiq/I/jn0mvkBBIQugt9CZFQJodFynKiqy9of4U14a9AGtB17a6umIFV5cuRcACUhWQLr33EkJCekL6/f0RGbmZlEmYyWQm79fz5IFz59xzzyTnzr1nzv2eAwAAAADwVIcSDim3IFfncs8pPq3omcV2Me3UsUFHNa3bVB0bdFS7mKJnFuNT45Wdl62c/BwdSuCZxapQv3bRs7D1QuvJIouSM5OVmGF+hjYxI1HJWcmyyKLIWpGm/QAAAEpCAB1QLTVX0WpygZLODyLukrRd0pE//t31x/YoSQGS/P/Yzx3F/fFvgv5cea5usTx19edKdGeK7QcAAADA2eLiimbvS0jIlGFI4eEBatWqjnx8vOTr661atfzl7++jc+fylJycrWPHUnXyZJp27Ch6ADIqKkQBAT7y9/dW8+bhrnwrAAAAAAAHCKvfVN6+fvLxC1BQeD1J0tmje5VweJdSTx9TwuFdOnt0ryQpKLyevP0C5O3rr7D6Ta1lZCYVPaSYlZJoXXkusFYd03ECa9WRf0jtopXoUhJN+wEAAAAAUBlxqUXPHiakJ1hXnqsbYn5msW5IXYUHFa1EdybtjGk/OFfzes3l5+2nQL9ARdUqeoZ216ld2n5iu44kHtH2E9u161TRM7RRtaMU4Bsgfx9/Na/nrs/QAgCAquDj6goA1clrr72mvLw8+fr66oUXXnBhTXwkdZG0XlLLP7bFq2jFueQ/0hYVBc+df72z3PeUzi32b2mrUYSq6P0Xz4+qUH3OD6B64dwASsf5AXiW3NwC07+hof7y9vbS0aMLdPZshiwWb0VFXafMzFxlZuYpNTVbISH+Cg31UnR0iFq2LHoAsnPnaPn4MJ8PSsa1A45Ee4Ij0Z7gSLQnOBLtyb142t/Ly9tHkS06KG7PZoXHFD2glpWcoJyMVOVkpEqSLBaLgsLrWV+PbNFeXt5/jmcV5OUV/Ztf9K9fYHCJx/ILDFFORqo13/n9UDGe1gbhnmiHcDXaIKoD2iFQcZw3cLTcgqJnD3Pzi/4N9S/5mcXQgFAlZyVb853fr6rU1Lbv4+2jLo26aP2R9WoZ2VKyFK0EmJyVrOSsomdoLbIoqnaUWtYreoa2c8PO8vF212doUVxNbfsAbR9wLothGIarK4GaaefOnerQoYM1vWPHDrVv396FNZKCg4OVlZWloKAgZWZmurQuRSutrZS07490topWXstV0ep0kSpaeU6SYiUNUFFQnTtaKWmvpGMqWmEvXFLHEvJtV1EAXVNJjSW1VtH7RlWoXucHUH1wbgCl4/xAVaiO/QpncuX7XbnyiPbuPatjx1J15EiKwsMD1LFjlB55pK9yc7Pl7e2vUaOm6tixVCUlnVNoqJ/CwwPVsmUddegQKUmKjY3QgAFNZLG4a98Fzsa1A45Ee4Ij0Z7gSLQnOFJl2hP9KNe9X088/w3D0PFtq5V84qAkqSA3W5kpiSrIz5O3j6+Cw+rK269oPCu8YQs16nSZqU94fNtqJR0/oLQzJ5QWf1z+IWGq16ytzXESDu9STkaqakU1Uq3IhqrTqKUadbqsat6kB/HENgj3QzuEq9EGUR3QDt1PdepXVIXq+H45b+BoK/eu1N74vTp29piOnD2i8OBwdWxg+8zi9hPblZyVrKYRTdU4orFaR7XWgNZV98xiTW77hmFo5b6V2hdf9Axtdl62zqSdUW5+rvx8/BRZK1IBvkXfOcRGxWpA7ADGoT1ITW77qNlo+/Ak1bFfwZTvQLVlUVFwWE8VBcwFqChorOUf/wZI8v/jdXcOnpOk+n/8W09F7yNZUmKxPIl/bLeoKHjwwv0AAAAAOFv9+kWzLtarFyyLRUpOzlZiYpb1dS8vi7Kz85WTU6CQED81aRKmOnUCVa9ekPz9vdWzZwOC5wAAAADAw1gsFjXqdJnqt7lE3r5+8vYLUK3IhgqPaaZakQ3l7Rcgb19/1W9ziU3wnCQF14mSJAWF1ZXFYlFORorOpSWZ8pxLS1JORqosFouCw+qa9gMAAAAAoDLq1y569rBeaD1ZZFFyZrISM8zPLCZmJCo5K1kWWRRZK9K0H5zPYrFoQOwA9WzaU37efgrwDVDjiMZqGdVSjSMaK8A3QP4+/urZtCfBcwAAwC6sVQtUaxZJXSR1kHRIUpz+XIGuvqTm8ozTuLmkNX/8P0rSaUm7VLQSXaikdBUFz51//XzwYPOqrSYAAABQgzVvHq41a45LkqKiQnT6dIZ27UpQYWHRwvaGYcjPz1tRUcEKDPRRdHSIAgN9NGJEO8XGRsjHhzl8AAAAAMATWSwWRbboqLpN2yol7ogyk+JVkJcnb19fBdeJUlj9pvLyLnk8K6x+U53atUGSFBReT5lJZ3T26F75h9SWX2CIcs9lKCcj1fr6+YC8sPpNq+rtAQAAAAA8UPN6zbXm4BrJT4qqFaXTaae169QuhQeFKzQgVOnZ6UrOKnpmMap2lDVYq3k9nlmsShaLRV0ad1GHBh10KOGQ4lLjlFuQKz9vP9WvXV/N6zWXTynfOQAAABTHXQPgFnwkxf7x44l8VBQouF5FK+xJUryKgubOB85ZVBQ8d/71zuIjDAAAAKg6Pj5e6tIlWuvXn1TLlnUkSfHxGTKK4udkGJK3t0WxsRFq2bKOvLws6tmzgdq1q+fCWgMAAAAAqoqXt4/qNGypOg1blp/5gn0iW3RQ3J7NCo8peggxKzlBORmp1sA5i8WioPB61tcjW7QvNSAPAAAAAAB7+Hj7qEujLlp/ZL1aRraULFJ8arySs5KtgXMWWRRVO0ot6xX1czs37Eywlov4ePsoNjpWsdGe+gwtAACoCtzJAagmOktKkbRPRYGCjSWd0Z8r7kWqaOU5/fF656qvIgAAAFDDde4cpZSUbO3bd1axsRFq3Li2ZsywqKBA8vKyqEePBgoIKPqqITY2Qp07R7m4xgAAAACA6q5e8w7KzkhV8omDCm/QQrXqNVBmSqIK8vPk7eOr4LC68vYrGiMKb9hC9Zp3cHGNAQAAAACeoHOjzko5l6J98fsUGxWrxnUa60zaGeXm58rPx0+RtSIV4FvUH42NilXnRjyzCAAA4M4IoAMuYJxfOgEuYJE0QFKYpN//2Na4WB5/FQXOdf4jP6oS5wdQMs4NoHScH4DnsVgsGjCgicLCAvT776f/2Gb88a8UEOAjf39vde4crc6do2SxcN+OiuHaAUeiPcGRaE9wJNoTHIn25F74e5XMYrGoUafLFBBSW2cO7pAk1YpsaMrj7euvyBbtVa95B/qaF4E2iOqAdghXow2iOqAdAhXHeQNnsFgsGhA7QGGBYfr9+O+SpMYR5mcW/X381blhZ3Vu1Nkl/VHaPmoq2j5qKto+4FwE0AEXKCgocHUVajiLpC6SOkg6JClOf65AV19Sc/Gx5TqcH0DJODeA0nF+AJ7JYrGoS5dodegQqUOHkq1f3nl5WTRwYFM1bx4uHx8vF9cS7oprBxyJ9gRHoj3BkWhPcCTak3vh71U6i8WiyBYdVbdpW6XEHVFmUrwK8vLk7eur4DpRCqvfVF7ejBFdLNogqgPaIVyNNojqgHYIVBznDZzFYrGoS+Mu6tCggw4lHFJcapxyC3Ll5+2n+rXrq3m95vJxYX+Uto+airaPmoq2DzgXowwAqiEfSbF//AAAAACojnx8vBQbG6HzEy16eVkUGxvh2koBAAAAANyal7eP6jRsqToNW7q6KgAAAACAGsTH20ex0bGKjeaZRQAAAE/FlPAAAAAAAAAAAAAAAAAAAAAAAAAAAI9EAB0AAAAAAAAAAAAAAAAAAAAAAAAAwCMRQAcAAAAAAAAAAAAAAAAAAAAAAAAA8EgE0AEAAAAAAAAAAAAAAAAAAAAAAAAAPJKPqyuAmisnJ8eUPnDggItq8qfCwkLrvzt37nRxbYDqhfMDKBnnBlA6zg9UheL9iOL9DE9DPwqejvYER6I9wZFoT3Ak2hMcqTLtiX6U6/pRnP9wNdogqgPaIVyNNojqgHbofuhHMR4FuAptHzUVbR81FW0fnqQ69qMshmEYrq4Eaqb58+dr+PDhrq4GAAAAAA8yb948DRs2zNXVcBr6UQAAAAAcjX4UAAAAAFQM/SgAAAAAqJjq0I/ycunRAQAAAAAAAAAAAAAAAAAAAAAAAABwEgLoAAAAAAAAAAAAAAAAAAAAAAAAAAAeyWIYhuHqSqBmSklJ0cqVK63pRo0ayd/f34U1AgAAAOBucnJydPz4cWt6wIABCgsLc12FnIx+FAAAAICLRT+KfhQAAACAiqEfRT8KAAAAQMVUx34UAXQAAAAAAAAAAAAAAAAAAAAAAAAAAI/k5eoKAAAAAAAAAAAAAAAAAAAAAAAAAADgDATQAQAAAAAAAAAAAAAAAAAAAAAAAAA8EgF0AAAAAAAAAAAAAAAAAAAAAAAAAACPRAAdAAAAAAAAAAAAAAAAAAAAAAAAAMAjEUAHAAAAAAAAAAAAAAAAAAAAAAAAAPBIBNABAAAAAAAAAAAAAAAAAAAAAAAAADwSAXQAAAAAAAAAAAAAAAAAAAAAAAAAAI9EAB0AAAAAAAAAAAAAAAAAAAAAAAAAwCMRQAcAAAAAAAAAAAAAAAAAAAAAAAAA8EgE0AEAAAAAAAAAAAAAAAAAAAAAAAAAPJKPqysAVAfJyclavXq1Tp48qaSkJEVGRqphw4bq16+fgoKCXF09wG0cOnRImzdv1qlTp5Sdna2YmBg1b95cvXr1kpcXMduovgoLC7V//35t27ZN8fHxSk1NVXBwsCIjI9W9e3fFxsZeVPmcG3BnBQUF2rdvn7Zv364zZ84oNTVV/v7+CgsLU9u2bdWlSxcFBwdXunzOD8B90Y+qOZx9r+RMmzZt0t69e3Xq1Cn5+PgoJiZGHTp0ULt27VxdNTiJM+8taE9wNNqU+3PHz5zc3Fz9+uuvOnr0qOLj41WrVi01aNBAl156qaKjoy+qbFROTk6OduzYoV27duns2bPKyspS7dq11aBBA/Xu3VtRUVGurmKpaE/2o/8EV3PHaxaqP3dsV1y7YC/aoOdw53Fg2iFQhP4Uahp3HpcDADhOVlaWNm/erH379uns2bPKyclRSEiIoqOj1bNnTzVv3tzVVQTckwHUYHv27DGGDRtm+Pn5GZJsfkJCQoy77rrLiIuLc3VVAafYvHmzqc0nJCRUqpyFCxcavXr1KvE8kmQ0aNDAGDdunJGTk+PgdwBU3tmzZ41JkyYZQ4cONUJDQ0ttv5KMZs2aGe+//76Rm5tboWNwbsBdnTlzxnj//feN6667zggKCirz/AgKCjL+9re/Gbt3767QMTg/APdFP6pmcNa90rhx48osy56f5OTkMo9RUFBgvPvuu0bz5s1LLaNz587GN99846DfFsqzfPnyi/67z507t8xjOOvegvZUvVxsO7rwZ/ny5Tbl8xnl+ar7d2HObB8pKSnGmDFjjPDw8BLL9fb2Nq655hpj/fr1FS67prqY9rRv3z7j1VdfNfr27Wv4+vqW+bnSp08f47vvvrO77AEDBlzU51jnzp3LPQbtyX70n1AW7pNR1bgX4trlahfTBt29v0YbrFruPA5MOwT+RH8KNUlVXLsAd3f8+HEjJibGdD5s2LDB1dUCHG7RokXG4MGDDX9//1KvBQMGDHB1NQG3RQAdaqwpU6YYgYGBdn2RGhkZaSxbtszVVQYc7p133rmogbLCwkLj4YcftntQ4pJLLjGOHj3qpHcD2O/kyZOlfsla1k/Pnj2N48ePl1s+5wbc2ZYtWyp1fvj4+Bj//ve/yy2f8wNwb/SjagZn3is5+2GnxMREo3///naXdcsttxCsXQWc+WCwM+8taE/Vz8W2owt/XBFAR5tyver8XZgz28eGDRuMxo0b21Wur6+v8e6771bo91JTVbY9zZo1q1KfL3feeaddf3NnB9DRnuxH/wnl4T4ZVY17Ia5drnYxbdCd+2u0warlzuPAtEPgT/SnUJM4+9oFeIK0tDSjU6dONucBAXTwJMeOHTMGDx5s1zWAADqg8gigQ430ww8/GN7e3qaLiZeXl9G0aVPj0ksvNRo2bGhzsalVq5axZ88eV1cdcJgjR44YkZGRlR6kMAzDeP75523OFX9/f6NNmzZG9+7djYiICJvXu3TpYmRlZTnpXQH2OXz4cIkdi+DgYKNr165Gnz59jGbNmpWYp3379kZKSkqZ5XNuwJ398ssvJbb90NBQo2vXrkbv3r2Npk2blvoF7ieffFJm+ZwfgPuiH1VzOPNeyZkPO+Xm5hoDBw4ssR126dLF6NChQ4krqz7wwANO+k3iPGc+GOysewvaU/V0se3owp+qDqCjTbledf4uzJnt4/jx40Z0dLTNvlFRUUbPnj2Nli1bGj4+PjavT506tUK/m5rmYtrT5MmTS/z8iIyMNHr06GFceumlNmWf/7ntttvKLd+ZAXS0J/vRf4I9uE9GVeJeiGuXq11sG3TX/hptsOq56zgw7RD4E/0p1DTOvnYB7i4/P98YNGhQiecAAXTwFIsXLy5xBVJvb2+jefPmRq9evYx27dpZ8xBAB1QeAXSocc6cOWOEhYWZLjDXXXedsXfvXlO+jRs3Gj179jTl69Spk1FYWOiimgMXJzs72zh58qSxbNky49lnnzXCw8NtbrYqMkixZMkSm/3Hjh1rnD171pqnsLDQ+Pbbb20GQ8aMGeOMtwjY7cIvnyIiIozHH3/cWLVqlVFQUGDKd+jQIePuu++2aeuPPPJIqWVzbsDdXRhAFx0dbTzzzDPGmjVrbO6BMjIyjE8//dTmehISEmKcOXOmxLI5PwD3RT+qZnHmvVLxh50efPBBY/ny5RX6ycvLK7HsF154wWZg8fPPPzdyc3OteTIzM40333zTZvB99uzZjvnloUTFHwzu1atXhf/uJfVXnXlvQXuqnirabi78ueOOO0x/J3sC6PiMcm/u9F2YM9tH3759TflbtWpl/Pzzz6Y8J0+eNG6//XZTvqCgIOPYsWN2/348nSPb04UBdG3atDFee+01Y/fu3Tb51qxZY/Tp08fmON9++22Z5RcPoJs0aVKFPsfKeuiE9mQf+k+wF/fJcCbuhYpw7XIdR7dBd+2v0QarnruOA9MOgSL0p1ATOfPaBXiCBx980Kbdn/8hgA6eYM2aNUZwcLCpbbdu3dr473//ayQlJdnk37t3L5NdABeBADrUOE899ZTpInPllVeavnC6UGpqqtG2bVtT/jlz5lRxjYGLV9qsxhczSNGjRw/Tvi+//HKpebdv324EBARY8/r7+xtxcXGOeGtApRw+fNgIDAw0JkyYYKSlpZWb/8knnzS1dz8/PyMxMbHEvJwbcHe//PKLERoaarz99tt2rfq2adMmm9XoPvjggxLzcn4A7ot+VM3izHul4g87vfXWWw6pc2JiohEYGGgt12Kx2DwEcqHPPvvMVI+yVlrBxSv+YPDgwYMdUq6z7i1oT54nPT3dqFevnvVv5OPjYxw9etQmH59RnsOdvgtzZvtYtGiRKW90dLRx8uTJUvPfdtttpvx///vfS81bkzi6PU2ePNlo0KCB8c0339g8CFVcTk6OTRBdt27dytyneACdox4ioT3Zj/4T7MV9MpyFe6EiXLtcxxlt0B37a7RB13DHcWDaIfAn+lOoiZx57QLc3T//+U9Tey8+kQABdHB3p06dsplw5rHHHit1AhgAF48AOtQoubm5Rp06dawXGS8vL2Pnzp1l7rNgwQLThemyyy6rotoCjuPoQYpNmzaZ9mvcuLGRnZ1d5j7FO+8vvPCCI94aUCnp6enG/v377c6fmZlpREREmNrw9OnTbfJxbsATxMfHV3g2yeIzUt5+++02eTg/APdFP6rmcda9kmE472Gnd955x1TuqFGjyt2ne/fupn2WLFnikLrAljMeDHbmvQXtyfO8+uqrpr/P6NGjS8zHZ5TncKfvwpzZPoYMGWLKN2nSpDLLPX36tGmW06CgICM1NbXc+ng6R7engwcPVuj3um7dOptjlTXBjLMC6GhP9qH/hIrgPhnOwr1QEa5druNOAXS0Qc/jjuPAtEOgCP0p1FTOHJcD3Nns2bMNi8Vibec333yz0b9/f6d89wm4yh133GFq00899ZSrqwR4PC8BNciKFSuUlJRkTV922WVq165dmfsMHjxY9evXt6bXrl2rs2fPOq2OgDv49ttvTek777xT/v7+Ze5z3333mdILFixweL0Ae4WEhKhly5Z25w8KCtI111xj2rZ9+3abfJwb8ASRkZFq1KhRhfbp2bOnKR0fH2+Th/MDcF/0o2oeZ90rOVPx68zo0aPL3efee+81pbnOuBdn3lvQnjxLSkqK3n77bWvaz89PL774YpXWgTbl/tzxMycjI0OLFy+2pgMCAnT77beXWW5UVJSuv/56azorK0tLly4ttz6omObNm6tWrVp25+/Zs6diYmJM23bs2OHoapWJ9mQ/+k9wNXe8ZqH6c8d2xbUL9qINeh53HAemHQJF6E+hpnLHcTnA2datW6fbb79dhmFIknr37q0pU6bIYrG4uGaA46xfv15ff/21Nd2zZ0+9/vrrLqwRUDMQQIcaZdmyZab0X/7yl3L3sVgsuu6666zpwsJCLVmyxOF1A5xp0KBBWr58uc1PVFRUpcqrzLnUpk0btWjRwpretm2b4uLiKnV8wBWaNGliSicmJtrk4dxATVVYWGhK165d2yYP5wfgvuhHwR723Cs5S2ZmptavX29Nh4SEqF+/fuXuN3jwYFP6p59+cnjd4DzOuregPXmet956SykpKdb0fffdp8aNG1fZ8WlTruEu34U5s32sXr1aOTk51vSAAQMUFBTkkLJrGke3p8oo/rlVlfdaEu2pIug/wdXc8ZoFx+NeiGuXq1WH+yd70AZxnivHgWmHwJ/oTwH2c+W4HOBshw8f1tChQ3Xu3DlJUrNmzTR//nwFBAS4uGaAY73//vvWIFFJeu211+Tj4+PCGgE1AwF0qFE2btxoSnfu3Nmu/YrnW716tcPqBFSF6OhoDRw40OanMp2KgoICbdmyxZq2WCzq1KmTXfsWz7dmzZoKHx9wlby8PFO6eGeFcwM12bZt20zpXr16mdKcH4B7ox8Fe5R3r+RMv//+u/Lz863pdu3aydfXt9z9GjVqpPDwcGt67969DDC6CWfeW9CePMuZM2f0/vvvW9P+/v56/vnnq7QOtCnXcJfvwpzZPriHcxxHtqfKcuW9lkR7qgh+V3Ald71mwfG4F+Lz2NWqw/2TPWiDOM+V48C0Q+BPtFnAfq7+rghwlpSUFA0ePFhnzpyRJIWFhWnRokWqV6+ei2sGOFZWVpa+++47a7pdu3a66qqrXFgjoOYggA41ys6dO03p2NhYu/Zr3bq1Kb1//36H1QlwNwcPHjTNUtagQQO7ZimTOJfg3g4fPmxKF++Yc26gpoqLi9OsWbOs6ZCQEN1xxx2mPJwfgHujHwV7lHev5EyVbaOSbTs9cOCAQ+oE53LmvQXtybNMnDhRmZmZ1vQDDzygBg0aVGkdaFPuz10/cypbdmxsrCwWizV98OBB0wyocA1X3mtJtKeKoP8EV3LXaxaqN3dtV1y7YA/aIM5z5Tgw7RD4E/0pwH6u/q4IcIa8vDzdeOON2r17tyTJ19dXs2fPVtu2bV1cM8DxFixYoIyMDGv6+uuvd2FtgJqFADrUGLm5uTp9+rRpW3R0tF37RkVFmdIHDx50WL0Ad3P06FFT2t7zSOJcgvsqLCy0maWsS5cupjTnBmqiU6dO6frrr1daWpp127/+9S/VrVvXlI/zA3Bf9KNgD3vulZyJ60zN48y/Oe3Jc5w4cUKTJk2ypgMDA/Xcc89VeT1oU+7PXT9zKlt2QECAatWqZU2fO3dOp06dsrtecLwdO3YoKSnJmrZYLHbPwu8otCf70H+Cq1XH64o9ZaN6c9d2xbUL9qANQnL9OHB1LJt2CFegPwXYz9XjcoCzjB49WsuXL7emP/74Y1155ZUurBHgPL/++qspXbytx8XFacuWLVq9erW2bdtmejYPwMVh3V7UGPHx8aYZkXx9fRUcHGzXvsUfAj927JhD6wa4k+JfWIWHh9u9L+cS3NVPP/2k+Ph4a9rPz0/9+/c35eHcQE1QWFio1NRU7dq1S/Pnz9cnn3xi7aB7eXlp4sSJuvfee2324/wA3Bf9KNjDnnul0iQmJmrdunU6d+6ctX3VqVNHjRo1Ms1yXBauM+4nKytLW7ZsUVpamiwWi4KDg1WrVi01bdpUvr6+5e7vzL857clzvPLKK8rOzramH3rooQo9hCbxGYUi7vqZc7Flp6ammsqu6tUb8aevv/7alO7evbvCwsLs3v/IkSPKyclRfn6+/Pz8FBISoujo6ArNTE57sg/9J1ws7pNRHblru+La5fmqe3+NNug+XD0OXJ3Lph2iKtGfAux3MeNyQHX1yiuv6KuvvrKmn3nmmRKfPwI8xbZt20zp1q1b68iRI/rwww81Z84cm5VGLRaLOnTooHvuuUcPPfSQ/Pz8qrK6gEchgA41RnJysil94WxJ5SmeNzc3V3l5eXYNVgGexpHn0oVLEAPV2euvv25KDx482GaAgXMDnq5hw4Y6efJkia/17t1bb7zxRqlfynJ+AO6LfhTsYc+9UmnefPNNvfnmmzbbg4KCdNlll+nWW2/VbbfdJm9v71LL4DrjfpYvX65LLrnEZruPj486duyokSNH6sEHHyw1OMCZf3Pak2c4ePCgvvzyS2s6ODhYzzzzTIXL4TMKkvt+5tD2PMPZs2dNq2lK0m233VahMm666aYSt0dERGjQoEG69957dfnll5dZBu3JPvSfcLG4T0Z15K7tijbr+ap7f4026D5cPQ7srmUDjkZ/CrDfxYzLAdXR//73P7388svW9IgRIzRx4kQX1ghwvgsD6Ly9vfXxxx/rvffeU25ubon5DcPQ9u3b9fjjj+uTTz7RrFmz1KFDh6qqLuBRvFxdAaCqZGZmmtIV6SSXlLd4eUBN4chzifMI7uDrr7+2WTL7ueees8nHuYGa6vHHH9f06dPLnNGM8wNwX/SjUB5775UqKisrS0uWLNFdd92lbt26afv27aXm5TrjOfLz87VlyxY999xzat26tWbPnl1iPmf+zWlPnmH8+PHKz8+3ph955JEKrbRUHj6jahZ3/cyh7XmGp59+2rryuyRFRkbqvvvuc0jZZ8+e1f/+9z9dccUVGjFihFJSUkrNS3uyD/0nOAv3yXAld21XtNmaq7r012iD7qE6jAO7a9mAo9GfAuzjrHE5wFV++eUX3XPPPdZ0z5499fXXX9u9qjTgjpKTk03fxxcUFOjNN98sNXiuuD179ujyyy+3WcUOgH0IoEONkZeXZ0pXpKPt7+9vsy0rK+ui6wS4I0eeS5xHqO6OHTumv//976Ztd999t3r06GGTl3MDNdV7772npk2basiQIdq9e3eJeTg/APdFPwplqci90sXYunWrBgwYoPXr15f4OtcZz3TmzBmNHDlSn3zyic1rzvyb057c365duzR16lRrOjQ0VGPHjnXa8fiM8nzu+plD23N/3333nWk1TUl66623FBQU5PBjzZkzRwMHDlRiYmKJr9Oe7EP/CVWB+2RUNXdtV7RZSK7tr9EGq7/qMg7srmUDjkZ/CihfVY3LAVVl3759Gj58uDVoqEmTJvruu+8UGBjo4poBzpWamlri9tatW2vixIlat26dkpKSlJ2draNHj2rp0qW69dZbTXkTExM1cuRIm3soAOXzcXUFgKri7e1tSnt52R8/ahiGzbbCwsKLrhPgjhx5LnEeoTrLzc3VzTffbJrto1mzZnr33XdLzM+5AU83a9Ys5eTkKCUlRfHx8Tp8+LDmz5+vPXv2yDAMLVy4UMuXL9fMmTP1l7/8xbQv5wfgvuhHoTQVvVc6r127dnr22WfVvn17tWjRQhEREYqIiFDt2rWVlZWlo0ePau3atfr888+1YcMG637Jycm66aabtHPnToWEhJjK5DpT/dWtW1ePPPKIOnTooNjYWNWrV8/6t8/NzVV8fLw2b96sadOmac6cOdb9DMPQmDFj1LNnT3Xt2tW63Zl/c9qT+3v55ZdNv/vHHntMERERdu3LZxRK4q6fOd7e3qaVGGl77uXw4cOmmZcl6YYbbtAdd9xR7r5XXXWVrr76arVr104NGzZU3bp1FRERoaCgIKWmpmr//v1aunSpPvnkEx0/fty639atW/XAAw/o22+/tSmT9mQf+k+oKO6T4Q7ctV1x7fI87tZfow1Wb9VpHJh2CBShPwWUrbLjckB1lZmZqcGDByspKUmSVKtWLS1atEhRUVEurhngfMUD6AICAvTll19q1KhRNqsvNm7cWI0bN9YVV1yhAQMG6IEHHrDe++zdu1cfffSRHnvssaqqOuARCKBDjVF8VoKCggK79y1pWdSKzHQDeBJHnkucR6jO/u///k+//fabNR0UFKRZs2YpLCysxPycG/B0vXv3ttn2+uuv6/3339eTTz4pwzCUmZmpkSNHavPmzYqNjbXm4/wA3Bf9KJSmovdK540cOVIjR44s8bVatWqpY8eO6tixo0aPHq3XXntNL730kvX1Y8eO6d1339XLL79s2o/rTPXXoUMHffDBByW+5uvrq+bNm6t58+b661//qh9//FEjRoywzhCcn5+vJ598UsuWLbPu48y/Oe3JvW3evNn0cHlYWJieeOIJu/fnMwolcdfPnMDAQKWnpzulbDhXZmamhg8frrNnz1q3tW7dWpMnT7Zr/xdffLHU184/aN6rVy/9/e9/12233abvvvvO+vqcOXO0atUq9e/f37Qf7ck+9J9QUdwnwx24a7vi2uV53K2/Rhus3qrTODDtEChCfwooW2XH5YDqKiEhQQcOHLCmH374YSUkJGjFihVl7ndhEKkkbdq0SRkZGZKKxoS6dOni4JoCjnfhPbokRUZG6m9/+1u5+40ePVpr1641jRV88803BNABFWT/VB2AmwsODjalS+o8l6akJU6LlwfUFI48lziPUF298cYb+vLLL61pLy8vTZs2Td26dSt1H84N1EReXl56/PHHTQ8lZ2Zm6vnnnzfl4/wA3Bf9KJSkMvdKFWWxWPTiiy/arLIya9Ysm7xcZzzLoEGD9OGHH5q2rVy5UmfOnLGmnfk3pz25txdffNE04/QTTzzhlAcI+IyqWdz1M4e2554KCgp08803a9u2bdZtkZGR+v7771W7dm2HHis0NFQzZ85Uq1atTNv5LKs8+k9wJu6T4Sru2q5oszVXdemv0Qarr+o2DuyuZQOORn8KKF1VjMsBrjZx4kRdfvnl5f5s3brVtN+DDz5ofY0gIriL4qvMFU+XZezYsab05s2bdfr0aYfUC6gpCKBDjRESEmJKn5+h0R5paWmmtLe3t015QE3hyHOJWXBQHU2dOtUm+Of999/X0KFDy9yPcwM12ZNPPmnqzC9YsMA6w5PE+QG4M/pRKK6y90qVVXzlqB07dig5Odm0jeuM57nzzjsVERFhTRcWFmr16tXWtDP/5rQn97V69Wr98MMP1nSdOnX06KOPOvWYfEbVDO76mUPbc08PPfSQFi1aZE0HBgZqwYIFat68uVOO5+/vr4cffti0bdWqVTb5aE/2of8EZ+M+Ga7gru2KNgtX99dog9VTdRwHdteyAUejPwWUrKrH5QAAzld85d2SJgMoTbt27RQZGWlNG4ahgwcPOqxuQE1AAB1qjOjoaNPy7JmZmXYv956YmGhK169f36F1A9xJo0aNTOniX0SVhXMJ1d13332nO++807Riwcsvv6wxY8aUuy/nBmqy+vXrq0WLFtZ0bm6uNm3aZE1zfgDui34ULnQx90qV1blzZ5svkOPj401prjOex8vLSz169DBtu/Dv7sy/Oe3Jfb3wwgum9NixY1WrVi2nHpPPqJrBXT9zaHvu55lnntGnn35qTfv5+WnOnDnq2bOnU4/bq1cvU7r455hEe7IX/Sc4G/fJcAV3bVe0Wbi6v0YbrH6q6ziwu5YNOBr9KcCWK8blAADOd+EEWZKUnp5eof1jYmJM6TNnzlx0nYCahAA61Bje3t5q0qSJNW0Yht0XjeJfpF5YDlDTXBggIalCy/9yLqE6W7JkiUaOHKn8/HzrtieffFITJkywa3/ODdR09erVM6UvvM/i/ADcF/0onHex90oXIzw83JROSkoypbnOeKY6deqY0hf+3Z35N6c9uaclS5Zo5cqV1nS9evX0yCOPVMmx+YzyfO76mVPZsrOzs00PVXp5ealhw4Z21wuV849//EP//Oc/rWkfHx/NmDFDgwYNcvqxy7rmnkd7sg/9J1QF7pNR1dy1XXHtguTa/hptsHqpzuPA1bFs2iFcgf4UYObKcTmgKjRt2lSGYVT4Z8CAAaZyNmzYYH1txYoVrnkzQAXVr19f3t7e1nR6eroyMjLs3j84ONiUzs3NdVjdgJqAADrUKK1atTKl9+zZY9d+xfO1a9fOYXUC3E1MTIyCgoKs6UOHDtl9A8a5hOrq119/1fDhw5WTk2Pd9vjjj+vtt9+2uwzODdR02dnZprSX159dDc4PwL3Rj4Ij7pUuRmZmpildfEWpyrZRSdq7d68pTTutPsr6uzvz3oL25J5efPFFU/rpp59WSEhIlRybzyjP566fOZUte+/evaZZrVu0aCF/f3+764WKe++99zRu3Dhr2tfXV9OmTdPw4cOr5PjlfY5JtKeKoP8EZ+M+GVXNXdsV1y5Iru2v0Qarj+o+Dkw7BP5Efwoo4upxOQCAc/n5+dlMdrFr1y679y++snRkZKRD6gXUFATQoUbp3bu3Kb1p0ya79tu2bZsp3bNnT4fVCXA3FotFvXr1sqbz8/NtzpHSbN++3ZTmXEJ1sHbtWg0ePFhZWVnWbc8884zefffdCpXDuYGazDAMHT9+3LQtKirK+n/OD8C90Y+q2Rx1r1RZZ8+etfkCuH79+qZ0586dTQ+wbN261TQjZ2mOHz+u5ORka7pBgwaKiYm5yBrDUQ4dOmRKX/i3cea9Be3J/cyfP1/r16+3pqOjo/XQQw9VybH5jKoZ3PUzh3s49/DRRx/piSeesKb9/Pw0e/Zs/fWvf62yOpR1zT2P9mQ/fldwNu6TUdXctV3xeQxX99dog9WDO4wD0w6BP9FmAdePywEAqsaF/QtJWr58uV37FRYW6vDhw6ZtTZs2dVS1gBqBADrUKNdcc40pvWDBgnL3MQxDP/74o2nb5Zdf7tB6Ae6mMufSvn37dPDgQWu6YcOGatmypcPrBlTEqlWrdM0115gG0MaPH6833nijUuVxbqCm2rRpkxITE61pX19fde7c2ZSH8wNwX/Sjai5H3ytVxpIlS0yzHbdr104RERGmPP7+/urfv781nZqaql9++aXcsr///ntTmjZafZw6dUo7duywpi0Wi/r27WvK46x7C9qTezEMQy+99JJp27PPPmt68MyZ+IyqOdzxM6d3794KDQ21ppcuXWp68OZiyoZjvPvuuxozZow1HRgYqHnz5mno0KFVWo/Fixeb0v369bPJQ3uyH/0nOBP3yXAVd2xXXLvg6v4abdD13GUcmHYI/In+FGq66jAuBwCoGtddd50pPXnyZLv227x5szIyMqzpli1bqlmzZg6tG+DpCKBDjdKjRw/Taii//vqrdu7cWeY+33//vU6dOmVNd+7c2WbpVKCmuf76603pyZMnm5aNL8lnn31mSo8YMcLh9QIqYsmSJbruuutMHYp3331X48aNq3SZnBtwdzk5OVqxYkWF93v11VdN6csvv9w0ICdxfgDujH5UzeSMe6UzZ85UKH9hYaHNjJqlPVBe/DozadKkcsv/4osvTGmuM86RkJBQ4X3eeecd00Nul156qSIjI015nHlvQXtyH9OnTzfN5B4TE6MHHnigUmXxGYWyuONnjo+Pj6699lprOjs7W1999VWZ5Z45c8b0cJqPj0+VB3PVFK+99pqefPJJazo0NFQ//vijzaB5RVX0sywuLk7ffPONaVtJf3Pak/3oP8Fe3CfDnbhju+La5Vncsb9GG3QtdxsHph0CRehPoSZzxrULAFB9DR06VLVr17am9+7dq2+//bbc/T766CNTmu/agEowgBrm9ddfNyRZf6666iojLy+vxLxpaWlG+/btTfknTZpUxTUGnKdJkyam9p2QkGD3vtdcc41p33HjxpWad8eOHUZAQIA1r8ViMXbt2uWAdwBUzsKFCw1/f39rm/Ty8jI+++wzh5TNuQF3lpycbEgy/va3vxl79uyxa59//etfpjYvyVi2bFmJeTk/APdFP6pmcda90hVXXGHcdddddn+eP/vss6Z2FBgYaMTFxZWYNyMjw4iIiDBdN5YuXVpq2V988YWp7IYNG5bapnFxxo0bZ/Tr189YsmSJUVhYWG7+hQsXGt7e3qa/z7x580rM66x7C9qTe8jPzzdatWpl+t1/9NFHlS6Pz6iaoTp+F+bM9rF27VpT3vr16xsnT54stew77rjDlH/UqFGl5kXl29OLL75o2i8iIsLYsGGDQ+oUGhpqjB8/3jhz5ky5ebOysowrrrjCVJeuXbuWmp/2ZD/6T7AH98lwBe6FuHa5WmXboLv212iDruGO48C0Q+BP9KdQEznz2gV4mgEDBpg+9x31vSrgCsXHCiIjI43Dhw+Xmn/+/PmGxWKx5g8KCjJOnz5ddRUGPAQBdKhxUlNTTV88STKuv/56Y//+/aZ8mzdvNnr16mXK17JlSyMnJ8dFNQcqLy4uzli+fLnNT1RUlM1ga/E8pQ0m/PLLL6abMUnGM888YyQnJ1vzFBYWGvPmzbM5zh133FFF7xwoWfHO9EMPPVTiOWLPT3GcG3Bn5wPozg/ODRkyxPj666+NxMREm7zbt2+3GUSTZNx8882lls/5Abgv+lE1i7PulS4sd+DAgcZHH31U4hfAO3fuNP7617/aXGNef/31Muv92muvmfKHhIQYX375pWlwPTMz03j77bcNHx8fU94vv/zSEb86lGDcuHHW33Pr1q2Nf/zjH8amTZtsHhKOj483XnjhBZu/zbXXXltq2c68t6A9VX+ff/656ffeuHHji7re8BnlWdztuzBnto+rr77alL9NmzY21+iTJ08ad999tymfn5+f3ROreDpHt6cL9/Hx8TE++uijSt1nbdmypdSy/fz8jJtvvtmYNm2akZSUZMpTUFBgLFmyxOjatatNXVatWlXm74L2ZB/6T7AH98lwJu6F/sS1yzUc3Qbdub9GG6x67joOTDsEitCfQk3kzGsX4GkIoIMnSU9PNxo3bmxq0/Xr1zfmzZtnFBQUWPOlpaUZr7/+uuHr62vK+89//tOFtQfcFwF0qJGWLFliM0ujl5eX0bRpU+PSSy81GjVqZPOlanBwsLF161ZXVx2olMmTJ9u0aXt/Jk+eXGq5L7/8sk1+f39/o23btkb37t1tvtSSZLRr185IS0urujcPlKB4Z/pifkrCuQF3dWEAXfH7pJiYGKNbt25Gjx49jMjIyBLzXXLJJUZGRkaZx+D8ANwX/aiaw1n3SqWVW6dOHaNjx45Gr169jAYNGpSY569//Wu5qzLk5+fbrKIiyahVq5bRtWtXo2PHjkZwcLDN67fffrszf5013oUPBhf/fIiNjTX69OljxMbG2jx8JMmIjY0tMZD/Qs66t6A9VW85OTk2A0qffvrpRZXJZ5RncbfvwpzZPk6ePGlER0fb7BsdHW307NnTaNWqlc3Dl5KML774oqK/do/l6PZU2bKK/wwYMMCusr28vIzo6GijW7duRvfu3Y2wsLAS833wwQfl/i5oT/aj/4TycJ8MZ+Je6E9cu1zD0W3QnftrtMGq567jwLRD4E/0p1DTOPvaBXgSAujgadatW1fifX7dunWNXr16GV26dDGtUnr+55ZbbnF11QG3xR0TaqyvvvrKCAwMtKtjUadOHePHH390dZWBSnPWQFlhYaExZswYu8vq2LGjcejQoap740ApnP3lE+cG3FV6erpRq1atSp0Lw4YNM9LT08s9BucH4N7oR9UMzrpXKukBkPJ+vLy8jKeeeso0w1pZEhMTK1T/ESNGGNnZ2c74NeIP//jHPyrVdq655hqbFXNK4sx7C9pT9fXBBx+YfvfNmjUzcnNzL6pMPqM8izt+F+bM9rFx40aboNPSfry9vY2JEyfaVW5N4U4BdF5eXhUuJyQkxJg+fbrdvw/ak/3oP6Es3CfDmbgXMuPaVfUc3Qbdvb9GG6xa7jwOTDsE/kR/CjUJAXSA/QiggyfauHGjUb9+fbs/6x9//HG7+7oAbHHHhBpt9+7dxrBhwww/P78SLzJBQUHGbbfdZpw8edLVVQUuirMGys5buHChcemll5ZaRv369Y0XX3yRAVJUG1X15RPnBtxRZmam8dVXXxkjRowwwsPDy2z/Xl5eRr9+/YxFixZV+DicH4D7oh/l+Zx1r5Senm588cUXxpAhQ8oN2A4MDDRuuukmY9u2bRWuf0FBgfHOO+8YzZs3L7X8Dh06GFOmTHHUrwxlyM/PNxYtWmTccccdpc4Gf+G9xWWXXWYsWLCgwsdx1r0F7an6yczMtJk1/csvv7zocvmM8izu+l2YM9tHSkqK8fDDD5faz/Py8jKuvPJKY+3atRUu29O5UwDdiRMnjIkTJxp9+/Y1fH19y9y/Xr16xuOPP27Ex8dX+HdCe7If/SeUhvtkOBP3Qra4dlUtR7dBT+iv0QarjruPA9MOgT/Rn0JNQQAdYD8C6OCpkpKSjLFjx5ba57VYLEa/fv2MX375xdVVBdyexTAMQ0ANl5SUpNWrV+vkyZNKTk5W3bp11ahRI/Xr10/BwcGurh7gNg4dOqTNmzfr1KlTOnfunOrXr6/mzZurT58+8vLycnX1AJfh3IC7MgxDhw8f1q5du3TixAmlpaWpoKBAderUUYMGDXTZZZcpPDz8oo7B+QG4L/pRuBgFBQXav3+/9uzZo1OnTik9PV2GYahevXpq2rSpLrvsMgUEBFz0cTZu3Ki9e/cqLi5OXl5eiomJUceOHdW+fXsHvAtUxvHjx7V7924dOXJEaWlpysnJUZ06dRQTE6O+ffsqIiLiosp35r0F7anm4DMK9nLHz5zc3Fz9+uuvOnr0qOLj4xUaGqqYmBj16tVL9evXv6iyUb1kZWVpz5492rdvn86cOaOMjAz5+fkpMjJSbdu2Vffu3WWxWC7qGLQn+9F/Qnm4T4Y7csd2xbXL/bl7f4026Hn4LAScj/4UAACoKfLz87VmzRrt3btXiYmJCgoKUkxMjPr166fo6GhXVw/wCATQAQAAAAAAAAAAAAAAAAAAAAAAAAA8Eks6AAAAAAAAAAAAAAAAAAAAAAAAAAA8EgF0AAAAAAAAAAAAAAAAAAAAAAAAAACPRAAdAAAAAAAAAAAAAAAAAAAAAAAAAMAjEUAHAAAAAAAAAAAAAAAAAAAAAAAAAPBIBNABAAAAAAAAAAAAAAAAAAAAAAAAADwSAXQAAAAAAAAAAAAAAAAAAAAAAAAAAI9EAB0AAAAAAAAAAAAAAAAAAAAAAAAAwCMRQAcAAAAAAAAAAAAAAAAAAAAAAAAA8EgE0AEAAAAAAAAAAAAAAAAAAAAAAAAAPBIBdAAAAAAAAAAAAAAAAAAAAAAAAAAAj0QAHQAAAAAAAAAAAAAAAAAAAAAAAADAIxFABwAAAAAAAAAAAAAAAAAAAAAAAADwSATQAQAAAAAAAAAAAAAAAAAAAAAAAAA8EgF0AAAAAAAAAAAAAAAAAAAAAAAAAACPRAAdAAAAAAAAAAAAAAAAAAAAAAAAAMAjEUAHAAAAAAAAAAAAAAAAAAAAAAAAAPBIBNABAAAAAAAAAAAAAAAAAAAAAAAAADwSAXQAAAAAAAAAAAAAAAAAAAAAAAAAAI9EAB0AAAAAAAAAAAAAAAAAAAAAAAAAwCMRQAcAAAAAAAAAAAAAAAAAAAAAAAAA8EgE0AEAAAAAAAAAAAAAAAAAAAAAAAAAPBIBdAAAAAAAAAAAAAAAAAAAAAAAAAAAj+Tj6goAAAAAAAAAAKrevn37tGnTJiUkJCgtLU1BQUEKDQ1Vo0aN1Lp1azVp0kReXszBBgAAAAAAAAAAAAAA3BsBdAAAoFqKj4/Xpk2bdPjwYaWlpcnb21t169ZVRESE2rVrp1atWrm6igAAAAA8nMVicWr5kydP1l133SVJGj9+vCZMmFBqXh8fH4WEhKhWrVpq2bKlOnTooOuuu05XXnmlfH197T5mUlKSPv74Y3388cc6efJkmXnDwsJ0+eWXa9CgQRo5cqTCwsLsPo4k9erVS+vWrTNte/HFF/XKK69UqBwAAAAA1cvAgQO1cuVKa/rw4cNq2rSp6yqECouPj9fatWsVFxen5ORk+fr6KjQ0VJGRkWrdurVatWolPz8/V1cTAAAAQBmKjy1dOO7kbCtWrNDll19uTd95552aMmVKlRwbAIDKIoAOAIBKaNq0qY4ePVrq6z4+PvL391dISIhiYmLUqlUrXXnllRoxYoQiIiLKLX/KlCm6++67TdsMw7joeld3OTk5+uSTTzR58mT9/vvvZeatU6eO+vfvr1tuuUVDhgxRQEBA1VQSAAAAAFwgPz9fKSkpSklJ0bFjx7Rs2TJ98MEHio6O1oQJE3TfffeVu1rcokWLdM899+jMmTN2HTMlJUVz587V3Llz9eijj+rrr7/WX//6V7v2PXr0qE3wnCTNmDGDADoAAACgDMXHoAhOq5kmTZqk//u//zNta9y4sY4cOVLpyV7y8vI0depUvf/++9qyZUuZef39/dW7d29dddVVuuWWW9SsWbMKHevZZ5/Vm2++adrWt29f/fLLLxWuNwAAAFAVynse0GKxyNvbW35+fgoJCVHdunXVtm1bXXbZZbrlllsUFRVVhbVFdZSfn2/3pJdVGewIAPhT2U9UAACASsnPz1dmZqbi4+O1ZcsWzZw5Uw888ICaNWum8ePHKz8/39VVrHamT5+u1q1b69FHHy03eE4qWjVh3rx5GjlypBo1aqRXXnlFqampzq+om2vatKksFov1BwAAAIB7O336tB544AGNGDFC586dKzXfF198oSFDhtgEz/n4+Kht27bq06eP2rVrV+oqc9nZ2Tpx4oTd9ZoxY0aJ2/fv31/ug5oAAAAA4AxTpkwxjZGMHz/e1VUqVUl9qmPHjmnt2rWVKm/v3r3q1auX7rrrLrv6ZDk5OVqxYoVefPFFtWjRQk8++WSFjjdz5kybbatXr65QvxIAAACoTgzDUH5+vrKysnTmzBnt2rVL3377rZ544gk1atRITz31lHJzc11dTQAAUAZWoAMAoAqlp6drwoQJWrVqlebOnavatWu7ukouV1hYqEcffVQffvhhia9HRkaqQYMG8vPzU3Jysg4ePKiCggJTnsTERL388stq1KgRM7MAAAAAcJjly5fblW/UqFGKj4+3pqdNm6bo6Ohy92vTpk2pr915552m/k1OTo7S09N1+PBh/frrr1q8eLGys7Otr8+bN0/Dhw/Xjz/+aDNZxs8//6z777/ftLJ5y5YtNWHCBA0fPlxBQUGm/MeOHdPs2bM1depUbdq0qdz3UZLSAujOv9a1a9dKlQsAAAAAnu706dNatWpVia/NmDFDffr0qVB5mzdv1hVXXFHiRJRNmzZVdHS0cnJydOrUKZ05c8bUd5SKHhQ+ePCg3cdbv369Dh8+bLPdMAzNmjVLjz/+eIXqDwAAAFR3eXl5evvtt7Vhwwb9/PPP8vHh8XwAAKojrtAAADhA8YcjCwoKlJmZqWPHjmnNmjWaP3++srKyrK8vX75c99xzj7799ltXVLfaKCws1M0336zZs2ebtoeEhOjxxx/XLbfcYvNAaVZWln7++Wd9/PHH+umnn2wG8QAAAADAUQYOHGhXvoCAAFO6V69eatq06UUdu2nTpqUe/6mnntKJEyd0//3364cffrBuX7x4sT788EM98sgj1m15eXl66KGHVFhYaN12zTXXaO7cuTaBc+c1btxYTzzxhJ544gnNnz9fL7zwgnbu3Gl33ffv36/Nmzdb08OGDdPChQutk6HMmDFDb7zxht3lAQAAAEBNMmvWLFMfrvhr7733nry8vOwq68yZM7r22mtNwXO1atXS888/r7vuuktRUVGm/Kmpqfruu+80a9YsLVy4sFLjcOVNqEIAHQAAANxBSc8DFhQUKD09XXFxcVq9erXmzp2rnJwca56VK1fq9ddf18svv+yKKsPFvL29S52c84033tBPP/1UxTUCABRHAB0AAA5Q1sORY8aMUXx8vG655RYtW7bMun3OnDmaP3++hg0bZrPPXXfdVSNWUnvjjTdsgueuvPJKTZkyRQ0bNixxn6CgIA0dOlRDhw7VgQMH9Oijj+r777+viuoCAAAAQLXRsGFDfffdd7r22mtNfc033nhDDz/8sPVhyiVLlmj//v3W18PCwjRt2rRSg+eKGzZsmAYNGqTHHnvMZmW70hR/WPLhhx9Wenq6tZ5HjhzRunXrdOmll9pVHgAAAADUJNOnT7f+PzQ0VL169dKSJUskSXFxcfrll180YMAAu8p65plnlJiYaE03adJEy5YtU/PmzUvMX7t2bd1+++26/fbbtW3bNj3//PNatGiR3XU/v8rcea1atVJAQIC2b98uSVq3bp2OHDly0ZPOAAAAAM5W3mSJY8aM0cGDB3X11VebVmD+9NNP9eKLL9o96QU8h8ViKXVyzClTplRpXQAAJePqDABAFYiKitLChQvVokUL0/ZPP/3URTVyvXXr1mncuHGmbUOHDtWiRYtKDZ4rrmXLllq0aJE++OAD+fgwLwAAAACAmsXHx0cffPCBadupU6dMAXUXrlAnFfW76tSpU6Hj+Pv76+OPP9ZDDz1kV/4LA+jq1q2ryy+/XDfddFOpeQAAAAAARY4fP661a9da00OGDNHtt99uynNhgF1ZUlJSNHXqVNO2yZMnlxo8V1ynTp20cOFCTZo0SYGBgXbts3r1ah0/ftyavummm+gPAgAAwGO1aNFCb731lmnbyZMnTffEAACg+iCADgCAKhIYGKi///3vpm2rVq1yUW1c7+mnn1Z+fr413aRJE/3vf/+Tv79/hct65JFH9P333ysmJsaRVQQAAACAaq99+/Zq27ataduWLVus/z927JjpNXsnLCmJr69vuXl27dqlHTt2WNM33HCDfHx8NGLECHl7e1u3z5o1S4ZhVLouAAAAAOCJZs6caeorjRw5UkOHDjWNn3377bcqKCgot6ylS5cqNzfXmm7cuLEuv/zyCtfpgQce0H//+1+78hYPjhs5ciQBdAAAAPBoV1xxhc22uLg4F9QEAACUh6VaAACoQn369DGlMzIylJaWplq1ajnleMnJyVq+fLmOHz+u7OxsRUVFqW/fvmrZsmWly9y+fbu2bNmiU6dOydfXV5GRkerevbvNA5tl2bBhg03w4H/+8x+FhIRUul5XX321XflOnz6tNWvW6PTp00pJSVFERIRiYmLUt29fhYeHV/r4VaWgoEBr1qzRnj17lJiYqNq1a6t9+/bq06ePXQ+zAgAAAPA8rVq10u7du63pU6dOWf+fk5NjypuYmOjUuhR/EPL8g5L16tXTgAEDrKvjnThxQqtXr1bfvn2dWh8AAAAAReLj47V3714dOnRISUlJysrKkp+fn4KDg9WkSRO1b99ezZo1c8ixDh06pHXr1ikuLk6FhYVq0KCB+vfvrwYNGjik/OoiMTFRq1evVlxcnJKSkhQaGqro6Gj16dOn0u/1wj5VaGiorr32WgUEBOiaa67RggULJEkJCQlatmxZuWNjVT2hSmFhoWbPnm1Nt2rVSp07d5YkdezYUdu3b5dUNOnL/v371apVq0rXBwAAAKgugoKC7Np2XlJSkvbs2aODBw8qMTFRmZmZ8vX1VXBwsBo0aKC2bduqTZs2Tqlrbm6u9u3bpwMHDujkyZNKT09XQUGBgoODVadOHcXGxqpz5852r0BdlpycHK1atUqHDx/W2bNnVadOHbVu3Vr9+vUzTbhYnvT0dOvvKz4+XhkZGfL29lZQUJDq16+v1q1bq0OHDvLyuvg1hTIzM7V8+XIdOXJEGRkZqlu3ri699FJ17NjxossGAFQPBNABAFCFateubbMtKyvLJoDuyJEjpkHKAQMGaMWKFTb73nXXXfrqq6+s6eXLl2vgwIH6/fffNW7cOH3//femVd7O69+/v/7973+rU6dOdtXbMAx99dVXmjhxovbt21dinlatWmn06NE6efKk3n//fZs6Xejf//63Kd22bVv95S9/sasulTV//ny99tpr2rhxY4mrHHh7e6t///6aMGGC+vXrV2ZZpf3ey2PPfitWrDDN/nnnnXdqypQpSk1N1TvvvKOPP/64xAdeIyMj9corr+j++++3eW3KlCm6++67S6yTxWIptb6HDx9W06ZNy3lXAAAAAFwtODjYlL4waK5evXqm1xYvXqyCgoIKDU5WxIUPe9atW9fUvxk5cqQ1gO58XgLoAAAAAOc5cOCAnnrqKWswW3nat2+vRx99VPfee2+FHz40DEOzZ8/WxIkTTatin+fl5aVrr71WH374oZo3b15qOU2bNtXRo0dN5dqjrP2Kv3behAkTNGHChBLLOz8+U5Iff/xRr776qtauXavCwsIS83Tv3l0vvviihg0bZlf9paJxmQ0bNljTQ4YMUUBAgKSiyUnOB9BJRf2p8gLoqnpClZUrV+r06dPW9IUrz910003WADqpqP4vvviiU+sDAAAAVIWTJ0+a0kFBQTYBcElJSXr44Ye1du3aEvsmxTVr1kwPPvigHnvsMfn5+V10Hd955x1NmzZN27dvN61SXZLg4GANGzZMr7zySpl9t9KcOnVKr7zyiv73v/8pPT3d5vXIyEi99NJLevjhh0t9bq2wsFD33nuvVq9erQMHDpTbL4yOjtZdd92l559/XqGhoaXmGz9+vKkPOHnyZN111106ePCgJkyYoFmzZik7O9tmv86dO+uDDz5Q//79y6wHAKD6u/hwawAAYLeUlBRT2mKxOHTVs3PnzmnMmDG65JJL9N1335UYPCdJq1atUt++ffXLL7+UW2ZSUpL69++vu+++u9TgOUnav3+/nn76aVPwXGl+/vlnU3r06NHl7lNZ6enpGjx4sIYPH64NGzaU2qEuKCjQ8uXL1b9/f40ePbrU350rzJ07Vy1bttQrr7xS6uDmmTNn9MADD+ixxx6r2soBAAAAcLmEhARTOioqyvr/nj17ml47cuSIXnjhBafU4/fff9fevXut6RtuuEE+Pn/O4XbjjTeaAvdmzZqlgoICp9QFAAAAQNH9/7x58+wKnpOknTt36v7779fVV1+tjIwMu49z+PBh9evXTyNHjiwxeE4qegDyhx9+UKdOnbRq1Sq7y65OMjIyNHToUF133XVavXp1qcFzkrRx40YNHz5cDzzwgPLy8uwqf/r06ab0hQFow4YNk7+/vzU9Z86ccsstPqHK/v37deDAAbvqUhll1X/kyJFl5gUAAADc1cKFC03pW265xSboLSkpSdOnT7creE4q6mM988wz6tGjh+Lj4y+6jnPnztWmTZvKDZ6TilZhmzp1qtq1a6e5c+fafQzDMPTvf/9bLVu21KRJk0oMnpOKnnF75JFHNGLEiFKfzyssLNSUKVO0f/9+uyZVOX36tN544w21b9/eNE5VnoKCAv3jH/9Q27Zt9fXXX5cYPCdJW7du1VVXXaVZs2bZXTYAoHoigA4AgCq0detWU7pNmzamwa6Ldcstt+ijjz6ydhwDAgLUvn17XXrppYqOjjblTU9P16hRo5ScnFxqecnJyerbt69+/fVX03Y/Pz+1a9dOffr0Udu2beXr62t3HQ8cOGAzUFveDJmVlZqaqn79+un77783bff19VXbtm3Vu3dvtWrVymYW1c8//1xDhw6tFg9yzps3TzfeeKMpcK5Jkybq3bu32rZta1P3999/XzNnzqzqagIAAABwkYKCAtMKBZLUsWNH6/+HDx9u02d78803NXz4cJs+6sW6cPU5yfywpFT08OaFq3DHx8dr5cqVDq0DAAAAgLIFBQWpffv2uuyyy9S5c2c1bNjQZtb/ZcuW6Y477rC7zEGDBmn16tXWdHBwsNq3b6+ePXvaBHFlZmZqyJAhZU7aWB2dPXtW/fv3N60CJ0lhYWHq2rWr+vTpo3bt2pkmEZGkTz/91O7JDy/sU4WGhmrQoEHWdK1atXTNNddY08nJyVq8eHGZ5RWfUMUwDD3wwAPKzMy0qz4VkZ+frzlz5ljTrVq1UpcuXazp1q1bm/qqO3fu1M6dOx1eDwAAAKAq/f7776YVzWJiYvSPf/zDrn39/PzUpk0b9enTR127dlWTJk1MkxBK0rZt23T99deXOXlHZTVq1Ejdu3dXr1691KpVK4WEhJhez8nJ0ciRI7V582a7yps+fbr+/ve/69y5c6ZjXHrppWrXrp3Ne5s7d64eeeQRu+vr4+OjVq1aqVevXurWrZuaNWtmE6h4/PhxXX311Xb3ecaOHatx48ZZJyfx9fVV69at1atXLzVu3NiUNy8vT/fcc48OHTpkd50BANUPAXQAAFSh2bNnm9J/+ctfHFr++RXumjdvri+++EIJCQnasWOHfvvtN8XFxenHH39URESENf+pU6f0ySeflFre6NGjtXv3bms6NDRU//rXv5SQkKCdO3dq9erV2rVrl9LT0/X9999r1KhRNgODxf3222+mdEhIiNq1a1eJd1u+0aNHmx4IrV27tt5//30lJCRo165dWrNmjfbt26dTp07p+eefNz1U+sMPP2j8+PFOqVdFpKamSpL8/f31+OOPa9++fTpy5IjWrFmjXbt26dixY6YBU0kaN26cKT1o0CAtX75cy5cvN61EIRUF6J1/rfhP8aBLAAAAANXP1KlTrf0GqWjA9cJJSho1aqSHHnrIZr/58+erS5cu6tq1q5599ln99NNPFVphoiQXTuYRERGhyy+/3CZP8aC64kF3AAAAABzL19dXQ4YM0ccff6w9e/YoPT1dO3bs0K+//qrff/9dx48fV0JCgl566SXTA41z5861mWCxNOdXMbjiiis0f/58JSUlaceOHVq3bp1Onz6thQsXqkGDBtb8aWlpFXpQ8mJNnz5dy5cv1zPPPGPaPnz48FLHSJ599llrPsMwdOedd5pW1+vXr59WrFihs2fPavPmzVq9erV27typlJQUffzxx6pVq5Y173/+8x/98MMPZdZx7969pjGtIUOGKCAgwJSn+Cpu5fWnOnbsqLZt25q2LVu2TJdeeql+/PFHhz6Eu3TpUtNkkMX7flLF6w8AAABUN3l5eUpKStJvv/2mRx99VL169VJSUpKkokkElyxZovr165e4r5eXl6688kq999572rp1qzIzM7V7926tXr1amzdv1pEjR5ScnKz3339fgYGB1v02btyoqVOnXnTdmzVrpqeeeko//vijUlNTdezYMW3YsEFr167Vvn37lJqaqhUrVqhTp07WffLz8/X000/bVf75fmFYWJjGjx+vgwcP6tixY/rtt9+0c+dOnTx5UqNHjzbt88knn2jNmjWllnnppZfq9ddf17p165SRkaF9+/Zp7dq12rhxow4dOqTU1FR9/fXXqlOnjnWf48eP67333rOrzueftYyKitJ7772n06dPa8+ePVq7dq2OHj2qdevWqXnz5tb8GRkZ+uc//2lX2QCAasoAAAAV1qRJE0OS9efw4cPl7rNw4ULTPn5+fsbBgwdLzHv48GFT3gEDBpSY78477zTl8/LyMl588UUjOzu71HrMnDnTtE/79u1LzDdv3jxTvvDwcGPLli3lvs/idVq+fLnp9bfeesv0eo8ePcotszKK179OnTrG1q1by9xn4cKFho+Pj+n3uXv3bpt85b3H0tiz3/Lly015JBmXXXaZceDAgVLLTU9PNyIjI037bNiwocS8xdtuQkKCXXUHAAAAULrK9BGLGzdunKmMcePGlbvP0aNHjbp165r2u//++23yZWdnG5dddplNX6P4j4+Pj9GjRw/jqaeeMn7++WcjPz/f7vqvX7/eVNZ9991XYr6EhATD29vbmi8iIsLIy8uz+zgAAACAp3NE/+K85ORkIzEx0e78EydONB37scceKzHfgAEDTPmio6ONhQsXlln27t27jeDgYNN+q1evtslX/P3by579Jk+ebMrz8MMP21X2p59+atpvzJgxRkFBQZn7bNq0yfD397fu06dPnzLzT5gwwXSMuXPn2uRJTU01lVmrVq0yxwQNwzDmzJlTah+wYcOGxv33329Mnz7diIuLK/f3UJa7777bVHZJY4p79+415YmNjb2oYwIAAACOVLxPUZGfO+64wzhz5kypZWdlZRknTpywuy7Tpk0zlT98+PAS8xUfW5o8eXKJ+cp67qy4pKQkIzo62lqmt7e3cfbsWZt8JT3jdscddxhJSUllln/vvfea9rn66qtt8hQWFlaozmvWrDGV2aVLlxLzFf99nR9XS01NLbXs4uNftWrVKrc/WJLizw2W9rcCADgXK9ABAFAFZs+erb/97W+mbePGjTPNUOIIX3zxhV555RX5+/uXmueGG25QcHCwNb17926lp6fb5Js4caIp/e9//1tdunS56Dqen3XnvAtngHGkd955x5R+7733TDPklGTw4MF67LHHrOnCwkL961//ckLt7HfllVdqxYoVatGiRal5QkJCdMMNN5i2rVu3ztlVAwAAAOBCq1atUp8+fUwz/IeFhemll16yyevv768lS5bozjvvLLPM/Px8bdiwQW+99ZauuuoqNW7cWBMnTlRWVla59Zk+fbopXXxlgfPq1q2rgQMHWtNnz57V0qVLyy0fAAAAQMWFhYUpIiLC7vwPPvigvLz+fIxk8+bNdu23ZMkSDR48uMw8bdq00cMPP2za9t///tfuurlKQUGB3njjDWu6X79++uCDD0y/p5Jccskluvvuu63pNWvW6Pjx46Xmv3A1ttDQUA0aNMgmT61atXTttdda02lpaeWubHfDDTdo7NixJb524sQJffrppxo1apTq16+v2NhYjR49WrNmzarQCuW5ubmaO3euNd2qVasSxxRjY2NNY3X79u3T77//bvdxAAAAgOrIy8tL586dM61YXVxgYKBpVe7yjBw5UnXr1rWm7e2blaas586KCw8P1y233GJNFxQUmFbLLs2IESP01VdfKTw8vMx8b7zxhoKCgqzppUuX6tSpU6Y8FoulQnXu3bu3LrnkEmt669atKigoKHe/cePG6ZNPPjGtIF5cjx491Lp1a2s6LS1Nu3fvtrtuAIDqhQA6AAAc4LffftOKFSusPz/88IP+97//ady4cbrkkkt00003mYLU7r33Xj3//PMOr0fTpk3LzePj46M2bdpY04WFhTYDdjt27DAFYMXGxurWW291SB2Tk5NN6bCwMIeUe6EjR47ol19+saZjYmJ022232bXvk08+KW9vb2t66tSpdnWonaVhw4by8fEpN1+HDh1M6aNHjzqrSgAAAACqwJEjR6x9zKVLl+q7777TV199pWeeeUY9evTQgAEDdPLkSWt+b29vTZ06VQ0bNiyxvMDAQE2ZMkWrV6/WiBEjypx45bxTp07p+eefV5cuXbRjx45S8xmGoVmzZlnTERERuvzyy0vNXzy4rnjwHQAAAADXCAsLU7169azphIQEu/YLCQmxK98dd9xhSi9evNj+yrnITz/9pEOHDlnTzz77rCwWi137Dh061JReuXJlifm2b9+uXbt2WdNDhgxRQEBAiXlvuukmU/rCwLvSvPXWW3rnnXdKLfO8/fv36/PPP9fIkSMVHR2tBx98UCdOnCi3/J9++kkpKSml1vFClak/AAAAUJ0VFhZq1qxZuvbaazVo0CC7+1Fl8fLyMgWQOaLMimjVqpUpbc/x7e0X1q1bV3/5y1+s6cLCQv38888Vq2AJLqyzYRg6e/ZsufvY86ylxHN5AOBJyn8aGwAAlKv46nKlCQgI0CuvvFLqTI9VpfhMLxcOakmy6ZSOGjXKaXWxd5CxIi4MnpOkYcOGlTsT6HnR0dHq3bu3fv31V0lSenq6tm/f7pDV95ypvL8pAAAAAPfy1Vdf6auvvrIrb926dTVjxgxdccUV5ebt06eP+vTpo4yMDC1dulTLli3TypUrtX37dhUWFpa4z/79+3XllVdq3bp1JQ4mFl9J4YYbbihzIpAbb7xRDz/8sPLz8yVJ8+bN0yeffCI/P79y6w8AAADAMbKysnT69GnFx8fr7NmzysnJUXZ2tmlSQXtWo66I9u3bq27dutaVtA8fPqzU1FTVrl3bocdxpGXLlln/b7FY1L9/f7v3Ld5/OnDgQIn5igeRlRWANmzYMPn7+ysnJ0eStGDBAmVlZZlWcCjJE088oRtuuEHvvfeepk6dWu7DpJmZmfrkk080depUffnll/rrX/9aat6K1H/kyJGmldNnzJihiRMnllkXAAAAwBWmTZum6Oho07b8/Hzl5OTo7Nmz2r17t7777jvTZBg//fSTBg4cqF9++UV16tSx6zg5OTnWvlliYqKys7OVnZ2t1NRUa55z58455k0VYxiGEhISrMfPzMxUTk6OzYp3ju4bDhw4ULNnz7amt2zZYjPhSmny8/Ot9U1ISFBWVpZycnJMk046us48lwcAnoMAOgAAqoCfn5/uvfdePf3003bPXOJMxZcdz83NNaXXrFljSvfo0cNhx66KDuXGjRtN6YoGv3Xp0sUaQCdJmzZtqvYBdOX9TQEAAAB4Hl9fX911110aN26cGjRoUKF9Q0JCNGzYMA0bNkxS0WrhK1eu1NKlSzV37lybgcYzZ85ozJgxWrhwoU1ZFXlYUioK+Bs4cKB18paUlBT99NNPGjJkSIXeAwAAAAD7nT17VnPmzNFPP/2krVu36uDBgzIMo8rrERsbaw2gk4om7OjevXuV18NeF46ZGYah0NDQSpeVlJRU4vaZM2da/x8SEqJBgwaVWkZoaKiuvfZafffdd5KKAt0WLlxos9J3SZo1a6YPPvhA7733ntasWaOff/5ZK1eu1Lp165SdnV3iPunp6Ro1apTmzp1bYp8tOzvbWhdJatmyZZljarGxserUqZO2bdsmqSiIcv369erZs2e59QcAAACqUq9evcp9zm/ixIn69NNP9fjjj1sDtnbt2qUxY8Zo6tSpJe6TkZGh7777TosWLdLvv/+uvXv3miYycSbDMPTbb79p1qxZWr9+vbZt26b09PQqOfaFYmNjTen9+/eXmjcnJ0c//vij5s+fry1btmjXrl1V/lwcz+UBgOcggA4AgCqQl5enQYMGVYvgOan8JdNPnz5tSrds2dJhxy4+u05ycrLDyj6v+LLxFf29N2nSxJQ+c+bMxVbJ6cr7mwIAAABwb97e3goODlZMTIzatGmjfv36aeTIkWrYsKFDyg8PD9fw4cM1fPhwvffee5o0aZKeeOIJ5eXlWfMsWrRI+/btMw1sFhYWmmYJlaRrr722wsefMWMGAXQAAACAE5w+fVrPPfecvvnmG+sq0K4UFRVlSl+4qkJ1dOLECYeVVdKDqZs3bzY9LDpkyBAFBASUWc7IkSNNQWszZsywK4DuPG9vb/Xr10/9+vWTVPRA6tq1a7V8+XLNnz9fW7duNeUvKCjQ/fffr/3799uMR33//fem91XehCrn638+gO58/QmgAwAAgLu6//77FRwcrNtuu826bdq0aRo3bpxat25t3ZaWlqbx48dr0qRJTltRriwzZszQiy++WOrK2FXJnn5hbm6u3nzzTb377rsuX/GN5/IAwHMQQAcAgAMcPnzYFKSVmZmp3r17a/v27ZKKZm+59dZbtWbNGnXs2NFFtfyTxWIp8/ULZ/6UbGdRuRjFO8D79u2TYRjl1qkiigflVbQTW3z2UGcE+TmaI39/AAAAAFxv3LhxGj9+vEuO7ePjozFjxkiSHnnkEdNrS5YsMQXQrVy5UnFxcRd9zO+++07Z2dnlPigKAAAAwH7r16/X4MGDbcZ9zvPx8VGjRo3UoEEDNWjQQNHR0ZoyZYpTg9qCg4NN6YyMDKcdyxFKWzWuMkpa8a/4it7Tpk3TtGnTKlTu+SC2yq6O5+/vr4EDB2rgwIGaMGGCFi9erLvvvlunTp2y5jl9+rSmTZum0aNHl1n/iRMnauLEiRU6/syZM/X2228z1gUAAAC3deutt2rcuHE6ePCgdducOXP03HPPSZIOHjyoq6++WocPHy5xfy8vLzVo0EANGza09s0WLFigo0ePXnTdCgoKdN9992nKlCml5gkLC1OTJk0UExOjmJgYxcXF6fvvv7/oY5emvH5hQkKCrrvuOm3atKnE/S0Wi6Kjo62/r/r162v16tWmiTocib4KAHgOAugAAHCC4OBgzZs3Tz169LAOrGVkZGjo0KHasGGD6tat6+Ialq34svCO7AT26NHDlE5OTtbu3bvVrl07hx2j+ABkRetfPH9JA5oAAAAA4OkeeOABvfbaa6ZVyi9cGUGyfViystLT07Vo0SKNGDHCIeUBAAAANd2ZM2d0/fXX2wTPDRgwQHfeeaf69Omjli1bytvb2/T6vHnznBpAl5uba0oXf3CyurlwVW4fHx8tWbKk0mVFR0fbbJs5c2alyzsvOztb3333nW699daLLkuSrrnmGv3www/q2rWrCgsLrdsXL15sCqDLzMzUwoULL/p4J06c0Jo1a3TZZZdddFkAAACAq/Tv398UQHd+ZeecnBwNHjzYJnjukksu0b333qu+ffuqbdu28vX1Nb2+fft2hwTQvfLKKzbBcxEREbr77rs1aNAgdevWTWFhYabXp0yZ4tQAuvL6hTfddJNN8FxsbKzuu+8+DRw4UB07drSZkPGuu+5yWgAdAMBzEEAHAICTNG/eXDNmzNCgQYOsAWlHjhzRiBEj9PPPP9t0equT4ivOOXL2zzZt2igyMlJnzpyxblu2bJlDA+jCw8NN6bS0tArtXzx/nTp1LrpOAAAAAOBufH191alTJ1MA3blz56z/z8/P17fffmtN169fX1OnTrW7/F9++UUvv/yyNT1jxgwC6AAAAAAHmTRpkhISEqzpsLAw/fe//9WQIUNcWKuiyTMuVHxMp7qpU6eOtU+Un5+vXr16OWzl7N9++01HjhxxSFnTp093WACdJHXq1Ek33HCDqc9XfEKVBQsWKCsryyHHmz59OgF0AAAAcGuRkZGm9PlJ92fMmKG9e/dat/v7++vDDz/Ufffd5/Q6ZWRk6L333jNtu/HGG/Xll1+qdu3aTj9+acrqF65atUorV660pi0Wi1555RU999xz8vLyqrI6AgA8EwF0AAA40VVXXaU33nhDTz31lHXbqlWr9PDDD+vTTz91Yc3KFhERYUofO3ZMrVq1clj5/fv31+zZs63pSZMmacyYMQ4rv/gXEhUdfCyev7wVA4uv2AcAAAAAnqL4rKMXrpiwbNky02oWw4YN08CBA+0uu0uXLvrHP/6h/Px8SdKiRYuUmZlZ7VegAAAAANzBf//7X1P6P//5j8uD5ySZVmSQpMaNG5eZv6CgwGaVvKpUr14906QiBw4cUIcOHRxSdvEVvd9//3116tTJrn0Nw9DQoUOtk2AuXrxYKSkpNn24i9GtWzdTAN2FE6pItvWfMWOGzRhdadLS0jRs2DBrevbs2Xr//fd5IBYAAABuq/iqaufvzYv3zcaNG1clwXNS0QrjF04k36FDB02bNk1+fn5VcvzSFO8XNmnSxPr/4r+v0aNH64UXXqiSejnT+bEwAIBrEUAHAICTjR07Vlu2bDHNwv/ZZ5+pY8eOeuSRR1xYs9J17NhRP/30kzW9detWXXnllQ4rf/To0aYAup07d2rRokUaPHiwQ8rv0aOHKb1x40Y98MADdu+/ZcsWU7pbt26mdPEvEYoPGAIAAABAdfHqq6/q+eefr/RDiPv27TOlO3fubP1/8Yclb7jhhgqVHRYWpoEDB+rnn3+WJGVlZWnBggUaNWpUpeoKAAAAoEh+fr4OHz5sTQcEBOjmm292YY2KZGRk6MCBA9Z0ixYtVK9ePVOeksZgQkJCqqR+JenWrZu2b99uTa9atcohAXSGYWjWrFnWdK1atfTggw9W6EHWa6+91hrglpubq7lz5+ruu+++6LqdV9aEKmlpafrxxx+t6TZt2mjkyJEVKr9bt27atGmTJOn06dNauXKlLr/88spXGAAAAHChC/tgktSgQQNJtuMsd955Z5XVqfix//a3v7k8eE6yfTavV69e1v+78vflTMVX764OfwcAqImYugkAgCrw+eefq2vXrqZtjz/+uJYsWeKiGpWteADaggULHFr+NddcYzOD5kMPPWSa8aaiNm3apOXLl0uS+vbta3pt/vz5ds/icvLkSf3222/WdEhIiOkBUUk2S9gnJCRUpsou4ePD/AkAAABATfLSSy/puuuu09mzZyu874YNG/T7779b00FBQRo0aJAkKS8vT3PnzrW+Vrt27Uo96Dh8+HBTunhQHgAAAICKS0hIUGFhoTXdqFGjarGy15w5c0z1KmkFa2eOwVRmjKR4P+fTTz91SF1+/fVXnTx50poePHhwhR+gLD6JSfH+1L///W+lpKRUuo5lTagyf/58ZWdnl1oXe5RXfwAAAMBdJCUlafHixaZtV111lSQpPj7eus3X11cxMTFVVq8Ljy1JTZs2rbJjl+XCla4tFov69+9vTVfXOl+suLg4U7r4ZDIAgKrh+m9IAQCoAQIDAzVv3jxTx6egoEA333yz9u/f78Kalewvf/mLgoODrekVK1Zo/fr15e537tw5m9l0SjN+/HhT+tixY7rttttslrO3x6xZszRgwAAdPXpUUlHHecCAAdbXExIS9Nlnn9lV1ptvvmkavB01apS8vb1NeRo1amRKb968udxyCwoKdOLECbvq4Ey1atUypVk9DwAAAPB8ixcvVuvWrfX222/b3Qc4efKkbrnlFtO2hx9+WEFBQZKkn376ScnJydbXBg8eLF9f3wrXbfjw4bJYLNb0Dz/8cFGTqwAAAACQwsPDTen4+HjT2EdpMjIybGbFd5S8vDy9/fbbpm3333+/Tb7KjMGcPXtWGRkZ5earzBjJsGHDTEF9W7durVQQ3YEDB3TmzBlrevr06abXi08uYo/i/bClS5cqMTHRmv7222/VrVs3bd26tcJlp6en29TxxhtvtP7fEfUvvs+3335r94SYAAAAQHWRn5+ve+65x9SXioyM1DXXXCPJ3D/Ly8sz3bOXJi8vzzQGU1nF+4anTp2ya7/iQWyONH36dB06dMiaHjRokBo3bmxNV6bOhmGY+lvVTU5OjrZt22ba1rp1axfVBgBqNgLoAACoIo0bN9bMmTNNs1smJydryJAhSk1NdWHNbIWEhNg8KDlq1CgdOXKkxPyGYWjhwoW65JJLtGrVKruOccMNN+i+++4zbVuwYIGuv/56mxlXSnP8+HHdcsstGjlypDIzM02vPfHEE6b0s88+q40bN5ZZ3rx58/Sf//zHmrZYLHrsscds8vXp08eUnjFjRpkDs4cPH9YVV1yhpUuXlnn8qtC8eXNTevXq1S6qCQAAAICqdPbsWT311FNq0aKFnn/+eW3cuLHEB2jj4uL0zjvvqFOnTjpw4IB1e+PGjfXcc89Z08VXBqjMw5KS1KBBA3Xv3t2azsnJ0bx58ypVFgAAAIAiAQEBat++vTWdlpamOXPmlLnP77//rh49ejh0xbfzDMPQo48+qu3bt1u39evXTz179rTJW3wM5osvviiz7BUrVqhr1652rbpdfIxkzZo1MgyjzH1q166tRx55xLTt73//u2bNmlXu8RbgbFAAAQAASURBVKSiIL1//vOf6tKli44dOyapaNLFC1dc8Pf313XXXWdXeRcKCwszreKXn59vKleSDh06pB49eujhhx+2e/wtNzdXt99+u06fPm3d1rNnT+uxkpOTtWTJEutrDRo0UI8ePSpc//bt26tVq1bWdGJiYrUYSwMAAADstX//fg0aNEjz5883bX/nnXesk11cOAYiSVOmTCmzzEOHDmnAgAE2AVeVUfzY33zzTZmTVuTm5uqll14yjQc50s6dO236V2PHjjWlK/r7OnPmjIYNG6YffvjBIXV0hg8//NAUYNmuXTtT0CAAoOoQQAcAQBUaOHCg3nnnHdO2vXv36uabb1ZBQYGLalWy1157TREREdb04cOH1bFjRz388MOaOXOmlixZomnTpmns2LFq06aNhgwZoj179lToGB988IFNp3fJkiVq3bq1JkyYoH379tnsc+7cOS1ZskR33323WrZsqWnTppVY9tChQzVixAhrOi0tTZdffrneeecdpaSkmPKePn1azz33nEaOHGn6Ozz99NOmAebzunXrZpoFJiEhQTfffLPNoPL+/fs1duxYtW3b1u7AQme7cMl7qeg9Fp+9NScnRwsWLGDVBwAAAMADxcXFaeLEierRo4dCQkLUqVMn9evXT927d1fDhg0VExOjsWPHKikpybpPRESEvv/+e+usn9nZ2abB4Mo+7HneDTfcYEoXD84DAAAAarLffvtNK1asqNDPjh07bCZKvO+++zR9+nSb8ajt27froYceUvfu3Ss8znPeoEGD9MEHH5gCrs7bsmWL/vKXv+jjjz+2bgsMDNTnn39eYlkjR440TUb5ww8/6KWXXlJOTo4p36+//qq//vWvuvzyy3X8+HG76tmuXTvT2NeePXs0duxYZWdnm/IdPHhQK1assKaff/55de3a1ZrOycnRzTffrJtvvlnr1q2zmZyksLBQv/76qx577DE1adJEzzzzjGkiyBUrVphWdLjyyisVGhpq13sorvhkJiX1p/Ly8vSf//xHLVq00L333qvFixeXuPpeRkaGpk2bpq5du5r6fH5+fnr//fet6Tlz5igvL8+aHjZsmGllcUfXHwAAAHCF4n2xZcuWadGiRfrmm2/02muv6eqrr1a7du1sJoG45557dNttt1nTxftmL7zwgj766CObPs7Bgwf13HPPqX379lq7dq1D3sOgQYNUp04da3rr1q266aabbPpQmZmZ+vrrr9WxY0e9+uqr5U40UpJp06bpjjvu0IoVK2z6nenp6frwww/Vt29f0wp899xzj6644gpT3uK/r48++kjjx49Xenq6aXtcXJzeeOMNtW7dWgsWLKhwfR3l8ccf1//+978SJ6NJSEjQuHHj9PTTT5u2F08DAKqOT/lZAACAI/3973/Xli1bTLOj/PTTTxo7dqzee+8911WsmHr16mnq1KkaNmyYdeAwIyND//nPf0yrtF3I29tbUVFRpqXTz8+mU5LAwECtWLFCo0aN0sKFC63b09PTNX78eI0fP15RUVFq2LChfHx8lJycrIMHD9odbPjpp59q79692rFjh7X+Y8eO1XPPPadWrVopLCxMZ8+e1f79+20GN6+++mq9+uqrJZZrsVj0j3/8QzfffLN12/fff6/69eurTZs2qlWrlk6ePGmdSfS82rVru3y1wdtvv10vvvii9UuF48ePq1u3bmrWrJnq16+vc+fOaffu3crOztbhw4dVq1Ytl9YXAAAAwMV5+eWX9fnnn5v6aeedO3fOtAJESfr06aPp06erUaNG1m0//PCDaaDyqquuUkhISKXrOHz4cD3//PPW9JIlS5SUlGQa1AUAAABqqr/97W8V3mfYsGH65ptvNGnSJOuDkampqfrb3/6m//u//1NsbKwMw9Dx48dNQW8BAQGSZBNQVp69e/fq0Ucf1aOPPqrGjRurfv36korGIIr3Rby8vPTpp58qNja2xLIaN26s0aNHmwLuXn31Vb333nuKjY2Vr6+vDh06ZHro0t56e3l56cEHH9Rrr71m3fbuu+9q0qRJatOmjQICAnT8+HEdP35cd955p3XFtcDAQM2dO1eXX365Dh8+LKloVb2ZM2dq5syZql27tpo0aaLQ0FClp6frwIEDptUFiiseJFZ8UpGKGD58uMaMGWN9wHXlypU6ffq0oqOjbfKeO3dOX375pb788kv5+PioefPmqlu3rgoKCnT27FkdOnTIZrzM29tbX375pXr16uWU+t9www166623rOm5c+dq0qRJ8vPzq3SZAAAAgCNUtC9msVj0+OOP6+233zZtHzVqlN59911t2rRJUtEqb2PGjNEzzzyjNm3ayMfHRydPntSJEyes+3h5eSk4ONgmaKyiQkJC9PLLL+uxxx6zbps3b57mz5+v2NhY1a1bV4mJiTp69KipPxUWFmYzQX15cnNz9fXXX+vrr79WYGCgWrVqpdDQUKWmpmrfvn3Kzc015e/Ro0eJz0r26dNHw4cP17x586zbJkyYoDfeeENt27ZVYGCg4uLidOzYMVP/xVXP5c2dO1f/+te/JElNmzZV/fr1VVBQoMTERB0+fNgmGHHw4MG6/fbbq7yeAIAirEAHAIALTJo0ST179jRt+9e//qUvv/zSRTUq2TXXXKMffvhBTZs2LTdv+/bt9euvv+rqq682ba9du3aZ+wUHB2vevHn65z//aV3N4ELx8fHatGmT1q1bp3379pUYPNe4cWO99dZbuvHGG03b69Spo1WrVlkHOM/Ly8vTrl27tGbNGu3du9dmMPCuu+7SokWLTDOcFjdy5Eg9+uijpm0FBQXauXOn1q5dawqeq1evnubOnWszi6YrhIeH67PPPpOXl/k28PDhw1qzZo22bNlS4YFxAAAAANXXhAkTdPToUX3//fe67777FBMTU+4+FotFPXr00MyZM/Xrr7+aguck24clL7av07ZtW9Mq33l5eZozZ85FlQkAAADUdCEhIZo3b55pxTVJSklJ0fr167VhwwZT8FzXrl21YcMGRUVFXdRxjx07pnXr1mndunU2wXOBgYH673//a1qNoSTvvPOOKWBLKloRYcuWLVq/fr0peK5Lly7auHGj3fV+4YUX1L17d9O2rKwsbd68WWvWrCl1NbsmTZpo06ZNuv76621eS01N1bZt27R69Wpt27atxOC5mJgYhYeHKz8/39Tf8fLy0tChQ+2qe0liYmLUo0cPa7qwsFCzZ8+WJD300EPq0qVLifvl5+dr3759WrNmjdatW6cDBw7YjJc1aNBAy5Yt06233mrdlpCQoGXLllnTYWFhGjBgQKXr36tXL1OwX0pKihYvXlzp8gAAAABX6Natm1auXKl33nnHZnVmLy8vffvttzbP32VmZlqfibsweK5FixZavny5LrnkEofU7dFHH9U999xj2mYYhvbu3avVq1dr79691mfF/P39NWHCBJsgwIo6d+6ctY+0Y8cOm+C5/v37a8mSJaVO7D558mTTKuBS0Urgv//+u9auXasjR45Y+y9RUVH69ttvq8VzeUeOHNHatWu1fv16HTp0yCZ47oYbbtDMmTNtntsDAFQdPoEBAHABf39/zZkzx2b2x//7v//Tr7/+6qJalWzgwIHauXOn/vOf/+iqq65STEyMfH19Vbt2bbVs2VK33nqrZs2apW3btqlXr142AW5hYWHlHsPb21tPPfWUDh06pAkTJqhr1642XyYU17BhQ919991atGiRDh06pLFjx5bYqQ4PD9fy5cs1bdq0UgcJz9dh4MCBWrFihSZPnlzmynnn/etf/9Lnn39e6gOo4eHhev7557V///5q0Uk/7+abb9ZPP/2k9u3bl5rH19e3zABCAAAAAH86cuSIDMOw/tgzCUlx48ePN5Uxfvx4h9XPx8dH1113nT777DOdPHlS8fHxWrx4sSZPnqwPPvhAr732mt544w19+umnWrBggRISErR+/XrddNNNJfbNpk+fbqrrfffdd9F13LNnj8PLBAAAAGq6Sy65RJs3b9aNN95Y6rhL+/btNWnSJG3cuFEdOnSo8DECAgK0efNm3XnnnQoMDCwxj4+Pj4YNG6bt27ebgrFKExgYqOXLl2vs2LGlltmiRQt9/vnn2rhxY5njHSWVvWLFCj300EPy9/cvNV9QUJDNtvDwcC1YsECrVq3S0KFDS8xTPP/tt9+u77//XseOHVOLFi30888/6+zZs9Y8vXv3VmRkpN31L0nxFeCmT58uqWgyyC1btmjjxo169tln1a5du3LH36SiVRP++c9/au/everfv7/ptW+//dY0Fjh48GC7xtRKY7FYNGzYsBLrDwAAAFQ33t7eCg0NVbNmzXTllVfqmWee0YYNG7Rx40b169ev1P3OT8hx7733lvo8VtOmTfXGG29ox44dNvfhF+uLL77QZ599Zl0tvLjAwEDddttt2r59u15++WV5e3tX+BjPP/+8PvnkkzL7lY0bN9aHH36o5cuXlzkpf1hYmFavXq2nnnqq1D5hVFSUnnvuOe3du9dm0v2qZE8wXPfu3TVjxgzNmTOn3H4kAMC5LEbx8GYAAICLMHjwYH3//feSpFq1aik5OblSs6bEx8dr8+bNio+PV0JCgnJychQUFKQGDRqoW7duatmyZaXqd+LECa1du1bx8fFKS0tTeHi4GjRooL59+6pOnTqVKjMvL0+//fabtm3bptTUVEVERKhVq1bq379/tQ5CMwxDW7du1YYNG5SYmCg/Pz/VrVtXrVu3VteuXcscOAYAAAAAAAAAAO7jxIkTWr58uU6cOCGLxaKIiAh169bNYasaSFJGRobWrVunvXv3KiUlRcHBwWrYsKEGDBigunXrVqrMtLQ0rVq1SgcOHFB2draioqLUtWvXMidNtFdycrJWrVqlQ4cOKSsrS+Hh4YqJiVG3bt1sVuIuSV5enjZu3KgDBw4oKSlJaWlp8vf3V/369XXJJZfYHbBWlTIyMrR9+3YdPHhQaWlpSk9PV0FBgcLDw1W3bl11795dzZo1c3U1AQAAAI+VmJiopUuX6ujRo8rPz1d4eLg6deqkPn36OL3/kJ+fr19++UXbt29XWlqagoKC1KxZM11xxRVlBrRV1N69e7Vx40adPn1aOTk5io6OVrt27XTppZdW+D2mpaVp6dKlOnjwoHJyclS7dm21bdtWAwYMqBbP5eXk5Gjfvn06cuSI4uLilJycrLy8PNWqVUsxMTHq3bu3GjRo4OpqAgD+QAAdAABwmMLCQjVs2FBxcXGSpCuuuEJLly51ca0AAAAAAAAAAAAAAAAAAAAAADVVxZeDAQAAKMXs2bOtwXOSNHToUBfWBgAAAAAAAAAAAAAAAAAAAABQ07ECHQAAKNXUqVPVuHFj9erVq9wlzxcvXqxRo0YpOTlZkhQaGqoTJ06oVq1aVVFVAAAAAAAAAAAAAAAAAAAAAABslP0kPAAAqNGmTp2qRYsWKSQkRL1791bXrl3Vpk0b1a1bV4GBgUpNTdWePXv0ww8/aPXq1aZ93333XYLnAAAAAAAAAAAAAAAAAAAAAAAuRQAdAAAoV0ZGhpYsWaIlS5bYlf/xxx/Xfffd5+RaAQAAAAAAAAAAAAAAAAAAAABQNi9XVwAAAHiORo0a6ZtvvtG7777r6qoAAAAAAAAAAAAAAAAAAAAAACCLYRiGqysBAACqp5MnT2rt2rXauHGjtmzZori4OCUlJens2bOSpLCwMNWvX1+XXnqprrzySg0fPlw+PixwCwAAAAAAAAAAAAAAAAAAAACoHgigAwAAAAAAAAAAAAAAAAAAAAAAAAB4JC9XVwAAAAAAAAAAAAAAAAAAAAAAAAAAAGcggA4AAAAAAAAAAAAAAAAAAAAAAAAA4JEIoAMAAAAAAAAAAAAAAAAAAAAAAAAAeCQC6AAAAAAAAAAAAAAAAAAAAAAAAAAAHokAOgAAAAAAAAAAAAAAAAAAAAAAAACARyKADgAAAAAAAAAAAAAAAAAAAAAAAADgkQigAwAAAAAAAAAAAAAAAAAAAAAAAAB4JALoAAAAAAAAAAAAAAAAAAAAAAAAAAAeiQA6AAAAAAAAAAAAAAAAAAAAAAAAAIBHIoAOAAAAAAAAAAAAAAAAAAAAAAAAAOCRCKADAAAAAAAAAAAAAAAAAAAAAAAAAHgkAugAAAAAAAAAAAAAAAAAAAAAAAAAAB6JADoAAAAAAAAAAAAAAAAAAAAAAAAAgEcigA4AAAAAAAAAAAAAAAAAAAAAAAAA4JEIoAMAAAAAAAAAAAAAAAAAAAAAAAAAeCQC6AAAAAAAAAAAAAAAAAAAAAAAAAAAHokAOgAAAAAAAAAAAAAAAAAAAAAAAACARyKADgAAAAAAAAAAAAAAAAAAAAAAAADgkQigAwAAAAAAAAAAAAAAAAAAAAAAAAB4JALoAAAAAAAAAAAAAAAAAAAAAAAAAAAeiQA6AAAAAAAAAAAAAAAAAAAAAAAAAIBHIoAOAAAAAAAAAAAAAAAAAAAAAAAAAOCRCKADAAAAAAAAAAAAAAAAAAAAAAAAAHgkAugAAAAAAAAAAAAAAAAAAAAAAAAAAB6JADoAAAAAAAAAAAAAAAAAAAAAAAAAgEcigA4AAAAAAAAAAAAAAAAAAAAAAAAA4JEIoAMAAAAAAAAAAAAAAAAAAAAAAAAAeCQC6AAAAAAAAAAAAAAAAAAAAAAAAAAAHokAOgAAAAAAAAAAAAAAAAAAAAAAAACARyKADgAAAAAAAAAAAAAAAAAAAAAAAADgkQigAwAAAAAAAAAAAAAAAAAAAAAAAAB4JALoAAAAAAAAAAAAAAAAAAAAAAAAAAAeiQA6AAAAAAAAAAAAAAAAAAAAAAAAAIBHIoAOAAAAAAAAAAAAAAAAAAAAAAAAAOCRCKADAAAAAAAAAAAAAAAAAAAAAAAAAHgkAugAAAAAAAAAAAAAAAAAAAAAAAAAAB6JADoAAAAAAAAAAAAAAAAAAAAAAAAAgEcigA4AAAAAAAAAAAAAAAAAAAAAAAAA4JEIoAMAAAAAAAAAAAAAAAAAAAAAAAAAeCQC6AAAAAAAAAAAAAAAAAAAAAAAAAAAHokAOgAAAAAAAAAAAAAAAAAAAAAAAACARyKADgAAAAAAAAAAAAAAAAAAAAAAAADgkXxcXQHUXCkpKVq5cqU13ahRI/n7+7uwRgAAAADcTU5Ojo4fP25NDxgwQGFhYa6rEAAAAAAAAAAAAAAAAAAAqFYIoIPLrFy5UsOHD3d1NQAAAAB4kHnz5mnYsGGurgYAAAAAAAAAAAAAAAAAAKgmvFxdAQAAAAAAAAAAAAAAAAAAAAAAAAAAnIEAOgAAAAAAAAAAAAAAAAAAAAAAAACAR/JxdQVQczVq1MiUnjdvnlq2bOmi2gAAAABwRwcOHNDw4cOt6eL9DAAAAAAAAAAAAAAAAAAAULMRQAeX8ff3N6Vbtmyp9u3bu6g2AAAAADxB8X4GAAAAAAAAAAAAAAAAAACo2bxcXQEAAAAAAAAAAAAAAAAAAAAAAAAAAJyBADoAAAAAAAAAAAAAAAAAAAAAAAAAgEcigA4AAAAAAAAAAAAAAAAAAAAAAAAA4JF8XF0BoLoqMPKVrENKV5wKlCtv+SlU9RWu5vK2cOoAAAAAAAAAAAAAAAAAAAAAAAAA1R1RQMAFDhw4IMMwFNIyU3HG7ypQrun1RO3VMa1RfXVRtDrLYrG4qKZAkQMHDkiSWrZs6eKaAPaj3cLd0Gbhjmi3AAAAAAAAAAAAAAAAAAAARQigAy6wePFi5SpTl7WoLUnK0zllKcG6Al2wIiVJJ4z1yrakqKkxgCA6uNTixYsl8XA83AvtFu6GNgt3RLsFAAAAAAAAAAAAAAAAAAAoQgAdcIF8ZavAyJWhQp3VAWUa8TJkWF9P0VEFW6IUoZZKNPYpwBKm+uriugoDAAAAAAAAAAAAAAAAAAAAAAAAKBUBdMAfCox85RnZkqSzOqAM47QkKVDh8lOocpWuLCXprLFfaTqhUEu0ko3D8jb8FGGJlbeF0wkAAAAAAAAAAAAAAAAAAAAAAACoToj4AVQUPHfIWKoCZcuQoXhjm3wUoAbqoRBLlCRDqTqhNCNOGTotiyySIXnJRzv1rWqrkeqri6LVWRaLxdVvBwAAAAAAAAAAAAAAAAAAAAAAAIAIoEMNZxiGTmur4ozfFa8dKpSfClWgbKXKT3lK0kEVGDnKVZYydUa+CpC3/JStZKXoqAIVrkwlKERROmGsV7YlRU2NAQTRAQAAAAAAAAAAAAAAAAAAAAAAANUAAXSosQzD0GGt0FljvyQpz8hSobxVqALlKlP+qqVC5euUtqhAuQpWPWUqUdlKVq4yZahQxh+5veWnCLVUorFPAZYw1VcX1745AAAAAAAAAAAAAAAAAAAAAAAAAATQoeY6ra06a+yXoUKd1QEl6YAK1UlSofKUqVQdl2RYg+VylCGpUAXKk7f8FKBw+chPkkUZxmlZLFKEYnXa2KpIdZC3hdMLAAAAAAAAAAAAAAAAAAAAAAAAcCUifFAjFRj5ijN+lySd1QGlG6dUqAJJhgzpj6C5dOUpS97ylb/ClKMU+SpEvgqUjwJUW43kJR8FK1KZOqMMI161LY0lSck6pLqKddn7AwAAAAAAAAAAAAAAAAAAAAAAACBZDMMwXF0J1Ew7d+5Uhw4drOkdO3aoffv2VXLsRGOfDhsrlGtk6ZCWKEtJ+n/2/jxIrvu+737fv3N6nX0wg1m4gCAIQRIJCZBlyXZsi7aTyLETJ3GeJEoc26k4lmwrf9h/pOKy45s/bpJyxXnsLM7VTSWxZGW1k7opL3lsRfIjU3ZE56FkiZBISgRBcAM4C2bQs3ZPL+f87h/d08QAIIllMEMA79cU2NOnz/md7zndMyxU4VOfhCIrvEhGiw5bZLTIaRNIKVAhkFBmhCGmqTDKIFMkFLmP93OBZ2hQYzwcZpRDTIa382B4dE+uRZIkSbqb7effKyRJkiRJkiRJkiRJkiRJ0lufDXS6K60zR4yRV/kiG1ygwUU2WaLNBpHssr0zMtpAIKNDlQMUKJOTUWaEi+F56vECm1ykECsMh3vJaO3HZUmSJEmSJEmSJEmSJEmSJEmSJEm6hAE63ZUyWqxxjjXmWORrdNgEXq+MMfb+BCIdtqj1AnKBUe6nGsdZZ4E2ddZ5lXOxQ0qRSCSEsGfXJEmSJEmSJEmSJEmSJEmSJEmSJGmnZL8HkPZDiAk1XmSOL9Fhg9cPz12qG5/bZJE2m5QYYJNFFnmajV6ArkiVnA7rcY4X+RwxXsu6kiRJkiRJkiRJkiRJkiRJkiRJkm4FG+h0V8rpcI4naLJ2nUdG2jTZ5AItGkAkkpFSosIoa5ynwjhVDrAUT1MJY8xy8hZcgSRJkiRJkiRJkiRJkiRJkiRJkqQ3YwOd7krt2GSVl4H8Bo7OyWjRYo2MLRIKFKgwyBSRSCCwEl4AYD6eIoudXZ1dkiRJkiRJkiRJkiRJkiRJkiRJ0rUxQKe70jP8d3LaN3h0JAKBQIEKw9zDIAepMMo076LCOBtxgQ5bdGhS4+xuji5JkiRJkiRJkiRJkiRJkiRJkiTpGhX2ewBpPyzwFSLZTawQSSlTZICMFgUqVBjjXt7HIk/RoMYmi4xyiHXmmOTYda2exQ41zrLOHBktUkoMM8s4R0iDP7aSJEmSJEmSJEmSJEmSJEmSJEnStTCJo7vSFrWbOj6SkVKhQJUqY4zyAFUOEEKgFIdpUCOjBdB/vKZ1Y2SeU8zFJ684bolneZnHmeUkM5wghHBT1yBJkiRJkiRJkiRJkiRJkiRJkiTd6QzQ6a7UuY5Q29VF2mwyyCQlhggEkt6PU4t1AFJKOx7fdMUYeYHHWI7PAdCmQZ0L/Qa6QaYAOBefYCuscDg+aohOkiRJkiRJkiRJkiRJkiRJkiRJegMG6HRXarJ602u0WKfORYpUCSRMcIx6XKJBjUDoB96Gmb2m9eY5xXJ8jkjOMmfYjAtEYv/1FV5iMEwzwVGW4mkqYYxZTt70dUiSJEmSJEmSJEmSJEmSJEmSJEl3KgN0uiu1b7qBDiDS4CKByCYX6NBikIMkpAyFaQpUKFBmnCNvulIWO8zFJwFY5gwbcR6AKuOUGKbFOg1qbMR5QoAJjjEfTzHFcdLgj7EkSZIkSZIkSZIkSZIkSZIkSZJ0NSZvdJdq78oqGQ0aRIoMsMhTlBhkmncxGg9DgJlw4poCbjXOktGiTYPNuADAFA8zECb7+9TjEos8w0ZcYDQc6h83ybFduRZJkiRJkiRJkiRJkiRJkiRJkiTpTpPs9wDS7a5Di4w2gUAkZ51XOc3/gBiYju++pjXWmQOgzgUikSrjO8JzAANhkirjRCKbLO44TpIkSZIkSZIkSZIkSZIkSZIkSdKVDNBJNy2nRYMWmzRZp80WgZRVXuKl8AfEGN90hYzWjscSw1fdb3v75ftLkiRJkiRJkiRJkiRJkiRJkiRJupIBOmlXdOjQJKNDk1Uy2qzyCovxa8xz6k2PTinteGyxftX9trdfvr8kSZIkSZIkSZIkSZIkSZIkSZKkKxX2ewDprSQ8/xAA8aHnr/vYnBYtOuS0CBTZ4iKVOEYhlplKjpOG1/9xG2aWJZ5lgIOs8BINatTjEgNhsr9PPS7RoEYgMMhU/zjd3c6cOQPA0aNH93kS6dr5udXtxs+sbkd+biVJkiRJkiRJkiRJkiRJkroM0EmXSD7z3QBkD33sBlfI6bDFKi9SZ4ACA2yxykCc4B38eUIIVz1qnCO8zOMADIZpNuI8izxDNY5TYpgW6zSoATAUpilQoUCZcY7c4Jy6U3z6058G/Mfxur34udXtxs+sbkd+biVJkiRJkiRJkiRJkiRJkrqS/R5AuvNEIhktNniVP2aNeV6If8CLfI4Y41WPSEOB2XASgAmOMhxmCAQa1Fjl5X7z3HCY4QDdfwQ9E068YaudJEmSJEmSJEmSJEmSJEmSJEmSdLczfaO7VAHo3OJzRDrUeZnP0WSFUj7IcjjDGA+QUmKYWcY50g/BzXCCrbDCUjzNBMcYDYfYZJGMFiklBpmiQAWAyXCMGU7c4vklSZIkSZIkSZIkSZIkSZIkSZKk25sBOt2VEkrktzxA19Vhi3m+wiYXmIqP8Lb4Z0hDgUWeocl/ZyBOMsohCqHMUJylxBALPAXAKId2rFWgzEw4wQwnCCHsyfySJEmSJEmSJEmSJEmSJEmSJEnS7coAne5KKQXyPTxfRpM6F5jnSXLajMR7aLNFoBuCG2KaiXiMpfAsKSWmOE6ZYTbCfL+B7vLGOkmSJEmSJEmSJEmSJEmSJEmSJElvzCSOrlCr1fj85z/P+fPnuXjxIlNTU9x33318+7d/OwMDA/s93q5ISPf4jDltNsnocJ4nWGacQSYoMECRKnUu0GSVad4NwBxfYjIc4zCP2jQnSZIkSZIkSZIkSZIkSZIkSZIk3SADdOp79tln+emf/ml+93d/l1ardcXrQ0ND/OW//Jf5+Z//eWZmZvZhwt3TYWvPzxnJyWjQIpKT02KTAmWKVCkzwhbrtGODoTDLBEdZiqephDFmObnns0qSJEmSJEmSJEmSJEmSJEmSJEl3gmS/B9Bbwyc/+Une85738Ju/+ZtXDc8BbGxs8Ku/+qucOHGC3//939/jCXdXxtWvcW/O3aTNJlus0mSFNg1KDFOkTJN1NuI8FzkDwHw8RRY7+zarJEmSJEmSJEmSJEmSJEmSJEmSdDsLMca430Nof33qU5/iz/25P0eWZf1tSZJw6NAhpqenOX/+POfOndtxzMjICE888QRvf/vbb/i8Tz/9NMePH+8/f+qpp3jkkUdueL3r8f/KCkD2pvvdWgkFKgxxkEGmOcBRSgzQpkEgMMs3sMUqJQYJoZt1HWKae/gGJsIxAGqcZZ05MlqklBhmlnGOkAbLJSVJknR32M+/V0iSJEmSJEmSJEmSJEmSpLc+UzZ3uQsXLvDX//pf3xGe+57v+R7++T//5xw7dqy/7Y//+I/56Ec/yhNPPAHA2toaf/Wv/lWefPJJQgh7PvedIafDFpssU2CALWoMcpCUMhc5y1f4z7SpU6BMNU5SoAzAKf4jSSwywATjHGEwHCQhBWCJZ3mZx5nlJDOcIIRAFjsG7SRJkiRJkiRJkiRJkiRJkiRJknRXMj1zl/un//SfsrKy0n/+J//kn+Q3f/M3KRaLO/Z773vfy2c+8xm++Zu/ma997WsAfOUrX+E3fuM3+P7v//69HHlXBBLivjfQAeS02aTBMillDnCUizzPPKeASEqJJutssEiHJikFIBCJpBSp8GUG4jgjHGKM+xkK0wCci0/QoEYljjHPKTJa5GTUWWKLVSIdClS4P34Lb+N7KSTFq053afiuHRvUWQJggEmKoWoQT5IkSZIkSZIkSZIkSZIkSZIkSW9ppl7uYu12m1/5lV/pP0+ShH/5L//lFeG5bSMjI/zCL/wC3/d939ff9ou/+Iu3ZYCuQIU27f0eoyfSZJ3AAs/zGbZYJaMJQJN1cjoEkt5+GZGchAKBlCar1LnACq9wkYMciEcZCjMciA/xLP+DYhhglPu4GJ/nAl+jQ4uElDIjJBRY5b/xEp/nUPYnqIQx8tAmpcRQnKHJOos8RUaTVc6xGl8hpwNAQoHReD8j3Ech7Gy8kyRJkiRJkiRJkiRJkiRJkiRJkt4qDNDdxR577DEuXrzYf/6t3/qtPPzww294zJ/9s3+W2dlZ5ubmAPijP/ojlpeXmZiYuKWz7raUwlsmPgeQ0aLFJhltOjT6QbVIDgQgJ5KR91rzMloEAjkpEKgwRoMaFzkDETZZ7AbtYsoFvs4arxCJ5GRkbBGJlBiizCgXeZ5FnuYg72AyHiNG+Dq/RZ1lRrmPBjVqvEBORiQSgEBgk0W2WGEqHuccT7AVVjgcHzVEJ0mSJEmSJEmSJEmSJEmSJEmSpLcMA3R3sc9+9rM7nn/v937vmx4TQuB7vud7+PjHPw5Anud85jOf4a/9tb92S2a8VQpUgdp+j9EXyWixSUKj9zwHIJBQZIAOW8TeK68dE4GEjBZbrDLKfXRoUecCTdYZ5RAXOUObBgUqZLTIafdCek3qLBMIVBgn0mEx5tRZIqVIkw0SUp7n92iySokRmqzTYQuAAmXKjNDgIluscog/wVI8TSWMMcvJPb13kiRJkiRJkiRJkiRJkiRJkiRJ0utJ9nsA7Z8vfvGLO56fOHHimo67fL/Pf/7zuzbTXikzvN8jXEVGTofYa3rrtr0ldGj0t3Xb6HaK5LTYYItVUoqss0hORp1lNrlARpuEEikligwywj0MMEE3ttemzjKrnGOdV1niNAs8zQovcoFn2WCRNltssUogkFIkpUggJaNFJLLMGZbjaQDm4ymy2Nnb2yZJkiRJkiRJkiRJkiRJkiRJkiS9Dhvo7mJPP/30jufHjh27puPe/va373j+3HPP7dpMe2WIaZZ5dr/HuIrY65jrBuVyMgKBnAx6rXSvCb39I5EOTdYoM9xricvJaBLJSUiJtAEYYoZIzgYXSCnSoUWkRUoJgIRir6muwwYLRDpUmaRDnQojDHMPAOvMEQgMMMkmF7jI84xxGIAaZ5nk2j5Lt0IWO9Q4yzpzZL1rG2aWcY6QBn/lSZIkSZIkSZIkSZIkSZIkSZIk3U1Mk9ylWq0W8/PzO7bNzMxc07HT09M7nj///PO7NtdemeE9vMQf7PcYryP2/nTb5eIb7teN0eVkZDTp0CCjSeh9dffa/srZ5AItNmizSUaHnDaRnECBSEaBMgUq5LRY53wvzpcRyYFAiSEAigzQpk6TdTJarPIK5+IXmAzHWI3nmAx7H6CLMTLPKebik2S0dry2xLO8zOPMcpIZThDClU1+kiRJkiRJkiRJkiRJkiRJkiRJuvMYoLtLLSwsEONr0axiscjg4OA1HTs5Obnj+csvv7yrs+2FYabffKfbQCQnJ5CQktGhwSoJCRApUKVNHchpskYgpURChyYZTdrUew11BRISmmyQsEyVcVLKJKTk5LTZuuK8GS02WaJIGUjI6bDJIsRIkzUG4oE9DarFGHmBx1iO3TbENg3qXOg30A0yBcC5+ARbYYXD8VFDdJIkSZIkSZIkSZIkSZIkSZIkSXcBA3R3qVqttuP5yMjINR97+b6tVot2u02xWNyV2fZCh/Z+j7BLIpGMjEggpcUGg0xRYogSQ2yxQocmHZoUqbLOGluskNEiJ+uvEgikFOnQoE2JKgdIKJJR7++T9YJ0GyxQZwl67Xht1oFAmw1yxonEmw6qZbFDjbOsM9cPwQ0zyzhHSMOVv7bmOcVyfI5IzjJn2IwLvfa8rhVeYjBMM8FRluJpKmGMWU5e91ySJEmSJEmSJEmSJEmSJEmSJEm6vRigu0ttbm7ueH494ber7bu5ucnY2NjNjrVn5vjifo+wq0IvSJeQUuUAI8yQkzPAJBss0GSVTS4QCETyfrgsktOhSSQHAgnFXthuEAjkZASS3n4t1jlPnRoZTVrUabFOhxYFymyxSkaLjDYx5izGZ1gOZzjMB3YE394oHJeQMs8p5uKTZLR2XOMSz/IyjzPLyR3tdlnsMBefBGCZM2zEeQCqjFNimBbrNKixEecJASY4xnw8xRTHrxrGkyRJkiRJkiRJkiRJkiRJkiRJ0p3D9Mhdqt3e2cB2PQG6crl8xbZ6vX7TAbqTJ0+SJMkV29M0fd0Ws5/92Z/l7//9v/+ma3/sYx/b8XwpHiHlo/3n+Z/+n8SHnr/OiS+b819/9A1fv7XnCAQC5T/9NNWHykzyTjo0AKjxYjfURkYEIt3A3fYx0A3SNVhmnCNc/NePskpCxv3kdOiQ9M+wSk7yp/+A/KElIjmBpBe7G6TJBhss0qROkzWGmObl+Hky2hR5nJl4Aui2xf3+//f8Va+BXrDvnR8cYeyhnDoX+iG7QaYArmi3q3GWjBZtGmzGBQCmeJgv/uvtBrpBcibJaAJQYKEbCvzg5zlx9Fuvq+nucpd/ri73wQ9+kKNHj77pOp7Dc3gOz+E5PIfn8ByeY+/OIUmSJEmSJEmSJEmSJEmS7i4G6O5SaZrueH614NrriTFesS3P85ueqdPpXPcxlwcBr1Uku6Hj3ppC/7FDizobJJQYYYIX+UMiHVJK5HR6TXPb/XOh999AIKHFJpssEoGcdu+VhO3IHWw31m3BJa932+q6r1YZp80GFzlDTkaRCuvxPKPhfp6M/54GNSChyVQvgBdIKZJSJicjp0VCgdX4CpvxPE02aLNJi01yOgwwwUHewQYLFBnivvCNrDMHQJ0LxN4MA2ESuNC/QwmF3vVn5GSkJMzFr7AR/4hNloh0CBSoMMoAkxSv0nQnSZIkSZIkSZIkSZIkSZIkSZKk20+IV0tD6Y73pS99ife+97395/fddx+vvPLKNR3baDQYGBjYsW1+fp7p6enrmuHpp5/m+PHj/eeVSuW6gnxw7Q10l/t/Z0O02bzu495autG3brwtoUCZMiOMcZhxHgQCL/D7tNigQ52cjO3QW+zF5LYb37oSElKKDBBIqTDGAAdoskqbBk3WyejQDeB1iECBMpAQgAIVUkp02Oq1zg1QYZgiQ5QYosEyrR33PBKJvUBbkQIVRriHJhu0WKfNJlkv9BZISSgQCBQZYIzDDDPLe/hbvMjnmOcUG8zRos4ER3mAbycNO1sVa/FFVnmZIWbYYIFNFhhkiow2LdbJyUhIqTDOgXCEUe5jMrydwzxqiE6SJOkt7PK/Vzz11FM88sgj+ziRJEmSJEmSJEmSJEmSJEl6K7GB7i41ODi443mr1brmY6/W+nb5ejfii1/84p79Q9eU0h0QoIuXxN8igYQODVZ4gQY1EpJe61okp9sQmJASKJDT5io9guTktKlTYJAW67RYp8gARYZosk4g9kJteb85LtKh237XpE2j3yzXoc4WgU2WaVPvxfO6TXiBQq/TLiEQaLFBJGOThf4aBaq9gGDe/5NQoEOThAIXeJrTfAqI/XAdQIt11jjHwfhO7uG9xBCps8QFvk6TVZY5Q4cGA0yyxnnqLPVnLlClwUU244X+56MSxpjlZP8uZbFDjbOsM0dGi5QSw8wyzhGA130tDf66lSRJkiRJkiRJkiRJkiRJkiRJ2msmOu5SQ0NDO57X6/VrPnZtbW3H8zRNr1jvra7COFvUrtgenn8IgPjQ83s90g2Kvf/mdNgCIKPVC6TlvfBcp9c6l/eCdC2ubJ97TU6bNuvAACklWmyQ0eyt9to5E4okpEBKSpktLpLRvmSdQE6HjE7vEVp0P2cFygS6bYPbs3Vo0mKT0Gu0a7HRX2t7W9bbZ4NFEgIpJQIpeS/EF8koMUhKhXm+wgovMRxn2WKVdeZosUmLDQKBOstAJKVESomEQi8k2G3oW+ApigxSiBWmOE5CyjynmItPkrEzcLrE1/kqv0aMMMT0jsa6JZ7lZR5nOh6nxDAbYX5Xw3VnzpwB4OjRoze8hrTX/NzqduNnVrcjP7eSJEmSJEmSJEmSJEmSJEldBujuUjMzMxSLxX6b3ObmJlmWkabpmx67tLS04/ns7OwtmfFWSilfdXvyme8GIHvoY3s5zi54LSiX0ek1t2XE3tdrYbnLH19/tTZ1crJeW1+9vz2QEnqNdzltINCmQd4Lym23uUHSD9TFHYG90Guwq5CxRUaLnKz3euwF/+jv2z0+6wftttfJScip9/cLdD+7W6zSpkGVcVZ5hTXOU6BKhy22WAFyMjIiGQBlRhnjATK2aFHvBfnWCQRq8SzD4R4uxudZD6+yHJ8DoE2DOhfIaJHEIk3WaPQCmZssUomj/bBfoECDi3yVX2OYe7g3vo8kdGfdDtfNcpIZThBCeMOGu6sF7T796U8D/uN43V783Op242dWtyM/t5IkSZIkSZIkSZIkSZIkSV0G6O5SaZrywAMP9JspYowsLi5eUxhuYWFhx/MHHnjglsx4K7VYe/OdbkuBbrtc0ovOZTe8UjeS1yCS9YJx281zBZLe+h2aZLR7DXCvBfV2hva47PuE0P9KgU5v5tefZPt6dq6T79hn+1oDCR2a1FmmxBBrvEqVUQKFXsivTYcWCQkDHKDMMIGEYe6lxQbrzLFFg5yMBjXqLPESf0iMOZGcZc6wGRf696NBjUbvXBBY5jlSiuRk5GS0WAcCZYbZZImLnGE8PsgI9zEUpgE4F5+gQY1KHGOeU1dpuLsyaHc7ud5QoCRJkiRJkiRJkiRJkiRJkiRJ0m4xuXAXe9vb3tYP0AF8/etfv6YA3de//vUdzx9++OFdn+1W61wWULoTBAIJCTl5r30upxuoe+O2uat77ZiM5o5XumG6BHqNcN0WuqudI7LdIHf59pycFhukFAkkbzhJN2QXiHRedw9IgNhrvuuGCF8L9kFCiRKD5HToEAm0+9180A3BVRijxBBFqjS4SJ0l2tRpxU2KVDnIO9lilQ5NAoEq4xQZYIN5IpE1Xt1xH0Y5xCYX2GIViGxRI6XMFikdmqzxKkNxmqEww4F4lGfD/6AYBxgN9+9ouEspMcgU0A3abYUVDsdHb4sQXYyReU4xF5+840KBkiRJkiRJkiRJkiRJkiRJkiTp9mCA7i72Ld/yLfzu7/5u//kf//Ef853f+Z1vetxXvvKVHc/f//737/pst9rNNLO99XSDR91+ttdrgNtNea+d7loCeld7LSen02+xi2/SPvfm71UgJSXvr7U9Vzf8V2SQAhUGOUhKiRbrbLJMRpM2jf75W6yTk1FnmQbLvSmbdGiQUqbBRdo0KDHEPXwDgxykxou9e53QZJ1IxgATFBlgi3WarJKQ0mSNnIwCLYoMklLu9fvVIEKdRfKYk5DSipvUuXBJvA9WeInBMM0ER1mKp6mEMWY5+Sb3ZX/FGHmBx1iOzwHcMaFASZIkSZIkSZIkSZIkSZIkSZJ0e3nj6ifd0T74wQ/ueP7bv/3bb3pMjJFPfepTO7ZdS+jureaNQ1u3m+2wXE7eb57bi+vL4YaDiHnvq02+K2HGbogu6f9K6wb7cnKKVBlimimOM8Q0gYQiFSD0InKrAKzxKnUusME8Ler9gF2di3TYos4yW6zR4CKv8iVe5A9Z5RVabNBmnZwWbTZpU2eTC6zyIi02e0G47X7AlISUDg1GuJciVSIZS5whp8Mac1zkDJFIlXFGOUSVcSKRjTjPRbqNkfPxFFnskMUOHZq02ORM/AwvxM+xFE+Txddr69s785xiOT5HJGeJ07wav0gtvshafJVafJHz8Qsscbr7ejzNPKf2e2RJkiRJkiRJkiRJkiRJkiRJknQHsoHuLva+972P6elpFhYWAPhf/+t/8fTTT/PII4+87jG/8zu/w6uvvtp/fuLECR566KFbPutuSynt9wi3SDesdXvIyXelKS/0/lsg9IOD3fuQkFBmhCoHqIZxSnGIAgO0qPca8DKabNCmSUaLDlu02SASCSRE6kQCGRf64bw2JVKKZLTpsAXktNnqhxfrLPXPXmJoR4NeShmAFhvkdEgps8EcW6yw3Gu7qzDGvbyPoTDdP64el1jkGTbiAqPhEBA5Hf8vGtRoxzoAtfgCAEs8y8s8ziwnmeHEvrS6ZbHDXHwSgGXOsBHnAagyTolhWqzToMZGnCcEmOAY8/EUUxwnDf5vSZIkSZIkSZIkSZIkSZIkSZIk7R4b6O5iSZLwkz/5k/3neZ7zUz/1U3Q6V2+vWl9f56d/+qd3bPuJn/iJWzrjrVKgst8j3CLdJrrbx3bgL3Djv45ycjrkdMjIoN/A1+1+a7JGgTKVOE5KiUEmKVAhUCCS02GLBss0WaXdb4yj3xxXoExKoReYa9KhyTrzNFimwUXaNMjYosUGHZpkZEQ6vT8ZGS0iWS+Ql5HT/fla4xw1XmCNOTo0umE4GrTZ5CLPsxpfIcbuLANh8pImugWWOM2L8Q97a+dktLnIGVZ5mQ5bZLQ4F5/gRT7XX2Mv1ThLRos2DTZjN6A7xcNMh3cxHg4zHd7FFA8DsBEX6LBFhyY1zu75rJIkSZIkSZIkSZIkSZIkSZIk6c5mgO4u93f+zt9hYmKi//z3fu/3+P7v/37OnDmzY78vf/nLfPCDH+Tpp5/ubzt69Ch/62/9rT2bdTclFPd7BO1wMyGv2AuqNeGStrftZroOTbZY4VW+SEqRMmNUGSchIaHYC7blvZXy3pHbr1YpMdzfr7tHizZ1MpoUKJNQ6PXodRvoIu1eoC/rBepa/T8JRXKyfgNbJKNDg4xmP0QWeu1283yFs3yWxfg0S5wmo00kssY5NuICOW2WOE2HBjkt1uKr1OKLnI9fYInTRHKW4mnmOXVNdzGLHZbiaV6In+NM/AwvxM+xFE+TxasHat/IOnMA1LlAJFJlnIEwuWOfS0OBmyzuOE6SJEmSJEmSJEmSJEmSJEmSJGm3hLgf9UR6S/m93/s9/syf+TNk2WvhoyRJOHToENPT07z66qu88sorO44ZHBzk8ccf593vfvcNn/fpp5/m+PHj/edPPfUUjzzyyA2vdz3+P9l7mOfJPTmX3kjoBdO6AbTdXTklpUSVAwwxQ4VhUio0We81yTXI6VBnqd9gl9PuHd0Nzw0wSUaLLVbJaBJ7bXcJKSWGGWKaFuu0aNBmg6x/fCClREqx30IXSCgx1G+4G2K6F+6r9fbvBudSylQZo8QQAANMUOUAa5ynQ4OUEqMc6u3bDYJWGafEcD+YBzAcZpjgGAXKvDv8DdJQuOp9ijEyzynm4pNktK54PaXEbDjJDCcIIVzTvT8TP0MtvsBFzrAWX2WUQ4yHw1fsV4svssrLjIR7OMBRxsODHA1/+prOIUmStG0//14hSZIkSZIkSZIkSZIkSZLe+q6eqNBd5U/9qT/Fxz/+cX78x3+cRqMBQJ7nvPjii7z44otX7H/gwAH+83/+zzcVnttvpkbfCl4Lz3Vb3BJyOuzmu7MdYmtwkTablBkBoEiFQSZJSMhoEcl6wbNuNK7EIFUOUGKQDk1arPfjfYHQmzDSpk5ODkSKDJKzSiQSeu13kYyUMoECOW1abLIdlquz3AvjFUkpUmKIDRbosEWTNXIyUgqsskmLzV7rXYuMDmucp8wwKUWmeHhHu1s9LrHIM2zEBUbDIQBqnGWSY1fcnxgjL/AYy/E5ANo0qHOBjBYpJQaZAuBcfIKtsMLh+Og1hehSSjseW6xfdb/t7ZfvL0mSJEmSJEmSJEmSJEmSJEmStFuS/R5Abw0//MM/zJe+9CX+wl/4C5RKVw+xDAwM8IM/+IN89atf5bu/+7v3eMLdtcnSfo9wFwuXPdILnAV2LzwXKFBlhHsoUKHKARJSIGeACcZ4gGP8WQaZZowHGGKaEoO94NwYBcr9NroCZQpUeutGAgkJBQqUKTJAmWEGmCClRKBASokCFVKKBBICCcXe8bEXtovkdGgAgXGOMMJ9JBSoMEaRKk3WWOdVNllikwtc5HnqLNOhSUJKg2UyWlQZ3xGeAxgIk1QZJxLZZBGAdeauuENZ7PD1+Fs8m/9fLManeT7+37wQP8vFeJa1+Cq1+CLn4xdY4jSRnKV4mnlOXdPdH2a2OwsHCQQa1KjHnT9z9bhEgxqB0A/qbR8nSZIkSZIkSZIkSZIkSZIkSZK0W2ygU9873vEOfuM3foOLFy/y+c9/nvPnz1Or1ZicnOT+++/n27/92xkcHNzvMXdFRnO/R7iLBSAh9BroIpHOm74fbxauS/qvJxQpMkCVcUa4nyarQEKbOk02KDFMk3VarHFfeD/j8TAv8Xna1KlTA+g14XU/J90Gue2A3/YckSoHKDLYu4acSEabOgBFBugG5YBeXK5IlQ7N3lUXgcgo93OAI9RZZos1Bphkk0ViL2SX0+6dP6FAmUikxToVRtlijSJX/3ksMUyDGhmt3nW0+q/FGJnnFOfjH/NS/ENyOmyw2LtPUGaYUR6gSJUtVtiI84QAExxjPp5iiuOk4Y3/1zHOEV7mcQAGwzQbcZ5FnqEaxykxTIv1XuMfDIVpClQoUGacI2+4riRJkiRJkiRJkiRJkiRJkiRJ0vUyQKcrHDhwgO/7vu/b7zFuqWD54j7KgbQfOuu+F9sBuMtDctfSSpdQ6LW/QU5KmRKDpJRos9lbJVCgTJsGLeq9gNkKg0wxwEEKlCgySMIagYSMFhmtXuAtocl6b9a0F/8rUWaUEoNUGKNDkyIVMjpkNCkzQgAqjJFQIqPFJvNAQkpKBFKKDDFNQpFxDpPRZouVXryuG8ArUKXMEANMUmGs1wYHRYZossYa5zhwldBZi3UAUko7HmOMvMBjLMfn2GCBNg0a1FjnPN02vMNUGCOjSZUxDvJOLvA1NuICo+EQADXOMsmxN3xH0lBglpOci08wwVFCgI24QINaPzgXCAyFaQ5wFICZcOJNg3naKYsdapxlnTkyWqSUGGaWcY54LyVJkiRJkiRJkiRJkiRJkiRJ6vFf2OuuFMn3e4S73Gv3v/tevF5ILl72uFMgJaFIQrG3TqDIAGVGaLFBg4uUGCalQJEqGS0Cof/9epxjK6wwGd/BJheoMEKHLQpU6LBFRoucjJxO77gKAFUOkNOhyoFesO1ZmmwSSKgwxjAzZLQZ5RCBhBYbRHICy6SUCKSUGWGACe7hvczxJQKBDlt02AK6LXZFBnvBviIVxhnnMJssQa+/b4MF6nGJgTDZvyf1uESDGoHAIFMADDMLwDynWI7PEclZiE+xyku02KBNnZQSdZbo0GKIg2yw0G/ya1Bjk0VGOcQ6c28aoAOY4QRbYYWleJoJjjEaDrHJYj/oNcgUhd79nAzHmOHEm66pru0Wwbn45I52QYAlnuVlHmeWk8xwghDCPk0pSZIkSZIkSZIkSZIkSZIkSdJbgwE63aUM0O2/yLU1zL2eQCT2omRJb0tCkSotNsnJoNce12KdnKwXNgqs8CKRyARv42J8nlHuY5RDrPBS77huEC/QJKNJgTKBlJQiJQYZYpaEhIQCTdbp0CSlQJUJEhJa1BnjMCWGqXOBJutUGGWM+0kpEwhEoEGNF3iMLWq02AAigYScDh2aVJmgzAhTPMwk72CFF3mRPyQQKDFCJGORZ6jGcUoM02K93/A2FKYpUKFAmXGOkMUOc/FJAJY5Q4MlIpGUEsVe210k0mSVAAwyxSrnGGKaBrV+UOvywNbrvjshcDg+SiWM9c87yqEd+xQoMxNOGPS6Dpe2CAK0aVDnwo5gIsC5+ARbYYXD8VHvrSRJkiRJkiRJkiRJkiRJkiTprmaATnelu7OB7mbCapevsR3IudH13rhZ7trmAHrBuZyMAiVyMlrUydiizAg5HTKapL2msyKDDHCADk06NFgJLzAa72eNcxzmUc7z/7DEGVqs06JOSpGUEgXKlBkDIkNMMRNOMBAnqYducKkUqzTZICFlkwtAJKFAm02KDHRDd2Gasfgg5/kCo9zHEqepswR0Q1BtNmmxSYctUkpUGCUhJSFlkreThJR2rFNlHIhUGe834zWo9YNzgcBQmOYARwGYCSdIQ4GleJqMFm0abMYFIGWY2d4dW6bEAGVGWWeOJmtUOQDAGucASCnteLymdykEZjnJFMepcZZ15vpBr2FmGecIafB/Q9fj0hbBZc6wGReIl/wcrfASg2GaCY6yFE9TCWPMcnL/BpYkSZIkSZIkSZIkSZIkSZIkaZ+ZXNBd6VpbtG5/Cd22ve3A2c2G6LbDc93Wt0h2yfbtM6S9gOLNhvWuLpD2HgP0Zuier0Qg0GSdhISMNhlNcnLKjFCgQoVRBpnqh9Q24gL38I20qdMIFznEtzET38Myp6lzkXYvRFdmmCoHmOU9HOSdLPI0WWi91qgWYjcQFy9yH9/EAK+F67ZbwQpUIMADfBsr8cXeuiOsc54ma7TZohvt7ACRDm3KdFv11sMcxVilQY0q41QZp0GNKY5TCaNssnjluYDJcIwZTgCwzhwAdS4QiQwxDUQy2jS4SIs6ZUYpMkCbOk3WSCnRYpNhZvrNZsPMXvd7loYCkxxjkmM3/sbrihbBjTgPQJWdDYQbcZ4QYIJjzMdTTHHcoKIkSZIkSZIkSZIkSZIkSZIk6a7lv6jXXSm7axrouoG3btgt7z0C/eDb9UhISAmE3ho59NaFpBfRCySUyGn3wnW7GaILvfWLBBIKVAjQC5wFcjISCqRAgQqx10dXYpAiVcqMMMhBAA7yTrZYoUGNerjARDzWa3srUAowy3t2nLlAmZlwghlOdFvV4nuuaFQ7HL+DVlhngafIuCRcd9kak/nDfJZ/0L+eAgN036OUQIECTTps0WSFAFQY55X4RwwyTSAwHGaY4G1ssMBwvIdI9rrn2p4XXguNbj+OcA8bLABQYoQmq6wz14vuNclpk1CkxBBDYZoCFQqUGefIdb1rWezYPrdLapy9rEUQpniYgTDZ36cel1jkGTbiAqPhUP84w4uSJEmSJEmSJEmSJEmSJEmSpLuV6QXdlbqhqzvdla1zCSk5ObH/2rUH3AKBIgNst6RFIKVAi00isRdeq/SCeimRDhlbbzDX9YXruqG5MiWGKTJAJKdIlQg0WQUiJQYpMECBMnWWSSkyzL2McYik9+tuiGlGuI+cjAY1MlqEEBgLD/Ag33lNYa+rNqr1LmsmnnzDNZaS04znDxLJqHGWhJQJ3kZGmzpLADSo0WKzN+NyL5Y4yER4Gwc4CgTeEf48U+H4NYfTUko7HtvUGQ33U4svMMRBAtBkjS02+iG7MiUGmeydE2bCiWsOvcUYmecUc/HJKxofl3iWl3mcWU7uCPnpjV3eIlhlfEd4DmAgTFKN3YbCTRYZ5RDrzBmgkyRJkiRJkiRJkiRJkiRJkiTdtfYkQJfnOUmS7MWppGvU3u8B9sDO9rnu9wUKQJstrj/AFsjpkFCkzAhttkhISamQ0yZQIKdNTk5C0muguzQYFfsr3UgzXSBQYphBpqgwSkKBhJQ6yxQoMcw9BBLqXCBQYIR76NCiSLm3b5FR7mOE+wgh0IrrwM5g2VWDcdfpzdZYZ44QAgXKjMXDBBKGmCGnTYlBOmxxgIdY4xx1LpJQoMo4ozzARG/NyXCsHzy71nmHmWWJZxngICu8RIMaw3GGoTDNRlxgkClSyrTYIOndvyoHmOIRAkn/nNcixsgLPMZyfA6ANg3qXOiH/AaZAuBcfIKtsMLh+KghumtweYtgieGr7ldiuB8OvXR/SZIkSZIkSZIkSZIkSZIkSZLuRnsSoDt06BA/+qM/yo/+6I9y33337cUppTeRAPl+D7EHYi/Itv0sI6VCgUCHOtceZgtAoEAVgBJDFKjQZI2EQOyF60LvK5JdEtpLSEjIyYjE3vmuP0AXobdGzij3E0hoU++F+koc4EEKYYDJ+BdZ4zx1llnia0BgkCkmeBtJSAGoxyUa1Ai916AbMNsLl4aaAgmjHGI8HAbgYHyYNc6xyisUGaREkwojVDlAEroNfDPhxA21to1zhJd5HIDBMM1GnGeRr1GNY6SUWeElWqxTZJAKowwyRUKREe7lnvAN13XOeU6xHJ8jkrPMGTbjQu+971rhJQbDNBMcZSmephLGmOXkdV3P3ejyFsEW61fdb3v75ftLkiRJkiRJkiRJkiRJkiRJknQ32pNauFdffZV/+A//IQ8++CDf//3fz//8n/9zL04rCYDYC7EVgUiHLSAnkHL1IFtCQplAgW5wLuG1oF2kxCA5bdo0yOiQ0SGhQIFK/3wAKUVSCgQSAgWKDJL017x+AcjYosEyizzNKi+zxnnaNBhgvBcsexcnwg8xHg4zE97FTDjJENNsssgFnqEWX2QhfpVFngFgKExToEKBMuMcuaG5rtcbhaBCCIyG+7mPb2KACcqMUGWCIWa4h2/k3eFvMBtO3lBbWxoKzIaTAExwlOEwQyDQYIWMJkNMM8wM4zzIQd7JUJjh4fAXOZn88HWdM4sd5uKTACxzho04TyT2WvQOUWWcSGQjznORMwDMx1NksXPd13S32Q55DnCw997VqMelHfvsZzhUkiRJkiRJkiRJkiRJkiRJkqS3oj1poNuWZRm/9Vu/xW/91m9x+PBhPvKRj/AjP/IjHDx4cC/HkO4qgZSkF2RLKZPR6refxX4wrpulTUhJKAMZeb8p7rWWujYNInn/T3f9QE6bQCQhJQIZzf6KCYEKw72wXeuaO+8uF4l0aJJSYo1XabJGkSrD3EtCgVXO8Uj4PyiFCrPxJOfiE0xwlBBgIy7QoEaDWn/moTDNAY4CMBNOkIa9+XU4zCxLPMsAB1nhpX4IaiBM9vfZ6s05zAz3hvdRoMJ94f03PeMMJ9gKKyzF00xwjNFwiE0WyWiRUmKQqX4QcjIc4zCPXndYr8ZZMlq0abAZFwCY4uEd11ePSyzyDBtxgdFwqH/cJMdu6vrudFdvEXyGahynxDAt1vuf8f0Ih0qSJEmSJEmSJEmSJEmSJEmS9Fa0Jw10xWKRGGM/iBFj5IUXXuBnf/Znuf/++/mBH/gBPve5z+3FKBIAab8t7c4Xyclo06FJToeUYq8VrhuYC6S9ryIpZVIKvUa5MqEXdwu9/eiF2Do0yHqPkbwX0Ntuq+s23nWje91zNdkgp0MgEG8oPgcQSChSoEqJSm/Ggd55A3lsczA+AnSDYpPhGIGECY5xb3gf4+EwQ0xTZpgK4+R0WOYMRar94/bCOEdIKVGkymCYBmCRZ1iIX73lDXkhBA7zaDeMR4kCFUY5xAGOMsqh/rnuC++/ofAcwDpzANS50G+euzQ8BzAQJvtNdJss7jhOr+/1WwRrrPJyv3luOMzsSzhUkiRJkiRJkiRJkiRJkiRJkqS3oj0J0M3NzfHP/tk/493vfjcxdsMz28GMVqvFr//6r/Nd3/VdPPzww/zyL/8yq6urezGW7mLdMNhVtj//EOH5h/Z4mlttu0kOOjRosdl/3g3GJb2euYQCVYpUeq1yHSAh9L66TXT0wnGQ974ieS+Ql5KQklLqNdHlZDSJRHI6/b2vzXZwK+l9n5BQoEiFlCJD3MMQMySktNhghHsY40FWwgvdo68IipWBQJ1lmqzT4CKNuEoxVmnFOl/hPzEXn+z/frqVdjsEdebMGc6cOXPN5w8hMBtOciL8IA+G72AyvJ3x8CCT4e08GL6Dd4e/wWw4eUPhOYCM1o7HEsNX3W97++X76429Xjh0JNzDeDjMveF9TNB9fTIcY4YT+z3yVV3v51bab35mdTvycytJkiRJkiRJkiRJkiRJktS1J7U0Bw4c4Cd/8if5yZ/8Sb785S/zK7/yK/zar/0aFy9e7O8TY+TrX/86P/VTP8XP/MzP8KEPfYgf//Ef533ve99ejKi7TIECnatsTz7z3QBkD31sbwfaI932t7zXEZf2omkFEkrktMjYIpKS0SGnQyRnO8wW6ZBSoMNWb6X8kjUhkgEJHZpEMiKR0IvWRSIZzX4Eb3uaK4V+QK8bzIPYi86VGSchIaFEiSGqjFOgQiQnDSUCgXXmmORYd6UQmOUkB+MjfJX/Qjs2qDBGTkakQ4lBCNtzBc7FJ9gKKxyON9a8dj1mOMFWWGEpnmaCY4yGQ2yySEaLlBKDTFHotSS+WQjq05/+NABHjx69rhnSUGCSY/37tVtSSjseW6xfdb/t7ZfvrzcWQuBwfJRKGGMuPgnAKId27FOgzEw4wQwnbvln+Ubd6OdW2i9+ZnU78nMrSZIkSZIkSZIkSZIkSZLUtScNdJd6z3vew7/6V/+KV199lf/yX/4LH/zgB/v/wH/7sV6v86u/+qt88zd/M+9973v5d//u31Gv1/d6VN3Buo1kd5NucI5e6A0gISWh1Guh6+qwxRbrvea4rB+OC739t6Ny8ZJWO4CMDpFIh61Ljgu919rQa6qLl5z/tXa5bd2Wu9fOmfQb8lLKpBRJKVJljGFmGeMwoxwikLxhi9mF8DQdtpgIR0lCgSYrNFlnnXlq8UXOxy+wxGkiOUvxNPOcusF7fO2ubMirMMohDnCUUQ5RoEKBMveF93OYWx/o203DzAIwwMF+s149Lu3Ypx6X+k17g0ztOE5v7la3CEqSJEmSJEmSJEmSJEmSJEmSdCfZkwa6qymVSnzoQx/iQx/6EOfPn+cTn/gEn/zkJ3n++ef7+8QYefLJJ/mxH/sx/u7f/bv80A/9ED/2Yz/G8ePH92ts6Q7QDajlRAoEICUSSSj1WuS6vW/xkoBcQgEIdGj1QnCxv1ak0++02xme6z6Gfk6320mXUiAnJ1xynu55u/uE3jHdRrLQn2m7vW6ASQAqjLLJIvD6LWZZ7PRbupY5w0acB6DKOCWGabFOgxobcZ4QYIJjzMdTTMR3sBZeZp25fivcMLOMc4Q07M6vze2GvCmOU+PsLT3XXhrnCC/zOACDYZqNOM8iz1CNO+85wFCY7ocFxzmyn2Pflm5Vi6AkSZIkSZIkSZIkSZIkSZIkSXeSPW+gu5p7772Xn/u5n+O5557jscce44d+6IeoVqtAN0QXY2RtbY2PfexjnDhxgm/7tm/jP/2n/0SrdWXblHQtUir7PcI+2w6tRUpUSUiBjECBpPdrIfS/Ejo0abNJpMWlzXOvrZaR074kdJezHY4LJCQUe4133e/LDFNiiAoHKDHUD+h1w3YJgUIvqJf314vkFBmgwigJRYA3bTGrcZaMFm0abMYFAKZ4mOnwLsbDYabDu5jiYQA24gLt2GA5nuF/8895IT7GUnyWWnyBpfgsL8THOBX/I3PxSWK88h7cqDQUmAzHeDA8ytHwp3kwPMpkOHZbhuegez2z4SQAExxlOMz0m+hWebn/ng2HGQ5wFICZcOK2vV5JkiRJkiRJkiRJkiRJkiRJkvTW9pYI0F3qAx/4AJ/85CeZn5/n3/7bf8u3fMu3AN22pu0w3R/90R/xwz/8w9x77738vb/39zhz5sw+T63bTYXh/R5h3203u2W0CNALrXVDda+1wFV6rXIdrhacu9qqr+3XXXV7rdArvAwkDDHDAR5inEOUGKHIIAVKpJRJe714AAlFilRJKJLToUCFBjU6NFjiWeCNW8zWmQOgzgUikSrjDITJHfsMhEmqjJOTc54vUOMFNlmiTYNVXuYiZ1jlZTpskdHiXHyCF/ncrobo7jQznGAyHCOQMMEx7g3vYzwcZiTcw3g4zL3hfUzQfX0yHGOGE/s9siRJkiRJkiRJkiRJkiRJkiRJukO9ZSt/BgcHueeee5idnaVQKJBlGSGE/usxRpaXl/nFX/xFfumXfonv/M7v5KMf/Sh//s//edI03cfJdTsw+gTdCF2HSCShQJkhEtJek1wgp0VO56bW7wbnEhJSMtoE0l7jXEKFcaZ5hAY1zvH/UOciAClFyoyQUqRDk4QCOZ1eO11gi9XeWjDABKU4TE7GTHJli1lGa8djqReczGNGnSW2WCWnQ50aa5yjQJlBDrISX2KThUsa9WCFlxgM00xwlKV4mkoYY5aTN3F/7lwhBA7HR6mEMebikwCMcmjHPgXKzIQTzHBix+92SZIkSZIkSZIkSZIkSZIkSZKk3fSWC9CdOXOGT3ziE/z7f//vefXVV694/dLWp+3QRZ7nfPazn+Wzn/0sMzMz/OiP/igf/vCHue+++/Zsbt1eDNB15bQJhF5obbgXphsipcgK58lpc3N3K/a+Qi8A99rWIlUIkUN8CyGmXOCZ3quBIlWGmWWDBVpsUmEUCLTZoEClF/gbIaHAMs/RCQ1i/ObumS4JY6WUdjw2WWM1vsIqr+wIB67T3VZmiCZrlBimwDRVxikxTIt1GtTYiPOEABMcYz6eYorjV4T21BVCYJaTTHGcGmdZZ46MFiklhpllnCPeO0mSJEmSJEmSJEmSJEmSJEmSdMu9JdIL9Xqd//pf/ysf//jH+fznPw+8FpTbDsPEGCmXy/ylv/SX+Nt/+29z5swZ/sW/+Bd87Wtf668TY2Rubo5/9I/+ET//8z9Pq9Xa+4vRbSHBlkLodtB143NVYDtoFsnpkAD5Ta7fbbTrEMl7EbpCL7TXbaILFIBAiQHGOUKFEQpUuyGrMEs5DtOhxav8MW3qDHCAjHY/0FagxEHeyTgPcp4v0GSVw/HR/u+NYWZZ4lkGOEiNF1ni65QYosRQf50W66wx35uxwAaLDJMyxTsZCAf711KPSyzyDBtxgdHQbVOrcZZJjt3kXbqzpaHAJMe8T5IkSZIkSZIkSZIkSZIkSZIkaV+EeGml2x57/PHH+fjHP85/+2//jY2NDaAbgrs0NAfwzne+kw9/+MP88A//MAcOHNixxu/8zu/wS7/0S3z2s58FuoG77TWyLNvDq9H1evrppzl+/Hj/+VNPPcUjjzyyJ+f+Z9nbucjpPTnXW12JEQaZJKVCTouMNgAbvcawG5eSkBIIxF6LXUqBhBLTPMIYh5kMbyeJKYs8QyBwb3gfBSo8GL6DydANXM3FJ3k5/hH1eIEFnqbBMpBQpEqJIRISBsM0ExwlkHBfeD+z4SQAWexwKv5HMlq8FP8XSzzb3d67zpw2GS06bAFQ6AUJRznE4fDtjHL/jitaiF+lQY3xcJhRDjEZ3s6D4dGbuEeSJEm6Wfv59wpJkiRJkiRJkiRJkiRJkvTWt+cNdAsLC3zyk5/kE5/4BKdPdwNMl7bNbQfgqtUqf+Wv/BU+/OEP863f+q2vu973fu/38r3f+7189atf5f/8P/9Pfv3Xf93mOb2pmwuG3UkCOW1abFKhQJs6CUXa1Mm5mQBqQkJCJBJ632e0ieQkJLTYZItV1uMcTdYAGArTFKhQoMw4R4BuAG4uPklCylZYI41FhpihyjglhvtNdBtxnhBggmPMx1NMcZw0FEhDgVlO8nL+RwQCFUZZ4xxtGkC3ca/EIIGUSEaHBgWqFKmyFs8xHO7Z0VZYZIAVXmY5nqEVNmjGdYaZZZwjpOEtUegpSZIkSZIkSZIkSZIkSZIkSZKkS+xJ4iPLMn77t3+bj3/843zqU58iy7KrhuZijLz73e/mwx/+MD/4gz/I6OjoNZ/jXe96F5/85Cf5J//kn/DLv/zL/Jt/829u1eXoDrDdsqZI3gu2tanToUlChzb1fmvc9QuklAiE/jm2g3MpZcoM06FBJKfJGoHAUJjmAEcBmAkn+mG0GmfJaNGmwWZcAGCKhxkIk/2z1eMSizzDRlxgNBzqHzdJt8FuhhMshK+Sx4wK4zSoEUiocoASQ5QZoc4ydS70eugibTbJaFNniSGmgcgq5zjPH9NinQEmSGKBQIEXeIyXeZxZTjLDiX6D5m7IYocaZ1nvtQGmlAzsSZIkSZIkSZIkSZIkSZIkSZIkXYc9SWDce++9XLhwAdjZNrf9fHBwkA996EN85CMf4f3vf/9NnWtmZoZ//I//MT/3cz93c0PrjhbJ93uEt4xAQkaTDg0g6bXPdQgEIgFeN0h39ddSilQYIaVEhyY5HSIZgQIVRqgyQZVxpniYQigzyBQFKgCM8xCFWOUFPkdGi8X4DM241gvcRaqM7wjPAQyESaqxG4zbZJFRDrHOXD9AF0JgJN7PeHiQ+fgkgYQBDjLCvf01ygz32uiGWeM8DS5S5QBbrDLEFEuc5mJ8nhbrRHJyOtS50AsDdmN35+ITbIUVDsdHbzpEF2NknlPMxSevaEtc4tlbFtiTJEmSJEmSJEmSJEmSJEmSJEm60+xJgG5xcbEf8ri0be4bvuEb+MhHPsIP/MAPMDQ0tKvnrFaru7qe7ixF/HxsC6TkZL2g23ZkLgIJ3YDc6wXorrY9ocAAg0xTpEqLDZqskdEmkFKgyhDT3M83MRRmAMjJaMSLvb630xCgEkcZYJIVXmCTJRpcBGCE+686SYlhGtT6YbPLQ2d5aDMa76dNHUgoMcxgmOyF+kapxHFe5YtEcgqUiUTWmYMYaVCjxlna1GmyTqAbOgykbLHK+fgFBsM0ExxlKZ6mEsaY5eT1vQmX3tUYeYHHWI7PAdCmQZ0L/Qa6QaaA3Q3sSZIkSZIkSZIkSZIkSZIkSZIk3an2JEC3LcbI8PAwP/ADP8BHPvIR3vOe9+zl6aW+IoP7PcJbQqBAmZFeGOwiOVkvMhcJrxuce/3VElIKVChSIaVEmwYZbYpUGeEe7uEbGeYe7g3vI6fDKi+zFZfZZJFNui2VWWxzgWd6MySU6YZr6yyzzNcZj4evCIy1WAcgpbTjcdv282KoUo7DVBnnIA9fOjqj8X5Weal3P0Jv3U02uEAk650jUmKEEgOMcYQSAzSosRHnCQEmOMZ8PMUUx0nDjf16necUy/E5IjnLnGEzLvQCjV0rvLSrgT1JkiRJkiRJkiRJkiRJkiRJkqQ72Z4F6L7pm76JD3/4w3zoQx9iYGBgr04rXVWRyn6P8JaQkBCJ/cduaG27gy4SSHvRrbx3RPe1K7/vNtkVGSQhZZMLZGREOiQUqTBGSpkm6xwJ7+ABvp0X+RzrcY5lnmOFl+iwRZs6kUiRKoGEDlvktBik21a3xqss8lWmeXf/vPW4RIMagUA1TrARFijGAc7wGVJKDDPLQDwIPMsAB1nhJRrUqMclBsJkf50CFQIFAoExDveuKRC42LsbOYGEYWY5wENMcIwQAvW4xCLPsBEXGA2HAKhxlkmOXff7kcUOc/FJAJY5w0acB6DKOCWGabG+64E9SZIkSZIkSZIkSZIkSZIkSZKkO9meJC7Gx8epVCr8h//wH3jve9/Lu9/97jc/6Co+9alP8Qu/8AsADA4O8tu//du7OabuIhXG93uEt4BAICWnQ5tNcjpARiShG4wLRDLg0ra3S8Nz24+ht1KRQCChQEabDk0ibUoM99rotqgwymo8z3/nh1nhJVJK1HiRSIeMjJw2ACWGGGCKCmOsco46S6SUyWlzlsdYiS9RYrQf9Qu9r3lOQQwMMEmbOgBLPEuIKRthniGmGQzTbMR5FnmGatwZTBtkimFmCSQEAhXGCaQ0uNhrwxtmmncxwn39FryBMEk1jtOgxiaLjHKIdeZuKEBX4ywZLdo02IwLAEzx8I6g324G9iRJkiRJkiRJkiRJkiRJkiRJku50exKgq9VqfO5znwNgZWXlhtc5ceIEjz32GAAhBM6ePcuRI0d2YULdbZK9K198S4vkdGiw3TjXlbOzXS6/ypEpCd3WuZQSCWm/wa7JOjkdAlBkgEBCg4sc5B1sscYz/P+o8SKQ06ZBu3/+nAIVyowAkTbrVBlljPtZ5gwpJVJKZLSo8RJFqtCbocwQgxwEcoaZZT2cJ6NFSolBpiiECllssxROcyC+jRBgIy7QoEaDWm+dwHCY4QBHiTEyEu5hmTPEmBPJSChwkIcZDfdfcTdKDNOgRkYLoP94vdaZA6DOBSKRKuM7wnOwu4E9SZIkSZIkSZIkSZIkSZIkSZKkO92epYhijP3Gphs1OzvLQw89xPPPPw/Al7/8ZQN0uiGlXvjqbpfTuaRlLl72atLbml2ybbtxLpIyRIESgUCRKmVGKDHIJgtssUYgIZKTk1OiSIs6NZ6gwQoZLXLatNmEXnsddINnkYwKYzRZY505BjlIIJDRokCFIhUiWb8RDgJbrBDJqXKgG0K75FJWeInBMM0BHuJiPMN6OM8ExxgNh9hkcWfQjgoAB5NjHOZRXuQPKDPMKkPU4ou9ea/UYh2AlNKOx+t1eQCvxPBV99utwJ4kSZIkSZIkSZIkSZIkSZIkSdKdbs8CdDcbnts2MzPTD9AtLCzsypq6+xQZ2O8R3gKSS1rnLg/PRbZ/YgPpJSG67f0SQu8roUCJAUa5jwpjAJQZYYMFcjpUGKFIlYwWGW061GlT74frAoGcHIgkFGix2W+222IFiJR7gbEmK6SUSSkTydlilRYblBmhySYJJQY4QJVxSgzTYp0GNTbiPCHARDzGZlwghJQCFUY5tOOqC5SZCSeY4QQhBIbjLEs8ywAHWeElGtSox6UdrXD1uESDGoHAIFMADDN7Q+/I5QG87WDe5XYrsCdJkiRJkiRJkiRJkiRJkiRJknSn27MA3W7Z2Njof7+6urqPk+h2tsnSfo+wz0KvR+7y4NzOfbquvk+kTaTAIFNM8U5abNCgRpEBClTYYg3IGWSSDm0iea+VLhDJAUgo9nruEiD252mxTpUJOjTp0CSjSSRS5QAlhigxQpkBNrlAIKVAiQ5NmqxwiD/BUJjqz1mPSyzyDBtxgWHuBQJpLJCHhCZrlBlhjEOMhvsZ5whpeO3X4jhHeJnHARgM02zEeRZ5hmrcGdADGArTFKhQoMw4N9aMOczeBvYkSZIkSZIkSZIkSZIkSZIkSZLudLdVgG5tbY2vfe1r/Ta7oaGhfZ5It6uM5n6PsI+6vXHdYNzrB+giWW8/6Abc8v4r3fa4Djkd6lxgkwmGmGaDRQpUgEiRAXLa5GREMto06bDVi8sV6bbcJXQ77kp02Oo13RWJRBpcpBvTa5DRJKXIOA9SYYxJ3s5QmOZ8/ALzfIU6yxSoUqIKYec1DYRJKnGMGmd5gc9SZpStsMokxyhSJafNKq8wwAQJ6Y5j01BglpOci08wwVFCgI24QINaPzgXCAyFaQ5wFICZcGJHCO967HVgT5IkSZIkSZIkSZIkSZIkSZIk6U532wToms0mP/ETP0Gr1QIghMDb3/72fZ5Kt6syo/s9wh5JLvk+72/bDoplrxuiC5d8f/k+offVDeHltHtNcAmRnAY1SgyS0yahQE4HgCZrdGj019oOz3Wb6QIpRTLadNjqnTWSkPab6yqMUWGMhCIDdBvZigxSYoAW63RoMMAkW6wyxPRr08fYbXJjmSpjZLRZj6+ShISUUr/F7Vx8gq2wwuH4aD+kCzDDCbbCCkvxNBMcYzQcYpNFMlr947uhQZgMx5jhxDW/O5fb68CeJEmSJEmSJEmSJEmSJEmSJEnSnW7XUhc/8iM/ck37/czP/AwTExPXtXaj0eBLX/oSKysrhBCIMTI8PMy3fdu33cioEuntkx29YYECCSkJRTKa5HTDV/T+BFJCr03uSpHtEF3cEaDrBucSCqSU+uu3qdNkjSIDRDKarJHRDbtmdGhQI6NJRhsI/VBdQpFAoEOrF+qL5GT98wcKvUlLjHIIgFHuIwlp7/gCKRUgIRJ7LXadHVeyxjk2eBWALVbZYpUSI4TYDReu8BKDYZoJjrIUT1MJY8xy8rX7GAKH46NUwhhz8cneDId2nKNAmZlwghlO7Ajf3Yi9DOxJkiRJkiRJkiRJkiRJkiRJkiTd6XYtRfSrv/qrbxgcibEbwPnf//t/39D628eHEAgh8FM/9VMMDAzc0FpSflnI6k41xCw5beos9SJm3TBcSgmASIfsdY+OxKu8mlAgoUTohedSirRp0KBGhxZtNvv7dtgip0MAUiq02LwksHdpw1z3PYnEXsgvoUCZAlWKvT85LYaYZoT7+utXGCVjiwIVMprdIF/c7Bfo5THjAl+jRZ0W6xQZJJAwxDSj3E+LdRrU2IjzhAATHGM+nmKK4zta3UIIzHKSKY5T4yzrzPUDbcPMMs6RXWuB2+vAniRJkiRJkiRJkiRJkiRJkiRJ0p3stqnh2m6eizHyfd/3ffyDf/AP9nsk3cZWe41klwvPPwRAfOj5vRznligwQIkhNpjrhdJSYi+k1m1qu1rz3NUEXmukS0hIKTFATocSwxQoApDRIpCQ0aZAmSIDtKnTodkPLHZoQq8Lr3tMs9dCVyCjCUBKiQJVKoyR0WKE+3prVqly4IrAWJstUgpUGKHFJpssshC/SolhVnmZVV7ptdpBIGGU+zkU/kSv8Q7qcYlFnmEjLjAaukG1GmeZ5NgVdyINBSY5dtXXrkUWO9cUwLuewN6ZM2cAOHr06A3NJO0HP7e63fiZ1e3Iz60kSZIkSZIkSZIkSZIkSVLXrgbotlvibnafq0mShJMnT/LRj36UH/mRH7F1STdlhbNX3Z585rsByB762F6Oc0t0m+cukFIGIm22SOg2veX9ZrntYNyb/VwGuvGzhJQKBSrktKgwSkJKkQE6bFFimISUhAIdmkRyIjkdtgBIKfbDdN0uvJyMNpGchECREUoMUqDCELMUGeRe3ssWK2yyyAW+xkacp8Rwvz2uyjg5HQY5SIOLlBmiQa3bLMcCgUBKgYRhigxwMLyzH54DGAiTVOM4DWpsssgoh1hn7oZDclcTY2SeU8zFJ8lo7XhtiWd5mceZ5eQVjXLXEtj79Kc/DfiP43V78XOr242fWd2O/NxKkiRJkiRJkiRJkiRJkiR17VqA7vd///evuj3GyHd913f1QyG/9Eu/xMmTJ6953UKhwMjICIcPH2Z4eHg3RpVo09jvEW65SEZOhzHuI6fDCi8AJdrUCeRXROYiGVcP0kUgIRAIJAQKBAIjPMAAB9hkgUBKiSHGeIBASoctNphjjENsskxCgdDrrmuyRptGb74MCKQUSSkyyv2UGWOSo7wz/B8McIDzfIEhpkhI2IgL/XAcQCBwkHcSiWyyyD3hGxnkIJssktEixpwBJmhQY4sVhrmHUe674gpLDNOg1g+3XR5yu6n3IUZe4DGW43NA97NX50K/UW6QKQDOxSfYCiscjo8aEJYkSZIkSZIkSZIkSZIkSZIkSdoluxage/TRR9/w9RgjIQTe85738IEPfGC3TivdkLC75YtvQd24W4mhfuhthPtpcJEOdWK/dS6SUCCSAykQe99vr5IQiaQUSSjSjXVlBFIqjNCmzgAHSSlRpMpwmKFAlfF4lFf5AvN8hTYblBmhyAA5HUoM0WKTjCYdtsjJqDJGiWHKjHJv+AaO8yFmw0kAmqyyFE8zwTFGw6F+OG47fFagQoyRqfAwCSkZbUY5BEBOzgbzFCgxwCQDjANXhtNarAOQUtrxuBvmOcVyfI5IzjJn2IwLxEuCiiu8xGCYZoKjLMXTVMIYs5zctfNLkiRJkiRJkiRJkiRJkiRJkiTdzfYkRfSBD3yg36g0Nja2F6eU3lCFMVqs7PcYt1A3oJXRIqFIlSHa1KmzDCRE2v0QV05GQpEChV4jXE5Gh9DrlStQBrqhsm5wbpQig2yxQpkRBphgOMxwgKMEAhXGOM8XabFBiUFabJBSIqVMJFKkwgEeAmCVc9S5QJEBqhzgfr6ZD/CzFJJi/0oOx0ephDHm4pMA/XDctgJlZpITzHCCnIwaZ1lnjowWRQao8QKlOMQcX6LBCvW4xECY7B9fj0s0qBEI/Ta4YWZ35V3IYqc/9zJn2IjzAFQZp8QwLdZpUGMjzhMCTHCM+XiKKY6Thjs95ClJkiRJkiRJkiRJkiRJkiRJknTr7UlC47HHHtuL00jXbIKHWOPF/R7jFgpASpUJOjRoskadizRZI6cN5LzWxBbJafd66kpEcgoMQK95rsI4kYwBDjLGA0CkzSZVDjDCfQyFaQpUgEiLOjF2e+wy2r22u4xIxhBT/ba7AhWqjNNmkwJlJjjKNO9mKnmYQijuvJIQmOUkUxzfEY5LKTHMLOMc6YfNUgpMcoxJjgGQ0eFU/I9kocUg02zEeRZ5hmrcGWAD+tdRoMw4R3blXahxlowWbRpsxgUApnj4igDfIs+wERcYDYf6x21fgyRJkiRJkiRJkiRJkiRJkiRJkm6cFUe6K03xCC/wf+/3GLdUSkKdJeiF2TIa5HSI5HQb6roNdJGEQKBDi5wOJYapMk5OhxHuZ5BJDvAQ4xxhNbxEkUEGmCQh7Z+rQJkCFWIEQqQRL7LKS2R0aNOgTZ28F8Ib4iAZLTJalBimzAgHwztJSK/a/JbFzhXBuTEe2BGce917EArMcpJz8QkmOEoIsBEXaFDrB+cCgaEwzQGOAjATTuxa+9s6cwDUuUAkUmV8R3gOYCBMUo3jNKixySKjHGKdOQN0kiRJkiRJkiRJkiRJkiRJkiRJu2BXUiIvv/zyjueHDh3ajWWlW6bJ2n6PcMvl5DRZARIi+SXhuSv3jMTefgCBnA5FBniAb2WUQzyU/Ekmw7GrhtmGmWUkHuIpfo0QAks8R4ctIFBhmISULVbYYoU2dZqsUmSAGmcZ40GGw8xVm99ijMxzirn4JBmtHRMv8Swv8ziznGSGE4QQeD0znGArrLAUTzPBMUbDITZZ7M8/yFSvQQ8mwzFmOHFzN/4S23NvP5YYvup+JYZpULtif0mSJEmSJEmSJEmSJEmSJEmSJN2cXQnQHT58uB9gCSHQ6XR2vH7kyJGrHXZTQgg8//zzu76u7g7b7WN3rqQXwupG43bGy0Lvz2stdN3HnO3wHARmeQ/j4cEdwbY0FJjk2BXtaEucJost2jTYjAsEEu7lvTRYASKbXGCTC2yxwiYXGGCChJQilas2v8UYeYHHWI7PAdCmQZ0LO0JvAOfiE2yFFQ7HR183RBdC4HB8lEoYYy4+CcAoO0O+BcrMhBNvGsa7XimlHY8t1q+63/b2y/eXJEmSJEmSJEmSJEmSJEmSJEnSzdmVAN22GONVt7/44ouEEF739RuxmyEX3X0CyVW3Zz/+sT2e5FbJiCRsh+RiLzSXkBJIetcfyGn3AnPdn81IJKdNiQEmeBuwM9j2etaZA6DOBSKRKuNMcZxlTrPBAoNMUeUAFzlDmzoFSoxwP5UwTiC5ovltnlMsx+eI5Cxzhs240IsCdq3wEoNhmgmOshRPUwljzHLydecLITDLSaY4ftUGvXGOvOk13ohhZlniWQY4yAov0aBGPS4xECb7+9TjEg1qBEI/GDjM7DWf46Mf/eiuzy3dan5udbvxM6vbkZ9bSZIkSZIkSZIkSZIkSZKkrt1PjLyB3Qq97WYQT3enAuX9HuEW2v45y694JaVESomcjEhGSqkXsev0j00pMcQszbDOg+HRHcG219Ntu3vtscQwIQQm4jGKDLDKKwAMcJAGFykxREKBQOC+8P4dzW9Z7PSb4pY5w0acB6DKOCWGabFOgxobcZ4QYIJjzMdTTHH8TUNwr9egd6uMc4SXeRyAwTDNRpxnkWeoxp3XAjAUpilQ2dH4J0mSJEmSJEmSJEmSJEmSJEmSpJuzawG6Nwu1GXrTW0mRyn6PsOcCkFCgQIWUEm3qZDRJSMh7jXQpBVKKBAITHOUwj15T8DWltOOxxXr3nCEwyv0Mx3uos8QcXyZjiEGmmOAYh/gTzIaTO9aqcZaMFm0abMYFAKZ4+IrWtkWeYSMuMBoO9Y/bq2DctUpDgVlOci4+wQRHCQE24gINav3gXCAwFKY5wFHg2hr/JEmSJEmSJEmSJEmSJEmSJEmSdG12JaXx+7//+2/4ep5f2YQl7aecOznQ+XrXFsjpEMkIBEoMkvXb6HK6Ua6UCuNMcZyD4Z3X3Bo5zCxLPMsAB1nhJRrUqMelfugtCSlJTCkyQIlB7g3vo0CF0XD/FWutxlfYiAssc5o1XqXCKDkZecxIQgrAQJikGsdpUGOTRUY5xDpzb7kAHcAMJ9gKKyzF00xwjNFwiE0WyWiRUmKQKQq9QOdkOHZNjX+SJEmSJEmSJEmSJEmSJEmSJEm6NrsSoHv00Ud3Yxlpz2xxcb9H2GPdIFyHJgCRSCDQoUUkJxD67XTjPEiZETpxixf4XD/oNcws4xy5ajvaOEd4mccBGAzTbMR5FnmGahynxDAt1vuNa0NhmgIVCpQZ50h/jRgj85ziOT7FOnPUuUCLDVJKLPEsCc8zGu9nhPsIIVBimAY1MloA/ce3mhACh+OjVMIYc/FJAEY5tGOfAmVmwglmOHHNoUVJkiRJkiRJkiRJkiRJkiRJkiS9uV0J0Em3m5TSfo+wxwKRCGS0yeiwRaAAdNshE1KSbiccgcACX6UZV4kx9rcPMEkxPM4sJ68IeqWhwCwnORefYIKjhAAbcYEGtX5wLhAYCtMc4CgAM+FEP4wXY+QFHmM5PkckktGmxQYt1olkVBgFoMYLtKkzEY/RYr177t57+VZ+T0MIzHKSKY5T4yzrzF1TMFGSJEmSJEmSJEmSJEmSJEmSJEk3x8SG7krJXfPR3w65dRvnIgF6EbVI7AXnUlJKlBilQJU1zjPCfazxaj/AFkipMs54PEInNtlKVjgcH90RopvhBFthhaV4mgmOMRoOscliPyg2yBQFKgBMhmPMcKJ/7DyneuG5nEa8yCovkdGhzRZtGuRkDHCQIQ6ywQIZTRqsEAgMMgXAMLN7dVNvWBoKTHKMSY7t9yiSJEmSJEmSJEmSJEmSJEmSJEl3hbslRSTtUGFsv0fYI5HtEF3stc1dGqrrRgmrlBgiEOjQYJQHaFFnlZd6x3Q76BpcZIMLTLMJOVSSMWY52T9TCIHD8VEqYYy5+CQAoxzaMU2BMjPhxI4Guyx2+vsvc4YOTSChzDCBlCYrbLFCmzpNVikxwEXOMs5hhsM9FKhQoMw4R27B/ZMkSZIkSZIkSZIkSZIkSZIkSdLt7KYDdH/wB3+wG3PckA984AP7dm7d3mZ5z36PsKcCSS8MF9kZqus20QHk5JSoUuMsGW1SihQok5DQYqPXYBdZ5ClKDDIfK0xxnDS89mskhMAsJ5niODXOss5cv4FumFnGObJjf6B3vhZtGmzGBQKBe3kvDWpAZJMLbHKBLVbY5AI5B0gpUKTCAY4CMBNOXLGuJEmSJEmSJEmSJEmSJEmSJEmSdNOJk+/4ju/oN0ntpRACnU5nz8+rO8M4DwIJ9FvZ7mSBQEJCkW5krtnbmpCQUqAEQEpKRpMWGwBUGGWUQ2Q0aVMno0mTNQKBGi8wHO+hFs4yybErzpiGApMcu+prl1tnDoA6F4hEqowzHY6zxGk24gKDTFHlABc5Q5sGRcqMcD8VDhBImAzHmOHELt0rSZIkSZIkSZIkSZIkSZIkSZIk3Ul2rbIpxrhbS0m3XEaHlDIZjf0eZQ9EAkmvcy7h0uBgJNKmQSQnkpPRIpBQ5QBlhklIGOReWmywzhxttsjo0OAidZZYZ+6aQnJvJKO147HEMBCY5BjFMMBqfAWAAQ7S4CJFhkgoEAjcF97PDCf2JcQrSZIkSZIkSZIkSZIkSZIkSZKkt75dCdAZntPtZpN5wu7lR9/yctoEEgBSCmS0gQjk5LTJe/ciJ+tH7QAarFBhjBJDFBmgxSYdtohkbLHaD73djLTfgNd9bLHeeyUwyv0Mh3uos8Sr8cuUGWKQKSbDMQ7xrcyGkzd9fkmSJEmSJEmSJEmSJEmSJEmSJN25bjpB9Df/5t/cjTmkPXWBrxHJ9nuMPRJ71xpISC/ZHkgpXRKsK5HTASJt6r0wHbTYoMwIBSrktElICaTkdPqht5sxzCxLPMsAB1nhJRrUqMclBsIkAAkpSUwpMUCZQe4N76NAhdFw302fW5IkSZIkSZIkSZIkSZIkSZIkSXe2mw7QfeITn9iNOaQ9tco5Mhr7PcYei0RycnKgG5/rhucCORmRLQIJGS06bLHBPGVGSChQYpgtamS0SBnsbx9m9oanyWKHGmdZjedYjs8RiSQU6bDFIs9QjeOUGKbFOg1qAAyFaQpUKFBmnCO7cVMkSZIkSZIkSZIkSZIkSZIkSZJ0B7vpAJ10O6qzBMT9HmNPRTJiLzy3vSUnp0CFSEZOh5w2kby/X06bNnU2mKdDg5Qyg0yRUGCQg4xzpB+EW2euF7ArMcws4xwhDVf+iokxMs8p5uKTZLQAKIQKtfgCEGlwkYSUSOwH5wKBoTDNAY4CMBNOXHVtSZIkSZIkSZIkSZIkSZIkSZIk6VImUHRX2mBhv0fYJ9uhwQSAlCLdaF2791oAIKdDm5ycjA5Nkt6vihIjDDFLQpEjfBeLPLUjCLdtiWd5mceZ5SQznCCE7roxRl7gMZbjcwC0aVDnAp3Y7J03Y4BJcjokJAwxQyF0Q3sFKgBMhmPMcOKG78D1Bv4kSZIkSZIkSZIkSZIkSZIkSZJ0+zItortSh8ZVt4fnHwIgPvT8Xo6z5wKBCGR0CAS2w3M5OZHYi9F1g3QQSCgwwAQVRtlihXfyF2mGdS7GM8BrQbjtQFo1TtAKCyzEpxjm97gnfiMj4R624hrLPEckZ5kzbMYF4iVNgC02yOkwwASRSIEKo9xPHjMa1BgIE3RiixfDHzAcry/0drXmu22vF/i7HZw5030Pjh49us+TSNfOz61uN35mdTvycytJkiRJkiRJkiRJkiRJktRlgE53pZTyVbcnn/luALKHPraX4+yTSN4L0BUo9UJlkYSEQHJJ69wQBUokpCSkDDHFDCeY58mrBuEa1GhQoxSHGOIgG8yzxSrD8R5e5Y8ZDrO0Y73fAlhlnBLDtFjvTdUNzlXCOO3YIMZIM6xSZpRIzgovQry+0NvrNd9tB/4GmQL+/+z9e5Rdd33f/z8/e5/LnLlqNKO5WLYsZHkAY5ACAfKjgGmaNLe2JIT21zQXmqw2ixBWSJqQ0GZ1kdKEsEIpJW1YNCkJNG0SyIJffim/JiVAnJLwBQcaq4DAtixbwvZcNNLMaM7Mue79+f1xzhxrLNnWZTSjy/PhJZ1z9vnsvd9nz57BrDUvv+CxeB/1sMz+eM81H6LbaNL7xCf/v0DktXe83CY9XTc++clPAoY6dP3wntX1yPtWkiRJkiRJkiRJkiRJkiSpY0tSFgcOHOg9DyHw8MOb27t+7Md+bCtOs0kIgQ9+8INbflzdHEoM7fQIOyqSk5CSUiTphuVyMgrd8FxKiQJlUvroYxdt6hQocxuvYJQDPBI+Q4XdnOYY1TgHQB/DLPMNVnmiG1A7zRrzDDJBg7PkZLSpsxgfpM4SA0wwwV30h/HeXOtxkQWOktFkJN7GCidZCwsMMkmLGquXGXqb4win49M33y1zgoEwyRgHWYwP0hd2Mc3hq/cFuAJPbdLLYqdNbzE+cF036UmSJEmSJEmSJEmSJEmSJEmSJF0NWxKge/TRRwkhEGO8YGDjQx/60JYGOTbOY4BOl2uI6Z0eYZuFp7xKSSlRpJ+ElBY1ElKKDBBIuyG1Psrsosww/YxRoI+UIjVOU2eFAhXW4jw5OQkJsxxhndMEAm1qNFmjBtRZocQgayxSYpCElDorVBjbFJ4D6A/jVOIoNZZY4Mu0qEOEeli57NBbFtvMxvsBNgX+zm2+q7FENc4RAowxw1w8wgR3X3NNbhdq0stoAZEVTl6XTXqSJEmSJEmSJEmSJEmSJEmSJElX07WVDpG2yTB7d3qEbRSAQOg+AiQkBAq0u8G5hBRIAchokNGkTUqRZq+hbo0FZrmfAfZQibtZY4E1TrPGHAlF1lgk0qbJGjktMtoUKBNIyWmxxily2gQikNCkSk7WPfeTSgyxzmnO8gQVdrPMSQqxDFxe6G2J42Q0aVFjLc4DPG3zXTXOMxL29fYbZ2brvxxX4EJNejm3AbAUT15XTXqSJEmSJEmSJEmSJEmSJEmSJEnbIdmqA8UYn/X9rfojXakap3d6hG0UCQQSCqSUCCRE6IbZOu8kFIFIm3p3e0JOiypznOZBzvAwLdYAOMvjrPIEpznGCidp06RJlRpnWGORJqu0aRDohPFarNHHLoqUabFOixqRnCZV1lk8b9omqzSpApDRosEK0Am9TYYXMhr2MxleyAR3AVCN87Sp06bBEsfPO94qswCsc4pIpMLohZvvGCUSWWNh037Xigs16UUigZSEYm/+apzjDMcAmItHyGJ7B6eWJEmSJEmSJEmSJEmSJEmSJEnaWVvSQPf2t7/9Gd//8z//8604jbTFUiDb6SG2SaDIAG3qJKREciJtoEhOm5yMjCaRHIBITiAhkJLRJFAloUBORpnh7j7tbiBunSar5LSJRCACgYxIAFqsscYphpimxhlS+mlTJ5CwHE8yGCZ7U67HRWos0aZOhd00OEuBytOH3uIoNZZYY4ER9rHK7HmtcRnNTY8lhi54hUoMUWPpvPXXiqdr0jtJJ1Q8GV543TTpSZIkSZIkSZIkSZIkSZIkSZIkbZdtCdDdc889W3EaacsMMU0gcPP0GUZyWkTaJJSATgNdmzqdhroCeTdUF7tXJSF2g3SBSE5CiTZ1MlqklEhIabBCizqRDLp9dhv7h3POXOMMu7mTBqvktCjSB8AyxynGPkoM0WSVGksA9DFM0v3xVGLwikJvaffzbjw2Wb3gsTa2P3X9teLpm/RO9dZcbKhQkiRJkiRJkiRJkiRJkiRJkiTpZpHs9ADSTuhnohf0uhlEYrf1LYXu5+7E47LuY6sbJwznBN+eXJeQkpB0A3eBNjXWWewG1mK30S7b9DzvtvsFEnLarLMA5DRYIQI5OW3qrHOGFU5SY4lAYChMMUynPW2YWwiEKwq9DTENQD97CARqLLEeFzet2Wi+CwQGmNi037XiUpr0LrRekiRJkiRJkiRJkiRJkiRJkiTpZrQlDXTS9aafMegGvM6VvfH92z/Mtoi9aNxG01wgISElkHYDb20SEnIgdFvpUlIKVLrrAgkFMhqkFGmwSjgvg7vRQrdxVshok1JgmROUGT6n4S6hzAhNzlJhN8PcymCYpEAfVeYJITAS9/EEX+yF3jqNax0XG3ob5QAn+RwAA2GSapxjgaNU4uh5zXcb5y9QZpQDW3b1t8LTNem9+if2bFp3rTfpSQBvetObdnoE6ZJ4z+p65H0rSZIkSZIkSZIkSZIkSZLUsWMBumazyX333cff/M3f8NBDD7GyskK1WmVgYIDR0VFuv/12vuVbvoWXvOQllMvlnRpTN6glHt3pEbZVJzwXui1xnSBc7IbqOu1yZVqsk9ECIgkFSgwCkFKkQD9lBsloU+N0N1CXEMkIpKQEIpGUYrd5rtNu12m4y7uvcwo06WOEhAJtapQYJKVETkY71ClQpkCZmfBdzPNlstBigCsLvaWhwDSHeSzexxgHCQGqcZ4aS71jBAKDYZLdHARgKhwiDddWvniIaRZ5gH72sMyJKwoVSpIkSZIkSZIkSZIkSZIkSZIk3Sy2PSHy6KOP8q53vYs//MM/ZHl5+VnXDw4O8iM/8iP81E/9FHfeeefVH1A3hWP86U6PsK0ikZw2QDc0VyQl6b3aaKPrrM1JKQCBtBukqzBKmRHWmCcQaNOgQJkWtW6vXUrSPV6BIjmtbngudo8IKSkZDRKKRHIGmSajAQSGmIIYGAxTzITvIQ0FkljYstDbFIeoh2UW44OMMcNI2McaC2Q0SSkxwAQF+gAYDzNMcegqfSUu343SpCdJkiRJkiRJkiRJkiRJkiRJkrSdku082bvf/W5e8IIX8Fu/9VssLS0RYyTGeMG1G++trq7y/ve/nxe+8IW8853vJM/z7RxZN6gVTu70CNusE6GLZN1IW5uMNhnNbgddmUBK6AbqICEABSqUGQECG61ynfa5lAIVUgqklCjST5EKodtyl1AkUOwdrxPPK5JQosIouznIGHdQYoiUImkoMh5mqLPcm3iKQ4yHGQIJY8ywN7yU0bCf4XALo2E/e8NLGaPz/rOF3kII7Ocebg0vI6VEgT5G2MduDjLCvl7Y7NbwMvZzDyGEq/vluEwVRlmMD5LHFjktmqyyzmlWONlrnhsKU9d0k54kSZIkSZIkSZIkSZIkSZIkSdJ22rZkxU//9E/zH//jf+wF5kIIvedPF6LbWAfQbDb51//6X/OFL3yBj33sYxQKhkJ0+VrUd3qEHbARZ0tJKRGJRDIyWkAko9ntiqMbrAvktGhT7wbvOi12JYZo0yAQKDNKk1UikZQiBQIZDdo0gGxTIC+hwDC3sD+8mhFuBQLrcZEFjlKN84yEfQAscZxxZjqht3gPfWEXs/F+AEbYt+kTFSgzFQ4xxaFnDb2FEJjmMBPczRLHWWW210A3xDSjHLgmw2YxRuY4wmy8v9PYFyLr8TRJ93o3WaXCboa5tdc8B9duk54kSZIkSZIkSZIkSZIkSZIkSdJ22pa0yEc/+lF+/dd/nRDCpuDcN3/zN/Oa17yGmZkZJicnGRgYoNlssrq6ysMPP8zf/M3f8Cd/8idUq9Xefp/4xCf4oR/6If7gD/5gO0bXDSqntdMj7IhACgQyMlJSUiq0qdGiRex203XWRBIKBFJarFFkgJwWSTduVqFIgxWG2MsiX6PJGhFIKQKQUiKjQUabSE6BMgNMMMPfY4S9vXn6wziVOEqNJdZYYIR9rDLLODOdea9C6C0NBcaZ6Z3jWhZj5BHu5XR8COgEPwuxj4SUGmcoMkCZEXIy2tRJY5lCuPhQoSRJkiRJkiRJkiRJkiRJkiRJ0o1uWwJ0v/ALv9B7HmPk27/923nve9/LXXfd9az71mo13ve+9/GOd7yDRqNBjJE//MM/5PWvfz2vf/3rr+bYuoHl3aa1m0lCsRtw2+iea5H3muWybldcJzSXUqTEIBAp0E+Bcre7rkQfI0zwAhZ5kD52sZsZqjxBnWUgUKRCIKFBpNM8V6SfMXaxn6Ewdd5cJYaosURGE6D3CJDF9nnBuV3cfs22xV2uC33OIaapx7Oc5iEiOac5xlqc7wYdocQwLaqk9DHEFITAEFPMhO+5oa6NJEmSJEmSJEmSJEmSJEmSJEnSlbjqKYsvfOELnDhxoteE9NrXvpaPf/zjF92MVKlUeNvb3sa3fMu38N3f/d29EN3b3/52A3S6bAmFTUGtG19CSkqJQQLQokabBjktNr4TU4qklEkpUGCAABSoUKQfgIwGBfroZ5xAwh18G+ssklIgIVBikBY18m6bXYE++hhhkCnqLFNmiIT0vMmarBKJNOIqi+FBGnGVJHYa7tbiIjFkm9Yv8gAn+RzTHL7uW9ZijMxxhNl4/3n340I8yhN8iaEwTSuuU2UegAqjlBiiySq17lcvDUXGmOmGGCVJkiRJkiRJkiRJkiRJkiRJkrThqgfovvrVrwKdoEiSJLzvfe+7rMDLa17zGv7lv/yXvP3tbwfg61//Ol/+8pd54QtfuKXz6uYQSHZ6hG220TKXADkJKQkJkU4fXUIgpUSBfopUeA6vYYAxljjJGgs0qTLAOH2MEggQoBgrxJAxFPcyyh2ss8g6i0RyKozSxy5W+AYZLSCSkLIeF+kLo6yzSJ0V1uMZFjlKmwZj3EkaV+ljmAfC/6Aa50koMBD3kFIiDy1SSgwwAcBj8T7qYZn98Z7rMkQXY+QR7uV0fAjohBrXOdVroItAmzqL8UHqLDHABBPcRX8Y7x1jPS6ywFGqcZ6RsA+AJY4zzsxOfCRJkiRJkiRJkiRJkiRJkiRJkqRrzlUP0C0sLAAQQuDOO+9k3759l32sN73pTbzjHe8gz3MA7r//fgN0uiwFyrSp7vQY267TchaBQEqZnBY5Gw1vkTIDjDFDjTNMcDdtGt2OswkyWjQ5S4XdFGIfWWgyynNYCY/RjFX6GSelREaTJlVWmWONUwwyyTC30qbBCf6KdmyQUqRNnSpztKlToI9lHqVIBYBaPEOJQaossMjXKTHEQJwgEFjmBANhkjEOshgfpC/sYprDO3E5r8gcRzgdHyKSc5pjrMV5IrH3/hoLRDrdgXVWqDC2KTwH0B/GqcRRaiyxxgIj7GOVWQN0kiRJkiRJkiRJkiRJkiRJkiRJXVc9QLdr167e8927d1/RscbGxrjzzjv5+te/TgiB2dnZK5xON6s+dlHn9E6PsW0CgUikSZUS/SQUabFORotASkqJpBt+K1AmocgT3AcEKuymyjwZdUoMk5OxzAlW4kn6maBIH1XmKDFIkypV5ohAkQopRdZZpMwuljhGixpF+snJaLBMk3UKlInkrLFIkX6qLFJigGUeJRIpM0ykTYE+SvRTY4lqnCMEGGOGuXiECe4mDVf9x9mWyWKb2Xg/AKc5RjXOAVBhlBJDNFlllVmaVIEcSGhSJScjId10rBJD1FjqhiPpPUqSJEmSJEmSJEmSJEmSJEmSJGkbAnTnNs7Nzc1d8fHGxsZ6z9M0fYaV0tMr0b/TI2yrSCSQk5OT0eo+axGJJAQiGW3qQOAMxxjlADU6rXJV5kgpkVLcFPBa5wzzHCGQMMAEizxIShEIQKRNrRuMO0Wb4712tRbr3QBfvddE12CVIv0U6afFOjltWtSBSD/jDLGXSM4e7qLOEgscpRrnGQmdny9LHL+uWteWOE5GkxY11uI8ABPctalhrh3rzPF/aVGjQIUmVdZZZJDJTcdqsgpASmnToyRJkiRJkiRJkiRJkiRJkiRJkrYhQHfPPffQ19dHvV7n5MmTzM/PMzk5+ew7Po319fXe8z179mzFiLoJ3Xwho9gNy6VAJKNBTgYEctoABFIikbM8wRqnKDJIiSFWOEmRCru5kySkZDQZYII85pzhGAB1lljjNGUGyWjTotZtQstJKVNnhZQCCQUyWiQUKFCmQIU2TVJKVBglEikxQJsaJYbIqJPT6s24ziKDYZJKHKXGEmssMBT38hj3scosWfdYQ0wzyoFrtpVulU575jqniEQqjG4KzwGMsI8zHCPvhhsDCcvxJIPhyZ+f63GRGksEAgNMADDE9PZ9EEmSJEmSJEmSJEmSJEmSJEmSpGvcVU+XDAwM8L3f+738wR/8AXme8wd/8Ae85S1vuezjPfzww73nL37xi7diRN2EAslOj7DNEiKxG5prEcnZCNV1gnUFAgB59+82DZZ5gi8SCRQpM8Re2rEGwCpPsMxJIjkNqjQ4SyCwxhkSEtrUiWQklGhRo9NI1yDQIqXcDdD1U6DEMLeSdsN7Dc5SZICcjEBKicHe9gq7qbNCfxynTZNV5liL8wRSBuMkt8ZvIQmdVspFHuAkn2Oaw0xxiBDCDlzzp9cJFz75WGLovDX9jFNkgCbrJPQBsMxxirGv1wJYYwmAwTBJgT4KlBnlwDZ9CkmSJEmSJEmSJEmSJEmSJEmSpGvftqSIfumXfok07QRb3v3ud9NoNC7rOF/84hc5e/YsIQSe85zncPfdd2/lmLqJtGnt9AjbKqFASqnXvBdISCh1Q3OBQCAn74bs2kQgo0WNJTLqROAsj7HOKWqcoc4KOS0arLLGPC2qxO5eOe1z2uXWabHWO24nMBZJSEgpkdOmTY0+RinSD4Ru21ogp8VG7C0nIxJZZZbH+AKneZBVHmeVWWosscJJHuJ/cjL+FcvxBG3qZDR5LN7Ho/wFMcbtv+jPYOPrsPHYZPW8NUnoBAgB+tlDHyME0t7n3WieGwpT7OYgAFPh0DXbuidJkiRJkiRJkiRJkiRJkiRJkrQTtiVANzMzw9ve9jZijMzOzvJLv/RLl3WcD3/4w73nP/ETP7FF0+lm1GZ9p0fYRgmBQEqBMkOklEgoAHk3SNdpfwuE7nbIaJDTBqDBWWqcYY1T1FhmndMs8wh1zlJniTa17nlyMppk1MnJyGidE8jLSUi76yIZLRqsEAi0WKfNOgX6SCkCOWm3ca1BlYxO4HaZR1jkAU7zEEscp8ZpMlqscYo1FqmywCm+zmPcx2PxPhZ5kEjOYnyQOY5s3+W+CENMA51gXCBQY4n1uLhpzXpcJJDSxzBlhhlgglt5GaNhP8PhFkbDfvaGlzLGDIGE8TDDFId24uNIkiRJkiRJkiRJkiRJkiRJkiRds664qugd73jHRa0LIVAqlWg2m7z73e8myzIGBwcv6VznBugGBgYuaV/pXC3WLrg9PHwHAPGOh7dznKsqpUigQJkRSgx2e+IaZGTd9zda6QJF+gkkvevTaX7Le81xFXaTUafOCjWWes1zOW1arHeDeAnQoE2DTttcgYSkuz10Q3IJbepUGAVgnSVKNCjQR4tIQkqgSIuzNKh2m/BapJRoU6dJlYSUKvNA6J1nkCky6tQ4AxFCgDFmmItHmODua6adbZQDnORzAAyESapxjgWOUomjlBiiyWqvYW6SF1GknyqzDIW95wQRO848nDPKAfYfvIcQwoVOJ11zjh07BsDBgwd3eBLp4njP6nrkfStJkiRJkiRJkiRJkiRJktRxxWmSX/qlX7qk0EYIgTzPec973nPJ54oxEkIgxsib3/xm3vjGN17yMSSAnNYFtyd/9h0AZHe8fzvHuWoCKYGEMoMMs5cIBBLqLBHJyMlJKZJQ7DbORQqUgUiDVSIZgaQbegu0qVOgr9sct0YkAp2gXSDthrtCb/uTgbpA3g3sQSfUl5PRoEokY51F1okUqNDPHuosk3bniGQ0u2G8TvCvCdCbOem26KWUiGQMsZc2dSI51TjPSNgHwBLHGWdmm678M0tDgWkO81i8jzEOEgJU4zw1lqixBHQCjYNhkt0cJJDwfF5LOQyzyiwZTVJKDDHNfX/2ZwSO8bI7/+4Ofyrp4n3yk58EDHXo+uE9q+uR960kSZIkSZIkSZIkSZIkSVLHttUxbYTfgMtuSTp3vxjjlsylm1N4SovXjSwC/YzTpEqRAQqU6FyBEoGMTritDd0GuoQSoRtYi0RK9FOgj5QiLdZpsU5O3gvGRXI6wbt+EgIZLQIJOe3ee5058u45izSoktOiTZ0A5LR7+0AnPBYoUGKAEoPdpjm6IbxAQqEbnkupMEaRflqsEwhU2E2Bvu45I2ssMMI+Vpm9ZgJ0AFMcoh6WWYwPMsYMI2Efayz0wnEDTPQ+x3iY4RZeQgjhvM8Q+NROjC9JkiRJkiRJkiRJkiRJkiRJknRd2JIA3cWG2Qy96VqR0r/TI1x1nSBc0u2FK1JnhTZ1SgyRUiSSd4OEkYw2BUqklGiySotaN6ZWIqFAmSHGeS5Nqt0QW+yuWwfybrNdJ+CW0yanRU5GBJLuGQCKDACRNjWAblNdJHQDfQkFMur0s4eUMoGUKk/0GvCS3jETsm6LYE6LAmUanCUSaXCWCrt7M2001m08XitCCOyP99AXdjEb7wdghH2b1hQoMxUOMcWhyw4eS5IkSZIkSZIkSZIkSZIkSZIk3cyuOED3O7/zO1sxh7Stkp0e4CoLpKQUiN0OuCrz3TBdkQYr3e3tXotcQkogoU2dNs1uSK1IkQECUGaIGstEMgJp9/hFWtBrrYOchBIZje4UkdCbJ6FEPwlptykuJZKRkJ7TPpcBTUoMErsBvRH20WaNjFa3dS4joUCRCnWWWOcMLWrdMGBn/rwb1mux2g0LlgB6j9eSEALTHGaCu1niOKvM9hrohphmlAOkYduKQiVJkiRJkiRJkiRJkiRJkiRJkm44V5zMeMMb3rAVc0jb6lprI9tandha3g2oQaDFOglpt/ktpUw/nV64JgkFCvSRUiLSpkCl2whXpkWVCPQzTiDphtWyXhNdsdvkl5BQZIg2DVLKFOkno0mLOhBJKdPHKGsskNOGbvNcJO8G9frJu41ynbkaFOijxTr97AFyClRY53T380VKDFPnLDltGqwAgUgkIaVJlSbrlBlmgAkAhpjetq/ApUpDgXFmGGdmp0eRJEmSJEmSJEmSJEmSJEmSJEm6oVhtpJtSIN3pEa6aQEIg7YbnIKFASkon5tbZ1qbBABM0WSVQIBDIaBJIKdBHRoNIRkqJIgOsMkcAAgUibSIRyMnJiGTkJFQYI6VITos2jV5LHUCRCg1WSUgpMUCdlW5Ir0SFMQaZABLqLNNghTZ1SgxRZ4l+xilQocQQNc4QiWS0SCn2jltjmUCgSIUmVdo0GGSSwTBJgT4KlBnlwI58PSRJkiRJkiRJkiRJkiRJkiRJkrRzDNDpplSgvNMjXEWdBrqMVjcw14m3AaSUCATa1AkkDLGXhAI1zlCknyL9lBmizllqnKZAhUhOjTN0WuM6WtTIaVFmiCY1ChRpUSWQ0s8eapyhzTplhuhnnDLD1Fjqhu0yEtZISBnjTnaxv3fcCrs4xddocJY26wQS2jS6IcAiJYZpsEJOixZrRPLuMdskFIjQXZ8yxkF2cxCAqXCINPjjTpIkSZIkSZIkSZIkSZIkSZIk6WZjokQ3pUEmOc0DOz3GVRHJiLThnAa4FjUgUqSflCIF+ggk3bUp03wTORlNVslpk9OmnzEaVMlokFKizBAJBRqc7bbAJTRYJaVETk5OG8jIaFGinz6GiESGmKbCblKKNFhljVMEAhXGNoXnAEoMUmaQJmu0qFNhNxlNUkZpUmWQPd14ILSp0WSNQEqZfgIFhpimjxEmuZvdoROeGw8zTHFouy6/JEmSJEmSJEmSJEmSJEmSJEmSriHbEqA7efLkVTnuvn37rspxdeOb4AWc4H+ftz174/t3YJqtttEU12lmCySkFEgoUGcZgEEmKDFIP+NUGKVNgxqngUAkI6VE7EbqIFCgwgCT9LGLJR4hoUSVeSCQUCQhpUg/GS0yGmS0GWSSIfbSpsY0L+YUX2OZE2Q02AjzPd30neDfxuR99DHKGgs0WCGljwJlUvooMwwEKoxSoMQu9jPEFKPcQYEyU+EQUxwihHDBc90I3vSmN+30CNIl877V9cZ7Vtcj71tJkiRJkiRJkiRJkiRJkqSObQnQ7d+/f8sDLCEE2u32lh5TN48Sg0DgybDZjSmjTU5Gm0avdS6jzRoLtGhQYpA2DVKKDDJFhVHWWQIep8opINLHLkbYR0aTQEqJQSrsosU6TaoEEjrBu0iFUTIa1FlhhW9QpJ9pXsxzw/cwyAQPxT8lAHXO0mSVJtXu16KjSZUmVSAwyB4ikVEOMBDGCDFQ4ww1lojklBlkmFvoZ4wm6/Qzxq3hZYzzPIbDLYxygDRYsilJkiRJkiRJkiRJkiRJkiRJknQz29Z0SYw3dlhJ1486SySUyGns9ChXWU7sBgXb1LvbIg3aBIrUOEOJflKKTHAX/WGchXiUAOS0WaFKiypNVoFAjUWKVLotc00iGSUGKNBHRotITkqJEkOE3nlrrDLLLbyYh/kUfYxSpI8WNZZ5lD5GKdBHmzp1lshoUqTCCLfTYIVd3M4wtzAS9rHGAu1Yp8kaCUUCCQkFpsMh7uYfU0iKO3alJUmSJEmSJEmSJEmSJEmSJEmSdO25LuqZntpeZxBPVy6QULgJAnQAkUgg0mlsDCTdV3WqzLObg1QYpT+MA5B0fyxEIm0atKiRskCRAeosk1BgnUWarJJSpsU6LWrdhrtKd9+cnIycjCrzLPJ1bg+vZDQe4DQPMsRezvIYdc7SokZCkZwWGS0K9DHEXlKK3MYreG74bub5CgAj7OsUB3YVKDMVDjHFoS1vubxcWWyzxHFWmSWjSUqJIaZ3rBHvWptHkiRJkiRJkiRJkiRJkiRJkiRpO21LeuLVr371FYVbTp06xdGjRwkhMDQ0xDd90zdt4XS6GUUyItlOj7GN8u5j6IbbApGMQKDKHLu5o7eyzDBzHKFFHQjktKmxQiQSySkyQJM12t0WurTbBFdmmAqj3Sa5ZTKaNDjLABMscwKA54W/z5H434BIIFBjiRY1ICeh2DvGAHsYZJLnhb/PLck3MRUPX/MhsBgjcxxhNt5PRnPTe4s8wEk+xzSHty3sd63NI0mSJEmSJEmSJEmSJEmSJEmStBO2JXly7733XtH+6+vrvPzlL+erX/0qa2tr/Mqv/AqveMUrtmY43aQS4OZsMgykBCAno8QQ6yzSYKX3fkaDJlUSUnLatGl02+SaJBRY4xQZzW6gLqNFnX7GKDNIRpOcNoEEuufIaVOknyWOMx0OU2eZ4/EzJBSpsJsGZ7thvpQywxSoMMKtHAjfynQ4DEAaCowzwzgzO3DFnl2MkUe4l9PxIQBa1FjvXqeUEgNMAPBYvI96WGZ/vOeqhtautXkkSZIkSZIkSZIkSZIkSZIkSZJ2yrVR3fQs+vv7+W//7b/xkpe8hDzPecMb3sBXv/pVSqXSTo+m61Qn/HUzBoYCCSmRnEBCgTJt6qzwDYbjXvoY5SyPU2GU0zxEJCMhJaVE6D42WCOe02jX5CxF+lhljpxWr+0sJ6NNnRZr9DPOKrOMhxmew2uohFEez7/EKk9QZ4WcNgkF+hhhmL3ckrz4umpGm+MIp+NDRHJOc4y1OE88J6C5zAkGwiRjHGQxPkhf2MU0h2+aeSRJkiRJkiRJkiRJkiRJkiRJknbKdRGgAzh06BA/+qM/ygc/+EGOHz/Ob/zGb/AzP/MzOz2WrlMJBSLZTo+xIzqfPQcCDc5SZhctaixwFIB1TtOgSoMqEBhggjIj5LQYYIKEE9Q4TZs6OTmBAhktapwBIoFAiWGKpDSpktEkIekF60IITHOYieRuljjOKrO9ZrQhphnlAGm4bn40kcU2s/F+AE5zjGqcA6DCKCWGaLJKjSWqcY4QYIwZ5uIRJrj7qnzOa20eSZJ048li+4b49zhJkiRJkiRJkiRJkiRJknRzuK5+u/HNb34zH/zgBwF4z3veY4BOl61A+SYN0HW69xJKFKnQosYgE5QZpMkqKzxOkyptGgRSKgzRzxiRnEEmqTAKQIOzRGqkFAmkvV+cDgQSSmQ0adGixCCBlBUeY5znbZokDQXGmWGcmZ24EFtmiePdz1tjLc4DMMFd9Ifx3pr1uMgCR6nGeUbCvt5+V+OzX2vzSJKkG0eMkTmOMBvv7/3HETYs8gAn+RzTHL6umoQlSZIkSZIkSZIkSZIkSdKN77oK0B06dIjp6WlmZ2eZnZ3lC1/4Ai9/+ct3eixdh87yGJDv9BjbLpDQ+dw5kTaQcpYnqLPKLvZ1A3ApgUBKgQJl+tjFIFP0s5ucjIQCK5wAAk1WibRJKFJmiIQiOS1a1IjkBAJlhjkbH6OfPXAN/h71pTSoXGjtSvwGecxYD6eIRCqMbgqrAfSHcSpxlBpLrLHACPtYZfaqBNZWmQVgnWtjHkmSdGOIMfII93I6PgRAixrrnOr9O9EAEwA8Fu+jHpbZH+8xRCdJkiRJkiRJkiRJkiRJkq4J11WADuD2229ndrYTEPnqV79qgE6XpcbSTo+wAzqxuEBCTkaTdcoMkdOmySpV5qmxDEQ6SbdITptAQj+jjDFDCIGz8Qm+wecpUCKnj5yMAmWK9JHQRyBQoI8GZ3tn3jjiteRSGlSAp117iqOd6xY77X4lhi54vhJD1Fjq7f/U42yVpx5/p+eRJEk3hjmOcDo+RCTnNMdYi/NEYu/9ZU4wECYZ4yCL8UH6wi6mObxzA0uSJEmSJEmSJEmSJEmSJHVddwG6Wq3We76wsLCDk+h61mCFjZDYzSKQklDoPqZE2rSpU6RC6LbJBaDFOglFYvdXolMKVFmgyAAj3MZZHiehQE6bIgNAToXdpPR1zxS7x0xIKdHgLGPcyVo4tXMf/ikupUGlxhKRyBmOXXBtHnNy2tQ4Q0aLCqMXPGeTVQBSSpset9pTj79x3p2aR5IkXf+y2GY23g/AaY5RjXMAVBilxBBNVqmxRDXOEQKMMcNcPMIEd5/X6CtJkiRJkiRJkiRJkiRJkrTdrqvfZqxWq3z9618nhE6X1eDg4A5PpOtVRovQDZHdHDrtcwAJKSllWmTktGlRI6NFSpEyuygQyWgSyWmyyiIPMsQUdZapxTMsc5wCFVLWaFOnQB8VRolEUkrd4wxTZ4UaZygzzDC3XnbDWRbbLHGcVWZ7obUhphnlwGX/QvalNKgc5zMQYTjsveDaJqs0qVFhFyucZInjDMdb6A/jvTXrcZEaSwRCL5w3xPRlzf5shphmkQfoZw/LnKDGEutxccfmkSRJ178ljpPRpEWNtTgPwAR3nffvFwscpRrnGQn7evuNM7MjM0uSJEmSJEmSJEmSJEmSJG24bgJ0MUbe8pa30Gg0AAgh8PznP3+Hp9L1apApTvMg2U0SoNtonStSoUCFjBqRnEBCQgGI5LTJqHdXF8loE2mzziKBQIkhINBknTY1ivTTpvP92KLTDLnRwNZpqGvRzxi7uYMQwiU3nMUYmeMIs/H+88J3izzAST7HNIeZ4lAvVHsxLqVBJRKpcbrzueMaayyctzYSqXKKAJQYZp0lTvI50lgipUxGg5w2JQYZCrdQoI8CZUY5cEnX42KNcoCTfA6AgTBJNc6xwFEqcfPnAxgMk1d9HkmSdP1bZRaAdU4RiVQY3RSeA+gP41TiKDWWWGOBEfaxyqwBOkmSJEmSJEmSJEmSJEmStOO2JUB38uTJS94nyzJqtRqnTp3i//yf/8OHPvQhvvKVrxBCIMbI6Ogor3zlK6/CtLoZ7OceHuXenR5j2wQCOe1uTK5GRrsbnKPbIlemjxEyWt02uk4PXadRrkybBkX6aVHrts3lZDQpUCalDERKDAKBjCZtGvSzh4QECCzGB0koAlxUe1yMkUe4l9PxIaAT0FvnVK+BbqM17bF4H/WwzP54z0WH6C6lQWWJYxSoEInUOUOJoQuurbPMOouUGaHJKhnrpPRtuv4ZTUbjc4hEppJDl92e92zSUGCawzwW72OMg4QA1ThPjaVecC4QGAyT7OYgAFPh6s0jSZKufxv/MYONx85/WOF8JYaosXTeekmSJEmSJEmSJEmSJEmSpJ20LYmJ/fv3X1JD1IXEGHvPQwj8/M//POVy+UpH001qihf1WtJuBjltAgkt1gmkpBSgG6qjF4dbJ5KRkxHohKyarJFSpMSubtvcWQa5gxW+AUCBPtrUWeMUdc7SxwhF+lnhZHe/TqgupUibOovxgYtqj5vjCKfjQ0RyTnOMtThP5MmfAcucYCBMMsZBFuOD9IVdTHP4oq7FpTSoVFkg694jGS1G2HfBtaNxP1XmqPIEJQa6ocKsG0YsMsgUBSrdufcwGV8E3Y+dxTZLHGeV2V5A8GJChs9kikPUwzKL8UHGmGEk7GONhU0BxEI34DceZpji0GWdR5Ik3Rw2moQ3HpusXnDdxvanrpckSZIkSZIkSZIkSZIkSdpJ21o5dG4I7lJthGxijHzf930fP//zP79VY+kmlTJAmzqcE8wKD98BQLzj4R2a6mqJRDIycjotcQmBBIgkpGS0SGgQSEhISekjpchGyqtzhTICgZQyI9zKOmcoUqFFjTorZDRYY4ECfd29Uka4jYwWRfpY5pGLao/LYpvZeD8ApzlGNc4BUGGUEkM0WaXGEtU4Rwgwxgxz8QgT3H1RgbNLaVCBjJxAoBMzfLq1LeokFEgp0mCVnLP0Mdy91m3O8jh9jLKXl1Ckwnz4v0zFQ8xxhNl4/3ntLBcTMtxw7NgxAA4ePNjbFkJgf7yHvrCrdy1H2LdpvwJlpsKhZz2+dDVc6L6VrmXes7oebeV9O8Q0izxAP3tY5gQ1lliPi+e18tZYIhB6/743xPQVn1uSJEmSJEmSJEmSJEmSJOlKbWuA7krEGNm9eze/8Au/wM/93M/t9Di6zi2F45RihUY3GrUh+bPvACC74/07NNnVFqHb5ZaQkAMZ7e7znJSEIv2U6CdQIJKTk5FQoEAfFcaos0SFMQaZZp3TJJQoUqHGCi1WyWhSZoSUIkucpESFNjWW4gkiOQkpw9zKLbyERc5vj1viOBlNWtRYi/MATHDXeb+gvcBRqnGekbCvt984M896BS6tQSUlIQU6fX0XWpvHjBVO9F6XGCShwCCTFCjRpklORolB2qEOBGbj/ayxyBLHAWhRY51Tmxri4OlDhuf65Cc/CZz/y/EhBKY5zAR3b3nDnXSlnu6+la5V3rO6Hm3lfTvKAU7yOQAGwiTVOMcCR6nEzf+BA4DBMEmBPgqUGeXAFZ9bkiRJkiRJkiRJkiRJkiTpSm1LeuLVr371ZTUclUolRkZGuO2223jFK17Bd33Xd9Hf338VJtTNph5Xui1p+Q5PslM6wbiUEhktcnJymsRuy1ygQJtlCpRJSGhwlowm/eymSYsC/SRk5LRpUiWSdcNiCXWWgUBKiUAK5EQyUvrIqFOnSp0VVnmCvfGlpLHERPJke9wqswCsc4pIpMLopvAcQH8YpxJHqbHEGguMsI9VZi8qQHcpDSolKhSodPv76hdce5qHaLBKJCMSCCTcysvZE5636XjnBv5W+AYr8RsMhD2c5hhrcb4ba+xY5gQDYZIxDrIYzw8ZXoo0FBhn5qKujSRJ0oWkocA0h3ks3scYBwkBqnGeGku94FwgMBgm2U0nsDcVDhnWlyRJkiRJkiRJkiRJkiRJ14Rt+Y3Ge++9dztOI120VZ6gTXOnx9hRkYycFoGk+7xNQug2pi0DUGaIQEKTKgkpKzxOTkYgZYBxSgwCOQ1Wu/sXSEjJycioUqSfQSZJKdNktdtWF2lQpc4yp3mIFuuciQ+zJzwXgKz7ddl4LDF0wflLDFFj6bz1z+ZSGlRGOUiN00BgmL2ssXDe2lN8HYCEApFImWHGwp2bznlu4G81zrLKLP2MU2eFapwDoMLm81fjHCHAGDPMxSNMcLe/hC5JknbMFIeoh2UW44OMMcNI2McaC5sadAv0ATAeZpji0A5PLEmSJEmSJEmSJEmSJEmS1GEaQzelSKTRDYndnDb693ISkt62hLT7d5EywySkNDhLJJBSJqNOkzWqlMnJaLG6qTmtwSoAGS0y6hTpp8k6TeY2rWtSJRBocJYqBU7wWfbQCdCllDY9NrvHfKqN7U9d/2wutUHlLP0QYTjsJSE5by1E+hghAg1WGGEfCel5590I/K1xipw2LdZpxs5nmOCu8xrwzm2sA1jiuC1ykiRpx4QQ2B/voS/sYjbeD8AI+zatKVBmKhxiikOX1UAuSZIkSZIkSZIkSZIkSZJ0NRig000ro7XTI+yoQIFITiABYvcxoUCZlCIZDVqsk9MmkNJinTZNElLWmKdFjQq7KNFPSh91lrrBuVY3nhdosUaDFQCK9FOgjzZ1mlSps8ISx2nT4OH4Kfblr2AszDDENIs8QD97WOYENZZYj4vnBcxqLBEIDDABwBDTF/3ZL6VB5QDfCgFO89AF11bibmqcocYZygxTonLBc24E/to0eq8jkQqjmz4bbG6sW2OBEfaxyqwBOkmStKNCCExzmAnuZonjrDLb+3eiIaYZ5YCNuZIkSZIkSZIkSZIkSZIk6ZrjbzfqpjTPEQLhnE60m00k0iYQCEBCubst9priNgKGKSVSijRYJadNQkpGizpnqLCLtBuKi0TKDFFnmYwWCSltmrSpM8pzKDEIQI0l2tRpUwciRVYIpHw1fowRbmOSu0kpAjAQJqnGORY4SiWOUmKIJqu99rfBMEmBPgqUGeXARX/6S21QAagwesG1KfM0WWWSuznLE9RYfsbAX+canaVAmRZ1SgxdcMaNxrqMZvfr0bzozydJknQ1paHAODOG+yVJkiRJkiRJkiRJkiRJ0nXBAJ1uSg1WoduTdvOKRAI5GQmBQEogIaNFTpsiFRKKFOmjxFAv9NYJciUEElrUgDMAvTa4NjUiOTk5CRk57V54rso865zqNd9FcmqcocQAa5xikEme4P/0WvHGOEgIUI3z1FjqBecCgcEwyW4OAjAVDl1y28mlNqg83drbeSUn+X+IZOTkzxr4i0ASawwwwTIne810T7WxPaW06VGSJEmSJEmSJEmSJEmSJEmSJEkX74oDdN/6rd+6FXNcshACn/70p3fk3Lr+Fajs9AjXiJxIQk67GyeM3UBd0mt2A2iyRh+7iXSCXYGUPnZToI+EIjktCvRBN4DXieZ1WuxqLHGWb5DRZp1Fsm4rXedMOYFAmzqnOEpKiTEOEmMkCSmQM8YMI2Efayz0QmsDTHTPB+NhptcSdzkupUHlgmsDZLHJY/G+iwr8rXGKIhX6wzgr8RvUWHrGxroBJgAYYvqyP6MkSZIkSZIkSZIkSZIkSZIkSdLNKsQY45UcIEkSQtjeJq8YIyEEsizb1vNqa331q1/l7rvv7r3+yle+wgte8IJtOfdvZ9/Go/wFkfa2nO9aFno52kgn6hVISIGEIn2UGaHEADlt2tRpUqVNkxL99DFKmSEikRbrtKlTZ4k2DQIFIm0CgSKD5LRIKRPJCN3mu0hGH7soM0igyDC3MMZBxsPzSGOJiXA3C3yl23q3WYEyU+EQUxy6qJ9BWWxfVNPc5Ygx8ih/wWJ8EIA29acN/I1yByvxJHlosciDVOMcABXOb6wbClOMMUOBMi8KP3jFc0qSJN2IdvL/V0iSJEmSJEmSJEmSJEmSpGufaQzdlPbwfB7lL3Z6jGtCJ0QY6AToOn/ntEko0KbAEAP0M06NM9Q4QyR036uTkJBSZp1T5LQIBCCQ0yLSJBIp0EdOk5wMiL2zRCJF+qgwSiClzBBV5llnkSQWGOUO+sIwh/ihKwq+xRiZ4wiz8f7zgniLPMBJPsc0hy86iHchIQT2x3voC7uYjfcDMMK+TWvODfzNhSMX3VgHMBUOGZ6TJEmSJEmSJEmSJEmSJEmSJEm6DFuSyLjCEjtp2+3hBWwExgTnX4vYDdG1OMvjlBkhUKBFnYw2BYpEcqrMs8YikZyMNi3WgYzYjdl1jlLvhu1SAmmvga7IACWGaVEHoMJuCpRp02Cer5CTMR6fy3gywzidP5f8qWLkEe7ldHwIgBY11jm1qRkO4LF4H/WwzP54zxWF6KY5zAR3P2vgbyoeoh6WWYwPMsYMI2Hf0zbWjYcZpjh0WTNJkiRJkiRJkiRJkiRJkiRJkiTd7K44QPfII49sxRzStqpzhoQCGdlOj3INi7Spk9Fkjvsp0E8kJ9LsRuQy8m4YLpKT0yYnpxPGC0BOIOkdK6cN3ba7IhUg0mSVAmVKDFLjDE3WiGT0MUKVeRb5OrfHV152A90cRzgdHyKSc5pjrMX5XgcewDInGAiTjHGQxfggfWEX0xy+oquWhsKzBv4utbHuckN9kiRJkiRJkiRJkiRJkiRJkiRJN7srDtDdfvvtWzGHtK3muJ+UChmNnR7lGtcJyrVYI6PVbZFLiGRAOOcxdoNpG+G0vBujSwiEbvMc3cBdJKPZXZVRZpghbiGjSZ1lMpo0OEs/e3gs3kdCsXueJy3yACf5HNMcvmDALIttTscH+TJ/QJs6Z+MsbeqUGKSf3ZQYoskqNZaoxjlCgDFmmItHmODuZw3mbYVLaayTJEmSJEmSJEmSJEmSJEmSJEnS5TGdoZtSjSXs9Lo0OS1ymkA4p1kusNE492TILfTWJN11ObG7tdNFl9EikFBmiJQSDc5SoI+UPjJaZLRZ5QnKDPce1znVC5gNMAHAY/E+6mGZ/fEeQgjEGJnjCLPxflbiN1jhMTJarHCCSGSY2+gLuxjhViCwHhdZ4CjVOM9I6DTALXH8GdvjttrFNNZJkiRJkiRJkiRJkiRJkiRJkiTp8hig002pzBCQ82QATM8uPuWx00/XuYIZG0G6Triu00aXUCChSIsaOW3CU2J0GS0arJDRIKNJgT7KDNOmTk6TIaaYj1+hQKnbcNexzAkGwiRjHGQxPkhf2MVUPMQj3Mvp+BAAVRaocYYaSzSpUmE3RfpYio/QCuuMM0N/GKcSR6mxxBoLjLCPVWYNs0mSJEmSJEmSJEmSJEmSJEmSJN0gdjRA96UvfYm/+qu/4ktf+hILCwssLS0RY2T37t2Mj4/zkpe8hL/1t/4WL33pS3dyTN2ABpnG/Ojli+QA3bDc5i6/QNJro8vJiTR7Abt4TmAxktFijYwGJYYoUiEQKFKhyjyDTLLGaSBjkGkqjFJiiCar1FiiGucIAcaYYS4eIafNaR4iknOaYyzyNRqs0mSVFjUAUvoYZA/VOE8x9DPCbZQYosYSGU2A3qMkSZIkSZIkSZIkSZIkSZIkSZKufzuSIPrgBz/Ie9/7Xr72ta9t2h5jJ1gTQieQ83u/93sAzMzM8DM/8zP883/+z3vvSVdiLy/mKP8fGqRAe6fHuU7FXpDuySa/cN62Ns1u8xx0Wv82mupSEgpAIKdFwgglhqgyT0qpG5Y7S4lhJriL/jDeO/N6XGSBo1TjPCNhHzkZx+Kn6A+7Oc0xqnEOCJToJ6Gwqe0uAANMcDY+xlC4hSarAKSUNj1KkiRJkiRJkiRJkiRJkiRJkiTp+pds58lmZ2f51m/9Vn78x3+co0ePEmPsheagE5w7NyC38f4DDzzAT/zET/Ca17yGxx9/fDtH1g3q+Xw/KSUKFHd6lOvYRmhu4w9ATiQjkhPJyWj1tm1eR3cdFBkAAk2qtKkDnRBb5+iRQSY3hecA+sM4FUaJRNZYYJ1F1lmkRY21OA/AJC9kiL0McysVRilSoU2DBmfJaZPR4nR8iBpLBAIDTAAwxPRVu2KSJEmSJEmSJEmSJEmSJEmSJEnaXtsWoFtYWOBVr3oVf/EXf0GMcVNYbiMo99Q/8GSoLsbIZz/7WV71qlcxPz+/XWPrBrWeLLCb59AJgW1rjvQGEZ/h9ZNhOnptdOcKBBI2mufa1Agk5DTJaHeDjSUgkJAyzC0XnKDEEAAZTeqskNNmnVNEIhVGGeNOEgqkFCkxTEqZNjVqLLHCSc7yOPN8BYDBMEmBPgqUGeXA5V8WSZIkSZIkSZIkSZIkSZIkSZIkXVMK23GSGCOvfe1rOX78+KZA3F133cXrXvc6Dh8+zO23387Q0BAhBM6ePcujjz7K3/zN3/Cxj32MBx54oLfPo48+ymtf+1o+//nPb8foukGtxMcYYR+LfJ11muQXDHrpmUWebKE714W2nfvuRoBu4yg5ORmBQEaDCrsoM0xCSh+jtFi/4HGarAKdtrqMKgkFMppAJ1yXhJSReBtLPMIgewhAkzVarFFnhRKDlBliKEyxm4MATIVDpGFbfixKkiRJkiRJkiRJkiRJkiRJkiRpG2xLUuR3f/d3+cIXvtALwe3du5f//J//M9/93d/9tPu85CUv4fu///v55V/+ZT7+8Y/z5je/mfn5eWKM/PVf/zUf/vCHecMb3rAd4+sGtMwJIhnjPI/HuI+cnEAgku30aNex0H18+vDck41/kdD98dO57m0K9FNhF0PspcU6u7mDGkvUWGI9LtIfxntHWY+L1FgiEBhgghZ1+hghowE8Ga4b5lZarFNlngEmaFNnHSgzRIVRdnOQMWYAGA8zTHFoay+JJEmSJEmSJEmSJEmSJEmSJEmSdlTy7Euu3K/92q8BnSa6yclJ/vf//t/PGJ57qte97nX8xV/8BWNjY70Q3sYxpcvR4CwAa5yiSIUKuynQzzZ9S9xAAk8G5xISigTSC64LpCQUSCmRUOptzbuhxUCBEoNU2MUEz2cy3M1gmAJggaPMxy+zFB9lPn6ZBY4CMBgmKdDHAHvoZ5x+9hAIvdBdCIExZhjlObSp06ZBmUF2cTsVdjMQ9lCgzK3hZeznHkIIF5hdkiRJkiRJkiRJkiRJkiRJkiRJ16urnhY6ceIER48eJYRACIFf/dVf5TnPec4lH+fOO+/kne98JzF22q2+/vWvc+LEia0eVzeJMsPUWCLS7m7JSSiQUODJQJieWej+k5BSpswgCSkJRRKKm9ZBIKVEkQFSiiSkBBIiebf1L6HEAKMcYH+4h8PhR4DAGAcZClO9UNwKJ3vNc0Nhit0cBOAAf4diqFCkwkCYBJ4M3S1zgjrLpJQYZJJd3M4gU4xwG3fx/bwo/CDT4bDhOUmSJEmSJEmSJEmSJEmSJEmSpBtQ4Wqf4L777gM67XOVSoV//I//8WUf65/8k3/CT/3UT1Gv1wH4whe+wO23374lc+rmMhz3UmeFQIE2dTIaRCKG5y5FJzoHgTJDlBikTZNIRos1WuSb1hXoIxDIaJHTJqdNJJJQoMwQw9zCKM/hlvBipjhEkyqL8UHGmGEk7GONBTKapJQYYIICfQCMhxn28hJSCjwW72OMg4QA1ThPjSVqLAGQkDIeZtjNQQIJt4aXMRnu2plLJ0mSJEmSJEmSJEmSJEmSJEmSpG1x1QN08/PzAIQQOHjwIH19fZd9rP7+fu68806+/OUvbzq2dMlCpByHWeaRbqArApHw8HMIROIdD+/0hNe8QEpCmSIlhriFlDKBQIOz5wTlsm7bXKDFOiklAgGIxG7ArkCJIhVSyuwLr2CKQ4QQ2B/voS/sYjbeD8AI+zadv0CZqXCot34qHqIeli86dDfFoe28XFfNsWPHADh48OAOT3J5sthmieOsMtv7Wg0xzSgHSMNV/58o7ZDr/b7Vzcd7Vtcj71tJkiRJkiRJkiRJkiRJkqSOq55OqFarveeDg4NXfLxzj7G2tnbFx9PNKaFIkyot6t3OuRyIJH/2dwHI7nj/Dk53PUhISClSYYTbGOe5FCjTpMoK36BNg4QqkZzQXZuT91rnIu3uUVISCrRpcpBv50D4VkLofEVCCExzmAnuvqiA1eWE7m4En/zkJ4Hr75fjY4zMcYTZeD8ZzU3vLfIAJ/kc0xy+ob5WetL1et/q5uU9q+uR960kSZIkSZIkSZIkSZIkSVLHVQ/QjY+P955vRWPcuccYGxu74uPp5tSKNZqcBSI5GRB3eqSrJpD02t627pihe9wWbZr0s5vJcDdVFkhigRbr1DhDRiACGW0SEiAl0iIS6XTYlShQYYS93M6rLhiUSkOBcWYYZ+bZ57rE0J12RoyRR7iX0/EhAFrUWOfUprZAgMfifdTDMvvjPYboJEmSJEmSJEmSJEmSJEmSJEnSZbnqSZLbbrsN6AYmHnmExx9/nL17917WsU6cOMHx48d7r2+99dYtmVE3n1McJacN3T60jhsxoJOQ0EdOg0i2RccMRHKKVOhjhACsc5r5+BWK9FNlgax7bQuUyWgRaRMpAhmdSF+BhJSUPgqUuZ1XcyocZTp+05YE3C4ldKftN8cRTseHiOSc5hhrcf6c70NY5gQDYZIxDrIYH6Qv7GKawzs3sCRJkiRJkiRJkiRJkiRJkiRJum4lV/sEr3rVqyiXy732oHe/+92Xfax3vetdvefFYpFXvepVVzyfbk7rnKHJOoG0uyWc8/xGkZBS6rW9bU1AsHOdEgpAoI9RIKfJKjWWOMvjFCiTkNLHLgpUSEgp0k+BCkUqlOhngD2McBtlBhlgD4NM0qbBEsefbQBd57LYZjbeD8BpjlGNc0QiFUYZYR8VRolEqnGOMxwDYC4eIYvtHZxakiRJkiRJkiRJkiRJkiRJkiRdr656A11/fz/f8R3fwR//8R8D8Bu/8Ru8/OUv5wd+4Acu6Ti/+Zu/yW/+5m/2gnh/5+/8HQYHB7d8Xt0cMurdZ+e2z+U7NM3VEonkQE4gAMllttCF7t8JgaTbHlcActqsU2KIMrsYDbeT0WRXvJ0CZc7yOOssknSDfCUGCQQKVLrHSinSxxDTrIdTjLCPVWavemtcFtsscZxVZsloklJiiGlGObAl7Xd6ZkscJ6NJixprcR6ACe6iP4z31qzHRRY4SjXOMxL29fazUVCSJEmSJEmSJEmSJEmSJEmSJF2qbUmLvOMd7+ATn/gEMUayLOOHf/iH+cxnPsNb3/pWZmaeORDxla98hV/5lV/hox/9KAAxRpIk4R3veMd2jK4bVEabIv2sc6a7JRK3pKHtWhLJyZ7yqTZKJy8lLBi6/yTdNrkKKWUiOQkFAiltaoywb2M5zVglp01CgZwWKX0U6COSEUgpM8genkckssI3yGgC9B6vhhgjcxxhNt5/3nkWeYCTfI5pDjPFoV5QV1tvlVkA1jnVa547NzwH0B/GqcRRaiyxxsK2hSslSZIkSZIkSZIkSZIkSZIkSdKNZ1sCdC960Yt429vexjvf+U5CCOR5zm//9m/z27/92zz/+c/n8OHD7N+/n8HBQUIInD17lkcffZQvfvGLHDt2DOiEX0IIhBB4y1vewkte8pLtGF03qGFuoUClGyfbCJPFp9/huhWBhISETngu70YFS2Q0uJjP3InOdYJyKcVeg1xOiyIDjPIcRriN8fDcXqNbkX7GeR4r8SQLHCUhZVfYR6BAHyP0M05Cynz8MgAppU2PW34VYuQR7uV0fAiAFjXWOdWbd4AJAB6L91EPy+yP9xiiu0qeGpYsMXTBdSWGqLG0LeFKSZIkSZIkSZIkSZIkSZIkSZJ049qWAB3AL//yL/P444/z4Q9/uBdMiTFy9OhRvva1r11wnxg74Z6N4FyMkR/6oR/iPe95z3aNrRvULXwzX+YjtGnt9ChXWez9XaRMgT5arHeb4PrIaBHJePogXUJCgRID3deBIhUanCWhRJkhAoHJcDfPCff09lrkQR6J9zIYpjgbHyMSGYgTm5rG1uMiNZYIhF6AbYjprb8EwBxHOB0fIpJzmmOsxXniOZ95mRMMhEnGOMhifJC+sItpDl+VWW52Tw1LNlm94LqN7Vc7XClJkiRJkiRJkiRJkiRJkiRJkm5s2xagA/id3/kdvvmbv5m3vvWt1Ov18xqezg3MnfsYY6RSqfBrv/Zr/ORP/uR2jqwb1EjYSx7bBCBQINIGIHvj+3d2sKsgkHRb5FJyWsRu415C2m2Saz+l3SsC4Zx9EzJa3SOUaFMnklNmkAq7SShyCy/edM5RDnCSzwEwECapxjkWOEoljlJiiCar1FgCYDBMUqCPAmVGObDlnz+LbWbj/QCc5hjVOAdAhc2zVOMcIcAYM8zFI0xwN2nY1h+Rl+VNb3rTTo9wSYaYZpEH6GcPy5ygxhLrcXHHwpXaGdfbfSt5z+p65H0rSZIkSZIkSZIkSZIkSZLUse3pkJ/8yZ/kH/7Df8h/+k//id/93d/lxIkT563ZCNIB3H777fzTf/pPeeMb38jk5OR2jqobWBYzoNNq1aJ+zjuBp29ju94EAgUKlIlEcjISUhJS2jSANucG5TYeI7G3NRCIZOREUspAoEWNMsMMcysJBXbzHMbCzKYzp6HANId5LN7HGAcJAapxnhpLveBcIDAYJtnNQQCmwqGLDqxlsc0Sx1lllowmKSWGmGaUA+cdY4njZDRpUWMtzgMwwV3nBbYWOEo1zjMS9vX2G2fz59KVu1bClZdyD0mSJEmSJEmSJEmSJEmSJEmSpOvXjqQEJiYmeMc73sE73vEOHn/8cf76r/+aU6dOsbS0RIyR0dFRJiYmeOlLX8revXt3YkTd4ObDEUpxgJQ+EtbIe61rN0p4riOlQIEKOW0iGSklctoE0m44rtNGV6QC3bBcQpnOddgIzUUS0u4RA2VGGWEfg+xhkEmeG/7+BQNHUxyiHpZZjA8yxgwjYR9rLPTCSgNMUKAPgPEwwxSHnvXzxBiZ4wiz8f6ntObBIg9wks8xzWGmONRrsFxlFoB1ThGJVBjdFJ4D6A/jVOIoNZZYY4ER9rHKrAG6q+BqhyufzeXcQ5IkSZIkSZIkSZIkSZIkSZIk6fq14zU7e/fu3RSSW1tb4+GHH6ZWq9Fut8nznCRJdnBC3YiqzFNmGOi0riUUupGx9s4OtmUCkBJISUiIJGy0zWW0AEgokpASSCjST0KRNnUqjFFhlBqLBAqkFGlTA6CPXQyxlyL9jHArB8K3Mh0OX3iCENgf76Ev7GI23g/ACPs2rSlQZiocuqiwUoyRR7iX0/EhAJpxjdM8SI0lAgn9jDMQ9tCKNephmf3xHkIIvZDUxmOJoQsev8QQNZbOW6+tdzXClRfjqfdQixrrnNp0XoDH4n2b7iFJkiRJkiRJkiRJkiRJkiRJknT92rIAXb1ep9ncHDgZHh6+6P0//vGP8973vpfPf/7z5Hne2z46OsprX/ta/sW/+Be84AUv2KpxJYpU2IjGxG58jnO2XN8CKSkFykCniS7SCc91Plmncy+hSJlh9vBcSgwRyQmklBmixTpt6pQYBKDEICkl+hhhmL3ckrz4WYNvIQSmOcwEd7PEcVaZ7YWV+uMeArDGKR7mU6SxxBDTjHLggm1jcxzhdHyIPOZ8g89xmmNEst77SxynFIcZZppVnqDMCLeEbyKl1L0GnccmqxecdWP7U9dr6211uPJibdxDkZzTHGMtzne/9zuWOcFAmGSMgyzGB+kLu5jm8JacW5IkSZIkSZIkSZIkSZIkSZIk7YwtCdDFGHn+85/PyZMne9vuuusujhw58qztca1Wix/5kR/hox/9aO9Y5zpz5gwf+tCH+K//9b/y5je/mfe85z020umKDTJ5TpgMOhG6nOs/OPekpBuEy2jSpkFKkYQCgUCgQIEiRSpUGKXIIAX6aNOgyhyQs4e7mObFjCd3bgq+PVPI7emkocA4M4wzQ4yROY7wOPd1Wt7OueSLPMBJPsc0hzcFp7LY7gatIo/wGZY50TkuZSJt2tTJaJKTEYA8ZnwlfISJ/G6GwjSLPEA/e1jmBDWWWI+L9Ifx3nnX42K3yS70WsiGmL7Cr4CeyTOFKy/nHns2T95DcJpjVOMcABVGKTFEk1VqLFGNc4QAY8wwF48wwd1bOockSZIkSZIkSZIkSZIkSZIkSdpeW5IK+PSnP82JEyd6rwcHB/nDP/zDiwq6/fiP/zgf+chHeq+frmkoyzJ+/dd/nePHj/NHf/RHW9ZIpJvTVHwR9/EBSvRT58w1Gp4LXN5MCSkFAilN1qgwSkqZjAZtakDeXdNHJFJnhRVOMMpzqPIETdapU2aRB2iFNUbYy35evSXfczFGHuFeTseHAGhRY51TveDURnjtsXgf9bDM/ngPIQSWOE5GkzPxYVY42f2UJXKaRCIJRXJy1jlNizX62MVKfIyHwv9khu/hJJ8DYCBMUo1zLHCUStwcnAIYDJMU6KNAmVEOXPHn1bM7N1x5NW3cQy1qrMV5ACa467wg5QJHqcZ5RsK+3n5XezZJkiRJkiRJkiRJkiRJkiRJknT1bEmV2x/90R8BnfBbCIGf/dmf5XnPe96z7vdnf/ZnfPjDH+7tF0IgxnjBPxvvfeITn+Df/Jt/sxVj6yYWQoE+dnUbyzZypNdKKDMBUq5knkBKBCI5kUhGq9u4l/fWZDTIaVNmkJyMZU5S5RRNquS0yWlTZIDH4n08yl+c1w55OeY4wun4EJGcRR7kifhFluKjnI1PsBQf5fH41yzyYOf9+CBzHAFglVlyMk7xte7nafbCcyX6qbCbfkZJKdKi1gvZfSN+HoDpcBiAMQ4yFKYIBGosscLJXvPcUJhiNwcBmAqHbB27wawyC8A6p4hEKoxuCs8B9IdxKowSiayxsGk/SZIkSZIkSZIkSZIkSZIkSZJ0fdqSAN2nP/3pXsBtbGyMn/3Zn72o/f7tv/23vecbQbmXv/zl/I//8T944oknWF9f5/777+cnfuInNgXsfuVXfoUHH3xwK0bXTWo9nGKE2wgEivSRUKTz7XA5obWtDN4FigxSYYQCJTpBukvZOyEhpcwwFUYpdxvWIhmRSIEyZXZRZLDbxrXOGous8gSn+DotqtBrpTtJLS6dF2a7XFlsMxvvB+A0x6jGuV6QaYR9veBSNc5xhmMAzMUjZLFNRpN1FmnTJCcjpwXAENMMsZd+xhhiL4NMAdBglZw2LWoscZwpDjEeZggkjDHD3vBSRsN+hsMtjIb97A0vZYzO++NhhikOXdFn1bUno7npscTQBddtbH/qekmSJEmSJEmSJEmSJEmSJEmSdH264oqlpaUlHnjggV7A7Qd/8AcZHBx81v0efvhh/vIv/7IXigsh8A/+wT/gYx/7GEnyZK7vRS96Eb/xG7/BK1/5Sn7wB3+QEAJ5nvPOd76TD33oQ1c6vm5SGc1uc9kYDaoUKJOTk9Mkpw08W9ta6K5JLmLtxQukDLKne8xOT1qbJpH2Re1boEIfI/QxSol+MprUWaZAHyUGuhOnNDjLOqfJyaizREKBTnivnxH20aZBkX7WWCDphs7m4hEmuPuym9mWON4N7dVYi/MATHDXphaw9bjIAkepxnlGwr7efikl6qyQkJJRJ6PFAP2U2PyzJpCQUgICDc4yzK2sMst4mGF/vIe+sKsX4hth36Z9C5SZCoeY4hAhXCtthNoqnfviyccmqxdct7H9qeslSZIkSZIkSZIkSZIkSZIkSdL16YoDdF//+tcBeiG47//+77+o/T7xiU9sel0ul/nABz6wKTx3rh/4gR/gf/7P/8l//+//HYCPf/zjfPCDHyRNL62hS09vbW2Nz372szz22GOcOnWKsbEx9u7dyyte8QpGR0d3erwtlVIiJ2OQCWqcoUkgo9Xtkgu9hrOnD8dtbA/dP9mWzVagRAQKVIhEItAm750zkAKRSN6bIaVEiX4KlBnnuQBkNEgpklCkzABD7KXKPE3WGGCCIgOsMU+DVQIJg0wzyBT9jDMYJumPu1nga+eF2caZuazPtcosAOuc6jXPnRueA+gP41TiKDWWWGOBEfaxyixDTBNpU2KISCSjSd77/B1NqrRYJ6FIgT4iGX2M9BrEQghMc5gJ7maJ46wyS0aTlBJDTDPKgcsOB+raN8Q0izxAP3tY5gQ1lliPi+cFOGssEQgMMNHbT5IkSZIkSZIkSZIkSZIkSZIkXb+uOC1y7Nix3vNyucwrX/nKi9rv05/+dO95CIHv/M7vZHJy8hn3+amf+qlegG5tbY0vfvGLvPzlL7+MqW8Mhw4d4v/+3/8LwLvf/W5+7ud+7rKO88QTT/C2t72Nj3/846ytrZ33frlc5u/9vb/Hr/7qr3LnnXde0czXiiGmSShQYogS/bSpEwhEygTWaHdjWvEZ2uU6QbZwTpBtqyQkQIkBEhIiGTkZsRvSC93QXqdtrUyJge7rwC6ewxSHSSkyzK3Mcz9LnOiE4phinBnaNHiCL9GmTkKJhAIFKhSpEIDR8BxGuBVCoBLnzguzXW6AbiPItvFYYuiC60oMUWNp0/pRDlCgj5QiZYZosU6VOQIJBfpoU6fFOkA3NJiSUqaf8fMaxNJQYJyZy/4cuj6NcoCTfA6AgTBJNc6xwFEqcZQSQzRZpcYSAINhkgJ9FCgzyoGdHFuSJEmSJEmSJEmSJEmSJEmSJF2hC9e9XYKVlRWg2+40fXFNPTFG/vIv/5IQAjF2Akrf8R3f8az7ffM3fzMDAwO91w899NBlTHxjWFhY4OjRo1d8nD/90z/lhS98Ib/7u797wfAcQKPR4GMf+xgvfvGL+chHPnLF57wWjHKgG64qUmGMjFY3pNYikJJSJDzjt0cgUOxG3bZOJFKgTNoN75QYpkAfxe7rIn2UGKTIIGWGGGSSMoP0McIEz+du/hF7wnOZDHdTCCUGwxSDTDLAOONhhsEwxa5wO2PMMMgUCQkpBcoMM8gUE9zNCLdBt4tvI+T21PDb5dgIsm08Nlm94LqN7eeuT0OB2/h/ATDCPopUyGhRZ4kaZ2ixTug28aWUCAT28DySkNogJqATnJwOhwEY4yBDYYpAoMYSK5zsNc8NhSl2cxCAqXDIVkJJkiRJkiRJkiRJkiRJkiRJkq5zV5z+WV19MgRzsQG6L3/5yywvL2/a9rf/9t9+1v1CCNxxxx2912fOnLm4IW8wWZbx0z/907Tb7Ss6zv3338/rX//6867jrbfeystf/nL2799Pkjx5i1SrVX7oh36Iz372s1d03mtBGgocDN/W7S8bpkQ/EGnTIO+G6BKKvZa5cwXS7vas+144b83lCiREclKKFBmgxRpN1olkJBToNN5FChQpM0xCCnQCgVMcphgqFChzCy8GoJ89vZDQelx88vN3Q2YpZQr0089uygxRCaOb5rlQmO1ybQTZnm4mgPW42AsyDTCxab87+W6GuZWUEkPcSoXdZLTJaZFQIKXUC/jt4nZGucMGMW0yxSHGwwyBhDFm2BteymjYz3C4hdGwn73hpYzReX88zDDFoZ0eWZIkSZIkSZIkSZIkSZIkSZIkXaErDtAVi8Xe80ajcVH73HvvvZteT09PMzMzc1H7Dg0N9Z5Xq9WL2ud61263WV5e5siRI3zgAx/gZS97Gb//+79/RcdsNBq8/vWv39Q697KXvYy//uu/5hvf+Aaf//zneeSRR/ja177Gd37nd26a5R/9o3/0tG1115Nbwku4PbySFnUGmaLEUDeIVabEYK+JbiNIF0i67w30/qSUSCiyVQE6gDpLrLFIjdO0qZGQELp/IrHbGlemQB8pZcaYYTLcxVi4E+i0Zo2FGVJKFKkwECYBWOAo8/HLLMVHqTLHKrO9drs2DdrU6We8N8czhdkuxygHnnGm+fhlFui0Kg6GSQrd1r2NAFwhKfLC8P9mlOcwzHQ39DdIQpGcNm0aJKSM81z28xpCCDaIaZMQAvu5h1vDy0gpUaCPEfaxm4OMsK93z90aXsZ+7iGErfu+liRJkiRJkiRJkiRJkiRJkiRJO+OKkyVjY2MAxBg5fvz4Re3zqU99qrdPCIFXv/rVF32+ZrPZe97f338Jk16/zg0pbpUPfvCDPPzww73Xd999N5/61Kc2BRQBZmZm+OM//mP+7t/9u73g49zcHL/5m7/Jz/zMz2z5XNsphMCL44+xwFG+wee7LXR0W90CGQ2gRJsGUCSh1A2vFSnQR05Gi3Ug0qRFJ0QXr3CqnJycIiltagQSSgwRyYjk9LObEsOkFCkzwiAT7OWlFKkA9FqzQghMc5jH4n2McZAQoBrnqbFEjSUiOQkpfYwQ2UWDVVrUOBWPUmKIJqvUWAIuHGa7HGkoPONMAIHAYJhkNwcBzgvATYfDNMIKC/nXWGeRNU6xziIQ6WMXY8xQCgObroV0ro3vjQnuZonjrDJLRrPbbDjdCXoaupQkSZIkSZIkSZIkSZIkSZIk6YZxxSmBO++8s/d8eXmZL33pS7zkJS952vVLS0t86lOfIoRAjJ2w0Wte85qLPt/Jkyd7z58a9tLF+8AHPrDp9b/7d//uaa9nsVjkfe97H4cPH+59zd773vfy0z/909d9Q1OSJDwv/wcUYh+P8f9w5uFAIKV8xxIQaVEjJych6Ta+dRrnEgrktIBITrvbDpdf8TyBhH4mSAhEMiDpxvI6DXgJ5W4rXsoot7M3fDMQKFBmKhzqhecApjhEPSyzGB9kjBlGwj7WWOiFhUbirZzlCSDSzxgJxUsKs12OZ5tpgAkK9AEXDsCFENgf76Ev2cVsvJ9BJs87x4WuxY3s2LFjABw8eHCHJ7m+pKHAODOMc3Htp9pa3re63njP6nrkfStJkiRJkiRJkiRJkiRJktRxxQG6l73sZZTL5V4z3Hve8x5+7/d+72nX/5f/8l+o1+ubgi3f8R3fcVHnevzxx5mfn+/tu3v37iuY/Ob10EMP8eUvf7n3et++fc/6NXjRi17Ey172Mr7whS8A8I1vfIP777+fb/qmb7qqs26H4XALo+xnIO7hf//ZPE0io3fcT4Eya8yTUqRNjTYNAgkVxki6gbYap2lwlkDods9dWQtdINBghQqjVNhNgQqh+09HQoVdjHAbCQV2cycj4dYLtmb1wmahEzYDGGFf7/1I7ITyQpERbqVN45LCbJf1+Z5lJnj2AJwNYpt98pOfBPzleF1fvG91vfGe1fXI+1aSJEmSJEmSJEmSJEmSJKnjilMmpVKJ7/3e7+UjH/kIAB/5yEf49m//dn70R3/0vLVf/OIXefvb376pfe7QoUPcfvvtF3WuP/3TPwUgxkgIgRe84AVXOv514c///M/P2/ahD32ID3/4w5d1vM985jObXn/Xd33XRe33Pd/zPb0AHcD/+l//64YI0I1ygEf5LM1QpROAy1nndLdVDtrUyWgRSMlp02SVlDKBhDordHrjCkQyIpErCdAllGhylkDCOHeymzvYzZ0UQon1uMgCRwkERsNzKNDHSLiV8fD0DVrPGDYL0+yKP8ap8NVumC1ccpjtcmxVAM4GMUmSJEmSJEmSJEmSJEmSJEmSJD2bLalpeutb38pHP/pRoBNu+2f/7J/x2c9+lje84Q3ceuutLC4u8id/8if8+3//7ze1z4UQeOMb33jR5/nQhz7Ue16pVJiZuTmCM695zWvO23bvvfde9vG++MUvbnp96NDFNYs9dd1f/dVfXfYM14oYIwt8hZV4klnuJ/JccjLqLNGmQSSnTYOEAgX6SCmS0SShSE6LnIwCZXLybuAuv8KJAp1AXkKZEdY5TZ0VRuJtDHMrFUapscQaC4ywj1VmLypA9rRhs8COtbkZgJMkSZIkSZIkSZIkSZIkSZIkSdLVtiXJmBe/+MW85S1v4T/8h//Qa5f78Ic/fF5D2kZzHHTCc8997nP5sR/7sYs6x5//+Z/zV3/1V739X/WqV23F6Delr371q5teX2wQ8bnPfe6m1w899NCWzbQTYowcj3/OI/w5y5ykwVly2kQgpUSLGgAJBQIpKUUSCqSUSCmSA2WGKNBHm1kiBSAjJ7vMiUK3/65FmwZneYwhpgFY4hFarFNkkBpLZDQBeo9XyjCbJEmSJEmSJEmSJEmSJEmSJEmSbkTJVh3oXe96F9/2bd/WC8nFGM/7sxF+izEyODjI7//+71MoXFyG7xd/8Rd7+wJ83/d931aNftM5ceLEptdTU1MXtd/k5OSm14888gh5fqWNaztnNt7Pg/z/WIqd5rUGq0QikYwGK91VkRKDJKTktEkpU2SAlBIlBhlgkgJ9FKmQUOxG4C5PoEBOmzZNWqyxximWeZQqC0CkyjzLPAJ0An7nPkqSJEmSJEmSJEmSJEmSJEmSJEk635YF6EqlEp/4xCf44R/+4V7ILYSw6c9GkO7WW2/lk5/8JIcOHbqoY7/vfe/j85//fC+AVywWed3rXrdVo99UYozMz89v2jY6OnpR++7atWtT4LHZbJ53rOtFFts8wP+gGuepMs9ZHqPGGYBu21yZSOy2yUX6GWcPd3E7f4vdHGA3B9jFcxhimn7GqLCblGI30HY5IbrQ/SfpNd4BRCINVljjFE2qLHMSiAwwAdBrqJMkSZIkSZIkSZIkSZIkSZIkSZJ0vi0L0EEnRPfhD3+Yz3zmM7z+9a9ncHCwF5oDePGLX8y73vUujh49ystf/vKLOuZf/uVf8ta3vhV4sn3uda97HePj41s5+k1jdXWVLMs2bRseHr7o/YeGhja9rlarWzLXdluMD3ImHiejxSpP0KZGmWESiqQUGWU/g0xSpJ+ElCIVmqwyyDQHwt9mKNxCQkofu5jmmxjnuYTut1NC8TIm6oT1Ukr0sYtAQos1GpxljQVOc4wVvkEko0CZAn0UKDPKga29MJIkSZIkSZIkSZIkSZIkSZIkSdINpPDsSy7da17zGl7zmtcAsLy8TKPRYGxsbFN72cVqt9v81m/91qZtr3zlK7dizJvS2traeduKxYsPfD117YWOdz2Y5f+Q06bGEi3qpJQYZT/V7rfEEHspM8IpvkZGizJDFOknp0UkQgyMcSd1VqgyR4E+BpmiyiyRjJw2kF/yXBlNIjmRjAi0qdNinZyMjCYj3EqZEQCmwiHScFW+hSVJkiRJkiRJkiRJkiRJkiRJkqQbwlVP3+zateuK9t8I4mlrtFqt87ZdSoCuXC5ver2+vn7FM204fPgwSXJ+KWKapoQQLrjPv/pX/4pf/MVffNZjv//979/0ej2eps0+MqbIuYuhb/86pTsGueONJ3trSgxSZpB1ztBkjUGmKDNCgT7GwwyLPMhaXACgnzHWPvD3yagDbVIyIG46Z/7t/4t4x8PPMGVORosWa6SUKDJIRpNAgZSEEoOc+sArOUORyv+/vTsPs7Mu78f/fs5smUz2fQEkIQ1LEoNSEIpspQYobi1KVVCEQqs/u7DUqlQt2LrVpdWvLVg3sFVqEam7AoWgBFARgoCAIQlrNrLvmczM8/sDOPVkskzITCYzeb2ua67J/Tmf5z73M7nnHHJd5+aTNWks7kxyZ02GWbNmZcqUKbv8eezMtj+rbXkOz+E5PEd3Pcee2lfuw3PsP8/xb//2b/3iPjzH/vUcL6z39fvozucAAAAAAAAAAAAA9i+dp5XYrh/96EcpiqJHvt7+9rfvtfuoq6vrtLa9obUdKctthsI6dv+UtR1pa2tLa2trp69NmzZl48aN2/3a3kDgi7P9Ab1ym3hTVqY9rdmaTdlQLk2SjMkRGVvMSEMGpiEtqUtDih3k27kyReqeH6PblM1Z/fxpdG1pz9bnh+mSIpUU6fz3CAAAAAAAAAAAAAAAANQqym0notiuH/3oRznjjDN6JPd5552Xa665ZreuueKKK3LllVdW40984hP5m7/5m11et3LlyowcObJmra2tbbuDddszduzYLFu2rBrffffdecUrXtHFqms99NBDmT59ejUeMGDAbg3zJV0/gW5bczv+M/PKH2VDlmVFHktdGjI6h6cxg6p7WrM+z+bhtGdrRmZKWjImw/KSDCtekjV5MqvKx9Oc4RlbzKheU5Zlnsyc/Cbfrw7A/Z9imz93Hj4sUpeGDExzRqRIJZU0pC0b0pH2DMyoDMq4HJwTM6w4KC8tzkld0eOHSAIAwD5t239XPPjgg5k2bVovVgQAAAAAAAAAAADsS0zf7GdaWlo6rbW2tqa5ublL12974tv28r1Y99xzz177oOuEvDzzc0sGZHgaMiBbsymr83gGZHjqMyBt2ZzNWZX2tKYhzWnOiFTSkOGZlDIdaU9rkqQxg2vyFkWR5nJEmjMim7Muz51h98KM6m8P0G1/brVMmY60pSNtaUxL2rM1gzIh9Wl6/uS7DWnMoLRlS1ZlQUZlarf/bAAAAAAAAAAAAAAAAKC/MEDXRcccc0xuu+22Hsk9bty4Hsm7PU1NTamvr09bW1t1bePGjV0eoFu3bl1NPGzYsO4sb68ZWUzN8HJyVuQ3GZyJWZunszlrszWbUklDOrI17dma+gzI4ExMJfUZkUkZXkzOyjyWujQmSVqzrlPuyvO/VpVU0l7zyG8P021PkSLPnQTYls2ppC5F6lKXhgzLQVmXRalPczYVK9KYlqzLYgN0AAAAAAAAAAAAAAAAsBMG6LpoxIgROfnkk3u7jG5x4IEHZuHChdV47dq1GTly5C6vW716dc3gXaVSydixY3ukxp5WV9TnsOI1ub/8zyRlihTZlFXZmk1JOlJJQ5oyJM0ZnpaMzqCMzaHFa9JYtGRl+VgGZnRW54lsyqpsLJdnYDGqmrtMR4oUSSopUklZHaPb2fBckhSpT2Pq05y6NKSS+jRnRBoyMEmRQZmQJNXT7174DgAAAAAAAAAAAAAAAGyfAbr90CGHHFIzQLdkyZJMmjRpl9ctXbq0Jh4/fnwaGhq6vb69ZXxxZDZndRaUt6aShjRnRLZkbcq0p0hdmjIk9WnO0ByQycXvZ3xxZDrSnidzZ5KkpRib9eWSLMuv01wOT2MGpzXrsjErUp8BqU9j2tKR9m3Oodu+Is+N3rWnPk2pS0Pq05Ti+SG84ZmUTVmVzVldPf3uhe8AAAAAAAAAAAAAAADA9lV6uwD2vt/5nd+piR955JEuXbftviOOOKLbauoNRVFkUnFyplXOyktyQsZkWkbniIzK4RmdIzIm03JwTsi0ylmZVJycoihSV9RnfHFkkmRkpmRwMa56et2aPJlNWZVK6jIo4zIwI5PnT6J77vvOlClSnyJFtmRt2rM1DRmcQRmXMTkiDWnO5qxOkSItGZMkGZzxPfazAQAAAAAAAAAAAAAAgP7ACXT7oeOOOy5XXXVVNf7lL3+Z888/f5fX/epXv6qJjznmmG6vbW8riiLjc2TGVKZnVRZkXRanPa2pS2MGZ3yGZ3Lqitpfk3GZmc3F6iwvf5ORmZqhxUHZkGXV61oyJivK+dmU1dmYFelIW5IyZTqSlDus5bmz5upTpiNbsynt2ZS2bMmGPJsNeTZJMqgY+/zpdk0Znsk9+JMBAAAAAAAAAAAAAACAvs8A3X7oVa96VYqiSFk+N8z13e9+N5/73Od2ed0PfvCDmviUU07pkfp6Q11Rn1GZmlGZusu9RVHk4PKkDCiGZXE5N0kyNAfV7GnIgAzK2LRna1bk0bSndRdZK2lPW5IildSlkkq2ZF3KLM7AjHjuVLtibEZkSpJkXDGz02AfAAAAAAAAAAAAAAAAUMsEzn5o3LhxOeqoo3LPPfckSZ588sn88Ic/zBlnnLHDax544IH87Gc/q8YjR47MSSed1OO17quqJ9dl+yfXDS4PyNo8k81Zk4YMTJG6JHl+kK5MmTIvnEpXpEiRyvOrZSqpT30GpDEtGZDBGZ6DM6gYl/oMSJKMKqZmXGb23s0DAAAAAAAAAAAAAABAH1Hp7QLoHZdeemlN/J73vCfr1q3b7t6tW7fm4osvrp5YlyQXXXRR6uvNX9YV9RlVTM2k4qRMKV6VScVJGVVMTUMxIJXUpy2bU5eG1KUhldSnMS1pzODnT5mrq64XqU9dGtOUwamkMe1pS0tGZ1gOTn2aU58BqU9TDiiOycE5KUVR9PatAwAAAAAAAAAAAAAAwD7PBFQfMHv27E5rjz/+eE08f/78TvuGDRuWI488crs5zz777HzoQx/KI488kuS5E+ZOO+20/Ou//mte9rKXVfc99thjufjii3PrrbdW10aMGJG/+Zu/eVH3sr8oi/YMzYFZVj70/MlxRVqzLu1pT1IkeW4YsZL6JEXKlKlLQ5oyKHUZkIYMyOBMTEsxKk0ZkknFyRmeyakr/MoCAAAAAAAAAAAAAABAV5nG6QNOOeWUXe65+uqrc/XVV9esnXTSSdsdvkuSurq6/Pd//3eOO+64bNiwIUly11135eUvf3kOOOCATJw4McuWLcsTTzyRjo6Omuuuu+66jBw58sXf0H6gLo0ZmgMyOOOzLovSUR2cS5IyRepSSX3KlCnTnkrq05DmtGRcmjM0dWnKkGJCRmRKhheTMqqY2pu3AwAAAAAAAAAAAAAAAH1SpbcLoPfMmDEjN9xwQ0aMGFGz/vTTT+dnP/tZFi5cWDM8N3DgwHz5y1/OrFmz9napfc7gjE+SDMnEPHfCXEdeGKAr056OtKc9W1OmLUnSkOYMyLAMyth0pD2NGZS6NCZJ9TsAAAAAAAAAAAAAAACwewzQ7edOO+20PPDAA3nrW9+alpaW7e5pbGzM6173uvzyl7/M2972tr1cYd80PJOzPkuzJesyJBNTl/okHSnTUT11riNbU6ZMXRpSpJJKGpI8NzBXSV1aMibJ/w3jAQAAAAAAAAAAAAAAALunvrcLYNfKsuzR/BMmTMhXv/rVXHXVVfnpT3+ap556KsuXL8/w4cMzceLEvPKVr8zw4cN7tIZ9xWOPPZYkmTJlyh7neuGvrTGDU0lD6tKUF06ha09rOtKepHx+rUhr1qU1GzIoYzOoGJv6DEh9mjI8k/e4Fvqv7uxZ2Fv0LX2NnqUv0rcAAAAAAAAAAAAAzzFAR1VLS0tOP/303i6jV910001J9vyDxquyIIMyNhuyLCvzWAZlXOrTlPVZktZsSPLcEF1bNqcjbSnTkYa0pDEDM6QYnxF57vnHFTNTV/g1Zce6q2dhb9K39DV6lr5I3wIAAAAAAAAAAAA8x2QO9IB1WZyiKDKgHJrmjEh7WjMo4zIkB2R1nsjmrEqZMluzPkmRwZmQgRmZYTk4IzM1STKqmJpxmdm7NwIAAAAAAAAAAAAAAAB9mAE66AHtaU2SdBRb01yOyJAckMa0ZHPWpCVjsjmr0pr12ZqN2ZRVac6wNGdEKkUl9WnKuGJmxmVmiqLo5TsBAAAAAAAAAAAAAACAvssAHfSAujTWfN+aDRlRTM6gjK3u6Sjb82TmpCPtac7IDMq4jM+RmVG8KXWFX00AAAAAAAAAAAAAAADYU5XeLgD6o8EZnyQZmNEpUmRTVmVjubxmz+asen7vuBxYHJtRxdQcUBxjeA4AAAAAAAAAAAAAAAC6iUkd6AHDMzlP5s4kSUsxNuvLJVmWX6e5HJ6GDMzaPJP1WZY8f/rcynJ+6jMgQ3NQ1mVxBmd8hmeyYToAAAAAAAAAAAAAAADYA6ZzoAfUFfUZnyPzdPnzjMyUFEWyrlySlVmQTVmVMu3VvRuzMkvzYAZkaNaVizOynJKBxeg05M6Mz5EZl5kpiqIX7wYAAAAAAAAAAAAAAAD6JgN00EPGZWY2F6uzrOPhNGVIVmZBNuTZJGUqacjmrMqWrEmS1Kclm7M2i3JPlufRjCgPyYjikLSXW7K5WJ2Dy5MM0QEAAAAAAAAAAAAAAMBuKsqyLHu7CPZPDz30UKZPn16NH3zwwUybNq0XK+peZVlmcTk3j+a7eaa8J+uzNEmyJWuzIc+mLZtTSX2SImU6Upf61KUpdWlMUwZnUMZnXKZnVHFoDihekfHFkb16PwAAsC/q7/+uAAAAAAAAAAAAAPaME+igB5RlmYWZnRWZl4EZnYa0pD4Dsj5LsyVr0p7W1GdA2tOajrQlKZKUeWGYrj2taUhzlubB564tB2RMpqeu8CsLAAAAAAAAAAAAAAAAXVXp7QKgP1qS+7OinJcyHXmm/EVWZ2FasyHt2ZKt2ZxK6lKmIx1pT5FKGjMojRmUSupTnwEpUsmmrMiWrM2qckFaszGrsqC3bwsAAAAAAAAAAAAAAAD6FAN00M3ay7YsLucmSVbksazJ0ylTpkhSSX0qqUuRStqyOWU60pABaUxLGjMoDWlOfRpTl4a0pTUdac+mrMrGLM+6LO7V+wIAAAAAAAAAAAAAAIC+pr63C4D+ZlUWpD2t2ZpN2VAuTdKewRmftmxKazakMYPSlo1JyiRlitQnKVOmTJJU0pCkSJmOtGVTOtKezVmT9rT23k0BAAAAAAAAAAAAAABAH+QEOuhmL5wUtzHPpkyZpgxNYwalSN3zY3Ltzw/NVVKkko5sTZK0Z3OSpEiRShpSpiNlylRSlzJtqUtjb90SAAAAAAAAAAAAAAAA9EkG6KAbtZdtWVkuyPL8JsvL32R9lqUujSlTpjGDU0mlOkRXl/qU6UhH2tKWzWnP1iRF6tOcrdmYMmWKVNKUISlSn8EZ39u3BwAAAAAAAAAAAAAAAH1KfW8XAP1BWZZZkvuzuJybZeVDWZ8lac36bMmatKc1HdmaShqSVNKerWnLprSn9flRuq3pyLrUpSENac7GrEhr1qUxg9KS0amkPi0ZneGZ3Nu3CQAAAAAAAAAAAAAAAH2KATrYQ2VZZmFmZ0U5L0lSn6Zsysq0ZUu2ZkNasz5lOtKWzalPUyqpe+66tKdMmY4kRTpSSUO2ZmM60p76NGVgRmVwxqcuDZmcU1NX+HUFAAAAAAAAAAAAAACA3WEiB/bQktyfFeW8lOnIijyW9VmcTVmVMh3ZknVpzYbUPX/63JasS5IUKVKXxnSkPUUqqaQ+dWlKkSJNacnwHJzBGZ+kyEHF8ZlYHNWr9wgAAAAAAAAAAAAAAAB9kQE62APtZVsWl3OT5LnhuXJJkiLD8pKsyVOpT1Pa05qt2fj8FUXKtCfPD83VZ8Dzq5U0pSWDMz6DMzF1aUglDXlJcXxengtSFEVv3B4AAAAAAAAAAAAAAAD0aQboYA+syoLnB+Q2ZUO5NEkyJkekKcPySL6TjrSlTJn2tKYj7WnMoNSlKY1pTms2pi2b0pghGfL80NyoHJq6NKYlo3NIcWomFEcZngMAAAAAAAAAAAAAAIAXyQAd7IF1WZwk2ZhnU6ZMc4ZnYDEq68ulGZiRKdORjVn+/GlzA9OcoWlIS5oyNAMyJK3ZmLrUZ1gOTqWoZEJ+NwcUx2R4Jqeu8OsJAAAAAAAAAAAAAAAAe8KEDuyB9rTWfG/M4CTJ5qxJkSJ1qU9zRqY+zSnTnvoMSFOGZEjG54Acm2fz62zKqgwohmRoDsrQ4sCMKqb22v0AAAAAAAAAAAAAAABAf2KADvZAXRprvrdmXZKkI23Pf29PkSINaUqR+gzMyDRnRAYWo1NJXRrLwdmUVZ0G8QAAAAAAAAAAAAAAAIA9V+ntAqAvG5zxSZKBGZ0iRTZlVTaWy1N5fja1krq0Z0u2ZH2KFGnKkCTJgAxN8n8Dd9sO4gEAAAAAAAAAAAAAAAB7zgAd/JbHHnssjz32WJf3D8/k1KUxDWlOSzE2SbIsv876LMnGrMiWrM/mrE17WlNJQyqpT10aMjCjsrFcnk1ZlSJFWjImyf8N5EFX7W7Pwr5A39LX6Fn6In0LAAAAAAAAAAAA8Jz63i4A9iU33XRTkmTKlCld2l9X1Gd8jszT5c8zMlNSFMn6cmk60p7NWZ0yHWnIgCRJe1qzNs9keCbn2fLX2ZRVSZJBxdjUZ0Dq05ThmdwzN0a/tbs9C/sCfUtfo2fpi/QtAAAAAAAAAAAAwHMM0MEeGpeZ2VyszvLyNxmZqRlaHJQNWZa6siEb8myG5SXZnNXZkrWppD7t2ZJN2ZIiRQYVYzMiz32oeVwxM3WFX0kAAAAAAAAAAAAAAADoLqZ1YA8VRZGDy5MyoBiWxeXcJMnQHJQhOTAr8pusz9IMycS05MhU0pCOYmvq0piWjEn986fTjSqmZlxm9uJdAAAAAAAAAAAAAAAAQP9jgA66QVEUGZ8jMybTsyoLsi6L0160ZlR5aLZkTTZkecq0d7quPk0ZV8zMuMxMURS9UDkAAAAAAAAAAAAAAAD0XwbooBvVFfUZlakZlanPLTw/E9detv3fYF1aU5fGDM74DM/k1BV+DQEAAAAAAAAAAAAAAKAnmNyBvaDTYB0AAAAAAAAAAAAAAADQ4yq9XQAAAAAAAAAAAAAAAAAA9AQn0MFe0F62ZVUWZF0Wpz2tqUtjBmd8hmdy6gq/hgAAAAAAAAAAAAAAANATirIsy94ugv3TQw89lOnTp1fjBx98MNOmTevFirpfWZZZkvuzuJyb9rR2erwujRlfHJlxmZmiKHqhQgAA6Nv2h39XAAAAAAAAAAAAAC+eo6+gh5RlmYWZnRXlvCTJ1mzKxjxbPYGuJWOSJE+XP8/mYnUOLk8yRAcAAAAAAAAAAAAAAADdyAAd9JAluT8rynkp05EVeSwbyqUp838HPq7OE2kpxmZkpmR5+ZsMKIZlfI7svYIBAAAAAAAAAAAAAACgn6n0dgHQH7WXbVlczk2SrMhjWV8uSZkyzRmeIZmYpMi6LM2S8r4sLGdnfZZmUXlv2su2Xq0bAAAAAAAAAAAAAAAA+hMn0EEPWJUFaU9rtmZTNpRLkyRjcni2FpuzpnwqSZnGDMy6LE5rNiRlsjLzMzAjc1hem6IoevcGAAAAAAAAAAAAAAAAoB9wAh30gHVZnCTZmGefP3luWDYWK7OqXJiOtKU9W9Oe1nRka1qzPpuyMh1py+PlT/N4bk9Zlr18BwAAAAAAAAAAAAAAAND3OYEOekB7Wmu+t2ZT2svVScqsz7NpzdqUKdOWLdmajVmbZ1ImGZiRWV7+JgOKYRmfI3urfAAAAAAAAAAAAAAAAOgXnEAHPaAujdXvZcqsyRNJkvV5NluyJmXKNGZg6jPg+b1FtmRN1mdJkmRJeX/ay7beKh8AAAAAAAAAAAAAAAD6BQN00AMGZ3ySZGBGZ2vWZ0vWZVNWpzVrq483ZWgqqU9zhmd4Dk6StGXz819bsioLeqt8AAAAAAAAAAAAAAAA6BcM0EEPGJ7JqUtjGtKcugxIkqzJ49mUVSnTls1Zk3VZnCRpypAMyLA0ZXAa0pINWZYk1ccBAAAAAAAAAAAAAACAF6e+twuAfcmHP/zhbN26NQ0NDfm7v/u7F52nrqjP+ByZp8ufZ3DGZXNWpTXr057WbM2WFNmYIkWaMiQtGZ0kGZqXpD1b0p7WJKl+h53prp6FvUnf0tfoWfoifQsAAAAAAAAAAADwnKIsy7K3i2D/9NBDD2X69OnV+MEHH8y0adN6saKkpaUlGzduzMCBA7Nhw4Y9ylWWZR7P7Xmk/F7Wl0uyIcuyNotSn8YMyrg0ZUgqz8+wDsrYtGVLNmd1hhcHZ2gOyqji0EwqTuqO26If686ehb1F39LX6Fn6ov2pb/fFf1cAAAAAAAAAAAAA+45KbxcA/VVRFDk4J+XgnJBK6jMgw9OUQamkIXVpTCX1qaQhwzMpzRmRzVmdIkVaMiZJMjjje/kOAAAAAAAAAAAAAAAAoG+r7+0CoD8riiJTc2Y2lMuzLouSJBuzPK3ZkMYMyqCMzeaszqasSpIMKsamPgNSn6YMz+TeLB0AAAAAAAAAAAAAAAD6PAN00MPqivpMrByVp8v2tGR0VuaxrC+XpkyZtXk6SVKkyKBibEZkSpJkXDEzdYVfTwAAAAAAAAAAAAAAANgTJnRgLxiXmdlcrM7y8jcZmakZWhyUDVmW9rSmLo1pyZjUZ0CSZFQxNeMys5crBgAAAAAAAAAAAAAAgL7PAB38lrIseyRvURQ5uDwpA4phWVzOTZIMzUE1e+rTlHHFzIzLzBRF0SN10P/0VM9CT9K39DV6lr5I3wIAAAAAAAAAAAA8xwAd/Jb29vYey10URcbnyIzJ9KzKgqzL4uoJdIMzPsMzOXWFX0l2T0/2LPQUfUtfo2fpi/QtAAAAAAAAAAAAwHNM68BeVlfUZ1SmZlSm9nYpAAAAAAAAAAAAAAAA0K9VersAAAAAAAAAAAAAAAAAAOgJBugAAAAAAAAAAAAAAAAA6JcM0AEAAAAAAAAAAAAAAADQLxmgAwAAAAAAAAAAAAAAAKBfqu/tAth/bdmypSZ+7LHHeqmS/9PR0VH9/tBDD/VyNbBrepa+SN/S1+hZ+qL9qW+3/XfEtv/OAAAAAAAAAAAAAPZvRVmWZW8Xwf7p29/+dl7/+tf3dhkAAEA/8j//8z953ete19tlAAAAAAAAAAAAAPuISm8XAAAAAAAAAAAAAAAAAAA9wQAdAAAAAAAAAAAAAAAAAP1SUZZl2dtFsH9avXp1br/99mp84IEHpqmpqRcrAgAA+potW7bkqaeeqsYnnXRShg0b1nsFAQAAAAAAAAAAAPsUA3QAAAAAAAAAAAAAAAAA9EuV3i4AAAAAAAAAAAAAAAAAAHqCAToAAAAAAAAAAAAAAAAA+iUDdAAAAAAAAAAAAAAAAAD0SwboAAAAAAAAAAAAAAAAAOiXDNABAAAAAAAAAAAAAAAA0C8ZoAMAAAAAAAAAAAAAAACgXzJABwAAAAAAAAAAAAAAAEC/ZIAOAAAAAAAAAAAAAAAAgH7JAB0AAAAAAAAAAAAAAAAA/ZIBOgAAAAAAAAAAAAAAAAD6pfreLgD2BatWrcqcOXPyzDPPZOXKlRkzZkwOOOCAnHDCCRk4cGBvl8d+YMGCBbn33nuzaNGibN68ORMmTMjkyZNz7LHHplLZs1nnX/7yl3n00UezaNGi1NfXZ8KECZk+fXqOOOKIPcrb2tqaO+64I0888USWLl2aIUOGZOLEiXnFK16RcePG7VFueo9erOX9Yf+mZ/dPHR0dmTdvXn71q19l6dKlWbNmTVpaWjJmzJj87u/+bqZOnbpH+b3O1tKzAAAAAAAAAAAAQE8zQMd+7dFHH8173vOe/PCHP0xra2unxwcNGpQ3vOEN+ehHP2ogaD80e/bsnHLKKXuU48Ybb8zrX//6HT7+/e9/P//4j/+Yu+++e7uPT5w4MRdeeGEuv/zyNDY2dvl5Ozo68pnPfCaf+9znsmDBgu3umTlzZt797nfnnHPO6XLeJFmzZk3e//7352tf+1pWrVrV6fG6urqceuqp+cd//MccffTRu5Wb3Xfffffl5S9/eTV+9tlnM2rUqN3OoxdreX/oOXvSs1dccUWuvPLKPXr+VatWZdiwYTt8XM/un1auXJnrr78+P/jBD3Lbbbdl3bp1O9w7adKkXHzxxXnnO9+ZhoaGLj+H19laehYAAAAAAAAAAADYW4qyLMveLgJ6w7XXXpt3vvOd2bRp0y73jhkzJv/1X/+1x8NU9C09OUBXlmX+8i//Mv/6r//apTwvf/nLc+ONN+aggw7a5d4VK1bkj//4j/OTn/ykS7nf8pa35Ctf+UqXPqx/zz335KyzzsqTTz65y70NDQ35+Mc/nksuuaRLdfDifPrTn85ll11WjXd3gE4vdub9oWftSc/29ACdnt0/LVq0KJMmTdruENfOHHPMMbnhhhtywAEH7HSf19nO9CwAAAAAAAAAAACwNxmgY7/0ox/9KK9+9avT3t5eXatUKjnooIMyduzYPPPMM3n66adrrhkyZEh+/vOf59BDD93b5dJLenKA7u/+7u/ykY98pGatqakpkyZNyqBBg7Jw4cKsWLGi5vEjjzwyd955Z5qbm3f4fFu3bs2sWbMye/bsmvUhQ4Zk8uTJaWtry4IFC7Jx48aax//8z/88V1999U7v5emnn87RRx+dJUuW1KyPHTs2L3nJS7Jy5co8/vjjaWtrq3n861//et785jfvNDcvzhNPPJFjjjkmy5Ytq67t7gCdXqzl/aFn7WnP9uQAnZ7dfz3++OOZNGlSp/WWlpZMnTo1zc3NWbx4cRYuXNhpz7Rp0zJnzpwMHTp0h/m9ztbSswAAAAAAAAAAAMDeVuntAmBve/bZZ/PmN7+55kO7Z5xxRh5++OEsXLgwd999d5566qncc889OeaYY6p71q5dm7PPPjtmTvdfxx57bG677bbd+nrlK1/ZKc8tt9zS6YP0f/M3f5NFixbl4Ycfzi9+8Ys8++yzueGGGzJmzJjqnrlz5+Zv//Zvd1rjlVdeWfNB+paWlnzxi1/M8uXLc9999+WBBx7Is88+m49//OOpq6ur7vv85z+fG264Yae53/zmN9d8kP53fud3csstt2TJkiX52c9+lnnz5uWJJ57IW9/61prrLrzwwjz11FM7zU3XbNmyJYsWLcptt92W973vfXnZy15WM4i0u/RiLe8P3a+7e3Zb73jHO3b7dXnQoEHbzaVnSZKRI0fmkksuyU9+8pOsXbs29957b+bMmZMFCxZkwYIFOf/882v2P/TQQ/nABz6ww3xeZ2vpWQAAAAAAAAAAAKBXlLCfefe7310mqX6deuqpZWtr63b3rlmzpjz88MNr9n/rW9/ayxXTW2677baav/szzzyzW/IeffTRNXk/+MEP7nDvAw88UA4YMKC6t6mpqVy8ePF29y5fvrxsbm6u7i2Korzlllt2mPsLX/hCTR0zZ87c4d7vf//7NXvHjRtXPvPMMzvcf+6559bs/6u/+qsd7qVrvvKVr9T8THf09eyzz3Y5p16s5f2he/VEz/793/99zbWf+MQnuqVWPbt/W7hwYdnc3FxeeeWV5dq1a3e5/7LLLqv5OTY2NpbLly/f7l6vs7X0LAAAAAAAAAAAANAbnEDHfmXr1q350pe+VI0rlUo++9nPpqGhYbv7hwwZkn/6p3+qWfvUpz7VozXSv9177735xS9+UY0POuigXH755TvcP3369LzrXe+qxlu2bMnnPve57e699tprs2nTpmr8J3/yJzn11FN3mPvCCy/M7/7u71bj+++/P7fccst291599dU18RVXXJEJEybsMPcnP/nJtLS0VOMvfvGLWbt27Q73s/fpxVreH/Zvenb/NmrUqPzqV7/KBz/4wQwePHiX+z/0oQ9l5MiR1bi1tXW7f/9eZ2vpWQAAAAAAAAAAAKC3GKBjvzJ79uysXLmyGh9//PE54ogjdnrNmWeemfHjx1fju+66KytWrOixGunfbrjhhpr4vPPOS1NT006vufDCC2vi7373u13KfdFFF+2ynj/90z/dZe7169fnpptuqsYDBgzIW9/61p3mHTt2bF796ldX440bN+Z///d/d1kPe49erOX9Yf+mZ/dvgwYNypQpU7q8f+DAgZk1a1bN2gMPPNBpn9fZWnoWAAAAAAAAAAAA6C0G6Niv3HrrrTXxH/7hH+7ymqIocsYZZ1Tjjo6O3Hzzzd1eG/uHF9ODhx12WA455JBq/Ktf/SqLFy+u2bNhw4b8/Oc/r8aDBg3KCSecsMvcZ555Zk384x//uNOeOXPmZMuWLdX4pJNOysCBA7slN113+umn57bbbuv0NXbs2BeVTy/W8v7Q/bq7Z3uKntWzL8ZLXvKSmnj58uWd9nidraVnAQAAAAAAAAAAgN5igI79yj333FMTz5w5s0vXbbtvzpw53VYT+4/29vbcd9991bgoirz0pS/t0rXb7rvzzjtr4rlz56atra0aH3HEEWloaNhl3gMPPDDDhw+vxo8++minIQC/N/uGcePG5eSTT+70NWDAgN3OpRc796I+737d2bM9Sc/q2Rdj69atNXF9fX1N7HVWzwIAAAAAAAAAAAD7DgN07Fceeuihmnjq1Klduu7QQw+tiefNm9dtNbH/mD9/fs2pLhMnTuzSqS7Jrnvwxfb29nI/9thj3ZJ76tSpKYqiGs+fPz9lWXa5LnqOXuzci94f9l96Vs++GAsXLqyJR48eXRN7ndWzAAAAAAAAAAAAwL7DAB37jdbW1ixZsqRmbdy4cV26duzYsTXx/Pnzu60u9h9PPPFETdzV/kt23YP7Yu4BAwZkyJAh1XjTpk1ZtGhRl+ui5+yL/dKTuXfVi94f9m96Vs/uro6Ojk6noB155JE18b7YVz2ZW88CAAAAAAAAAAAA+7L63i4A9palS5fWnITR0NCQlpaWLl07atSomvjJJ5/s1troGzZu3Jj77rsva9euTVEUaWlpyZAhQ3LwwQenoaFhl9dv+8Hx4cOHd/m5d9WD+3LuNWvW1OSeOHFil6+nZ+zL/dKTuXfUi94f+q7ly5fnZz/7WTZt2lT9exsxYkQOPPDAmtOwdkbP6tnd9eMf/zhLly6txo2NjTnxxBNr9uzLfdWTufUsAAAAAAAAAAAAsC8yQMd+Y9WqVTXxb5+SsSvb7m1tbc3WrVu7NDRF/3Hbbbfl5S9/eaf1+vr6zJgxI2effXbe8Y53ZNiwYdu9vjt7cP369f0iN72jr/ZLT+X2/tB3ffzjH8/HP/7xTusDBw7M8ccfn3POOSfnnntu6urqdphDz+rZ3fWRj3ykJj7zzDM7DZr1xb7qydx6FgAAAAAAAAAAAOhNld4uAPaWDRs21MS786Hb7e3dNh/7r7a2ttx333153/vel0MPPTTf/OY3t7uvO3tw21x9NTe9o6/2S0/l9v7Q/2zcuDE333xz3v72t+eoo47KAw88sMO9elbP7o7/+I//yB133FGz9r73va/Tvr7YVz2ZW88CAAAAAAAAAAAAvckAHfuNrVu31sS788HdpqamTmsbN27c45qGJxFvAAAgdklEQVTof5YtW5azzz47n//85zs91p09uG3/9dXc9I6+2i89ldv7Q/92//3356STTsrPf/7z7T6uZ/VsVz355JP5q7/6q5q1888/P0cffXSnvX2xr3oyt54FAAAAAAAAAAAAelN9bxcAe0tdXV1NXKl0fX60LMtOax0dHXtcE/u2UaNG5S//8i8zffr0TJ06NaNHj87IkSMzcuTItLa2ZunSpbn33ntz3XXX5Vvf+lb1urIs8xd/8Rc55phj8rKXvay63p09uG3/9XTutra2HslN79CLtbm9P/QdRxxxRN773vdm2rRpOeSQQ6qvyUOHDs3GjRvzxBNP5K677soXv/jF/OIXv6het2rVqrzxjW/MQw89lEGDBtXk1LN6titaW1vzJ3/yJ1m9enV1bdKkSfn0pz+93f1eZ/UsAAAAAAAAAAAAsO8wQMd+o7m5uSZub2/v8rWtra2d1nbn5Az6punTp+ezn/3sdh9raGjI5MmTM3ny5LzhDW/Ij370o5x11lnVE1Ha2tpy2WWX5dZbb61e0509uG3/9XTudevW9UhueoderM3t/aHvOPvss3P22Wdv97EhQ4ZkxowZmTFjRi666KJ8+MMfzgc+8IHq408++WQ+/elP54Mf/GDNdXpWz3bFO9/5ztx9993VeODAgbn++uszbNiw7e73OqtnAQAAAAAAAAAAgH1H1//X/9DHtbS01MTb+zDujmzdunWX+di/nX766fnc5z5Xs3b77bdn2bJl1bg7e3DbXH01N72jr/ZLT+X2/tD/FEWR97///Xnb295Ws3799dd32qtn9eyufOxjH8uXv/zlalypVHLdddflqKOO2uE1fbGvejK3ngUAAAAAAAAAAAB6kwE69huDBg2qiV84Kawr1q5dWxPX1dV1ygfnnXdeRo4cWY07OjoyZ86catydPbjtiTd9NTe9o6/2S0/l9v7Qf1166aU18YMPPphVq1bVrOlZPbszX//613P55ZfXrH3mM5/Ja1/72p1e1xf7qidz61kAAAAAAAAAAACgNxmgY78xbty4NDQ0VOMNGzakvb29S9cuX768Jh4/fny31kb/UKlUcvTRR9esLV26tPrnAw88sOaxbT8QvjO76sG+mpve0Vf7padye3/ov2bOnJnm5uaatd9+XU70rJ7dse985zs577zzUpZlde2DH/xg/uIv/mKX1/bFvurJ3HoWAAAAAAAAAAAA6E0G6Nhv1NXV5SUveUk1Lssyy5Yt69K1237Y/rfzwG8bMWJETbxy5crqnw855JCax5YsWdLlvLvqwX0x9+bNm2s+eF+pVHLAAQd0uS56zr7YLz2Ze1e96P2hfxs+fHhN/Nuvy4me1bPbd/PNN+fss89OW1tbde2yyy7LlVde2aXr98W+6sncehYAAAAAAAAAAADYlxmgY7/yO7/zOzXxI4880qXrtt13xBFHdFtN9C8bNmyoiYcMGVL984QJEzJw4MBqvGDBgrS2tnYp76568MX2dpI8+uijPZL70UcfrTm155BDDklTU1OX66Ln6MXOvej9of/a2etyomf1bGd33HFHXv/612fLli3VtUsuuSSf/OQnu5zD66yeBQAAAAAAAAAAAPYdBujYrxx33HE18S9/+csuXferX/2qJj7mmGO6rSb6lwULFtTEEyZMqP65KIoce+yx1bitra1Tb+3IAw88UBNv24MzZ86s+aD+/fffX3Nqzo489dRTWbVqVTWeOHFiTc2J35v+SC927kV93j+tWLGi5lSsJBk/fnxNrGf17G+76667cuaZZ2bjxo3Vtfe85z359Kc/vVt5vM7qWQAAAAAAAAAAAGDfYYCO/cqsWbNq4u9+97u7vKYsy/zoRz+qWTvllFO6tS76h0WLFuXBBx+sxkVR5JWvfGXNnhfTg7/5zW8yf/78anzAAQdkypQpNXuamppy4oknVuM1a9bkpz/96S5z/+AHP6iJt9fbxx13XAYPHlyN//d//7dmsGBPctN79GIt7w/9080331xzKtYRRxyRkSNH1uzRs3r2BT/5yU8ya9asmqHLK664Ih/72MdeVD6vs7X0LAAAAAAAAAAAANBbDNCxXzn66KMzduzYanzHHXfkoYce2uk1P/jBD7Jo0aJqPHPmzBxyyCE9ViP7hmeffXa3r/nUpz5VM6jxile8ImPGjKnZ8+pXv7om/spXvpItW7bsNO8XvvCFmviss87a7r5tc1999dW7rPlLX/rSLnPX19fntNNOq8abN2/Otddeu9O8y5Ytq/lgfH19fV772tfush72Hr1Yy/vDvm/ZsmW7tb+jo6PTqWE7eh3Ss9x8880544wzsn79+urapz/96fz93//9i87pdbaWngUAAAAAAAAAAAB6iwE69iuVSiV//dd/XY07Ojpy8cUXp62tbbv7161bl/e85z01a+985zt7tEb2Df/6r/+aE088MbfcckvNUNyOfP/7389nPvOZmrX3vve9nfZNmzat5gSWp556Kh/96Ed3mPehhx7K5z73uWpcFEX+/M//fLt73/72t9ecrHT99dfn1ltv3WHuL3/5y/nFL35RjQ844IBOH8h/wWWXXVYT/8M//EPNB9q39e53vzsbNmyoxm94wxsyevToHe5n79OLtbw/7Pve/OY35/zzz8/DDz/cpf1/93d/V9NXzc3NNX/Hv03P7t++//3v5zWveU31pLVKpZIvfOELueSSS/Yor9fZWnoWAAAAAAAAAAAA6C0G6NjvvOtd76r5wPEtt9ySP/qjP8pjjz1Ws+++++7LrFmzak7GmDJlSs4///y9Viu966c//Wle9apX5fDDD88//MM/5N577+00TLds2bK8//3vz+tf//q0t7dX10877bS87nWv227eD3zgAymKohpfeeWVee9735vVq1dX18qyzLe//e2ceuqp2bx5c3X9rW99aw4//PDt5m1pacmll15ak+N1r3tdvvKVr9R8OH3jxo351Kc+1elD+R/60IdSX1+/3dzHHntsXvWqV1XjxYsX59RTT83s2bNr9i1atCgXXHBBvvrVr1bXGhsbc8UVV2w3L123ZMmSzJ49u9PXb/dHksyZM6fTniVLlmw3p16s5f2he3V3z7a3t+eaa67JEUcckVNOOSX/9m//lscff7zTvl//+td54xvfmI997GM16x/4wAcybty47daqZ/dvn/jEJ2pOhnvHO96RKVOmbLd/d/W1La+ztfQsAAAAAAAAAAAA0BuKsitHK0E/c8stt+T000+vGXiqVCo56KCDMnbs2CxatChPPfVUzTUtLS25884789KXvnRvl0svuOKKK3LllVd2Wm9pacnEiRMzatSoLF++PPPmzes0VDd16tTceeedNR8Q39bf//3f50Mf+lDNWlNTUyZPnpyWlpYsXLgwK1asqHn8iCOOyN13353BgwfvMG97e3tmzZrV6RSaIUOG5JBDDklbW1sWLFhQc1JM8tyH9H/7A/Dbs2jRohx11FGdBlvGjRuXgw46KKtWrcrChQs7nSTzpS99KRdccMFOc7Nr11xzzYseHPjKV76St7/97dt9TC/W8v7Qfbq7Z08++eTcfvvtnfaOGDEiEydOTEtLS5566qk888wznfa84Q1vyH//93/XDDJtS8/uv3bUWy/G9v5p5XW2lp4FAAAAAAAAAAAA9jYDdOy3vvrVr+Yd73hHNm3atMu9I0aMyNe//vWcdtppe6Ey9gX/8A//kA9+8IO7fd2sWbPyX//1Xxk+fPhO95Vlmb/6q7/K5z73uS7lnTFjRr797W9n0qRJu9y7YsWKnHXWWV0eBjjrrLPyta99LU1NTbvc+8tf/jJ//Md/nCeffHKXe+vq6vKP//iPee9739ulOti5nhqg04udeX/oHt3ds6eeemqnQaFdqVQqueyyy/Kxj30slcquD17Ws/unnh6g8zrbmZ4FAAAAAAAAAAAA9qZdf5IY+qm3ve1tuffee/O6170ujY2N290zcODAnHvuuXnggQd8aHc/c/nll+f73/9+3va2t2XixIk73VupVHL88cfnu9/9bn784x/vcnguSYqiyP/7f/8v3/ve9/KKV7xih/vGjx+f97///fnFL37RpQ/SJ8nIkSNz66235lOf+lQmT568w33Tp0/PNddck29+85td+iB9khx11FH51a9+lXe96107vM9KpZJTTz01d9xxh+G5PkAvdub9Yd/07W9/O1/60pfymte8JkOGDNnp3ubm5rzxjW/M3Llz80//9E9dGp5L9Cw9w+tsZ3oWAAAAAAAAAAAA2JucQAdJVq5cmTlz5uSZZ57JqlWrMmrUqBx44IE54YQT0tLS0tvlsQ946qmn8vDDD+fxxx/P2rVrs2XLlowYMSITJkzIK1/5yowcOXKP8i9YsCD33ntvFi1alE2bNmX8+PGZPHlyfu/3fq/Lgx87cs899+TRRx/N4sWLU6lUMmHChMyYMSPTpk3bo7ytra2544478sQTT2Tp0qUZPHhwJkyYkGOPPTbjx4/fo9z0Hr1Yy/vDvqm9vT3z5s3LI488kkWLFmXdunUpyzKjR4/OwQcfnOOPPz4DBgzY4+fRs/QEr7O19CwAAAAAAAAAAADQ0wzQAQAAAAAAAAAAAAAAANAv7dkRBwAAAAAAAAAAAAAAAACwjzJABwAAAAAAAAAAAAAAAEC/ZIAOAAAAAAAAAAAAAAAAgH7JAB0AAAAAAAAAAAAAAAAA/ZIBOgAAAAAAAAAAAAAAAAD6JQN0AAAAAAAAAAAAAAAAAPRLBugAAAAAAAAAAAAAAAAA6JcM0AEAAAAAAAAAAAAAAADQLxmgAwAAAAAAAAAAAAAAAKBfMkAHAAAAAAAAAAAAAAAAQL9kgA4AAAAAAAAAAAAAAACAfskAHQAAAAAAAAAAAAAAAAD9kgE6AAAAAAAAAAAAAAAAAPolA3QAAAAAAAAAAAAAAAAA9EsG6AAAAAAAAAAAAAAAAADolwzQAQAAAAAAAAAAAAAAANAvGaADAAAAAAAAAAAAAAAAoF8yQAcAAAAAAAAAAAAAAABAv2SADgAAAAAAAAAAAAAAAIB+yQAdAAAAAAAAAAAAAAAAAP2SAToAAAAAAAAAAAAAAAAA+iUDdAAAAAAAAAAAAAAAAAD0SwboAAAAAAAAAAAAAAAAAOiX6nu7AACAfV1bW1vmzp2bRx55JEuWLMnmzZszbNiwjBo1KhMmTMjLX/7yDBo0qLfLBAAAAAAAAAAAAABgGwboAGAfc/DBB+eJJ57Y4eNFUaSuri6NjY0ZNGhQRo0alcMPPzzHH3983vKWt2Ts2LF7sdr+7b777ss///M/53/+53+ybt26He6rVCqZNm1aXve61+Xcc8/NoYcemiS55pprcv755/dojWVZ9mh+AAAAAAAAAAAAAIC+rCh96hoA9im7GqDbmYaGhvz1X/91PvzhD6exsbGbK+sZs2fPzimnnFKNzzvvvFxzzTW9V1CSRYsW5fLLL89Xv/rVFzWgNmvWrFx++eVZuHChAToAAAAAAAAAAAAAgF5U6e0CAIDus3Xr1nzyk5/MrFmz0tbW1tvl9En3339/fvd3fzfXXnttp+G0pqamTJkyJb/3e7+XmTNnZtSoUdvNcdNNN+W8887bG+UCAAAAAAAAAAAAALAT9b1dAACwc9ddd13GjRtXjdvb29Pe3p5169Zl8eLFmTNnTm688cZs2bKluuf222/PRz7ykXzwgx/sjZL7rDlz5uQP//APs3bt2pr1E088MX/5l3+ZM888M83NzTWPzZ8/P9dee22++MUvZvHixTWPnX766bntttt2+bxz587NJZdcUo1nzpyZf/mXf3nxNwIAAAAAAAAAAAAAQJKkKLc9WgUA6FUHH3xwnnjiiWq8cOHCHHzwwTu9Zv78+XnVq16VhQsXVtcmTpyYJ598MpXKvn3g7OzZs3PKKadU4/POOy/XXHPNXq9j+fLlmTlzZhYtWlRdGzBgQK6++uounSbX1taWL3/5y3nve9+bVatW5SUveUkef/zxLj33tj+Dk046KbNnz97dWwAAAAAAAAAAAAAAYBv79ifqAYAuOeSQQ/KJT3yiZu2ZZ57JU0891UsV9T0XXHBBzfDcwIED873vfa9Lw3NJUl9fnz/7sz/L3Llzc/TRR/dUmQAAAAAAAAAAAAAA7AYDdADQT/z+7/9+p7XFixf3QiV9z2233Zbvfve7NWsf//jHc+qpp+52roMOOii333573va2t3VXeQAAAAAAAAAAAAAAvEj1vV0AANA9Bg4c2KW17Vm7dm3uuOOOPPPMM1m+fHkGDhyY0aNH5xWveEUOOeSQ7i51n7Pt6X2veMUr8q53vetF52tubs6HPvShPS0LAAAAAAAAAAAAAIA95AQ6AOgnnnnmmZp44MCBOeyww3Z6zd13353TTz89o0aNyplnnpk/+7M/y+WXX56LL74455xzTqZMmZLDDz8811xzTcqy3GGea665JkVRVL+uuOKK6mNbt27Nf/zHf2TWrFkZO3Zs6uvrc9555+Xkk09OURQ55ZRTanJde+21Nbl+++vkk09Okrz97W/f4Z6ufF1zzTXV55s/f35+9KMf1dRw6aWXpiiKnf7sAAAAAAAAAAAAAADY9zmBDgD6ie9973s18Vve8pY0NjZud+/WrVvzrne9K1/4whd2mfeRRx7J+eefnxtvvDH/+Z//mcGDB3e5prvuuivnn39+Hn300Zr1NWvWdDlHT7vllltqhgNHjRqV17/+9b1XEAAAAAAAAAAAAAAA3cYJdADQD8ydOzdXXnllNZ4wYUI+9KEPbXfvli1b8upXv7rT8NzAgQMzc+bMHH/88ZkxY0aamppqHv/Od76Tt7zlLTs9ie63/cu//EtOPPHETsNz+4L6+v/7fwj89Kc/rXnspJNO2uHgIQAAAAAAAAAAAAAAfYsT6ACgD9q6dWvWrVuX3/zmN7nuuuvy+c9/Plu2bEmSjB49OjfffHPGjx+/3WsvueSS3HTTTdV4xowZ+fCHP5wzzjijZrBsy5YtufHGG3PZZZdl0aJFSZ475e7qq6/OO9/5zp3W9/nPfz5LlizZ6Z5/+Zd/yerVqzN37txccskl1fVjjz02H/3oR7d7zbBhw5Ik733ve/P2t799p/lfcM011+Taa6+txjNmzMhZZ51Vje++++6a/cccc0yX8gIAAAAAAAAAAAAAsO8zQAcA+7hJkyZ1ee/b3va2fPKTn8zo0aO3+/hNN92Uq666qhr/0R/9Ua677rpOp80lSVNTU970pjfl937v9/Lyl788K1asSJJ87GMfy0UXXVQzbLetF4bnGhsbc+655+YNb3hDjjzyyIwdOzZlWWbVqlUZNWrUdq8dOXJkTj755J3e52GHHZbDDjtsp3uS507m+8Y3vlGNBw0alOuvvz7Nzc2dan3B9OnTd5kXAAAAAAAAAAAAAIC+odLbBQAA3aNSqWTTpk257777drjnIx/5SPXPU6ZMyde//vXtDs/9toMOOijvfve7q/GTTz6Zu+66a5f1zJo1K4888ki+9KUv5Ywzzsj48eNTqVRSV1e3w+G57rRu3bqcffbZ2bx5c3Xt6quvzqGHHlqNt27dmg0bNtRcN2LEiB6vDQAAAAAAAAAAAACAvcMAHQD0Ex0dHbn++utz2mmn5fTTT8+zzz5b8/ivf/3r3H777dX4kksuyYABA7qU+7WvfW1N/Nt5tufss8/OD3/4w906Pa+7XXTRRZk3b141vvDCC3POOefU7Fm5cmWn64YNG9bTpQEAAAAAAAAAAAAAsJfU93YBAMDOXXfddRk3blzNWltbW7Zs2ZIVK1bk4Ycfzne+8538+te/rj7+4x//OCeffHJ++tOfVk9Uu/XWW2tynHTSSV2u4eCDD66JH3vssZ3uP/zww1Op9N6c/lVXXZVvfOMb1XjGjBn57Gc/26Vri6LoqbIAAAAAAAAAAAAAANjLDNABwD7u2GOP7TTAtq2PfvSj+fd///dccskl2bhxY5LnTpz7i7/4i3z9619Pktx5550110yfPv1F17S9k9v2FXPnzs2ll15ajQcNGpTrr78+zc3NnfYOHz6809rq1at7sjwAAAAAAAAAAAAAAPai3jsaBgDoVn/2Z3+Wf//3f69Zu+666/Loo48mSZ5++ulue65169Z1W67utG7dupx99tnZvHlzde3qq6/OoYceut39jY2NaWlpqVlbtWpVj9YIAAAAAAAAAAAAAMDeY4AOAPqRc845J4ccckjN2re+9a0k3XtqXFmW3ZarO1100UWZN29eNb7wwgtzzjnn7PSasWPH1sSPPPJIj9QGAAAAAAAAAAAAAMDeV9/bBQAA3evEE0/M/Pnzq/H999+fJNm6dWvNvm9+85sZOXLki3qOYcOGvej6espVV12Vb3zjG9V4xowZ+exnP7vL644++ugsWLCgGt955525+OKLe6JEAAAAAAAAAAAAAAD2MgN0ANDPjBkzpiZ+4eS5ESNG1KxPmzYthx122F6rqyfNnTs3l156aTUeNGhQrr/++jQ3N+/y2hNOOKFm8O4nP/lJ2traUl/vP5MAAAAAAAAAAAAAAPq6Sm8XAAB0r9bW1pr4hdPiRo8eXbP+2GOP7a2SetS6dety9tlnZ/PmzdW1q6++OoceemiXrj/55JNr4qVLl+bGG2/szhIBAAAAAAAAAAAAAOglBugAoJ9ZuHBhTTxx4sQkyVFHHVWz/pOf/GSv1dSTLrroosybN68aX3jhhTnnnHO6fP20adNy3HHH1ax98pOfTFmW3VYjAAAAAAAAAAAAAAC9wwAdAPQjK1euzE033VSz9gd/8AdJklNOOaVm/atf/Wq2bNmy12rbkfr6+hd97VVXXZVvfOMb1XjGjBn57Gc/u9t5Lrvsspr45z//+YvK84L29vb88z//84u+HgAAAAAAAAAAAACA7mGADgD6iba2tlxwwQXZuHFjdW3MmDGZNWtWkuT444/PIYccUn1s6dKlufLKK3f7eZYtW5b58+fvecHPGzJkSE28adOmLl03d+7cXHrppdV40KBBuf7669Pc3LzbNfzRH/1RXvayl9Wsve9978utt96627lWrFiR17zmNfnMZz6z29cCAAAAAAAAAAAAANC9DNABQD8wb968nH766fn2t79ds/6pT30qDQ0NSZK6urq8733vq3n8Yx/7WJcHvdra2vKFL3wh06ZNy3333dc9hSc5+OCDU6n833+S3Hvvvbscolu3bl3OPvvsbN68ubp29dVX59BDD31RNVQqlfzXf/1XWlpaqmubNm3KmWeema997WtdytHR0ZGvfe1rmTFjRn74wx++qDoAAAAAAAAAAAAAAOhe9b1dAACwc3fffXcef/zxatzR0ZFNmzZl1apVeeKJJzJ79uzMnj07bW1tNdddcMEFOffcc2vWzj///HzrW9/KD37wgyRJWZa5+OKL84Mf/CB/+7d/mxNPPLE6cPeCe++9N9/85jfzta99LU8++WS339+QIUMyc+bM6lDe6tWr86d/+qe56qqrMnTo0Oq+RYsW5f77788ZZ5yRiy66KPPmzas+dtxxx2XixImZPXt2l55z3LhxOeyww2rWpk6dmi9+8Ys599xz097eniTZvHlzzj333Hzxi1/MX//1X+e0007rdMLdwoUL8+1vfzv//u//nocffvjF/AgAAAAAAAAAAAAAAOghBugAYB/35je/ebf2F0WRSy65JJ/85Cc7PVapVPL1r389v//7v5977723un7TTTflpptuSktLSyZNmpShQ4dm48aNWbBgQdasWbPH97Ar/9//9//loosuqsbXXXddbrjhhhx++OEZNGhQlixZkvnz5+ekk07KtGnT8o1vfKPm+rvuuiunnHJKl5/vvPPOyzXXXNNp/U1velMGDx6cN73pTVm/fn11/YUhxQEDBuTAAw/M6NGjs2HDhjz99NNZsWLF7t8wAAAAAAAAAAAAAAB7RaW3CwAAus9RRx2V22+/PZ/61KdSFMV29wwdOjRz5szJBRdc0OmxDRs25MEHH8ycOXNy3333bXd4bsSIERk/fny31n3BBRfk1a9+dc1aa2tr7r///syZMyfz58+vrnd0dHTrc2/rzDPPzF133ZU/+IM/6PTY5s2bM2/evNx55525//77tzs8V1dXlz/+4z/Odddd16N1AgAAAAAAAAAAAACwawboAKAPqqury+DBgzNp0qSceuqpec973pNf/OIXueeee3LCCSfs8voBAwbkS1/6UubOnZtzzjknQ4cO3en+lpaWnHXWWbn++uuzaNGiHH/88d11K0meOxnvxhtvzAc+8IEMHjx4h/sGDhzYrc+7I9OnT8/NN9+c//3f/80b3/jGDB8+fKf7Gxsbc8IJJ+TjH/94Hn/88dxwww057rjj9kqtAAAAAAAAAAAAAADsWFGWZdnbRQAAvaujoyNz587Nww8/nJUrV2bNmjWpr6/P2LFj89KXvjQzZ85MfX39Xqll/fr1ueOOO/Loo49m/fr1GTp0aMaOHZuXvexlmTJlyl6pYVvt7e2599578/jjj2fZsmVZtWpV6uvrM2LEiEyZMiXHHnvsXhvuAwAAAAAAAAAAAACg6wzQAQAAAAAAAAAAAAAAANAvVXq7AAAAAAAAAAAAAAAAAADoCQboAAAAAAAAAAAAAAAAAOiXDNABAAAAAAAAAAAAAAAA0C8ZoAMAAAAAAAAAAAAAAACgXzJABwAAAAAAAAAAAAAAAEC/ZIAOAAAAAAAAAAAAAAAAgH7JAB0AAAAAAAAAAAAAAAAA/ZIBOgAAAAAAAAAAAAAAAAD6JQN0AAAAAAAAAAAAAAAAAPRLBugAAAAAAAAAAAAAAAAA6JcM0AEAAAAAAAAAAAAAAADQLxmgAwAAAAAAAAAAAAAAAKBfMkAHAAAAAAAAAAAAAAAAQL9kgA4AAAAAAAAAAAAAAACAfskAHQAAAAAAAAAAAAAAAAD9kgE6AAAAAAAAAAAAAAAAAPolA3QAAAAAAAAAAAAAAAAA9EsG6AAAAAAAAAAAAAAAAADolwzQAQAAAAAAAAAAAAAAANAvGaADAAAAAAAAAAAAAAAAoF8yQAcAAAAAAAAAAAAAAABAv/T/A3auomDy2wHSAAAAAElFTkSuQmCC",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "features_start_at = list(soldata.columns).index(\"MolWt\")\n",
- "feature_names = soldata.columns[features_start_at:]\n",
- "\n",
- "fig, axs = plt.subplots(nrows=5, ncols=4, sharey=True, figsize=(12, 8), dpi=300)\n",
- "axs = axs.flatten() # so we don't have to slice by row and column\n",
- "for i, n in enumerate(feature_names):\n",
- " ax = axs[i]\n",
- " ax.scatter( soldata[n], soldata.Solubility, s=6, alpha=0.4, color=f\"C{i}\" ) # add some color\n",
- " if i % 4 == 0:\n",
- " ax.set_ylabel(\"Solubility\")\n",
- " ax.set_xlabel(n)\n",
- "# hide empty subplots\n",
- "for i in range(len(feature_names), len(axs)):\n",
- " fig.delaxes(axs[i])\n",
- "plt.tight_layout()\n",
- "plt.show()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "It's interesting that molecular weight or hydrogen bond numbers seem to have little correlation, at least from this plot. MolLogP, which is a calculated descriptor related to solubility, does correlate well. You can also see that some of these features have low **variance**, meaning the value of the feature changes little or not at all for many data points (e.g., \"NumHDonors\")."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Linear Model\n",
- "\n",
- "Let's begin with one of the simplest approaches — a linear model. This is our first type of supervised learning and is rarely used due to something we'll see — the difficult choice of features. \n",
- "\n",
- "\n",
- "```{margin} Autodiff\n",
- "[Autodiff](https://en.wikipedia.org/wiki/Automatic_differentiation) is a computer program tool\n",
- "that can compute analytical gradients with respect to two variables in a program. \n",
- "```\n",
- "\n",
- "Our model will be defined by this equation:\n",
- "\n",
- "\\begin{equation}\n",
- " y = \\vec{w} \\cdot \\vec{x} + b\n",
- "\\end{equation}\n",
- "\n",
- "which is defined for a single data point. The shape of a single feature vector, $\\vec{x}$, is 17 in our case (for the 17 features). $\\vec{w}$ is a vector of adjustable parameters of length 17 and $b$ is an adjustable scalar (called **bias**).\n",
- "\n",
- "We'll implement this model using a library called [``jax``](https://jax.readthedocs.io/en/latest/notebooks/quickstart.html) that is very similar to numpy except it can compute analytical gradients easily via autodiff.\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 38,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "DeviceArray(5.5, dtype=float32)"
- ]
- },
- "execution_count": 38,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "def linear_model(x, w, b):\n",
- " return jnp.dot(x, w) + b\n",
- "\n",
- "\n",
- "# test it out\n",
- "x = np.array([1, 0, 2.5])\n",
- "w = np.array([0.2, -0.5, 0.4])\n",
- "b = 4.3\n",
- "\n",
- "linear_model(x, w, b)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "```{margin} Loss\n",
- "A loss is a function which takes in a model prediction $\\hat{y}$,\n",
- "labels $y$, and computes a scalar representing how poor the fit is.\n",
- "Our goal is to minimize loss.\n",
- "```\n",
- "\n",
- "Now comes the critical question: *How do we find the adjustable parameters $\\vec{w}$ and $b$*? The classic solution for linear regression is computing the adjustable parameters directly with a pseudo-inverse, $\\vec{w} = (X^TX)^{-1}X^{T}\\vec{y}$. You can read more about [this here](https://nbviewer.jupyter.org/github/whitead/numerical_stats/blob/master/unit_12/lectures/lecture_1.ipynb#Extending-Least-Squares-to-Multiple-Dimensions-in-Domain---OLS-ND). We'll use an **iterative** approach that mirrors what we'll do in deep learning. This is not the correct approach for linear regression, but it'll be useful for us to get used to the iterative approach since we'll see it so often in deep learning. \n",
- "\n",
- "To iteratively find our adjustable parameters, we will pick a **loss** function and minimize with **gradients**. Let's define these quantities and compute our loss with some initial random w and b."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 39,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "DeviceArray(554111.4, dtype=float32)"
- ]
- },
- "execution_count": 39,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# convert data into features, labels\n",
- "features = soldata.loc[:, feature_names].values\n",
- "labels = soldata.Solubility.values\n",
- "\n",
- "feature_dim = features.shape[1]\n",
- "\n",
- "# initialize our paramaters\n",
- "w = np.random.normal(size=feature_dim)\n",
- "b = 0.0\n",
- "\n",
- "# define loss\n",
- "def loss(y, labels):\n",
- " return jnp.mean((y - labels) ** 2)\n",
- "\n",
- "\n",
- "# test it out\n",
- "y = linear_model(features, w, b)\n",
- "loss(y, labels)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Wow! Our loss is terrible, especially considering that solubilities are between -13 and 2. But, that's right since we just guessed our initial parameters. \n",
- "\n",
- "\n",
- "\n",
- "### Gradient Descent\n",
- "\n",
- "We will now try to reduce loss by using information about how it changes with respect to the adjustable parameters. If we write our loss as:\n",
- "\n",
- "\\begin{equation}\n",
- " L = \\frac{1}{N}\\sum_i^N \\left[y_i - f(\\vec{x}_i, \\vec{w}, b)\\right]^2\n",
- "\\end{equation}\n",
- "\n",
- "This loss is called **mean squared error**, often abbreviated MSE. We can compute our loss gradients with respect to the adjustable parameters:\n",
- "\n",
- "```{margin} jax.grad\n",
- "[jax.grad](https://jax.readthedocs.io/en/latest/jax.html#jax.grad) computes an analytical derivative of a Python function. \n",
- "It takes two arguments: the function and which args to \n",
- "take the derivative of. For example, consider `f(x, y, z)`, then `jax.grad(f,(1,2))`\n",
- "gives $\\frac{\\partial f}{\\partial x}, \\frac{\\partial f}{\\partial y}$. Note too that\n",
- "$x$ may be a tensor. \n",
- "```\n",
- "\n",
- "\\begin{equation}\n",
- " \\frac{\\partial L}{\\partial w_i}, \\frac{\\partial L}{\\partial b}\n",
- "\\end{equation}\n",
- "\n",
- "where $w_i$ is the $i$th element of the weight vector $\\vec{w}$. We can reduce the loss by taking a step in the direction of its negative gradient:\n",
- "\\begin{equation}\n",
- " (w_i, b') = \\left(w_i - \\eta \\frac{\\partial L}{\\partial w_i}, b - \\eta\\frac{\\partial L}{\\partial b}\\right)\n",
- "\\end{equation}\n",
- "\n",
- "where $\\eta$ is **learning rate**, which an adjustable but not trained parameter (an example of a **hyperparameter**) which we just guess to be $1\\times10^{-6}$ in this example. Typically, it's chosen to be some power of 10 that is at most 0.1. Values higher than that cause stability problems. Let's try this procedure, which is called **gradient descent**.\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 40,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "(DeviceArray([4.34213906e+05, 2.99283130e+03, 1.09366477e+05,\n",
- " 2.90330176e+04, 6.03893506e+03, 1.46635278e+03,\n",
- " 8.63276855e+03, 6.12605518e+03, 1.52025359e+05,\n",
- " 2.27809106e+03, 3.70779419e+02, 6.98108032e+02,\n",
- " 2.97619263e+03, 1.00468695e+05, 1.80537688e+05,\n",
- " 1.86782349e+03, 1.06673350e+06], dtype=float32),\n",
- " DeviceArray(949.38837, dtype=float32, weak_type=True))"
- ]
- },
- "execution_count": 40,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# compute gradients\n",
- "def loss_wrapper(w, b, data):\n",
- " features = data[0]\n",
- " labels = data[1]\n",
- " y = linear_model(features, w, b)\n",
- " return loss(y, labels)\n",
- "\n",
- "\n",
- "loss_grad = jax.grad(loss_wrapper, (0, 1))\n",
- "\n",
- "# test it out\n",
- "loss_grad(w, b, (features, labels))"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "We've computed the gradient. Now we'll minimize it over a few steps."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 41,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgEAAAGwCAYAAAAwmLYsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAABP+AAAT/gEHlDmEAABRoUlEQVR4nO3deXhTVf4/8HeaJk3adEk3ugKlgBQpmyyCKGJRUBCRVXRQQBZRHFTGGUX9Iuqg81OGUWEUlW3ADVRENhGRRQXZl7IUgba00EL3JV3T5v7+SHNpSLpA094k9/16nj6U3O2Tpss755x7jkIQBAFEREQkOx5SF0BERETSYAggIiKSKYYAIiIimWIIICIikimGACIiIpliCCAiIpIphgAiIiKZYgggIiKSKYYAIiIimWIIICIikimGACIiIpliCCAiIpIphgBqsrZt20KhUGDSpEk221JTU6FQKKBQKLBy5coWr43IEV5//XXx+7g5Wa7x+uuvN+t1iCwYAlzcrl27xF8cjfl47rnnpC75htX1HJVKJQICAtCmTRvcfvvtePrpp7Fq1SoUFRVJXTLVo3YwbMrHrl27pH4qdIOKiorwySefYOzYsejQoQP0ej3UajVCQkLQp08fzJo1Czt37gQXt205DAHkskwmEwoLC5GWlob9+/fjo48+wqRJkxAREYGnn34ahYWFzV5DS71DdBYrV64Un29qaqrU5ZCLEAQBCxcuRExMDGbMmIFvvvkG58+fR0FBAYxGI3JycnDw4EEsWbIE99xzD+Li4rB582apy5YFT6kLIMeZOXMmnn766Xr3CQ4ObqFqmsf1z7GkpASFhYU4ffo0fvvtN/zwww8oKSnBRx99hM2bN+P7779Hjx49JKyYrhcZGYnExMQ6tw8ZMgQZGRmIiIjAtm3b6twvJiamOcqz6/XXX2+RJnp3fAdcUVGBiRMnYt26dQAAT09PjBo1CkOGDEFsbCz8/PyQnZ2N06dPY+PGjdi5cyfOnj2LV155BcOGDZO4evfHEOBGQkND0aVLF6nLaFZ1Pcf77rsPzz33HDIzMzFr1ix89913SEtLw/Dhw7F//35ERUVJUC3Zo1Kp6v0+ValUjdqPXMOsWbPEANC9e3d8/fXX6Nixo81+lp/ho0eP4oUXXkB+fn5LlypL7A4gtxIeHo5vv/0WkydPBgBkZGTg+eefl7gqInnauHEjPvvsMwBAXFwc9uzZYzcA1NajRw/s2LEDc+bMaYkSZY8hQMbqG9Vfmyv2ey9ZsgSRkZEAgG+//RZJSUk2+wiCgAMHDuC1117DgAEDEBISApVKBX9/f3Tp0gWzZs3C2bNn7Z7f0jc+f/588bHGDF5LTk7Gf/7zH9x///2Ijo6GRqOBt7c3YmJiMGHCBOzYsaPB51ZYWIi3334bd9xxB4KCgqBSqRAUFIROnTrh/vvvx8KFC5GcnFzn8YIgYO3atRg9ejRat24NjUaDgIAA9OzZE6+++iqys7NtjrEMzrSEK8DcHH/9822JO0Cu/34sLi7G22+/jd69eyMoKMhmdH1TXue6rnm963+W/vzzTzz11FOIiYmBRqNBSEgIhg0b1uDrW9/dAdePxzCZTFi2bBkGDBiAoKAgeHt7o3PnznjllVcaNR7m0qVLmDVrFmJjY6HRaNCqVSvcd999+Pbbb+1e72a89dZb4ucrVqyAr69vo47z8PDAxIkTrR6rPUC4oUGh9f1uu/55GY1GLF68GAMGDEBoaCg8PDwwadIk7N27V9xv0aJFDda8ZcsWcf9PP/3U7j65ubl488030a9fPwQHB0OtViMsLAzDhg3DmjVrYDKZGryOwwnk0nbu3CkAEAAI8+bNu6Fj27RpIwAQnnjiiXr3mzdvnniNGz1PSkqKeOyKFStuqD6Lm32Ob775pnjc22+/bbO99vOq68PT01NYunSpzbErVqxo8FgAws6dO+0+j/o+Jk+eLFRVVdl9TqdOnRIiIiIaPMczzzxj9/iMjAyhb9++9R7r7+8vbNu2rc7XoL6Pm32Na7N8P7Vp08bu9tqv2/nz54XY2FibOmp/nzTldbZ3jvpqfuKJJ4T169cLPj4+dV7rgw8+qPM69X2f1/6eO3XqlHDvvffWeY24uDghKyurzuv88ssvgq+vb53HP/nkk1bXS0lJqfNcdTl58qR4/B133HHDx1+v9vdg7Z8re+r7nVT7eR06dEjo2bOnzfO3HNeuXTsBgNCzZ88G65swYYIAQPDy8hLy8/Nttn/33XeCn59fvd+HAwYMELKzsxvx1XAcjgkgtzVkyBC89tprAIA9e/bgpZdestpeVVWF8PBwjBw5Ev369UO7du2g1WqRmZmJQ4cOYcmSJcjOzsbMmTPRsWNH3H333eKxI0eORK9evfDf//4XH330EQDYHexWe/BaVVUVfHx88MADD+Cee+5Bp06d4O/vj9zcXPz555/473//i1OnTmHFihVo27Yt/u///s/mfBMnTkRGRgYA4NFHH8Xo0aMRGRkJpVKJzMxMHD58GD/88IPdr0dBQQEGDBiA5ORkKJVKTJgwAQ888ABiYmJgMpmwb98+LFq0CJcvX8ZDDz2Effv2oXv37gCA3r17IzExERs2bMCrr74KANi2bRsiIiKsrtHSYy9GjRqFixcv4qmnnsLIkSMREhKCixcvQqPRiPs05XW+UYmJiVi7di1atWqFBQsWoHfv3lAqldi9ezf++c9/orCwEHPmzMG9996LTp063fR1pk2bhn379mHixIkYN24cIiMjkZGRgQ8//BDbtm3DmTNn8MILL2D16tU2x6akpODBBx9ESUkJPDw8MGXKFIwbNw6BgYH4888/8cEHH2DZsmU4efLkTdcHwOrdurMO8JsyZQoSExMxYcIETJgwAZGRkbhy5QqKi4sBAI899hjefPNNHDlyBGfOnEFcXJzd8xgMBmzYsAEAMHz4cAQEBFhtX79+PcaMGQOTyYTQ0FA8++yz6NatGyIjI3H16lVs2LABn332GX777Tc8/PDD2LlzJzw9W+jPc4tGDnK42ul45syZQmJiYp0fFy9etDrW3VsCKioqBA8PDwGAEBsba7e2ysrKOo8vKCgQunXrJgAQ7rzzTrv7NPS1qS07O1vIy8urc7vJZBImT54sABB0Op1QWFhotf38+fPitebMmVPvtXJycmwemzhxogBA0Ov1wuHDh+s8Li4uTgAgDBw40GZ7U98dNsaNtAR4eHgImzdvrvd8LfE6W2pGzbvGgoICm3127dol7jN79my756nv+/z61qf//e9/NvtUV1cLCQkJYuuGvdaAkSNH1vszWVVVJYwYMcLqWjfzWk+bNk08/vqWpZvRHC0BAISPPvqozvOcPXtW3G/u3Ll17rdq1Spxv++//95qW05OjhAQECAAEO6//36hpKTE7jk2bdok/r5yRItaY3FMgBv56KOPEB8fX+fHX//6V6lLbFFqtVrsg8zLy7PZ3rZtW3Ekuj3+/v544403AAC//vorcnNzm1RPcHAw9Hp9ndsVCgXee+89KJVKGAwG/Pzzz1bbr1y5In5+11131XutoKAgq/9fvHgRX3zxBQDgn//8J3r27Fnnce+99x4AYPfu3bhw4UK915Ha448/jgceeKDefVr6dV6xYgX8/f1tHh84cCD69u0LwNwy1RSjRo2y6TMHzH3pf/vb3wCYW0D27dtntT0jIwMbN24EANx77712+8yVSiU++eQTq9aUm5GTkyN+3qpVqyadq7ncfffdeOqpp+rc3rFjR/Tp0wcA8MUXX9R5C+fnn38OAAgMDMT9999vte3jjz9GQUEBvL29sXr1anh7e9s9x7BhwzB69GgAwLJly274udwshgByazqdDgDE5r36GAwGpKam4tSpUzh58iROnjxp1SR3/Phxh9ZWWVmJ9PR0nDlzRrxeRkaG+Af82LFjVvtbBjoCwOrVq1FVVdXoa23atAnV1dUAgLFjx9a7b+2AsXfv3kZfQwp/+ctfbviY5nyd4+Pj0bVr1zq39+rVCwDqHbjZGI899liD17B3nZ07d4rfB48//nid52jVqhWGDBnSpBpr/8xZfg6dTWO+fyz7pKam4vfff7fZfuXKFXHA5/jx46FWq622f//99wCAQYMG2YTz61l+9g4cOCC+Ts2NYwLcyLx58zjn+HUsv4j8/Pzsbk9PT8fChQvxww8/ICUlpd5z1X5nc7NKS0uxePFifPXVV0hMTKz3D/n112vbti0GDhyI3bt345tvvsHhw4cxfvx4DBo0CH369LHph6zt0KFD4uchISGNrrd264Mz6tatW6P2a6nXuaF+/sDAQACNC6U3ex3LNexdp3Y/f+2wYE+vXr3Efu6bUftOAIPBcNPnaU6N+f555JFH8MILL6Cqqgpr1qzBgAEDrLZ/+eWX4h/s60NFdXU1jh49CgDYvHlzo++wqqysRF5e3g39rN4stgSQ26qoqBB/Cdb+xWixbds2xMXF4f3332/wDwMAlJWVNameixcvomvXrvjHP/6Bo0ePNvhO3t71vvzyS9x5550AzAO83nnnHQwZMgRBQUG47bbb8K9//QsFBQU2x2VlZd1UzaWlpTd1XEupr3vFoiVf57qaei08PMy/cpt6K1h917FcA4DNu8naE/CEhobWe42m/gGqPTvp1atXm3Su5tKY75+QkBDcd999AIB169ahsrLSavuaNWsAAO3atUP//v2ttuXl5d30O/qW+tljSwC5rWPHjol9eLfccovVttzcXEyYMAElJSXw8fHBCy+8gKFDh6J9+/bw9/eHl5cXAHNzamxsLAA0eUrXiRMnin3sTzzxBCZMmIC4uDiEhobCy8tLfJfQunVrpKen271eeHg49uzZg127dmH9+vXYvXs3EhMTYTKZcOTIERw5cgTvvvsuvvvuO6tmfcsvIp1OZ9NPXJ+G/lBITalU1rtditfZmbXkc7PcWQIAhw8fFv+QOpOGvn8sJk6ciC1btiAvLw9btmzByJEjAQBJSUk4cuQIAPtdC7UDwGOPPWZzh1J9rr/zprkwBMiY5QegoXclJSUlLVGOw9Wed/76gXTr1q0T3xV99913df6CctTUpUlJSfj1118BAC+//DIWLFhQ576Nuebdd98t3spWWFiIXbt2YeXKlfj++++Rm5uLUaNGISUlRWyStbwrMxgMCA8Pb7Bv0l209Ovs7Gq3iGVlZdltIbOwN2nUjah9q+WmTZvw8ssvN+l8tf9gt/TvrIceegi+vr4oLi7G559/LoYASysAYD8EWCavEgQBhYWFTjkNNrsDZMzyB6KhX4BnzpxpiXIcqqysDEuXLgVgbh61/NBanDp1CoC5ObC+dyi1+9LtaWwfn+V6gLmPsS5nz5694f5Tf39/PPTQQ1i/fr14B0hubq7V7HS1F1Gqb1GehrjSrJGA415nd1H7j9Dhw4fr3beh7Q3p3LmzeDfE3r178ccffzTpfLXHGNT3OysnJ8ch43dq02q1GDVqFABzoCksLIQgCOIdN3379kWHDh1sjlOpVLj11lsBmO8IKS8vd2hdjsAQIGOWiWwOHz5cZzPhlStXbG5VcwXPPPOMOKnO2LFjbeYrt/THV1RU1PmuwmQyiUGiLrVvo6qoqKhzv9r9//X1Of/3v/+t93oNSUhIED+v/YtwxIgRYl/xe++9d0N3FtTW2OfrLBz1OruLQYMGie+o7U0kZJGVlYUff/yxydd75ZVXxM+nTJnS6AGRJpPJpj7LNNUAcPDgwTqPrf3u3JEs7/TLy8vxzTff4PfffxfHmNi7XdPC8gakqKgIS5YsaZbamoIhQMYszXWZmZl2fyFUVFRg0qRJLvHL3iIzMxOjR4/GihUrAJhvq/v3v/9ts58lFJSWlmLt2rV2z/Xiiy+KI3vrEh4eLn5+/vz5OverHUIstV1v/fr1WLx4cZ3nOHbsmNj/WJeffvpJ/Lz2bIUdOnQQWyCOHj2KGTNm1BsEioqK7NbS2OfrLBz1OruLiIgIPPjggwDMLUL2/mCaTCY89dRTDnnX+uCDD2LatGkAzC2KAwcOxLlz5+o95sSJExg8eDAWLlxo9bi/v784mn/FihV23+2fOHEC8+bNa3Ld9txzzz3ibbpr1qwRv3YqlQrjx4+v87jZs2eL80a88sor2Lp1a73XOXHihDiXQ0vgmAAZe+yxx/D666+joKAA06dPx4ULF3D//fdDqVTi+PHjeP/993H69GncfvvtTW7Kc5SsrCyr25xKS0tRUFCAM2fO4Ndff8XGjRvF0btt2rTBhg0b7A6wGTduHObOnYvy8nJMmTIFx44dw+DBg6HX63H27FksXboUe/bswYABA/Dbb7/VWc8dd9whfj5r1iy88soriIiIEN91t27dGt7e3ujevTvi4+ORmJiIpUuXIj8/HxMnTkRERAQyMzOxbt06rF69GrGxsSgoKLDbH3vs2DFMnjwZPXv2xIMPPoiePXsiPDwcgiAgPT0da9euFf/Qde7cGQMHDrQ6fsmSJTh06BD+/PNPLF++HHv37sX06dPRq1cv+Pr6orCwEElJSdi1axc2btwIjUaDWbNmWZ2jZ8+e0Gq1KCsrw9y5cyEIAmJiYsR3l+Hh4XYnypGKo15nd7Jw4UJs374dJSUleOKJJ/Drr79i7NixVtMG79u3D3379sX+/fsBNK0b6MMPP0R+fj6++eYbHD16FJ07d8aoUaMwdOhQxMbGwtfXFzk5OThz5gw2b96M7du3QxAEu7fvzZo1C1OnTkVWVhYGDBiA1157DZ07d0ZhYSG2bduGxYsXIzw8HF5eXk0e03A9Dw8PTJgwAe+99x52794tBvKhQ4da3QlxveDgYKxZswYjR45ERUUFhg0bhlGjRmHMmDGIjY2Fh4cHsrKycOTIEWzcuBH79+/HnDlzxLDW7FpsbkJqFk1ZQEgQzItaeHp62l3MwtPTU1i8eLFTTRvcmA8fHx/h6aeftpl293qrVq0SlEplnedJSEiwWgSlrvotC4fY+6g9venx48eFoKCgOveNiYkRzpw5U+fXs7GLFnXs2FE4d+6c3Vqzs7OF++67r1HniYmJsXuOl19+uc5jWnoBocZwxOvclJ+BGzlPfT/LNzJlc0O/E3bs2FHvAkLTpk0Tli1bJv7/ypUr9V6vISaTSXjvvfcEvV7fqO+9Ll26CD/99JPd84wZM6bO49q2bSskJSU1etrgG50O+dixYzbX/Prrrxt17E8//SSEhoY26vnPnz//hupqCnYHyNzDDz+MP/74A2PHjkWrVq2gUqkQERGB8ePH4/fff8czzzwjdYl1UigU8PPzQ1RUFPr27YuZM2di1apVyMzMxJIlS+qcIMji8ccfx++//44xY8aIz71Vq1YYNGgQli1bhp9++gk+Pj4N1vG///0PixYtQr9+/RAQEGB1n3ZtXbt2xbFjx/DMM88gJiYGarUaAQEB6NGjB9544w0cPXq03klgHn30UezcuROvvPIKBg4ciNjYWOh0OqhUKoSFhWHIkCH4+OOPceLECbRv397uOYKDg7Ft2zbs2LEDkydPRseOHeHr6wulUgm9Xo+ePXti2rRp+Pbbb+scELpgwQKsWLECd999N4KDgxt9m5VUHPU6u5N77rkHp0+fFr8Xvby8EBISgsGDB+Obb77BJ598gqKiInH/prbuKBQKzJkzBykpKfj4448xevRo8TZNlUqF4OBg9OnTB88++yx2796NEydO4N5777V7nq+++gpLly7F7bffDl9fX2i1WsTFxeHVV1/F0aNHbW4HdqRu3bohPj5e/L+fnx9GjBjRqGPvvfdepKSkYPHixbj//vsREREBtVoNLy8vREZG4p577sG8efNw5MgRu4uHNReFILjxTbFERHRTpk6dimXLliEqKgrp6elSl0PNhC0BRERkpbS0VJzz/vbbb5e2GGpWDAFERDJT3wj9qqoqzJgxQ1xN8YknnmipskgC7A4gIpKZwYMHIzc3F2PHjkXv3r0REhKCkpISHDt2DJ9++qm4kmJCQgK2b9/ucpNEUePxFkEiIhk6duyYzXLVtQ0YMABr165lAHBzbAkgIpKZY8eOYf369fjll1+Qnp6O7OxsVFdXIzg4GL1798YjjzyCsWPH1nmnC7kPhgAiIiKZYswjIiKSKYYAIiIimeLAQIllZGRg06ZNaNeunexmLSMiIscoKSlBcnIyhg8fbne9lLowBEhs06ZNmDFjhtRlEBGRG1i6dCmmT5/e6P0ZAiTWrl07AOYXrvac1ERERI2VmJiIGTNmiH9TGoshQAKVlZUwGo0AIN6CEx8fj379+klZFhERubgb7VbmwEAJLFiwADqdDjqdDgkJCVKXQ0REMsUQIIG5c+fCYDDAYDBgx44dUpdDREQyxe4ACajVaqjVagCAVquVuBoiIpIrtgQQERHJFEMAERGRTDEEEBERyRRDABERkUwxBBAREckUQwAREZFMMQS4iYqqahxNy8fPp69KXQoREbkIzhPgJoZ98BvOZxkQrFPjYNxgKBQKqUsiIiInx5YAN3FrhB8AIMdQiUv5ZRJXQ0REroAhwE10jw4QPz+WXiBZHURE5DoYAtwEQwAREd0ohgA30TnCD2ql+eVkCCAiosZgCHATXp5KxNWMCzh5uRDGapPEFRERkbNjCHAjPWq6BCqqTEjKLJa2GCIicnoMAW7EelxAvnSFEBGRS2AIcCO1Q8BRjgsgIqIGMAS4kTZB3tB7qwBwcCARETWMIcCNKBQKdKtpDUjOLkFhqVHagoiIyKkxBLiZ2l0Cxy8VSFYHERE5P4YAN8NJg4iIqLG4gJAEKisrYTSam+rLyhw7zz9DABERNRZbAiSwYMEC6HQ66HQ6JCQkOPTcAd5qxAT7ADCHAEEQHHp+IiJyHwwBEpg7dy4MBgMMBgN27Njh8PNbWgPySiqRnscVBYmIyD6GAAmo1Wr4+PjAx8cHWq3W4ee3ni+AkwYREZF9DAFuiOMCiIioMRgC3FBcuB/UnlxRkIiI6scQ4IbUnh64tWZFwVMZRais4oqCRERkiyHATVm6BCqrTDiTWSRtMURE5JQYAtwUxwUQEVFDGALcVI9ovfg5QwAREdnDEOCmogO1CPRRA2AIICIi+xgC3JRCoRC7BFJySlBQWiltQURE5HQYAtwYxwUQEVF9GALcGEMAERHVhyHAjXVjCCAionowBLgxf60K7ULMKwoe54qCRER0HYYAN2fpEsgvNeJibqm0xRARkVNhCHBzPdglQEREdWAIcHPdOWkQERHVgSHAzXUK94VXzYqCRxkCiIioFoYAN6dSeqBLpD8A4ExGESqqqiWuiIiInAVDgAyIKwpWm3A6gysKEhGRGUOADHDSICIisochQAYYAoiIyB6GABmI0msRrOOKgkREZI0hQAZqryh4MbcUeSVcUZCIiBgCZKN2l8BxtgYQEREYAmSj9qRBnC+AiIgAwFPqAuSosrISRqMRAFBWVtYi1+wa7Q+FAhAEjgsgIiIztgRIYMGCBdDpdNDpdEhISGiRa/ppVIgN0QHgioJERGTGECCBuXPnwmAwwGAwYMeOHS12Xcu4gMIyI1JySlrsukRE5JwYAiSgVqvh4+MDHx8faLXaFrsu5wsgIqLaGAJkhCGAiIhqYwiQkU5hvtCozC85QwARETEEyIin0gPxlhUFM4tQbuSKgkREcsYQIDOWLgFjtYBTXFGQiEjWGAJkpvakQewSICKSN4YAmeneOkD8nCGAiEjeGAJkJsJfgxBfLwDAsfR8iashIiIpMQTITO0VBdPzypBrqJC2ICIikgxDgAxxvgAiIgIYAmSpB0MAERGBIUCW4qPMKwoCDAFERHLGECBDvhoVOoSaVxQ8ll4Ak4krChIRyRFDgExZxgUUl1chmSsKEhHJEkOATHHSICIiYgiQKes7BDhfABGRHDEEyFTHVjpoVUoAbAkgIpIrhgCZ8lR6ID7KvKJgUmYxVxQkIpIhhgAZs8wXUGUScPJyobTFEBFRi2MIkDHOHEhEJG8MATJWe0XBowwBRESywxAgY+H+WrTyq1lRMK1A2mKIiKjFMQTInKVL4HJBGbKLuaIgEZGcMATIHCcNIiKSL4YAmeOkQURE8sUQIHNdo/zhwRUFiYhkiSFA5ny8PNGxlS8A4ER6IVcUJCKSEYYAuraiYEUVLmQbpC2GiIhaDEMAoVutcQGcL4CISD4YAogzBxIRyRRDAKFjK194q2tWFOSkQUREssEQQFB6KBAfaV5R8OzVYpRVckVBIiI5YAggANfWEag2CUjkioJERLLAEEAAri0rDHDSICIiufCUugA5qqyshNFoBACUlZVJXI0Zpw8mIpIftgRIYMGCBdDpdNDpdEhISJC6HABAmL8GYX4aABwcSEQkFwwBEpg7dy4MBgMMBgN27NghdTkiy62CGYXlyCoql7YYIiJqdgwBElCr1fDx8YGPjw+0Wq3U5YgsgwMBThpERCQHDAEk4qRBRETywhBAovjIWisKclwAEZHbYwggkdWKgpcKUM0VBYmI3BpDAFnpUTMuoKSyGuezuKIgEZE7YwggK905aRARkWwwBJAVThpERCQfDAFkpX2oDj41Kwoe5eBAIiK3xhBAVpQeCnSNCgAA/Hm1GCUVVdIWREREzYYhgGxYJg0yCeCKgkREbowhgGxw0iAiInlgCCAbVssKc1wAEZHbYgggG6F+GkT416woyJYAIiK3xRBAdlnGBVwpKseVQq4oSETkjhgCyC5OGkRE5P4YAsiu2pMGcVlhIiL3xBBAdsVH+kNZs6QgBwcSEbknhgCyS6tW4paaFQUTLxdyRUEiIjfEEEB1sgwOLK2sxp9Xi6UthoiIHI4hgOrESYOIiNwbQwDViZMGERG5N4YAqlNsiA6+Xp4A2BJAROSOGAKoTh4eCnSN9gcA/JlVDANXFCQicisMAVQvy7gAQQBOXCqQtBYiInIshgCqV+1Jg9glQETkXhgCqF7dOTiQiMhtMQRQvUJ8vRAZoAVgbgkQBE4aRETkLhgCqEGWSYOyiiuQyRUFiYjcBkMANagHJw0iInJLDAHUIM4cSETknhgCqEFdIv3hyRUFiYjcDkMANUijUqJT+LUVBauqTRJXREREjsAQQI1i6RIoM1bjLFcUJCJyCwwB1CicNIiIyP0wBFCjcNIgIiL3wxBAjdIu2Ae+Gq4oSETkThgCqFE8PBRia8D5bAOKy43SFkRERE3GEECNZr2iYKG0xRARUZMxBFCjcdIgIiL3whBAjVY7BBzl4EAiIpfXoiEgIyMDhw4dQklJSUtelhwkSOeF6ECuKEhE5C4cGgIOHTqEv//979iyZYvV4waDASNHjkR0dDT69u2L8PBwfPHFF468NLUQy3wBOYYKXC4ok7gaIiJqCoeGgJUrV2LhwoVQqVRWj7/66qv44YcfxHeOBoMBkyZNwvHjxx15eWoBHBdAROQ+HBoC9u7dC41Gg8GDB4uPlZeXY/ny5VCpVPjpp59QUlKCF198EVVVVfjggw8ceXlqAZw0iIjIfTg0BGRmZiIyMhIKhUJ87LfffoPBYMCDDz6IwYMHQ6PR4I033oBOp8Pu3bsdeXlqAbdG+EGlrFlRkC0BREQuzaEhIC8vD4GBgVaP7d+/HwqFAkOHDhUf8/LyQmxsLC5fvuzIy1ML0KiUiAv3A2BeUdDIFQWJiFyWQ0OAt7c3srOzrR7bs2cPAGDAgAFWj6tUKiiVSkdenlqIpUugosqEs1e4oiARkatyaAjo1KkTUlNTkZSUBAC4evUqdu/ejeDgYHTq1Mlq38uXLyM0NNSRl6cWYjVfALsEiIhclkNDwIQJEyAIAoYOHYo5c+Zg8ODBMBqNGD9+vNV+aWlpyMzMRPv27R15eWohHBxIROQeHBoCZs6ciUGDBiEtLQ2LFi3CqVOn0L59e7z22mtW+3399dcAgEGDBjny8tRCYoJ94K813wZ6LD1f4mqIiOhmeTryZCqVCtu3b8emTZtw5swZtG7dGiNHjoRWq7W+qKcnZs+ejTFjxjjy8i6jsrISRqN5Fb6yMtebcEehUKBbdAD2/JmNC9klKCwziqGAiIhch0NDAAB4eHhgxIgRGDFiRJ37PP/8846+rEtZsGAB5s+fL3UZTdK9JgQAwIlLBbizQ4jEFRER0Y3iAkISmDt3LgwGAwwGA3bs2CF1OTelB8cFEBG5PIeGgCtXrmDLli04ffq0zbb//Oc/6NixI3Q6He655x6cPHnSkZd2KWq1Gj4+PvDx8bHpKnEV3Th9MBGRy3NoCFi8eDEefPBBHD161OrxJUuWYM6cOTh//jxKS0uxa9cuJCQkICsry5GXpxYU6KNGmyBvAFxRkIjIVTk0BOzatQuenp54+OGHxccEQcA777wDAHj55ZexdetWJCQkICcnB4sWLXLk5amFWW4VzC2pxKV81xvgSEQkdw4NAWlpaQgLC4O3t7f42OHDh3H58mX0798f//znPzFkyBB8/vnnUCqV2Lp1qyMvTy2MkwYREbk2h4aA7OxshIeHWz22d+9eAMBDDz0kPhYaGooOHTogOTnZkZenFsZJg4iIXJtDQ4BSqURxsfVc8vv27YNCocCdd95p9bifnx8qKysdeXlqYZ0j/KBWmr+FOGkQEZHrcWgIaNu2Lc6fP4+CggIAQEVFBbZt2watVovbbrvNat+cnBwEBwc78vLUwrw8lYiLMK8oeDKjCJVVXFGQiMiVODQE3H///TAajZgwYQI2btyIqVOnoqCgAEOHDoWn57V5iQoLC5GcnIzo6GhHXp4kYJkvoLLKhKQrRdIWQ0REN8ShMwb+/e9/x5dffolt27bhp59+giAI8PLyslk7YOPGjRAEwaaLgFxP9+vmC+gaFVDnvkRE5Fwc2hIQEhKCAwcOYPbs2bjvvvswbdo0HDp0CN26dbPa79dff0W3bt0wfPhwR16eJMDBgURErsvhawdEREQ0eP//0qVLHX1ZkkibIG/ovVXILzVy5kAiIhfDtQOoSSwrCgJAck4JCkuN0hZERESN5vCWAIv09HRs27YNSUlJKC4uhq+vL+Li4jBkyBBERUU112VJAt2jA7DrrHlFwWOXCjCwI1cUJCJyBQ4PAaWlpXjuueewcuVKVFdXAzBPHaxQKACY5xKYMmUK/v3vf1vNLEiu6/pxAQwBRESuwaEhoLq6GsOHD8fu3bshCAKioqLQuXNnhIeHIzMzE2fOnEF6ejo+/fRTnDt3Dj/99BOUSqUjSyAJWN8hwEmDiIhchUPHBCxbtgy7du2CXq/HmjVrkJqaih9//BErVqzAjz/+iNTUVHz++ecICgrCrl27sHz5ckdeniQS4K1GTLAPAK4oSETkShwaAtasWQOFQoFvv/0Wjz76KDw8rE+vUCgwYcIErFu3DoIgYPXq1Y68PEnI0hqQX2pEWl6ptMUQEVGjODQEnDx5EjExMRg4cGC9+w0cOBCxsbFITEx05OVJQtdPGkRERM7PoSGgrKwMgYGBjdpXr9ejvLzckZcnCVktK8xJg4iIXIJDQ0B4eDiSkpJQWlp/c3BpaSnOnDmDsLAwR16eJBQX7ge1p2VFwQJpiyEiokZxaAgYNGgQSkpKMHv27Hr3e/7551FaWorBgwc78vIkIbWnB26tWVHwdEYRKqqqJa6IiIga4tAQ8Pe//x1qtRrLly9HfHw8li9fjoMHDyI9PR0HDx7EihUr0K1bN3z22Wfw8vLCiy++6MjLk8QsXQKV1SacySyWthgiImqQQ+cJuOWWW7BmzRo8/vjjOHXqFKZNm2azjyAI0Gq1WL16NTp27OjIy5PErCcNyrf6PxEROR+Hrx0wevRoHDt2DE8++STCwsIgCIL4ERYWhqlTp+LYsWMYNWqUoy9NEusRrRc/57gAIiLn1yxrB3To0AGffvopAKC4uBhFRUXw8/ODr6+vuM9tt92GgoICXLhwoTlKIAlEB2oR6KNGXkklQwARkQto9lUEfX19ERkZaRUAACAtLQ2pqanNfXlqQQqFQuwCSM0tRX5JpbQFERFRvbiUMDmU1biASwWS1UFERA1jCCCHun5FQSIicl4MAeRQ3Th9MBGRy2AIIIfy16rQLsS8ouDxS1xRkIjImTEEkMNZugQKSo1IzeWKgkREzoohgByuh1WXQL50hRARUb2aNE/AlClTbvpYg8HQlEuTE+tee9KgtAI83CNKwmqIiKguTQoBK1euhEKhuKljBUG46WPJuXUK94WXpwcqqkwcHEhE5MSaFALuuusu/iEnGyqlB7pE+uPwxXyczixCubEaGpVS6rKIiOg6TQoBu3btclAZ5G66Rwfg8MV8GKsFnM4sQs/W+oYPIiKiFsWBgdQsOGkQEZHzYwigZtGdkwYRETk9hgBqFlF6LYJ1agAMAUREzoohgJpF7RUF0/JKkWuokLYgIiKywRBAzaZ2l8BxrihIROR0GAKo2Vw/aRARETkXhgBqNl2j/WGZRuIoxwUQETkdhgBqNn4aFWJDdACA4+kFMJm4oiARkTNhCKBmZRkXUFRehZTcEmmLISIiKwwB1Kw4aRARkfNiCKBmxUmDiIicF0MANatOYb7QqMzfZgwBRETOhSGAmpWn0gPxkf4AgDM1KwoSEZFzYAigZmfpEqgyCTiVUShtMUREJGIIoGZXe9KgoxwcSETkNBgCqNl1i/YXP+e4ACIi58EQQM0uMkCLYJ0XAIYAIiJnwhBAza72ioKX8suQwxUFiYicAkMAtYgerQPEzzlpEBGRc2AIoBbBSYOIiJwPQwC1iK5R11YU/OJAGtLzSqUtiIiIGAKoZfhqVBjTMwoAkFdSiSkrD6Ko3ChxVURE8sYQQC3mzZFdxG6Bc1kGPPP5EVRVm6QtiohIxhgCqMVoVEp8+ngvRAZoAQC/nsvB/I2nIQiCxJUREckTQwC1qBBfLyyb1As+aiUAYPUfF7Fyb6q0RRERyRRDALW4TmF+WPxoT3jUDBR8c9Np/JJ0VdqiiIhkiCGAJDGoUyheG94ZAGASgGe/OIozmUUSV0VEJC8MASSZSf3bYuLtbQAAJZXVeHLlQWQVl0tcFRGRfDAEkGQUCgXmPdgZd3UMAQBkFJZj2v8Oo9xYLXFlRETywBBAkvJUemDxoz3QIVQHADieXoA5a4/DZOIdA0REzY0hgCTnp1Fh+aTeCPJRAwA2J2Zi0c9/SlwVEZH7YwggpxAd6I1PHr8Nak/zt+SHv5zHd0cuSVwVEZF7Ywggp3Fbm0C8O6ar+P+Xvk3EwdQ8CSsiInJvDAHkVB7qHonZCR0AAJXVJkz/3yFczC2RuCoiIvfEEEBO57nBHTCiWwQAIL/UiCkrD6KwjIsNERE5GkMAOR2FQoH/N6YrerYOAABcyC7BM58fgZGLDRERORRDADkljUqJTx7vhSi9ebGh387nYN4Pp7jYEBGRAzEEkNMK1nlh+aTe8PXyBAB8sT8Ny35LkbgqIiL3wRBATq1jK18sfuzaYkP/3HIGP5/mYkNERI7AEEBOb2DHELw+4lYAgCAAf/3qKE5lFEpcFRGR62MIaILJkydDoVBg5MiRUpfi9h7v1xaT+rcFAJRWVmPqqkPIKuJiQ0RETcEQcJN27NiBdevWwc/PT+pSZOPVYXG4+xbzYkOZheWY+r9DKKvkYkNERDeLIeAmlJWVYcaMGZg3bx70er3U5ciGp9IDH07ogVta+QIATlwqxAtrj3GxISKim8QQcBP+7//+Dz4+Pnj++eelLkV2fDUqLJvUC8E6LwDA1pNX8N5PZyWuiojINblsCLhy5QrWrFmD2bNn44477oC3tzcUCgU6derUqOMPHjyIcePGITw8HF5eXoiOjsaUKVNw7ty5eo87fPgw3n//fXzyySfw9PR0xFOhGxSl98anj98Gr5rFhv676wLWHUqXuCoiItfjsiHgq6++wsSJE/HBBx9g7969KCsra/Sxq1atQr9+/bBu3TpUVVUhPj4eRUVFWLFiBbp3745ffvnF7nFVVVWYOnUqpk2bhr59+zrqqdBN6NFaj4Xjuon/n7s+EX8k50pYERGR63HZEODn54fBgwfjpZdewjfffIMFCxY06rhTp05h6tSpqK6uxj/+8Q9kZGTg0KFDyMzMxGOPPYbS0lKMGTMGubm2f1Dee+89XL16tdHXouY1vGsEXri3IwDAWC3gqTWHkZLDxYaIiBrLZUPAlClTsH37drz99tsYPXo0wsPDG3Xc/PnzUVVVhf79++Odd96BSqUCAHh7e2PZsmWIiYlBfn4+Fi5caHVcWloa5s+fjzfeeAOCIKCgoAAFBQUwmUwwGo0oKChAZWWlw58n1e/Ze9rj4R6RAICCUiOeXHkQBaV8HYiIGsNlQ8DNKC0txaZNmwAAM2fOtNnu5eWFSZMmAQC+/PJLq23JyckoLy/HtGnToNfrxY/09HRs2bIFer0e//vf/5r9OZA1hUKBd0bHo1cb810ayTklmLnmCCqruNgQEVFDZDWy7ejRo+LYgbvuusvuPgMHDgQApKamIjMzU2xh6N69O3bu3Gmz/yOPPIL27dvjrbfewi233NJMlVN9vDyVWDrxNjz8371IyyvFvuRcvPb9SbwzOh4KhULq8oiInJasQsDZs+ZbydRqNaKjo+3uExsbK36elJQkhoCAgADcfffdNvtrNBoEBwfb3Xa99PR0XLp0yeqxxMTERlZP9QnSeWH5pF54+L97UVxeha8PpSM21AfT74pt+GAiIpmSVQjIy8sDAOj1+jrfIQYGBoqf5+fnO/T6y5Ytw/z58x16TrqmfagvPnrsNjyx4gCqTQLe3pqENkE+GHJrmNSlERE5JVmFAEtXgFqtrnMfjUYjfl5aWtrgOVNTUxt9/SeffBJDhgyxeiwxMREzZsxo9DmofgM6BGP+iFvx6vcnIQjAc18dw7qn+qFLpL/UpREROR1ZhQCtVgsA9Y7iLy+/tiiNt7e3Q68fHR1dZzcEOc5fbm+D5OwSLP89BWXGajy56iA2PDMAYf6ahg8mIpIRWd0dYJnnPz8/H4Jgf755S5dB7f3J9bwyLA4JnUIBAFeLKvDkqoMoraySuCoiIuciqxBgmVK4srISaWlpdve5cOGCzf7kepQeCrw/oQc6hZkXGzqVUYTnvuJiQ0REtckqBHTv3l3sEtizZ4/dfXbv3g0AaNu2baMnICLnpPPyxPJJvRHia15s6KfTV/GvbUkSV0VE5DxkFQJ8fHwwbNgwAMDSpUtttldUVGDlypUAgPHjx7dkadRMIgK0+OzxXtCozN/qS3cn4+uD9luBiIjkRlYhAADmzZsHT09P/P7773jppZdgNBoBmO8EmDp1KlJSUuDv74+//e1vEldKjtItOgD/Htdd/P8r609i74Uc6QoiInISLhsC0tPTERwcLH48++yzAIDz589bPf7QQw9ZHdelSxcsXboUSqUS//rXvxAREYFevXohPDwca9asgVarxbp16xAcHCzF06Jm8kB8OF4cYp7RscokYOaaI0jONkhcFRGRtFw2BFRXVyM3N1f8MBgMdh8vLCy0OXbKlCnYu3cvRo8eDaVSicTERPj6+uKJJ57AsWPHcO+997b006EW8PTdsRjdMwoAUFhmxJSVB5FfwsWGiEi+XHaegLZt29Z5m19j9OnTB998840DKyJnp1AosGBUF6TnleJAah5Sc0vx1JrDWP1kX6g9XTYPExHdNP7mI1nx8lTi44m3oU2QeSKo/Sl5mLs+sUmBkojIVTEESKCyshIlJSUoKSkRpzKmlhPoo8bySb3hpzE3hH1z+BI+3p0scVVERC2PIUACCxYsgE6ng06nQ0JCgtTlyFJsiA4f/+U2eHqYF5L6149J+PFkpsRVERG1LIYACcydOxcGgwEGgwE7duyQuhzZ6t8+GG+N7CL+/7mvj+HEpQLpCiIiamEMARJQq9Xw8fGBj4+POIMhSeORPq0x/a52AIByowlTVx1CZiG7aIhIHhgCSPb+MbQTBse1AgBkFVdg0vKDWH/0Eq4UljdwJBGRa3PZWwSJHEXpocD7j3TH2I/34XRmEc5eLcbzXx8HAMQE++D2dkHoFxuE29sFItSXyxETkftgCCAC4OPliWWTemHyioNIulIsPp6SU4KUnBJ8ecC83kD7UB36iaEgCIE+aqlKJiJqMoYAohrh/lps+eudSLpSjH3Judh3IRf7U3JRXF4l7nM+y4DzWQas/uMiAKBTmO+1loKYIPh7q6Qqn4johjEEENXi4aFA5wg/dI7ww5MDYlBtEnA6owj7knOw70IuDqTkoaSyWtw/6Uoxkq4UY+XeVCgUQOdwP7GloHdMIPw0DAVE5LwYAojqofRQID7KH/FR/ph+VyyM1SYkXi7Evgu5+CM5F4dS81FmNIcCQQBOZRThVEYRPvstBR4KID7SH7fHBqFfuyD0bhsIHy/+yBGR8+BvJKIboFJ6oGdrPXq21uOZQe1RWWXC8UsF2HfB3H1wOC0flVUmAIBJAI5fKsTxS4VYujsZnh4KdI3yR7/YIPRrF4zb2uihVSslfkZEJGcMAURNoPb0QO+2gejdNhB/TeiAcmM1jqYVYF9yLv64kIuj6fkwVpvXJagyCTiSVoAjaQVYsvMC1EoPdG8dIHYf9GgdAC9PhgIiajkMAUQOpFEpze/0Y4OAe4Gyymocvpgvjik4cakQVSZzKKisNuFASh4OpOTh/R3n4OXpgdva6MVQ0DUqgKsbElGzYgggakZatRIDOgRjQIdgAEBJRRUOpuaJLQWJlwtRkwlQUWXC3gu52HshF9gOaFVK9Gqrr+k+CEJ8pD88lQwFROQ4DAFELcjHyxN33xKKu28JBQAUlRtxMCUPe2vGFJy5UgTLqsZlxmr8ei4Hv57LAQDovDzRuyYUdI0KQLsQH4TovKBQKKR6OkTk4hgCiCTkp1EhIa4VEmqmLS4orcQfyXn4o2aegrNXr01cZKiows6z2dh5Nlt8zNfLEzEhPogJ9kG7YB1iQnzQLtj8f96JQEQN4W8JCVRWVsJoNAIAysq4WA1dE+CtxtAuYRjaJQwAkGuowB/JeeKYggvZJVb7F1dU4cSlQpy4VGhzrjA/DWKCfcRg0C7EHBSi9Fp2KxARAIYASSxYsADz58+XugxyAUE6LwzrGo5hXcMBAFlF5TiQmodzVw1IySlBco4BKdklVhMYWVwpKseVonLsS861elylVKB1oDdignU1waCmJSFEh2Cdmt0LRDKiEARLDyS1lNotAfv370dCQgL27t2Lfv36SVwZuSJBEJBVXIHkbPM6B8nZloBQgrS8UlSbGv8j7uvliXYh10JBjBgQfOCt5nsGIme1b98+9O/f/4b/lvCnWgJqtRpqtXnhGa1WK3E15OoUCgVa+WnQyk9jvjWxFmO1Cel5pdcCQo5B/DyruMLmXMUVVeIER9cL89NYBQRLCwK7F4hcF0MAkRtTKT3Mf7BDdDbbisuNSM0pFYNBck4JUhrRvbD3gv3uBUswMAcFHdoGeSPEl3cvEDkzhgAimfLVqMR1EWqr3b1gGXNQX/eCsVrAhewSm0GLgHmug9aB3mgd5I02gd5oE+SN1kE+aBPojUi9Fiq2IBBJiiGAiKw01L2QlleKFEtAyCkRWxGy7XQvlBmrcfZqsdWtjhZKDwUiAjRoE+hjHRICfdAmyJu3OBK1AP6UEVGjqZQeiA3RITZEB6CV1bbiciNSckrEYJCWV4qLueZ/cwyVNueqNglIzytDel4ZcN72WsE6NVoHeqNNkE/Nv9dCAu9iIHIMhgAicghfjQpdowLQNSrAZpuhogppuaVIyyvBxdxSXMwrRVpuKS7mleByfhns3cCQY6hEjqESR9IKbLb5qJWIDvRG2yCfmi4Gb7SpaUEI99dwoCJRIzEEEFGz03l5onOEHzpH+Nlsq6wy4XJBmdhqcDHX/JGWZ/5/udFkc0xJZTWSrhQj6YptN4OnhwJReq049sDcenCtRYHLNxNdwxBARJJSe3qI8xFczzJI0RwMaoWEvFKk5ZYgv9Roc0yVSUBqbilSc0vtXi/U10vsVjAPWtSidaA3ovW8m4HkhyGAiJxW7UGKfWICbbYXlRvN3Qo1XQtpYitCKTIKy2BvKrSs4gpkFVfgYGq+zTaNygPRenPLQXTNR+tAy/+1nDCJ3A6/o4nIZflpVOgS6Y8ukf422yqqqpGeV3ZtHEJNOLiYW4L0/DJUVtl2M5QbTTiXZcC5LIPd6wXr1NbBQF8TFIK8EeangdKDrQjkWhgCiMgteXkq0T5Uh/ahthMlmUwCrhSVIz2vFOn5ZUjLK0V6njkkpOWV2r3dEbg2WPGoncGKKqUCkQHa61oPrv3rr1U5+ikSNRlDABHJjoeHAhEBWkQEaNHXzvayympcyr8WCswtCteCQpnRdkZFY3X9YxH8tSpEB2qtwoGlNSEiQAu1J+9ooJbHEEBEdB2tWokOrXzRoZWvzTZBEJBbUnktFNR0M6Tnm8NCXWMRCsuMKLxsxMnLRTbbPBRAuL9WHHtQe0xCtN6b8yJQs2EIICK6AQqFAsE6LwTrvNCztd5mu+WWx3SxFeFaSLiYW4ri8iqbY0wCcLmgDJcLyrAv2faaGpUHovTeiNZrzf8G1vxb87m/VsWQQDeFIUACtZcSLisrk7gaInKk+m55BIDCUuO1boZ866BwOb8MVXZmTio3mnA+y4DzdQxY1Hl5IkpvHo8QpdeKAxYtj+k4BTPVgd8ZEliwYAHmz58vdRlEJAF/bxXivW0XbgKAqmoTrhSVi8EgPa8Ml/LNgxfT80rtLv8MmGdkrGvyJADQe6vEFoRovTkcRNV0NUTptdCoOIGSXDEESGDu3Ll48cUXAQD79+9HQkKCxBURkTPwVJqb/aP03kCs7fZyY7XY1XApvwzp+aW4VCso5JXYrtEAAPmlRuSXFiLxcqHd7SG+XrVaEKy7GsL9OWjRnTEESECtVkOtVgMAtFqtxNUQkavQqJS1FnCyZaiowuWaVoP0/JqgUCsw2BuPAADZxRXILq6we+ujhwII89Mgqo6uBs6P4NoYAoiI3ITOyxO3hPniljDbuxoA83gEcziw7Wq4lF9m99ZHkwBkFJYjo7AcB1Jsz+npoUCYv8bcxaD3RmSAFlF6LSJrAkOYvwYqLujktBgCiIhkwt9bBX9v+zMsWm59rN1yYAkKl/LLcDm/DJXVtrMsVpkEXMovw6X8MgB5NtvFlgS9NyL1NQEhQFvT7aFFeIAGXp4ckyAVhgAiIrK69bGHnVsfTSbzYk61WxLS80pxucAcADILy2Cstr2zoXZLAlLtXde8qJMlGFiCQu1WBQ5cbD4MAURE1CCPmmb/MH8Nere1Xcyp2iQgq7gcl2taBS7lXwsIl/PLcKnA/noNggBcLarA1aIKHLEzJgEwr9kQqfdGVIAlIGhrwoI5KPjwFsibxq8cERE1mdJDgXB/890EvdrabjeZBOQYKnCpdjCoFRQu5Zei3GgbEoBrazYcTy+wu13vrTKHggBvm4AQFaiFn4brNtSFIYCIiJqdh4cCoX4ahPpp7M60KAgC8koqzQGhwHosgiUklFTaDlwELLdA2p+SGQB8vTwRqTevFRFZs2ZEpF6LyAANIgO8EeLrJds7HBgCiIhIcgqFAkE6LwTpvNAtOsBmuyAIKCwzioMQbbob8ktRVMctkMUNTKakUpq7OiL8LeHAOixE+GuhVbvnuASGACIicnoKhQIB3moEeKvt3t0AAEXlRrHl4HJNS8KlfPOiThkFZcgx2J9MyVgt1Ax0LAPs3AYJAEE+ajEQ1G5ViKwJCnpv11y/gSGAiIjcgp9GBb9wFeLC/exuLzdWI6NmoaaMAnMLwuWCclwuKEVGQXmddzgAQG5JJXJLKnHikv1ZF7UqJSICNIioGbx4fVhw1vkSGAKIiEgWNCol2oXo0K6OGRerLYMX88vshAXzR12zLpYZq3EhuwQXskvsbvdQAK38NHWOS4gO1MJb3fJ/khkCiIiIYL7DoZWfBq38NLitje3gRcDc5ZBh05Jw7f9Xi8sh2GlMMAlAZmE5MgvLcfhivs32vw+9BU/f3d7RT6lBDAFERESN5KdRwS9MhU5h9rscjNUmXCk0B4PLtVoULtdqWbB3K2RkgDTryDAEEBEROYhK6YHoQPMiS/ZYboXMqBmLcLnAPMHSrRH2Q0VzYwggIiJqIbVvhYyPsn+XQ0tyvqGKRERE1CIYAoiIiGSK3QESqKyshNFoBACUlZVJXA0REckVWwIksGDBAuh0Ouh0OiQkJEhdDhERyRRDgATmzp0Lg8EAg8GAHTt2SF0OERHJFLsDJKBWq6FWqwEAWq0094YSERGxJYCIiEimGAKIiIhkiiGAiIhIphgCiIiIZIoDAyVWUmJedjIxMVHiSoiIyFVZ/oZY/qY0FkOAxJKTkwEAM2bMkLgSIiJydZa/KY2lEAR7Kx9TS8nIyMCmTZvQrl07+Pj4NOlciYmJmDFjBpYuXYr4+HgHVSgv/Bo2Hb+GjsGvY9PJ6WtYUlKC5ORkDB8+HBEREY0+ji0BEouIiMD06dMdes74+Hj069fPoeeUG34Nm45fQ8fg17Hp+DWsGwcGEhERyRRDABERkUwxBBAREckUQ4AbiYqKwrx58xAVFSV1KS6LX8Om49fQMfh1bDp+DRvGuwOIiIhkii0BREREMsUQQEREJFMMAURERDLFEEBERCRTDAFEREQyxRBAREQkUwwBbuDgwYMYN24cwsPD4eXlhejoaEyZMgXnzp2TujSnl5iYiLfeegv33XcfwsPDoVar4e/vj969e+ONN95Afn6+1CW6pLS0NPj5+UGhUEChUCA1NVXqklzK77//jscffxxt2rSBRqNBYGAg4uPjMXPmTPz5559Sl+f0Kioq8P7772PAgAEIDAyEp6cn9Ho97rjjDixatAjl5eVSl+g8BHJpK1euFJRKpQBACA4OFm677TbBz89PACB4e3sLO3bskLpEp3X+/HkBgPgREREh9OrVS4iMjBQfCw8PF06cOCF1qS7nvvvus/rapqSkSF2SSzCZTMKsWbPEr1twcLDQq1cvIS4uTtDpdAIAYfXq1VKX6dRyc3OF7t27W/1c33bbbUJERIT4WHx8vJCdnS11qU6BIcCFnTx5UvD09BQACP/4xz+EyspKQRAEoaSkRHjssccEAIJerxdycnIkrtQ5nTt3TggNDRXeeOMN4cKFC1bbfvvtN6FNmzYCAKFdu3ZCeXm5RFW6nk8//VQAIIwaNYoh4AY999xzAgAhJiZG2L59u2AymcRt1dXVwr59+4SzZ89KWKHzmz59ugBACAgIELZv32617eeffxb0er0AQJg8ebJEFToXhgAXNnbsWAGA0L9/f5tt5eXlQkxMjABAePnllyWozvmVlZUJBoOhzu2///67+Edsw4YNLViZ60pPTxf8/PyEmJgY4dSpUwwBN+C3334TFAqFEBAQIFy8eFHqclxWSEiIAED497//bXf7hx9+KAAQgoKCWrgy58QxAS6qtLQUmzZtAgDMnDnTZruXlxcmTZoEAPjyyy9bsjSXodFo4OPjU+f2/v37w9/fHwBw5syZlirLpU2fPh1FRUX45JNP4O3tLXU5LuW9996DIAiYNWsWWrduLXU5Lqu0tBQA0KFDB7vbb7nlFgCA0WhssZqcGUOAizp69CjKysoAAHfddZfdfQYOHAgASE1NRWZmZovV5i6qq6vFXxT1hQUyW7FiBbZu3YrJkydj8ODBUpfjUioqKrBlyxYAwMMPP4zTp09jzpw5GDp0KB544AE8//zz+OOPPySu0jX07NkTAPDrr7/a3b5r1y4AQL9+/VqqJOcmdVME3Zxly5YJAAS1Wm3Vb1hbenq62Bz7yy+/tHCFrm/dunXi14+DA+t3+fJlISAgQGjVqpWQl5cnCIIgpKSksDugkfbv3y8AEBQKhbB48WJBpVJZDay0fEyfPl2oqqqSulyntmfPHsHLy0tQKpXCm2++KaSkpAjl5eVCSkqK8OabbwpKpVIIDAzkz3QNtgS4qLy8PACAXq+HQqGwu09gYKD4OW91uzH5+fmYM2cOAODBBx9EfHy8xBU5txkzZqCgoACLFy+GXq+XuhyXk5GRAQBQKBSYPXs2OnXqhF27dqG8vByXL1/GK6+8AgD45JNP8MYbb0hZqtO78847sWfPHgwZMgTz5s1DTEwMNBoNYmJi8Nprr+GJJ57AoUOH+DNdgyHARVm6AtRqdZ37aDQa8XNLPxk1zGg0Yvz48UhLS0NISAg+/vhjqUtyaqtXr8amTZswcuRIjBkzRupyXJLBYAAAmEwmqNVq/Pjjjxg4cCC8vLwQERGBt956C0899RQA89gBhvr6Xbx4EVeuXIHJZEJoaCh69uyJ0NBQAMCGDRuwdu1aiSt0HgwBLkqr1QIAKisr69yn9oQYHKTVOCaTCRMnTsT27dvh6+uLjRs3IiIiQuqynNaVK1cwe/Zs+Pv7Y8mSJVKX47IsP88A8Je//MXu99w//vEPAOZAv3PnzharzdX85z//wbhx45CWloZNmzbh6tWrOHz4MK5evYqNGzdCEAS89NJLePnll6Uu1SkwBLgoS5Nrfn4+BEGwu4+ly6D2/lQ3k8mEKVOm4Ouvv4aPjw82b96Mvn37Sl2WU5s1axby8/Px7rvvMiw1Qe2uu86dO9vdp23btuIA1eTk5Bapy9VkZ2eLXSeLFi3CsGHDrLYPHz4cixYtAgAsXLhQ7IaRM4YAF9WpUycA5paAtLQ0u/tcuHDBZn+yTxAEzJgxA6tWrYK3tzc2bdqEO++8U+qynN6hQ4cAAK+++irCwsKsPnr37i3u17t3b4SFhWH27NlSlerU4uLixM+9vLzq3M/S/VddXd3sNbmiQ4cOiV2fQ4YMsbvP0KFDAZi7/Y4cOdJitTkrhgAX1b17d7EJcc+ePXb32b17NwDzO4jw8PAWq80VPfPMM/jss8+g1Wrxww8/4O6775a6JJeSlZWFq1evWn3k5OSI23NycnD16lUUFhZKWKXzCgsLQ2xsLADr8F5bfn6+OBYgKiqqxWpzJUVFRTe0P9cQYAhwWT4+PmJT19KlS222V1RUYOXKlQCA8ePHt2RpLuevf/0rPvroI2g0GmzYsAEJCQlSl+QyUlNTIZhnHrX5SElJEfdLSUmBIAji9yTZevTRRwEAX3zxhTjwtzbLz7mnpycGDRrUorW5CstEQADw448/2t1n8+bN4ue1W2BkS6p7E6npEhMT61w74C9/+YsAQPD39+dCGfV48cUXBQCCRqMRtm3bJnU5boXzBNyY/Px8ccrbCRMmCEVFReK2rVu3igsIzZgxQ8IqnZvJZBJ69OghLr60efNmq+0bNmwQ1w7o06ePRFU6F4Ug1DGqjFzC8uXLMX36dFRXVyM4OBht2rTBuXPnUFRUBK1Wiw0bNuDee++VukyntG/fPvTv3x8AEBoaWuc0owDwwAMPYO7cuS1VmltITU1FTEwMAHNLQNu2baUtyAXs27cPQ4cORVFREXx8fBAXF4e8vDxxIGBCQgI2btxodTcBWTtz5gwSEhLEWVJDQ0MRFRWF9PR0ZGdnAwCio6Oxc+dOsQtGzjylLoCaZsqUKejSpQv+3//7f/jtt9+QmJiIkJAQPPzww5g7dy46duwodYlOq6KiQvw8KysLWVlZde7bvn37liiJZK5fv344ffo03n77bWzduhWJiYlQq9W444478Pjjj2PKlCnw9OSv7frExcXh1KlTWLx4MTZu3Ig///wTx48fh06nQ58+fTBixAjMmjVLXBdE7tgSQEREJFMcGEhERCRTDAFEREQyxRBAREQkUwwBREREMsUQQEREJFMMAURERDLFEEBERCRTDAFEREQyxRBAREQkUwwBREREMsUQQEREJFMMAURERDLFEEBERCRTXJOSiBwmNzcXS5YswZYtW3D27FkYDAbo9XqEhobi1ltvxV133YUHH3wQrVu3BgAUFBTgP//5DwDg9ddfl65wIpniUsJE5BAHDx7EsGHDkJ2dDQAICwtDREQEqqurcf78eZSUlAAA3nzzTbz66qsAgNTUVMTExAAA+KuIqOWxJYCImqykpAQjR45EdnY2+vbtiw8//BC9e/cWt5tMJhw6dAhfffUV9Hq9hJUSUW1sCSCiJlu7di3Gjx8PpVKJ9PR0hIeHN+o4tgQQSYsDA4moyS5cuAAACA4ObnQAmDRpkhgAAEChUFh9rFy50mr/6upqrFixAgkJCQgODoZarUZkZCQeffRRHDt2rM5rKBQKvP766ygoKMDzzz+Pdu3aQaPRICIiAk8++STS09Nv6jkTuQOGACJqMj8/PwDA1atXce7cuUYd07FjR/Tq1Uv8/x133GH10apVK3Fbfn4+Bg0ahClTpuCXX36BWq1Gly5dUFxcjC+//BJ9+vTB559/Xue18vPz0adPH7z//vvQaDSIi4tDdnY2li9fjh49eiAxMfEmnzmRixOIiJrowoULglKpFAAIbdu2FT7++GMhLS2tweNSUlIEAEJDv4ruv/9+AYDQp08f4ejRo+Lj1dXVwsKFCwUPDw/By8tLSEpKsjruiSeeEAAIKpVKaN++vXDy5Elx26VLl4Q77rhDACB06tRJqKiouLEnTeQG2BJARE3Wrl07LFq0CB4eHkhNTcVTTz2F1q1bIywsDA888ADeeecdscvgRv3888/YunUrWrVqhU2bNqF79+7iNg8PD7zwwguYOXMmKioqsGjRIrvnMBqNWLVqFW699VbxscjISKxduxZeXl5ISkrCN998c1P1EbkyhgAicohnn30W+/fvxyOPPAJfX18A5u6BrVu34uWXX0aHDh0wZcoU8VbBxvr6668BAGPGjEFISIjdfcaMGQMA+OWXX+xu7927N/r372/zeEREBMaNGwcA2Lx58w3VReQOeIsgETlMr1698OWXX6K6uhonT57EkSNHsHPnTmzevBl5eXlYsWIFsrKysGnTpkaf8/jx4wCArVu3YsCAAXb3KS8vBwBcunTJ7vYuXbrUeX5L68CZM2caXRORu2AIICKHUyqV6NatG7p164bJkyejsLAQkydPxvr167F582b88ccfuP322xt1rvz8fABAcnIykpOT6923rKzM7uO1BxnWta24uLhR9RC5E3YHEFGz8/f3x4oVK+DhYf6V88cffzT6WJ1OBwD47LPPIAhCgx/2XL16tc7zW7ZZujCI5IQhgIhahL+/v9inX1lZCcA8N0BD4uPjAQC///77TV/71KlTDW6Li4u76fMTuSqGACJqspycHJhMpnr3OXv2LLKysgCY5wgAAG9vb3F7XU35loF7X375Jc6fP39T9R04cAD79u2zefzKlStYu3YtAGDYsGE3dW4iV8YQQERN9tVXX+HWW2/F+++/bzM4TxAEbNu2DQ899BAEQUB0dDSGDBkCwDzDoL+/P4C6R/YPHz4c9913H8rLyzF48GBs27bNZp/U1FS8++67WLZsmd1zqFQqTJo0yWrwX0ZGBsaNG4eKigp07NhRvMOASE44MJCImkyhUCApKQnPPfccnnvuOYSHhyMiIgJGoxHp6eni4L5WrVph/fr10Gq14nETJ07E4sWLMWLECHTp0kVcYOill17C0KFDAZhvExw7dix+/vlnDB06FMHBwYiJiYHJZEJ6errYwjBv3jy79c2cORNbtmzBrbfeis6dO0OlUuHkyZOoqqpCYGAg1q5dC7Va3dxfJiKnwxBARE02Y8YMdO3aFdu3b8evv/6K9PR0JCUlwWg0Qq/XY9CgQRg2bBimTp0qvvO3ePfdd+Hv749vv/0Wf/75p3i736RJk8R9AgICsG3bNnz33XdYs2YNDhw4gOPHj0On0yEyMhIJCQkYMWIEHnjgAbv16fV6HDhwAPPnz8eGDRuQkZGB4OBgDB06FPPnz0fr1q2b7WtD5My4iiARua1JkyZh1apVmDdvHl5//XWpyyFyOhwTQEREJFMMAURERDLFEEBERCRTDAFEREQyxYGBREREMsWWACIiIpliCCAiIpIphgAiIiKZYgggIiKSKYYAIiIimWIIICIikimGACIiIpliCCAiIpIphgAiIiKZYgggIiKSKYYAIiIimfr/7rw8yPfHfgsAAAAASUVORK5CYII=",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "loss_progress = []\n",
- "eta = 1e-6\n",
- "data = (features, labels)\n",
- "for i in range(10):\n",
- " grad = loss_grad(w, b, data)\n",
- " w -= eta * grad[0]\n",
- " b -= eta * grad[1]\n",
- " loss_progress.append(loss_wrapper(w, b, data))\n",
- "plt.plot(loss_progress)\n",
- "\n",
- "plt.xlabel(\"Step\")\n",
- "plt.yscale(\"log\")\n",
- "plt.ylabel(\"Loss\")\n",
- "plt.title(\"Full Dataset Training Curve\")\n",
- "plt.show()"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Training Curve\n",
- "\n",
- "The figure above is called a **training curve**. We'll see these frequently in this book and they show us if the loss is decreasing, indicating the model is learning. Training curves are also called **learning curves**. The x-axis may be example number, total iterations through dataset (called **epochs**), or some other measure of amount of data used for training the model."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Batching\n",
- "\n",
- "```{margin} batch\n",
- "A batch is a subset of your data of size *batch size*. Batch size is usually as a power of 2 (e.g., 16, 128).\n",
- "Having random batches of data is how gradient descent becomes stochastic gradient descent.\n",
- "```\n",
- "\n",
- "This is making good progress. But let's try to speed things up with a small change. We'll use **batching**, which is how training is actually done in machine learning. The small change is that rather than using all data at once, we only take a small **batch** of data. Batching provides two benefits: it reduces the amount of time to compute an update to our parameters, and it makes the training process random. The randomness makes it possible to escape local minima that might stop training progress. This addition of batching makes our algorithm **stochastic** and thus we call this procedure **stochastic gradient descent** (SGD). SGD, and variations of it, are the most common methods of training in deep learning.\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 42,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgEAAAGwCAYAAAAwmLYsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAABP+AAAT/gEHlDmEAAB230lEQVR4nO3deXhTZdoG8DtNm7RNd9pCWwplRwEB2QSURVBQ3EVwmRkRUGRmHHTc/WZkGPd9G3VwRHREAcFlBAVBZBXZZLEgLWWpLUtp6UbbtE2avN8f6TnNaZM2TU6aJrl/19WLkJwtTds8eZ/nfV6NEEKAiIiIgk6Iry+AiIiIfINBABERUZBiEEBERBSkGAQQEREFKQYBREREQYpBABERUZBiEEBERBSkGAQQEREFKQYBREREQYpBABERUZBiEEBERBSkGAQQEREFKQYBRD42Y8YMaDQaZGRk+PpSXPbhhx9Co9FAo9EgNzfX15dDRG5iEEDtwqZNm+Q3FUdfBoMBPXr0wPTp07Fq1SpfXy6pQAp+GEi07KeffsKjjz6KESNGIC0tDXq9HtHR0ejWrRtuvPFGvPHGGzh79qyvL5P8EIMA8gtGoxHHjx/HZ599huuuuw5XX301jEajV8+ZkZEBjUaDGTNmePU8RM5kZ2fjyiuvxKhRo/Diiy9i165dOH36NEwmEyorK5Gbm4uvvvoK999/Pzp37ow//elPKC0t9fVlkx8J9fUFEDU2d+5c/PGPf5T/L4RAeXk59uzZgzfeeAO5ublYs2YN7r33Xvz3v//14ZUSec+GDRswdepUlJWVAQB69eqFadOmYeTIkUhOTobZbMbp06fxww8/4Msvv0RBQQHeeecdXHHFFbjhhht8eu3kPxgEULuTnJyM/v37N7n/0ksvxfTp03HRRRfh3LlzWLJkCZ5//nmkpqb64CqJvCc7Oxs33ngjKioqEBISghdffBHz5s1DaGjTP9lTp07Fq6++irfffhtPPvmkD66W/BnTAeRXUlJS5OF5IQT27Nnj2wsi8oI77rgDFRUVAID33nsPDz74oMMAQBIeHo4HH3wQO3bsQHp6eltdJgUABgHkd+yr6Gtrax1uU1lZic8//xwzZsxAv379EB0djbCwMCQnJ2P8+PF4/fXXndYUjBs3DhqNBr/99hsA4KOPPmpSqOiskt9oNOJf//oXJk+ejNTUVOj1eiQnJ+Piiy/G3Llz8cMPP8BqtTb7/MrLy7FgwQL0798fBoMBsbGxGDlyJN577z1YLJYWvz9msxnvv/8+rr76avkaOnTogFGjRuH555+X31yaU1BQgPvvvx89e/ZEeHg4OnbsiIkTJ+Kzzz5rcd+2VFpaiqeeegrDhw9HQkIC9Ho90tLScOONN+KLL75ocf+cnBzcf//9GDhwIGJiYqDT6dCpUycMGDAAt956Kz744AN5OL6xr776CjfddBO6dOmC8PBwGAwGZGRk4JJLLsGDDz6I9evXu/Wc1qxZg59//hkAMHnyZMyaNcvlfQcMGIAhQ4Yo7pN+nseNG9fsvi3N+GhcI7N//37cfffd6NGjByIjI+X9rrzySmg0GiQlJcFsNrd4zcOHD4dGo0F6errT343vvvsOv/vd79CtWzdERkYiOjoa/fv3x/3338+iUk8JonZg48aNAoAAIObPn9/stg899JC87Y4dOxxu07VrV3kbZ189e/YU2dnZTfYdO3Zsi/t27dq1yX5btmwRKSkpLe67b98+xX533nmnfMysrCzRrVs3p/vecsstwmq1Ov3e/Prrr6J3797Nnj8tLU38/PPPTo+xbds2ERcX53T/u+66SyxevFj+/4kTJ5weqznS83b3GJs3bxYdOnRo9rleeeWV4vz58w73X758udDpdC2+XitWrFDsZzabxdSpU1vcz2AwuPNtURx7/fr1bh3DnvTzPHbs2Ga3a+k1lX6n7rzzTvHee++JsLCwJs/5xIkT4qOPPpL///XXXzd7zuzsbHnbRx99tMnj5eXlYsqUKc1+n/V6vfjoo49a8y0hO6wJIL9y9uxZuRiwc+fOGDx4sMPtLBYLRowYgSlTpmDQoEHo1KkTLBYLfvvtN3z55ZdYsWIFjh49ihtuuAF79+5FeHi4vO/ixYtRVVWFSZMm4fTp07j++uvx9NNPK46v0+kU/9+2bRsmTJgAs9kMjUaDW265BVOnTkW3bt1gsViQk5ODDRs24PPPP3f63IxGI6699loUFRXh8ccfxxVXXIHY2Fj8+uuveOqpp3DkyBGsWLECkyZNcvjp8MSJE7j00ktRUlICvV6PWbNmYdy4ccjIyEB1dTU2bdqE119/HadOncKkSZOwb98+dO7cWXGMvLw8XH311Th//jw0Gg3uvPNO3HbbbejQoQOysrLwyiuvYPHixTh48GDzL5SXHTx4EJMnT0Z1dTVCQkIwe/ZsTJ06FQkJCTh8+DBef/11/Pzzz1i3bh1uuOEGrF+/HiEhDQOfBQUFmDlzJkwmE6KionDvvfdiwoQJcsHdiRMnsH37dnz55ZdNzv3uu+9i5cqVAGyfvOfOnYsLLrgAcXFxKCsrw6+//orvv/8eW7Zsceu5bd68GQAQGRmJ8ePHu3UMb9q9ezc++eQTpKSk4K9//StGjBgBjUaD3bt3IyoqCjfddBPmzp0Lo9GIJUuW4Nprr3V6rCVLlsi3f/e73ykeM5lMuPLKK7Fz504AwJQpUzB9+nR069YNOp0Oe/fuxRtvvIGsrCzMmDEDSUlJuOqqq7zzpAOZr6MQIiGUIwFz584VmZmZiq9t27aJN954Q3Tv3l0AEDqdTnzxxRdOj3fkyJFmz/f9998LrVYrAIhFixY53Mb+k09zampqROfOnQUAERYWJlatWuV027KysiafTO0/EcfGxorMzMwm+xUVFYmkpCQBQAwcONDhsS+77DIBQGRkZIjjx4873Ob48eOiY8eOTp/XLbfcIl/LO++80+Rxk8kkJkyY0OTTnzs8GQkYOXKk00/qQtg+rV999dXyNu+//77i8ffff19+rLnXq66uTpSVlSnuu/TSS+WRm4qKCqf7FhcXt+o5CSHEqVOn5OsaOXJkq/d3RO2RAADiwgsvbPb53XbbbQKAiIiIEOXl5U6369GjhwAgBg0a1OSxv//97/Lv+po1axzubzQa5efXvXt3UVdX1+xzpKYYBFC7YB8EtPR12223iT179nh8zhtvvFEAENdee63Dx10NAv7zn//I17ZgwYJWX4f9m+Gbb77pdLtHH31UABAajabJG9O2bdvkY3z77bfNnu/tt9+W/7hWVVXJ9585c0aEhoYKAGLMmDFO9//tt98UQ8FtHQTs3r1b3u/22293ul1BQYEwGAwCgBgwYIDisaefflo+RnNvUo707NlTABA33nhjq/ZzxYEDB+TruuGGG1Q5pjeCgE2bNjV7rG+//VbedvHixQ632b59u7zNyy+/rHissrJSTkk98sgjzZ7r0KFD8nG+//77ZrelplgYSH7n66+/xrvvvovy8nKX9yksLEROTg4OHjwofyUmJgKwFTh5QupgGBoaivvuu8+jY91+++1OHxs6dCgAQAiBEydOKB776quvAADR0dGYPHlys+cYM2YMANtwq1SABgAbN25EXV0dAGDmzJlO9+/SpQuuuOKKZs/hTfYFd7Nnz3a6XceOHeX58pmZmYqOemlpafLtxYsXt+r80r5btmzBsWPHWrVvS+yLNqOiolQ9tlo6d+6MsWPHNrvNlVdeieTkZADKIX970v0hISG47bbbFI9t2rRJLsi85ZZbmj3XhRdeiA4dOgAAtm/f3uL1kxKDAGp35s+fD2EbpZK/qqurcfjwYTk3v2jRIlx66aUoLCx0epy1a9fi+uuvR1xcHDp27IjevXtjwIAB8td//vMfAMC5c+c8ut69e/cCAC666CLEx8e7fZykpCT5j5kjCQkJ8u3GFf7SVElpXnlzLZgHDBgg71dQUCDfzszMlG8PHz682WsdMWKEa0/KC6Tr1Gg0LV7nyJEjm+wHANddd538Wt1///0YOXIkXnzxRezYscPpjBOJVB1fXFyMAQMG4I477sDHH3+sSkAQHR0t366srPT4eN4wcODAFrfRarW49dZbAdiCy9OnTyseN5vN8kyTCRMmNOn1YT/1d9iwYc3+PGs0GhQXFwNQ/jyTaxgEkF8IDw9H37598X//93/y1K+DBw/ioYcearKtEAL33HMPrrrqKnz99dctjhhUV1d7dG1SEJGSkuLRcSIjI5t93L6wrfFUweaCoebYT5MsKSmRb0uf4pzp2LGjW+dTg3SdBoMBBoOh2W07deok35beKABbQLV69Wp06dIFALBjxw48+uijGDlyJOLi4nDllVfiv//9rzwyYm/GjBl48sknERYWhurqanz66af4wx/+gJ49eyI1NRV33323HBi2ljQ6BaDdrgXgaqArFfpZrVZ8+umnisfWrl0r/978/ve/b7KvGj/P5BrODiC/c+WVV2LgwIE4cOAAli1bhnfffVfxZrB48WL5U/5FF12E+++/H5dccgnS0tJgMBig1WoBAE8++SSeeuop1a5Lo9GodqzWkoKC3r17NzsDobHGswMkLT0XIYTrF+clrny/7a+z8fajRo3CkSNH8NVXX+Gbb77B1q1bkZubi5qaGqxfvx7r16/Hq6++im+//bbJJ9UFCxZg9uzZWLp0KTZs2ICffvoJFRUVOHPmDN5//328//77eOihh/DSSy+16jmlpqYiOTkZhYWFOHDgACwWi/zz2l64ej3Dhg1D3759kZWVhSVLligCdikVEBkZiRtvvLHJvvZB7o8//oiYmBiXzunJSFywYhBAfqlv3744cOAAzGYzsrOzcfHFF8uPvffeewCAHj16YMeOHYiIiHB4DLUWWklMTMTJkyebDHm2pcTERGRnZ+Ps2bO48MILFaMGrrJPNxQWFir+35i7n9TUIKVMKisrUVVV1exogP2naUfPR6/XY/r06Zg+fToA4OTJk1i7di3effdd7N27FwcOHMCMGTOwbt26Jvump6fjkUcewSOPPAKLxYK9e/fiq6++wjvvvIOysjK8/PLLGDx4cLN1Ho6MHTsWK1asgNFoxA8//OBx/YX0pt1Sk6qqqiqPzuPIHXfcgb///e84cOAADh06hH79+qGiokKuo7nxxhsd1j7Yj4jo9XqHbcRJHUwHkF+yH6Zt3JXs0KFDAGx5X2cBAIAWWw67+sle6tD2yy+/+GwFN6lfQnl5OXbs2OHWMexrBXbt2tXsti097k3SdQoh5Dnkzvz0009N9mtO586dMXv2bOzYsUMOLL///vsWX1etVothw4bhmWeewYYNG+T73emwaF+U+eqrr7Z6/8akOoOWnsPhw4c9Pldjv/vd7+TfI+nT/+effy6n4Br3BpDY9//47rvvVL8uasAggPyOEEJR1d54SFsKEJrL9e/du7fFN0upgVBLhWLXXXedfN633nqr2W29xX7VuOeee86tY4wfP17uT99cxfzJkycdfjJuK/afjN9//32n2xUWFsqzJi666KJW1TGEhYXJFfBCCEU9QUsuvvhieVjanaLTyZMny4Hl2rVrm32OjR08eFDxuwEA3bp1AwAcOXIE58+fd7hfTU1Nq9JIrsrIyMCoUaMAAJ9++imEEHIw0LFjR6ejHBMnTpRHCN5++22XWl2TexgEkN9555135H7hgwYNUkz3Amx5ccA2ldDRH++zZ886/QRiTyr0O3r0aLPb3XHHHfKiLU8//TRWr17tdNvy8nKv/EGbMGGC/Md29erVmD9/frPbnz17tsmbS6dOneT87KZNm+S0ij2z2YxZs2a51BPeW4YMGSI/12XLlsnd++zV1dVh1qxZ8hD3vHnzFI+vXbu22fSNyWSSO/fp9XpFTcDHH3/c7PPfs2eP/KlbegNurU8++UR+E5wzZw5effXVZteNqK2txeuvv45LLrkE+fn5isekNQNMJhNef/31JvtarVb88Y9/9FplvVT4l5eXh2XLlmHjxo0AgNtuu81pfUFsbCz+8pe/AABOnz6N6dOnN5uuqKmpwdtvv42amhqVrz4I+KY9AZFSSx0D9+zZI1asWCFuvfVWebuQkBCxbt26Jsd6+eWX5W169+4t3n//fbFjxw6xbds28dxzz4nk5GSh0WgUXecckTqWAbb1DHbt2iUOHz4sDh8+LI4eParYduvWrXIDHY1GI6ZPny5Wrlwp9uzZI3bu3Ck+/fRTMWvWLBETE9Ps2gGufo82btzY5PHc3FyRnJwsbzN8+HDx7rvvih9//FHs3btXbNiwQbz55pviuuuuEzqdTgwZMqTJMX777TcRExMjP4+ZM2eKdevWiT179ohPPvlEDBkyRAAQw4YNU7VZ0EsvvSQWL17c4pfUoS8zM1OEh4cLAEKr1Yp7771XrF+/Xr7OoUOHyse+/PLLm6y3cOedd4qwsDAxadIk8eqrr4p169aJvXv3iq1bt4pFixaJ4cOHy/vfc889in0BiKSkJHH33XeLjz76SGzbtk3s3btXrFu3Tjz55JMiISFB/v5t27bNre+NELaulvZrOPTq1Uv8/e9/F998843YvXu32L59u1i5cqW47777RFpamrzdl19+qTiOyWSS16PQaDTiL3/5i9iyZYvYs2ePWLJkiRg9erQAIP/r7DV1tXlWYyUlJfIaDfbPp7n1K4QQora2Vu7OCECkp6eLp59+Wvzwww9i3759YuvWrWLx4sVi5syZIj4+XgBotoMjOcYggNqF1nQMBCCio6PFp59+6vBYZrNZXHXVVU73DQ0NFW+99ZaYP39+s0HAqVOnnC5Q4+gNe+PGjYo3YWdf3goChBDi2LFj8ht1S1/jx493eIytW7c2u4DQzJkzVV9AyNUv+3Nt2rSpxQWErrjiCocLCLl67muuuUbRVVEI4dJ+er1evPfee259X+xlZWWJiRMnunROnU4n5s2b16SbpBC27nxRUVFO93300UdbtYBQa91www2K811wwQUu7VdVVSXuuOMOl56/wWAQRqOx1dcW7BgEULvQUhAQFhYmkpOTxdixY8Uzzzwjzpw50+zx6urqxNtvvy1GjBghoqKiRHh4uOjWrZuYMWOG3HK4pSBACCFOnDgh5syZI3r37i0iIiKaDQKEEKKiokK8/PLLYty4cSIpKUmEhYWJjh07iosvvlj8+c9/Flu3bnX4qVStIEAIIaxWq/jiiy/EbbfdJrp16yYMBoMICwsTiYmJYsSIEeIvf/mLWLt2bbN91k+fPi3+8pe/iO7duwu9Xi+SkpLEhAkTxPLly4UQLbeYdYWnQYAQtk+ZCxYsEMOGDRNxcXEiLCxMpKSkiOuvv16sXLnS6bnLysrEF198If74xz+KYcOGifT0dKHX6+Wfk+nTpztdUyA7O1u8/fbb4qabbhL9+vUTiYmJQqvVipiYGHHxxReLhx9+WBw7dsyt74kz27dvFw8//LAYNmyYSElJETqdThgMBpGRkSFuuOEG8dZbb4mioqJmj3HkyBExY8YM0blzZ/nn8pprrhHfffedEKJ1qwi21ueff654HZ955plW7b97927xxz/+UfTv31/ExsYKrVYrYmNjxYABA8Tvf/978fHHH3MUwE0aIdrBhF8iIiJqcywMJCIiClIMAoiIiIIUgwAiIqIgxSCAiIgoSDEIICIiClIMAoiIiIIUgwAiIqIgxSCAiIgoSIX6+gKC3enTp7F69Wp079692XXRiYiInKmqqsLx48dxzTXXKBa8agmDAB9bvXo15syZ4+vLICKiALBw4ULcc889Lm/PIMDHunfvDsD2wg0YMMDHV0NERP4oMzMTc+bMkd9TXMUgwMekFMCAAQMwcuRIH18NERH5s9amlRkE+IDJZILZbAYAVFdX+/hqiIgoWHF2gA88++yziIqKQlRUFCZMmODryyEioiDFIMAHnnjiCVRWVqKyshIbNmzw9eUQEVGQYjrAB3Q6HXQ6HQAgIiLCx1dDRETBiiMBREREQYpBABERUZBiEEBERBSkGAQQEREFKQYBREREQYpBABERtSulVSZU1db5+jKCAoMAIiJqN44WVmDEcxsw6vkfUFpl8vXlBDwGAURE1G5sOXIOpjoryqvN2JVb4uvLCXgMAoiIqN0wmhrSAEwJeB+DACIiajeMJot8m0GA9zEIICKidsM+CKistTSzJamBawf4AJcSJiJyzD4dUFlr9uGVBAeOBPgAlxImInJMmQ7gSIC3MQjwAS4lTETkWLUiHcCaAG9jOsAHuJQwEZFjLAxsWxwJICKidkNZE8AgwNsYBBARUbthZDqgTTEIICKidoPpgLbFIICIiNqNajNnB7QlBgFERNRu2H/6ZzrA+xgEEBFRu2CxCtTWWeX/V9bWQQjhwysKfAwCiIioXbBPBQBNgwJSH4MAIiJqF+ynB0qYEvAuBgFERNQuGB0UAnKGgHcxCCAionbBfnqgpKKGQYA3MQggIqJ2odrc9A2fIwHexSCglTZt2gSNRuPw69y5c76+PCIiv+VoJKDKQZ0AqYcLCLnphRdewJgxYxT3xcXF+eZiiIgCgKPmQJVsGORVDALc1Lt3b1xyySW+vgwiooDhKB1QyZoAr2I6gIiI2gWH6QDWBHiVXwcBBQUFWLJkCebNm4fRo0cjMjISGo0Gffv2dWn/3bt3Y9q0aUhJSYFer0d6ejpmzpyJnJycFvedM2cOQkNDERcXh+uvvx6//PKLp0+HiCioVTsIAtgnwLv8Oh2wbNkyPPDAA27t+9FHH2HWrFmwWCxITEzEgAEDkJOTg8WLF2P58uVYtWoVLr/88ib7xcbG4oEHHsDYsWMRHx+PX3/9Fc899xxGjRqFn376CQMGDPD0aRERBSVHNQEcCfAuvw4CYmJiMHHiRAwdOhRDhw7FkSNH8MQTT7S436FDhzB79mxYLBY8+uijeOqppxAWFgaj0Yh77rkHn3zyCaZOnYqcnBx06NBBse/gwYMxePBg+f9jxozB1Vdfjf79+2P+/Pn44osvVH+eRETBwOhoiiBnB3iVX6cDZs6cifXr1+O5557DzTffjJSUFJf2W7BgAerq6jBq1Cg8//zzCAsLAwBERkZi0aJF6NatG0pLS/HKK6+4dLwuXbrg0ksvxc6dO91+LkREwc5ROoDNgrzLr4MAdxiNRqxevRoAMHfu3CaP6/V6zJgxAwCwdOlSl48rhEBISNB9O4mIVMPCwLYXdO9a+/btQ3V1NQA0mecvGTt2LAAgNzcXZ86cafGYubm52LZtG0aMGKHehRIRBRn7BYRCNLZ/HdUJkHr8uibAHdnZ2QAAnU6H9PR0h9v06NFDvp2VlaVIM9xxxx3o2rUrhgwZgoSEBBw6dAgvvPACNBoNFixY0Oy58/PzcfLkScV9mZmZ7j4VIqKAYj8SEB+pQ3GVibMDvCzogoCSkhIAQHx8PDQajcNtEhIS5NulpaWKxwYMGIBly5bhnXfeQWVlJZKSknD55ZfjySefRJ8+fZo996JFi1oMFIiIgpUUBESEaRETEcYgoA0EXRAgpQJ0Op3TbcLDw+XbRqNR8dhjjz2Gxx57zK1zz5o1C5MmTVLcl5mZiTlz5rh1PCKiQCIVBkbqtDDotQBYE+BtQRcEREREAABMJpPTbWpqauTbkZGRqp07PT3daQqCiCjYSdMBI3RaGHS2tyeOBHhX0AUB8fHxAGzD/EIIhykBKWVgv72aTCYTzGYzgIaRCSKiYGc/EhClt7091dZZYbZYEaYNujr2NhF031WppbDJZEJeXp7DbY4dO9ZkezU9++yziIqKQlRUFCZMmKD68YmI/JFRDgJCERXe8BmVKQHvCbogYNCgQXJKYMuWLQ632bx5MwAgIyPD5QZErfHEE0+gsrISlZWV2LBhg+rHJyLyR8qagIYggCkB7wm6IMBgMGDKlCkAgIULFzZ5vLa2Fh9++CEAYPr06V65Bp1OB4PBAIPBIAckRETBzGyxwmSxAlCmAwD2CvCmoAsCAGD+/PkIDQ3Fjz/+iMcee0zOzxuNRsyePRsnTpxAbGwsHnroIR9fKRFRcLDvERChC5ULAwGOBHiTXxcG5ufnKxbzqa2tBQAcPXoUiYmJ8v2jR4/G//73P/n//fv3x8KFC3HPPffghRdewKJFi9C1a1fk5OTg/PnziIiIwIoVKxTHUBMLA4mIlOzXDTDotIqaAAYB3uPXIwEWiwXFxcXyV2VlpcP7y8vLm+w7c+ZMbN++HTfffDO0Wi0yMzMRHR2NO++8E/v378cVV1zhtetmYSARkZJ9y+AInRZR9X0CABYGepNfjwRkZGRACOH2/sOHD8fKlStVvCLXPPHEE3j44YcBADt37mQgQERBzz4dwMLAtuPXQYC/0ul0csdCFgYSETUOAkIVQQBHAryHQYAPsCaAiEjJPh3QdHYAgwBv8euaAH/FmgAiIqXqRukA+yCggkGA1zAI8AE2CyIiUqpqNEWQIwFtg+kAH2BNABGRUrV9OiBM26gmgM2CvIUjAURE5HOKwkB9w1LCAGcHeBODACIi8rnGswP0oVro6lcOrKxhEOAtTAf4AGcHEBEpNZ4dAAAGvRYmoxVVJgYB3sKRAB/g7AAiIiXF2gFhUhBg+5zKdID3MAjwAc4OICJSUqwdUP/mL80Q4OwA72E6wAc4O4CISKlx22CgIQhgTYD3cCSAiIh8Tsr7azSAPtT21iSNCFSZLLBa3V8nhpxjEEBERD4npQMiw7TQaDQAoGgYZDSzV4A3MAggIiKfk9IBkXZv/AYuJ+x1rAnwAU4RJCJSqq7/pC/VAwBQdA2sqKlDx5g2v6yAx5EAH+AUQSIiJemTvjQ9EACiuX6A1zEI8AFOESQiUpJrApyMBDAI8A6mA3yAUwSJiBoIIeTCP4OiJqDhNhsGeQdHAoiIyKdMFiss9VMA7dMBiuWE2TrYKxgEkEt+/q0Eb288ijKjydeXQkQBxljbtFEQoAwC2DDIO5gOoBbVmC24a/FunK+pQ3GlCU9ee6GvL4mIAoh9D4AInbN0APsEeANHAqhFRwsrcb4+Cv/1TLmPr4aIAk213VC/wclIAAsDvYMjAT7gb30CjpytkG+fKa/x4ZUQUSBytG4AoGwWxMJA7+BIgA/4W5+AnMJK+faZ8hoIwR7eRKSeqlrH6YCocM4O8DYGAT7gb30CcuxGAkx1VpRUsTiQiNRTbW54g3dWGMh0gHcwHeAD/tYnwH4kALCNBnSI0vvoaogo0DhLB0SEaRGiAayCIwHewpEAala1yYK8EqPiPtYFEJGalEFAw2dTjUYDQ/3/ORLgHQwCqFnHiirRuATgTHn7L2YkIv9hrHWcDgAapglyJMA7GARQs3IKK5rcd7pM/ZGAM+XVrDUgClLKPgHKIEAqDqxinwCvYBBAzTpytrLJfQUqjwQcOl2O0c//gNHP/4DCCqYaiIJNtV06wKBTlqpxJMC7GARQs+xnBoSGaAAAp1WuCdiYVQirsK0nvvtEqarHJqL2z74moMlIQH2vgKraOk5P9gIGAdQsaWZAp5hwpMbZZjKoXRNwqqzheOcqa1U9NhG1f0ZTMzUB9SMDdVaB2jprm15XMGAQQE7Zzwzo1TEKKbHhAICz5bWwWtWLyE+WNgQBxQwCiIKOsymCABsGeRuDAB8wmUyoqqpCVVVVu24bbD8zoHfHaDkIMFmsKFaxiO+UXRBQVMniQKJg42yKIMCGQd7GIMAH/KVtsP3MgF7JUUiJa2hspFZKwGoVOMl0AFFQkwoDQ0M00IUq35aUKwkyCFAbgwAf8Je2wfYzA3p1jEZq/UgAoF7DoHNVtTDZ5fmYDiAKPlX1NQGNiwKBxiMBnCaoNrYN9gF/aRucYxcE9EyOUszjP1OmzkiAfT0AAJxjOoAo6EgjAY3rAQBlEFBZa26zawoWHAkgp6R0QKeYcMRGhMk1AYB6IwGnmgQBHAkgCjZSTUDjHgFA43QARwLUxiCAHKoxK2cGAJCnCALqBQGNRwKMJotiuhARBT4pCHCcDmi4j4WB6mMQQA4dLWyYGdArORoAEB8ZBn190Y5ahYGnyoxN7itmSoAoqEiBv6N0gIGzA7yKQQA5ZD8zoHf9SIBGo5FTAmqtH9A4HQAARUwJEAUNIQSqzdJIQPPpgIoaBgFqYxBADuUoZgZEybdTYm0pgbPna1RpGNQ4HQAA5yoYBBAFixqzVR51NDgYCYjmSIBXMQggh44oZgZEy7elkYA6q/C4iE8IoWgZLFGzERERtW/2NUCOagIU6QDWC6mOQQA5dLTRzABJSlzDDAFPFxIqNZrlgqBOMQ3H5UgAUfBormUwwNkB3sYggJqoMVvwW6OZARIpHQB4vqSwfT3AoPQ4+TanCRIFj+ZaBgPKFEFlDfsEqI1BADXhaGaAxL5XgKfFgSdLG2YGDLQPApgOIAoaza0gCACh2hBEhEnLCXMkQG0MAqiJo4WOiwIB5UiAp9ME7esB+qZEQ6e1/TgyHUAUPFpKBwANKQGuHaA+BgHUxJGzTacHSlJVrAmwnxmQHh+BxChbK2WmA4iCh30Q4GiKINDQMIiFgepjEOAD7X0p4ZxCxzMDACA2IgzhYbYfmwIVg4DUuAgkRusBcHYAUTBRpAPCWhgJYJ8A1TEI8IH2vpRwTv1IQMcYvWJmAGBrGJRanxLwdBEhKR3QwaBDpC4UHQy2kYAyoxlmi7W5XYkoQFTbjQQY9I6DgCimA7yGQYAPtOelhO1nBvTuGO1wG2ma4NmKWlg8aBgkFQamxduCisQovfwYWwcTBYcql9IBtvtr66yo4wcEVTEI8AGdTgeDwQCDwdDulhI+VuR8ZoCkU4ztmi1WgSI3i/jKq81yC9C0+oWJpHQAwLoAomBR3cLsAKDx+gGcIaAmBgGk4KxdsD1lcaB7KQH7HgGd60cCpHQAwCCAKFgoCgNbqAkAgEoWB6qKQQApOFo4qDHFNEE3ewXYTw+URgKSFCMBTAcQBQOjoiag+dkBAIsD1cYggBScrRlgz75hkLu9AuwbBXWOjwSgrAngSABRcGipWRAAROkbCpRZHKguBgGk0NzMAIn9+gFn3JwmaJ8OkAoDO0Q1pAOKGQQQBQVlnwBn6YCG+7mSoLoYBJCsxmxBXgszAwB1ugYq0gEOZgcwHUAUHOynCDrrExDF5YS9hkEAyY4VVUKa8dcz2XE9AADEhIfKw3bujgRIjYJiwkMRE24bcYiP1CFEY3uc6QCi4CCNBOhCQxCqdfyWZF8rUMEgQFUMAkhmv2ZAcyMBGo1GrgvwtDBQqgcAAG2IBgkG22gARwKIgoNUE+CsHgAAosI5EuAtDAJIZr9mQK9mRgIAW5tfACisqGl18w6jqQ4l9a2BpVSAhOsHEAUXaSTAWSoAYDrAmxgEkOyIokeA85EAAOgUYxsJsAqgsJUNgxRFgXGNgwDbSEBJlQlWD7oREpF/kIIAZ0WBAGCw6yRYyWZBqmIQQDIpHdDczABJSpz7xYEnHTQKkkgjARarQFm1uVXHJSL/U222vak76xEAKEcCKmv5d0FNDAIIQP2aAcVVAJy3C7aXatcr4HQr6wJOljkPAjqwVwBRUJGG9511CwQa1wRwJEBNDAI8cNddd0Gj0eCGG27w9aV47HhRlTwzwFm7YHud7IKA1i4p7KhRkEQxTdDNdQmIyD9YrAK1dbaaouYKA+37BLBZkLoYBLhpw4YNWLFiBWJiYnx9Kaqwbxfs0kiAXTqgtesHNF8TYLd+QBVnCBAFMikVAACRTlYQBAB9qBZhWtv8YRYGqotBgBuqq6sxZ84czJ8/H/Hx8b6+HFXYzwxwtmaAPUXr4FamA6TpgQadFnGRytoDjgQQBQ9XWgZLpJoBjgSoi0GAG5588kkYDAY88MADvr4U1ShWD3RhJCA6PAzR9b+UZ863Nh1gCwLS4iOg0WgUj3H9AKLgYay1HwloIQjQMQjwBr8NAgoKCrBkyRLMmzcPo0ePRmRkJDQaDfr27evS/rt378a0adOQkpICvV6P9PR0zJw5Ezk5Oc3u9/PPP+ONN97Ae++9h9BQ58NX/ianfmZAcrQesZHNzwyQdJIbBrmeDqgxW1BU/wm/cT0AACRGczlhomChXDeg+b+n0fXFgUwHqMtv38WWLVvm9ifxjz76CLNmzYLFYkFiYiIGDBiAnJwcLF68GMuXL8eqVatw+eWXN9mvrq4Os2fPxt13340RI0Z4+hTaDfuZAc11CmwsJS4COYWVKKqshanOCl1oyzHlaQdLCNtLMNgvIsSaAKJAVm1ufTqAswPU5bcjATExMZg4cSIee+wxrFy5Es8++6xL+x06dAizZ8+GxWLBo48+itOnT2PPnj04c+YM7rjjDhiNRkydOhXFxcVN9n355Zdx9uxZl8/lL+xnBjS3ZkBj0jRBIWydA13haOEge/pQLWLqI36OBBAFNvuRAJeDAFMdG4mpyG+DgJkzZ2L9+vV47rnncPPNNyMlJcWl/RYsWIC6ujqMGjUKzz//PMLCbEPfkZGRWLRoEbp164bS0lK88soriv3y8vKwYMEC/POf/4QQAmVlZSgrK4PVaoXZbEZZWRlMJv/85Go/M6A1IwH20wRdXUiouUZBksRorh9AFAyqal2bHQAAUfXTBIUAjGaOBqjFb4MAdxiNRqxevRoAMHfu3CaP6/V6zJgxAwCwdOlSxWPHjx9HTU0N7r77bsTHx8tf+fn5+PbbbxEfH4///ve/Xn8O3mBfFOjKzABJqt2SwqddrAtobnqgJFFeRKgWQjDiJwpUrUkHcP0A7/DbmgB37Nu3D9XVtjehMWPGONxm7NixAIDc3FycOXNGHmEYNGgQNm7c2GT7W2+9FT179sTTTz+NPn36eOnKvUu5cFBragJa3zCouUZBEqk4sLbOisraOkSHu1aoSET+RVkY6Fo6ALDNEOjotasKLkEVBGRnZwMAdDod0tPTHW7To0cP+XZWVpYcBMTFxWHcuHFNtg8PD0diYqLDxxrLz8/HyZMnFfdlZma6ePXec9SNmQFAo14BLgYBUk2APjRE0RjInnKaoIlBAFGAqrYLAgwtpgM4EuANQRUElJSUAADi4+ObzE+XJCQkyLdLS0tVPf+iRYuwYMECVY/pqRqzBbnSmgGtSAUAQIoH6QBHPQIk9kFAcWUtuiUaWnVdROQf7GsCWjUSUMMgQC1BFQRIqQCdzvEnUMD2yV5iNBqdbifJzc11+fyzZs3CpEmTFPdlZmZizpw5Lh9DbYo1A1qRCgBsv5Qx4aE4X1OHAhcaBpktVnk7Z/UAANAhir0CiIKB0c2aADYMUk9QBQEREbY3nuaq+GtqGt7MIiMd56zdlZ6e7jQN4SvuzgyQpMRG4HxNhUsrCRaU18gBh7N6AEA5ElDEGQJEAau6FVMEFekAE4MAtQTV7ACpz39paanTqnMpZWC/vdpMJhOqqqpQVVUlj074iqJdcCvTAUBDceC5ylrU1jU/bSdfURTofCSgcTqAiAKTsk9A859JlYWBnCKolqAKAqSWwiaTCXl5eQ63OXbsWJPt1fbss88iKioKUVFRmDBhglfO4Srl6oFuBAF2dQGF55t/w3ZleiDQaCVBBgFEAat1CwjZLSfMmgDVtGkQIHXnq6qqasvTygYNGiSnBLZs2eJwm82bNwMAMjIyXG5A1FpPPPEEKisrUVlZiQ0bNnjlHK6SRgKSovWIi3ReK+GM/QyBlooDXWkUBDReSZDpAKJApZgiGMY+Ab6gahCwZ88ePPLII/j2228V91dWVuKGG25Aeno6RowYgZSUFHz66adqntolBoMBU6ZMAQAsXLiwyeO1tbX48MMPAQDTp0/32nXodDoYDAYYDAY5KFFDa1tp2s8MaE2TIHutmSbYUstgiUEfKv9B4EgAUeCSgoDwsBCEhDieLSRhYaB3qBoEfPjhh3jllVfkVrySv/3tb/j666/lPHxlZSVmzJiBAwcOqHl6l8yfPx+hoaH48ccf8dhjj8FsNgOwzQSYPXs2Tpw4gdjYWDz00ENtfm2eOF1WjclvbMH2o+dc3ufEOfdnBkhS7Yb1WwoCpEZBYVoNkqPDm91WmiFQXMWRAKJAJRUGttQjAOBIgLeoGgRs374d4eHhmDhxonxfTU0NPvjgA4SFhWHdunWoqqrCww8/jLq6Orz55ptunys/Px+JiYny13333QcAOHr0qOL+66+/XrFf//79sXDhQmi1WrzwwgtITU3F0KFDkZKSgiVLliAiIgIrVqxAYmKi29fWErULA80WK/786V4cOVuJ3y3aiTc35Lg0KqDoFOjmSIBy/YDmn4s0EpASGwFtC1G/lBI4V8GRAKJAJVX5t9QjAGjaMZDUoWoQcObMGaSlpSmawGzbtg2VlZW49tprMXHiRISHh+Of//wnoqKi5Py7OywWC4qLi+WvyspKh/eXl5c32XfmzJnYvn07br75Zmi1WmRmZiI6Ohp33nkn9u/fjyuuuMLt63KF2oWBdRaBLgm2KXdWAby6/gjuXLyrxcp65ZoBbo4EKBoGOR8JsFgFztQ/3lw9gEQKAipq61DDxUKIApI0EtBSUaC0jfTWwiBAPaoGASUlJYqOewCwc+dOaDQaTJ48Wb5Pr9ejR48eOHXqlNvnysjIgBCixa9NmzY53H/48OFYuXIlCgoKUFtbi5MnT+LDDz9E79693b4mV6ldGBih0+K16YPw7I0DoAu1vaRbc85hypvbsCe3xOl+ns4MkM4dV99quLmRgLPna1BXPzrR3MwAif0MAaYEiAKTVBMQ4UI6QKPRIKp+O6YD1KNqEBAZGYmioiLFfVIV/qWXXqq4PywsDFpty9FfIPJGYaBGo8HtI7rgi7mj0LWDbVSg4HwNpr+3A+9tOeawL4KnMwMknWJsKYHmFhGyLwpsrlGQRDlDgCkBokDUUBPg2nuBlBKoYp8A1agaBPTt2xe5ubnIysoCAJw9exabN29GYmJikzn3p06dQnJyspqnJwD902Kx6r5LcVX/TgBsw/DPfpuFu//7M8qNZnm72jrPZwZIpOLA4iqT06F7+9UDm5sZIGGvAKLAZrZYYbJYAbiWDgAaegUwHaAeVYOA2267DUIITJ48GQ8++CAmTpwIs9ncZLpdXl4ezpw5g549e6p5er/h7Y6BMeFheOeOizH/2gsRprUl0b4/fBZT3tqKA/llADxbM6Ax+2mCzkYDXG0UJOmg6BrIdABRoFEuI+xaB3tphgCDAPWoGgTMnTsX48ePR15eHl577TUcOnQIPXv2xN///nfFdsuXLwcAjB8/Xs3T+4226Bio0Whw1+hu+GzOSPlN92RpNW7590/470+5qswMkLjSK8DVRkES5foBHAkgCjSKdQNaaBQkiQpvqAlw1vqdWkfVICAsLAzr16/HV199heeeew6ffPIJ9u/fj6SkJMV2oaGhmDdvHqZOnarm6f1GW3YMHNwlHqvvuxSX97WlXkwWK5783yE8tfpXeRvPRwLsewU4HtmQagJCNMpphc4kRTMdQBTIFC2D9S6mA+pHDOqsArV1Vq9cV7BRfRXBkJAQXHfddbjuuuucbvPAAw+ofVq/otPp5OWM1ewY6Ey8QYf3/zAUC7ccx8vrsmGxCpyzG2L3tCZAWkQIaHkkICU2AmHalmPPRKYDiAKasRUrCEoaNwwKd3EEgZwLqgWEgllIiAZzx/XAp7NHIDm64Q3W05kBQMsjAVarkEcCXKkHAGx1DaH1DYU4EkAUeFqzgqCEDYPUp2oQUFBQgG+//Ra//vprk8def/119O7dG1FRUbj88stx8OBBNU/tV3y5lPCI7h3w7bzLMLa3LUVz67B0j4+pqAlw0DDoXFUtTPVDd67UAwC2oEVqHcwggCjw2KcDWlo8SMIgQH2qBgH/+te/cO2112Lfvn2K+99++208+OCDOHr0KIxGIzZt2oQJEyagsLBQzdP7DV8vJZwYpcdHM4cj8x9X4sEr+3h8vPAwLRIMtjfs0w7SAfZFga5MD7S/TgCK1AURBQb7wkCDizUB0eH26QD2ClCDqkHApk2bEBoaihtvvFG+TwiB559/HgDw+OOPY82aNZgwYQLOnTuH1157Tc3T+432spRwdHhYyxu5qKFhUNORjVOtnBkgkaYJlhpNqLOwCIgokFS5MUXQvqkQuwaqQ9UgIC8vD506dUJkZENHuJ9//hmnTp3CqFGj8Mwzz2DSpEn45JNPoNVqsWbNGjVP7ze8tZSwL6XWFweWGs2KCB9oNBIQ13K3QInUMEgIoMTI0QCiQFJtPzvAjXRABYMAVagaBBQVFSElJUVx3/bt2wFAsZpfcnIyevXqhePHj6t5evKh5ooDT5W1rlugJEnROphBAFEgUWN2AHlO1SBAq9WioqJCcd9PP/0EjUaDyy67THF/TEwMTCb+YQ8UnZrpGmg/EpAa13KPAEkHxSJCLA4kCiSKIEDvYsfAcAYBalM1CMjIyMDRo0dRVlYGAKitrcV3332HiIgIDBkyRLHtuXPnkJiYqObpyYfs39wbFwdKNQHJ0XroQ12f16tYRIgzBIgCiqJZUCsXEAI4O0AtqgYBV111FcxmM2677TasWrUKs2fPRllZGSZPnozQ0IYXr7y8HMePH0d6uufT0/yRL6cIeosiHWC3YqAQQh4JaE1RINB4JUGOGhEFEsXaAa62DbYPAmoYBKhB1Y6BjzzyCJYuXYrvvvsO69atgxACer2+ydoBq1atghCiSYogWDz77LNYsGCBry9DVYpeAecbRgJKjWZU168smObCEsL27NMB55gOIAoo1W7UBNiPBFSZGASoQdWRgKSkJOzatQvz5s3DlVdeibvvvht79uzBwIEDFdtt3boVAwcOxDXXXKPm6f1Ge5kiqKZOioZBDSMB7k4PBFgYSBTIjIo+Aa1bRRAAKtknQBWqrx2Qmpra4vz/hQsXqn1av9LWawe0BX2oFolROpyrNCnWDzhZajczwMWWwRKpARHAmgCiQCN9ktdoAH2oa59H2SdAfVw7gFQjjQbYBwGnytwfCQjVhiA+0tbQiLMDiAKLlA6IDNNCo9G4tE+oNgThYba3LRYGqkP1kQBJfn4+vvvuO2RlZaGiogLR0dG44IILMGnSJHTu3NlbpyUfSomNwMFT51FebYbRVIdIXahiemBrgwDAVhxYajQzHUAUYKR0gKvdAiVR+lDUmE0sDFSJ6kGA0WjE/fffjw8//BAWi+1FFkLIkZ5Wq8XMmTPx6quvKjoLkv9LtasLOF1Wg57JUY16BLgXBOQUVqK4qlbxc0RE/k0qGHZ13QBJlD4U5ypNLAxUiapBgMViwTXXXIPNmzdDCIHOnTvjwgsvREpKCs6cOYPDhw8jPz8f//nPf5CTk4N169ZBq+V60IGik900wYJyKQiw1QR0MOhcXi7UXmL9ssdmi0B5tdnjZY+JqH2QcvquTg+USEWErAlQh6pBwKJFi7Bp0yYkJCTgzTffxK233oqQkIayAyEEli1bhnnz5mHTpk344IMPcPfdd6t5CX7BZDLBbDYDQMD0CQAaNwyyPS+pJqA17YLtdVAUB5oYBBAFCLkmwMXpgRIpCGBNgDpULQxcsmQJNBoNPv/8c9x+++2KAAAANBoNbrvtNqxYsQJCCHz88cdqnt5v+HopYW9RNgyqQXm1GRX1eTt36gEAICmaXQOJAo0QAkazFAS0viYAAGrMVq4uqgJVg4CDBw+iW7duGDt2bLPbjR07Fj169EBmZqaap/cbgdgnAFA2DCo4X63oEdDa6YGSxChOEyQKNCaLFRarAOD+SAAAVLFXgMdUDQKqq6uRkJDg0rbx8fGoqalpecMAFIhLCQNAx5hwSHV7p8tqGk0PdK8ItIOhYSSguJIzBIgCgbG29d0CJYqGQSwO9JiqQUBKSgqysrJgNBqb3c5oNOLw4cPo1KmTmqcnH9OFhsj9/s+UV3vUKEiSyHQAUcCRUgGAO1ME2TBITaoGAePHj0dVVRXmzZvX7HYPPPAAjEYjJk6cqObpqR1ItWsYpEgHuFkTwHQAUeCpdmMFQYl9OqCCvQI8pmoQ8Mgjj0Cn0+GDDz7AgAED8MEHH2D37t3Iz8/H7t27sXjxYgwcOBDvv/8+9Ho9Hn74YTVPT+2A1DWwoqYO2Wcr5PvdDwLsRwKYDiAKBIp1AzxIB3AkwHOqThHs06cPlixZgj/84Q84dOiQw+l/QghERETg448/Ru/evdU8PbUD9jME9v5WCgCICQ9FTHiYW8cLD9MiSh+Kyto6jgQQBQj7gj53OgY2HIdBgKdUXzvg5ptvxv79+zFr1ix06tQJQgj5q1OnTpg9ezb279+Pm266Se1TUztg3yugqj7ad7coUCKlBBgEEAWGarM66QD2CvCcV9YO6NWrF/7zn/8AACoqKnD+/HnExMQgOjpa3mbIkCEoKyvDsWPHvHEJ5CP2XQMl7qYCJB2i9MgtNnJ2AFGAsE8HRHgyO4BBgMe8toCQJDo6WvHmL8nLy0NJSYm3T09tzH79AIm7jYIk0kiA0WSRFybyJiEEzlWaFI2KiEg9ypqA1v0+G5gOUBWXEvYBk8mEqqoqVFVVBVTbYABIcTAV0N3pgRJFcWAbrCb4x0/2Ytgz3+PtjUe9fi6iYGSsdT8doBwJYLMgTzEI8IFAbRsMAMnRejRe6M/TmoAOdkFAkZfrAsqMJqw5WAAAeG/LcdSY+UeGSG3KPgGcHeBLDAJ8IFDbBgNAmDYEyY2G0T1NByTZ9Qoo9nIQsD+/TL5dXm3GhsOFXj0fUTCqNrnfMdDAZkGqYhDgA4HaNliS0qg4UNV0gJeLA+2DAABY+XO+V89HFIyMiiDA/ZqACgYBHmMQQKqzX0jIoNMiLtK9HgGStmwd3DgI2HykCIXng3ONCyJvMXrQMVAfGoLQEFvOkSMBnmMQQKqzHwlIi4+ApnGRQCt1MLRNOkAI0SQIsArgy32nvHZOomBk9CAdoNFoEBVuGw1gEOA5j+ZazZw50+19KysrPTk1tWP2DYM8LQoEGo8EeC8dkFtsRJnRDAAY1ycJ23LOoc4qsPLnk7hnTHePgxkisvGkTwBgm1ZYZjSzT4AKPAoCPvzwQ7f/MAoh+Ec1QHWySwd4Wg8AANH6UOhCQ2Cqs3p1dsD+/FL59oS+yQjThmD9r2eRU1iJX06WY2B6nNfOTRRMpMLA0BANdNrWD0hLMwQYBHjOoyBgzJgxfCOnJvp2amgOdUFKjMfH02g0SDTocLq8xqvpgP15ZfLtwV3ikRwTjvW/ngUArPz5JIMAIpVU1dcEROi0br2HSDMEqtgnwGMeBQGbNm1S6TIokPRMjsbLtwzEqdJq3HRxmirHTIzW43R5jVfTAVI9gD40BH06RaN3x2gkGHQoqTLh6wOn8X9TLkB4WOuHLolISRoJaG09gCSqfkGyKlMdR5U9xMJA8oqpQzpj3sReqr1pStMEy6vNMNVZVTmmvRqzBb+eOQ8AGJAWizBtCHShIbh+UKp8XvYMIFKHUQ4C3PscGlU/EiCEsr6AWo9BAPkFxQyBKvVTAodOn4fZIgAAg+yG/acO6SzfZs8AInUYPRwJsF9vgHUBnmEQQH7BfoaAN1YTtJ8aOLhLvHy7X2qsXNfAngFE6pD6BLgdBHAlQdUwCCC/kOjl9QP25TXMDBjUJU7xmDQawJ4BRJ4TQqC6fu2ACDfTAdHhXD9ALQwCyC8k2q0fcK5C/SBAGglIitY3WQ75+kGpcoeylT+fhBBC9fMTBYsasxXSr1CkmzVDHAlQD4MAHwjkpYS9xX4koLhK3XTAucpanCy1vQ6D0uOaVBonRukxvm8yAMg9A4jIPYqWwXoVgoAaBgGeYBDgA4G8lLC3KBYRUnkkQNkfIM7hNsoCwZOqnp8omHjSMlgSZb+SoIlBgCcYBPhAIC8l7C0d7NMBKtcE7LPrFDjISUOg8X2SkVA/Q+HrA6dRW8dpSUTu8GQFQYlydgB/Fz3BIMAHAn0pYW+Ij9ShPi2vejpAqgfQaICLOsc53IY9A4jUYZ8OiHCzJiCKhYGqYRBAfkEbokGCwZYSKFIxHWC1CvySb8vx906OlnuSO8KUAJHnqu1GAgxu1gTY/54yCPAMgwDyG9IMATVbBx8rqkRF/R8RZ/UAEvYMIPJclWIFQTfTAXZBQAULAz3CIID8hlQcWFJVC6tVnWl6++yKAp3VA9iTRgMsVoGv9rNnAFFrKWYHuJsO4EiAahgEkN+QRgKsAig1qjMasM+uU2DjJkGOsGcAkWeqVZkdYBcEcHaARxgEkN9QTBNUKSUgFQUadFr0So5ufmMoewYcOVuJzFPsGUDUGorZAc3U4DQnUqeF1M6DswM8wyCA/EYHRRDgeXFgVW0dsgtsKwde1DkO2hDXliO9+WIWCBK5S5EOcHMkQKPRyNMEK2vMqlxXsGIQQH4jUeVeAZmnyiGVFriSCpBc3jcZ8ZG29cz/t589A4haw34kwN0pgkDDzIIqjgR4hEEA+Q37lQTVSAfYrxzoSlGgxNYzIA0AewYQtZYaHQOBhroArh3gGQYB5DcSDeqmAxTtglsRBADsGUDkLmWfAPdqAoCGIICFgZ5hEEB+IzG6IR1QrEIQILULTouLQHJMeAtbK/VLjUHfTrZCQvYMIHKd/Zt2hAcjAVIAUVlTx1k6HmAQQH6jg0G9dMCZ8mqcPW8LJFqTCpBoNBr2DCByg2KKoEc1AbYgoM4qUFtn9fi6ghWDgFbYvn07Jk2ahLS0NISHhyMpKQmXX3451qxZ4+tLCwq60BDE1PcM9zQdsL+VTYIcuWFwGnsGELWSVBOg04YgVOv+WxAbBqmDQUArlJSUoFevXnjxxRexdu1avPfee9Dr9bj66quxbNkyX19eUJCKA4s9HAnY38omQQ6vJUqPcX3YM4CoNYxmWxAQ6ea6ARJlEMAZAu5yvyojCF1zzTW45pprFPdde+21yMjIwHvvvYdbb73VR1cWPBKj9DheVIWiyloIIaDRuDa3vzGpXXBoiAb9U2Pdvp6pQzrj+8NnAQDf/HLG6SqERGRjrP/U7kkqAGi0fkAtewW4iyMBHgoNDUVcXBxCQxlPtQWpV4Cpziov/NNadRar/Km9b0q0R8VJ4/okyU2GfjnJkQCilkjpAE9+7wAgym4kgSMB7vPbIKCgoABLlizBvHnzMHr0aERGRkKj0aBv374u7b97925MmzYNKSkp0Ov1SE9Px8yZM5GTk9PivlarFXV1dThz5gyeeuopHDlyBH/96189fUrkAvvWwe6mBLLPVqC6fkjS3XoASXiYFj2SDACAQ6fLWRdA1ALpdy/SzRUEJQbWBKjCbz++Llu2DA888IBb+3700UeYNWsWLBYLEhMTMWDAAOTk5GDx4sVYvnw5Vq1ahcsvv9zp/tOmTcPnn38OAIiJicFnn32GyZMnu3Ut1DqJjVoHd0s0tPoYyiZB8R5fU7/UWBw5W4nzNXU4WVqN9IRIj49JFKiktsGeNAoClDUBbBjkPr8dCYiJicHEiRPx2GOPYeXKlXj22Wdd2u/QoUOYPXs2LBYLHn30UZw+fRp79uzBmTNncMcdd8BoNGLq1KkoLi52eowXX3wRu3btwqpVq3DNNddg2rRpWLp0qVpPjZqhCAIq3JshYL988GA3iwLt9UuNkW8fOn3e4+MRBSqLVaDGbJvOp2YQwJEA9/ltEDBz5kysX78ezz33HG6++WakpKS4tN+CBQtQV1eHUaNG4fnnn0dYmK0HfGRkJBYtWoRu3bqhtLQUr7zyitNjdO/eHcOGDcM111yDTz75BFOmTMGf/vQnWK2cq+ptHVRYP0AaCYgJD0W3Dq0fSWjsQrsg4NfTrAsgckZKBQDqpgM4EuA+vw0C3GE0GrF69WoAwNy5c5s8rtfrMWPGDABo1Sf74cOHo7S0FEVFRapcJznn6XLC5dVmHC2sBAAMTI9DiIsrBzanX0rD7AKOBBA5Z1SpWyDAIEAtQRUE7Nu3D9XV1QCAMWPGONxm7NixAIDc3FycOXPGpeNu2rQJcXFx6NChgzoXSk4lebic8C8ny+TbrV0vwJnYyDB0jo8AwCCAqDmKdQM8DAKiw5kOUIPfFga6Izs7GwCg0+mQnp7ucJsePXrIt7OyshRphjvuuANdu3bFkCFDkJiYiDNnzuDjjz/GunXr8NZbb7U4TTA/Px8nTyoXm8nMzHT36QQlT9MBikWDunheFCjpnxqLk6XVKDhfg+LKWnSwC1aIyMZ+Kl+EqukAThF0V1AFASUlJQCA+Ph4p01mEhIS5NulpaWKx0aOHIlPPvkECxcuRHl5OWJjYzF06FB8/fXXuPbaa1s8/6JFi7BgwQIPngEZ9KGICNOi2mxxa4qg/cyAgSqNBAC24sC1hwoA2EYDxvROUu3YRIGi2tzwid3jwkAd0wFqCKogQEoF6HQ6p9uEhzesJmc0GhWP/fnPf8af//xnt88/a9YsTJo0SXFfZmYm5syZ4/Yxg1FitA75JdWtHgkQQshBQNcOkUgwOP85aK1+acoZAgwCiJoy2i8e5HFNgH2zIAYB7gqqICAiwpa3NZmcf4KsqWlYEjYyUt353unp6U7TEOS6DgZ9fRDQupGA/JJqFFfZ9vG0SVBj/VLtiwM5Q4DIEWUQ4NnbT6g2BPrQENTWWTkS4IGgKgyMj7flgEtLS512dpNSBvbbq81kMqGqqgpVVVXy6AS5TpohUFlbh/M1rvcM35ffkN5RqyhQkhytl1sasziQyDH72QGejgQADcWBHAlwX1AFAVJLYZPJhLy8PIfbHDt2rMn2anv22WcRFRWFqKgoTJgwwSvnCGTpCRHy7d8v2oViF9MCypUD1Q3wNBoNLqwfDThxroqfTIgcsB8J8HSKINBQHMjfN/cFVRAwaNAgOSWwZcsWh9ts3rwZAJCRkeFyA6LWeuKJJ1BZWYnKykps2LDBK+cIZDNHd0NS/ZLCB/LLcPO72/FbcVWL+0lBgE4bggtSolW/LvvOgYfPcDSAqLFqFWsCAMCg40iAp4IqCDAYDJgyZQoAYOHChU0er62txYcffggAmD59uteuQ6fTwWAwwGAwyEEJuS49IRJfzB2F7vUL9+QWG3HTO9txwO6TfmO1dRYcOmV7Y74wNQb6UM//ADWmaB98inUBRI2pWRMANLQO5kiA+4IqCACA+fPnIzQ0FD/++CMee+wxmM22nLLRaMTs2bNx4sQJxMbG4qGHHvLxlVJz0hMi8fm9ozCkq21Yv7jKhFvf24GNWYUOtz98pgImi62tsxrrBTiiLA7kSABRY1Uq1wRE1dcE1JitqLOwbbs7/DYIyM/PR2Jiovx13333AQCOHj2quP/6669X7Ne/f38sXLgQWq0WL7zwAlJTUzF06FCkpKRgyZIliIiIwIoVK5CYmOi1a2dhoDriDTp8MnsErrywIwBbX/LZ/92D5bub1nvsz2soClR7ZoCka0Kk/MmEQQBRU6qnAxSLCLFhkDv8NgiwWCwoLi6WvyorKx3eX17edFh25syZ2L59O26++WZotVpkZmYiOjoad955J/bv348rrrjCq9fOwkD1hIdp8e7vhuAPI7sCsK1S9ujnmXj9+yOKGSD77FIFg1VYPtiRkBCNXGuQU1gBUx0/mRDZU7swMMquV0CliSkBd/htn4CMjAyn0/xcMXz4cKxcuVLFK3LdE088gYcffhgAsHPnTgYCHtKGaLDgun5IiY3AC2uzAACvf5+DgvIaPH1Df4RqQ+SiwASDTjG7QG39UmOxO7cUZovAkbMV6J8W2/JOREFCuXaA528/9sdgcaB7/HYkwJ+xMFB9Go0Gc8f1wGvTByJMa2sJvWx3Pu75+GecKqvGb8W27o+D0+OctoxWQz/FssJMCRDZs68JiAhTryYAYHGguxgEUEC5cXBnLJ4xXM7N/5BViBve/lF+3Fv1ABJ2DiRyTkoHhIeFqLKMd5SeIwGeYhDgAywM9K5LeyVi+ZxLkFzfS6CooqGZ0CAvzQyQ9OoYBZ3W9mvF4kAiJSkdoMb0QKDRSoI1DALcwSDAB1gY6H39UmPxxR9HoWdylOL+izrHefW8YdoQ9O5kO+evZ87DYnW/boUo0Ehtg9WYGQA0Xk6YQYA7GAT4ADsGto3O8ZFYee9IDM+wLQ89tncSYiPCvH7efim2lIDRZEGuC50MKTA8++1hTPv3T9h8pMjXl9JuGeWRAHWCgCiuJOgxv50d4M90Op28nDELA70rLlKHZfdcgkOnz8uf0L2tX1oMsMd2+9Dp8+iR1DbnJd85fOY83ttyHACw64NduH1EF/zf1RcoPqlSQxAQoVI6IErfENRXmdgnwB0cCaCAFxKiwYDOsV5pFeyIon0wiwODwu7cEsX/P92Zh6ve2IpdJ0qc7BGc5JoAFWYGAIDBbiSggjUBbmEQ4AMsDAxsfTvFQJqFyGmCwcH+zT6mftpaXokR09/7Cc988ytqzPyUarZY5dbd9m/enuDsAM8xCPABFgYGNoM+FN0SbYsbHTp93qOmVtT+CSHkkYCOMXpseHAcJl7Qsf4x4D9bT+Cat7bhl5NlPrxK31N2C1R/dgCDAPcwCPABFgYGPqlfQEmVCQXna3x8NeRNJ0urcfa8bRrqsIwEJEXr8Z8/DMHLtwxEdP2b1NHCStz4zna8tv4IzEG60I1i3QCV0gFRnB3gMQYBPsCOgYFPuawwUwKBbM9vDamAYfUzUTQaDaYO6Yy1D4zB6J4dANjWtXhjQw5ufOdHHDlb4ZNr9SWjfbdAlWYH6ENDEFrfdIhBgHsYBBB5QX8uKxw0dp1oWKFyaIZycaq0uAh8PHME/nl9P4SH2f7cHjx1Hte8tQ3vbTkWVH0k7NMBatUEaDQaOSXAdIB7GAQQeQFnCASPPfX1ANH6UPTtFNPk8ZAQDf4wMgNr5o3BxfUdK011Vjz7bRbueH8HauuCo2jQqFhGWL2pk1JKgCMB7mEQQOQF8QYdUmPDAXAkIJCVVpmQU2hbxvzirvHQNtMPv1uiASvuHYVHJ/eVW0vvOF6ClT+fbJNr9TWjyosHSaLkkYDgCKbUxiDABzhFMDhcWJ8SOFVWjTKjycdXQ97w828NqYBhjVIBjmhDbKtdLptziXzf9mPFXrm29kZRGKhSTQDQkFrgSIB7GAT4AKcIBgdlSoCjAYHIvknQ0PqiQFcMTo+TR4p2Hi8OimmkinSAip0U5ZoAU11QfB/VxiDABzhFMDiwLiDwSUFAmFbTqmWqNRoNLulumzVwrtKEY0WV3ri8dsU+HaDWFEGgIR0ghDLQINcwCPABThEMDv3SOEMgkNWYLcg8ZQvuBqTFIryVb2xSEAAAPx0P/PbCRi+lA+x7BZRUMe3WWgwCiLwkNTYccZG2BU4YBASeA/llMFtsw8/DWpEKkNgHATuOB35dgLJjoHpBQJ9O0fLtH4+eU+24wYJBAJGXaDQaOSVwvKhSURhF/s/degBJekKEXV1AScDns6vN9n0C1KsJuOLCjvLt7w+fVe24wYJBAJEXSe2DrQI4XMDRgECyO9euSVDXlmcGNKbRaDBCrguoxbGiKtWurT2yb+aj5hTBrh0M6JVsW657a845BtutxCCAyIs4QyAwWawCe+unB/ZKjkK8QefWcS7p3jCCEOgpAW9NEQSAifWjAbV1VmxjSqBVGAT4APsEBI9+du2Df+UMgYCRXVCBivpPtu6kAiTBVBfgrY6BAORVGwHg+1+ZEmgNBgE+wD4BwaNbokEe+uRIQOCwrwdwpUmQM10SIpFSXxewI8DrAoz1NQEaDeR1FNQyKD0OiVG20ZgNWWdhDaI1GTzFIMAH2CcgeGhDNLggxVa9nFVQEbTLyAYaZRDg/kiAsl9AYNcFGOtHTiLDtNBonLdXdoc2RIPL+yYDsPVd2H+yTNXjBzIGAT7APgHBRUoJmOqsQdEUJtAJIeQgoFNMODrHe/Y7HCx1AVI6IELlVICEKQH3MAgg8jL74sCDp5gS8HcnS6tx9nwtANvSwZ5+qg2WugBpiqDaRYGSS3slQh9qe0vjVEHXMQgg8jL74kC2D/Z/aqUCJPZ1ATtPBG5dgNQ22FtBQKQuFJf2TAQAHDlbid+KAze1oiYGAURe1rtTFELrl5hlcaD/U/QH8KAoUKLRaDCimy2YKKqoxfFzgfnmZaz17kgA0DBVEAC+P1zotfMEEgYBRF6mD9WiZ30zk8Onz7Ny2c/tqR8JiNaHom+nmBa2dk2gpwSEEPLsALWnB9qbUF8cCLAuwFUMAojagJQSqKitQ36p0cdXQ+4qrTIhp9BW3Hlx13hoQ9SpclcGAYG3mJDJYoWlPvhVc92AxpJjwjGwfjXHXbklKDeavXauQMEggKgNsHNgYNjzW0MqwJP+AI117RCJTjFSv4DigKsLsO8WaPBiEAAAV1xgGw2wWAU2HWFKoCUMAojagDIIYHGgv9rj4aJBztj6BQRuXUCVYgVB76UDAGVdwHqmBFrEIMAH2DY4+FzIkYCAIM0MCNNqMKh+2FktgVwXUG1qWDzIm4WBANCnY7Tcu2FzdhFMdWzQ1RwGAT7AtsHBJzo8DBkdIgEwCPBXNWYLMk/ZRnEGpMUiXMWV8IDArgswenHxoMY0Go3cOKiitg47TwRWQKU2BgE+wLbBwUkqDiyqqEVhRY2Pr4Zaa39+GcwWW65ejf4AjdnXBewMsLoAby4e5MgVF7J7oKsYBPgA2wYHJ6YE/Ju36gEkGo0GI+rrAgoranEigOoCjG2YDgCA4d0SEB1uCza+P1wYUAGV2hgEELURRXHgKRYH+htFk6Cu6s0MsBeoKQGjojDQ+0FAmDYE4/vYZgmcKqvG4TMVXj+nv2IQQNRGlO2DORLgTyxWgb310wN7JUch3qDzynkCtTiwLWsCJMrugUwJOMMggKiNJEXrkRytB8AgwN9kFZxHRf1SuN5IBUgyOkSiY4ztZySQ+gUo+wR4vyYAAMb2TpLbdTMIcI5BAFEbklICeSVGnK9hNzN/sSfXO02CGrP1C7CNBgRSXUCVXU1AW6QDACA2IkyusfjlZDkKylmM6wiDAKI2ZJ8S2H0icHK+gU7tlQObE4h1AdU+SAcAkKcKAsCGLI4GOMIggKgNXdw1Tr59//L9+NmuDS21T0IIOQjoFBMuN6LxFvsgIFDmuPuiJgBQBgGcKugYgwCiNjSud3JDI5OaOvx+0U5sP3bOx1dFzTlZWo2z52sB2JYO1mjUWTTImUCsC1BOEWybmgAASE+IRN9O0QCAH48Vo6q2roU9gg+DAKI2FBKiwbu/uxjXXJQCwPYJ6a7Fu7ExiwudtFdtmQoA6vsFdLONBpw9X4vcYv9fddJXIwFAw2iAqc6KrTkMuBtjEEDUxsK0IXjj1sGYNrQzAKC2zop7Pt6DbzPP+PjKyBFFfwAvFgXaC7Spgm3dJ8Aepwo2j0EAkQ9oQzR4/qaLMGNUBgDAbBH486d7sfLnk769MGpC6hQYrQ9F304xLWytDmlFQSAwggCpMFAbooFO27ZvOxelxSKpfmruD1mFsFj9P72iJgYBRD4SEqLB/GsvxB/H9QAAWAXw0IoD+Pin3Da7hnOVtVh7sADlRk5XdKS0yoScwkoAwMVd46EN8W49gKRbokHuKREIdQHSFMFIndbrNRWNhYRoMPECW/fAkioT9uWxGNcegwAf4FLCJNFoNHhkcl88PKmPfN/f/3cI/958zKvnrTFb8M6moxj30ibcu+RnTHxtMzZmsy6hsT2/tU1/gMbs+wUEQl2ANBLQ1vUAEvtZAuuZElBgEOADXEqYGvvT+J6Yf+2F8v+fX5OFV9dlq/4JUAiBVQdOY8Irm/Hi2mxU1ldLF1XU4q7Fu/G3rzIVldzBztuLBjUnkOoCjHIQ0HYzA+yN7pmI8DDb2x2nCioxCPABLiVMjtw1uhtevPkiSKOlb/5wFE9/c1i1QGB/fhmm/vsn3Ld0H06V2Uag9KEhGNWj4c1myY48THlzG4dM60kzA8K0GgxKj2vTc9vXBewMkCAgIsw3IwHhYVpc1isJAHCsqArHiyp9ch3tEYMAH+BSwuTMtGHpeOPWwXLuedG2E3jiy4MeFTOdLqvG/cv24Ya3f1Q0J7p+UCp+eGgcPr37Erxzx8WIiwwDAJw4V4Wp//4Jr64/ArPF6tkT8mM1Zgsy61d7HJAWi/A2fgNT1gWU+HVdgDS6ZND7JggAgCvsuwceZupL4puxGSJy6rqBqQgPDcGfP90Hk8WKpbvycOJcJUb1SETvjtHo2yka6QmRLRapVdXWYeHmY3hv63HUmBvezAd3icPfr7kQF3dpyHFfPSAFQ7vG45HPf8Gm7CJYrAJvbsjBpuxCvDptEHomR7XqOVitAr+eOY/NR4pQZxGYclEn9EyObt03wsf255fBbLG98bZFf4DGpLqArw+cRsH5GvxWbERGoqHNr8NTQghUm+tHAnyUDgCA8X2TodEAQtjqAu4e091n19KeMAggaoeu7NcJi2YMxT3//RnVZgt2HC9R9JEPDwtB747R6NMxGn061X91jEZStB5CAJ/vPYmXvstGYUWtvE9aXAQevaovrr0oxWGFdnJMOBbPGIZPdubhmW8Oo9pswS8nyzHlza144uoL8PtLuiKkmcDjfI0ZP+acww9Zhdh0pAhFdud+7fsjGJ6RgNtGpOOq/ilt/qnaHb6sB5CM6J6Arw+cBmCrC2gPQcDPv5Xgpe+ykV1QgYHpcZjUrxMmXtBRnobXWI3ZCmkQI9KHr3tStB6D0+OwN68Me3JLUFpl8tqS0P6EQQBRO3VZryR8PGs4HlpxoEl1eI3Zil9OluOXk+WK++MjwxAdHoa8kobtDTot/ji+J2Zd2q3FN1+NRoPfXdIVo3sm4oHl+7E/vwy1dVbM//oQvj98Fi9NHYhOseEAbJ/wcgorsTGrEBuzC7EntxR1zaQtduWWYFduCf7x9a+46eI03D68C3p1bH+jA+drzPglvxxrDhbI9w3t2nYzA+w1Lg68dXgXn1wHABwvqsSLa7Ox9lDD92VTdhE2ZRfhCU0mhnaNx5UXdsKkfp3QpUOkvI2yZbBvg7+JF3bE3rwyWAWwMbsQN13c2afX0x4wCCBqx4ZmJGDTw+NxrrIW2QUVyCqowJGCCmSdrUDO2QpFJzYAKDWaUVo/51+jAaYNSceDk3ojOTq8VeftlmjAyntH4p1Nx/DmhhzUWQW25pzDpNe34L7Le+LEuSpsyi6SCwwbS4zSYWzvZIzvmwRTnRXLduVjV/0n6/JqMxb/mIvFP+ZiWEY8bhveBVcP8M3oQJ3FiuyzFdifX4b9eWXYl1+GY0WVsE+/90qO8tknxu6JBiRF61FUUSvXBbT1PPtzlbV4c0MOPt2ZpwjypOsCbEPsu3NLsTu3FM98exh9O0VjUj9bQBAd3vA2E+nDmgDAVhfw4tpsAMCagwUMAsAggMgvJEbpkdhTj9E9E+X7rFaBk6XVyD5bgeyC87YA4WwFTpVWY0hGAh6d3EexdHFrhWpD8JcJvTCuTxLuX74fx4uqUF5txtPfHG6yrUYDXNQ5DuP7JGF8n2QMSItVpA5uurgzjhZWYOmufHy+9yTK6gMV6Y1jwSrvjw4IIVBwvgYH8m1v9vvyypB5slzOVzuiDdFg5qXdvHI9rpDqAla5WBdQXm3GliNF2JhViH35ZUiNC8e43skY1ycJPZOjWhVAVJssWLTtOP69+bg8lRSwBYiPTu6LSf06Iq/EiHWHzuK7QwX4Oa9UDp6y6gPWNzbkIDGqIU3gqymCkp7JUejaIRK/FRux/tezeGFtFh6Z1KfNA6v2RCP8ueQ0APz0008YNWoUtm/fjpEjR/r6cogcqjZZ8MLaLHy4PVe+LyY8FGP7JGN8nySM6Z2k+GPfnBqzBWsPFuDTXXnYdaKkyeM9kgzokhCJtPgIpMVJ/0agc3wEkqL0zdYlWKwCZ8qr8Vuxsf6rCr8VG5FbXIW8EmOTkZPGYsJDMTA9DoO7xGNwehwGpcf5PG/8yc7f8H9fHgQAPH/TAEVKQAiBY0WV+CGrEBsOF2LPb6VOZ5KkxUVgXJ8kjOuTjFE9OsCgd/yGbLEKrPw5H6+uPyKvnggAHQw63D+xF24d3gVhDlr/FlbUYMPhQnx3qADbjxbD5GBmybwJvfDAFb1b9fzV9s0vZ/DnpXvlgOXWYel45sYBbdYN0lvcfS/hSAARtShCp8U/ruuHqwekYHduCYZ3S8Dg9DiEutEHPjxMixsGp+GGwWk4WliJZbvysNJudOBYURWOFVU53FenDUFKXDjS4myBQUpcBM5Xm21v9iVGnCypdvjm44g2RIO+naIxuEscBqXHY3CXOHTrYGg2yPAF+7qAnSdKcMPgNOw8UYKNWYX4IatQUf9hLzYiDOXVDe2gT5VV45OdefhkZx502hAM75ZQHxQkoUeSbfbHpuwiPL8mC9lnK+T9wsNCcPdl3XHPmO6IDg9zep3J0eG4bXgX3Da8CypqzNiYXYR1hwqwMasQVfXBV59Ovq8BmXJRCjSai3H/sv0wWaxYtjsfZUYzXr91kF8UrKqNIwE+xpEAItvowHeHCrBiz0lkFVTgXGVtyzu1QnxkGLp2MKBrh0j0S43B4C7x6J8a2+Yr2rlDCIHhz25AUUUtwsNCEKLROBzR0GiAgZ3jcHnfZFzeNxn9UmNQVFmLLUfOYVN2IbYcKcL5GsfdINPiIpAUrcf+/DL5vhANcMuQdDxwRW+5GNQdtXUWeWbLmF6J7WbofVvOOdzz8R75ezmyewe894chzQY67RlHAojIb4WHaXH9oDRcPygNgC0oOF1WjVNl1ThV2vDvyfp/C87XNBn27hQTjq4dIuu/bG/4XRMM6NIhErER/vmHHVDWBdj3ewBsKxte1jsRl/ftiHF9mqZkkqPDMXVIZ0wd0hl1Fiv255fZKvqPFOLgqfPydqfqv9eScX2S8NhVfVVZNVEfqsXY3kkeH0dtl/ZKxNK7L8GMxbtQajTjp+PFuP0/O7H4rmEup7YCAYMAImp3wsO06J4Uhe5JjpsU1VmsOFtRizNl1YiJCEOXhMiAHsqdNrQzVtX3C+ieaJA/7Q/NSIAu1LWUTKg2BEMzEjA0IwEPTeqDwooabM4uwqYjRdhaP0rQPy0Gj191gaIANZANTI/DintH4Q+LduJ0eQ0yT5Vj2r9/wn9nDUfn+MiWDxAAGAQQkd8J1YbIdQHB4LJeSdj6yHgIAcUcfE8kR4fjlqHpuGVoOuosVlTU1CEuMqzdDNe3lZ7JUVg5dxT+8MEuHC2sxPFzVZj6ri0Q6N0O+1iojWsHtNKGDRswY8YM9O7dG5GRkUhPT8f06dORnZ3t60sjogCWnhCpWgDQWKg2BPEGXdAFAJLUuAismDMSA+sXiSo4X4Nb/v0T9gbBQloMAlrp3//+N3777Tc88MAD+Pbbb/Hiiy/i8OHDGDJkCA4ePOjryyMiIjfEG3T4dPYIXNbLlgoprzbjjv/sxOYjRT6+Mu9iOqCV3n77bSQnJyvumzBhAjIyMvDaa69h0aJFProyIiLyhEEfivfvHIq/fnYA3/xyBtVmC2Z/tBuvTBuE6wam+vryvIJBQCs1DgCk+zIyMnDy5EkfXBEREalFH6rFm7cORlxEGD7ZmQezRWDesn14Z+NRW0omIRLp8RHo0sF2u3O8fxel+nUQUFBQgO+//x67d+/Gnj17sG/fPlRXV6NPnz7Iyspqcf/du3fjpZdewtatW1FSUoLk5GRcccUVePzxx9GrVy+Xr+PUqVM4evQoJk+e7MnTISKidkAbosHTN/RHhyg93tyQAyEaWiE7khyttwUH9V8dY/QI04YgNEQDbYgGoSEh9f/a/m9/O1SrgTYkBOnxEejgg6mJfh0ELFu2DA888IBb+3700UeYNWsWLBYLEhMTMWDAAOTk5GDx4sVYvnw5Vq1ahcsvv7zF41itVtxzzz3Q6/W4//773boWIiJqXzQaDf56RW9kdIjExzt+Q16xEcVVJofbFlbUorCiFnt+c7+QsHFL6Lbi10FATEwMJk6ciKFDh2Lo0KE4cuQInnjiiRb3O3ToEGbPng2LxYJHH30UTz31FMLCwmA0GnHPPffgk08+wdSpU5GTk4MOHTo0e6z7778fa9euxdKlS9Gli++W+SQiIvXddHFnebXBqto65JcakVdsRF6JESdLq5FXYrudX2JEbZ1rLasd8dXaBX4dBMycORMzZ86U///hhx+6tN+CBQtQV1eHUaNG4fnnn5fvj4yMxKJFi7B9+3acOHECr7zyCp599lmnx3nkkUfw1ltvYeHChZg2bZrbz4OIiNo/gz4UfTvFOOykaLUKnKusRV6JEecqTbBYBeqsVliFQJ1F1P/f/l8rLFbAYrWizipwYarn3Rnd4ddBgDuMRiNWr14NAJg7d26Tx/V6PWbMmIH58+dj6dKlToOAJ554Ai+99BJef/113HPPPV69ZiIiat9CQjRIjglHcoz76yz4QtD1CZCKBwFgzJgxDrcZO3YsACA3Nxdnzpxp8viTTz6J5557Di+++CLmzZvnvYslIiLyoqAbCZA6++l0OqSnpzvcpkePHvLtrKwspKSkyP9/+eWX8dRTT+Gmm27CZZddhh07dsiP6fV6DB482Om58/Pzm0wjzMzMdOt5EBEReSrogoCSEtuSlvHx8U5bZCYkJMi3S0uV1Z5SKuGLL77AF198oXisa9euyM3NdXruRYsWYcGCBe5cNhERkeqCLgiQUgE6nc7pNuHhDTkdo9GoeGzTpk1un3vWrFmYNGmS4r7MzEzMmTPH7WMSERG5K+iCgIgI26pjJpPj+Z4AUFNTI9+OjFRvwY709HSnKQgiIqK2FnRBQHx8PADbML8QwmFKQEoZ2G+vJpPJBLPZDKBhZIKIiKitBd3sgL59+wKwvRHn5eU53ObYsWNNtlfTs88+i6ioKERFRWHChAmqH5+IiMgVQRcEDBo0SE4JbNmyxeE2mzdvBgBkZGQoZgao5YknnkBlZSUqKyuxYcMG1Y9PRETkiqALAgwGA6ZMmQIAWLhwYZPHa2tr5c6D06dP98o16HQ6GAwGGAwGOSAhIiJqa0EXBADA/PnzERoaih9//BGPPfaYnJ83Go2YPXs2Tpw4gdjYWDz00EM+vlIiIiLv8evCwPz8fEVzntraWgDA0aNHkZiYKN8/evRo/O9//5P/379/fyxcuBD33HMPXnjhBSxatAhdu3ZFTk4Ozp8/j4iICKxYsUJxDDXZFwYWFxcDYNMgIiJyn/QeUlVV1bodhR87ceKEANDi19ixYx3uv3PnTnHzzTeLjh07Cp1OJ9LS0sSdd94psrOzvXrd8+fPd+m6+cUvfvGLX/xqzdfChQtb9X6kEUIIUJuyHwk4c+YM1q1bh969e8NgMHh0XKnx0MKFCzFgwAA1LpXaAb6ugYmva2Dy1etaVVWF48eP45prrkFqaqrL+/l1OsBf6XQ6uWNhz5490bNnT1WPP2DAAIwcOVLVY5Lv8XUNTHxdA5O/vK5BWRhIREREDAKIiIiCFoMAIiKiIMUgIIB07twZ8+fPR+fOnX19KaQivq6Bia9rYPK315WzA4iIiIIURwKIiIiCFIMAIiKiIMUggIiIKEgxCCAiIgpSDAKIiIiCFIMAIiKiIMUgIADs3r0b06ZNQ0pKCvR6PdLT0zFz5kzk5OT4+tKCVkFBAZYsWYJ58+Zh9OjRiIyMhEajQd++fV3af/369ZgyZQqSk5MRHh6OHj164C9/+QsKCgpa3Hf58uUYP348EhISEBkZiQsuuAD/93//h/Pnz3v6tIJeZmYmnn76aVx55ZVISUmBTqdDbGwshg0bhn/+858oLS1tdn++ru3X999/j3nz5uHSSy9Fly5dEBkZiYiICPTs2RMzZszAnj17mt3fb19bL6yUS23oww8/FFqtVgAQiYmJYsiQISImJkYAEJGRkWLDhg2+vsSg9Nprrzlc5rNPnz4t7vvUU0/J26empoqLL75YRERECACiQ4cOIjMz0+m+s2fPlvfNyMgQgwYNEmFhYQKA6N69uzh16pSaTzOoHD16VPFapqamiqFDh4q0tDT5vpSUFPHLL7843J+va/t28803CwBCq9WKtLQ0MWTIENG7d2+h1+sFABESEiJeeuklh/v682vLIMCPHTx4UISGhgoA4tFHHxUmk0kIIURVVZW44447BAARHx8vzp075+MrDT6LFi0SEydOFI899phYuXKlePbZZ10KAtauXSv/QXjrrbeE1WoVQghRXFwsJkyYIACIHj16iNra2ib7Lly4UAAQOp1OrFy5Ur4/Ly9PXHTRRQKAuOyyy9R9okEkJydHJCcni3/+85/i2LFjise2bdsmunbtKv/hrqmpUTzO17X9W7Zsmfjmm29ERUWF4v7i4mJx7733CgBCo9GIXbt2KR7399eWQYAfu+WWWwQAMWrUqCaP1dTUiG7dugkA4vHHH/fB1ZG9xYsXuxQEDBs2TAAQt99+e5PHioqKRHR0tAAgFi5cqHisrq5OpKSkCADiiSeeaLLv4cOHRUhIiAAgvvvuO8+eTJCqrq4WlZWVTh//8ccf5TeD//3vf4rH+Lr6N6vVKi688EL5A5c9f39tWRPgp4xGI1avXg0AmDt3bpPH9Xo9ZsyYAQBYunRpW14auenEiRPYvXs3AMevaWJiIqZOnQqg6Wu6ZcsWnDlzBgBw7733Ntm3b9++GDt2rMN9yTXh4eEwGAxOHx81ahRiY2MBAIcPH5bv5+vq/+zreaqqquT7A+G1ZRDgp/bt24fq6moAwJgxYxxuI/0A5ebmyj9s1H5t374dAKDT6TBixAiH20iv6c6dO2G1Wpvs261bN6Snpze7r7QtqctiscBsNgOAIljg6+r/jEaj/GY/bNgw+f5AeG0ZBPip7OxsALYfPmc/QD169JBvZ2Vltcl1kfuk17Rr164ICwtzuI30mlZXV+O3335rsm/Pnj2dHl/a99ixY6irq1PlmqnBl19+CaPRCKDhjzfA19WflZSUYNOmTbj66quRn5+PMWPG4I477pAfD4TXlkGAnyopKQEAxMfHQ6PRONwmISFBvt3S1CXyPek1tX/dGnP2mrZmX4vFwmllKistLcWDDz4IALj22msxYMAA+TG+rv5l27Zt0Gg00Gg06NChA8aPH4+srCy8+OKLWL9+PbRarbxtILy2DAL8lJQK0Ol0TrcJDw+Xb0ufUKj98uQ15c+D75jNZkyfPh15eXlISkrCv//9b8XjfF39S2xsLEaPHo1Ro0ahe/fuCAsLw9mzZ7F8+XL8/PPPim0D4bVlEOCnIiIiAAAmk8npNjU1NfLtyMhIr18TecaT15Q/D75htVrx+9//HuvXr0d0dDRWrVqF1NRUxTZ8Xf3LgAEDsG3bNvz44484duwYzp49i4cffhg///wzxo0bh127dsnbBsJryyDAT8XHxwOwDS8JIRxuIw032W9P7Zf0GhUXFzvdxtlr2pp9tVotYmJiPLpWsgUAM2fOxPLly2EwGPDNN984LA7j6+rf4uPj8eKLL+Luu++GyWTC3/72N8VjgH+/tgwC/JQ0XcVkMiEvL8/hNseOHWuyPbVf0muUl5cnV5k3Jr2m4eHh6Nq1a5N9jx496vT40r49evRAaGioKtccrIQQmDNnDj766CNERkZi9erVuOyyyxxuy9c1MFx33XUAoGgfHAivLYMAPzVo0CB5OGnLli0Ot9m8eTMAICMjAykpKW12beSekSNHArAFdjt27HC4jfSaXnLJJQgJafj1HTVqFADbdND8/Pxm95W2Jff96U9/wvvvv4+IiAh8/fXXGDdunNNt+boGBqk632KxyPcFxGvrtTZE5HVTp04VAMTo0aObPGbfMbBxhytqe652DBw6dKhL3cfeffddxWN1dXWiU6dOLnUfW7NmjWdPJsjdd999AoAIDw8X69atc2kfvq7+7/bbbxcAxLhx4xT3+/tryyDAj2VmZjpdO+B3v/udACBiY2NFUVGRj6+UXA0C1qxZ02Ifcke96YUQ4t13322xD7mjgJFc9/DDD8sBQGtaufJ1bd+ysrLEgw8+6HDxp7Nnz8qBHwCxatUqxeP+/toyCPBzixYtcrqKYEREhMufVEhdeXl5okOHDvJXVFSUvEKZ/f3XXXddk33/8Y9/OF2RLCEhQRw4cMDpee+66y55327duilWJMvIyBD5+fnefNoBbfv27fL3Njk5WYwePdrp1zPPPNNkf76u7de+ffvk729sbKwYNGiQuOSSS0SvXr3kT+NhYWHi9ddfd7i/P7+2DAICwM6dO8XNN98sOnbsKHQ6nUhLSxN33nmnyM7O9vWlBa0TJ07Iv9jNfY0dO9bh/mvXrhVXXXWV6NChg9DpdKJbt27iT3/6kzh9+nSL5166dKkYO3asiIuLE+Hh4aJPnz7i8ccfF2VlZSo/y+CyceNGl15TAOLOO+90eAy+ru1TRUWFePfdd8X06dNF3759RXx8vNBqtSI2NlYMGTJEPPjggy3+PfXX11YjhJP5ZURERBTQODuAiIgoSDEIICIiClIMAoiIiIIUgwAiIqIgxSCAiIgoSDEIICIiClIMAoiIiIIUgwAiIqIgxSCAiIgoSDEIICIiClIMAoiIiIIUgwAiIqIgxSCAiIgoSIX6+gKIKHAUFxfj7bffxrfffovs7GxUVlYiPj4eycnJ6NevH8aMGYNrr70WXbp0AQCUlZXh9ddfBwD84x//8N2FEwUpLiVMRKrYvXs3pkyZgqKiIgBAp06dkJqaCovFgqNHj6KqqgoA8NRTT+Fvf/sbACA3NxfdunUDAPBPEVHb40gAEXmsqqoKN9xwA4qKijBixAi89dZbGDZsmPy41WrFnj17sGzZMsTHx/vwSonIHkcCiMhjn332GaZPnw6tVov8/HykpKS4tB9HAoh8i4WBROSxY8eOAQASExNdDgBmzJghBwAAoNFoFF8ffvihYnuLxYLFixdjwoQJSExMhE6nQ1paGm6//Xbs37/f6Tk0Gg3+8Y9/oKysDA888AC6d++O8PBwpKamYtasWcjPz3frORMFAgYBROSxmJgYAMDZs2eRk5Pj0j69e/fG0KFD5f+PHj1a8dWxY0f5sdLSUowfPx4zZ87EDz/8AJ1Oh/79+6OiogJLly7F8OHD8cknnzg9V2lpKYYPH4433ngD4eHhuOCCC1BUVIQPPvgAgwcPRmZmppvPnMjPCSIiDx07dkxotVoBQGRkZIh///vfIi8vr8X9Tpw4IQCIlv4UXXXVVQKAGD58uNi3b598v8ViEa+88ooICQkRer1eZGVlKfa78847BQARFhYmevbsKQ4ePCg/dvLkSTF69GgBQPTt21fU1ta27kkTBQCOBBCRx7p3747XXnsNISEhyM3Nxb333osuXbqgU6dOuPrqq/H888/LKYPW+v7777FmzRp07NgRq1evxqBBg+THQkJC8Ne//hVz585FbW0tXnvtNYfHMJvN+Oijj9CvXz/5vrS0NHz22WfQ6/XIysrCypUr3bo+In/GIICIVHHfffdh586duPXWWxEdHQ3Alh5Ys2YNHn/8cfTq1QszZ86Upwq6avny5QCAqVOnIikpyeE2U6dOBQD88MMPDh8fNmwYRo0a1eT+1NRUTJs2DQDwzTfftOq6iAIBpwgSkWqGDh2KpUuXwmKx4ODBg9i7dy82btyIb775BiUlJVi8eDEKCwuxevVql4954MABAMCaNWtw6aWXOtympqYGAHDy5EmHj/fv39/p8aXRgcOHD7t8TUSBgkEAEalOq9Vi4MCBGDhwIO666y6Ul5fjrrvuwpdffolvvvkGO3bswCWXXOLSsUpLSwEAx48fx/Hjx5vdtrq62uH99kWGzh6rqKhw6XqIAgnTAUTkdbGxsVi8eDFCQmx/cnbs2OHyvlFRUQCA999/H0KIFr8cOXv2rNPjS49JKQyiYMIggIjaRGxsrJzTN5lMAGy9AVoyYMAAAMCPP/7o9rkPHTrU4mMXXHCB28cn8lcMAojIY+fOnYPVam12m+zsbBQWFgKw9QgAgMjISPlxZ0P5UuHe0qVLcfToUbeub9euXfjpp5+a3F9QUIDPPvsMADBlyhS3jk3kzxgEEJHHli1bhn79+uGNN95oUpwnhMB3332H66+/HkIIpKenY9KkSQBsHQZjY2MBOK/sv+aaa3DllVeipqYGEydOxHfffddkm9zcXLz00ktYtGiRw2OEhYVhxowZiuK/06dPY9q0aaitrUXv3r3lGQZEwYSFgUTkMY1Gg6ysLNx///24//77kZKSgtTUVJjNZuTn58vFfR07dsSXX36JiIgIeb/f//73+Ne//oXrrrsO/fv3lxcYeuyxxzB58mQAtmmCt9xyC77//ntMnjwZiYmJ6NatG6xWK/Lz8+URhvnz5zu8vrlz5+Lbb79Fv379cOGFFyIsLAwHDx5EXV0dEhIS8Nlnn0Gn03n720TU7jAIICKPzZkzBxdddBHWr1+PrVu3Ij8/H1lZWTCbzYiPj8f48eMxZcoUzJ49W/7kL3nppZcQGxuLzz//HEeOHJGn+82YMUPeJi4uDt999x2++OILLFmyBLt27cKBAwcQFRWFtLQ0TJgwAddddx2uvvpqh9cXHx+PXbt2YcGCBfjf//6H06dPIzExEZMnT8aCBQvQpUsXr31viNozriJIRAFrxowZ+OijjzB//nz84x//8PXlELU7rAkgIiIKUgwCiIiIghSDACIioiDFIICIiChIsTCQiIgoSHEkgIiIKEgxCCAiIgpSDAKIiIiCFIMAIiKiIMUggIiIKEgxCCAiIgpSDAKIiIiCFIMAIiKiIMUggIiIKEgxCCAiIgpSDAKIiIiC1P8Dn5FWyZvVzNgAAAAASUVORK5CYII=",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "# initialize our paramaters\n",
- "# to be fair to previous method\n",
- "w = np.random.normal(size=feature_dim)\n",
- "b = 0.0\n",
- "\n",
- "loss_progress = []\n",
- "eta = 1e-6\n",
- "batch_size = 32\n",
- "N = len(labels) # number of data points\n",
- "data = (features, labels)\n",
- "# compute how much data fits nicely into a batch and drop extra data\n",
- "new_N = len(labels) // batch_size * batch_size\n",
- "\n",
- "# the -1 means that numpy will compute\n",
- "# what that dimension should be\n",
- "batched_features = features[:new_N].reshape((-1, batch_size, feature_dim))\n",
- "batched_labels = labels[:new_N].reshape((-1, batch_size))\n",
- "# to make it random, we'll iterate over the batches randomly\n",
- "indices = np.arange(new_N // batch_size)\n",
- "np.random.shuffle(indices)\n",
- "for i in indices:\n",
- " # choose a random set of\n",
- " # indices to slice our data\n",
- " grad = loss_grad(w, b, (batched_features[i], batched_labels[i]))\n",
- " w -= eta * grad[0]\n",
- " b -= eta * grad[1]\n",
- " # we still compute loss on whole dataset, but not every step\n",
- " if i % 10 == 0:\n",
- " loss_progress.append(loss_wrapper(w, b, data))\n",
- "\n",
- "plt.plot(np.arange(len(loss_progress)) * 10, loss_progress)\n",
- "plt.xlabel(\"Step\")\n",
- "plt.yscale(\"log\")\n",
- "plt.ylabel(\"Loss\")\n",
- "plt.title(\"Batched Loss Curve\")\n",
- "plt.show()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "There are three changes to note:\n",
- "\n",
- "1. The loss is lower than without batching\n",
- "2. There are more steps, even though we iterated over our dataset once instead of 10 times\n",
- "3. The loss doesn't always go down\n",
- "\n",
- "The reason the loss is lower is because we're able to take more steps even though we only see each data point once. That's because we update at each batch, giving more updates per iteration over the dataset. Specifically if $B$ is batch size, there are $N / B$ updates for every 1 update in the original gradient descent. The reason the loss doesn't always go down is that each time we evaluate it, it's on a different set of data. Some molecules are harder to predict than others. Also, each step we take in minimizing loss may not be correct because we only updated our parameters based on one batch. Assuming our batches are mixed though, we will always improve in expectation (on average). "
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Standardize features\n",
- "\n",
- "It seems we cannot get past a certain loss. If you examine the gradients you'll see some of them are very large and some are very small. Each of the features have different magnitudes. For example, molecular weights are large numbers. The number of rings in a molecule is a small number. Each of these must use the same learning rate, $\\eta$, and that is ok for some but too small for others. If we increase $\\eta$, our training procedure will explode because of these larger feature gradients. A standard trick we can do is make all the features have the same magnitude, using the equation for standardization you might see in your statistics textbook:\n",
- "\n",
- "\\begin{equation}\n",
- " x_{ij} = \\frac{x_{ij} - \\bar{x_j}}{\\sigma_{x_j}}\n",
- "\\end{equation}\n",
- "\n",
- "where $\\bar{x_j}$ is column mean and $\\sigma_{x_j}$ is column standard deviation. To be careful about contaminating **training data** with **test data** -- leaking information between train and test data -- we should only use training data in computing the mean and standard deviation. We want our test data to approximate how we'll use our model on unseen data, so we cannot know what these unseen features means/standard deviations might be and thus cannot use them at training time for standardization. "
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 43,
- "metadata": {},
- "outputs": [],
- "source": [
- "fstd = np.std(features, axis=0)\n",
- "fmean = np.mean(features, axis=0)\n",
- "std_features = (features - fmean) / fstd"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 44,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAGPCAYAAACkrCEWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAABP+AAAT/gEHlDmEAABgYUlEQVR4nO3dd3hUVfoH8O/MJJOeIQVSIAkhgLQASgcxRFilC4pgo0UU/amLbUFYd8WGqOtalxVRiuICiogSBEFpIi0oYChBAoQkJCGQnkzKlPv7Y3KHmWRC2szcKd/P8+Qx3HrmZsy8Oec955UJgiCAiIiIyMnJpW4AERERkTUwqCEiIiKXwKCGiIiIXAKDGiIiInIJDGqIiIjIJTCoISIiIpfAoIaIiIhcAoMaIiIicgkMaoiIiMglMKghIiIil+AhdQPI8eXk5CA5ORmdOnWCn5+f1M0hIiInVFFRgQsXLmD8+PGIjIy0yT0Y1FCjkpOTMXfuXKmbQURELmD58uV49NFHbXJtBjXUqE6dOgEwvBHj4+Mlbg0RETmj1NRUzJ071/iZYgsMaqhR4pBTfHw8hgwZInFriIjImdkyjYGJwkREROQSGNQQERGRS2BQQ0RERC6BQQ0RERG5BAY1RERE5BIY1BAREZFLYFBDRERELoFBDREREbkEBjVERETkEhjUENENCYKAy8WVUjeDiKhRDGqI6Ib+uv44hi3dhQ9+Pid1U4iIbohBDRE1SBAE/HgqDwCM/yUiclQMaoioQVUaPWq0egBAsVojcWuIiG6MQQ0RNai4ssb4fUklgxoicmwMaoioQaa9M+XVWmh0eglbQ0R0Yx5SN4AcU01NDTQawwdaZSVnvrirInWN2b+L1Rq0DfCSqDVERDfGnhqyaMmSJfD394e/vz9GjhwpdXNIIiV18mhKKmsaOJKISHoMasiiRYsWoby8HOXl5fj555+lbg5JpLhOHk0Rk4WJyIFx+IksUiqVUCqVAAAfHx+JW0NSqTvjiTOgiMiRsaeGiBpUXFk3p4bDT0TkuBjUEFGD6ubUsKeGiBwZgxoialC92U9MFCYiB8aghogaVLdnhonCROTIGNQQUYPqriJcdziKiMiRMKghogbV76nh8BMROS4GNUTUoPqzn9hTQ0SOi0ENEVlUpdGhSmNe64lFLYnIkTGoISKLLPXKcPiJiBwZgxoissjS9G11jQ7VWp0ErSEiahyDGiKyqKH8Gc6AIiJHxaCGiCwyDWr8lIrr25lXQ0QOikENEVlUYjL8FBPiZ/yeM6CIyFExqCEii0xXD44N9TPZzmRhInJMDGqIyCLTHpmOob7G75lTQ0SOikENEVlkOvzUMYQ9NUTk+BjUEJFF5j01Jjk1TBQmIgfFoIaILBKDGqVCjgiVt8l29tQQkWNiUENEFok9MipfTwT5Kq9vZ04NETkoBjVEZJHYI9PGxxO+SgU8FbLa7QxqiMgxMaghIovE4CXIVwmZTIY2tb01TBQmIkfFoIaI6qnS6FCpMdR4Uvl6AjD02ACs1E1EjotBDRHVU2oSuIjBTBB7aojIwTGoIaJ6TKdtt6ntqRF7bKo0elRpWKmbiBwPgxoiqsc0GVjMpRF7bAAOQRGRY2JQQ0T1mA4xqcThJz+lxf1ERI6CQQ0R1WNa30nMpVGZ9NRwWjcROSIGNURUT7FJ3Scxp8Z8AT721BCR42FQQ0T1mPbEiD00YnBTdz8RkaNgUENE9Via/WQa1BQxqCEiB8SghojqKbE4+8lk+KmSw09E5HgY1BBRPeLsJg+5DH5KBQDznpoS9tQQkQNiUENE9Yg5M21q6z4B5onCnNJNRI6IQQ0R1SMurmfaO+PtKYfSw/Arg4nCROSIGNS4sNLSUjzxxBMIDw+Hj48PBg4ciO3bt0vdLHIC4pRt01WEZTIZgmqDHAY1ROSIGNS4KEEQMGnSJGzYsAFLlixBcnIyYmNjMX78eOzatUvq5pEDq9HqUVFjqO1k2lMDXE8WZqIwETkiD6kbQLaxdetW7N69G5s2bcLkyZMBAImJiejXrx8WLFiAlJQUiVtIjsq0rpPKZMYTcD3IYU8NETki9tS4qM2bN0OlUuGuu+4ybpPL5ZgxYwaOHj2K7OxsCVtHjsx0teCguj01tf+u1upRWcNK3UTkWFwiqPn1118xY8YMxMTEwNvbG8HBwYiPj8fjjz+OP//8U+rmIS8vD2vXrsW8efMwbNgw+Pr6QiaToVu3bk2+RkpKCqZOnYqIiAh4eXkhKioKSUlJOHfunMXjT506hR49ekAuN/8R9+7d27ifyBJLC+8Z/821aojIgTn18JMgCPjrX/+Kjz76CAAQGhqK+Ph4VFRUICMjAydPnsSwYcPQtWtXSdu5fv16PPPMMy0+f82aNXj44Yeh0+mMr/HcuXNYtWoVNmzYgC1btuD22283O6egoMDi6w4ODgYAFBYWtrg95NrMSiT41hl+8jNZVbhCgwiVj93aRUTUGKfuqXn22Wfx0UcfITY2Fjt37kR+fj5SUlJw+vRplJSU4ODBgxg4cKDUzURgYCBGjRqFF154ARs3bsSSJUuafO6pU6cwZ84c6HQ6LFiwADk5OTh69Chyc3Px4IMPQq1WY8qUKSgoKKh3rri+CFFzmA4/mc5+MvybPTVE5LicNqj59ddf8f7776NNmzbYs2cPRo0aZfYhLpfLMXjw4Cb30lRVVeGJJ55Afn5+o8du27bN2DvUFElJSdi5cyfeeOMN3HPPPYiIiGjyuS+//DK0Wi2GDh2KpUuXwtPT8CHj6+uLzz77DLGxsSgqKsI777xjdl5ISIjFQEfsoRF7bIjqKrnB8FMQi1oSkQNz2qDmX//6FwRBwJNPPono6OhWX2/x4sVYtmwZRowYgby8vAaP27p1KyZPnoynnnoKR48ebfV9b0StViM5ORkA8Pjjj9fb7+XlhVmzZgEA1q1bZ7avZ8+eOHPmDPR6vdn21NRUAECvXr1s0GJyBUVmPTWWZz8BDGqIyPE4ZVBTXV2NH374AQAwefJknD59Gs899xxGjx6NsWPH4plnnsGhQ4eadc0XX3wRw4cPx5kzZ5CYmIjc3Nx6x2zZsgV33303qqur8frrr6N///5WeT0NOXbsGCorKwEAt912m8VjEhISAAAZGRlmbZ48eTKKi4uxZcsW4za9Xo8vvvgC/fv3R/v27W3YcnJmxeqGe2pUHH4iIgfmlInCJ06cQE1NDWQyGQ4ePIhnnnkGGs31X8Tbtm3De++9h0cffRTLli2DQqFo9Jr+/v7Ytm0bxo4di3379iExMRG7du1CZGQkAMMU6alTp0Kj0WDJkiVYuHChzV6f6OzZswAApVKJqKgoi8fExcUZv09LSzMObY0dOxaJiYmYM2cOioqKEB0djRUrVuDEiRPYsWNHo/euqakxPlMxsCL3cKPZT0F+7KkhIsfllD01OTk5AAyJsPPmzUO3bt2wZ88eVFVV4fLly/j73/8OAPjkk0/wyiuvNPm6fn5++OGHH5CQkICzZ89ixIgRuHz5MjZt2mQMaJYuXWqXgAa4nv8SFBTUYNKvaW5MUVGR8XuZTIbNmzfj3nvvxfz58zF27Fikp6dbnCllyZIlS+Dv7w9/f3+MHDmyla+EnIlYgVshl8Hfy/zvHrNEYRa1JCIH45RBTXl5OQDDcIpSqcT27duRkJAALy8vREZG4rXXXsNjjz0GwJB7Y/ph3xgxsBkxYgTOnTuHwYMHY9q0adBoNHjzzTexYMECm7wmS8QeEqVS2eAx3t7exu/VarXZvsDAQCxbtgz5+fmoqqpCSkoKxowZ06R7L1q0COXl5SgvL8fPP//cgtaTsxKHldr4eNYLpk17borYU0NEDsYpgxofn+trYzz00EPGISJTYvChVquxe/fuZl3f19cXW7duRZ8+fZCdnQ2tVouFCxdi/vz5rWt4M4mvs6am4b+Iq6qqjN/7+vpa7d5KpRJ+fn7w8/Mze97k+sRhJVWdoScA8PZUwNvT8GujhEENETkYpwxqTIdcevToYfGYjh07ws/PDwBw4cKFZt8jOTnZbNXd9evX49KlS82+TmsEBQUBMAwrCYJg8RjTRfTE44laQwxq6q5RIwryZVFLInJMThnUdO/e3fi9l5dXg8eJwzY6XfNq1Kxbtw4PPPAAdDod3nvvPYwePRoXL15EQkICLl682LJGt4BYRqGmpgaZmZkWjzl//ny944laSqPTo7xaC+B68FKXqjbY4fATETkapwxqwsPDjbN+TD/UTRUVFRlzaTp06NDka3/55ZeYPn069Ho9li9fjnnz5mHz5s0YN24cLl26hBEjRrSo56cl+vbtaxz62bdvn8Vj9u7dC8DQM9WcRf2ILDGr0G1h+Am4nldTotY02INIRCQFpwxqAOCBBx4AAPzvf/+zOOV4+fLlAAAPDw8kJiY26Zqff/45ZsyYAb1ej08++QSPPPIIAENv0KZNmzBhwgRkZmYiISEB6enpVnolDfPz88O4ceMAXH89pqqrq7F69WoAwLRp02zeHnJ9ZmvU+FjuqRF7cGp0eqhZqZuIHIjTBjXPPvss2rZti9zcXDz88MMoKysz7tu+fTtef/11AMDDDz9sMZG4rs8//xyzZ88GAHz66aeYM2eO2X6lUomNGzdi0qRJyM7OxogRIxrsJbKml156CR4eHvj111/xwgsvGNeOUavVmDNnDi5evAiVSoXnn3/e5m0h11dikidTd40aS9tN17QhIpKa0wY1bdq0wXfffYfAwECsW7cOERERGDBgAOLi4jBmzBiUl5dj5MiRePfdd5t0vdjYWPj5+WHlypVISkqyeIxSqcRXX32Fu+++G2FhYQgJCWnStbOyshAaGmr8euqppwAA6enpZtvvuuuueuf26tULy5cvh0KhwJtvvonIyEj0798fERERWLt2LXx8fPD1118jNDS0SW0hupEbrSZ8fTvXqiEix+SUKwqLhgwZgtOnT+ONN97Atm3bkJqaCqVSiWHDhmHGjBlISkqCh0fTXuLw4cNx4cKFRoMDT09PbNiwARUVFVCpVE26tk6ns1hcsu72kpISi+cnJSWhV69eeOutt7B//36kpqaibdu2mDx5MhYtWtTkop1EjTFN/lU1MPvJdFYUVxUmIkfi1EENALRv375ZFbNvpKm9HR4eHk0OaABDEm9rEyoHDhyIjRs3tuoaRI0x7XlpaPZTkFlPDYMaInIcTjv8RETWV3KDuk8ildmqwhx+IiLHwaCG7Ear0+Ob37JxOqdU6qZQA5oy+8l0+KmEicJE5ECcfviJnMPl4kpM//QwLlyrwMhu7fDZrAFSN4ksKG7COjVBfteDnaIK9tQQkeNgTw3ZRXigNzwUhuKIP6fl40RWsbQNIovEnBq5DAjwsvw3j1miMHtqiMiBMKghu1DIZXh61PVZWu/+9KeEraGGGItZ+nhCLpdZPMa0B4eJwkTkSBjUkN2M7hmObuEBAIA9Z6/it0tFEreI6hKLVDY08wkAvDwU8FUqDMczUZiIHAiDGrIbeZ3emvfYW+NwjD01DeTTiMQhKA4/EZEjYVBDdnVnzzD0jAwEAPxy7hqOZhRK3CISaXV6lFUZKnS3aWDhPZG4qjB7aojIkTCoIbuSyZhb46hKawMawLwUgiXiGjbFrNRNRA6EQQ3Z3aju7RDf3rAi86/pBTh0oX4JCbI/016XhkokiMScG61eQAUrdRORg2BQQ3Ynk8nw7F9Memt2srfGEZjWfbpRojBQZ1VhrlVDRA6CQQ1JYsRNbdE3qg0A4PDFQhw4f03aBhFKKq8HJw2VSBAF+XJVYSJyPAxqSBIymQzP1OmtYW6GtMxKJDQ6+8lkVWEmCxORg2BQQ5K5rUso+sUEAQBSMoqwP529NVIyDWoay6nhAnxE5IgY1JBkZDIZnhnF3hpHUWxWofvGOTWmOTec1k1EjoJBDUlqWOcQDOwYDAD4PbMYe/+8KnGL3JdpcNL4OjXsqSEix8OghiTF3BrHUdyM2U+micJcVZiIHAWDGpLckLgQDO5k6K05kV2C3WfzJW6RexKDE5kMCPC2XKFbpGKiMBE5IAY15BBMc2v+zd4aSZTUBic3qtAtMh1+KuHwExE5CAY15BAGdQrBrZ1DAQAnL5di5+krErfI/Yg9NY3l0wCAp0IOfy9Dbw57aojIUTCoIYfxzF+6GL9/96dz0OvZW2NP1yt03zifRqRipW4icjAMashh9IsJxm1d2wIAzuSWYsfpPIlb5D50egGlVU3vqQGAID/DcRx+IiJHwaCGHMozo0x6a3ayt8ZeSis1ENOYghpZTVgkripcXMlK3UTkGBjUkEO5OToIiTcZemvOXinDtpPsrbGH5iy8d/04Q/Cj0wsoq9bapF1ERM3BoIYcjum6Ne/99Cd07K2xOdOF9xorkSAyW4CvgkNQRCQ9BjXkcHp3aINR3cMAAOfyy7E1NVfiFrk+856aJubUmJZKqOQMKCKSHoMackhPm+TWsLfG9kqaUaFbZNqjU8RkYSJyAAxqyCH1aq/CnT0NvTUXrlbg+xOXJW6Raysyq/vU1JwaFrUkIsfCoIYc1tMmqwx/8HM6tDq9hK1xbcUt6KkxnSVVwrVqiMgBMKghh9U9IhBj48MBABevVWDz8RyJW+S6Slox+wkAipgoTEQOgEENObR5I7tCVluG6IOfz0HD3hqbKDYbfmrq7CcmChORY2FQQw7tpvAAjO8dCQDILFTj29+ZW2MLprOfApsa1JgcV8xEYSJyAAxqyOHNG9n5em/NrnOo0bK3xtrEoCTQ2wOKRip0i1RmQQ17aohIegxqyOF1bheAu/oYemuyiyqx8bdsiVvkesSgpKn5NADgoZAjwNtQqZtFLYnIETCoIafw15FdIHYg/Gd3Oqq1Omkb5GLEoKSpdZ9EYrIwh5+IyBEwqCGn0KmtPybd3B4AcLm4El8dZW+Ntej1gnH2k6oZPTXA9VWFOfxERI6AQQ05jb/e3sWY7/GfXemo0rC3xhrKqrTGCt1NnfkkEvNqSio1rKhORJJjUENOo2OoH+65xdBbk1dahQ0pWRK3yDWYTsdu6sJ7IrGnRi8YgiMiIikxqCGn8tTtXeAh9tYwt8YqzFYTbmZPjdkCfByCIiKJMaghpxIV7IvJtbk1+WXVOJVTKnGLnJ9Z3adm5tSYrVXDGVBEJDEGNeR0BnQMNn6fWaCWsCWuwbxEQnN7aljUkogcB4MacjrRIb7G7y8xqGm1lhSztHQ8p3UTkdQY1JDTiTEJajILGdS0lmkwovJp2ZRuw3XYU0NE0mJQQ04nLMAbSg/DWzezsELi1ji/1sx+UpklCrOnhoikxaCGnI5cLkN0sKG3hsNPrdea2U+mPTUlTBQmIokxqCGLampqUFFRgYqKClRWVkrdnHpiaoOa/LJqVNZwWndrmA4bqZo7pZtFLYnIgTCoIYuWLFkCf39/+Pv7Y+TIkVI3p56oYObVWIs4FTvA2wMeiub9Sgj08TRWUOfwExFJjUENWbRo0SKUl5ejvLwcP//8s9TNqSfGbAYU82pao6Q2GGluPg0AKOQyBHrXFrXk8BMRScxD6gaQY1IqlVAqDfkSPj4+EremPs6Ash4xGGnTzJlPoja+niip1HD4iYgkx54ackrRwX7G75ks3HJ6vWAMRlrSU2M4T6zUzZ4aIpIWgxpySlHBPsZcjkvsqWmxsmotxOLazU0SFonJwqVVGuhYqZuIJMSghpySl4cCEYHeAIBM5tS0WIlJ70pQM+s+icQeHkEASplXQ0QSYlBDTkssl5BdVMkeghZqzcJ7IrNVhRnUEJGEGNSQ04qpzavR6gXkFDveWjrOwLxEQsuCGtPzipgsTEQSYlBDTiuaM6BardisQnfLhp+CTHp4SpgsTEQSYlBDTiuG1bpbrcSkZ6W5JRKM55kEQ+ypISIp2TWoycnJwdGjR1FRwcROar0Y02ndLGzZIqarALd8SrdpqQT21BCRdKwa1Bw9ehTz58/HDz/8YLa9vLwckyZNQlRUFAYNGoSIiAj873//s+atyQ1Fm5ZKYE9Ni5gVs2zx7CcmChORY7BqULN69Wq888478PQ0/4vvxRdfxPfffw9BMMxQKS8vx6xZs3DixAlr3p7cjMrX05ikyuGnlrHG7CcWtSQiR2HVoObAgQPw9vbGqFGjjNuqqqqwcuVKeHp6YseOHaioqMDf/vY3aLVafPDBB9a8PbkhMa8ms1BtDJqp6UqsMPvJbEo3h5+ISEJWDWpyc3PRvn17yMSlXgHs378f5eXlmDBhAkaNGgVvb2+88sor8Pf3x969e615e3JD4hBUebUWhRXsJWgucbjI38sDns2s0C0K8PaA3Fipmz8DIpKOVYOawsJCBAcHm207fPgwZDIZRo8ebdzm5eWFuLg4XL582Zq3JzdkNgOK07qbTRwuamkvDQDI5TLj+SXMqSEiCVk1qPH19cXVq1fNtu3btw8AcOutt5pt9/T0hEKhsObtyQ2ZzoDKYlDTbOJwUUvzaURisjB7aohISlYNarp164aMjAykpaUBAK5cuYK9e/ciNDQU3bp1Mzv28uXLaNeunTVvT24ommvVtJggCMbhp5bWfRKJQRFzaohISlYNau6//34IgoDRo0fjueeew6hRo6DRaDBt2jSz4zIzM5Gbm4vOnTtb8/bkhrgAX8uVV2uNNbNUre2pqR1+KqvSQqvTt7ptREQtYdWg5vHHH0diYiIyMzPx7rvv4tSpU+jcuTP+8Y9/mB23YcMGAEBiYqI1b09uKCzAG0oPw9s4kwvwNYvZGjWtyKkBzNeqYV4NEUnFw5oX8/T0xM6dO5GcnIwzZ84gOjoakyZNgo+Pj/lNPTwwb948TJkyxZq3Jzckl8sQHeyL9Pxy9tQ0U0ll61cTtnR+caUGIf5erboeEVFLWDWoAQC5XI6JEydi4sSJDR7zzDPPWPu25MbEoCa/rBqVNTr4KJmA3hTmPTWtzKnxMV2rhsnCRCQNFrQkp2dWLoEzoJrMdKZSa3tqgvxY/4mIpGfVoCYvLw8//PADTp8+XW/fe++9h65du8Lf3x+33347Tp48ac1bkxszTxZmXk1TFVe2vu6TSOXDoIaIpGfVoOajjz7ChAkTcOzYMbPt//nPf/Dcc88hPT0darUae/bswciRI5Gfn2/N25ObMg1q2FPTdCVW7KkxDYq4Vg0RScWqQc2ePXvg4eGByZMnG7cJgoClS5cCABYuXIht27Zh5MiRuHbtGt59911r3p7cVLTJAnxMFm46a85+CjIJijj7iYikYtWgJjMzE+Hh4fD1vf6X82+//YbLly9j6NCheP3113HnnXfiyy+/hEKhwLZt26x5e3JTUcE+EMuNsVRC05kOP7V+nRr21BCR9Kwa1Fy9ehURERFm2w4cOAAAuOuuu4zb2rVrhy5duuDChQvWvD25KS8PBSICvQGwVEJzmM5SavXsJyYKE5EDsGpQo1AoUFZWZrbt4MGDkMlkGD58uNn2wMBA1NTwLzqyDrFcQnaR2rhKLt2YGHz4KRXGBQxbKsDLA4raUt0MaohIKlYNajp27Ij09HQUFxcDAKqrq/Hjjz/Cx8cH/fr1Mzv22rVrCA0NtebtyY2JhS01OgE5xZUSt8Y5iMNPrZ35BAAymcyYl1NcyT9WiEgaVg1qxowZA41Gg/vvvx9btmzBnDlzUFxcjNGjR8PD4/o6fyUlJbhw4QKioqKseXtyY9GcAdVsYo+KqpVJwiIVi1oSkcSsuqLw/PnzsW7dOvz444/YsWMHBEGAl5dXvdpPW7ZsgSAI9YakiFqqbmHLYayVekOCIKCktkeltdO5RcaeGgY1RCQRqwY1bdu2xZEjR/D2228jLS0N0dHR+Otf/4qePXuaHffLL7+gT58+GD9+vDVvT27MdFXhSyxs2Sh1jQ4anSH3yFpBTVDtMFZ5tRYanR6eCi5YTkT2ZfXaT5GRkY2uP7N8+XJr35bcXIzJWjWZXKumUabTrlWtnPlkvI6v+QyotgEsaklE9sU/pcglqHw9jbkhXICvcaZDREFW7qkBYBzaIiKyJ6v31IiysrLw448/Ii0tDWVlZQgICED37t1x5513okOHDra6LbmxmBBf/JFdgsxCNQRBgExckY/qKTGr+2TdnBqAeTVEJA2rBzVqtRpPP/00Vq9eDZ1OBwBmHzAKhQJJSUn497//bbbyMFFrRQcbgpryai0KK2oQ4s/hj4aYl0iwzvBTGz/TVYUZ1BCR/Vk1qNHpdBg/fjz27t0LQRDQoUMH9OjRAxEREcjNzcWZM2eQlZWFFStW4Ny5c9ixYwcUCoU1m0BurG5hSwY1DTNdS6a1JRJE5j01HH4iIvuzak7NZ599hj179iAoKAhr165FRkYGtm/fjlWrVmH79u3IyMjAl19+iZCQEOzZswcrV6605u3JzZklC3OtmhuyZjFL43V8OfxERNKyalCzdu1ayGQyfPPNN3jggQcgl5tfXiaT4f7778fXX38NQRDwxRdfWPP25Oai66xVQw0zq/tkhRWFAfNEYa4qTERSsGpQc/LkScTGxiIhIeGGxyUkJCAuLg6pqanWvD25uboL8FHDbDH7yXRlYubUEJEUrBrUVFZWIjg4uEnHBgUFoaqqypq3JzcXFuBtLMyYyQX4bqjYZPZToJWGn4JMEoVLGNQQkQSsGtREREQgLS0NavWN/0pWq9U4c+YMwsPDrXl7cnNyucy4sjB7am5MDDp8PBXw9rROsr6fUgEPsVI3h5+ISAJWDWoSExNRUVGBefPm3fC4Z555Bmq1GqNGjbLm7YmMQU1+WTUqa3QSt8ZxFVu57hNQW6m7Nq+mqII9NURkf1YNaubPnw+lUomVK1ciPj4eK1euREpKCrKyspCSkoJVq1ahT58++PTTT+Hl5YW//e1v1rw9kVkNKM6Aapi1K3SLxCDJdHE/IiJ7seo6NTfddBPWrl2LGTNm4NSpU3jkkUfqHSMIAnx8fPDFF1+ga9eu1rw9UZ1k4QrcFB4gYWsckyAIxqDGmj01wPXp4UVcp4aIJGD12k/33HMPjh8/jocffhjh4eEQBMH4FR4ejjlz5uD48eO4++67rX1ronoL8FF9lRodanR6AObTsK1BHH5S1+hQreXwHxHZl01qP3Xp0gUrVqwAAJSVlaG0tBSBgYEICLj+V3O/fv1QXFyM8+fP26IJ5KaiuQBfo8wW3rN2T43J9UoqNWgXwBXDich+bFbQUhQQEGAWzIgyMzNRWFho69uTm4kK9oFMBggCZ0A1xDSoUVmp7pMoqM6qwu0CvK16fSKiG7H68BORlLw8FIgINHyQsqfGMtPp1tbvqTFZVZhr1RCRnTGoIZcjlkvILlJDpxckbo3jsUXdJ5H5qsJMFiYi+2JQQy5HLGyp0QnIKa6UuDWOxzynxtrDT1xVmIikw6CGXE40Z0DdkG2Hn0xyariqMBHZGYMacjmmC/AxWbi+EjvNfmJRSyKyNwY15HLMFuBjYct6zHNqbLNOTd37EBHZQ6umdCclJbX43PLy8tbcmqhBMaZr1bCnph5bDj+ZT+nm8BMR2VergprVq1dDJpO16FxBEFp8LtGNqHw9ofLxREmlhsNPFojDQl4ecqtV6Bb5eCqgVMhRo9Ozp4aI7K5VQc1tt93GwIQcUkyIL/7ILkFWoZoBdB1iTo21SyQAhkrdKl9PXC2r5pRuIrK7VgU1e/bssVIzyBZKS0uxcOFCfPPNNygpKUF8fDxeeeUVjB49Wuqm2Vx0sCGoKavWokitQbCf9T/AnZU4/GTtoSdRUG1Qw0rdRGRvTBR2UYIgYNKkSdiwYQOWLFmC5ORkxMbGYvz48di1a5fUzbO5utW66TpxWEhl5YX3RGLyMYefiMjebF77iaSxdetW7N69G5s2bcLkyZMBAImJiejXrx8WLFiAlJQUiVtoWzF1ClveHB0kYWscR5VGh2qtoUK3rXpqxOtWanSo0uisnrdDRNQQ9tS4qM2bN0OlUuGuu+4ybpPL5ZgxYwaOHj2K7OxsCVtne9EhXKvGEltO5zZet06lbiIie3GpoCYzMxOBgYGQyWSQyWTIyMiQukkAgLy8PKxduxbz5s3DsGHD4OvrC5lMhm7dujX5GikpKZg6dSoiIiLg5eWFqKgoJCUl4dy5cxaPP3XqFHr06AG53PxH3Lt3b+N+VxbDoMYi0+Rd2+XUXA+WmCxMRPbkUsNPjzzyCMrKyqRuRj3r16/HM8880+Lz16xZg4cffhg6nQ6hoaGIj4/HuXPnsGrVKmzYsAFbtmzB7bffbnZOQUEBunbtWu9awcHBAIDCwsIWt8cZhAV4Q+khR41Wj0wuwGdky7pPIpXZWjXsqSEi+3GZnppPP/0UO3bswN133y11U+oJDAzEqFGj8MILL2Djxo1YsmRJk889deoU5syZA51OhwULFiAnJwdHjx5Fbm4uHnzwQajVakyZMgUFBQX1znXnacxyuQxRQT4A2FNjqsSGC+8Zr+vDVYWJSBouEdRkZ2fjueeeQ2xsLF599dUWXaOqqgpPPPEE8vPzGz1227Zt+Oijj5p87aSkJOzcuRNvvPEG7rnnHkRERDT53JdffhlarRZDhw7F0qVL4elp+CDy9fXFZ599htjYWBQVFeGdd94xOy8kJMRioCP20Ig9Nq4sJsSQLJxfVo3KGp3ErXEM5jk1tpvSff1+HH4iIvtxiaDm0UcfRWlpKT755BP4+vo2foIFixcvxrJlyzBixAjk5eU1eNzWrVsxefJkPPXUUzh69GhLm9wkarUaycnJAIDHH3+83n4vLy/MmjULALBu3TqzfT179sSZM2eg1+vNtqempgIAevXqZYMWOxbTwpas1m1QbJK4q7JRT43Z8BMThYnIjpw+qFm1ahW2bduG2bNnY9SoUS2+zosvvojhw4fjzJkzSExMRG5ubr1jtmzZgrvvvhvV1dV4/fXX0b9//9Y0vVHHjh1DZWUlAMPqzZYkJCQAADIyMszaPHnyZBQXF2PLli3GbXq9Hl988QX69++P9u3b27DljsE0WZhBjYE9Zj8xUZiIpOLUicI5OTl49tlnERYWVm/4pbn8/f2xbds2jB07Fvv27UNiYiJ27dqFyMhIAIYp0lOnToVGo8GSJUuwcOFCa7yEGzp79iwAQKlUIioqyuIxcXFxxu/T0tKMQ1tjx45FYmIi5syZg6KiIkRHR2PFihU4ceIEduzY0ei9a2pqoNEYPgDFwMrZcAG++ortMPvJbEo3c2qIyI6cuqdm7ty5KC4uxkcffYSgoNYvrubn54cffvgBCQkJOHv2LEaMGIHLly9j06ZNxoBm6dKldglogOv5L0FBQQ0m/ZrmxhQVFRm/l8lk2Lx5M+69917Mnz8fY8eORXp6usWZUpYsWbIE/v7+8Pf3x8iRI1v5SqQRXWcBPjLvqbFF7SfAvAeIPTVEZE9OG9R88cUXSE5OxqRJkzBlyhSrXVcMbEaMGIFz585h8ODBmDZtGjQaDd58800sWLDAavdqjNhDolQ2/OHj7e1t/F6tNv/gDgwMxLJly5Cfn4+qqiqkpKRgzJgxTbr3okWLUF5ejvLycvz8888taL30ooJ9IMaCnAFlINZ9UnrI4e1pm//9fZQKeHkYrs3ZT0RkT04Z1OTl5WHevHlQqVT4z3/+Y/Xr+/r6YuvWrejTpw+ys7Oh1WqxcOFCzJ8/3+r3uhEfH8OU5Jqahv/araqqMn7f0iRpS5RKJfz8/ODn52dsh7Px8lAgItAQ9LGnxkAMMtr4eNp0yr84BMUVhYnInpwyqHnyySdRVFSEt99+25jzYm3Jyclmq+6uX78ely5dssm9GiIOqRUVFUEQBIvHmC6iZ40hOFcjlkvILlJDp7f8DN2JGGTYKp9GJA5tcfiJiOzJKYMacSr1iy++iPDwcLOvAQMGGI8bMGAAwsPDMW/evGZdf926dXjggQeg0+nw3nvvYfTo0bh48SISEhJw8eJFq76WGxHLKNTU1CAzM9PiMefPn693PF0nFrbU6ATkFDtnwrM1Xe+psU0+jUisAM7hJyKyJ6cMakT5+fm4cuWK2de1a9eM+69du4YrV66gpKSkydf88ssvMX36dOj1eixfvhzz5s3D5s2bMW7cOFy6dAkjRozAhQsXbPFy6unbt69x6Gffvn0Wj9m7dy8AoGPHjs1a1M9dRHNat1GVRodKjWERQlutUSMSe2qqtXoufEhEduOUQU1GRgYEQbD4ZdqTcvHiRQiCgNWrVzfpup9//jlmzJgBvV6PTz75BI888ggAwyJ3mzZtwoQJE5CZmYmEhASkp6fb4qWZ8fPzw7hx4wAAy5cvr7e/urra+NqmTZtm8/Y4I9MF+Nw9Wdg0vyXIxkFNG7MF+DgERUT24ZRBjS18/vnnmD17NgBDHak5c+aY7Vcqldi4cSMmTZqE7OxsjBgxwmzox1ZeeukleHh44Ndff8ULL7xgXDtGrVZjzpw5uHjxIlQqFZ5//nmbt8UZma1V4+aFLe1RzFLEopZEJAUGNbViY2Ph5+eHlStXIikpyeIxSqUSX331Fe6++26EhYUhJCSkSdfOyspCaGio8eupp54CAKSnp5ttv+uuu+qd26tXLyxfvhwKhQJvvvkmIiMj0b9/f0RERGDt2rXw8fHB119/jdDQ0Ja/eBcWY7JWTZabDz+ZLrynslHdJxFXFSYiKTj1isLWNHz4cFy4cKHR4MDT0xMbNmxARUUFVCpVk66t0+ksFpesu72h3J+kpCT06tULb731Fvbv34/U1FS0bdsWkydPxqJFi9C1a9cmtcMdqXw9ofLxREmlxu2Hn0zrMNl69pNpsUyuKkxE9uJyQU3Hjh0bnP7cmKb2dnh4eDQ5oGltm0QDBw7Exo0bW3UNdxUT4os/skuQWaCGIAg2XZ/FkZmVSLDx7Kc2Zj01DGqIyD44/EQuT0wWLqvWuvUHrHmJBCYKE5HrYVBDLo+FLQ1Mh5/sNaUbYKIwEdkPgxpyeTEsbAnAvrOfzHpqmChMRHbCoIZcXnQI16oBgJJK05wa2/bUmM6uYk8NEdkLgxpyeTEMagBcDy48FTL4KhU2vZe3pwI+ngqz+xIR2RqDGnJ5YQHeUHoY3uqZbrwAn5gkrfJR2mUGmDgExURhIrIXBjXk8uRyGaKCDDW03LmnpqQ2t8XWM59EbYyVutlTQ0T2waCG3EJMiCFZOL+s2m0LLIqzn2y98J5IzNspUWtavU4TEVFTMKght2Ba2DKryP16a6q1OqhrgzmVjRfeE4nBU41Ob6wOTkRkSwxqyC24e7JwiR1LJFy/D1cVJiL7YlBDbsHdF+Azrb9k6+ncxvtwrRoisjMGNeQWot18Ab4itf17aoJ8uVYNEdkXgxpyC1HBPhBnMbvj8JNZMUsbryZsvI8PSyUQkX0xqCG34OWhQESgNwD37KkpliSn5vp9ijj8RER2wKCG3IZYLiG7SA2d3r2mGJvn1Nhr9tP1+5gmKhMR2QqDGnIbYmFLjU5ATnGlxK2xL9NVfaXoqWGiMBHZA4MachumhS3dbQjKNKdFJcHsJ07pJiJ7YFBDbsN0AT53Dmrst6IwE4WJyL4Y1JDbcOcF+MThJw+5DP5eHna5p9JDDj+lWKmbw09EZHsMashtxJitVeNeC/CJPSVtfD3tUqFbJCYLFzNRmIjsgEENuQ2Vr6cxn8Ttempqgxp75dOIxKEuDj8RkT0wqCG3Ig5BZRao3apydImxQrd9pnOLrgc1NW71vIlIGgxqyK2IycJl1Vq3mZGj0elRXq0FYL+6TyIxWVirF1BRw0rdRGRbDGrIrbhjYUuz6dx2mvkkMpvWXcFkYSKyLQY15FZi3LCwZYnJwntBEg0/GdrhHj1jRCQdBjXkVqLdcFq32Ro1dh5+Mg2iWP+JiGyNQQ25FdMF+NwyqLHz8JPpbCvOgCIiW2NQQ24lPNAbSg/D295d1qoxXSNGZffhJ5NVhTn8REQ2xqCG3IpcLkNUkA8A98mpMV3N1/7DTyY9NUwUJiIbY1BDbicmxJAsfKW0GlUa159mbDrsI2WiMHtqiMjWGNSQ23G3wpbFJrOf7J1T04aJwkRkRwxqyO24W2FLKdepMU0ULmGiMBHZGIMacjvutgCfuD6MQi5DgJ0qdIs8FXLjPTn8RES2xqCG3E60my3AZ1rM0p4VukVi7xCHn4jI1hjUkNuJCvaB+NnuDsNPYjBh75lPIjGPh8NPRGRrDGrI7Xh5KBAR6A3APXpqxGDC3knCInHGVXGlhpW6icimGNSQWxLLJWQXqaHTu+4HrUanR5lYodvO07lFYrKwTi8Y20JEZAsMasgtidO6NToBOcWVErfGdkorpav7JDJdG6e4gkNQRGQ7DGrILYkL8AFAlgsPQZmXSJA2pwYwXzOHiMjaGNSQWzIrbOnKQY1ZhW5php/M6j8xWZiIbIhBDbkld1mAz6zuk1Q9NSbDXpzWTUS2xKCG3FKM2Vo1rrsAn1lPjQMMP5VwAT4isiEGNeSWVL6exlk5Lt1TY5ooLNHsJ7P6T0wUJiIbYlBDbkscgsosULvs+iklpsNPEi++BzBRmIhsi0ENuS0xWbisWosiF01gNe+pkX5KN1cVJiJbYlBDbssdCls6wuynQO/rRTSZKExEtsSghtyWabKwq+bViEGEXAYEeNu3QrfIQyE3Bjas1E1EtsSghtyWaU/N4i2nsP1knoStsQ1xtpHKxxNyuf0rdIvEZGGuU0NEtsSghtxW/47B6BvVBoDhw/axtb9h4aY/oK5xnfpExcZiltIMPYnEfJ5iDj8RkQ0xqCG3pZDLsO6RwXhocLRx27ojWRj/wX6kZpdI2DLrEYMIlUQzn0RiUFVSqYHehQuIEpG0GNSQW/NRKvDapHismNEfwX6GD94L1yowedmv+O+e805dwVunF1BaJVboljioqQ2q9AJQVuU6PWFE5FgY1BAB+EuPMGyfNxzDu4QCALR6AW9uT8ODnx5y2irejlChWxTEtWqIyA4Y1BDVahfojTWzB+Kf43tAqTD8r3HoQiFGv7cPW//Ilbh1zVdkVvdJ2pwalemqwkwWJhdzqaAC931yEE98+Tsqa3RSN8etMaghMiGXy5B0ayy+e3IYuob5AwBKq7R44n+/4/mvT6C82nmGThxh4T3j/U16ipgsTK4kr6QKD356GIcuFGJrai7+uydd6ia5NQY1RBZ0jwjE90/eillDOxq3bfwtG2Pf/wXHMouka1gzlKgdaPjJzzSoYU8NuYaiihpM/+wwsouuD1F/vO8Csgpdc90rZ8CghqgB3p4KLJ7YE6tmD0CovxcAILNQjSkfH8SHP59z+CRi09wVqYefTFczZk8NuYLyai1mrTqCc/nlAIAAL8MCkzVaPV7fekbKprk1BjVEjUi8qR22Pz0cI7u1A2CYVfTOzj9x3ycHHfovMtMeEZXUw09micLsqSHnVqXR4ZE1R3GidumHTqF+2PHsbYgNNaxSvv1UHvafuyZlE90WgxqiJgj198KnM/vj1Um94OVh+N8mJaMIY9//Bd8dvyxx6ywrcqDhJ9OeIg4/kTPT6vR4at0xHLxQAACIUHnjizmDEKHywT/Gdzce9/KWU9Do9FI1020xqCFqIplMhumDY5D81K3oHhEIwFDhe97643h6/TGUVjnWh3WJyTBPkMTDT2ZTujn8RE5Krxcw/5s/sPP0FQBAsJ8SXzw8CO3b+AAAbu8WhsSb2gIAzuWXY+2hS5K11V0xqCFqpi5hAdj8xFA8MjzWuG3z8RyMee8X7E7LhyA4Rq6NI81+CvD2hKy29BSndJMzEgQBrySfxqbfDT2z/l4eWDN7IDq38zc77h/je8BTYXiz/3vnnygor7Z7W90ZgxqiFvDyUODv43pg7cOD0C7AkER8ubgSs1enYMrHB3HgvPTj6eIwj0xmCCqkpJDLEFjbBubUkDN6/+dzWH0gAwDg5SHHpzP7I76Dqt5xndr6I2mY4Q+esiot/rXjrD2b6fYY1BC1wq1dQrH96dswume4cdtvl4rwwIrDuP+TQ/jtUqFkbRODh0BvTygkrNAtCmJRS3JSK/dfxHs/nQMAeMhlWPbgLRjcKaTB45+8vTPa1v6xsz4lCycvu0YtOWfAoIaolYL9lPh4ej+se2QwBnQMMm4/eKEA9/z3IGatOiJJgUwxp0bqoSeRuKowE4XJmXzzWzZeST4NwNDr+c7UPhjZPeyG5wR4e+KF0d0AAIIAvPT9KYcZlnZ1DGqIrGRIXAi+mjsEa5IGordJt/Ses1cx4aP9ePTzo0jLK7Vbe8TcFalnPonEnprSKo3Dr/FDBAA7TuVh/jd/GP/9yl29cFff9k06d/LN7dE3qg0AQ+/td8dzbNFEqoNBDZEVyWQyJHRti++eGIYVM/qjW3iAcd+O01cw5v1f8NS6Yzh/tdym7TBU6K4NaiSe+SQSZ2AJAhx2GjyR6ED6NTz5v2PGAPz5O7pi+uCYJp8vl8vw8sSexn+/se0MKpyozIqzYlBDZAMymQx/6RGGH/46HB89cDPi2hoW5RIEYMuJHPzl33vx3FcnkFlgm8X7yqo0EHu7HWX4aVx8hPH7+Rv/wO60fAlbQ9Sw41nFmPP5UdTUrjPzyPBYPJHYudnX6RPVBlP7dwAAXCmtxn92sy6UrTGoIbIhuVyG8b0jseOZBPx7ah9EB/sCAPQC8M3v2bj9nT1YuCkVOcWVjVypeRxp4T3RqB5hePYvXQEAWr2Ax7/8TdJEaiJL/rxShlmrjkBdW217av8OWDS2O2SyliXb/+3ObsYSCp/+chEZ1yqs1laqz0PqBhC5A4Vchrtv6YAJfSKx8bdsfPjzOeSUVEGrF7DuSCa++S0bDwyKxv8lxqFdgPcNr1VerUVeSRWulFYhr6QKeaXXv79Savj31bLra2OoHGT4CQCeur0zCsqrsebgJVRp9Ji9KgVfPzYUN5kM0xFJJatQjemfHTYms4/pFY437u7d4oAGANoGeGHeqC54besZ1Oj0eG3rGXw6s7+1mkx1MKhxYaWlpVi4cCG++eYblJSUID4+Hq+88gpGjx4tddPclqdCjvsHRuPuW9pj/ZEsfLQ7HVfLqlGj02P1gQysT8nEzCEd0S8myBig5JVUI6+0sjZoqUZ5M8flu9RZHExKMpkML03oiSK1Bt+fyEFplRYzVh7GxseGIqq2F4tICvmlVXjos8O4Umr4g2B4l1C8d19fqyyHMGNIR6w7konzVyvw05kr2HM2HyNuatfq61J9DGpclCAImDRpEv744w+89dZbiImJwSeffILx48djx44duP3226Vuolvz8lBg5tCOmNo/Cl8cysDHey+gsKIGVRo9lu+70OLrBnh7IDzQG+Eqb4QFeqNvVBuM6RXe+Il2JJfL8K97+6C4UoN9f17FldJqzFh5BF8/NsRYDZ3InorVNZix8ggu1ea43RzdBh8/1A9eHgqrXF/pIcc/J/TEzJVHAACvJJ/G0LhQKD2YAWJtDGpc1NatW7F7925s2rQJkydPBgAkJiaiX79+WLBgAVJSUiRuIQGAj1KBR2+LwwODYrD614tYvu8Cyqrq98Qo5DK0C/BCWKC3WdASrjLf5qt0jv+llR5yfPzQLXhgxWEczyrGxWsVmL0qBeseHQx/L+d4DeQa1DVazF6dgrS8MgBAt/AArJ41EH5Wfh8mdG2LUd3D8NOZK7hwtQKfH8zAnOGdrHoPYlDjsjZv3gyVSoW77rrLuE0ul2PGjBl49tlnkZ2djQ4dOkjYQjLl7+WBJ2/vgumDO+KHk7nQ6vS1QYshYAnx93KIVYGtyVfpgVWzBuDe5QeRnl+O1MslePTzo1g1e4DV/kImupFqrQ5zv/gNxzKLAQAxIb74PGkgVDaaMfiP8d2x78+rqNHp8d5P5zCxb2SjOXTUPE7b9/XTTz9h3rx5uPXWWxEdHQ1fX1/4+Pigc+fOmDVrFo4ePSp1E43y8vKwdu1azJs3D8OGDYOvry9kMhm6devW5GukpKRg6tSpiIiIgJeXF6KiopCUlIRz585ZPP7UqVPo0aMH5HLzH3Hv3r2N+8nxqHw9cf/AaEwf0hF39AxH7w5t0C7Q2+UCGlGQnxKfJw1EpMrwi/3A+QI8vf44F+cjm7t4rQL3f3IIv5wz1GkLC/Qy1HILtF2QERPihzm1hXDLq7V4ezvrQlmb0wY1H3/8MT744AMcOnQIer0ePXr0QHR0NLKzs7FmzRoMGjQI//rXv6RuJgBg/fr1mD59Oj744AMcOHAAlZXNm767Zs0aDBkyBF9//TW0Wi3i4+NRWlqKVatWoW/fvti1a1e9cwoKChAcHFxvu7itsJBTackxRLbxwecPDzKuOLztZB7+8d1JLitPNqHXC1j160WMeX8ffq/toWnj64kvHh5kl2T1JxI7IyzQkDv29W/ZOJ5VbPN7uhOnDWruvfdebN26FcXFxcjOzsbRo0dx9uxZ5OTk4LHHHoNer8f8+fMdInckMDAQo0aNwgsvvICNGzdiyZIlTT731KlTmDNnDnQ6HRYsWICcnBwcPXoUubm5ePDBB6FWqzFlyhQUFBTUO7c10xCJ7KlzO3+smj0QvkrDsNP/Dmfi3Z1/StwqcjVZhWrcv+IQXt5yGlUaw8J6vdoH4uu5Q9A1zD7LCvh5eWDR2O7Gfy/+/hT07Jm0GqcNaqZNm4axY8fC3998umpwcDCWLVuGHj16QBAEfPPNN026XlVVFZ544gnk5ze+yum2bdvw0UcfNbmtSUlJ2LlzJ9544w3cc889iIiIaPykWi+//DK0Wi2GDh2KpUuXwtPT8Nesr68vPvvsM8TGxqKoqAjvvPOO2XkhISEWAx2xh8ZSLw6RlPpGtcHy6f3gqTAE4x/sSseqXy9K3CpyBYIgYO2hS7jzvX04fNHwO9BDLsMzo7ri2/8bhi52CmhEE/tEon+Mofjt8axibDrGsiHW4rRBzY2Y5qtUVDRt9cbFixdj2bJlGDFiBPLy8ho8buvWrZg8eTKeeuopm+ftqNVqJCcnAwAef/zxevu9vLwwa9YsAMC6devM9vXs2RNnzpyBXq83256amgoA6NWrlw1aTNQ6w7u0xb+n9oXYyfjyltOsE0WtklNciRkrj+DFzSeNqwR3Cw/A5ieGYd6oLvBU2P9jUCaTYfHEnsb3+Zvb01BWxer11uCSQY1arTYOOw0YMKBJ57z44osYPnw4zpw5g8TEROTm5tY7ZsuWLbj77rtRXV2N119/Hf3723ZVyGPHjhnzb2677TaLxyQkJAAAMjIyzNo8efJkFBcXY8uWLcZter0eX3zxBfr374/27W9cabampgYVFRWoqKhodg4QUWtM6BNpVgjwua9OYM9Z1olqLkEQ3HpYQxAEfHU0C3e+u8+YDKyQy/BkYmd8/+St6NVeJWn7erVX4b4B0QCAq2XV+GgX60JZg0tN6S4sLMQff/yBxYsXIysrC7fddhsefPDBJp3r7++Pbdu2YezYsdi3bx8SExOxa9cuREZGAjBMkZ46dSo0Gg2WLFmChQsX2vKlAADOnjVkxiuVSkRFRVk8Ji4uzvh9WlqacWhr7NixSExMxJw5c1BUVITo6GisWLECJ06cwI4dOxq995IlS/Dyyy9b4VUQNd+MIR1RUF6D938+Z6gTtfZ3fPnIINwSHSR10xxSlUaHP6+U4UxuKc7kliEtrxRpeWWo1uhx9y3t8exfuiLEjRY2zC+twsJNqfjZpGhq53b+eOfePugT1Ua6htXx/B1dkfxHDsqqtFj560VMGxCFTm0dZwVwZ+T0Qc3+/fsxfPhws21hYWF46623MG/ePCgUTV/vws/PDz/88APGjRuHvXv3YsSIEdi9ezcOHz6M++67DxqNBkuXLsWCBQus/TIsEvNfgoKCGkz6Nc2NKSoqMn4vk8mwefNmvPDCC5g/fz5KS0sRHx+PLVu2NGk14UWLFuFvf/sbAODw4cMYOXJka14KUbM9PaoLCitq8MWhS6jU6JC0OgVfzx1i9/yHxpSoNdh+Khf7/rwGT4UMYSpvRAR6I1zlgwiVYa2hUCutMyQIAnJKqnAmpxRpeaU4k2cIZDKuVaChTpkvD2fi++M5+OvILpg5tKNkq9gKgoBTOaVQ1+jQu4MK3p7WX4tIEAR8fyIH//zuFEoqDcM5MhnwyPBOePYvXW1yz9YI8ffCs3/pipe3nIZGJ+DV5NNYNXug1M1yak4f1KhUKgwbNgyCICAvLw9ZWVm4cuUKNmzYgFtvvRVDhgxp1vVMA5s9e/Zg8ODByMvLg1arxZtvvon58+fb6JXUJw77KJUNFyT09r6+poJarTbbFxgYiGXLlmHZsmXNvrdSqTTe18fHp9nnE7WWmHdQqK7B1j9yUazWYPpnR/DN/w1F+zbSvifVNVrsPH0FW07kYu+f+dDobjzMo5DLEBbgZQh4VN4ID/RBuMrreuATaFgh2jTgUNdo8eeVcpzJLUVariGAScstRamFFact3S+urR8KymtQUFGDsmotXv/hDL48fAmLxnbHX3qE2W12pF4vYMfpK1i2Jx1/ZJcAAJQKOfpEqTAwNhiDYkPQLyao1Sv4XiuvxovfnsT2U9dzIjuG+OJf9/ZB/46OOzHiocExWHckE39eKcfus1exK+0Kbu8WJnWznJbTBzXx8fHYv3+/8d9FRUV444038Pbbb2PEiBH45ZdfMHBg8yJfX19fbN26FUOHDsWJEycAAAsXLrRrQANcDyZqamoaPKaqqsr4va8vCwKSa1HIZfj31D4oUWuwP/0a8kqrMP2zw/h67hC7D6dUa3XY9+c1fH8iBz+dvoJKja7J5+r0hh6WnJIqHLvBcaH+SoQFekNdo0NGQQWaslRPiJ8S3SMC0S08wPDfiAB0bucPLw8Fyqo0+M/u81i5/yJqdHpkFKjx6Be/YWhcCP4xvge6RwQ2+TU0l0anx5YTOfjvnvM4l19utq9Gp0dKRhFSMorwn93noZDL0Ku9CoNigzEoNhj9OwZD5dP0VX23pebi75tPorDi+u/KWUM7Yv7omxy+dIinQo6XJvTEg58eBgC8suU0hnUO5araLeTYP+0WCAoKwltvvYXi4mKsWLECL774YpNySOpKTk42W3V3/fr1mDt3LmJiYqzZ3BsKCjLkDxQVFUEQBIt/WZkuoiceT+RKvDwU+Hh6Pzy44hBOZJfgwtUKzF6dgv89Yvs6UTq9gIPnC/D9icvYfjLPYi9J1zB/TOwTiXG9IxHg7YG8kirklVQht7QKeSWVxirrubXbxRk4llwrr8G1cst/xHgqZIhr64/uEYHoHhGAbuGGAOZGy+wHeHvihTHd8MDAaCzdfgY/pBp6MQ6cL8C4D37BtAHReO6OrlYtJFql0eHr37KxfO95ZBeZTzIY1jkEPSICcSSjCCcvlxhXjtbpBZzIKsaJrGJ8su8CZDKge3ggBnUyBDkDY0MQ7Fe/x7qoogYvfX8K35/IMW5r38YHb9/bG0PjQq32mmxtWOdQjO4Zju2n8pBRoMaqXzPwWEJc4ydSPS4X1IgmTpyIFStWtGja9bp16zB9+nTo9Xq899572L59O7Zv346EhATs3r0bsbGxNmhxfeK09JqaGmRmZloMqM6fP1/veCJX4+/lgZW1daIuXK3AH9klmLnyCEb3DEf7IB90CPJB+zY+CPZTtnpYRRAE/J5ZhO+P52Brah6ulVfXOyYq2AcT+0RiQp9IdAs37+0I9fdqcGaNIAgoq9YaA5+8kipDsFMbAInfeyrk6BYegB61PS/dwgMR19a/xfkw0SG+WPZgPxy+UIBXkk/jVE4p9AKw7kgmtpzIwVO3d8asYR1b1TtQXq3Fl4cu4dP9F3G1zPyZ3dEjDP+X2Bl9TZJ0K6q1+O1SEY5cLMThiwU4kVWCGp2+9jkBp3NLcTq3FKt+zQAAdGnnj0GdDAHO4Nhg/JFdgoXfpprd6/6B0fj7uO5OWRT17+O6Y/fZfFRr9fjw53MI9lWic5g/OrfzR6C3bWpRuSLn+8k3kVZr+ItKp2t6FzEAfPnll5g5cyb0ej2WL1+ORx55BI899hjuuecebN261Zg83KmT7aur9u3bFz4+PqisrMS+ffswffr0esfs3bsXANCxY8dmLepH5GxC/L3wxcODcM+yA8grrcJvl4rw26Uis2N8PBVoXxvgdAjyqQ14fI3/buvvBbmFhF1BEHA6txTfn8hB8olcXC6uv4xBuwAvjOsdgYl9ItE3qk2LgieZTIZAb08EenvabQVbU4M6heD7J2/FN79n4+0fz+JqWTXKq7V4Y1savjyciUVju+HOnuHNem1FFTVYdSADaw5kGJNzAUAuMywy9/iIzrgpvP5r9fPywG1d2+K2rm0BGHp4jmUWG4Oc3zOLjKv+AsC5/HKcyy/H2kOZ9a4VHuiNN6f0RkLttZxRVLAv5t7WCR/sSkdFjQ7zv/nDuC8s0Aud2/mjc1tDkBPXzh9d2gUg1L/1Qbyrcdmg5uuvvwYA3HLLLU0+5/PPP8fs2bMhCAI++eQTzJkzB4BhkbtNmzZhypQp2LJli7HHpnPnzjZpu8jPzw/jxo3Dxo0bsXz58npBTXV1NVavXg3AsMIykatr38YHXzw8EElrUpBVWD/wqNTokJ5fjvQ6ORwipUKOyDbexkCnfZAPtHoBW//Iwfmr9RfqVPl4Ymx8OCb0icSg2BCXKCyqkMswtX8UxsZH4L970rHil4uo0eqRWajGY2t/x6DYYPxjfI9G13HJK6nCp79cwP+OZJoNqSkVctzbvwPm3haH6JCm5/l5eyowJC4EQ+JCAHRBjVaP1MvFOHyxEIcvFOJoRiEqLAzd3XNLB/xzQo9m5eA4qsdHdMb2U3n484r5+/dKaTWulFbj13TzVeJVPp5mwY741b6Nj8Xg3R3IBCesGnf27FmsWLECM2fORHx8vNm+/Px8vPbaa/jwww8BGBbMGz9+fKPXFAMaAFixYgWSkpLqHVNTU4Np06Zh8+bNaN++Pfbu3Wu2TkxTrV69GrNnz8ZNN92EtLS0Gx578uRJ3HzzzdBqtViwYAFeffVVeHp6Qq1WY+7cuVi7di1UKhXS09MRGmqbMeSDBw9i6NChOHDgQLNnkxHZgkanx6WCCmQXVSK7qBKXi2v/W6TG5eJKXCmtP2TUVL5KBe7oEYaJfSNxa+e2kk2BtpesQjWWbk/D1j+uL94pkwFT+0XhuTu71svZuVRQgY/3XsA3v2Ubh4sAw3N7aHAMHr41FmE2qHSt1elxOrcURy4W4tCFQhRWVOPxEZ3xlx6uNVNIo9PjdE6pITi/agjQz+eXI6Og4Wn7dXl7yhFXG+jEBPsiKtgX0bX/DQv0liw4t8dniVMGNcePH8fNN98MwDClOzY2Ft7e3igoKMD58+eh1+vh6emJt99+G/PmzWvSNX/55ReMGzcOH374IWbOnNngcRqNBvfddx8yMjLw888/o02bNo1eOysry9hewNDDUl5eDoVCYXb+sGHD8N1339U7f+XKlXj00Ueh0+kQGhqKmJgYnDt3DqWlpfDx8cF3332Hv/zlL016nS3BoIacTbVWh9ziqtqAR43LtcFPdnElLhdVIrek0uwDQqmQI7FbW0zoE4mR3cLgo3S/mScpGYV4Nfm0cdo1APgpFXji9s5IGhaLjIIK/HfPeWw5kWP27FQ+npg9rCNmDumIIAvJvGQd1VodMq6pjT2RxoDnajlqtPrGL1BLqZCjfZAPooJ9ERXkYwx2xP/asseLQU0DysvLsXbtWuzZswcnTpzAlStXUFpaCn9/f3Tu3BkjRozAo48+iq5duzbruteuXWtSb4dWq0VFRQVUqqYts52RkdGk5OKEhATs2bPH4r4jR47grbfewv79+1FUVIS2bdti1KhRWLRoUbNfZ3MxqCFXo9XpkVdqCHrUNVr07xjMZEwY1pT59thlvLk9DfkmCbjBfkqz6dKAIcfokeGdcP+gaKdMzHUVOr2A7CKTYEcMeK6Uo6y68TWN6gr09kB0iC+iggyBTgcx4KnNT2tNzyWDGnIIDGqI3EtFtRbL957H8n0XUF2nFyAq2AePJcThnls6ONwKvXSdIAi4WlaNrCI1MgvVyCqsrP2v4Su3tKpJ6yCZ+vihWzC6V8snpNjjs4ThNRERmfHz8sCzd9yEaQOj8ea2NGz5Iwdd2vnj/0Z0xvjeEfCQoLI1NY9MJkO7QG+0C/RGv5j6KypXa3XIKa5CVmFt0FOkvv59YaXZTDZRhyDHX+CVQQ0REVnUvo0PPrj/Zrx5T294e8o5fdiFeHkoEBvqh9hQP4v7Syo1xl4dsbcnphmz2aTCoIaIiG7IHROn3Z3KxxOq9qpGp/Y7GvYhEhERkUtgUENEREQugUENERERuQQGNUREROQSGNQQERGRS2BQQ0RERC6BQQ0RERG5BAY1RERE5BIY1BAREZFLYFBDRERELoFlEqhRFRUVAIDU1FSJW0JERM5K/AwRP1NsgUENNerChQsAgLlz50rcEiIicnbiZ4otyARBEGx2dXIJOTk5SE5ORqdOneDnZ7mia1OlpqZi7ty5WL58OeLj463UQrKEz9q++Lzth8/avqz1vCsqKnDhwgWMHz8ekZGRVmzhdeypoUZFRkbi0Ucfteo14+PjMWTIEKtekyzjs7YvPm/74bO2L2d43kwUJiIiIpfAoIaIiIhcAoMaIiIicgkMasiuOnTogJdeegkdOnSQuikuj8/avvi87YfP2r6c6Xlz9hMRERG5BPbUEBERkUtgUENEREQugUENERERuQQGNUREROQSGNQQERGRS2BQQ0RERC6BQQ0RERG5BAY1ZBcpKSmYOnUqIiIi4OXlhaioKCQlJeHcuXNSN83hpKam4rXXXsMdd9yBiIgIKJVKqFQqDBgwAK+88gqKioosnjdr1izIZLIbfv3rX/+64b03bNiAxMREBAcHw9fXF927d8ff//53lJaW2uKlSm7x4sWNPrMnn3yywfN37tyJcePGoV27dvD29kZcXBz++te/Ii8vr9F7u9uzzsjIaPRZi1+xsbFm5/K9bVleXh7Wrl2LefPmYdiwYfD19YVMJkO3bt2adL4U71+9Xo/ly5dj8ODBUKlU8Pf3R9++ffHWW2+hpqamSe2+IYHIxlavXi0oFAoBgBAaGir069dPCAwMFAAIvr6+ws8//yx1Ex1Genq6AMD4FRkZKfTv319o3769cVtERITwxx9/1Dt35syZAgAhKipKGDZsmMWvdevWNXjvOXPmGO/RsWNHoW/fvoKnp6cAQOjUqZNw+fJlW750Sbz00ksCAKFdu3YNPrN///vfFs999dVXzX5Ot9xyi+Dj4yMAEEJCQoTU1NQG7+uOzzo3N7fBZyx+yeVyAYDw0EMPmZ3L97Zl7777rtnvC/HrpptuavRcKd6/NTU1wpgxY8zaGR8fL8hkMgGA0L9/f6G0tLTFz0MQBIFBDdnUyZMnBQ8PDwGAsGDBAqGmpkYQBEGoqKgQHnzwQQGAEBQUJFy7dk3iljqGc+fOCe3atRNeeeUV4fz582b79u/fL8TExBh/cVRVVZntF3/xv/TSS82+7/LlywUAglKpFDZu3GjcnpmZKfTu3VsAIAwfPrxFr8mRiUHNzJkzm3Xe9u3bjb+YP/zwQ0Gv1wuCIAgFBQXCyJEjBQBCXFycUF1dXe9cd33WjTl27Jjxme7atctsH9/bln322WfCqFGjhBdeeEHYuHGjsGTJkiYFNVK9fxcuXCgAENq0aSPs3bvXuD01NVWIiooSAAjTp09vyaMwYlBDNnXvvfcKAIShQ4fW21dVVSXExsYKAISFCxdK0DrHU1lZKZSXlze4/9dffzX+Mvruu+/M9rX0F79WqxUiIiIEAMKiRYvq7T9z5ozxL+gff/yxWdd2dC0NagYMGCAAEB544IF6+65evSoEBAQIAITly5eb7XPnZ92YJ5980hiwix+yIr63m2bVqlVNCmqkeP9eu3ZN8Pb2FgAIn3zySb1zf/zxRwGAIJPJhDNnzjTl5VrEnBqyGbVajeTkZADA448/Xm+/l5cXZs2aBQBYt26dPZvmsLy9veHn59fg/qFDh0KlUgEAzpw5Y5V77tu3D7m5uQCAxx57rN7+bt26ISEhAQB/TgBw8eJFpKSkALD8vg4NDcWUKVMA1H9efNaWVVdX43//+x8AICkpCTKZzCrX5fOuT6r37/fff4+qqir4+flh+vTp9c6944470KlTJwiCgA0bNrTglRkwqCGbOXbsGCorKwEAt912m8VjxP8BMjIyjP+zUMN0Oh00Gg0ANBj87N69G1OnTsXtt9+OSZMm4Z///CdSU1MbvOaBAwcAALGxsYiKirJ4jPhzEo91NSdOnMCDDz6I22+/HRMmTMD8+fMbfK3idqVSiUGDBlk8Rnxehw8fhl6vr3euOz9rSzZv3ozCwkLI5XLMnDmzweP43m49qd6/4r8HDhwIb29vi+eKnxOt+Vl4tPhMokacPXsWgOF/nob+B4iLizN+n5aWhoiICLu0zVl9++23UKvVAK7/8qhr3759Zv/+7rvv8Nprr+HRRx/FBx98AKVSabZf/Dl17ty5wfuKP6fz589Dq9XCw8O1fnUcP34cx48fN/47OTkZb7/9NiZPnozVq1cjMDDQuE98XjExMfD09LR4PfF5VVZW4tKlS8bZPHzWlq1cuRIAcOedd6JDhw4NHsf3dutJ9f5tzrlpaWlNfj11saeGbKawsBAAEBQU1GB3cnBwsPH7hqYqk0FRURGee+45AMCECRMQHx9vtr9Tp05YvHgxfvvtNxQUFKCyshLHjh3DnDlzIAgCli9fjrlz59a7rvhzMv1Z1CXu0+l0Tj0Ftq7w8HA8//zzOHDgAK5cuYKqqiqcOXMGCxYsgEKhwLfffovJkydDEATjOc15XoD5+9qdn3VDsrKy8NNPPwEwDD1Zwve29Uj1/m3Oua35LHDtkJQkJQ491f3ryZRpN6TYA0H1aTQaTJs2DZmZmWjbti0+/vjjesf885//rLetb9++WLFiBeLi4rBw4UKsXr0ajz32mFm3c0t+Tjf6xeRMGsoLWLp0Kfr27Yv7778fu3btwldffYVp06YBaN372p2fdUNWrVoFvV6P0NBQTJw40eIxfG9bj1Tv3+ac25rPAvbUkM34+PgAwA0XVKqqqjJ+7+vra/M2OSO9Xo/p06dj586dCAgIwJYtWxAZGdmsazz//PPGc77++muzffw5WXbfffdh4MCBAMyfWWueF5+1OUEQsHr1agDAQw89dMMPvIbwvd08Ur1/m3Nua34ODGrIZoKCggAYuhJNu+9NiV2SpsfTdXq9HklJSdiwYQP8/PywdevWBpP7bsTDw8N43p9//mm2T3zuBQUFDZ4v/pwUCoVZfomrGzZsGADzZ9ac52V6fHPPdYdnvXv3bly8eBEA8PDDD7foGnxvN49U79/mnNuazwIGNWQz4lLdNTU1yMzMtHjM+fPn6x1PBoIgYO7cuVizZg18fX2RnJyM4cOHt/h64l/B4uwpkfjc09PTGzxX/DnFxcW5fCKlKUvPTHxemZmZ9Z6lSHxe3t7eiImJqXcun7WBmCA8cOBA9OrVq8XX4Xu76aR6/zbn3NZ8FjCoIZvp27evscux7qwF0d69ewEAHTt25MynOp544gl8+umn8PHxwffff48RI0a06nri1Ne6M9GGDh0KwDCtPisry+K54s9JPNZdWHpmQ4YMAWAI1g8dOmTxPPF5DR48GHL59V+zfNbXlZSUYNOmTQAaThBuKr63m06q96/475SUFLMhKlPi50SrfhYtXraPqAmmTJkiABCGDRtWb5/pisILFiyQoHWO66mnnhIACN7e3sKOHTtafb3vv//euBLxpk2bzPZptVohPDy8SauEbtu2rdVtcRbHjh0z1iyrW/+pf//+TVqR9b///a/ZPj7r65YtW2as/1ZSUtLi6/C9fV1TVxSW4v3bnBWFT58+3ZSXaxGDGrKp1NTUBms/PfTQQwIAQaVSCVevXpW4pY7jb3/7mzGgaerS7d98843w97//XUhPTzfbrtVqhTVr1hh/SQ0YMEDQ6XT1zv/vf//baD0XS4GpMzt48KDw5JNP1isOqtfrhS1bthh/eUdHR9crXbFt27ZGa+dYqs8lCO75rC0RP1gbq/XD93bTNTWoker9u2DBgkZrPz344IMteelGDGrI5j777LMGq3T7+PhYpSfCVRw4cMD4y+ZGlaOHDRsmvP7668bzxF9mAISwsDChX79+Qv/+/QWVSmXc3q9fPyEnJ6fBe8+ePdt4bGxsrFnl3Y4dOwpZWVn2eAR2s3v3buPrDQ4OFm6++WZh4MCBQmhoqHF7XFxcg381Ll682Hhc3SrHwcHBwokTJxq8t7s967pSU1ONr3/Pnj03PJbv7YZlZmYKISEhxi9/f38BgKBQKMy2T5w4sd65Urx/q6urhTvuuMN4rlilW+zdueWWW1rVaycIDGrITg4fPizcc889QlhYmKBUKoX27dsLM2fOFM6ePSt10xyK6QdtY1+mRRjT09OFRYsWCSNHjhRiYmIEf39/wdPTUwgPDxfGjBkjrFq1ythLdiPr1q0TEhIShDZt2gje3t7CTTfdJCxcuFAoLi624auWxpUrV4SXX35ZGDt2rBAXFycEBgYKHh4eQmhoqJCYmCh88MEHNywuKgiGasdjxowRQkJCBKVSKcTGxgpPPPHEDT9gRe70rOt6+umnjUFj3eKVdfG93bCLFy826XdFQkKCxfOleP/qdDph2bJlwsCBA4WAgADB19dX6N27t/DGG29Y7BlqLpkgNDDXloiIiMiJcPYTERERuQQGNUREROQSGNQQERGRS2BQQ0RERC6BQQ0RERG5BAY1RERE5BIY1BAREZFLYFBDRERELoFBDREREbkEBjVERETkEhjUEBERkUtgUENEREQuwUPqBhAR2VNBQQH+85//4IcffsDZs2dRXl6OoKAgtGvXDj179sRtt92GCRMmIDo6GgBQXFyM9957DwCwePFi6RpORI1ilW4ichspKSkYN24crl69CgAIDw9HZGQkdDod0tPTUVFRAQB49dVX8eKLLwIAMjIyEBsbCwDgr0six8aeGiJyCxUVFZg0aRKuXr2KQYMG4cMPP8SAAQOM+/V6PY4ePYr169cjKChIwpYSUUuxp4aI3MJXX32FadOmQaFQICsrCxEREU06jz01RM6DicJE5BbOnz8PAAgNDW1yQDNr1ixjQAMAMpnM7Gv16tVmx+t0OqxatQojR45EaGgolEol2rdvjwceeADHjx9v8B4ymQyLFy9GcXExnnnmGXTq1Ane3t6IjIzEww8/jKysrBa9ZiJ3w6CGiNxCYGAgAODKlSs4d+5ck87p2rUr+vfvb/z3sGHDzL7CwsKM+4qKipCYmIikpCTs2rULSqUSvXr1QllZGdatW4eBAwfiyy+/bPBeRUVFGDhwIN5//314e3uje/fuuHr1KlauXImbb74ZqampLXzlRG5EICJyA+fPnxcUCoUAQOjYsaPw8ccfC5mZmY2ed/HiRQGA0NivyzFjxggAhIEDBwrHjh0zbtfpdMI777wjyOVywcvLS0hLSzM7b+bMmQIAwdPTU+jcubNw8uRJ477s7Gxh2LBhAgChW7duQnV1dfNeNJGbYU8NEbmFTp064d1334VcLkdGRgYee+wxREdHIzw8HGPHjsXSpUuNQ1TN9dNPP2Hbtm0ICwtDcnIy+vbta9wnl8vx7LPP4vHHH0d1dTXeffddi9fQaDRYs2YNevbsadzWvn17fPXVV/Dy8kJaWho2btzYovYRuQsGNUTkNp566ikcPnwY9913HwICAgAYhqO2bduGhQsXokuXLkhKSjJO7W6qDRs2AACmTJmCtm3bWjxmypQpAIBdu3ZZ3D9gwAAMHTq03vbIyEhMnToVALB169ZmtYvI3XBKNxG5lf79+2PdunXQ6XQ4efIkfv/9d+zevRtbt25FYWEhVq1ahfz8fCQnJzf5midOnAAAbNu2DbfeeqvFY6qqqgAA2dnZFvf36tWrweuLvTdnzpxpcpuI3BGDGiJySwqFAn369EGfPn0we/ZslJSUYPbs2fj222+xdetWHDp0CIMHD27StYqKigAAFy5cwIULF254bGVlpcXtpknHDe0rKytrUnuI3BWHn4iIAKhUKqxatQpyueHX4qFDh5p8rr+/PwDg008/hSAIjX5ZcuXKlQavL+4Th8yIyDIGNUREtVQqlTEnpqamBoBhbZrGxMfHAwB+/fXXFt/71KlTje7r3r17i69P5A4Y1BCRW7h27Rr0ev0Njzl79izy8/MBGNaoAQBfX1/j/oaGjsRE3nXr1iE9Pb1F7Tty5AgOHjxYb3teXh6++uorAMC4ceNadG0id8Gghojcwvr169GzZ0+8//779ZJ1BUHAjz/+iLvuuguCICAqKgp33nknAMMKxCqVCkDDM5fGjx+PO+64A1VVVRg1ahR+/PHHesdkZGTg7bffxmeffWbxGp6enpg1a5ZZMnBOTg6mTp2K6upqdO3a1TiDiogsY6IwEbkFmUyGtLQ0PP3003j66acRERGByMhIaDQaZGVlGZN9w8LC8O2338LHx8d43vTp0/HRRx9h4sSJ6NWrl7Hg5QsvvIDRo0cDMEzrvvfee/HTTz9h9OjRCA0NRWxsLPR6PbKysow9QC+99JLF9j3++OP44Ycf0LNnT/To0QOenp44efIktFotgoOD8dVXX0GpVNr6MRE5NQY1ROQW5s6di969e2Pnzp345ZdfkJWVhbS0NGg0GgQFBSExMRHjxo3DnDlzjD0zorfffhsqlQrffPMN/vzzT+P07FmzZhmPadOmDX788Uds2rQJa9euxZEjR3DixAn4+/ujffv2GDlyJCZOnIixY8dabF9QUBCOHDmCl19+Gd999x1ycnIQGhqK0aNH4+WXX0Z0dLTNng2Rq2CVbiIiCc2aNQtr1qzBSy+9hMWLF0vdHCKnxpwaIiIicgkMaoiIiMglMKghIiIil8CghoiIiFwCE4WJiIjIJbCnhoiIiFwCgxoiIiJyCQxqiIiIyCUwqCEiIiKXwKCGiIiIXAKDGiIiInIJDGqIiIjIJTCoISIiIpfAoIaIiIhcAoMaIiIicgkMaoiIiMgl/D+WWlpBepARMAAAAABJRU5ErkJggg==",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "# initialize our paramaters\n",
- "# since we're changing the features\n",
- "w = np.random.normal(scale=0.1, size=feature_dim)\n",
- "b = 0.0\n",
- "\n",
- "\n",
- "loss_progress = []\n",
- "eta = 1e-2\n",
- "batch_size = 32\n",
- "N = len(labels) # number of data points\n",
- "data = (std_features, labels)\n",
- "# compute how much data fits nicely into a batch\n",
- "# and drop extra data\n",
- "new_N = len(labels) // batch_size * batch_size\n",
- "num_epochs = 3\n",
- "\n",
- "# the -1 means that numpy will compute\n",
- "# what that dimension should be\n",
- "batched_features = std_features[:new_N].reshape((-1, batch_size, feature_dim))\n",
- "batched_labels = labels[:new_N].reshape((-1, batch_size))\n",
- "indices = np.arange(new_N // batch_size)\n",
- "\n",
- "# iterate through the dataset 3 times\n",
- "for epoch in range(num_epochs):\n",
- " # to make it random, we'll iterate over the batches randomly\n",
- " np.random.shuffle(indices)\n",
- " for i in indices:\n",
- " # choose a random set of\n",
- " # indices to slice our data\n",
- " grad = loss_grad(w, b, (batched_features[i], batched_labels[i]))\n",
- " w -= eta * grad[0]\n",
- " b -= eta * grad[1]\n",
- " # we still compute loss on whole dataset, but not every step\n",
- " if i % 50 == 0:\n",
- " loss_progress.append(loss_wrapper(w, b, data))\n",
- "\n",
- "plt.plot(np.arange(len(loss_progress)) * 50, loss_progress)\n",
- "plt.xlabel(\"Step\")\n",
- "plt.yscale(\"log\")\n",
- "plt.ylabel(\"Loss\")\n",
- "plt.show()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Notice we safely increased our learning rate to 0.01, which is possible because all the features are of similar magnitude. We also could keep training, since we're gaining improvements. "
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Analyzing Model Performance\n",
- "\n",
- "This is a large topic that we'll explore more, but the first thing we typically examine in supervised learning is a **parity plot**, which shows our predictions vs. our label prediction. What's nice about this plot is that it works no matter what the dimensions of the features are. A perfect fit would fall onto the line at $y = \\hat{y}$"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 45,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhAAAAGTCAYAAAB5zCtiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAABP+AAAT/gEHlDmEAAEAAElEQVR4nOy9eZwkdX3//6yz77lndvaY3WVvYIF1RSKCoKioCdGIQVETFTDgQYJiVMjlV41B5SeKQQkeEGMUBMVoPDEuhyLKsezJ3sdcO3ffXVVd5++P6u7tnumZndmd2Yt6Ph48gJnqqk8f0593vY/XS/A8zyMgICAgICAgYAaIJ3oBAQEBAQEBAaceQQAREBAQEBAQMGOCACIgICAgICBgxgQBREBAQEBAQMCMCQKIgICAgICAgBkTBBABAQEBAQEBMyYIIAICAgICAgJmTBBABAQEBAQEBMyYIIAICAgICAgImDFBABEQEBAQEBAwY+QTvYCAY+PQoUP89Kc/ZdmyZcRisRO9nICAgICAU5BCocD+/fu54oorWLBgwbQeEwQQpzg//elPueGGG070MgICAgICTgPuuecerr/++mkdGwQQpzjLli0D/Df9nHPOOcGrCQg4vdg1mOXh5/vJGzbxsMyVL1nI6s6GE72sGXGyPQfDsvnS/+3hwEiBkCRSdFzOaI/xkdeuJKwceUsyLJuMbtMYkad1/PhrAmR0i5Aisnpegr986aKa12Oy9V1xznx+unVgWq/jUNbgK7/ZQ1azmN8U5lDaoCmq8LevWcm8hvC01jzX/OaFIb7+2/1YjgtAOHeIgz/+UmVPmQ5BAHGKUy5bnHPOOVx44YUneDUBAacPmmlz7wObGI3KRBokRm2HJ3ONvO3P1hFVZ++rUzNtxvImrXF1Vs9bPvfxeA4zoTepEXpBoqPBZGlbjAOjBcJxlRVr19HVEp3ysRt7Utz72D7SmklTVOUDr1rO+sXN07pu49K13P3YPjKaSTyscNX5i7h0VTtRVa55D8by5oT1KVGFJzISo1F1Wq+jZtr8bCjB9kMZCrKEGnOY3x7j4ovW0RY/sQGEbjr8y4+38dAeBbFzNSHglSvbeNdSgzf++EszKoUHAURAQEBAHcbyJmnNJCJLlY0ko5mM5U2iLbPz1bmxJ8XdR7khTofj8RxmSmtcpSmq0p/WOTBawLAdGqMqrXF10sdopk1fSuOuDXvZOZglIkv0p3Xufmwfd149dTBUDg7WdCa48+p1E4K1p/aN8tVH91IoOsRCEtddfMaE9UXUCLrlTPt1jKoyH3jVcu5+bB/9KZ2cYTGWN7n14W2z/h7PhAOjBT7w38+xczAHgCDATa9Zyd9etpKn//iHGZ8vCCACAgIC6nA0G91M0Eybux/bx/ZDmRltiDNhrp/DeKaTTaneXDOaSWMpcJrs+HKQNZw16B7TiKm1m3hfSiOiyHWv+ft9o3zt0X1opk1TVOFt53dxSSnrUP79Tfc/T0qz8DwPQRDYNZjjxstWAlTWd81FS7nvyYMMZKb/Oq5f3MxtV67lww9sJqkVMW2X7Ycys/4eT5efbx3g4z/YQr5oA9ASU/ny29dxyar2oz5nEEAEBAQE1GGmG91MOR7Zgbl+DtXMJJuyfnFz3WzAeKqDrJAkYlgOuuWwbySP6bh4wOd+sYucYU245lOl4CCjW4iCgOt5bOxOs35JMzdetoI1nQm+9ug+UpqJ7bcBIHgead3i1y8M8eWrz0M33cr6woo049cxmbfI6ic2A2TaLrf9Ygf3PXmw8rP1i5v46rvWM78xckznDgKIgICAgEmY7kZ3NByv7MBkz2E2ey+OJpsSVeUjbqLjg6yi46KZDo1hmdZEiJxh1y1pAHz10b1kdAvXA9t1cT0QTJtt/WnufmwfH3v9KkZyBq53+HoeIIkCummjm25NT8aRPgvjX8+NPSnueGQX+0cKmI6LYTm4Hixti9Z9j0fzBvuGCyzviM1an8ShtM6HvreR53vSlZ9dd/EZ3PLGNSjSsctABQFEQEBAwBRMZ6M72vMer+zA+Ocw270Xc5VNGR9kgX/3fMsbzgTgH/9na91rAuiWiyyJWLZbCRKiIZmoKpPRTHTTJVkwJ1wzooi0xEN1N/l6nwXNtHli9wgPPttLzrBpKpU8PvO/L1R6DTxgKFskqkqkNYudg7ma1/v+p3u445Fdfp+FInHz5at5xwWLj/p1A3h89wgffsAvzwAkQjJf+MtzeeM584/pvNUEAURAQEDACWIuMxyTMRe9F3OVTZksyFrVmSj1NUx+zcaIgiSAUZViEADTcWmMqkRUkbZEiILpIAC65RCSRc5e0MQ1Fy31A5E4U74mG3tS3LVhLxu7UxiWQ2vcX8+Xf72b3UM5qpIbuIBhOWw/lOUz//sCH37dSs5e4I+B3vHILsYKJpIgoJkOdzyyi9ed1XFUmQjH9bjzN3v49w178EoLWNOZ4O6/eilntM2u2GAQQAQEBJw0zOVI48nKXGU4JmMusgXHkk050ns+WZA11TU39qRIaya65fdJKJIAgOvBms4GPvCq5SxqjrKoOUpas1AkAdN2WdER57qL/YbJI2VnyoHYtv40huVguR5F2yUWkhnKGTjehIdge+DYLs/3pvnAd54jFpL5i5csRLccJEGgMaKQ0S2/z2O4MOMAYjRf5MMPbOJ3e0crP3v7+V186s1nE1akGZ1rOrw4/kIDAgJOeuZ6pDHAZ66yBUeTTZnuez5ZkFXvmuWNvS+lIYkCngcNYYV4WKYponDLG1ezap5/5z8+ALn2oqXc++TBaWVnKoGYImE5HpZhkdVtsoaNKgqTPudyXFG0XQzb5OHnegnJIprpkNEtHM8jokgs75hZtuDZg0k+9L2NDGWLAIRkkc/8xVredn7XjM4zEwIzrYCAgBNOdVo9mTcr426aaZ/opZ12lO/cz17QSFtc5ewFjbPWexFVZbpaotPOPMzGez7+mn1JnaGMTkSRSIRlEKBQtDFMh46GMIuaaxsjb7tyLR+9fDW3XbmW1liIgbSOKEBXS5SwLNX0VVRTDriGskXyRRvXBcfzEPBIhGWkyWMIAJoiCpIgUHQ83rp+Ea0xlZAi0hpTufny1dPOPniexzee2M/bv/6HSvCwtDXK/3zoojkNHiDIQAQEBJwEnIyCR6czJ6L3Yjxz8Z77PQl76Enq6JZDIiQjiwJhVeLshQ0TAqWyiJRuuYgCZA2bfcN5HNdjJGeSCMss74hPmZ3xAEkQQPRQZIH2eIgz2uIktTGc8nwofv+FJAo4roeHf61ytuH6S5dx/aXLZjyFkdEtPv6Dzfxq+1DlZ29c28nn//JcGsLKTF++GRP8ZQYEBJxwjrfg0enKTHpIjnfvxXhm+z0vZzR2DuaIhSR0y8F0XF62tJl3vXxJRba6zO+rdCIkUcR2XRzH39w9fP0EPI9rL1pa97UsZyUWNIaZ3xihP62RMWx0y2H/aB7P84jIIme0xzgwUkAU4cz5Daxb3MyPn++vmbgoBwxTBQ7j39vthzJ88Lsb6R7TAJBFgX/40zO55qKlCMIR0h+zRBBABAQEnHDKafW7NuxhLG+yNB6ds5HG05Uj9ROcbA2qs/2eV2c0mmMqyYKF7bgUig6NEaXmvJpp87VH95HRLTwPHNetZAZCsogg+JmCzsbakkf5sWN5k4gqVgKgwayB5Xqs7IiTCPuNkFrRxvEgX7SJRWSWtcb5xyvWsLIjwXsuXMKmnjTrFjfRGg/Rm9SmfF+q39vGiMLKeQm+9bsDfpADzG8Mc9c71/PSJce3Z+jEf4oCAgICKgh4noef8A2YLkcazTy5G1Rn5z0vZzT6UjoDA1mKtgPAtv40N93/PF95x0u4cHkb4AcbmmkjiyKO5/nBQ6m70XRcBEFAFgU6GiI1GZHxr+NlazoAaqZA1nQmeGL3CN/47QF2DWY5lDZQJIGdg1n+7nubaImpyKUGif/6Q3fl3JO9L+PVOLf1Z/i/HcOV379yZRt3Xv0SWmLHP1sXNFEGBASccA6nn7MUig47B7NBE+UMGN9PUN38d7I2qM72e17OaCxvj1HO4EuiAAhkdIuvbNjD7sEcmmnTGldpjYeIhiQkQUAUfN2IVZ0JGiIKiZDMuYsaufGyFTXKnXdt2Mvm3hSjuSLbD2XYsHOY265cyxffto47r15X2fx/uLGf3lQB2/EzG4blkjVsupMaz/em2didYjCjs7k3zebedOV89Z5/+b2VEBjOF9EtP+sgAB957Sr+85oLTkjwAEEGIiAg4CTgRDRRnmwp/WNhqn6Ck7VBdS7WtX5xM1++eh3v/85GNvemwAOxNFL5wqEcf//QJuY1RvjAq5ZXRjiT+SIRVeaDr17Ouq4m+lIaeAKLWiI1n4sndo9UBKNcD1RJrChaVktej+VN+pIaOd3GLPVUjMfxYDhXxCqJRUQUGUFw6j7/1riKYbn0pfXKuRRJ4O53ree1Z3Ue1es0W5zafzUBAQGnBbPZUKeZNn1JHQSPRc31RwpP7pT+zJlSyCnOSdmgOleNs23xMDdfvqrKSAts18OwbHKGzWjhsCNmvUmUVfMaKsFlWYlSM20efLa3IhiV0ixkUWDN/Iaa9Y7mDTb1JBnIGBSrJLTrUbQP/3LnUJbmqDJh4sO0Xb7wy11s7c9UftYYUbj9qnNPePAAQQAREBBwEjBbvhAbe1Lc9vMd7BnKA7ByXpxb//TMCc2Ec22jfSI4GsXG4834rM9cresVy9v4yjtewud+sZP9owVM20YQBOIhGa9oV+70u1qiE7Id9YLL9niItGbRGJGxXY9C0UGVBdZ1NaKZNlFV5v6ne/j8L3aSNXwDr+l2dAiA5/n/XFM18dGf1vnQdzeyqTddOfbql3Vx65+uoTFyckwnnbp/LQEBAacVx6pNUK5Rb+nLVDrqt/ZluGvDHu565/rK+U7WlP5sMBPFxuPNZFmf6dp6l48BpvU8zutqoimqoEoiRVHAdDy2D2RRJIH2RH2zrMmCy3de0EVvUvN7EUSh5J3h8fUn9vOdp7q55qKlfOO3B0jrVuVcUyQfalAkAUkUWNwao6s08fHormE+8v1NpKuMsG6/6lzesHb2jLBmg1P7ryUgIOC04li0CcbyJqM5AwG/Pg3geh5j+drg4MWqOXEidR/84G4P2/uzRNWJWZ+p1lUdeFRzpNLT47tH2NybQTPtSinB13gQcD3YM5Qnooo1Za6+lMZw1iAkiZXgMpkv+iOTjovjgVUqPfiZA99e/I5f78YpaUaJAjWlC0UUEAS/F6NY8uYoUxaXioVk2hMhmqIKX3xkF/++YW/lmLPmN/C1d61n6SwbYc0GQQAREBBwWtAaV2lLhNk1lKdY+jZXRKHUcX84ODiZUvovFh7fPcLG7jS65eB4HqosTivrM36EcSBj4OGLN01VetJMm4ee7fOv53o4pZJCU0QhJIvsGszyV9/8I5IoVMpcAHdt2Ev3mIZhOZXPUESNkC/aWLaHIomYtlsRmwK/9GBXlSzG9z1IIkRUmZXz4mhFh11DvsW35XgIgCKJnNEW4x0XdHHDd57j9/vGKo+9+mVd/L83HTbCOtkaf0/8CgICAgJmgagqc+NlK8gZlt8DIcDKjjg3XrZywpftyZDSf7EwfjNPaRaKKLCmM3HErE91RmB+U4RDGT/DNL8xwmDWmDQIGcub5AyLtpiKYTukChYevlpjsmBiOp6vYSDAlt40dzyyC8eFA2N5YqqvYqmZDusXN/G+Vy7ja4/uw3YnNkXa7uFsxBltUQ6MapXAQhRAlgRs1/fiGM0WSWoWrTGVou2SNSwkBCTJF636xA+3MpLzvSzCisi//sU5/OVLF1WudTI2/gZ/NQEBAacN6xc38+1rLzjiFAaceCnnFwvVm3nRcckbNmFF4m3nd00ZuPm+FoczAobt+mUD4FBGx3TcSUtP1WWqRFjB9TxcDwzL12WgdB4BMB2P57pTvnaEJ3DWggYUWaQxLHPLG85kVWeCouXwwkCGnGEjCFREp8p4wEDaoDkq09kYoWDaDGdNFEkgZ9i4QL5ooVk2hVIlxnEBwSOn22zsSVfOtawtxtf+aj1rOhsqPztZG38DIamAgIDTiqgqs6ozwap5DXVT271J7YSLKL2YKG/mngDxkExDRGb9kmYuWdU+6WOqRaYiiojreWimw9kLGzl3USMdidCULqLVjqMdiRAvWdzCio4EEVVCkf1tz8MvN3j4gYXrehi2w/b+DHnTpjURZlFLhI09Kb73dC/t8RDxkExYFvHlqWqxHBdJFPnby1agFR2KtkPesP3rAKN5C9P2cByvov/geIezGADzGkJ8+i/OnhA8bO3LkCzUCoUl80W29mVO6Gc5CL8DAgJeFJyMKeAXAxN7ThJ84FXLASb1gChPygiAWdpgXc/jry9czOVndU6r9FRdptItm3/80TYSpWbFFw5lSy6a/uauiAIrOxLsHs5jOi6K5ZIzLDb3prn3yYOVO39R8JseRcHf/MtIAoiSQFNUpSUWIqbKjIyzAHfH/Xvi6yQBHt/+fTfrFzfXSJCP5Yv0Jv3yyIHRAlnDImdYfOFXu2iMKFx1/qIJZmHHgyCACAgIOO2ZSQr4ZGtUOx0Y33OyczDHTQ9smjSYa42rJMIyY3kTy/WbDU3b5SebBrj8rM4a5cepKJepNNOmKapyYLTAoYwB+BmE5qhCruh7ZmQMf2RSkkSaY37546uP7kUzHSKyxIKmCP1pHcd1aYjIpLTDd/6OB47t0T1WYDCjkytaE9ZyJDTT7xHpT2oVEavqz2y55NIQUcgZfk/HYFpnW3+Gjd0p1i9p4sbLVh7XoDgoYQQEBJz2TOUVUc3GnhQ3PbCJmx/cxE0PbGJjT+oErfj0I6rKlY3/7sf2sa0/w1DWYFv/RA+IqCrztvO7CCsSiijQFFVojankDavi73GkUlT1MVFV5tqLliLgO2+GZNFvcPRgbaks0hxRiCgSbTGVhU0RQpKIbrlEVZmMYfFMd5Ki7Y9yOu7EEoaAXxK59/cHUeWj21qLtstwvkhEFSd8ZhvCCotbolx30VIWt8ZIhGSKjltS2XTY3n/8/WOC8DogIOC0ZzraDydro9pcciKyLWN5k76URka3UCQRy3HpT+kTpikuWdXO+iXNbOtPE1XlStNkX0rj0z99oZK9uOaipXQ1R2ueQ71y1aLmKF0tUSK5Isva4xwcK9AYlrntLeewqCVCX1Ln1h9tZXt/hrGCXz5pS4S49uKlfOIHW3Bcr6LxkCv1NtQggON5bO/PVtw2j4ZEWEY3XSKqiCyKZA2TfSMepuPSEo9z4YpWfrJlgN5kgbzhBwvxsExUlSZMpUz3/dVMm6GsMeO1np5/FQEBAQFVTEf74XRWqKzHieoJiagio7mi7ythuziex0jOIKLW3rWXx3Kr37NrLlpa05NwYLTApp4Ui1tjtMQO22nXCwRvu3ItrfEQg1mDnqSG6bh0NEYqplmLWiKIwuHpjHKAsKg5QmdjBEGAjkSYvcN5DNvvZKgWjSpPZtiehyTUnqMaofSLyZQqUwWTDTuH+emWQ+wYyGJYLrrlcub8Bj7wquW0xcN84FXLuWvDXjZ2p8ByUGWR4riplOm+v+Xj9m3bM4N30WdO/iocx0GSpLk4dUBAQMBRcSTthxeTQuWJzLbopktbPFTyk/CFmdrjIXRzYnvh+PesOsjraokycCCJ7bqM5AwGMv5z+NjrV9UNBHXTnTKIHMubOK5He1xlYXOUoayvOfGLLYPsGsxiOR6jOZOwIhFVRDwgJEtopoPtukiCr3LpeR6KLOK4DnadKKE5qqKbdsWWezyu5/GV3+wmZ9ilRk0P03aJqhJrOhOV1+Wud76EJ3aP8OCzveQNu+b5TPf9rT7O1GbetzEnn5Rzzz2XO++8k9e+9rVzcfqAgICAo2Iq7YcXk0Llicy2tMZVFrVESekmiihiuS4LW6KTBmo171mVs+i+kTy26yJLIsva4vQkNTKaCZ5QEwjqpTv0iCqypjPBx16/qq5dd19Kozfpl1bGCiZhxZe5/s4fuyujli6gWQ6JkIQqS8RCEmFFLP3eN9kyLP/fk2UY0po5pUtn3nBAcPA8P1uhSCKeB2P5Ys37E1Vl3rB2Ppesap8QFE/3/a0+rrUpPK33r5pjaqJ0HIcvfOELE36+Y8cOXv/613PllVdy4MCBY7nEacMzzzzD2972NubPn08oFKKrq4trr72WPXtmnjYKCAiYG8p3vF98m2/1fLqOeZazLbrtHPdsSzlQO2dhE/Mbw5yzsGnagdp4fYfGiEJUlehJapXnsKglUjkmrEjYjstIrsi19z3DX33zj/zjj7Zx+yO72DnoS0prps3uoSzf+O0Bv3whCBiWS85wGMjo5Is2ouAbXpUpq2q2x0Ocs6iJj16+mpcsbuGMtjixkDRp8CCJwpTBA/hBSlmfwvX8xkrLcRnIGGzsTk1okiw3p1a/ftN9f6uPO5SeeQ+E4HnjNbWmx1NPPcX73/9+du/eja7rNb/77//+bz7xiU8wMDBAOBzmox/9KP/wD/9AJBI5mkud8nz729/muuuuw3Ec2traWLJkCXv27CGbzRKNRvnf//1fLrvssqM691NPPcUrXvEKfv/733PhhRfO8soDAuaeYGzyxFCufSfzRSKqzAdfvZxXLG87btc/mve9/JiIKqKbLn0pjXufPFiTMSoHfaN5gw8/sJnth9LopkuxpGTZ0RDC9TzWLmzib155Bvc+eZDhrEH3mEZEETEdj7RmIYngul7dMgRALCTxtXet52VLW4iqMoNZjY//YCtP7B6tOU4tNVQqokBhkrLFeER8XYi86Y+YypJQ+pkvwnXjZSsmWNSPfy3L72+916aa8nH7t21kw+03zGgvmXEAkclk+MQnPsE3v/lN1qxZw3e/+13OO++8CccVCgU+/elPc+edd2JZFgsXLuQLX/gCV1999Uwud8qzfft21q1bh23bfOITn+Azn/kMiqKgaRrXX3893/3ud2lubmbPnj20trbO+PxBABFwPJntzT4QdzpxaKbNr7cP8sAzvZiOV2lCPFlf/8k+K+ODivJnszepce19T7N3pFCTEVBKQlBhxU/vj+SLKCWjrnInpON5iILvUSFQKxpVRhLg3veez7L2BNv609z68LYaO+8yEUUkFpJpCMvsH9Wm/XxFDotONYRlCqaDIgo0RGTO62qu9DNM9Tc0kymMRx79LW95w2Uz2ktmXMK48847+cY3vsH73/9+nnvuubrBA0AsFuPzn/8827Zt4w1veAN9fX28613v4pJLLmHz5s0zvewpy6c+9Sls2+YVr3gFn/vc51AUBYBoNMq3vvUtzjjjDFKpFF/84hdP8EoDAqamnkbC0UhDlx8zmjcqDVzJvMn2QxP1AALmho09KW783kY++ZMX2NiTZjCtT/v1n0058OpzTXXe6ma/8Z+VqCozki9y68Pbaj6be4dzHBzTJpQTLNfDcj10y+HgWAHP882uKPllyJKAJPhZAwHfhrveUKbrwU0PbOad3/gDH/zu8zXBQ0QR6WjwxbCWt8U4d1ETjZGZlYeqcxVZw1+fP64pV/oZpnpdoH55ox5RVWZew8x7IGZ8C9HY2IjneTz99NP09vayYsWKKY9fsWIFP/vZz/jpT3/KRz7yEX73u99x/vnn8773vY9//dd/Paq77lMFTdP46U9/CsAHPvCBCb8PhUK8973v5ZOf/CT3338///Zv/3a8lxgQMC3qdXXf9vMdJMK+Kt50swfVd0sh2RfLmW4jX1DqmB0q72V/tlLLLzou8ZB8xEbK2cwYVZ+rmnrnnaopcLxiY39a564Ne9GtOloNJZqjCorsZyzGCv70BZ6HJAksa43RFFPZdiiLVvQ3YlH0Zy+dql3dA9K6VTfroFsuiuSwdkEjH37dSgzL5fZf7kKRhIoPxkwRBVAlEcN2UGWprtjU8R49nnEG4qabbuK73/0uvb29vOQlL+HrX//6tB53xRVXsH37dj772c8SCoW45557WLVqFXfddReuO7260KnG888/X+kPueSSS+oec+mllwJw8OBBBgYGjtvaAgJmwvgvqpAksmc4z7b+9LSyB+VGtbs27K3cLe0bKTCaL1Kw7CM28gUKkbNH+b2MqhKJsIwH5A0/AzBVI+WR7nZnQvW5RnNFtvRl2Nrn/3e9807VFFhPZXQ46wtTKZKIMk7USRH9jVgUBJa0RlBFf/RSEAQEBFwE/uXPz+K2K8/hwuVtRFUZWTyclZguWcNh91CO67/9LLf+cCu9KQ33SB2UkyAKcEZbnIgqYlr+2OqtD2+jN6WdsGZYOMopjHe84x3s3LmTd77znXzwgx+c9uNUVeXWW29l9+7dvP3tbyeVSnHTTTexbt06Hn300aNZyknNrl27AP95d3V11T1m+fLllf/euXPnlOfr7e3lqaeeqvln69ats7fggIBJGP8FrpkOeBBT5SmloeHw5v+xh7awsTuF4MHSthgRRaI9EWZFe4K2uDqpu+Jsblz1mEuHzpPR/bP8XhYdF1UWUUSBsCKx9gjTENOVA58O1eea3xiplAg6GsLIokCyUHve6umL5pjKsrYY1160lKgqT/hsZnST/pTOYMbAcd2Kc6YgQEtMRRJ9ieo1nQ185LWrCCv+mCSeh+X4m3NLTOXSVe3845+t4VNvOpv1S5pQZZGQXL+cMenzLFhkDIdDGYOMbtftpZgOrgd7h/PsG/HHTHuTOs/3pLjvyYNce9FSzl7QOOXf0Fxx1FdpbGzknnvu4ZprrpnW8aOjozz99NP88Y9/5Omnn+aZZ55BEPzIb9u2bbz2ta/lqquu4stf/jKdnZ1Hu6yTimQyCUBzczPCJNFrS0tL5b9Tqanvqr71rW/xqU99avYWGBAwTcZrJCxti5Iz7COKLlVv/iFJxLAcdMth34jveri8I85tV66taX4bz1ymaeeyifNkbRAd/16u6UzwtvO7uOQIbo6zKbRVfa5DGR1///bY0pfBcV1006E3pdWYZq1f3Mw1Fy3la4/6weO9Tx4kpEisX9xceT49YwVyho3rgSQIeEBYklBkj0RI5uwFjewfydMQUbjljauJKDLtiTCa6VZErVqjKr/cNsiGnSOV8tz1r1zGN397gC39GYr2iQkGy3l6x/ObPLWiQzJfZFFzdEqBtLnkmK/08pe/fMLPDMPgueee4+mnn64EDd3d3ZXflwc/mpqa+JM/+RPOPvtsvve97/Hggw/ym9/8hvvuu48rrrjiWJd2wimXL1R18j+wcPhw44qmTd2he9111/H617++5mdbt27lhhtuOIZVBgRMj3qOikcSXRq/+RcdF810aAzLdDRGKtK8UzFXCpFzqcZ4NOc+nj0eR1LlrMdsCm2NP1drPMS+4TwF00YuaSXc9+RB1nU1Vc6vmTb3PXmQ/aN5IrLEYNaovKbrFzdz25Vref93Nvp9D56Hi4fngis6iIJESrPYdiiDKAisaAizqNkPTuY3RRgpFAlJIqIIo5rJ7b/ahWG5tMVUelMaX3/CxsMjZ5wcmSTbdfEEgUgpAzOVQFqZufh8zcmntKGhAcfx51erp0RXrVrFK17xiso/Z511VuV3n/nMZ/j0pz/NF7/4Rd7ylrfws5/9jMsvv3wulnfcKOtemObkKT7DOCzeEY1ObVHb1dU1aSkkIOB4UP1FNZ1NaPzm7z+uiVvecOYEJcCprjkXCpFHm9mYzhfxTM99tNmKY9kUjrTpjOYN9g0XWN4RqwR5RxN4TEb1uXTL5m+/9zzdSQdFEtEtZ4LB1pFeU910Kz4Wli8MCYBteTSEfDnokVyRhrDC2gW+JPTOwRw5w8KyXIpFB1EU8EQwLBfH9cibNoblMJQd4+gUk+YGAYHGiMK1Fy+lL6mD4LGouXbaovqzUQ72ZzsbNicBhG3bRKNRXvayl1WChQsvvLAmXT+eSCTCbbfdxgUXXMBb3/pWPvvZz57yAURzs/8GpVKpSpPOeMpljurjAwJOFY60CU22+a8qafpPl6PduKbaYI8mszHdjX4m5z7aTMhclkjuf7qHOx7ZhW45RBSJmy9fzTsuWFyjuVCegDiWIKL8+RnNGyQLJqbt4jgejucxmNWptpw60mta/ne9KQfNdEplEn9y4iu/2ctvdowQUkQOjBawHBfT8aOOpojqO1vqFhm9NuNQ/gava5I1yc9nm4gisq6riTeu7eTux/axZygPwMp5cW790zNZv7i55rNRnpTqT+uznmmbkwDimWeeYd26dUdlqPWWt7yFs846i02bNs3+wo4za9asAfwMRE9PD0uWLJlwzL59+yYcHxBwOjGbd60z4Ugb7EwzGzPZ6Gdy7qPJhMxl+WU0b3DHI7sYK5hIgoBmOtzxyC46G0J87+le+lIao7kibfEQi1qiRwxcjpQl0UybfcMFGiNKRTZatxy0os1Hvr+Jmy9fzStK0xDjX9NrL1paCWQALKf+RN94NUnHgy39GWKqhOt6uPibv+PCaGHyjPGJTkIkVJF/fcs5XLSyjY//YGupZ8TDA7b2Zbhrwx6+8Jfn1nw2uscKmLZHc1SZ9R6iOflLfulLX3pMj29ra2PHjh2ztJoTx7p164hEIui6zhNPPMFf//VfTzjm8ccfB2Dp0qXMnz//eC8xIOC4MJ0a7VTM9G57uhvsTIKb6W705Q1zTWdiWuc+mkzI+LXsH8kznDXoS2msmtcw1Ut5RPYN+wZUIhAPyWR1i3zR4isb9jKYMcjoFoblUCg6pHRzysDlSO9b+fc9SY2epIbt+JuhB5iOx6beDB/67kZue8tazl7YVPOa9qY0vvHbA4zmDNoSYa46fxGKJBJWRAzbnVbJQbccP6sgCEc9YlnNdLMQ1TbgM2FpW5wz5zeyb7jAcMktVJX8YUrX8xjLm+wbLjCWLyILAl0tUQ6OFTBtC82c/VHPk1KN5d/+7d947LHHTvQyjplYLMaf/dmf8YMf/IB77rlnQgBRLBb5z//8TwDe/va3n4AVBgSc/BzN3fZM7uqjqgxxjpiSn85GX5s6lqc13TD+zjoeVrhy/cIpX5PqtewYzJLMm6Q0i8/9Yhfve+UZdDVHjzrbs7wjhiwK2B6kSiJJRctj33AeuaTKKApCaQRUnPR1rfe+3bVhL7e8cXWlgfHux/axtT9NVrOx3cPBA/jlBtvzSGkWN97/PCs6EnSVMh6LWyL82892sHMwiygICEO5UpCiEAvJuJ6NabtH3Mzd6osdI1FV4o1nz+N/Ng9U3DvrIVJ22HQpWV1MCwE/w/LZn7/AWN6kJ1nwmyk57LXRGlcro8Np3WI4XySqSqycFycRlifYfh8rJ2UAUe6bOB345Cc/yf/8z//w5JNPcsstt9R4Ydxwww0cOHCAxsZG/v7v//5ELzUg4KTkaFL89Tb7eFhBt+yK/HGZmWQ33rp+IY7r1v0iLm+Y2/ozuJ5vyLSxO13X/Gg85UzIE7tHePDZXu793QEe3tg/6VrKQcddG/awsSeNB8RUiS19aW66/3kWt8YmeFtMp+FSM22SeYvOxjBZI1/ZYAWhJKdcRcG0CavipHez49+3HQNZNnanuPnBzTRFFK56aRfJgokICCIV++ryXl69BdsuHBwtkCyYfPZnO9BNmxcGclQfuXsox2f/4hwkUSRZMHE9j4G0zlC2eFxKDwXT4Rfbh2iOKozlTSaTR/QAy3Yn/f1kiAL0JDX2jORrFDHDsh/MrZyX4H2vXMZ9Tx7EcjzfCKz07yvOXcCfnds5oSn2WDkpA4jTibVr13LPPfdw/fXX8/nPf55vfetbNW6ckUiEhx56iLa24+eCFxBwKnE0Kf7xd/UekDMs/vFH2yYYMU2V3ShvunuGc9z7u4PkizYRReRdf7KY153dWbMRj+VN+lIaac3Ccvwufs/z2NafnjJjUt2Y+MON/ewczE0r07J+cTO3vOFM/v6hTeQMmyWtMZ4+kMR2fTGkgczhx0+nC78cSA1ldAYzRVpjKprlULRKHQLjdmHX9Vg9r2FCEFUOUqrft30jecZKm/re4TyO62s+eK6LZrmHBZam2Okt1yWtWSQLaep5QOqmw9K2w5oI4PHn//7krAYPYinAmeycBdOhcIS0QnWWZSY4Hmh13Dwtx2VxSxRVEhjJlppRHRdZEiv9ET98rpfHdw+TM+yTfwojoJZrr72WtWvX8oUvfIHf/e53bN26lfb2dt7ylrfwD//wD6xatepELzEg4KTlaMc4y3f1fUmdz/1yR2Vj7kvp3PHILr589Tp00500u7Ez72+6vUmN/SP5ypexKPiqgO0N4Rr764gqMporUrSdyibj4bs+TpYx+f2+0YowUlSVGSsUZ5RpWdQSYV5jhNFChn0jeWzX3ziWtcXpSWpkND+omaqUUA6UqgW/dMtBt/xShet5NRn+cp1flUWuvXhpZSOqfi6t8RDXXLSUK87pJG9YZHQLSRSwLBe7FC1kHbtyvsprWOpfqFcBcF3whPq/K3NwVOO8rmaIw29eGMSwZle3wfUOBxEnC44HB8byHBwT2DOUo7Mpgu34PSBSyXm0e0xjKFskHpJP/imMgIlccMEF/OAHPzjRywgIOCU52kmOqCoTUSVyhk1ElmiOqQwMZNnUm+bDD2zmg69eXje7EVHFSjkipZmlET8fz4O0ZvK1R/fVCB3ppktbPEShaGM6HnbJCtqw6mdMnto3yk33P09Gt5BFkYjq+zPIkjhppmV8GaI6uErmixiWP67Yk9Qqj9dNl6GMTkgS6WqJsn0gyzMHk9z84Gbml8S82uOhWsEv2xf8akuopDULrWhX7n7Lr0QsJLOsLUZvUmPvcI6P/2BL5bkocp5nDiT9yQbHz2AYVv3NXxL8KQkBUGWp7l2233dR31a7jCgKPPBsDyFZ4PZHdnFwVDtq6eipmIVey1nHdf3XJ2vYdHrQEFHI6haSIBBSBDxPIKrOvpJrEEAEBAScEhztJEc5ld6X0hkYyGJYDmFZYu9IruIlcO+TB2uyG+XMhCIJhGSJolXbkCeJInppMy+vqTWusqglSko3cV2PjGYRUeW6HhOaafPVR/eS0S28kjSxbrp0tURoT4QwbXdCpmWyXo3q4KovpdU8l1euaOVzv9hBd1JDK8lD26X9ec9QnsGMr+Z425VrawW/BFi/pJlb3riavpTOl3+9m91DeQzbRRSgIazwlnULuPXhrRSKDt3JAhnNKok4OZTcpxGmMW1QHrH0gEJxorMl+AHEVMGAJPjHbOxO8/T+5JwEDiczTpUNeUgW+ecrzuShZ/vRSwZpZR2I8YFpdUB6NAQBREBAwGlN+S79jkd2sak3TViWOGtBA8mCSUYz63oJaKZdCTosx61p7hMEiIUkWuKhmi/eCdMUCyefwvDVFw/XqV3XwxM82hNhvnz1eeimS0T17abLRlxT9WqUg6uulijndTVV+jY+UcoKCIJQGZEsY9kuhaJDsmCim25NJiOiRnjfK89gUXOU23+1m9GCybyGEFndZHFrnGsvWsK//mwnKc1ELJ27kjcov07j3gdxkgbJauokHwCO2HDoeOA4R9tdMDnTGcsUgLAiIiCA56Lb3nFp2hyPKEC09Ll83VmdvO6szill58f3xVyUyM74mkEAERAQcNqzfnEzX756HR9+YDN7R3IkC2bNndj47EZ1MNCf0hnJGURVmVzRoj0eYnFrrJIdqL6Lm6zUMr700BpXaYn5ioea6eB5Ho0RhQ++2vcGGZ9tuHL9QtKaSUgSmdcQ5lBGP+JY6q0PH6xkOOptgy5+A15EEWmNq3S1RHnnBV189dF9FIq+78RbS9cVPL9BULc8Do4WuPvxAyQLZulOf+K5y8FDdfbB8yhldEQ6G0L0pjROEmuJSZluIKCXIh9FrJ0kOR4ooj+Bs6ApSmdTpCZrNZnsPMBND2yqCUiHtP4ZX3tOAohCoUAsFpuLUwcEBAQcFW3xMDdfvmrazZjVX7rlbED53+VAYDLdh2oXyfIxyYJJRBH50KtXcOHytsN3/ON+Pr6h0VcSdHE9j0MZg4GMgQe0J0IT0tDl5zKWN9FMG1kUcTxvUl0CQYDrLj6DqCrz6M4hPvrQZnKGjSKJ9KY0HNclqsqMFszKOVzLoS+Zr1smiKsitgetMZWU5gtOCfiBhCr5fR5hRWQ4bzKJaOQpR01W5zg/JwGY3xihvSGM7ZT1NOtTHST3JrUJzcOFo4jm5iSAWLBgAe94xzt43/vex/nnnz8XlwgICDiOaKZNX0oDT5i2CdaxXm8upK9n2ow5Vd9F9UYv4G/a43Ufysc835NCMx1sx2XX4PPc+Y6X8IrlbXXXUtZPEDzIFW3yhs2m3hStMbWyPZQ35V9vH+LHm/snjOf5Y5QhFDmPrjs1j/PwxYwkEZa3xVnRkeD3+0b56IObSWnlHgQXzYRkweKyNe1s6klRtF3iYRlRhJxuU2+zUhWJmCSyujOB48ILAxkUSaBouRRtf8Qxo9snXBL6dOJQRidftImHZYZzxUpPS3WgO556o9Ft4Zn/nc3Jt0Aul+Mb3/gG3/jGNzjvvPP4m7/5G971rnfR0HBsEqsBAQHHn409KW77+Y66pj1zdb25dKY8VlntMuWNPiSJ5Io2luuB5dToPozlTZIFE810SroQkNGtmgmO8WtpjaskwgqjhUzlrt8xHQpFDVEQiIZkREFg73COf/7xNkzb3yj88cw9FafTay5aysbu1ITgQcBvuBMEgUREJqKK/Ptv9pLVrcqxtuPheg7dYwV+ud1BlgREUUIRBZKahThJV0Kh6JAIC7zurE5WdyYqn5ui7VTS/AGzh4cvspXULGzXzzTtGcrx4Qc2UbRdEmGFq85fxKXj+nDqjUZflFjI/87w+uKsPpsSv/vd73j3u99NNBpl06ZN3HjjjcyfP59rrrmGJ598ci4uGRAQMAdops1dG/awtS/j3w0Xbbb0Zbhrw95Kc99sX698V5/Mm2zrz3DHI7sYzRtTPm5jT4qbHtjEzQ9u4qYHNrGxJzXraxtP+S5OMx1yho0AxMN+Q2O5PyGiigh4WLaD63qIooBcNcFRj6gqc9X5i4go/obdFFEQBQHHBdv1yBo2Kc1EK9oUbRfL9dBM//wbe9L8/UP+a/B8TxrTcSsjkIokVHoTBOHwfz+5d5QXDmVwvYluk/mib3SVNWxsx6NQtPE8Dw8RaaK5MEXbJaNbPPB0D3FVQi4dZByn4GFONrRThLxho5sOh9I6e4fz9CU1frdnhE/8YDPX/eczPLVvtOb4cjbui29bx51Xr2N158xv8Ofk9X7FK17Bfffdx8DAAHfffTfr169H13W+/e1vc8kll3DWWWfx5S9/mbGxsbm4fEDAi5qyFv5sbPBjeX8j9ICQJKJKop+uzxk1G+BsXbNa/rg5ppLRrYpmw2RBwfigY/uhDHc/tm9Gazma9Zfv4s5e2EBElZBEAVUSMR1/BLMvpXHrw9vIFx0EQcDDQxKESqf8VKNzl65qZ/2SJhojCpIoYJZmL8XSpu16fhOk43o4rkdatxjKFikUbXKGzdb+NPf9bn9FF8L1qGhZhBWJcxc10pYIYTseDzzdS9F2QaAmW4Hnn1/Az0gUTLuSEfHwg5B6WI7H1v4Mb73792w8mCZrWLNSsmiLKqj1opYqwsqLN4RQZQFVEpBEAcfzGC34+iVZw+Hpg0n+7v7n+f24ICKq+pM7R1smnNNXOx6Pc8MNN/DMM8+wadMmPvjBD9LY2MjOnTv56Ec/yqJFi3jnO9/Jhg0b5nIZAQEvGmb7TrwsSSwARcel6Di4nkdT7LDA0Wxes3JXbzm8UNJscF3YO5KbNCgY77kQlg8rP9ZjfLBwpPVPFVysX9zMXe9cz21XnsNFK9pY1Bzh7AWNXFPSlth+KINVSiU3RBRWzYvzksXNE+Sfq89fLsX8zSuXcfbCBn9zp9T34PqbOgAehzd0r9zbILCkNYYi+oqOArXjlJLgbzTbD2UZzhp0JwskS2Wf5qhaObY5IvlBigem42tgeCUpZdPxKNr+aKs4yX7uepArOhSdqZUjZ8JoKU0/FfVEqF4slMd0FZGSnPrh18pxD4ufzWbm8LiNcZ577rncddddfPGLX+QHP/gB3/zmN3n88cf5/ve/z/e//33OOOMMbrjhBq677jpaWlqO17ICAk4bjsa18khEVZkbL1tJzrDZMZDFsFxUWUQzHXYO5ljTmZjVa0ZVmWsvWsoXH9lN1rAmaDbUG1usForaM5zDcrxJvTLG91dcW7XRV6//X644k0Npg1ShyH//sQfdcieYU1Wv+Y1r53PpqvZKD0Y9A7DmmMrHX7+acxY1TioOddmaDjbsHK78/5vWLaB7TEM37dKG7iECjREZECpNj2HZz3w4nsu+kTyW679PRdtFEnyVRlGAhc1RUpqJbjrIoq9dkNRMJEkgokrIhoAiCpy9sJmnDyT94KG0D0kilaAC/EAmFpLRDJsZmEoeEyejCuTJgkNJC0OoCjKrEARhgvjZsXLc8z2hUIjW1laam5uRJMmvp3ke+/fv55ZbbmHp0qV84QtfON7LCgg45Znpnfh0Wb+4mbv/aj3nLGyiOSrTHg9VNlrfPOqwPoEqicd0zY09Ke598iC26xEqjf2VNRuq3TSriaoyl63pwHZckgUT23G5bE3HhACmXqnjq4/uZSxfrHnN9gzlePNXn+S99z3NB777PE/tG+OFQxmePZjkzv/bze7BXM0ayhkEoJIOLgc1uu1UutxbYmpN8DBZv8fW/nRlfT/aeIi0ZtbceUuigCKLxEJSJWNglxo0BUGgNaZyzsImbnrNSr9/otR3EQ8rzG+MsLglRmdDmAvOaKEhLNMYVTijNU57PEQiLBOSRfYO54iGRFqist/LIILnCb4XROmaZV8QSZ66rBBwfBBKWSjT9uoGWo7r0RhVjlp1sh7HLQPR29vLvffey7333ktfXx+e5xEKhXj729/O9ddfz9DQEP/xH//Bo48+yq233oooioHFdUDADDga18rpopsutuvSEFZr9PTx/M2jnj7BTBmfQRFFv9GvOaogimpdN83y4zbsHEaSBFoUFdN12bBzmDevWzDBLXN8VkC3fJ2Dwazhz8KbNqmS5kG5LOB4vlCQYbk8uXeMG/77GRY2xfjgq5cTVqS6EyOTGYCBP4NfL0uxZzhHznBoUQ6/xv1JDd0qZQEEUCSR+Y1hFjVHyekmac0qaUT4mg4hWeQvz1/ElesXEVVlVs5L8LVH96GbNi0lg6v7njzIcM5g93COZN4krEhEFBnLcZEFgRHdQjBsZFHgtWe2s7EnQy7rUO6QKBcJPM8f53zxFg1OLqbzPpy/pGVWx6LnNIBwHIef/OQnfOMb3+DXv/41ruvieR6rVq3i+uuv573vfW9NueKqq67ipz/9KW9+85u55557ggAiIGAGHK1r5XjqjUNOFpy0xBXgcJ39WO5FJ0v7/91lK/j2UwdrbK6rxxXLj4sp8pRmQRFVJCRLFCy7JitQ3lQzmkmL55sQuaUNu/rO3x+Z8+ge0+lLGewcyLCkLc5ARq9bvhkvRPXMwRR3bdhLzrBoivrXrX5NLccjokiYrsuB0QKaZWNZTkkgyL+DFPFY1h7jC395Lsm8xWd//gJ/2J/Ec/2eBMvx2LBzhCvXLwLgFcvbWFeSti6/n2FF4q4Ne9jYk8bD74vY1p+pbXQsNV3+YtvwlA2QQfBwclJPglsS4NnuZMX5dTaYkwBi7969fPOb3+Tb3/42w8PDeJ6Hqqq89a1v5YYbbuDVr371pI+94oorWLduHVu3bp2LpQUEnNYcrWtlmck0GCYLTnTT30LmN4aZ3xRhIK1XRJWmU2etDlbqBSktMZX5TeGKm+bSthg7BrOVccV5jRGuHbcR18u8lJ/XWKGI43iEIyLLO+KV51feZMHjyq/9nrGCOakcsedR0XPYM5SjNaZOGrhEVZmd+Zy/YXen0S2Htpi/1rKR1zd+u5+xvElXS4Q/OaOVZ7uT5A0bw5bZP5KnqmcSF4HzFjahmy6LWiK844LFbOpNY3j+CGlIFskb1pSv//rFzdz0mlV84gebKZg26TrCTt64fwecWohClZGZB4mITCwkkzdmtwdiTgKI1atXA+B5HsuWLeP666/nmmuuob29fVqPTyQSOM7xassJCDi9OFqhpCM1YdYLTsqmU/1pncGMQbE0wjidEka9hsa3rl+I47rkDbsSpCxqjlausX8kT7I0VpozbEYLGe598mBNFmF85mX885IlkZa4ym1XrqUtHp7wmt18+WrueGRXaRN3626ikiggIPgOkqYzpf32XRv2sqU3Q6HoZzYM2yERVshoJhndAgTyRZv+lMZwtsj8pgjvfPlifrSxH8vxxzSr8yDf+WM3j+8ZoTUe4pUrWlFEAc1z0Yo2giDXOC0+sXuEB5/trVGqBLhrwx4Gs0U008IMvmpPCyKKiGH5maiz5jfwwVcv57+e6mbfcJ5YSJ7R3+Z0mZMAQhRF3vzmN3PDDTfwute9bsaP//73v49hTC0cExAQMLvUKyHUu6OezHRqJmWT8Zv6gdECf9eToqvFDxauufiMGvW8ay5aytce9YONsCIRUyWWtccra+yq46hZvs7WvozvN1H1vEzbrWRPxvPmdQs4a36CPUN5vvOHbgazBrbjkdX9MUKpNLvolhrAXc8jrEiVjEb1c39i9wjPdScpFG0c17+jTxUsXM9jWXucB5/tZcdAjozu+0ZopktKNzFtl0LRJhGWSWsWTum6ogBZ3WI0V+RQRmdTTwoPAVkS/VKH53HNRUvZOZjjzv/bw/MlCeq2KqVKENg5mCMWksgb9e2zA049yqO1TVGFr/3VerpaYsxrjBxzSXMq5iSA6O3tpbOz86gfP2/evFlcTUBAwHQ42ibMoymbVAcrXS1RBg4msR2XSK7IYNbg4Y39XLrKz1hu7Elx35MH0S2HRERmueL3HYxf4/jgplK2yBfpTWp4UPOYiCpWGhrrjVUmwgqqLCIKAhFVRBIFOhtDCAgcHC1g2C6NYQUHj5ZYbUYD/ODlG789QHZcicADJFHkTevm890/9KBIAookYtn+6KUiigxndIbzRQqmr7sBvvy047gokkhHQ5i+lIZuOURKfQ0F1zdzGskZ/Pcfetjcm65oAeSLDi1RxRcF87xKMGU7LkO5Y5vSCThJ8PzPyNtftpiuFt/M8lhLmkdiTgKIf/iHf2D16tV84hOfOOKxn//859m1axf33nvvXCwlIGBWmCtzp5OJY2nCnGnZpDpY2T+ax3ZcZFFkSWuMg2MFkvmi35MQpyZTodsOC5sirOlsIG9Yk65xfIaj7AHRHPNttC9b08GtD2+r6fWop2nRGFawHJec4esmWLaHJPhjci0xhTXzG0oZDWdCRqMvpbFvOD/hucuSQFs8xFnzGyr6FZbj4ngepu2SL1oMZR0crzyaCbIo0NUcZSRXJF+02NiTqoxUFopO5flhenz3jz3sHsz5KpKlOnjOsFAkgc7GMKosMpLPs2c4h4d/7iMJNAWc/LQm1JJHSr6mUXK2vF/qMSdn/c///E8uvvjiaQUQv/zlL3niiSeCACLgpOVozZ1mi+MZvMz1HUuZ6mAlWfCFjUzH5bnuFLbrYliO7/4JE8oqAnDLG1cTUeQJayy/VrplT5zoiCp8/PWrWd4R49aHt7G1P40q+rbVdz+2j4+9ftVhTYvGMP1pnYGsgSJCQ1hmJFdk/4hNZ2MY03FJ5h12DWaxPY/GaHxipqY04ioI1DRkOq7HWL5YEaa6+7F99Kd0RnIGrVGV4UKxFBwICCKIgsDKeQn+/vWr+NKv97C5N13JaIwvwgiCQN5wcEsjqOXruh7oplMywvL/O1cSm/rTtfN4ct8YycLsSE4HHD9E/M9ASBY5e34jPUltUsG1ueCE30q5rjuppnpAwIlmLtQdZ8KJCF7KdyxlgaS5CiSqg5U9wzk+8YMt6KaFLIl4wL1PHuS2K9fWLassap6o3z++/ADUCDk1RqM0R1WSeYu+pEZWs1FlEdN26U9qlQ1/IGNwqKRpoYoCiiqhWy6+XYRHQ0ShUHRI6xYpzSKqSnWFqxa1RFg5L87m3nTFh0ISQZVE2uMhdNOdMOq5b7jA536xk11DfgbBdT1cPBojCvMbIriu6/tBCEJF4rqM73nh0RiRUTvibOlL1wQEBdPhwEge1/P9LURRpGhZ/H7fGK87q4P/3TxQ0ZRwgkjilECVBaKqhCiK9CS1WdV+mQ4nPIDo7+8nHo+f6GUEBNRlOo2Fc8WJDF6OV+BSnV5d3BpjJGewrC1euZPSTXdaZZV6r5Vf6kiQN+zK1MY//s9WoqrEQMbAsJ1K6WAkXySi+hqL5XKA63nolkvBdGrGGvcO5ytNjc0xFcf16gpXRVWZW//0TO78v91s7EljmDbNMRVRFFjYEq18yVe/BlFVpi0RojeloZkOnucHDx989XIWtURoS4TZNZTHsus3gMZUmesvWUZfyp9YMSzfRrwcEFjO4YkOyfUnTEYLFg89218RowqqGacOpuOxrDFCLCQjwJw0Sk7FrFylp6eHgwcP1vwsk8nwxBNPTPoYXdfZsGED+/fv5+Uvf/lsLCMgYNaZS3XHMpOVKI4meJmNckfZwnt7f5aoWhu4lNc10/MfaV2tcb83YSCjT7iT6mqpP2FRTb3XSgBuecOZIHh87he72DmYJSJLdBctbNclJEuEZJGi7dAYUdk/UgBgQWOYjoYwW/rSmGWPa8/vFfAnIQRkWaQhIrOiPc6+kTwjuSJb+zI1UtVQlgF/KY/vHuGhZ/um7NuAiaWdiCLyoVev4MLlbQDceNkKcobFzoEc+aJdCXbKe35jVOFrj+3DcT1UScB2Rcyqkfjq2KB6erMcYEymfRFwcuJ5MJor0tkYrgirHc8erVm50n333cenP/3pmp9t27ZtSsGoam644YbZWEZAwKwzW+qOkzHVnf5Mg5ejyRrU29gf3z1SET1yPA9V9v0tntg9wg839s84KzGddZVf57s27GEsb7I0Hq15nY/UCDbZa1VWqswZViW42DeSx7Q9oqqIIIBuOYzmi3zjt/sp2i667TCQ0UubsEgkJJHRLCRRIBaSWdERI6JIbD+U5ekDYxQdj4GMzscf2sTyeQ3ceNmKmudXz2yrXt9G+edT9aGsX9zMt6+9gK39af75f7ZzcEzDLhleKZLAQEpjMGOwoDGMB1iOW1eVMOD0IKJKFYEoBK/SeHxKZSCamppYvHhx5f97enpQVXXSUU5BEIhGo6xYsYJ3v/vdXHnllbOxjICAOWGuGguPVKKYSfByNOWOehv7ms4EDz3b5wcPrkdKs1BEgZUdvmZBtZz03Y/t47Yr16Kb7qSvy8zXJeCVjR9mwJSvVZya4MJ0XFbOixNVJTb3ZhDwJyOePZhClgTCskhjRKUxovh9EJJITrRx3ZKokweXrZnH5t5MjX10d8qgN22QMyy+fe0FQG22pl4QNJXy52QB0+beNF99dC+CIBCSBKySr1fFzhmXjkQYzfT9LBIhmVzRrrF3Djg9cFyPgunQ4sHnfrGrIpN+vBq9Z+Wb8KabbuKmm26q/L8oirzsZS+bsoQREHAqMRejUNMpUUw3eJlpuWOyjf1jl68mZ1i0xVSKjq8IGVYkXnfWPH686VDN+fuTGh9+YBNF2530S2u66yqvp1xmGC1kJw00xt+xl/9/TWeC265cy77hAss7YjUqk/WCi3hI4mMPbSGtWxSKNlap+C+oAu1xlU+8YTX3P91LMl/EtB0cz5/G6B4r8LMthyjaEyUcXQ92DWR55IVBfrZlcEJwVr3u0bzBHY/sZu9Ijpgil4Se9nLLG1fTElPRTZeIKtYEaL/fN8pN9z9PRrcQBSjaXk1/BvhaEM92JytlCdv1fJ2JQN33tEIR/fdWNx32DeeQJZHGsHJce6Xm5Oz33XdfIAYVEHAEpluimE7wMtNyx2QbO4JXOU88JCMKsHZhE29Y28nju0cr59csm5zhkdItosrkmYXprmu6gcb4O/bL1nSwYecwaa1WDGl8QDOZDHdHQ5jBjEHOsBHw/SRiqoxpu6zsSHDn1evY2pfhC7/axWBap2A65Ayb7Yey6Fb9Rkbb9fj+0310JwuV4Oy2n+8gEZbJGb665PlLWvjtnhG29mdwXVi0IEohpfHMgSTv/85z5AzbT00XbZqiCotbovzNK5fxtUf3kdF9ZUrLm7w0UZ1ssBwvCB5ORzx/qicRkRjNmciix9oF/ihnMl+/J2e2mZMzv+c975mL0wYEnFbMZn/FTMsduumQCMt1xyNrz5PgA69aTls8XPNzVY4wVihiWu6UG/501zWdQGN81qQ3qfFcdxJFEokqEocyBgK+sVe9gGYyGe6yM6VuOqiSiFnlGRBVZc5Z1EhjRGFbfwar1G8wlXajKAokC8Uam+6dAzkiiogii4zkijyxewRRFBHw+xS29qcp2v54ZcG0cT0YLXl+JAsmvUmd4Zz/euN5FZ2HgBcvIUWiMaKwsiNBqpDEclz2DOco2i45w+ILv9pV0RqZq3LGMQcQ//Vf/wVAY2Mjb37zm2t+NhPe/e53H+tSAgJOOWazv2I656q+gwdY2BSZMP412XnGaxbc+vA2th/KHDHjMd3nWM9Ia7KplOaYSn9GxyzJP3fEQ5WuiflNEQYzxrTGbdcvbuaud66fckoiqspcdf4inutO+U2Jgt/H5daYXPkokkBIlhjLF0EU2H7I9+FwPLBdF9ESKpoQuC4xVUQUJMxSOUSsGqOsiEV5YDouOwZy4HmBRkMAAEvbYiQ1k93DOZzSSG5OtxBFEVkSSBdMBjJzW8445jO+973vRRAEVq9eXQkgyj+bCUEAEfBiZTb7K6Y61/g7eN12WNPZwC1vXD1BmGkyManq8x8pszC+V2GyXoxqx8hEWJlgpFWmnKXoS+kMDGQxS1oIRctl70i+MtI4kNZn5Dx4pCkJgEtXtXPWggTPHkzheb4bJ6JASBZpjsiMFiyiIYmz5zeyeyhH1rARcEmX3BFl0Rd+Gq+xUDBdGsISsij72Q2YIBAF/rieUxKACggAP6hc2RFnc18GQRBojyl+ucp1SYSU46Jbc8xnvOSSSxAEoWYKo/yzgICAk4d6fQZ5wyKiyEfMVjRFVa65aCldzdFpjRse6bHlY+7asJeN3SkMy6E1ruKh1xhpVVMuOdzxyC429aYJyxKLW6P0jGmIIqxsjxGSpZqMCjBtNc2pgq+oKnPZ6g6ePZjyFSI9j0RY5qVLmrnpNau449e72DmQ48BonrGCiQC0xFUMq4gsiqyZn2DHQBajTt+E7XosbYkymDXIF+0p16jKvthVvSAj4MWFLIpce9EZfPGRXeQMm2UlTZK0ZqFNYTE/q2s41hM89thj0/pZQEDAiWUmjZb17LY39aRY3BqrqauO33Q106Yv6dtGl0c+y49d1BwlFpL40KtXcF5XE3c/to9t/WkMy8FyPYq2SyIkT3nHtH5xM1++eh0ffmAze0dymLZLQ1RmRXuCL199HlFVrgQ0Owdz3PTApllR03xq3yhff2I/bnlSA3+8869fvoRDGZ2cYVO0XTTLQZGEqtq0ie26jOSKNIYVXLeIOa6fUTNd9o7kcL0jq0CaJcvmgBc3cskZ9uyFDcxrjDBayNSMKCfC8qSlwFldx5ycNSDgNOREOXIey3XHP3a6jZYT7LYPJEsboVFTVy0fW96w735sH0MZnZ6kTix0+LGm45IrZnFdj52Dz/OBS5czli8SU+WK3kROt5AE4Yh3TG3xMDdfvqrqecQrjZ5ApfQyWzLgmmnz1Uf3lkYnBaSSwVVTROHrv93PjkM5dMu3y7ZdFw8R14PdQznskm5EWjP9sscklIOK8hHjxZ/mN4QY00xsJyhjvNhpCMus7kxw42UrJzQ3l/+mx48MzxVBABEQMA1OlCPnsVx3ssdOp6GxOluxbySP7brIkljjU/H47hEeLilTJsIKOcOiP60TkkR0y0azHDxyWK6L53l4noDr+QHHl/9vDyFZwHI9DMst1fhhQVOYt65fWFnHZMHTkZ7HbHqY+O6e/vMvG1w5nsuYZpIx7IroluV6xEMKUUUiEpLYNZhDFASaYwrJglkxsZqKsnPn+ETEaMHEKgUPLoddGANePDSEJf7pijNZ19Vc07M02d/C8XDjFOf8CgEBpzjVd7PJvMn2Qxnufmwfmjl1vfpEXneqx0ZVma6WiW6W1ZSzFWcvaKQjEaIxohBVpYpPRTws89CzfZXzb+tPs2coT0gSaY2HwBNwHJecbhFRJARBqPQOeIBpOxURHNfzCCsSEVWiN6Xz9Sf2c9MDm7j/6R5uemATNz+4iZse2MTGntSENU72PMoBUK0b59HVgss+HVFVQhIFBAESYYWORJiYKpEIy3hA3rDRTBtPgH1DOTTTN+sSBQHb9XBKO/5UQYRX8twoEwtJqLJYUZGczMY74PQnazhs7s2yal7DhM/8dP6m54JZG+M8VoIpjICTlRPlyHks152NNVff2fSlNO598mAlTfrW9Qv51u8OjPOX8BUdh7JFLNclJIuEVYlFTRF6UzoZzcLz/LuWaEgmrIjYrkdDWGF5R5znulNkdYvRXJFDGZ1NPSnkksbDTEsQk5VrYPpNlfXOVTa4uu7iM/je071sP5RBlUUUUSCsSKyal2Bbf4aMcdjB81DGqJzLdqfWb/DwJzzKI6JFy8UNHK4CSjz4TA/vv3QZXS2xE70UYBbHOI+VIIAIOFk5Ho6cs33d8mN7Uxq7h/wyQmM0PuM1l5sku1qinNfVVEmTAvxwY/8EfwlZFNjanyGsSJw1v4FkwUSRRP7pijP5/tO9bOlLo5kuhaKNZkJEkfCA7rECtuMii2KlmzxvmLSohwOU4YxOX1JnVWdiWmsfr1vxzEF/6mOmfgGaadMeD1V8P8ry0tdctJRv/nY/Y3mTlR1x3nHBYiKKxIe+t9FP7QpM0GzwAKmk9TBZWFA9YWEH3toBVTgebOpJTzuAmOu+rVkb4wwIOF2Za0fOubhuVJW5bE0Hm3pS5A2TiCJx2ZqOY1rz+ImLemtb3BLhww9sYt9IgWTBrAQ9l5/VycUr2rj2P59l12CuRvRpfmOEjG6hm/5de09Sw3JdIoqE5XjsGMgyVjBJaxKf/fkLvOOCxVxSRydisjXvzOd8tcmSw2hbTJ12RqO6jyQRVnjpkmae606RMyygFAh4HpIo0tEQZnFLBBHPt8qeZO8PhKBOfxQJrDlQD5dFgXWLm6Z17PHo25qTMc6AgNONuXLknKvraqbNhp3DyJJIi+pvxBt2DvPmdQtmbe3j7/B10yWqytx8+eq6Qc9Y3iQkiyxoDDO/KcJAWicRkrnljauJKDK9KY37KmWSOJet6eDXLwyxsTtVccz84/4km3szrF/SPME2e7LX4e7H9rG9P1tpdiw6LjFVYjhr0JfSWDWvYerHHsogeDBaSPPE7hEkUaAlqpDULDzPY35jmNGCyd2P7eOdF3RhOkGHwosZWRRY2hpj73B+2nLjr1rVxvM9aTLG5P1NqiRw3SunV76YzSmkqQimMAICpslcOHLO1XXLPRBRZfb7NsanRf07/L2M5gzaEmFuvGxF3aCnuiQzmDEqapHljvKulijrqsokUVXmpUuaJjpmWg7b+tPT+kIcy5t+GUUWiYdk0rpFtvRPSrP47M92cNNrV9UNRMqvoSIKZA0b2/FwAc/xyJtORQkzpVlEVYlkvsjnf7mLKfaAgNMcSYD2RIiGiMJrz+zg1zuGj/iYsCzwkdetxrBsPvfLXewbzpEvOrie33C7oDFMS1zlQ69ezhvWLpjWOo5X31YQQAQEnIbMVd9GOS06li8SVWWuvXgpdz+2jy19GQRg11CenGHx7WsvoKslWvPYqUoy1UFJ9eMWNUfrOmZG1akFp8r0pjR6xgpkdAtBEBAFcFzfT8L1bP6wbwzN3MG3r72grnQ2wEDGwHL8pkZZFPCAQtGu3F1mDbvknikxmCke0+sbcGrjAqP5IrrpYLZEker0wYzHcTw+94sd2K6HLAqs7mzAsFx6kgUkwW/OHSuY/HDjIS5ZNb0y5PHq2wrMtAICTkPmom+jnBZ9vieFVnSwXZfthzKYjovjeqiSSNFx2T2U45kDSV52RsuE65XLHn0pDTyBRS2RKWu103HMrF7feLvu+548iFvyrrBdj1hIRi/aOI7vaGm7fo/FVKWMagR8LYbx5W0P6BnTmMThO+BFgiwK2I5HvmiRLBQrluxT9cJaHjy1P0lbVEGUBM6c38iNly3lK7/ZS7pgTppBmKpB8nj1bQVmWgEBpymz3bcxljcZyxfRig6O5yss5g0bD38zdvHwPA+t6HD7r3YxvylSt3GrrFg5XoBqslrtdBwzy0FI9ZhlVJXpTWpopoMs+iJWjRGZnO43QJanIw3LRTfdmi9kgK19GXKGjSSKCIIvte140BBWMCwHY5wfRRA8vLiZ36jSEFLZNZzHdmEoW0QSBZa2RhnMaGjW1I8f1SxUSWBzb5q0ZtISUxnI1M8gTKdB8nj0bQVmWgEBpzHH2rdRvamWv4Rs11eOFEUBUfBFlw3LpWj5bpKi4Kf4y+JV1cHA+Oau7rECpu3RHJ3aPXAqx8zqzEih6GA6Dn88kGRJa5SDoxq261WkoZN5/0tatw97WoQVkV2DWW7/1U50yy1ZanvoRcdX4XQO23aXn58sChPkpgNevLREZTwEepKFys9s18MuybQ3RkJo1pHLW6bj4Zk2P950iL955bIa7ZXqct90GyTnum8rMNMKCAioS727nA++ejm7BrNkdAtJFIgokt9TUMrRWo6HJAosaY1VJK/H8ibES5LQplPT3FUWoJrMPbAcwERUkWTBrOgwaKZYCST6kjoDaZ2sblV6FRy8SvAAh70lDOtwOtkXbYJ5DWE++7MdaJaDJAhYjlsqe/jCT9V4HqR1q0YtMiBgUXOMWEhmi55GwPHHlEsfusaITKpwhPRDFbbjcShlsKg5WjeDcKKE7eoRNFEGBJwgZiLyUr2R6qY756OkU93lfOUdL+Grj+5Ft1wiir+RG5ZDR0OYLb1pHM9j/2ge2/VoLIlZffqnL5AsmKiyX0ooS0xP5R5Ytvs+OFpgJGdgux6W46FIAiFZYn5jmHhYxvWgO6lhjutWqxZhKos3TSgzeLB/pFDJJFhVOYXJHLNdjwnXCnhxs380zz9fcSYIHhu701ilD48sCcxvjOK42pQjmtV4wHDOIKKKdTMIJ0rYrh5BABEQcAKYichL+di+lMZorkhbPMSiluicGnpNdZdz4fK2iioleNz68Db2juQYyRWJhWUEoD0RpiWmcu1FS7n3yYN+46XpYDu+VsSy9hiyKEzqHqiZNrf9fAebetMVH4gytuuhWy5Fy8YFBAQSYZncFM/HCkSdAo4CiYkNs/UoFB1+vnWIN57dyY5DuUrZbHl7nL99zQrueXw/vSm95jEC8OZzO9kxlGf3UK1mhCL7Nwr1OFHCdvWY8yv29/fzy1/+kh07dpDL5UgkEpx55pm8/vWvZ9GiRXN9+YCAk46Z1DDLx27rz5DRLQzLoVB0SOnmnAjDlImoIiFZomDZde9yyvoPdz+2j7FCEcfxCEdEli9u5pqLltLVHKU1rlZ0GDTTF3HyPP85hWSRT71pLYtaInXdA/uSOruH8hOCh2rEUse7KMDC5ghZw8a03coXsSQKCHiTZhICXrzIgu98arkTrdPLiMCZCxLsGS7UfK4mHFfqiRnLGzzywhAhRSSsqDiux/ymMOu6mrjptSsZzBrsGvTDXAFIhCX6s0UUSZhw7lTBD86P1o32eDFnV83n83zkIx/h29/+No7jx3Ce51WaKyVJ4t3vfjdf+tKXSCSmp20fEHA6MJMaZkXMSBJQJBHLdkvmTeKM657TLZlUtB6qA4OOeM1dzvggSJZEWuIqt125tqI6CX66NaKI2M7hxktJEDBtl4gqTboO3bJx3Kl3/kLlDs1j+6Fs6UtZxnVdirZLIiKRLMxc1Smwyj59UUVAFHBKpmaqBKosUig6Ezbxpe1R7njbOt71zT8yVjBhEv+ScjdMVFUYzZvkDBtZFDAdl0Mpg76kTns8xKffdBb/+KNtZA2L1fMa6Etp7BnOI3gTzyeLAo/tHuGJ3aOTZilPlLBdNXNydcMweM1rXsOzzz6L53ksWbKEM888k3nz5jE0NMSOHTvo7u7mvvvuY8uWLTz++ONEIpG5WEpAwEnHTGqY5WP7UjqW4+J4Hqbtlsyxpl/3nG7JZKrAoC0erhxXLwgybZdnDqZ4eGN/5TrXXrSUq17axc7BHFndQhIEoiGJlnho0rWXex+ORPmL28MXh5IlgflNYRRRpCepUSgenRlBEDycxgjQ1RxlOFtEFGFFR4J80WJfafQS/IxCa0whocqAwM2Xr+aOR3ZVJnwUUUQQD4uSWY6HKosUbYfBjIFulm6Ygb0jOT7xwy0YtsNIrohhOdiOx75Rf7rHdT0SEZm8aVeybYIAIUXiV9sG2T9amFMp6mNlTlby+c9/nmeeeYbOzk6++tWv8pa3vGXCMT/60Y+48cYbee655/jCF77AJz/5yblYSkDAScdMapjVx/andEZyBu3xEAtLPRDT+TI5UsmkOjMxWWAwvh5bLwiKh2UeeraPnYNZIrLEgdECf9uTojMRYmFThAWNYRRJpCUemnTt5bXuHMwSD8nkxwUBqiSwpjPBrqE8nucr92nlzkjXoz+l+5kax8W0gwaHgFpMx3d+7WwM09kQ4ZxFjTz8XB94VFQjJVEgo9tYjs7nfrmDGy9byS8+/Er2DRdIFYp8+6lucoZNU1QhrZkMZ33BqIGMjuU4CMJhjRHbhe2HMkiiH2BIooDnemQ0i7Ai4XgeIznf7M5xbBD860dVkW39WWKhEz9pMRVzspL7778fQRD48Y9/zMte9rK6x7zlLW9h4cKFvPzlL+d73/teEEAEvKiYqoY5vtRQz7RqsjJEvTLFVCWTch9DOWNwzUVLawID3XJQZZGIKtZcp14Q9Nb1C/nW7w4QkSW6WqL07R/DtF2yJRnpM+c38HevXcnZCxpqshnVlNcqeLW21otbwgymDRzHYzBn4HkeCEJFzMnzwPTAsRxs18N1A42GgPrYLvSnDA6lDZ7vSU1opC1P+sRCUkX07M6r13HOokZuemAT3UmNiCwxkitStF2ao0rFgl43XSTBwxP8TIbt+p9TAX96xy1dzDYdXNf3VrFsF8/1WNOZwLBdckUTVZIYtfyep/0j+YpvzImYtJiKOQkguru7Wbly5aTBQ5kLLriAVatW0d3dPRfLCAg4qalXw5ys1DCdeudkj52sZBJRxQmZifuePFiZnOhP6eQMi7G8ya0Pb6tpjhwf2JS/2H64sZ/+tM7ekXyl8UwSBIqOy7b+DLf/cnKFSvAzG4mwwmghUzGrAuhJGpX/Hs6ahCSBkCxSBCzH9WW0bRfPhaLri0HVQ8BPEQsEExgvZjwOZwnqIYsCKzsStVomUBOIlzf2gmnXjCT3JDW/XFfyTREAw55YTtNtF0Usjxh79Kd1HM8Pfpe0hCjaLprp0BBR6GgIn7BJi6mYk9U0NTVNuzEyHo/T1NQ0F8sICDil0EybuzbsYXt/lqhav+5ZL8OgmTZ9KY27NuytlA+qHwtw5fqFOK5XIwOtm27dzMSi5ii3XbmWDz+wmdGCQaFo81x3kk09KRa3xmiJTR7YlLMSgxnfcdMtfUu7nt9EndYtRgtF7nhkN1+++rwJmYioKnPV+Yv44/4xptLtsxyPsOLilLrhiraLIIAi+j4Z44ODcuCgyiJnzm9gJFdkOGsEeg4vAqp7ZaaL7R7WMomHZXTToSWu1ATiRcdlZUecRFghb1jEwwpXnb+IsCzyrd8dqKia6qbD7qFc3c+a5YIs+sGMZvklDtN2eeFQloaozPolzdzyxtUVx9qTjTlZ0aWXXspPfvIT0un0lMFBKpXihRdeqHhoBAS8mHl89wgbu9Polu81ocq1kxb1MgwAdz+2j+GsQfeYRkw9HAwkCyY/3NjHoztHyBkWibDMtRefwSWr2iu9D5M1c5Z9L/K6Q1FyyRo2ouDPpw9kJm/oqjbL+thDW9gxkMV2XQT8zbs1prJ7KMem3hQffmATN1++eoIGxMuWNpcksqdAAM10sb3DY3ieB8vao4wVTMZyZs38vgdEFYmwIpXGSu0aoamA0w8ZvyH2aJpio6pEeyKMKEDOsLnl4S1EVZlLV7Whmza65VYC6TWdCZ7YPcKDz/byzd8eQJUE3vKSBaxb3Mxo3uS2n++c8rPmuH7fgyKJrOlMsHMwhyjAivYEN1624ogmbzMRpJtt5uRqn/zkJ/npT3/Ke97zHu6//36i0eiEY3Rd55prrkEUxaD/IeBFj2baPPRsnx88lPTzFdFvGGyNq3UbIe/asAcQ2DmYJSSJGJaDbvn+DfmiTdaw+P9+uQvDdmmLqXiCX2K4ZFV75br1MhNRVUZTbUbzRQzbQbdKkw4ejOSKNEaUKRu6oqrf/Oj3Tki4Logi4MHW/owvEy3AjoEct/18hy8CZdiVoCgekiqZi8lwPSqS1IrkN8cB7BzMI4mglkZH7apeCN10MCyHlGbiTTKSF3D6MH6AVwDmN4ZoiYfYM5SjaHsl35Pa4xRJYEVHgn/58zO58//2sqUvjVZ0MB2Xpw+MsaQ1Rls8xJ+d28maTj/T/sON/Wwpma+Vp5HWLmzEsGx2D+UnXEMAFjVHGMkXkUpTF6IgkNYsGiMKy9tjdTN045mJIN1ccMwBxBNPPFH355/85Cf5p3/6J5YsWcJ1113H2rVrK2Oc27dv55vf/Ca5XI7PfOYzDA8Ps2bNmmNdSkDAKctY3iRnWLTFVIqOS96wCSkSr17dUfn9+HLDWN7E87zKz4qOXzONh2QKRf8O27B9q+2i4xIPyXWbJ8dnJgB006UtESJn2DWuk5bjkcybnL2gYdKGrnKw05/WaYmqaKbDgqYIB0fzeKWMgSgKaKb/5RqSRcKKSF/Kz2y89qz2mgbKekiAIAo4rkd1ednDb5Kz62hIuOUDAl6USKKvHdJku8RUGUlw0Ku0zWVRYHVnAq1oIwlglEp8ZfdZx/Wwge5kge6xAjsGsvxk0yHedn4XyYJJoXhYyMx2Pbb3Z/wMiHe4jAIQkiEeVlAkkeaoyvL2GNddfAbfe7q3ZirrSMHDTATp5opjvsqrXvWqKZ03x8bGuP322yf8vCwqdcsttyAIArY9c8GXgIDThepGx3hIxnE9JAF+9Hw/T+wZnTAdYdgOS+NRQGC0kOXAqO8CeN6iRv783AV85w/dlUaulGaRL5UgGqOJus2T4zMTrXGVRc1R+lP6BNtqQRR43VnzJv2SqhfsuJ5HZ2MYw9b87IHrYTsugiBQtB0MS8S0XXYOZEgVihypgtEQlVncEmPHQPbw/DxTxwflcx4huRFwCiAAZ7RGaYwq7BrMHR7lnQLHxS8/2Argy6F7Nb/3GM0XEYDGqMryjljFfbacQRAA1/WbHg3LYXt/lgfpRZUEbMetHON/1ryaz1q5oXJFe4KOxkhN1m/94mb+ZFnrjEoRJ4Op1jFfZfHixYF1d0DAMVI9Flm+m/GAjGYxmDVqpiOq71KAyiilB2imw/3P9HIorftKe7KIIgqEFYm1C5tqmidDksi8xjADaX3CF09Ulbn2oqU8dzA5Ya2JsMwFS1voTWp1v+zGT33olsO8xhBNUZXhnN9/4AoQUSTfH8MFo7QB9KYM+lMG8YiMa9h1JyVEYF5DhMvP7qQvpZEsOR0eKS4IAodTn7gqoVsOIVnkukuW0R5T+epj+9jSlzni+y8ArTGVZe1xnu9JVY5XJKHi4jqSKyKLAis64rTFwxX32bRuVcodbimlEA/LRFWJvGHzrj9ZzJ6hHGMFqxIoiKJIVBErMu5lZ85/uOIs1pW8ZKr/fmaqLHkymGodcwBx8ODBWVhGQEBAuQFxa1+Gz/9yJxnNmjAdUU8P4s6r19GX9EVvdg7miMhS5UtsfkOYNZ0J3nZ+V03zJMBAxqA/7Rv8NMcmfvFkdKuSCaneyBVJ5F3f/CNt8RDzmyJcdf4iLq0qf5SDoTv/bzcHxwqYtkO6YIFg4ZRGLOOqRHMsRPdYYcLr4AJZ3Way25JyYPT0gSSyJCJLYM1AdFIS/HS2eXRClQEnkHzpTSvaLp/7+U48PEQgrPgZrMmGakTBb4wsOi7bBzIktcP22tV+K57n//8Pnu3luouX8orlbRX32dG86fcFldQkVVms6DO87uxO2hvCfO4XO+keKyAIAis74ly5fhG/fmGI4axBIizzd69ZyYXL2yp/g8fCyWCqdfLNhQQEvIiJqjLnLGqkNR5iMGtMuLOoNrGqbpxqj/v9CtXpzOaYysdfv5pzFjUCfsqT+OFrOZ6HU7rz2j9SYHNvuvLl1pfSuP/pHr8XQRAQPP84RRTIGVZJIMpm/2ie57qTnDW/gesvWcaKDr/pc9dgjm392UrDooBAvmjj4dEeD2E4LsNZfUothqnuKEeyOt2jBcKqL7dtOdPrtReAzsYwqiRyYEyb1mMCTj4cD3JFG0kUcF0PWYSmqELesCnW+VDJkohh+R4psjj1aKco4DcjDxdoi4dr3GcjqsizB1M8+GzvBPv5Vyxv44HrX05fUgfBq4xevnndgppsw2w2Pp5oU60ggAgIOMmY6s5issap265cOyGd2RJTOWdRY0VNr/yF9dbS5IUiCggIuJ7v+vfVR/fiAfc9ebAyFpoIy7ieR1a3Kl4BluPXhG3XryFbjs0zB1M81/0cZ7TG6GyKsLk3TdawKtMOGd1CEEAUBBa3xNg5mCU/iV3xkfCAsYKF6XjkDHvSMb16PREeMJA2Ar+LU4Aj9bSAX85C8JtyW2O++JLlOpXGRYGyK2spaPD8z2BYEXA8asTKSr/G8SAkiyxoCteU6crlhTesnc8lq9on3bQjqjSlUuxsNz6eSFOtIIAICDgJmezOYrLGKd106wYdQM0XVm9KI6ObOI6LVarLSqKAJArkDJs7HtlFf9ogLPtjoQXT95soHeo/pkT5Rq9sKuR3qGsMF4rkijaiICCIfkrYdkvnwWP3cIakduQUbkQRcVy/2bp8p1lu6HRK6ziaQCAIHk4NptOyUv48Ci6MFnxr7Pa4SlIzEfE/o5brIZTM1hRRQJZERAGKlotZOk+1fwVAWJa4+cHNgN/zU10ChNpNu6zD0JvSuO/Jg3V1WqqD9xPd+DibzMmKL7vsshkdLwgCv/nNb+ZiKQEBpyz17iymapzqaolOkJbe2pdhLF8kIks0x1T6+nVGcmlUUfD9JPA3Z1US6U1pFC0HD4GF8xvQbYfRnFlX2REOp4EFwT+XgG92pQgg4JXuAv2jRMG/q3OBsfz06r/FkoiDKHiAWHO3OB0ByaBn8tRBEQVs1zuq90wUoCEsky/ZaIuCH/A63uGgwMMPOhNhmeXtvnrkoaRGX1pHt/yMhVgKIkKKyEi+yFjBpDmmkiqYbOxOs35JMzdetqKm3FAuRyQLJj1jBTygMayUdFr2Al6lL6k/reO4LonS709U4+NsMicBxGOPPXbEY8qTG+VxzoCAgKkp3+nUm8YYf2dU/cXWm9RwPY+BjO5LPgMmvohOPCSzuCXKobTum1B5ULQdXhjw5bTDiojpeLhu7cibCKzoiDFWsPxSRalDPW866LZLWJGQSjoNAgKmbaObDoosTmuTkCo5Z38jsCfRhShfI+DUxprheygIIAt+b0N7IsSytjhPH0xi2S62YYPn220jgCoLFb+Us+Y3cvPlq1jcEuHDD2wiU7RJhGVGCyauB2FZYHl7nD3DeTzAsBx/bZbDtv40d23YW5GWhsPZPVkUyOgWsiiydkEjPUmNsZwBglCTbcgbNtdcfAYPb+w/YY2Ps8mcrPq+++6b9HeFQoHdu3dz//33k8lk+OQnP8mCBQvmYhkBAacN4xuvxhtbVTO+zloxDhL8L1VVEhEFAcfzaI+r/PXLl/CN3+6nJ6lXgnnH8XBc13e5rLN5iwK87fwuFFnizv/b7YvoOH4WQpFEworE2QsaWNIc4XtP91J21vaOIBBVRpVFEmEZ3XTJFSfPWATBw8lPufxUt2GRmZWUJMHPJoRkEc/zfJtsy6UnqRFVJVAlLNutlLosx8Ww/GA5pEhce/FS1i9upjepUbRdooq/ue8eypIsWEQUgVxphLo8Fg0ekdLf2MbuFB97aAsdDWGurCpHdLVEGc2bWLbDrsEsngBL22KAx0i+WJNtuHRVO5dO0UNxKjEnK3/Pe95zxGM+/elPc/XVV/P1r3+djRs3zsUyAgJOC3yTrb1s608TU+WKa+ZkjVf1+iTiIRnH89g7nMdyPTzPDw6GskX+Z5PvoKlbTqVxzXZdVElBlaFQZ97REwS++tg+upojSJJAc0xhNG8iigLrupoYzBhkdZsf9w5UggeY/mZRtF2sghk4Zp5ihGSRWEjiL9Yt4LFdIwxmDFRZIm9a1DGkrPk8VJcxyo6p1fHha9e08/TBFFnDxiiJQMUljzXzE+imw/KOONdetJSMbvHgs70cShvsH8njeh6q5EtF3/90Ly9f1lpTCtwxkGWsYKJIAggiUUXi3EWNuB7sGsxi2pA3/CZiRRLI6hYj+WKlJNKf1ulJaiiSgO34AUhEkXjdWfNY3Zngrg17GMubLI1HufaipZXAoatlosXDqcYJC30aGhq49957Wbx4Mf/v//0/7rzzzhO1lICAk5ondo+wsTuFUarVqpI4ZePV+D6JrGGRMyxaYioRRcJ2XQzLRRR9MZzdQ3n0UpBQbibz8I2zOhIhhrITfTHdkl9HSrNQJIGQLOG4fkbg+Z4UsZBMS0zFqrdrTINqr4t6lO26VcnfdKaZ2AiYQ87qTPCJP13D2QsaiKoyvSkDzXIQgYxe/zHlz5ss+p85SYSILKJZtX03sgjZol3JOJUfZzsef37ufM7taqpxrLxkVTtb+zL82893kCqYLGuP11hzd7VE+cCrlnPXhr1s7E756pMRBdeDlrjKl0suttfe9wy7BnOl7Ilfbl/SGqMnqZE3LK69+Ax+uLGfZL5IzrCQw34AZdouP9tyiHkNZwB+j1Bas7jj17sBTohvxVwgnsiLd3Z2cvbZZ/PjH//4RC4jIOCkRTNtHny2t1KLTWkWYwWTeFiZtPGqPAZ69oJGmmPq4ayC4xFWRZa3x1jaGmV+U4Q1nQ2osuhrPeDfBYJ/92faLmMFs7JZV1O9t1uOV9J48LFdv5Rx2er2ObPLLgcYpuMxTQmIgDlEAP7svAVcuqqDtni48hk8Z2ETDREVUfTLZ9UfpYQq0hiWS6PCVAJBfZwglD+KKZI3nIpLazm4NGyXj/1gKzfdv4mdgzk006Y36et7nLOokY6GMLbn0ZPUahoWNdOmPR7iptesYElrlPmNYdZ0NhBR/M1fN/1/QorEgqYIL1ncTETxyyb7R/OVc12yqp07r17Hx9+whsWtMZoiCh2JMFnDZlNvmr9/cDNb+tLkDJvth7Js7cswmiuy/VCGux/bNyuCUieSE158MQyDwcHBE72MgIA5Yzp2u5Md05fUGc0VaY4p/kZt2IRViavOXzRl7XQyVcsdg1kOjum4rofluFiOX8pIhGQKRQur1McQUSW6WiLopktEESlMU7Mhpko0xVTa4yF+u3cURRaxj1LvYTKq9QEEQTiic2fA3OMBv9kxxDUXLa18Ltcvbua2K9eysTvFrQ9vI6WZleMVSaApHkIRBZKaVTNCWS+b5HoejRGZbFSZ0BPjATsHc3zqJ9tpjYfIGVblDr/eaHO1LkoirFQUJetNRZQzeSO5ItGQjAC0J8IVK+/ycz1nUSMtMZVDaZ2BgSxGSW47Z1koksTytjgDGQOA+U0RBjPGKT2+WeaErnzr1q3s2bOHzs7OE7mMgIA5Yzqqc5Mds7EnxV0b9tCT9PsTWqIKjRGFsxc2cGmV8dVkjFe13D+SJ5n3PTNaogpJzXfvXL+4iUtXdfDvG/ZUOsnDikQ8JKNKvn7DkShv6qbjHrYVH87hzEEGojqA8IImyuNCIuw7vHqeX2aot8nvGc6zZyjHynkJxvImfSmNe0u6CB2JEEXLqUhRe57HUMYgJPvW7Ud6FxNhmfdcuISP/3DrpMfsHc7Tn9GJlvROygJN1fLvybxVI/nen9ZZ2BRhTWdigrIkUBOALO+IT9q8XM643P6rnWzpzRCWRVZ3NrBrKIftuPSltYq8/EBar0hgn6rjm2XmJIDo6emZ9Hee5zE0NMRTTz3F7bffjud5XHHFFXOxjICAE8p0VOemUpa8+7F97BzMEQtJpU3ZrcyiT7dzu2yK9dVH95LRLMKKREyVWDO/gb3DOSKqzE2vXUlLNMRPNh9iJGewrM2vF6c13wtDn4bRhCyWexE8MrpFvmhTtNwjumoeDe4k/x0wd3glDxMPf8qmnl16oWjzsYe2kIgoeJ5XGR+OqTJFxyWkiAiCh+V4FG0PB4/mqFjjS1GPpqjC/3fVecRUeUrJcs9zKegetuJh2g4HRvL0pTQWNUfZfijDg8/2Mpor0pPUiYUONxgLwE2vWYVhOSzviNXYaE8m6FYulYwPJMrNmqbjMpQziKoSAhKdDWEWNEUAKm6fp/L4Zpk5Wf0ZZ5wxreM8z2PZsmV8+tOfnotlBAScUKZjt1vvmGTB5Km9YyQLh3++fyRPQ0ThljeuZtW8hkmvOb4UsrEnxb1PHkQzHeJhmWXtMQazBjsGsyTzJiHF4nM/38XfXHIGLTGVgYxeqRcvjUfRTYc6e0UNkuA3XGI7CILvbOgrSIIwBwmCsitiwPGjLDsui0y6iXuen4UAaI+rpDRfW8F2PMzSY9pLBmzP9/iNi8vbEzCar9uoW77ebW9Zy2Vr5tGbLEw6truyI8ZwrkjWsDFd//N3cEzjYw9tQRIF9o8UMCyH5piCbjkYlsP+kTy67WDYMnf8ehea6dTNEo4XdKuXMVxTmrbYOZAlHpJIOoeze3/zymUsKmUtgNNifLPMnDwD7wg1yVgsxsqVK3nTm97EzTffTEPD5F+IAQGnKtOx251sYuKbvztQseQ+MFqg6Lh0NIQrAjb1GP/FVhacKmc3dNthYVOElR1xNvdlcDwPvWjzzMExdg9lefeFS3Bct5LKvfaipQxnDbb3p8kWJ48iRFFAEqApEaJQdHA9P2Phuh5HM4MhlQKE6m+Rmr6HIHg4YZRjB1US/Bp/sTS9w+EslIc/huu6foaoYDq4nockChi2w3DWqKiX9qU1PM8jpvpKoyVX90rDZUiWsByv1GwosKAxQk9KQyhNNrQmVD77F+ewtDXGTd9/nuKohuX4YmmCADsGsv76BH9tluPRElXQLRdJFLBtl/0jeWzHozWuHtGbYrKM4RXndLKxO41uOSTCMs0xhXnxELe84UxWdSZqznEq9zyMZ06eiXukW5aAgBcB07HbrT4mWTDJGRYekDfsSs20OaZOaNoaT70vtq8+uhfNdGqyGwJw7UVn8P9+sp10Vep4rGBxzxMHeNnSFq65+AzCsshXH91LoeggiBKi4Na96xdLBlmCIKCZDrmiXZEFFkWOmL2YcD7qy1RX/yhw4T5xlN8H1/Uo2i4SIJQcrcr6DZ7nfx4FUUDyPEKKiGH6ExR2yf01okhYjkOqYNHVHKarJUZPMs9Y3qoZ4dVMh6/8Zg8/2nSIN503n2UdcTTbRkLAweO8Rc1cvLINgEXNUT+jp1t4eMRDft+GgG/lnTVsPziOKJzX1YTpOGQMC9vxsErPJxGSp2xurJsxzBd54JledMvBKU1KKaLAWfMbWNQSmfP35ERy+oRCAQEnIeUaal9KA0+o+4Uy2cTEgdECzVGlYsk9Vcqz3hebbrlEVXmCLfiy9hjpqo74Mrrp8MKhNN94wqInqZHVLUTR/9IHPzMwfnP3v+w9lrbFOJTSKiOfgiAgi/5o3kwQpmPBGHBCKTtgWo5fpgrJYiUwkEtTMaokoMgSggB6SfRJEkCSIKtblV4Iy7HZPZxneUeCpa1xIrJBb0o/3CQL9CR1elIaG7tTLO+Is6QlVrePwNd12MPGnjS66ctcl5VVQ7KILAqEVYmzFzZw1fld3Pu7A8RVGc+DlGaSM3wDuBVTNDfWyyqqcphc0aIlqmC5pUkpReJt53edFmWKqTi9n11AwEnAeDvtepMY4ycmKpbc8TjLO2KM5U2IM+kXUr0vtpaYL3l93zjfDBBoiqmk9NpxOFEUUCSRPcN5jEq3vB8gTBYH+GlmEfBoTYSRJBHLdskZFkadEXd/RFREN926cUKgPHny4mebfCEzy/GQRF+mGk9gaUsEURLoLU0M6baHQ8l3pVSXUGQRARHNNH1/ldJ7bbtwYCTPhcvb+Mxb1vKpn2ynJ6lVJj3KDZsGDn1JjbMXNnDLG85kUUuk5u9h/eJm7nrneu578iD3/nYfhaJFWBZZ0BQhEZY5a4HCVecvqkwwPbzRV2AF8Fyw8XA9j8vWdEz6dzY+q+iXaxz6kjqG5dAUU2iIyKxd2MQl05iUOtUJAoiAgDlkOpMYZeqVPC5b08GtD2+bNPiobpqsVy5Zv7iZdV1NNY1bmmlzRlucvpSOVbVj+32QHiL+nL7j+anqsq+VV/VvWfQ1HwRBpDmqMJIzMW2HrG75j5skEJAE8DyBxohM0XYrksQBs890mk3LDqoufimqOIWkp++u6ot3SaVUk+t6eIIfPGqmXSN7bli158oX/fFe15kYkAqCQLpQZChTpC+l14yJOp4fqMTDMlFVIm/YRFRp0k3+NzuGfK0IT8ARHaIhmX+84kwiilSjVlmdsZAlgeaogiAKbNg5zJvXLZj0/JWsYlKvjITGVKnUnOmyfnHTjCalTmWO+Rn+13/912ysg3e/+92zcp6AgJOJ6UxiVFM9NhZRRW59eNukwUd102QiLPO287u47cq16KZb0+U9vos8qsrceNkKcobF7qGcfzcpwILmKAubwuQMmwOjBbSigyd4NIYVYiGZkXwRWRSxHZeOhhANYQXddCoCVUZJfniqTcv2QAHCikRnY4RDaZ18qW8iYHLkSbQXpsIrbfiiUN6E/QbUsjdJ2fG0fNqpRiSr1+FCxcjKEzwaIwp/8ZL5fPZnO6d8nCT4TZGxmMRQtljznnueR1MsxI829VUCFTgctEqigCqLGLaLKotE1Ikiyppp88Afe9jUk8al1JXh+n4Wn/v5TmzXqwnC1y9u5pY3nMnfP7SJnGGzrD1+xL/PMlFVJqJK5Ay78re9byRPY1iu2zh5unLMAcR73/veWbHjDgKIgNOR6UxijKe84e8ezDGU0QlJYuULajij05fUWdQSqWQ2PA/GCibPdad46ZIWbrxsxRGNetYvbubb117AIy8M8v2n+9BMm0RY4X2vXEZYkfymznyRiCpz7cVLufuxfQxmDYq2DR5kdIu2eIikZrJ/JM9Y3sTzvCP2MIgCLGuPkTMsIorEms4GdhxKk5tltcrThUrm5yi+YstvgyQKSKXuxoaozFjeQhB874eC6eC4LpIoYk8yPVfOZAjAOYuaOZTW0UyHrpYIjRGFD716Ba2x0JRrEQWBRNgXQZNEEdNOkytaWLafzTh7QSOvPauDh5/rR5VFHPfwKPDy9jjzGkKM5ExGcgZjeZNbH95Wk40ri679YX+yEhCVn41WdNg3UiARkicE4YtaIrQlwgxm0+wbyWPOQOBp/N+26bh0NEZO+8bJao45gLjkkktmJYAICDgdmc4kRj3Gq1DmDJtc0SatSXzulzu46vwuvxHSg7F8EdPxsB2X50tZiTtLZkBHmjn/2ZZBupMFIrLESL5Ycfkcr95XtJ1KoxxAwbBxPY+VHXG6x7SK9fcRexg82Decw/X8Zrp5jRG84PujhupmVUnwMwZH6UkG+Jt/S1TBdFw6G8KAgON6fjmgaKPKEuu6mniuO1W3hCGJAp7joUhCxYXyvK5G/vHPzqyUBEbzBguaIuQqxlM+/nin/3dwbpef2gcqAaoqi/zJGa1s6U/zo4399KU0VEnExMXz/OzGv/z5WayaF+fDD2wmqRUxbbfiJVH+nN/92D629fsS0uPxpz7EuhnAnYM5coaFaXuYtsXKefFpCzwd7d/26cQxP9PHHntsFpYREHD6Mpma3WSU+ybKKpS6aZPWLSRRIBaS2DmY46Fn+4iqEqOl4AH8lLVhOiTzRR7fPcLDG/sn9E5U90xUl1e6WqLsH82TLJiV3287lOGhZ/voHstzcFSr2Rhsz28OXdYaZyxXnHZ63QUM2y+ZFEyH7tECrXGVQtEJeiFKVAdh5XLD0bw25exF2Stk/eImbnnDmYwVitz75EGS+SJF2+9BGcwYJMIyEcfzdXwEgdaYSlgWEEUBVfZr/AMZAzx/vDJfdGpKaZ7nIUsCrlfudYFoyA9O3nHB4kpT4VjerJTaymW6srS0r3QpcEZbglhI4kOvXsGFy9voTWoUbYeYIk8IBADSmokqi4h1vFHCioBuORMygOW/s/60TnNUoVC0kUWBxTPIIMz0b/t048X1bI8zS5cupbu7e8pjnnnmGc4///zjtKKAE8X4PoSp6EtpDGcNQpLIsvY4u8iS0iyaYyqr5yVKJYMiL13cxJN7RyuPEwRwPA9VFnno2T52DmZreifKExlj+aIvcX3xUpqiKgdGCwwcTGI7LlrR5ofP9fJ8b5rNvRl0yy9Z1MssGJbL7qHsUb0ejgeu4+GJ/mYklUSIAmaPsg5HVJVYu7CB971yGQgerbFQZQMv+1WUvR6uvWgprbEQOwYz/HjTIVIFP3D965cv5oFnehnNF4mr8gTJ9XKfTkNYwfU85jdGaE+olcBhfM9OOahtj4cm9Ag1RxU+/oY1NaPLrXGVRFimZ0xj/0h+gpdEU1SlL6VP+BwpksCZ8xtpiqrkDasmS9Cb1CrXbo6pDGWLbO3P8OEHNnHz5aunbbU9k7/t040X57M+zqxdu5bGxsa6v0skXhzNNgHTwy9d7KV7TMOwHIqOi+v56WbH9SoS1EnNpC9ZAPy5fL+xDRoiCldf0MV//6Fngjz21x7dx87BLFrRwXZddg1mueGSZWzqSWE7LgICad3irkf3+b4HHhPu5sZjj/t1eS3TwYOKd8bpHjtMV94ipko1kwxHQhT811ySwLQPNx2C37C4fnEz73r5YpoiCnf8ejd7hnyp6ZXz4tz6p2dy4fI2zqszpXP7I7vY0pdBMx1M22VzbxpJBFEUWdISI1kwyWgm+4YLNQHAjsEshaJdEhMUDvchmDZ3bdjD9v4sUbXW82XC+HE8PkH3xC812BRtl6LjsrIU7IyfQOpP6fSndSzHRZEEVs1LcOufnsmazsSELEG5h6E3pTFwyMCwHcKKxL6RwpRqlAGHmdNXJ5VK8R//8R/87Gc/Y+fOneRyORKJBGeeeSZXXHEF119/Pc3N04vyTmX+/d//nVe96lUnehkBJzmHSxfZylhYWU//dWd18usXBtnYk8YDwrJESjORRJHGiEy+aBOSRf75ijN53Vmd/HTLYK3YjSQwktUrCpdeqRHyl9uHWNAUISSL6JZLSvObIX3h4JmnzmcqBCWU1nK6o0hgOUd+aXzr9Jk1PEiSyNoFjewayqKbDqrsy0JLgsDfXrac5miIz/78Bbb2ZbBKY7lb+tLc/std/Ps719EWD9fcQY/lTZIFE810Ks2MfrAHguDwwkCWxohCY1RleUesEgBUu71mdIv9owU2dqdYv6SJl3Q18exBv8einCVLFvwApJ5WSTmQKffh1JQaTBvH9fjGbw/UWHfX9O0UzIpwW2UaaVyWoNzDcMcju9nUmyKsSJw1v6ESHJ3qVtvHgzl7dX7/+9/z1re+leHh4RpvjGQyyZNPPsnvf/97vvKVr/CDH/yACy+8cK6WERBwTIw3p5pLxo98jh8Le+ni5srI2ZLWGE8fSGK7fh1ZEn3xmted1VlX7CapWewdKeCUuullSUCW/G73RFhhIKNX7JrLHM2+PhMhKFnwN1a9juBUPUQOByinmpy17XDEiKwhLJGIKCS1yTMy5eyCJPoCXpIosnJegr9++WI++ePtuB4VbQ3Ncvjn/9mOKov0lJwxQ5KI43lYjsvmvlTddH1rXCWi+OO6E9ZRij6Xt8f4wKuW0xYPVz5rw1mDlGYRUUQ0y8EsKU3+fu8Yv9szWvE3sQomsihg2i6f/+VOWuMhrr1oacVwany5IySLfmBQZSy3f7SAKmkkQgr9aZ27NuypEZeqdtScivWLm/ny1efx4Qc2sW/Ez9RNZ1LqeH4vnMzMyTPv7+/niiuuIJ1O09LSwg033MA555zD/PnzGRgYYNu2bdxzzz0MDAzw53/+52zZsoUFCxbMxVICAo6aejXb6dZFj4YjjYUtaokwrzHCaCFDT1IjGvKtguc1RCZ4ZZSbu/YM5/jsz3ZwcCRf2Qw8wHE9GsISzTGFN69bwMMbYXNvpqQ66fl3m8ytqrQHFKcZCYQVkWUtUURJZP9IHs06tcY+XZjyxQzJIme0xbEc3+TJHReJld+LisSzBwICbXGVxohMRrdAEGou4bgeu4fzhGVfFMxxPRzPqRhieR510/VRVeZDr17BrsHnS74SpeNL/4QViduuPIeulhhQK9f+uV/sYnNfimwpKhQEsEofvLIgGfilMcd1yWgWg1mDe0vTP+XMQ3VfhWY52I6LJAm+Ponpp3Jiqlwpm2zsSfP3D22iLRGuqE1Od2Nvi4e5+fLV056mON7fCyczcxJA3H777aTTad7whjfw4IMPEo/HJxxz6623ctVVV/GrX/2K22+/nS996UtzsZSTgnvuuYcvfvGLaJpGe3s7F1xwAX/1V39FR0fHiV5awCTMREFytjjSWNj43y/viHPNRUvpqrpzq2bnYI47HtnF9v4sRcdDLakHWq5HWJFY2BwhZ9j89x96SIQV/uaSZTx9YIzNvRkKpu2XMuZgn5bwMwgzyVa4rsdQ3sR2XIzSohRJqFHSPFWJKwIIQkXRsF7fyfifOB7kTQc3Y5A3bbb2ZSoOlGUBqfJjbMdDEH0DK0HwPU9kSeTsBY110/WaabOoOcrn//JcvvDLXewqjWZKgu8v0dkY4XAo4BNVZVbNa+B1Z83j+e5k5drVUxEeh3s2wrJEU0SdOFERh619GZIFk5AkMq8xzEBaJxL1DeVM22FpW5ScYU8om4zkiuwaylfKJjdetnLaG/t0pylOxPfCycycPONf/OIXqKrKd77znbrBA/iW3v/1X//FokWL+PnPf35aBxAPPPBAzf9///vf55/+6Z/40pe+xA033DDt8/T29tLX11fzs61bt87KGgNqmamC5LFQnQ490hfZVL+vPg/4s/F7h/MVhUGzdCcoi7B2YQMRRWbXUBZVFOlNaQDc/LpVbO1P89CzfRwYKZAbN15Z3qQUSQTPnXYGoXpDO5ryQ1gWyRX9ef0y5eDhVA4koopEOCSR1S1Mx8O0py/t7ZeiRCQE0kWrMj5pe7UBh+0BDoRl+MQbV/OzLYMcHNPqpuvHq5tGFAlFOmyoBtDZGKqb3tdMmw07h1EVCdVyMG1vwmSN50FjTGFJa4yBjMGe4RxF22WBHGHPcI5P/7SXsXyR/SMFNNPmUMYoCVg18uWrz6uorJb9ZarLJpbrX8+wHLb3Z+tu7FOVHqYzTXE8vxdOBebkGff29rJ27VpaW1unPK6trY21a9fywgsvzMUyTjgXXnght956K5dccgmLFy/GcRyeeeYZPvOZz/D444/z/ve/n3A4zHve855pne9b3/oWn/rUp+Z41QFwdAqSR8Nk6dAjyeiO//34L/7L1nTQm9TI6BZO1Ze4AMRDCu/6k8V87dF9ZDQLRRIxLIen94/xoaEsw9kikiggiwIhWcCo2rTLDZi267K4OcrBMW1aG96xlkN0y2GyqsWJDB4kShMwR/l4D4+IIpLRy/8/k8f68tOGdbjvYSpJLsN22bBzhL99zcpJmxar7657xjQK5uFShOuBLAp1XSa1UhYkWTCJqzJdzVG29WcwHRdZFIioEoblEpJF/uXPz0IzXe54ZBdpzW+I7E0W+MQPtuABiZC/FsvxUOXDZRm/t6G2RFcum2zrT5MvubeVPTPGb+yzUXo4Xt8LpwpzEkAoioKu69M6Vtd1FEWZi2WccO6///4JP3vNa17Dq171Kt70pjfx85//nI9+9KP85V/+JbFY7Ijnu+6663j9619f87OtW7fOKIsRMD2Oh8rcbKVDq88j4N8lPXswiW65NXeOiijQlgixoClCsSSsYzoeemlnNh2HgulnHISSVbMoQHtcIW846FX1DMeF/oxBc9Rv+jsSHQmVkUJtMDMTpmHTMCsoJQWk6bZYuPgNjTMt9ZQ3esvx0Ex3yo1/MhrDMp1NEUZyRo1xlgi0JUIUijaa6VQyRuXPRldztG4Wa/zd9d4RX1jMqnrPTMctua8eprwxj+WL9Ca1Sq9EQ/T/b+/M46Mo78f/nr13s7lDwpGEcN+CEVFARKH1bBXwFquCV61aq/ZXQVu1tv161qqlXq2i1lYULyooVYuAgIgYiByGcOfgyH1s9t6Z3x+TXbLJbrJJdpOQPO/Xi5dm5pmZZ46dz2c+pw6vV0Gv02DWa7G7vYwflMT04Wks/mAnUuNuvLLCsToXsqKg12gY1s/KkVonBi2MG5BAld0dmHvzni4jMxK4c9ZwlqzZR97havCoWSjN60RE67cmqk8GE5OzHjVqFN999x27du1i3LhxYcft2rWLgoICcnNzYzGNDvHII490+Ct/27ZtTJo0qc1xWq2Wp59+mk8++YTKykq+/PJLfvKTn7S5XVZWFllZWR2am6D9xLrKXLTMof79GLUa6l1ePLKC4lHjBoBAcR1JUpdZjVre3lISUpgHfNcaAAlFUdT9NRmj16g+eEVRl+s1UpCQaY4EpFmNNHhk6kP1+G6D9tSWCEV2khm3LFNW52pzP2a9mtlQ5/SGvD5aSf3nVzD8QYWuJhYSjRrSgEaS0ACuEBYS/xKjTiInzULhMRs+2RtRXEiiScuC6UO5bmo2+8saeOzTAgo99WrWRJP+EVoNbDlYhU9RTft6jUSq1RB4lps/Yy2+rt0+jDoN3iZppYoCr244yBlDU0NaLfxWkOQ4A8PSrcwanc6agrJGYRvP7ecMw+GWqbG7MWm12DW+gEVLUUBRZEqr7arFSpKosrvb7E+htvE+lfWF5by9pYiaBjep8aYgwR5N10Nfrz7ZlJic+eWXX87WrVuZN28e//znP5kyZUqLMVu3bmX+/PkAXHnllbGYRocwmUxhiz61hVarjXjsmDFjSE5Oprq6msLCwg4dTxB7YlllLlrmULVKn56D5Q3UOT2qm8Kkw+7y4pVlEs066l1ezI3Ng2rsHvaV21qtv+BrTBvQSqqZPsGsw1mvlg32yupXt09WqHN6A4pKOBTA4fWRGmfokALRWeNDmc2FQS9FtB+7WyY3O4FdR2ppcAef1/ljM7juzGzu+Pc2fK4T9TTsLh8pVgP9E0xYjNpAg6h6lxevVyYj0cSeY/XYG+sXeGUlcO37J5qwGnVkJBqpapCotXtaKBEaSRXKcUYtV52ezW0zhwalKVqNOsx6DQ7Ai0yiWc9ds4er2RKf/KAWj5JgRLqVO2eNaFXgXZY7CJ8sY3N6yUoxc6i8gQa3Qw2ARFVGHR45IHhDCeZki57fnD8qUAzq0kkDWxSqSrIYOFylZlQoqBUz/RavNKuRAUlq5pH6LOuZlzuo1ftmMehITzCpbcZDFCOJtuuhL1efbEpMrsBdd93FP//5T3bt2sXUqVOZPn06EyZMoH///hw7doydO3eyYcMGFEVhwoQJ3HXXXbGYRodYtGgRixYt6pJjGQzqw+vxtG0CFvQ+omUO9TcE8shq3r4k0Whm1qIoWjJT4kg065g5sh/rCsspPG7D61MiEqgpFgMarYTD7W1ieQCDVoOmMZffbNBia6P40YFyOwMSuslPrMj4fJEp9z5ZafT9B1+d/okmFp41BJNBo6YgNpFPMpBuNXLnrOFMzknG4VajIhZ/sIP95Q0cq3Wi16pxACgKDo+CV5ZJMOlIshjZW2bDrNNi1GkZkmakusGJzeUNClCVJIlh/eK558cjA89HwHXQ4EIjSWSlWOhnNQT6RwC8sXAKJVUOkJRA46um2N1eSqoc/HC0lhX5R6l3erAY1P4Vu4/WUdHgCk7jVBQSzbqA4A0lmJtXkgzVTt5fwKneUYXLK2MxaJFlyEq1sPiiMUzIVD/i1heW8+7WYl7bcJAP8krDxi34LSE/HK1Hr5Uoq3cFuSiE6yE2xOTqmc1mvvjiC+bPn8+aNWvYsGEDGzduDKz3F5aaPXs2b731FiZTZEU/ehNlZWWUlZUBCLdEH6Yz5lC720tJtZ0la/ZRWuNQhb2k9i5IMOqo9MmkxhuRFQWby8dH20opqnJgNmgx6bVtRvybdBKD0+IorbFja5RmBq0Gj09Gp9WQYjFwqMqO29dSedA1dpRsKnxqnd1T/mlgsoXyeldEYxXgWLOxFr2Ez6cWPYo36UNabo7VO3ll/QHezzMGzPaVjWmncmN76gST2rApO9VIP6uBK07L5K1vioLSFVPi9Pxp7jh+v3I3Pxypb2yGpb4zD1Q0UFJtZ2RGAhU2J898Vsi+8nri9Dp0Wg39rAaevXpSkHXCYtAxsn/ocvl5RdU89skPFB6vp8GlxkokmfXUOTxs3FeJpvFLXiOBVlKbapn12qAgyo4K5qYFnPaW2dTnSpbJTrEElA+728v7eaWBRlutxS1U2tyUVKtBw/rGZ7S02hHkomj6WzMbNDjcMna3VygRnSBmVy4jI4MvvviCTZs2sXLlSvbs2UNdXR0JCQmMHj2aiy++mGnTpsXq8D2eJ554AkVR0Ov1zJ49u7unI+gGmqaUZaVY2hzT9EXn//osq3NyuNJOnEHL0H5W9pfbsBi0GHUadC4NLo+PQxUNKED/BKNaHtvjQ0KNc4gz6KgL41ZweRV2lNYiyycqEjq9asCfT5apaAgtlDVScNEjPz5ZJsmkpaYDioROzRrtUAronEkDeWn9gQ5sqeL2KZgVhVq7h5JqO55mCpME1Du8VNS7OFLrYHtRNTqtBotei0YjUevwoJNOpF36Bb3FoOOtb4o4WusMpCumxRtJthjRNAurVACvVwZFIq+ommc+28P24hpkGTIHWlAa3Li9cqP1o+1KiWpvin18X1KL1ycHLCo1Dk8g8FaRVFeMJEloJLAatUzMSg501fTTUSW4rQJO7YlbMBs0VNS7cHp8eBrLZZfXOzEbggM+LQYdBbZ6UQgqSsRc9Zo2bVqfVBQeffRR0tPTufLKK0lJSQksr6ur47HHHuOZZ54B4Je//CUZGRndNU1BlIm0xG0kKWXhxjQNXNNr1bLBDo+PXUdqqbZ7MOo0SBJYDToGJJkprVEzovonmPH4lMYiUYAXDLrw8f/+NMHmI/x1BR2e8OLcqNfg8shBpn6nV8EbwloRCV5Z9cEnmfV4PB4aIgylyEm1cMH4Afzjq44rEBpJLcKUkxbHziO1NPfWKKjK2ODUOA5VNmBzukkxnBhf5/Sq7a0lKdCnwuGWsRhObN/Ua59i1Yf0zeu0qqB86rP97C9vUMtWe33sPlJHgkVHosVKqtUQ0bNVaXNTUa8qLQadFpfXh6w0Fp0CtNoTBaC0jZaHiVnJ3DlreMjnurWYgNZ+E60pH+HiFswGDcVV9qDxDresBuq6TvQC6Wc1BhSqpnMJ1dSrrxaC6iziisWIAwcO8PDDD/OLX/yCnJwc+vXrh9PppKCgALdbDUa7/vrrefzxx7t5poJo0dqLO1SRp9ZSylpLO/N/maFAncODoijICtQ5vY11HnRqkSCPG6+spnIqwPelNcQZdZw2OIVLJw5g6aZDFB6ztXpOigJ6nYTsPZGJIQE+ny9saqVOI5GdbMHjUzhQ2RBk8m/evdNPJHUiZMCg0yArOlINannmGocnsL1Oq2aNoKjdKY1aLWaDll+/l48nRGnuRLMWm9MXpOSEmofbB8fqnHhlheoGd8gxXp/Cd4erMRvUlEWPT+FAuY0au0cNMpWg2u5Br5EY3T+eVKtBrbwIDEw0MSDRzJFaBxKqMLxmSjbfHa6mweVTXQgaiUHJcRypcVJjd2PRaxmUZGb30To0Egzvp2Y4QPCzVVxt55nPCnn26olBro1Uq4G0eBN7jp8oNKbxZ45IkGDSNwbeapmYmRjUlrs9RKLMhFM+/O6RJWv2UVnvJCctjlmj01n8wc4W+0u1GshMsVDtcKPXqO6QQSmWForYusJy8g7X4PD4Ak29+nIhqM7SpVdsy5YtbN68GbfbzciRIzn//PMxGo1dOYUuY8GCBSQkJLBlyxaKi4vJz89HkiQGDRrE1KlTWbhwoXBd9CJaE/j+qnn+l9683EFtmmZbM9+mWg3IiirU/K4FnUZNL+yXaGJ4P2tjW2UfdreMTquaof1VAW+eMQSA4ip7q1YEUAWlu5nyAOF7WJh0YDFoafB4qXN4W830ADCEqCLZmjJR29ibwakopCcY0esk+sUZsZp1+HwKiRY9F4wbwIfbSzhUYcfp9nGg1onHJ6PRqNH+CqCXwOEODobUayTunDWclflH2FveEDQfWQab04tJr0WSVIHrN/3rJNDrtHhlGY2k5c5Zw9mwrzJQJTHBqEORTmwfiCGwEvjCPlbnDEpXPHtkP6YMSWVHaQ1GnQafDIOSzUHdL5UGN4lmPcP6xQUUhOIqe+C5SY4zcPSIk+3FLZtmWQw67pw1nHqnJ5ClMayfmnb53eFqbE4PVpM+ZF+JSK1s0Sv7rEYG+2SZD/JKKK1xhNxfW7EYdreX5VtLVOVBVloodIL2ExUFori4mH/+858kJydz++23t1hvt9u5+uqrWbVqVdDy7OxsPvzww4hqJ5xszJw5k5kzZ3b3NARdRDiBX1Jtb/ESdXvV6nwNHm/YlLK20s5cHl9AOEv4g9w0ON1qgShFgaH94nC4vFTZPXh8MjaXF7dXpqzOyXvflVLX5Ovd30MhlOBWmv2/RgKTFuwh3AhOLzi9XqpCrQyBu4kE10nQP8lEvFHPwXIbzhBFETw+tV6AJEGt3cvoAfEsvmgMo/vHB4Rapc3N8u+KMek0JFsMHKl1otNoMOqkQDCoRyGoOpWm8ew2H6gi2WpAV2kPKFz+QkwDk8ykxhvYe9yG3e1DViQkBfrFGxiVkcCBChv94k3MGp3BFZOzAlUSC47VYdCqbqXh/axMzjkhxFsTenfOGt5iXdPul82Xw4nnprjaztEjTpxeHya9NmTTrNzs5JBZGq0pCO2p5tjZ2gsn2turQZTHap24vDLJFn3I/bUVi1Fpc1Pv9JAWZ8Dlk1sqdIJ2E5Wr9vHHH/O73/2Oe+65J+T6u+66i5UrVwKg0Wjo168fZWVlHD58mIsvvpiCggLi40NHCgsEJwPhBD6KFPQS/eFoHfnFNaTFG/D5FExmDcPSrS2+lloTLqt3HqW4Su1d4bcI+BSFjHgjA5JMlNerL8oqm5sjtY6gL3yPz8sr6w4E2noHsiQU1Rrgz/P3Y9ap7Z/djb5xf1ZAhPpBu/AqUFLtJNXiDVIsmhIoOaGoHTotBi3WxusWCERtbL9zpNbJkRoHbp+CVgMen6blDjnh/tBKEvVONyAFim/5j+mTZQYkmfj5zGG8tvEQVQ1uDFoJt0/maK2ToipV4UiJO6HkmfU6fnZmNq9uOEiFzU2Dy0uN3cNv3vueKydncfbIfq0KvXDrWtumaYrk9uJqTHotYwckhGya5R/vz9Kwu72B2IJQQb3ttSh0tvZCcwXkQLkNl0+mwR1e8W4tFqPpfKxGHRoJxg9KahEUKoicqCgQ69evB+Dqq69use7AgQO8/vrrSJLE3Llzee2110hISGDPnj3MmTOHwsJCXn31VX71q19FYyoCQbcQTuBnppgDL6395TYqG33oPp+ipkJaDTz0kzGA1CKlLJSgsLu9vLu1GJdXDvQngMbS0jUOTAatmjqoKJTVO0P2iSg4Xo8kSS1iGDIaC/EUVdkD+21avrpjRajbT2UE2om/XlB+SS2/Xr6djERzi69hCUCS0GoUZBmccvAJG7QSeg3YPQoen4KiBaNeh9WopfB48NnKMtTYPdQ4PDw2b3yLpk5N77l/WUm1nYp6F4lmPVUNbiQJ6pweDu5rIO9wDbmD1aDE1nqftBYfEG4bf4rkXf/exr5yGxU2V5vVHCMNvGyPRaGztReaKyAun8yIdCvxJj02p6fd+2s5n3hRC6KTROXK7dq1i7i4OCZPntxi3fLly1EUhdTUVJYuXRqwNIwaNYpnn32WCy+8kJUrVwoFQnDSE+7L0P/SKqt1UGPXEmdUUy4PVjRQ1eBh8Qc7cXl9IV/czQWFaob1kmo14PT4qGxQ3RAK0OD28X1JLXDCLREqnkBWQAoRnFDn9ASqSna2+VWsUVAFuiRJ1Du9VDTUBgWZAgxINJGeYGJ7cQ1euWXEp9WoIznOwIFGl4/Xp2Bzerh+ajb5xbXg9qpFo2Q1K+GHo3Usfn9HoFV0VoqlxT0HuHvZdnaW1lLr8OD0+LC5vHh9MjqtFmgs++3xsbO0JmTwbDRKJBdVOfDKCh6vQo3Xw4iMllYuP37Lws7SWvRaiZLq0JaFpu6RwuP1eGQ5kPkRjs7UOQmngDR1V7W3bko/qzFIARTKQ+eIytUrKytj+PDhIdetX78eSZK4+OKLW7gpzj//fJKTk3ttN05B3yPUl2Ggc2CVg8dX/0DBsXoOVjTg8PhUV4PdRZxeF1GQWdOvsuZNjZriL7PcHmod3h6rODRtFgWqgqPXSiSZDQFlrGmQqf8aHSi34QrT6crh9qqWHE50m9xXbqPO4SF3cDLfF9dQ5/SgSOqBfUroVtFN73lxldomW0LNRtFKEnqt6gby+mRsLiVQatxi0AV9wUejWyScUAhKaxwkW/TY3T7iTTpGhykoFUkRJlCf7Vmj09leVI3N6cas1zJrdHqbQrgzZZ/DKSDt3V/za7tweo66wopQIjpB+DdQO6iurg7bByIvLw+Ac889N+T6rKwsqqurozENgaDH4vc13zlrBOMGJpJmNTCsXxxpViNxeh05aXGYdCdaELe2n9vPGca4gYnoNB3p4agSTknoicpDKAxataaCV1Fa+MMtBh23nj0Ug1ZDeSvX0uNTFQJZCXYFPbm6kJkj+3FKViIWo04tpgSA1KJVdHOKq+0UVTZQbnPR4PLilRVsLi++xqATfWOciUGrCXIrNI0vqLK52XVEtajY3e0PNmnqahjaz0qcUYfN6Q37XJkNGsrrnDjcPhqcqtUkVBEmu9vLmoIy1fUWZ0Cn1bCmoCziOfpjLNp7ThaDjqyUlmW4I6X5td1WVM0v397G3cu2cfey7eQVCfnTUaKiQFitVo4cOdJieUlJCcePHwcI23FTr9f32nbeAkFz/F9Uf75yEs9ePYnMFAsOry9sUFiol25udjLXTsmiNoLGVBrU7pn+L3adBuIMWrRhfvkSarfHyNvCRR+p2f9LBFsfABxeBYdbrTpo0msZNzAxYKIvq3Py9H/3cKjSHvYYeo1EitWAPoQVx+bysnrnUZ68/BQe+elYJmUlYzZo0WukkK2i/djdXpZuPNTYoVSDJPnVDjDqtSSYdAxNi+PMoalkJpuD5tw8viASZTIcfgtMa89VU7YeqlYrjDaaYvQaTYsiTHa3lx0ltVQ1qDUoRqTHY9ZHPse8omruXrade9/d3uVCu+m1zUqxYHf7qHV4qKh3tUtR66gC1JuJiu1m1KhRbNmyhby8vCBF4ZNPPgEgPj6e8ePHh9z2yJEj9O/fPxrTEAhOCpqadFsLMgtl0h7dP56SajuvrD+IvY0GVqAqDRaDNtCXQiPBkLQ4ThmYyAfbSkM2wTLqtRh0WuxuX+AYzS0TkbTYbm8bbr1GwmrUMjDZjCwrjeWdJawmDaXVrhZzUACdTiIlzsBj88aTZjXx9f5K7np7GxU2tcy2Wa9lWHocpdUO7G4v7sZKVlaTjjqHFymEEUcC6p1evj1Uzaodx/ApCoNTLei1WrQSYYP3/IIq0aRn/MBECo/XUevwNNZqiOdQZQN6rYYHLx6NWa8LMslHs1tke4IX/UG5Xp+CJDUW4tJA/yRz4NiBpl02F8VVdhRoMcfWYjeiVw+iYwS5tCpsajyKRsPQflaKquwRpZZGy73U24jK3bvwwgv55ptvuOuuu/jwww9JT09n//79PP7444H4BynEL7W0tJSjR4+GdW8IBL2d0f3j+X/njwRFIjPFHMi0KKlysGTN3qBGQn9cuRujTkOt3UNxtT3Q5rk1t4NGUhqFg9qHwaTXUHC0nkMVdganxrGvrB5Xs0yNeoebOKOefvFGjtQ6UBpbe2enWrCa9BypsuNV1CDG1o7dXneIT1FwehVMeh2PzVM/OBxumaf+W8CREArEqIyExtoWPhpcPt75dh9//mxPwFoxPN3Ki/Nz2XpY7R2h00gYjFrSEwyU1buRFYVUiwGP1xVUIVOnlUi1Gli+tYSCY3WYdVocXh+j+yew6MJRIbtaQrCgKqqyoyBhMehwemW+O1yNV5bVwFebm6nDEoK2jXa3yEiDF5sG5bq8jbURDFqumJwZeBabCn9/2e3kOAMpccFZJ+GEa2frQXSWpte2qsGNo7GFeFGVPSJFrbsVoJ5MVM7+zjvvZMmSJWzevJnMzEzS0tI4fvw4iqKg1Wq57777Qm73/vvvAzBjxoxoTEMgOKkI9VUDaini47UOiqocxBnVl+6uI7V8X1IbaKnc3KTfFG1jNysFBY8MPkXG41MwaBU0kpoFILu97D5aF/Kr3ukFJC8Nbh8+rxJoYLW/3I5FL2H3KBEFW7a13r+PpvUlPD4fBq0UENLFVXZcXpkEs44axwnTsUZCtTJIYDHqeGjFLtYVlgfWXzppIP83dwIOj5dV3x9Bo5FIjTNS7/JS0dglU6eRGJRsQdJI1NrdSEhotRIjM+K5Zopav6Gp0LM5PZj1urBCI5QScNbwNJas2YtXVjuYKsBrGw8xMSsJIEjAdyZjoSmRNGnz01TpiTfq0EoS4wYlMLOxNkIo4Z9s0fOb80cFWm7fvWx7q8I1mtaVjtL02hZX21m68VDEilp3K0A9maicfUpKCqtWrWLOnDkcPXqUY8eOAaDVavnLX/4SMv5BURReeuklJEnixz/+cTSmIRCcNPi7Ie4srSHOoGZgLFmzD1AoOFaPUavB4fHh9PjYV1ZPVYMbX6PW0FwwS6gC1W9I8DXTLvRaDW6fD7dPptbhxtdGV0sFcHiUEEdSayaEmkN7kJr+T4vqlxJun3oN/D0O4k36kO6aBreXEenx7DpSF2jXbdBq+N1Px3LdGdlsK67hmc8KyTtchVeBzCSzWgq7sZIlEGhENTknhflTsslINDEiQ81WeD+vtN1CLzc7mcfmjWd/WQPD0uNwuGX+k3+E8nonQ9NOmMzXFZbzQV5pi6/2zmQsQPtN7W1ZPkIJ/xSrNdByu2np7HDCNdrWlY7iv7ZZKRYmZSW1qaj5FTGzQdPtClBPJWp38PTTT2fv3r2sWrWK/fv3k5CQwIUXXsiQIUNCjq+qquKOO+5AkiSmTp0arWkIBCcF6wvLyTtcHcgCMGg1VNY7QZICL2OXV8bu9mE26DAbdEgeH+4QKYn+ZAytBlBOKBISjeWpFeWEktGeoIQY4bc6GDRSwH2ibWzklBxn4Eizr9grJmfy7cEqPD5voKy0oiiY9FryS2oCxbIGJZl58bpcTslMCpidvy+pDig9BypOVO/UaiRkWUGjgXSrEbvbx983HAwSuh0Res0F+ILpOaTEGTha6wiYzK0mXZB7JFom8Y6a2iOpbNkeBSOUcI2WdSVatKWoNb+Ps0anA3SrAtQTieoVsFgsXHHFFRGNTU1N5Y477ojm4QWCkwJ/4JrT48PT2NRHp5EYkRGPVgPlNhcHKxpAgtzBydz9o+E898Ve8otrqfa5W9R30Gk1yIoa56BRFHy+4NgIfx0EnVYTtiZCV6MAHlkJtMpOjtNTafPg8sot6hDMHNmP3MFJfL2/Ep+iBLpHHq9zBfY3e3Q6f75yIkmNPbIrbW7K6pyB3hdN0WlVF4+m8ZonmPQUHq9vUUQpVJGo5m2kmxJKgC/deIiF03N4rYnJ/LLcQS3cI9EwiZdUOThe68Co1bR7v21VtmyvghHqWnXWutJVhLqPgChAFQJxFQSCLiZc4NrVU7LISDC1eBlPzEzmzlkjeHHtfg5XNnCwvAFZVlAaLQ/xJh06jaTWG5AVNLKMBloEBnp6gvmhCY1drhnaL46jtU5cXl9jh0slqA6BxaDj7h+NxO7+gYKj9TS4vYEYEI0Evz5/FD8/exiaJnUxUq2GRkuF+re/WZh/GwVINOu5cWoOL63fH7aIkl/odabUc2aypYUi8u7WEg5XNrC/3NZmmelIyCuqZsmavRRVOXB4fKqi2JgxEg1Te3sUjIJj9dy9bPtJm7EQ7j463HKbMSV9DaFACARdTGuBaxaDrs0GSvvK6nll/QF2H63H1diOu8buwaDToKCoZZkbjyUBVqMWs1FLRX37awpEA51GdZ349RmN5O9loWYpXHV6Fv/aXITd5QvEa6Q0qUPgL0H804kD+L6kNqA8pFmN/PWaU5k6LLXFMS0GHTeflXPCxaGcqIUxMj2eRIuBhWflkBpnoLzOqVqDvC2VF//xI3ENtGbObyqA84qqqXd6cHsV3G2UmY6Epl0r44xanB41/TZ3cHJE+41G+Wz/+fWGjIWeEPR5snBy3FGB4CQl1Mu5Nb9yay/zpkFgZwxNZX1hOW9vKSK/MTsjzqCl3OZt0X7bK4OkSMQZtDS4fUEZHHqtFLLhVjiMWimQCaIoJ6wcGiAj0UiN3RPUzVMrqRYSp0cOLPcfP8GoY8yAeGaO7Me6wgrK6p1q5odPpsrmorjaTrnNxZI1+9hRUhNUVfKMISn89ZpTSU8whbzm6wrLWf5dKQMSTBytc6LTSFiNOu6aNZxzR2dQUm3ntY2HKKtz4vTK6DUazAYtbq/coohSpFH4bcUL2N1eSqrtLFmzL+Iy05EQqmtlglnPogtHMTIjodVto13foDdkLPSUoM+TAXFFBIIY0drLOdAfo9oeqAERbnw4JeSC8QMYmmbl18u3U+/0YjXpON6YjaBrNNNLklrTwOb04vbKAeFt0Wu4cnI2pbUOfjhaS0m1M6Jz+s0Fo9i4v4qdpTUBhScj3sifr5xEitXAwqXf8sOxukCk5NBUK4NSLBypsnOgsgGfrATmZXd7qWpw8+jKH5gxPJXtRdXIsoJeq9Yb+MdXB3C4ZbYergpScm6ZMYT7LxiNLkQ5Tb8pP+9wDQ6Pj7Q4A8lxerKT4/jLVRPJSonD7vby6Mrd7DpSi1GrwetTQFKIM2oxGTQMSrEEfW2254s0XLyA/96W1Tk5XGknznCioZq/zHRHBWyorpXpCSYyk1s3t8fCWtBbvt57WtBnT0VcFYEgBkTycm5agCfepKfe6aG0xhE0fsH0HJZuPBT2CzEzxUxGoplyWy3HyhpO9HRQVOvCaYNT8Cky24tqgoSw1ydTVN3Ak5efwv6yBh78cAf7yhtaPac4g5YZI9I5dXBKUEvkhdNzMBt0VNk8eHwKWiS0Og0+n4xWI3H3j4ZTVGHnHxsOUt0YE5BXVI3PJ+Nw+9h1pBaH28vAJDNmvTZQIfBAeUNQa3GNBMP6xXH91JyQyoOaGqsGmzo8PnyygssnYzXq0Ejg8PgorrLjcPuosbsxajUMSDTj8PpwemTS4gykN7YFb94d038fIvkibR4vUGFz8sxne9hf3oBJp8Hp8eHw+KIW/9DRL+ZYWAt609f7yRL02Z2IqyMQREh7fMVtvZybt1A+VNmAx6uQbNEHxlc1uHnhy/0cqLBh1GooqrSzZM1ellybG3T8ebmDqLW7qXW4MWjAoNPg9MgYdRp+NDad/2w/ApKEJDXGAjTGGh6pcVJa7SQ5Ts+gZAsHKxoI583QAmMHJpBi1WN2awMR6cWNroAauxuLQUtxtR2nT0HyNVb7q7bzzGeF1Du9HKlxoAAl1faApcGvLDg8MvEmPeU2F4cbm1E1zaAw6jQkmnXkpJ1oH938fqwrLA9YHtRiWwo2p7cxaNLIn1YVUGFzEmfQUefwcKTWydFaJwowflACj809JVANFE5YDaoa3Jj1Gm46awjD0+Pb9UWaV1TNU6v38H1JDbIC4wYm4PKp6bmJJl0LhaWjdOSLubPWgnC/B/H13ncQd1YgiID2+orbejk3b6Hs8njRaDQ0uLyB8Wa9BrtbbbFd5/RQ7/Sy9VAV7+eVcFluJtuLa/jr//ZxrM5Btc2JxyPjUcAdCD708faWYtweH7J8wn2hKOBW1FK+C5Z+Q7LFiMvra739twSZyRYWf7Cz0WKi49JJA1mx/WignsFhpwdHY8Enf9aDw+1j95FaEkyGQP2H1Dhji3LCKXFqzYQX1+5ne1FNkPIwINFI/0QzaVZjQNiGqrewfGtJwPIgN56MQachJzWOarvahdEfzKmV1DROrSQ11siQgpQHv4K3ragau1vNDtlzrJ7nrjm1sSFT28qk3e3lsU9+IL+4Bq9PQQZ2lNaSEmcgNzuJRReMCTpmZ2nvF3NnrAVt/R7E13vfQNxhQcyIRnR3T6AjvuK2Xs5mg4aKehdOjw+Xx4dPAa1GVRr0Og0Dk0zcdNYQ/rn5MDtLa3E3mgbcPh//t6qA97aWsL/cFrLOgR+fAvvKbK2clw+7G6rsbXcX9Cmw8vsjahtnjUSFzc2Wg1VoJIg3qlaTPcfqQJLQoqDXafB41dQHY/MyyBeMxqcoLVwCTreP3UfqqHep8zE2Cn+TXkOcQceC6TmBmJDm9+OFL/cHYh5cPjU1VqeVGJhkpqzOxaEqe4vz0UsSE7OSKKtzIkGQ6b7S5qaqwY3drSokigK1Dg8vfLkfCQJWl9aUyZIqB3uP25AVtfiVyyfjlRVyUi3cOWsEIzsROBktOmIt6A2ZFoLoIO62ICb0pu51HfUVt/Zydrhl0qxGbE4vHlkBRUErScgKlNc70WskXll/gOHpcS1KUzs8PvJLamN2vs3xF6XyyWpFS5tLrYjp72rs8Mjoy214FYV4ow6HxweKWnvCrNfiVZSgMsj+Es9+N0iyRc/rmw7xzOeFASvJoCQzdreXgxU2dBoNFqOWpRsPBUoQN78fDrcXs0GLIoHVqAv0AK+2u6m1e0Kel09WOFrrwCsrLUz3qVYDZr0Gr09GUU5YK2xOD3/7ch8HKhraFp7SibLfWo2ERgaLXsuCaTmdyrqINu21FvSGTAtBdOj03Z41a1anJyFJEv/73/86vR9Bz6C3faF0xlcc7uWcajWQmWKhvMFFnd2LVkOg54PH51MVC5/CloNVYeMSugr/4bUatRhVnTO4C6esqLUmRmTEM2t0Op/vPhZQmn48tj9rCsoCloZZo9MDbpAki4Hrzsxm6cZDrN1zohHWT04ZQKXNxXeHq1EUtUun3eWjyuYK7DdUf4amFR8zdRYqG1w0OL1qc7FmqG259fSLN5Fo1nFZ7qCg9RaDjjvOHc6eY9uodXjQShIWoxarSY/D44tIeGYmWxiRYWVHSS2yoqDTSGg1Ei+tP8DyvNKTVqnuLZkWgs7T6bf52rVrw67zt/BWQjhXm64L1epbcPLS275QYhFZ7t/nkjX7Aj0xdFoJr0+t0yArarpjdyoPGsBfDSHBpGP+mYP57nAVlQerg8ZJwC9njeCsxkJYl04aGGR18f9tNmhY/MHOgGJ5sKKBr/aW42ysD2HQanj4krHMGJ7GPe/mo9Nq1HgGWUGRFMwGXWCf/mtXWe8kJy0uIIwnNloo/MfKL6kO2YhrQmYSv7lgFLUOD8u3lvDqhoO830yoTx2WxnPXnKq6R9xeEi36xriPIxytbVt4Wgw6Fl80hiVr9lJe7+JorZoqW2v3cKzOGXWlujWXYTTdib0p00LQOTp9x5cuXRpy+cGDB3nsscdQFIW5c+cybtw4MjIyOH78OLt27eKjjz5CkiQWL15MTk5OZ6ch6EH0xi+UWESW52Yns+TaU1lfWM67W4updXjxeGVqnV7k1vp1xxgtoEhqsyujQUNOipUl808lKyWObw5UcsNrW3B6ZTSSan0w6TXkpFnD9jzw/+3v3GjSatBq1TgKP1kpZl649jQmZCZid3tJiTNgMWixu9WMikSznl+c21xI+VNKlBbHArj9nGE8tXoPFfWVQQGiGgmuPSOLSVlJ3L1se8imVqAqwpOyknjl+tPUwlRbS3hrcxGgulgkaFN4qvc4lx0ltTyxuoBauycmSnVrLsNYuBNFpoUAoqBA3HDDDS2WlZaWcuqpp5Kbm8s777xDdnZ2izFFRUVcddVVvPDCC2zbtq2z0xD0IHriF0qkUfOtjYlWZHnz41wwfgBnj+xHpc3N3rJ6fvPe91Ta2i47bWhSRVKrAatRj82luhd0GglvoxKi12rQIKnpjW3sUwOYDNpAqqeEBoNeQ7nNTbnNzcvr96vNqLyqG0CnkRgzIIHMFHOb8021GrAadeworQ1YHQDOHd2PZ688lUSLHgh+fvwplHecO5ypw9IC189futms01Juc7UQ/KlWA7nZySy6cBTX/eMb6psEmyoKvPddCZMyk0NayvwKnX8/t8wYygd5pQFFw+H1Mbp/AosuHEVmsqXN59pi0DEhM5FUq5Fjdc6oK9WtuQyBmLkTRaaFICZ3/5FHHqGmpobly5eTmZkZckx2djbLly9n6NChPPLII7zyyiuxmIqgm+hJXyiRfIF1VdBnuOM0LVP912tO5bFPCzhcYafBrdYxsBq1LbIlJEmiX7ye7JQ4/m/ueMwGHXvL6vn7+gOBZl3zTh2EIsE/1h9k95G6QCplKEVCr4W0OCM+BXyyjFaSiDPqKK1xsGTNXkCi4Fg9iWY9Hp+CXisxKSuJe88bFdH9La5yUHjcFlAeJOBnUwfz+0vGtXBjtvb8hHORrS8s5/280qBrO7p/PEPS4thRWnfinCXYc8zGD0drW1jKrCY9f//qILtKawPXqtLmRquRgo5nc3ow69VmWxU2J7tK60iK0zMiPT6s8tlRpbotxbY1lyHQq9yJgp5FTJ6g1atXM27cuLDKg5/MzEzGjRvH6tWrYzENQTfTlV8o4V6ykQR0dlXQZ7jjPDZvPFU2D0gKmckWpg5LY9mtZ1JSbeeHo3Ws2H6EWocXX1k9dpcXJAmvTw3KG5Zu5ZezRjCyv9rzoNzmwmzQ0eDyotVoSDDreXXDIcpsTgxaCWezoAqLXotXVr/O0+KNjOmfyN6yeqoavKRYDIFyy5U2N4qiYNZpSY4zUNXgUQMcI2zw+UFeCQ98uCOgPKTGGfjLVRM5e2R62G1aC0ANJfjf3VocsEo0vYf3/Hgk97ybH8jG0ABOj48V+Ue5ecaQoHTSiyf055H/7MYjKxgbUy8PVdoZOyABh7el9eDtLUU88WkB9S61XseIdCt/mjchpPLZEaU6EsW2LZdhJO7E3pJyLehaYvKklJeXk5wc2debz+ejvLy87YECQRhae8lGEtAZy6DPpi/mUMcprXaw8PWtHCq34VNgeLqV+y8cTVqcEYfHR05aHHf/aAQ1DR6e+99eSqvt2N0+Gnxqx8WSKjsvrdtPWZ2L/olG/vz5Xg6W12M16jlSW8N9y6txeWV8PgWdThOoEOnH5fU1uiskKm0efjiqfqmb9VrcshwQOjlWCyBRbqvj6NE6XF4fJp2Wg5W2sMqW3e3lQFkDf1u7j093Hgssnzo0leevOZV+8cYOXdNQX/Pzcgfx2oaDYa0SKRY99Q4PGo1EolmPQavB5vSQ1azVdkmVA/VqnEACrpqSyarvjwVZD+xuL3/+bA81jhNponuO1fPcF4W8eN1pnXaDRarYtmXdaMvy0ZtSrrsCoWydICZn379/f3bv3s2+ffsYPnx42HF79+5l9+7dbVoqBIJwtPWSjSSgM5pBn01fLtuLa3jhy/3Y3V5SrUYWTs8JOo7D46PO4aba4Ql8yeeX1LJg6Rb0Wo3avVJRMBu0jOofT4PLy/FmLbmLq52UVDtZX1ihlj5AFXgur4zLq1Zk1GoknF75RI/vJvgUQFHdF4qiBNpA/3hsBp/vPh7Icrhzlvo7fuazPWwvrsGk0zJ2YAJVDe6QylZeUTUPr9jJriN1Qd0/7zx3OPf8eGTI1Mr20PxrHuCDvNKwVgmjVoNOo3YStRi0QbUfmgr1zBQzIzKsjW3DVSvPiAwr543tz3lj+wcJjm8OVOJw+5A4UXlTAY7XucIqn9Esh97a9Yi0tHRvS7mONULZCiYmT8icOXN4/vnnmTNnDm+99RaTJk1qMSY/P5/rrrsORVGYM2dOLKYh6AO09ZKNxPccraDPpi8XWYH9ZfXY3T50GgmjXk1JbGoyN+g0FFfZqWgILnTk8iq4vCeC/mwuHztKajFoQwtdJcR/65zq9mpzqjjVsqCoGQg+JThFE0BCrVGQlWxm0YWjqLS5cbi9+JrsOTc7mWevnsSvluWzr7yeqgZ3QNkyG9Rz8Qvzh1fsYkdpXdA8h6fH8Ytzh+Hy+qLyBdf8a74tq4S/B0WyWR+2B8WJ1Es1RTQ13sSds4afyDBpcrxh6XGYG1uk+7M8NEBGgjGk8hntcuhtXY9I1vW2lOtYIpStlsTkrB966CFWrFjB7t27Oe2005gxYwbjx48PSuNcv349iqIwePBgHnrooVhMQ9AHiOQlG4nvubNBn01fLkathtJaJx6vjCSBV1ZwemS+O1TFlZMzA8cxGzT87NUtbe7bH1/oVZSwAZAttkFVFkx6DXaXF71Wg6IoqgLhVYKUBzUdUwFZIdGip6Tawf3vfU+tw4NOq+FYbXDNgvlnZrN8awk2p6dFcagEsx4Nas+H5pTVufh813FW7jgaky+45vfQ7vbyr82HsXt8HKxoaBzTdg8Kf3ptW89CmtXEfeeNahEDcfePRoZ050S7HHo06I0p17FCKFsticlZp6SksH79en72s5+xfv161q9fz1dffRVY7y8sNWPGDP75z3+SkpISi2kI+gCRvmQj8T37x9jd3sDXdKQv66Yvl4xEEyWNnSeb1h9weHy8u7WYs0f2IyvFAsDZI1P54Wh9q/v27yPOoMPr8+CNIHBRp5UYNzCBlDgDNqeXtMZ4gwaXjyM1DjyyjMsjo6Cg02gCtRZuOmsIr244RK3DHySpujUq6l28n1fClwXl1Ds9xJt0LDxrCJNzkgPFofSSRH5xTaBvR1P8tpNlW4s4XGkPW3chkmvemhvAfw/9X/uVNjden4zJYmBYupXbzxkWUQ+KSGMVrpmSzY/HpreZhRGLcujRoCemXPdUhLLVkpg9JVlZWaxdu5aNGzeyatUqCgoKqK+vJz4+ntGjR3PRRRdx1llnxerwgj5ENF+yHfVxNn25lNY4WvSvkIDkRmHeVGhcd0YO/1h/qEXFSY3UWK21MQZizIAE5uVm8kFeCYXH6wNZGHEmLWV1riClQivBKZlJPHjxGEb3jw+KE/BbPjbsreAfXx2kuFptMjU4xcKii8aQlax2mtRpNPgUtQqkT1Y4VNnA06v34PTKpMUZUCR4P6+UoWlWauxuFBmONDgDdSnUFtqq8iMBeq1ETqoFt1dpIUTXFZbzQbP0y3DXPJL70/xrX6uVSIkz8Ni88aRZTW3ey/aSZjUxc1Tr+41FOfRo0dGGWn0tkFAoWy2J+ZlPnz6d6dOnx/owgl5Chc3J/rIGhqXHtetlH42XbGd8nE1fLmV1TioNWjxeGZ+iujB0WlWiNhcaWSlx3DpzGK+s2x9QIrJTLNx33ghyUuNAArNOFzC5XzppoJopICmkxBlwuGX2ldXzyvoD1Dk8xJl0zD8jmx+P7R/Sb++3sKzacYwqu5sUi4EGt5e0eBOTspIASLUasRjt2F0+ZElBA6AoOL0yPlnB5ZOxGnXU2t3IyFQ1uDla5wwcQ6uRSDbr0Gg01NjdGPVacrOTuGFaDq9tOMiRRpeCGuioY/nWkpDVIDvqBgj1te/2+nC42zbdxEow9nTh057fT18OJOxJ9W16An377AU9ire3FPHMZ3vUZkV6LfeeN4prprSsYhorOuPjtLu99LMa1ZoODW4e/3QPu4/WIssKNXYPFqOOcYMSQgqN+y8YzbVTsvjmQBVZqWYmDEpq1S/e3ASflWLhjKGpnYrutzk9VNrcZKVYTlSBtLmQJKh3eHH7ZLQuL9V2DzanWtzKbIjjjysL2F/eENh3v3gjZr2G8no3eq2aAZKRYGRe7iDe3lLcwqVwWe4gXg2Rfhnqmkd6fzr6tR9rwdgbhI8IJBQVOJvSJVdBURQqKyux2+0hy1oLBBU2J898tofKBjdaScLu9vHMZ3v48dj0mJidQ9EZwbNkzd6AYLhz1gjunDU88LVpHaTnismZzGxsNhWKrJQ4slLiOjz39rzU2jrPpoKuaQMsg06DXiNh0msZlGTh+5IaqhuLM0nAsH5x3HfeCBZ/sAuHx4fTo7oxyutcfJBXyt4yWwuXgsWg4/1m6Zfhrnmk96cjX/tdJRhPduEjAgkFTYnpHV+3bh1PPPEE69evx+FwIEkSXu+JZPQnnniCPXv28PTTT4tAyj7O/jK1LoJWUgv91Do8ODw+9pc1dJkC0VHB89gnP7Cj5ETp43qnlzcWTmlRp6DS5gYr3f6ldqKbpar05FgtIVNbmzal8l+TURlWNJKGNQVlgWwQjQQDE03YPT7e3FyExxfc/dLp9VFe7wrpUkizRn7N23N/2qp90Hy5EIyRIQIJBU2J2S/jqaeeYvHixchyeL9jQkICb7zxBjNnzgzZlEvQdxiWHodZr3ZfrHV48CkKZr2WYekd/yrvCO01M5dU29l73BZU+nhvmY2SajsjMxLACusKy1m2pZjqBhdp8SauOzObOIOOgUkmQApSMGLdijkYqTEjqvWiTv5rUlRp5+nP9vDFD2VN9gBGnYYh/awcrmyg1u5FI2nQIAcUDJdXobjKgVGvadPi0dY5tmdsqK/9cG6KWAjG3hho2NNjOQRdS0zu+rp167j//vuxWCz8/ve/5/LLL2f+/Pl8/fXXQePmzZvHHXfcwccffywUiD5OmtXEveeNahEDEU3rQ6Qv9KaCp82gTqVR+Cpq1UfFX45Qkcgrqua5Lwr59lAVdreMQSshH61jfWEZeq1aWGpgopkUqwF3YxpFeoKRO2eNiGkr5hPdLNXAxYqGujbN9UVVdm7/V16gngLA0LQ4jtY48PgUvj1UhSwrJJh99E8wsq/cG1Svwu7xYtAZSI4zkBIXuphXpF/6HXUDtOWmiKZg7M2Bhr0hlkMQHWJy55999lkkSeLll19m/vz5AC267QFkZGSQmZlJQUFBLKYhOMnw59R3JAujLTryQn97SxF//m8Bdo8Pi17LfeePbhHUmZliZkCiiVqHB1ejEjAg0USKVc+Db+0Iqovg8SkBoepttMwdrrJzqEpNpZSAwuNSwAUCsWnF3NRcn5ViYX+5jSpb+PLL731Xwm8/OtEIy6DTEG9qzPAw6qh3evDJCnqNBgCzQUucUUtDYwttSQJZBpfHx9xTBzIvN7NbhE5zN8WBchtldc6AtShagrEvBBqe7LEcguigicVOv/76a1JSUgLKQ2sMGDCAI0eOxGIagpOQNKuJM4amRt3y4H+hV9nc7DpSy4tr1R4V4aiwOXni0x+oaPDgcMtUNHjUv23OFmOtJh0GnSbwz2rSUVrtZO9xW1A9iKZf5P6q1E2XKYDbp1B4vJ6SansLgWfSaYPaNHcUv7m+1ulhy8Eqjtc5OVzZQN7hKuxub6CQVlWDi/vf+55fL88PKA/ThqXy0nW55GYnk2Y1MLK/lcxkMxnxRqYMSSHBpEev1TB2YIJa/RKQG40yHp/MmoKyVufWWfxzb3oe/vvsP2+H18cPx+o4WuvkcKWdxz/dQ15RNaAKxqwUS9QUtJy0OAxaDWW1jkCjrs6ck0DQk4iJClldXc2ECRMiGivLMk5ny5eyQBAtOhIgt6u0jnqn+sL2N0qqd3rZVVoXVDTIL8wHJpoYkGTmaI0DCahxNAp5SUKDQrO6Ui0KRwGBMtWyDChSq375zvjXLQYdC6bnsL2oGo/PhyRJ1Dg8/PajXSzddBi9VsLp8XGwwo7NdUJo/XLWcO7+kdoI68yhqYHYjqoGD06PDxm1omaK1crC6Tk8+OFODjS6PLSSqmj5C2lhjbzyZKQ0tTI1Jd50IgvGHzyaV1SDAsQZtBQca9uF0x6a3rcfjtZR2eCmxq7l8dU/BLmn2ntOvc0VIjj5iYkFIjk5meLi4jbHybLM3r17ycjIiMU0BAIg+Msz0gC5JIs+4HYLNEqSJJIs+pD7dvlkjtU6cflkEi0Gxg1MYFi6Fa1Gwt940l+R0d+nQieBWa8JhDD6wxlHZFgDhaNuP2cY4wYmkmY1MG5gIrefM4yCY/XcvWw79767nbuXbQ98PYci3NdrVrKFFKsRrUbCJyt4ZbC5vOQX15BXVM3OI3UB5SHRrGfpgtO597xRQV001dTMeuIMWhTA7vYxun88t58zDIBaxwlB7lOgqsGDT1EDTyOZf3u+vJtamSrqXewoqeX7klpKquxs3FfB4vd3cOe/8wBYdMEYspPNDEw0MXpAQtQsO3789210/wTsjd0644xaCo7Vt2n5CndOkVrOBIKuJCYKxOTJk6moqAjqfxGK5cuXU1dXx9SpU2MxDYEAIKwgbu1rc0RGPCMyrKrwl1SBPzzDyoiM4CJO4fZdVOVQiy3pNZh0WuIMWtITjEwflkZ2qoVRGfH865Yz+MtVk8gdnEyiWU+CSUfu4GR++5Oxgbn5/fJ/vnISz109idH948MKleYCN6+oOqygNhs0VNlcOL1KwBrS2Nkbn9y0/4aWV2+YzLmj0oPOu6lVZ/SABAYkmhicbGbRBWr57L99uY86R3CXUVDjIP7+1YE2hWJrcw9F0/kMSDIHXENOr9zYzMzHrlLV0pBi1ZORaMblk2OWipibncyiC0cxONXCgEQTo/u3X1GJlQtLIIgWMXFh3HTTTXzyySfceuutrFy5kmHDhrUYs2nTJu644w4kSeLmm2+OxTQEggDtDZCzGHT8ae4EnvuikLI6F+kJxpBdFkPtG+DuZdsprXGQYjFgc3lQkNBIEkVVdjw+mcyMeCZkqhUnzx7Zj5JqOyhSyC6RTQPWiqvsId0xzftJXDsli1c3HGR/eQMWfctAPodbJi3eSJ3Tg8sbur9nnEHLmcNSGTswocW65u4Vt08mPdFMZopZbQXukdFqNXhlOWBZMerV75VK24kAzgMVNqoagt1JHQlCbDofvxtJVhTsjVYUq0mHxaAKYIdb7pJUxMxkC+kJJsptrg4pKqLmgqCnExMFYu7cucybN48PPviAiRMnMmvWLA4dOgTAww8/zMaNG1m7di2yLHPdddcxa9asWExDIAiivZHjudnJvHjdae1O/Qwl5E06TSBds7nAshh0as2ICAglVJr3kzhY0cB3h6tweXwoSAxKMqM0uIPiPlKtBjKTLY3C29Wiw+fQNAvD0uM7VtTJCilxBuIMWtxeGUVRLThxBh3pCSZAUQX9oSq8PhmH20dxtT3QobQjMSvN55MWb0RWYH+ZDafHh0GnCbiXUq0GslIsMU9FbD4nq0nPvNxBHd5e1FwQ9DQkRVFCf350Erfbza9+9SteeeWVoGJSkqQWr/FbHpYsWYJer29lT4LW+Prrr5k2bRqbNm06qV1BPbXoTkfmVWFz8qtl+ewrr8ei1+H0+hg3MJHH5o3H4Zaj1jHUL1Quyx3EK+sPUFHvYnBqHN8VVePxyWglCbdPxqDVEGfUMX5QAi9ed1rg2FsPV/Gb977nQJNeFnFGLY9eMo4pQ1I71VrbP8eiKjvl9U7S402BPhsuj49fvr2NWocHnUaDxajl1EYrjsWgNvu6e9l2dh2pxaTTBq5fJEGOTecDsL6wnHe3FmNzegMCuKuDEO1ub2Ae9U5vu4Mhe+pvQ9C76IgsidnTaDAYeOGFF7jnnntYvnw5+fn5VFdXY7VamTBhAldccQXjx4+P1eEFJxFdGWne/GXc2su5I/Pyb1PZ4MLnUzCZNQxLt3L7OcOilpra3GWSX1xDcZWdWoeHcpsLj0/GoNUyqn88O4/U4vTKeHxu8otrWbH9CNdMyaaqwc3z/9sXpDxcML4/f5oznlSrMeK5hLPqNO+n0VRxKq5SrQ3mehdD+1kpqrIHWRg68+XdfD4XjB/A2SP7dbsAfj+vlIJj9R2qCyFqLgh6KjF/KkeMGMEDDzwQ68MIehDt+WLqyqI7zRWCWaPTWVNQFlJB6Mi8mm+j06pui8fmjY96Pw+/ULG7vby28RAKoNNq8PhkNJKkBkk2uPA2RkhKkkSd08Mzn+0hI8HIgx/u5Gitmj5t0Gn4w6XjuHJyFg6Pj+Iqe7uFbah7Hk7wpVoNpFqNHKtzUlRlD+nbj2a1w+4WwKLPhqC3EpOnd+HChYwcOZJFixa1OdbfUOu1116LxVQEXUx7v9q76uXaXLiXVDvYXlSNVisRp9e1UBA6Mq9Q27i9Mg53+H4wncV/zESTnvEDEzlQYcNi0JFmNVJhc6HRqGmjSWY9NXY3tQ4Pt7zxHb5Gz+XgVAsvzM9l3MDEDluC2rtdpBaG7hb80UIEQwp6KzFJ43z99df55JNPIhq7evVq3njjjVhMQ9DFdCRvvSM1GjpCc+Gu10o4PD4MGk3IFLmOzKurziXcMYuq7HhlhawUC89ePZEnLp9AskWPrCjU2N14FbXSpV95OH9cBh/fdRbjBiZ2uOZAR7cb3T+e/3f+SP44ZwLPXT0pIkXlZK3I2JE0YoHgZKDbn2BZlkP2yRCcfEQjej5WkebNvwI9PrXbp1sOXQugI/Pqjqj5cMdMs5pIs5q477xRPPnpD9Q4TghdnUZi0YWjuemsIYHfXnv7Y/jxb2fUashIMHGk1tHmPe9MbMnJWpFRNKAS9Ea6/SkuLS3FarV29zQEUaCjptqueLmGErT+GIhwwr4j8+oOQdHaMbUaCZvbFyisZNRpeOinY5l/xuCgffjv3cGKBo4erMIryzg9PkqapFc2xR/zYDaoRswjtU6O1jpRgH7xxrD3PBqxJSdrc6re4pIRCPxE5WkuKioK1HnwU1tby/r168Nu43A4WLNmDQcOHODMM8+MxjQE3Uw0o+djQShBe+mkga0K+47MK9Jtopme1/yYTo+Ph1bs5N2tJYFlZr2GBLOetXvKmXvqoKBjNu2P4ZVldI2NsF7beIiJWUkhUzRr7G7iTXpsLi9NbYhur0ylzUUlLc8tEitV8+sighAFgp5JVH59S5cu5dFHHw1atnPnTs4999yItr/tttuiMQ1BD6Cnm2qbC9ru+iqMpUn+YEUDt7/1HQXH6gPLks16Ts1O4lClPazwzUq2kJ0aR3m9k6FpLdMroaU14HBlA26vQkaiiQSTjn1lDRQer+fSJRvJSDSRmWwJOre2rFShrsvo/vGtbiPqJAgE3UNUfm1JSUlkZ2cH/i4qKsJgMNC/f/+Q4yVJwmKxMHz4cK6//nrmzZsXjWkIegjCVNs6sTTJf7rjKP/vve8DjbCSLHqGpsVxrM7JocrQKZN+Uq0GUuIMHK11hE2vbG4N2F9uw+314HD7KK934fL6AHB6ZJxemRq7J+jcWrNStXZdwm1zssdGCAQnM1F5y999993cfffdgb81Gg2nn356qy4MgaCvEguTvNsr8/inBby28WBgWW52EkuuzeVYnTMit1IkLqhQPTBGZFjRaSR2lNZi1GnQaiRcHrUCpl4rtTi3cFaq1q5LqG3sbi9L1uxlV2kdFkPXx0Z01PIhLCaC3kJMnt6lS5eKFt0CQRiiXRfgSI2DO/+dR15RTWDZwulDWHThaAw6DQOTzDx39aSghl3haMsFFU7JyE4x86tl+RSW1WFz+PApCm6fjMenhDy3UFaqtq5L823WFZaTd7gGh0c9nkGn6bLYiK6qmRFthPIiiCYxeYJuuOGGWOxWIOgVRDPdc11hOb9ato1qu9o622rU8dTlp3DhhAFB4wqO1YeMLQglTNpyQYVTMu49byQvrt1PaZWdcpuLfvEmBiWb2xVIG+l1sbu9LN9aoioPskK13YNeIzG6f3y7FbH2CtWOuqC6O5uku5UXQe8jJk/t8ePH+e9//8vw4cOZNm1a2HEbN25k//79XHDBBaSnp8diKgJBj6SzwaY+WeH5/+3l+TV78bfDG90/nhevO40haXFBY0MJrsc++YF4k65DzZ0gtJLRWv+LSAnVGj1Uae1Km5t6p4e0OAMun4zN6cWk13Ll5Kyw24SiI0K1oy6o7swm6W7lRdA7iUklyr///e8sWLCAgwcPtjru0KFDLFiwQJSx7uOcrBUGO4vFoCMrxdLuF3ilzcUNr23huf+dUB6uOC2TD38xvYXyoI4PFlwGrYa9x23sKq1rV/XI9pxTmtUU9tzaut/+fRQcq+fuZdu5993t3L1sO3lF1YExfneHIqlWlwSzjtzBySSa9WG3CTWPjlTR7GjF0e6oVOqn+TPQvPKqQNARYqJArFq1Cr1ez+WXX97quMsvvxydTsfHH38ci2kIWqGnCO28ouqIX/gC2Hqoiouf38CGfRWAWhjqyctO4akrJqKghLynzQWXf73F0PXCJNL73ZZwb1oeOj3eyMSsZG6eMYTXNh6KWCHoqFDtaGnq7ixp3Z3Ki6D3EpMn9+DBg2RnZ2M0tt4W2Gg0Mnjw4DYtFYLo0lN8ocKsGjmKovDqhoM8/mkBXlk1O+SkWnhh/mmMHZjQ6j1tHluQkxZHvdMT0+ZOoeIK2nO/IzH3N3d3tNdF0Jlg1o66oLqrTkp3lFkX9H5i8vTU1NQwePDgtgcCycnJFBUVxWIaghD0JKEtKgxGRp3Tw/9bns9/dx0PLLtwfH+euPwUEkz6iO5pc8HlD6oMVYuhs8ItnDLTnvsdqXAPisWw0i6FoLNCtaP1TrqrTkpPL/ImOPmIyROUmpoasVXhwIEDJCeLSOCuoicJbdHmuG12HanlF//K43ClHVAbYS2+aAwLp+eEbITV2j21GHRgVceP7h/fQpg0L1F9xeRMZo7s1+4aB+GUmeb32+HxYdBpAv00mtJVzcz6mlDtziJvIoW09xGTuzh58mRWrlzJhx9+yNy5c8OO++ijj6isrOSiiy6KxTQEIehJQluYVcOjKArvbi3mdyt24fbKAAxINLHk2lM5bXBK0NhI72lrbo6mgl9SoKKhlrzD1eQOTuLOWSMidnG1psxkpVgC97u02kG900Olzc3iD3aGdKOFE+6tCaKOKAS9tXJqTxLYPcVtKoguMQmiXLBgAYqicPPNN7Nu3bqQY9avX8/NN9+MJEksWLAgFtMQhKA7A7lC4X/h//nKSTx39STxUgEcbh+/Xv4997+/I6A8zBiRxsq7zmqhPEBk99RftfH74hoq6l0tAgybtuV2+WS8soLT42NXaV27MjTaCtbLzU7msXnjSYkzoNVKuL1yq8GOzTNVIgnC7Gh2S2+iJwUndzTbRdDzickvbM6cOVxyySX85z//YdasWUydOpVp06aRlJRETU0NmzZt4uuvv0ZRFC699FIuu+yyWExDEIaeZrbtrV+AHeFAuY1f/Csv0AhLkuDu2SO4a9YItBop7HZt3dO2qjb6Bf/hygZsTvXFbjXpsBi07XJxRWJVcrhlXF4fcXpdu9xoPSl+pyfT065TT3KbCqJLzO7esmXL+PnPf86bb74ZUBj8KIoSsDz87W9/i9UUBK0ghHbPY9X3R7n//RONsFLiDDx39SRmjOgX0fbh7mkkVRv9gn/Jmn3kHa6GxvgEl09ut4urLWWmo240IYgio6ddp57kNhVEl5g9TSaTiddff51f//rXvP/+++zYsYO6ujoSEhI45ZRTuOyyyxg3blysDi8QnDS4vTL/98kPvL7pUGDZaYOTWXLtqQxIDN+3IlLCVW28dNJAteaBVR3Xz2rkycsnsPVQNe9uLcbm9HY4LsWvzPjrjTRVJDoa+yIEUWT0tOskYp16LzG/g+PHj2f8+PGxPoxAcFJSWuPgjn/lsb24JrDs5rOGcP+Fo9FroxOi1FSgWI06NBJkJltYsf0ob20OTqH2B7gtuTY3ouZbrdFa4FxHgx07Koh6UkBhrOmJArunuU0F0UHcRYGgm1i7p4x73tkeaIQVb9Tx1BWncMH4AW1s2T6aCxSrKY56p5eCY3UYtRqO1jpRgIGJpoC/fOH0HF7beKjDUfOR+OE74kbriCDqixkAPVFgC7dp76PTd/PNN98EIDExkUsvvTRoWXu4/vrrOzsVgeCkwCcrPPdFIX/9cl+gl8WYAQm8OD+XnBC9LKJBU4HicPt48KMdmHVaMhJNHKl1IgEDEs0cq3NSZXPxty/3caCiocNBeLH0w7dHEPW0gMKuRAhsQazp9NN14403IkkSo0aNCigQ/mXtQSgQgr5Ahc3F3cu2sXFfZWDZVZOz+P2l4zDptTE9dtO4BL9L42iNAwlQgCO1Dtw+GbPBjMPj65Tw7yl++J4WUCgQ9CY6/Qs6++yzkSSJ7OzsFssEAsEJvj1UxZ3/zuN4nQsAk17DHy4dzxWNLai7iuYujbR4tWeNBCRaDCyYnsPSjYc4Wttx4d9T/PA9RZERCHojnf41r127NqJlAkFfRVEU/vHVQR5fXYCvsRHWkLQ4Xrwul9H9E7plTs195ECQv9yk17ZL+IcKUuwJfvieosgIBL0R8SsSCGJIrUNthPXZ7hONsC6eMIDHL5tAvEnfrn1FO5OguY+86f+3R/i31Qm0u10FPUGREQh6I+KXJBDEiJ2laiOsoiq1EZZeK/HARWO4cVpOu1183ZFJEInwP1mCFHuCIiMQ9DZi0gtDIOjLKIrC21uKmPfipoDyMDDRxDu3TWXB9CHtVh56ci+B5kGKJt2J0tfdgb9wVU+4NgJBb6fTKvmsWbM6PQlJkvjf//7X6f0IBN2N3e3ltx/t5IO80sCys0f249mrJpESZ+iQGyKamQTRdoOkWg3Em3QUVdo5UG7rUOnraNEX6z0IBN1JTIIo/fi/tBR/snuYdSJjQ9Ab2F9u4/a3vqPwuA1QG2Hd+6OR3HHucDQaqcMCLlqZBLEQsAXH6ql3enF5ZVw+mRHp1kCQYldWfzxZXCkCQW+i07+spUuXhlx+8OBBHnvsMRRFYe7cuYwbN46MjAyOHz/Orl27+Oijj5AkicWLF5OTk9PZacSMrVu3smHDBrZu3cq3337L3r17URSFxx57jEWLFrW5vcvl4tlnn+Xtt99m3759aLVaxo4dy4033sgtt9yCRhNbL1JfKuHbnXycf4RF739Pg9sHQGqcgeeuPpWzRqQBnRNwkWYShLrX/mVmgybqAtZ/TqU1DpItehrcXuJNekb3j+9ya4Co9yAQdD2d/mXdcMMNLZaVlpZy6qmnkpubyzvvvBNUI8JPUVERV111FS+88ALbtm3r7DRixs0330x+fn6Htq2rq+Pcc88lLy8PjUbDuHHjcLvdbN68mc2bN7Ny5Uo+/PBDdLrYvOCESTf2uLw+/m/VD7zx9eHAstNzkvnrNbn0TzQFlnVWwLWVSRDqXgOBZUadlsoGV1QFbKhzsjk9lFTbu9waIOo9CARdT0w+fx955BFqampYvnx5SOUBIDs7m+XLl1NdXc0jjzwSi2lEhaFDh3LVVVfx1FNP8eWXX3LmmWdGvO3Pf/5z8vLyyM7OJj8/n++//56CggLWrVtHYmIiK1eu5NFHH43JvHty4F1voaTazpUvbw5SHm49eyj/vuXMIOUBTgg4h9fXqeJMWSmWkJaH5vd6yZq9LFmzL7BsX3k9FfUu7J6OH7854c4JRerywEq/lWbcwETSrAbGDUwU9R7aQAScCjpLTH5dq1evZty4cWRmZrY6LjMzk3HjxrF69epYTCMqfPDBB0F/G43GiLbbtWsXy5YtA+Af//hHUEfSs88+myeffJLbbruNP//5z9x7770kJSVFbc4gTLqx5svGRlg1QY2wJnLB+P4hx8eyoFGoe11pc6MoStAyk1lDitWA2ytH5fjhzikzxdwt1oCO1Hvoqy4+YZ0URIOY/GLKy8tJTo7sYfT5fJSXl8diGt3Ku+++i6IoDBs2jB//+Mct1l9//fXcc8892O12VqxYEdIV1BmESTc2+GSFv3xeyJIv9wWWjR2QwIvX5TI4tfVGWLEqaBTqXudYLYBERUNdYNmwdCuPzRuPwy13+vh+wTu6f3zIc+qu6o/tqffQV4WoCDgVRIuYPC39+/dn9+7d7Nu3j+HDh4cdt3fvXnbv3t2mpeJkZNOmTYBqbQiFyWRiypQprF27lk2bNkVdgRAlfKNPeb3aCGvT/hONsK6ZksXDP428EVYsChqFu9dAi2VpVlMbe2ubSARvT6/+2JeFqLBOCqJFTJ6WOXPm8PzzzzNnzhzeeustJk2a1GJMfn4+1113HYqiMGfOnFhMo1vZs2cPQKsK1LBhw1i7di0FBQUxmUNPf4mfTHxzoJK73t5GWf2JRlh/mjOBy07rGcpvuHsd7fvfHsHbk6s/9mUhKqyTgmgRk1/KQw89xIoVK9i9ezennXYaM2bMYPz48UFpnOvXr0dRFAYPHsxDDz0Ui2l0K1VVVQCkpKSEHeNfV11dHdE+i4uLKSkpCVq2Y8eOVrfpyS/xkwFFUXh5/QGe+u+eQCOsoWlxvNCNjbDCEepeR/v+d7XgjVWMQl8WosI6KYgWMXliUlJSWL9+PT/72c9Yv34969ev56uvvgqs9xeWmjFjBv/85z9bFbInKw6HAwCDIfwLyWRSzcl2uz2ifb766qv8/ve/7/zkBBFRa/dw3/J8vvihSSOsUwbwxGWnYDX2zZdtVwreWMYo9HUhKqyTgmgQs6cmKyuLtWvXsnHjRlatWkVBQQH19fXEx8czevRoLrroIs4666yYHPuRRx7psKDdtm1bSJdLezGbzTQ0NOB2h09dczqdAFgsloj2edNNN3H++ecHLduxYwe33XZbxycqCMmOklp+8e/vKK5SFUG9VuK3F4/l+qmD+3Tl1K4SvF0Ro9DXhGhza46wTgo6S8yfnunTpzN9+vRYHyYIk8lEYmJih7bVaiMLhmuL5ORkGhoaqKysDDvG7+aINGMlKyuLrKysqMxPEBpFUfj3liJ+/5/duH0yAIOSzCy59lRO7QMR+pHQFYK3q1wlfUWI9tWME0Fs6ZW/nEWLFkVUZjqWjB49mpKSEvbt2xd2zP79+wNjBd2P3e3lwQ938uG2E42wzhnVj79cOYnkuJYm+r5aQwBaCt5YNOnqqzEK0aYvZ5wIYkuXPD2KolBZWYndbg9bmbK3MW3aNL744oug2I+mOJ1OtmzZEhgr6F72ldVz+1t57C1TG2FpJLj3xyP5xTlqI6zmiC+6E8TiWvT1GIVo0pczTgSxJaadnNatW8dFF11EfHw8GRkZDB06NGj9E088wcKFCwOm/N7EFVdcAahWhs8//7zF+jfffBO73Y7ZbOaSSy7p6ukJmvCf/CNcsmRjQHlIsxp466YzuHPWiJDKgygTfoJYXgu/q+TPV07iuasn9VkFrbNEo4y6QBCKmCkQTz31FLNnz2b16tXY7XYURWnR1jshIYE33niDjz/+OFbT6DbGjx/PVVddBagNuXbu3BlYt379en7zm98AcO+990YcAyGILi6vj4dW7OSXb2/D3thFc0pOCqt+OYNpw9PCbtf8i64rej1Az+xdEOtrEa7/hyByRJ8QQayIiQKxbt067r//fkwmE0899RQHDx4MaaafN28eiqL0aAXiySefJC0tLfBv48aNAPzhD38IWu7ve9GUl19+mUmTJlFUVMTEiRM55ZRTGD16NDNnzqS2tpYLL7yQhx9+uKtPSQAUV9m58qWvebNJI6zbZg7l37ecQUZC69Uau+OLLq+omruXbefed7dz97Lt5BVFVjsk1oiv25MDYc0RxIKYqKDPPvsskiTx8ssvM3/+fICQqW8ZGRlkZmbGrBJjNLDb7SEzKex2e1D9Bn9KZlMSExP5+uuv+ctf/sKyZcvYt28fWq2WKVOmsGDBAm699VY0mph6kQQhWFNwnHveyafW0dgIy6TjmSsn8eOxGRFt39X++Z4cBCdiFU4e+krGiaDrkJTmfoUo0L9//xZNsmbMmMGmTZvw+XxBY8844wz27t3bK+MguoKvv/6aadOmsWnTJqZOndrd0+nReH0yz3xeyAtr9weWjR+UwAvXnkZ2amS1OJrSVVkYxVV27n13O1U2dyAILs1q4M9XTiIrpf3zjpT2nF9fzkgRCHoDHZElMfmlV1dXM2HChIjGyrIc8utdIIgmZfVOfvn2NjYfOKGoXntGNg/9ZGzEjbCa01VfdN2R0tjezArxdSsQ9D1iYj9PTk6muLi4zXGyLLN3714yMiIzHQsEHWHzgUoufn5DQHkw67X85aqJ/N/cCR1WHrqSrg6CE1kmAoEgEmLyBpo8eTKffvopX331FTNmzAg7bvny5dTV1XHRRRfFYhqCPo4s+xthFdDYB4th/eJ48brTGJkR372TayddWXZZ1A3oHMKdI+grxMQCcdNNN6EoCrfeemug2mJzNm3axB133IEkSdx8882xmIagD1Nr93DLm1t5YvUJ5eGnEwfynzvPOumUBz9dldIoMis6Tk/NlhEIYkFMFIi5c+cyb9489uzZw8SJE7nkkks4dOgQAA8//DA/+tGPOPvss6mqqmL+/PnMmjUrFtMQ9FG+L6nh4r9+xf8KygC1EdYfLh3H81dPIq6PdtFsDx11mfTEOhVdiXD9CPoaMXub/vvf/+ZXv/oVr7zyCitXrgws/+Mf/4iiKEiSxC233MKSJUtiNQVBH0NRFN76pog/fBzcCOuF+blMzErq3smdZLTXZSJKewvXj6DvEbOn2mAw8MILL3DPPfewfPly8vPzqa6uxmq1MmHCBK644grGjx8fq8ML+hgNLi8PfLiDFduPBJbNGp3OM1dOJMkiTO8dIdLMip5cp6IrEQ3ABH2NmPy6Fy5ciEaj4W9/+xsjRozggQceiMVhBAIA9h6v5/Z/5bGvSSOsX58/ip+fPSxkLwtBdBFf3iqiqJagrxGTJ/utt95i9OjRGI3GWOxeIAiwYnspi97fgcOjFihLsxr56zWnMnVYajfPrO8gvrxPZF6M7h/fZdkyAkF3E5OnOyMjA4Oh77w8BF2Py+vjDyt389bmosCyKUNSWHLNqaS30ctCEF36+pe3iP8Q9FVi8gs/99xzee+996irqyMhISEWhxD0YYqr7PziX3nsKK0NLPv5zGH8+ryR6LSit0h30JV1KnoSIv5D0JeJydv2gQceQJIk7rzzTmRZjsUhBH2UL3Yf5+LnvwooDwkmHf+4fjKLLhwtlIdupi+23u6u1u4CQU8gJr/0srIyHnzwQR5++GG2b9/O9ddfz7hx44iLiwu7zdlnnx2LqQh6CV6fzNOfFfLSuhOFySYMSuSF+bkxbSglELSGiP8Q9GViokCcc845gfbdu3bt4v777291vCRJeL2i2IogNGV1Tu58extbDp5ohHXdmdn89uKON8ISCKJBX4//EPRtYvKUZ2dnBxQIgaAzbNpfwS/f3k6FzQWojbAev2wCl04a1M0zEwhU+mr8h0AQkyfdX7ZaIOgosqzw4rr9/PmzPYFeFsPTrbw4P5cR3dTLQjRJEoRDtDMX9EXEEy/ocdTY3dzzzna+3FMeWHbppIH839wJ3dbLIpapekIxEQgEJyNRf1vt2LGDwsJCAEaNGiXKVQvaRX5xDb/4Vx6lNQ4ADFoND/10LPPP6D63WCxT9UQNAYFAcLISNQVi9+7dXHfddeTn5wctnzRpEm+99RZjxoyJ1qEEvRBFUfjn5sP8YeVuPD7VZ5GZrDbCOiUzqVvnFqtSzaKGgEAgOJmJSuJ8ZWUls2bNIj8/H0VRgv5t27aN2bNnU1VV1faOBH0Sm8vLL5dt56EVuwLKw+zR6ay6a0a3Kw9wIlXP4fVFNVVP1BAQCAQnM1FRIP76179SVlZGXFwcTz75JN9++y1btmzh8ccfx2q1cvz4cZ5//vloHErQyyg8Xs+lSzbwcb7aRVMjwf0XjObv108m0aLv5tmp+FP1xg1MJM1qYNzAxKik6sVKMREIBIKuICp20k8//RRJknjrrbe45JJLAssnT57M6NGjmTNnDqtWreKRRx6JxuEEvYQPt5XwwAc7A42w+sWrjbDOHNrzGmHFIlVP1BAQCAQnM1F5UxUWFpKenh6kPPi55JJLSE9PZ9++fdE4lKAX4PT4eHTlbv79zYlGWGcOTeH5a04lPb7nNsKKRaqeqCEgEAhOVqLytqqrq2s1SHLIkCF8++230TiU4CSnqNLOL/79HTtL6wLL7jh3GPf8qO82whI1BAQCwclIVN5aiqKg04XflU6nQ1GUaBxKcBLz+e7j3PvuduqdatnyRLOev1w1kVmjM7p5ZgKBQCBoL+KzRxBzvD6Zpz7bw8vrDgSWTcxMZMm1ohGWQCAQnKxETYHYu3cvCxcuDLsOCLtekiReffXVaE1F0IM4Xufkrn9vY8uhE2m8108dzIMXj8GoE42wBAKB4GQlagpEWVkZb7zxRsh1fvdFqPWKoggFopeyaV8Fv1y2jYrGugYWg5bHLzuFSyYO7OaZCSJBlNgWCAStEZW3wtlnny26bwoCyLLCC2v38cznhYFGWCPSrbx4XS7D07unEZagfYgS2wKBoC2iokCsXbs2GrsR9AKqG9zc8+521jZphDX31EH8ae548RV7kiBKbAsEgkgQbwNB1NhWVM2d/94W1AjrkUvGcc2ULGGhOomIVe+PaBDKrSJcLQJB9yB+bYJOoygKb359mD+uOtEIKyvFzIvzT2P8oMRunp2gvfhLbJfWOHpUie1QbhVAuFoEgm5CKBCCTmFzebn//e9Z9f3RwLIfjcngz1dM7DG9LATtoyeW2A7lVlmyZh+gUHCsXrhaBIJuQPzKBB1mz7F6bv/XdxwobwBAq5H4zfmjuPXsocJlcZITSYntrnQdhHKrVNY7QZK6xdUi3CYCgVAgBB3k/e9KePCjHTg9MgDp8UaWXJvLlCEp3TwzQbRorcR2V2dphHKr5KTFAQrlNleXulpEhopAoNI3mw8IOozT42PxB99z3/L8gPIwdWgqq345QygPfYSm7oQqm5tdR2p5ce1+7G5vzI4ZqqX6nbOGc+esEVFvs94aFTYnz3y2h52lXXfuAkFPRVggBBFzuLKB29/KY/fRE42w7jx3OPf8eCRajXBZ9BW6K0sjnFulq7qZ5hVV88xnhWwvrkFWYFCSGaXB3WMyVASCrkY88YKI+O+uY/x6eX6gEVaSRc9frpzEuaPTu3lmgq6mO7M0QrlVuqKbqd/qsq+8HlkGp9fH7qN1JJr1PSJDRSDoDoQCIWgVj0/mydUF/P2rg4FlE7OS+Nu1p5KZLBph9UV6YpZGrPFbXeL0OjIHWth9pA6NBMP6xfX6cxcIwiGeekFYjtU6ufPfeWw9XB1YduO0HB64aAwGnQif6cvkZifz2Lzx7C9rYFh6HGlWU3dPKaY0tbooDW4SLDqG94vn2asn9vpzFwjCIRQIQUg27K3g7mXbqGxQG2HFNTbC+qlohBVTTpb0wL6WidDS6mLl9nOGCeVB0KfpuW8oQbcgywpLvtzHX74opLGJKiMzrLx43WkM62ft3sn1ck4WoeyPB9hZWoteK1FS3TcKOEVSG0Mg6EsIO7QgQFWDmxtf/5ZnPj+hPMw7dRAf3TFdKA8xpjtSIztKpc1NSbWdWoeHWoeXWoeH0moHlY1t23szFoOOrBSLUB4EAoQFQtBIXlE1d/wrj6O1TgAMOg2/v2QcV58uGmF1BT25gVVzzAYNFfUunB4fHq+MT1Eor3diNrT8HjlZXDICgaD9iF90H0dRFF7fdIg/rfoBr6yaHbJTLLwwP1c0wupCemoDq1A43DJpViMNLh8GnQa3V6af1YjDrRYW8ysNJdV2Xtt4qMe7ZAQCQccQCkQfpt7pYdH7O1i140QjrPPGZvDUFRNJNItGWF3JyZQamWo1kJliodrhRq/R4JFlBqVYSLUaAnEclTYXxVV2FCDRpBeNrgSCXoj4JfdRCo7VcftbeRysONEIa9EFo7l5xhDhsugmTpYgvXDKDhCI49BJErUODzqthvEDEymqsvdYl4xAIOgY4pfcB3nvuxJ+26QRVkaC2gjr9BzRy6K76YqqitEglLJTXGUPxHFkpViosLnx+mQOVNjwykqPdckIBIKO0fPfVIKo4fT4eHjFLt7ZWhxYNn14Ks9dfSppVmM3zuzkpy8GCzZXdprGcRRV2bEYtUho6RdvIiWu57pkBAJBxxC/5j7CoYoGbv9XHj80NsKSJLjr3OHc/SPRCKuznCz1G2JNc9fGsHQrC6bnkJVs6VOKlUDQVxC/6D7A6p1H+X/Lv6fepdYUSLbo+ctVkzhnlGiE1Vma1m8w67R9PljwZInjEAgEnUf8unsxHp/ME58W8I8NJxphnZqdxN+uzWVgkrkbZ9Z7OJnqN3QVJ0sch0Ag6BziV95LOVrr4M5/b+O7Jo2wFkzPYfGFohFWNDmZ6jcIBAJBNBEKRC/kq73l3L1sO1WNjbCsRh1PXHYKF58yoJtn1vs4meo3CAQCQTQRb7lehE9W+OuavTz3v72BXhaj+8fzwvxchopeFjFD+P0FAkFfRLzpegm1djc3Lt3CV3srAssuPy2TP1w6HrNB240z6xsIv79AIOhriDdeL+G+5d/TkDQUAKNOwx8uHc+Vp2d186wEAoFA0FsRCkQvoarBhTEJBqeqjbDGDRSNsAQCgUAQO4QCcZLT0KD2snCXH+KMIancefpw6g7v5uvD3TwxgUAgEJw07NixAzghUyJBKBAnOQcOHACg6r9/Y8V/YcUfunlCAoFAIDhp8cuUSJAUxR+vLzgZOXLkCCtXrmTo0KHExcV193R6NTt27OC2227j5ZdfZsKECd09HUE3IZ4DAfS+56ChoYEDBw7wk5/8hIEDB0a0jbBAnOQMHDiQW2+9tbun0aeYMGECU6dO7e5pCLoZ8RwIoG8/B6IkoUAgEAgEgnYjFAiBQCAQCATtRigQAoFAIBAI2o1QIASCCMnMzOThhx8mMzOzu6ci6EbEcyAA8RyAyMIQCAQCgUDQAYQFQiAQCAQCQbsRCoRAIBAIBIJ2IxQIgUAgEAgE7UYoEAKBQCAQCNqNUCAEAoFAIBC0G6FACAQCgUAgaDdCgRAIBAKBQNBuhAIhELTC1q1befbZZ7nuuusYNWoUGo0GSZJ4/PHHI9re5XLxxBNPMGnSJKxWK4mJiUydOpWXX34ZWZZjPHtBV5GTk4MkSa3+27p1a3dPUxAFvv32W6688koGDBiA0WgkKyuLhQsXsnfv3u6eWpcjunEKBK1w8803k5+f36Ft6+rqOPfcc8nLy0Oj0TBu3DjcbjebN29m8+bNrFy5kg8//BCdTvwMewvjx48nMTEx5Lr4+Pguno0g2rzxxhvcdNNN+Hw+0tLSmDBhAnv37mXp0qW88847fPzxx8yaNau7p9l1KAKBICxz585VrrrqKuWpp55SvvzyS+XMM89UAOWxxx5rc9trrrlGAZTs7Gxlx44dgeXr1q1TEhMTFUD53e9+F8vpC7qIwYMHK4Dy5ZdfdvdUBDFi586dik6nUwDl/vvvV9xut6IoitLQ0KDMnz9fAZTk5GSloqKim2fadQgFQiBoBzNnzoxIgdi5c6ciSZICKJ999lmL9S+//LICKBaLRamuro7RbAVdhVAgej9XXHGFAijTpk1rsc7pdCpDhgxRAGXx4sXdMLvuQcRACAQx4N1330VRFIYNG8aPf/zjFuuvv/56LBYLdrudFStWdMMMBQJBpNjtdlauXAnA7bff3mK90WjkxhtvBODtt9/uyql1K0KBEAhiwKZNmwA4++yzQ643mUxMmTIlaKzg5Ofll1/mpz/9KbNnz+bqq6/mmWeeoaysrLunJegk27Ztw+FwAOF/0zNnzgTg0KFDHD16tMvm1p0IBUIgiAF79uwBYPjw4WHHDBs2DICCgoIumZMg9ixbtoyVK1eyZs0a3nnnHe677z5ycnJ4+eWXu3tqgk7g/z0bDAaysrJCjvH/nqHv/KaFAiEQxICqqioAUlJSwo7xr6uuru6SOQlix9SpU3nppZfYvXs3NpuN2tpavvjiC2bOnInD4eDnP/85b7zxRndPU9BB/L/n5ORkJEkKOabpb72v/KZF/phAEAP85k6DwRB2jMlkAlT/quDkJpTfe/bs2ZxzzjlccsklfPLJJ9x3331cfvnlxMXFdcMMBZ2hPb9n6Du/aWGBEPQ6HnnkkTaL+oT7t3379qjMwWw2A+B2u8OOcTqdAFgslqgcU9A+uuI50Wq1PP300wBUVlby5ZdfxvCMBLGiPb9n6Du/aWGBEPQ6TCZT2GI+baHVaqMyh+TkZBoaGqisrAw7pqlZVND1dNVzMmbMGJKTk6murqawsLBDxxN0L/7faHV1NYqihHRj+H/PTcf3doQCIeh1LFq0iEWLFnXrHEaPHk1JSQn79u0LO2b//v2BsYKupyufE7/p2+PxdMnxBNHF/xt1u90UFRUxePDgFmP8v+em43s7woUhEMSAadOmAfDVV1+FXO90OtmyZUvQWEHvpKysLJDKGS6CX9CzmTRpUsCNsX79+pBj1q1bB6h9UQYMGNBlc+tOhAIhEMSAK664AlC/Sj7//PMW6998803sdjtms5lLLrmkq6cn6EKeeOIJFEVBr9cze/bs7p6OoAPExcVx8cUXA4RMyXW5XLz++usAXHXVVV05tW5FKBACQQwYP3584EVy8803s3PnzsC69evX85vf/AaAe++9t8/4S3srjz76KC+99FKQDxzUZmqLFy/mmWeeAeCXv/wlGRkZ3TFFQRR4+OGH0el0bNy4kUWLFgXcUXa7nZtvvpmDBw+SmJjIr3/9626eadchKYqidPckBIKeypNPPsmTTz4Z+Lu2thav14vFYgmYNAGWLFnC1VdfHbRtbW0t55xzDtu3bw/qxukvSnPhhReyYsUK9Hp915yMICbceOONvPHGG0iSRE5ODv369cPpdFJQUBCI2r/++ut59dVXRefVk5zXXnuNW2+9NdCNc/Dgwezdu5e6ujrMZjMrVqwIWbq+tyKeZoGgFex2e8hMCrvdHpTr3TSFy09iYiJff/01f/nLX1i2bBn79u1Dq9UyZcoUFixYwK233opGI4yAJzsLFiwgISGBLVu2UFxcTH5+PpIkMWjQIKZOncrChQuF66KXsHDhQsaPH8+TTz7Jhg0b2LFjB/369WPu3Lk88MADjBw5srun2KUIC4RAIBAIBIJ2Iz5/BAKBQCAQtBuhQAgEAoFAIGg3QoEQCAQCgUDQboQCIRAIBAKBoN0IBUIgEAgEAkG7EQqEQCAQCASCdiMUCIFAIBAIBO1GKBACgUAgEAjajVAgBAKBQCAQtBuhQAgEAoFAIGg3QoEQCAQCgUDQboQCIRAIBAKBoN0IBUIgEAgEAkG7EQqEQCDo8bz++utIksQ555zT3VNpk3POOQdJknj99dejut+cnBwkSWLt2rVRm1Nrc43VeQh6D0KBEPRJ/C9HSZIYOnQobXW1nz17dmB8Tk5O10xSEBUqKyt59NFHOfPMM0lOTkav15Oens748eO56qqr+Nvf/kZRUVF3T/Ok4dlnn+WRRx7h0KFD3T0VQTej6+4JCATdzcGDB1m3bl3Yr9vDhw/z5Zdfdu2kBFHh22+/5eKLL6a8vByA/v37M3ToUHw+H/v27WPXrl28++67VFdX89vf/rabZxs7srOzGTVqFImJiZ3e5tlnn+Xw4cOcc845Qpnu4wgFQtCnGTNmDD/88ANLly4Nq0C8/vrrKIoSGCs4OWhoaGDOnDmUl5dzxhln8Ne//pXTTz89sF6WZbZu3cqyZctITk7uxpnGnjfffLNLthH0LYQLQ9Cnueyyy7Barbz33nvU19e3WK8oCm+88QaSJHHDDTd0wwwFHWXVqlUcOXIErVbLhx9+GKQ8AGg0GqZMmcIzzzzDHXfc0U2zFAhOXoQCIejTxMXFceWVV2K321m+fHmL9WvXruXgwYPMmjWLwYMHt7m/Dz/8kJ/85CdkZGRgMBjIyMhgzpw5YQPfCgsLeeKJJ5g9ezY5OTmYTCYSExOZMmUKjz/+OA0NDWGPVV9fzx/+8Adyc3OJj4/HYDAwcOBApkyZwn333ceePXuCxvtjOML5rlsLVGwawPfDDz9w/fXXk5mZiV6v58Ybb+zUNfBTWVnJr371KwYPHozRaCQzM5Obb76ZkpKSVrcLx/79+wFIS0tjwIABHdqH3W7nySef5PTTTychIQGz2czIkSO5++67OzSvztyDpuzevZurr76a/v37YzKZGDVqFI888ggOhyPk+I4ERDbfxj+3w4cPA3DuuecGzkeSJG688UaOHj2KXq9HkiQKCwvD7nvjxo1IkkR8fHxIxT0UW7duRZIkdDoddrs97Li33noLSZIYM2YMHo8n4vMVtB+hQAj6PAsWLABg6dKlLdb5l/nHhMPlcnH55Zczb948Vq1ahSzLjB8/Hq/Xy4oVKzj33HN54oknWmz3wAMPsGjRIr755ht0Oh2nnHIKqampfPfddyxevJjp06dTV1fXYjubzca0adN46KGH2L59OwMGDGDSpEkYjUby8/N55pln+PzzzztyOVpl48aNnHbaabz77rukp6czatQoNBpNp64BQFFREZMnT+a5556juLiYESNGkJqayuuvv86pp57KwYMH2z3XhIQEAI4fP87evXvbvf2xY8c444wzuP/++9m6dSuDBg1izJgxHDp0iOeff54JEyawYcOGdu+3s2zZsoXTTz+djz76iEGDBpGdnU1hYSG///3vOfvss0M+L9EgIyOD6dOnYzQaARg/fjzTp08P/Bs5ciQDBgzgkksuAeAf//hH2H3511199dXEx8dHdPxJkyZhsVjw+Xx89913IcfYbDbuv/9+QI3V0Ov1EZ+foAMoAkEfZObMmQqgPPbYY4qiKMqIESMUQCksLAyMqaurUywWi5KQkKDY7Xbl7bffVgBl8ODBLfZ3++23K4AyYsQI5csvvwxa9+abbyoWi0WRJElZs2ZN0LqPPvpI2bx5syLLctDyQ4cOKT/5yU8UQLnjjjtaHO/ZZ59VAGXixIlKUVFR0Dqn06m8//77yvr164OWAwqgHDx4MOQ1Wbp0qQIoM2fObLFu8ODBCqBotVrl2muvVaqrqwPr7HZ7p66Bopy4H6NHj1YKCgoCyw8fPqxMmTJF0ev1YecWjv379ytarVYBlJycHOWll15qca1aY/bs2QqgDBs2TMnPzw8sLysrU84//3wFUNLT05WKioqQ57J06dIW+4zGPdDr9crFF18cdNzNmzcr/fv3VwBl4cKFLbYNN6fW5hpunX8eze+xn//+97+Ba+N2u1usr6urU+Li4hRA+eabb0LuIxz+OT399NMh1//mN79RAOWSSy5p134FHUMoEII+SXMF4k9/+pMCKA888EBgzN///ncFUG699VZFUZSwCsSePXsUjUajmM1mZc+ePSGP99RTTymAcv7550c8R5vNpuj1eiU+Pl7xer1B62677TYFUJ599tmI9xcN4TV27FjF4/G0WN+Za/DVV18F5rZ169YW2x06dEjR6XTtViAURVGef/55RaPRBPYPKBkZGcqFF16oPPbYY8q+fftCbrdhw4bA+E2bNrVYX1dXp6SkpCiA8sc//jFoXawViJSUFKW+vr7F+vfffz+g5DVXlLpSgZBlWRk6dKgCKO+9916L9S+99JICKKecckrI7Vtj8eLFCqBceeWVLdYVFhYqBoNBMRqNYe+rILoIF4ZAANxwww1oNBrefPNNZFkGTrgvFi5c2Oq2y5cvR5ZlZs2axciRI0OOufzyywFYv349Pp8vaF1FRQV/+9vfuOGGGzjvvPOYMWMGZ511Fueffz4ajYb6+voWJvjs7GwAPvroI2pra9t/wh3khhtuQKdrmbzVmWuwatUqAGbMmMFpp53WYrvBgwczd+7cDs33rrvu4ptvvgkylR8/fpxPP/2UxYsXM2LECBYuXNgi1mTlypUATJ8+nalTp7bYb3x8PLfddlvQ/LuKm266CavV2mL53LlzGTx4MD6fj9WrV3fpnJoiSRK33norAH//+99brPe7L2655ZZ273vatGkAfPPNNy3W/epXv8LtdnPvvfcybNiwdu9b0H5EGqdAAAwaNIjzzjuP1atX88UXX5CTk8OmTZsYM2YMZ5xxRqvb5ufnA7B9+3bOOuuskGOUxkJVDoeDyspK0tPTAVixYgU33HBDm0pAZWVl0N8LFy7kmWeeYe3atQwcOJAf/ehHAWF35plnxsz3O27cuJDLO3MNCgoKANWn3tpxQwW5RsLkyZN5++238fl87Ny5k7y8PL788ktWrVpFVVUVS5cupaysLKA0AIEA1AkTJoTdr3+df/5dRbjr5A8cPHz4cLenGy9YsICHHnqIzz//nMOHDwcCkPPz89m6dSsmk4nrrruu3fv1K3OHDx+mrKws8AytXLmSTz75hIEDB/Lggw9G70QErSIUCIGgkQULFrB69WqWLl0aKJDTVvAkQHV1NQClpaWUlpa2Od4fQV5UVMTVV1+N0+nk8ssv56677mLs2LEkJiYGFIDs7GyKi4tbRJP379+fb775hkcffZSPPvqI//znP/znP/8BIDU1lbvuuosHHngg6opEXFxcyOUdvQZAIAo/IyMj7PjW1kWKVqtl4sSJTJw4kQULFlBbW8uCBQv48MMPWbVqFZs3b+bMM88ECAQi9u/fP+z+/JkdkWYRRItIrlNXz6k56enpzJkzh3fffZfXXnuN3//+98AJi8QVV1xBUlJSu/ebmprKyJEjKSwsZMuWLfzkJz/B5XJxzz33APDkk0+GfUYF0Ue4MASCRi699FJSUlL46KOPeP3119FqtfzsZz9rczu/Ofm3v/0tihpX1Oo/v3KybNkynE4nU6ZM4Z133uHss88mLS0tIPQVRaGqqirscYcNG8Ybb7xBVVUV3333Hc8++yznnXceVVVVPPLII9x3330ht/NbAprTWsporK4BEORaCEdr6zpKYmIiS5cuDWSRbN68ObDOn8Fx7NixsNsfPXoUIOIsgqZ05h5Ecp06Mqdo43fxvPbaa8iyjNPp5F//+hfQMfeFn+ZujGeeeYZ9+/Yxbdo05s+f38lZC9qDUCAEgkaMRiPXXHMNTqeTY8eOceGFF7b6BerHb8reuHFju47nr1Nw1llnBYRYU/Lz8yMSKFqtltzcXO6++27++9//8tJLLwHwyiuv4PV6A+P8X2bhBFBreftt0dFrADB69GgAdu3aFXZMa+s6Q2JiIv369QPA7Xa3mNPOnTvDbutfN2bMmIiPF417EO5aKIoScF20Z07tRZKkiMb542FKSkpYvXo17733HjU1NYwaNYoZM2Z0+Ph+BWLLli2Ulpbypz/9CY1Gw1//+tcO71PQMYQCIRA04ZZbbmH27NnMnj2bu+669COhgQAABidJREFUK6JtrrjiikCRpfbUBbBYLABhTf7haia0xdlnnw2odRmaWjBGjBgBwNdff91im9raWt5+++0OHQ86fg0ALrroIkANrty2bVuL9UVFRXz00UftnlNFRUUgIDYce/bsoaysDCAo+PPiiy8GYMOGDWzZsqXFdjabjZdffjlobCRE4x784x//CKlYfvTRRxw+fBitVsv5558f8Zzai/+5DVe0qilNgyk7EzzZFL8C8e2333LffffR0NDATTfdRG5ubqf2K2g/QoEQCJowceJEvvjiC7744gvOO++8iLaZMGECN998M4qicOmll7Js2bIWmRbHjh3jxRdf5PHHHw8s81cbfO+99/jggw8Cyx0OB7/+9a955513MBgMIY+5ePFiXnzxxRZfsnV1dfzpT38C1OqR/q9rIFDg56mnnuL7778Pmts111xDTU1NROcbio5eA1CzL/xfpNddd13QV3hJSQlXXXVVh+a0bNkyxo0bx3PPPdeiaqSiKPz3v//l0ksvRVEUsrKygoTu9OnTmT17dmBOTS0RFRUVXHnllVRWVpKRkREw1UdCNO5BfX091157bZByuGXLlkA57p/97GeBLJ1YMHz4cADWrFnT5tgbb7wRo9HIxx9/zLp16zAYDFx//fWdOv7YsWNJSkqiurqad955h6SkpMAzL+hiuiZbVCDoWTSvAxEJrRWScrlcyvz58wN5/gkJCcppp52mnH766UpmZmZg+Q033BDYxufzKbNmzQqsy87OViZPnqxYrVYFUP70pz+Fzbm/9NJLg7abMmWKMn78eMVkMimAYjablc8//zxom5qamkB+vkajUUaNGqVMnDhR0el0SnZ2tvLHP/6xzRoE4XL/O3oN/Bw6dEjJzs4OzG38+PGBuaWlpSkPPfRQu+tALFmyJKj+w4ABA5TTTjtNOeWUU5Tk5OSguhCh6k8cPXpUGT9+vAIokiQpY8aMUXJzcxWDwaAASlJSkvLVV1+12K612grRuAePP/64YrFYFJPJpOTm5iojR44MnEtubq5SU1MT8Zw6UgfivffeCxxv6NChyowZM5SZM2eG/S1de+21gfGh6jd0BH8hL9pZC0UQXYQFQiCIAgaDgbfeeovPP/+cq666iqSkJHbu3ElhYSHx8fHMnTuXV199laeffjqwjUajYdWqVfz2t79l2LBhHD16lAMHDnDGGWewYsUKHnjggbDH+93vfsdvf/tbzjrrLGRZJj8/n/3795Odnc0vfvELduzYwY9+9KOgbRITE9m4cSO33HILGRkZHDhwgKqqKm677Tby8vIYNGhQl18DP4MHD+a7777jrrvuYtCgQRQWFlJRUcH111/Ptm3bGDJkSLvnc9ttt7F+/Xp+97vfcc4552CxWCgoKKCgoACDwcC5557L008/zZ49e0LWn/Bnujz++OOceuqpFBcXs2vXLrKzs7nrrrvYsWNH2JTVcETjHpxxxhl8++23XHLJJZSUlHDo0CGGDx/O7373O9avX9+ult0d4bLLLuO1117jjDPOoLy8nA0bNrBu3bqw6ax+NwZ03n3hx59OPHbsWNEIrRuRFCVMOLBAIBAIBJ3k3Xff5aqrrmLIkCHs378/4iDMcNjtdoYNG8axY8f4/PPPWyjKgq5DWCAEAoFAEDP8waa33nprp5UHgD/84Q8cO3aMyy+/XCgP3YywQAgEAoEgJqxcuZKf/vSnxMXFcejQIdLS0jq1vw8//JArr7yS+Ph4du7cycCBA6M0U0FHEJUoBQKBQBA1jh07xtVXX01dXR3bt28H4MEHH+yw8rBx40YefPBBysvL2b17NxqNhqVLlwrloQcgFAiBQCAQRA2n08m6devQarUMGTKEW2+9ld/85jcd3t/atWtZt24dVquV6dOn8+CDD3LhhRdGccaCjiJcGAKBQCAQCNqNCKIUCAQCgUDQboQCIRAIBAKBoN0IBUIgEAgEAkG7EQqEQCAQCASCdiMUCIFAIBAIBO1GKBACgUAgEAjajVAgBAKBQCAQtBuhQAgEAoFAIGg3QoEQCAQCgUDQboQCIRAIBAKBoN0IBUIgEAgEAkG7EQqEQCAQCASCdiMUCIFAIBAIBO3m/wOv1PnOm1rffAAAAABJRU5ErkJggg==",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "predicted_labels = linear_model(std_features, w, b)\n",
- "\n",
- "plt.plot([-100, 100], [-100, 100])\n",
- "plt.scatter(labels, predicted_labels, s=4, alpha=0.7)\n",
- "plt.xlabel(\"Measured Solubility $y$\")\n",
- "plt.ylabel(\"Predicted Solubility $\\hat{y}$\")\n",
- "plt.xlim(-13.5, 2)\n",
- "plt.ylim(-13.5, 2)\n",
- "plt.show()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Final model assessment can be done with loss, but typically other metrics are also used. In regression, a **correlation coefficient** is typically reported in addition to loss. In our example, this is computed as"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 46,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "0.7004027073276268"
- ]
- },
- "execution_count": 46,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# slice correlation between predict/labels from correlation matrix\n",
- "np.corrcoef(labels, predicted_labels)[0, 1]"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "A correlation coefficient of {glue:}`corr` is OK, but not great."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Unsupervised Learning\n",
- "\n",
- "In unsupervised learning, the goal is to predict $\\hat{y}$ *without* labels. This seems like an impossible task. How do we judge success? Typically, unsupervised learning can be broken into three categories:\n",
- "\n",
- "**Clustering**\n",
- "\n",
- " Here we assume $\\{y_i\\}$ is a class variable and try to partition our features into these classes. In clustering we are simultaneously learning the definition of the classes (called clusters) and which cluster each feature should be assigned to.\n",
- "\n",
- "```{margin} Class\n",
- "In machine learning, a class is a type of label like ``dog`` or ``cat``. Formally,\n",
- "we have a set of possible labels (e.g., all animals) and each feature vector has one (hard) or a \n",
- "probability distribution of classes (soft).\n",
- "```\n",
- "\n",
- "**Finding Signal**\n",
- "\n",
- " $x$ is assumed to be made of two components: noise and signal ($y$). We try to separate the signal $y$ from $x$ and discard noise. Highly-related with **representation learning**, which we'll see later.\n",
- "\n",
- "\n",
- "**Generative**\n",
- "\n",
- " Generative methods are methods where we try to learn $P(\\vec{x})$ so that we can sample new values of $\\vec{x}$. It is analogous to $y$ being probability and we're trying to estimate it. We'll see these more later.\n",
- "\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Clustering\n",
- "\n",
- "Clustering is historically one of the most well-known and still popular machine learning methods. It's always popular because it can provide new insight from data. Clustering gives class labels where none existed and thus can help find patterns in data. This is also a reason that it has become less popular in chemistry (and most fields): there is no right or wrong answer. Two people doing clustering independently will often arrive at different answers. Nevertheless, it should be a tool you know and can be a good exploration strategy.\n",
- "\n",
- "```{margin} cluster labels\n",
- "Clustering comes in many variants and some blur what exactly $y_i$ is. For example, in some clustering methods $y_i$ can include no assignment or $y_i$ is not a single class, but a tree of classes.\n",
- "```\n",
- "\n",
- "We'll look at the classic clustering method: k-means. Wikipedia has a [great article](https://en.wikipedia.org/wiki/K-means_clustering) on this classic algorithm, so I won't try to repeat that. To make our clustering actually visible, we'll start by projecting our features into 2 dimensions. This will be covered in representation learning, so don't worry about these steps."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 47,
- "metadata": {},
- "outputs": [],
- "source": [
- "# get down to 2 dimensions for easy visuals\n",
- "embedding = sklearn.manifold.Isomap(n_components=2)\n",
- "# only fit to every 25th point to make it fast\n",
- "embedding.fit(std_features[::25, :])\n",
- "reduced_features = embedding.transform(std_features)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "We're going to zoom into the middle 99th percentile of the data since some of the points are extremely far away (though that is interesting!). "
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 48,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgsAAAFxCAYAAAD9Duv0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAABP+AAAT/gEHlDmEAAEAAElEQVR4nOy9d3Sc13Wv/UzvMyiDRnSCBey9UxRJq1GibTXblGQnjqxixyXF/pwex/a9uUmuE9srThTFVuQuyZYtqxdSlCiRYhdJFBIg0dugTO99vj9wzzHAXsAGvs9aWgKBwcyZwcx79tn7t39blcvlcigoKCgoKCgonAH11V6AgoKCgoKCwrWNEiwoKCgoKCgonBUlWFBQUFBQUFA4K0qwoKCgoKCgoHBWlGBBQUFBQUFB4awowYKCgoKCgoLCWVGCBQUFBQUFBYWzogQLCgoKCgoKCmdFCRYUFBQUFBQUzooSLCgoKCgoKCicFe3VXsCVZGBggFdeeYWpU6disViu9nIUFBQUrgqRSISOjg42b97MlClTLvn+QqEQTU1Nl3Qfc+fOxWazXfJaFC4PN1Sw8Morr/D4449f7WUoKCgoXBM8+eSTPPbYY5d8P01NTaxevfqS7uODDz5g1apVl7wWhcvDDRUsTJ06FRj9gMybN+8qr2byksvlyGQy9Pf309LSgkqlori4mKqqKmKxGDqdjqKiIlQq1YQ/djabRa3+fXUtGAyi0WgmPJOUy+V477335L8rKiqoq6ub0MdQuH7p6OiQJ22VSsVtt92GwWC4yqv6PY2NjTz++OPymjhRzJs3D7vdfkG/EwwGaWxsnNB1KEw8N1SwIDaMefPmKRHsZSAUCtHb28vIyAjpdBqr1cqyZcvI5XLU1tYSDocJh8MMDAwQi8XYvHkzVqv1ai/7oolGo4RCIQAWLVpETU3NFV9DLBZjeHgYgJKSEoxG4xVfg8KpLFmyhIKCAjweD/Pnz2f+/PlXe0mnZaKDaLvdTkFBwYTep8K1wQ0VLChcPvr7+3nxxRex2WxYrVZ0Oh3ZbBatVotWqyWTyZBKpUgmk6hUKgKBAB9++CHr1q2b0HV4PB7cbjfFxcXk5+dP6H2fzOrVq+nq6sJisVBdXX1ZH+tMeDwe0uk0AD6fj7KysquyDoXx6PV6Nm3adLWXoaAwYSjBgsKE0NDQQCwWw2w2k06n0ev16PV6NBoNlZWVmM1mwuEwqVSKaDRKNpud8DJEOBxm79695HI5Ojo6WL9+PSaTaUIfYyxms5nZs2dftvs/H7RaLYlEAgCNRnNV16KgoFKpLvhzfTnKkQoTjxIsKEwIpaWlNDU1EQ6HAXA4HNTX11NVVUU2m+XIkSPEYjESiQQGgwGTycSyZcsu+HGi0SgHDx4kkUgwf/58iouL5c8ikQi5XA4Y1S7EYrHLGixcCtlslpaWFiKRCDNnzrzgOq+gqKgInU6HSqUiLy9vYhepoHCBKMHC5EUJFhQmhEWLFpHL5ejt7SUajRKNRjl8+DBOp5NcLkcgEECj0VBYWMiCBQuYOnUqWu2Fv/1aW1vxer0AHDlyhFtvvVX+zOl0UlhYiMfjuSJliEuhra2N5uZmAEZGRrjzzjsv6n7EazpZyWQydHd3A1BdXa1kTxQUrhJKsKAwYSxevJiysjL27t0LjJ6eE4kEdrsdg8FAIpFAq9VSXl5+UYECjNaCBTqdbtzPNBoNK1euJJPJXPObiigdAMTjcXK5nHLCOg3Nzc0MDAwAo2LOOXPmXOUVKSjcmCjBgsKEUlJSQllZGUNDQ1RUVJCXl4dKpWLhwoW0tbVhs9kuSYE9c+ZMcrkcyWSSmTNnnvY213qgADB9+nTcbjeRSIR58+YpgcIZiEaj8utIJHIVV6JwPihliMmLEiwoTChqtZoVK1ac8v0PPviA4eFhDAYDuVyOmpoahoeHMZlMF1Sv12q1zJ07dyKXfFUwGo1s2LDhai/jmqeuro7Dhw+jUqkm3BNA4fKgbP6TEyVYULjs+P1+hoaGyGQypNNphoaGGB4epqurC5VKxZo1aygvL5+Qx+rr6+PgwYMYDAbWrFmj2Mde5xQVFXHLLbcAyiZ0PaBkFiYvyiAphbMSj8dpa2vD5XJd9H2oVCrZlaBSqSgrK6O/vx8YdUK8lPs+mUOHDhGPxwkEArS0tACQTCY5evQoQ0NDE/Y4CleOi9mAFBQUJhYls6BwVvbt2zeubnwxpj8Oh4PFixfT399PSUkJ1dXVDA4OyszCRAyyERiNRrleo9FINpvlqaeeor+/H7VazYMPPkh9ff2EPZ6CgsLvUTILkxclWFA4I9lsdlygIDwULobq6mqqq6tpbGzklVdeIT8/n3Xr1mGxWC7aY+B0rFmzhmPHjmE0Gqmvrycej0s1fTabpaGhQQkWFBQUFC4QpQyhcFoymQxut1tqCUwmExUVFZd0n+FwmM7OTrLZrLQpnshAAUZdFZcsWcKcOXPQaDSYTCaKioqA0RPMtGnTJvTxFBQUfo/ILFzofwrXPkpmQeEUcrkc+/fvx+/3o1arWbZsGQUFBZf8odbr9Wi1WjnLwGw2T8Ryz4pKpeLuu+/m/fffx+l0snDhwsv+mAoKCgqTDSWzoHAK6XQav98PjKbu/X7/hET/er2eVatWMXXqVJYuXXpFnAez2Sz79+9Hq9Xi9/tpb2+/7I+poHCjomQWJi9KZkHhFHQ6HU6nE7fbjUajkWn8k0kmk/T29mIymc5bpJifn39WG+ZkMkksFsPhcFzU2k8ml8uRzWblv8d+raCgMPEom//kRAkWFE7L4sWLCQQCmEwmjEbjaW9z4MABmYFIp9NUVVVd0mMODw/zzDPPEIvFqK2t5VOf+tQl3R/83gK6paUFu92uaBYUFBQULgIlWFA4LWq1+pyDmEKh0Gm/vlgOHTpELBYDoLOzk2AwOCECyMrKSiorKy/5fhQUFBRuVBTNgsJFI07per3+krMKMDrmWmA0Gq/Z8dIKCgqnR9EsTF6UzILCRRGLxWhtbSUQCLBgwYIJsVVesGABuVyOkZERqqqqcLlclJaWjps0qaCgcO2imDJNXpTMgsJFceLECbxeL5lMhkOHDpHJZC75PrPZLHV1dUyfPp2WlhYaGhrYs2cPuVxuAlasoKBwuVEyC5MXJVhQuCjGeiSYzeYJGQudy+XI5XIEg0H5dSgUkr4MCgoKCgpXByVYULgo6urqWL58OcXFxRiNRvbt23fJm7parUan01FcXIzBYJBzI3Q63QSt+vKTSCTGWWQrKNxoKFmFyYmiWVC4KFQqFTU1NZw4cQKAkZERent7qa2tvaT7FK2at956K4lE4oq4PE4UbrebxsZGcrkctbW1l/RaKCgoKFxLKJkFhYtGo9Gg1f4+3jQYDKfcxuv1Mjw8fE4zpHQ6TTKZBEaDBq1Wi8Viua5OHoODg1JfMZFjtxUUrhcUzcLkRcksKFw0Go2GZcuW0dPTg91uP8XFsb+/X2YeiouLmT179rifx+NxfD4fsViMn/3sZySTSe6++26WLVt2xZ7DRJKXl8fw8LD8erLi9/sJhUIUFhZeV5kfBQWFi0cJFhQuiYKCAgoKCuS/R0ZG6OjooLy8nGAwKL8fCATG/V4wGOSnP/0p4XCYQCBALpdDpVLxzjvvXLfBQkVFBWazmVQqdUaL7OudUCjE0aNHgdHsyeLFi8dllxRubJTWycmL8ilXmDCi0Si/+c1vSCaTqNVq7rjjDlQqFblcjrKysnG37e7uJhwOA5BKpYDRmRQlJSVXfN0nE4vFeOmll/D5fNx8883MmjXrvH93bOA0GREOmzBaOkqlUmi1WtxuNz09PUydOnVSZ1UUzo4SLExelGBBYcKIRCJSd5BKpWhqaqKyspKZM2ditVrH3TY/P18GC3V1dSxatIhUKsXy5cuv+LpPZv/+/XR2dgLw2muvUV9fr1zQ/h8FBQVYLBYikQhOpxOj0YjP5+OHP/whyWQSg8HAkiVLsFqtLF++fEJaahUUFK4+SrCgwNDQEHv37sVisXDTTTddtGOi0+mkrq6OtrY2VCoV0WiUEydOYLfbmT59+rjbNjc3U1dXRyQSYcWKFVgsFnbu3Inb7ebOO+88rVjySjH2sUULp8IoWq2WBQsWkMlkZCAwNDQkg8Senh6i0ShGo5FoNMpHPvKRq7lcBQWFCUIJFhR444035CAos9nMqlWrLup+VCoVd911F4lEghdffJFcLofBYMDn851y20gkgslkwmQykclkePnll0mn04yMjFBSUsLq1asv6TldCOl0elzdfenSpcRiMfx+PytXrrxi67ieGJsxqKmpoaioiJGREQwGgwy2TtapKEx+lDLE5EUJFhTGtTWej21zLBZj7969WK1WlixZcsqH3WAwsGLFCo4ePYpKpSIUCtHb20tlZSXHjh0jGAwyc+ZMjh07hslkYubMmezatUuaOl0pE6aRkRGeeuopQqEQd955J2vWrAFGN8L169dfkTVMBoxGI48++iiBQIDh4WFee+019Hq9EmjdoCib/+RECRYUuPXWW9m9ezdWq5WlS5ee8/a/+MUvZE0/Go2ybt26U25TXl5OW1sbmUxGZgza29s5cOAARqORgoICHnzwQWDU5nnVqlU0NTVRUVHB4sWLJ/YJnoE9e/bI0+9bb70lgwWFC0en0+F0OnE6ncyaNUvZMG5QlMzC5EUJFhSoqKjgE5/4xHnffmRk5LRfj0Wr1WIwGGR5o6enh/7+fjwej0xTi3bJ9vZ2urq6pAjySoninE7nab++0gwNDbFnzx5UKhWrVq26Im2X6XSa48ePo1KpmDFjxoS+5srFX0Fh8qE4OCpcMBs3bkStVmOxWM6qbxAb8PDwMHv27KG7u5t0Oo3P58Pj8dDS0gIwzo9BBBdXgpUrV3LfffexceNGPvvZz16xxz2Z5uZmEokE8Xic5ubmK/KYBw4coKmpicbGRg4fPnxR95HNZtmzZw9vv/227Gy5Vunv72fPnj00NjYqg8kuI1fTwXH//v188pOfpKysDIPBQGVlJQ8//LA0hlO4NJTMgsIFs2LFCpYsWYJGoznrB722tpZQKMSePXvQ6/X4fD45+0Gj0XDo0CFmzZrFtGnT6O/vJxaLMW/evCv2PFQq1XmVXS43J0/wvBKM3dwvNkDbuXMnb7/9NgBdXV187nOfm5C1TTTpdJq2tjZyuRzxeJzBwUEqKiqu9rIUJpCf/OQnfO5znyOTyeB0Opk3bx4nTpzg6aef5rnnnuPll19m48aNV3uZ1zVKZkHhotBqtec8ERgMBpYtW0Z1dTUOhwOdTodarUalUmGxWKSBkd1u56Mf/Sj3338/U6ZMkW14F0s4HObYsWN0dXXJWQ0XQiQSwePxXNIaLoQlS5Ywe/Zs5syZc8X0GnPmzEGr1aLX60+x4T5f+vr6SCQSJJPJK/p6XShqtRqNRkM0GpUDzxQuD1cjs9Dc3MwjjzxCJpPhL/7iLxgYGODAgQO4XC4eeughotEo999//zX9Hr0eUDILCpeFTCZDV1cXsViMW265hWPHjrF06VKKiooIBAJYLJZTnBE//PBD2tvb0el0bNiwgfz8/It67IaGBhlwaLXaCzpFdnd388wzz5BOp1m5ciW33HLLRa3hQtDpdMydO/eyP85YysrKuOeee4CL1xgkEgk0Gg2ZTIa6urqJXN6EolarmTp1Klu3biWbzdLc3ExVVRXl5eVXe2kKE8A3v/lN0uk0q1ev5p/+6Z/k981mM0899RQffPABnZ2d/Ou//iv/+I//eBVXen2jZBZuYNra2njppZfo6OiY8PseGBigv7+fvr4+GhsbmTlzJjfffDOzZ89m1apVzJ8/f1yLZC6Xo729HZVKRSqVoru7+6IeN5fLjatJCyvp86WpqUn+/sXW8q8XLvVUZzQamTp1KtOmTaO6unoCVzbxiJkdojVY0S1cPq5kViEajfLKK68A8IUvfOGUnxsMBqlHeuaZZy7psW50lGDhBmV4eJh//dd/5eWXX+Y73/kObrd7Qu43l8sRjUYJhUIMDg7i8XgIh8McPXr0tOZMgkwmg9lsliljh8Nx3o8Zj8c5fPgwe/fuZWRkhBkzZmAwGMjLy7vg2nRVVZX8urKy8oJ+90Zjw4YNlJWVMX36dBYsWHC1l3NW8vLyWLZsGXl5ecyaNWvc31lh4rjSZYhDhw7JeSWna+EGuPnmm4FRXY0yOv7iUcoQNyhut1uerlKpFG63m9bWVp588klsNht/9Vd/dc6NNpFIsG3bNoLBIKtXr6aqqop33nmHvr4+UqkURqORbDZLNBrFbreTy+Xo6uqir6+PvLw8Zs+ejVo9Gq/GYjEKCgqIxWJotVrsdvt5PxeXyyUvGF1dXSxfvpzS0tKLel3mzZuHzWYjHA5TX19/UfdxI5BMJikpKeHOO++82ksBoLGxkZaWFmpqas44tXTBggXXfFBzI9PY2HjK9yoqKs4atLe2tgKg1+vPeLuxJbKWlpZThtopnB9KsDDJiMVi6HS6c44Nnj59OvX19bS0tDB79mymTZvGv/3bvxGJRIhEIvzud7/jS1/60lnv48CBA7S1tQHw5ptv8qlPfYq+vj4AmfI1Go3o9Xrq6uowmUwcPHhQrrOwsJCysjKy2SwWiwWbzYZKpcJgMFxQsDB2lsVEzJSoqam55PuYzLz55pvs3LmTvLw8Hn744YvWlkwUHo+Ht956Cxj18ygtLb1mskKZTEa2DFdXV1/VmSfXOo8//vgp3/vGN77BP/zDP5zxd7xeLzA6mO5MGYqxk2DPlt1UODtKsDCJ2LlzJ++88w4mk4lPf/rTp5yuGxoaOHbsGAUFBdx888189atfJZFIyAtYUVGRVAyfj0nRWCMf0UYpNAIWi4Xp06fj8XiwWCzo9Xo0Gg1qtZp0Ok0wGCQej/PGG2/gcrmoqalh3bp1xONx2Vp5vkyZMgWVSkUymVRODZeZVCrFzp07AfD7/Rw+fJgNGzZc1TWNtSs/3b+vJh0dHfT39wOj9fWFCxcCo0HEnj17yGQyrFq16opZnF9uLsXB8cknnzyldfpc2U2RUTzb8Duj0Si/jkajF7Q2hd+jBAuTiA8++ACNRkMsFuPDDz8clyKOx+McOHAAlUpFW1sbTzzxBPn5+fzDP/yDPIV99atf5aWXXsLhcPDRj35U/m4ulyObzZ6ygS9ZsoRIJEIoFGLx4sX86le/kpH+TTfdxODgINFolGQySTqdJpvNEolE2L17N5FIhMbGRkpKSjCZTHR2djJ37tyLci9UqVRMmTLlYl6yK0IgEMDv91NcXIzJZLray7kktFotBQUF8u9cXFx8lVc0GuTedNNNsgxxLYktx7YBj/365Zdf5r333gOgt7eXhx566Iqv7XJwKcHCvHnzLniInfg8na3dOh6Py6+vlI/JZEQJFiYJmUyGkpISuSmfvOk2NzczMDBANptl+/btZLNZvF4v//qv/8r3vvc9YDRdd7KTYSqVorGxkVgsRklJCdOmTZM/0+l0cgTxyMgIfr9fahD8fr+8CIg+/Pfff59oNIrf70en0xEMBjEYDJhMJrRa7aT8IAeDQd59910ymQwmk4lbbrnluj5FqlQqHn74YQ4fPozT6WTOnDlXe0kALF++nOXLl1/tZZxCTU0NkUiETCYz7rMzODgovx4aGroaS7tsXEm7b1EC8/l80j7+ZERgO/b2CheOEixMEhobGzGbzcTjcSwWyyl1976+PgoLC4lGo2i1WuLx+GnTtV1dXQwMDLBgwQIsFgsul4uBgQESiQQjIyOEQiHy8/OpqqqSgQGMfghLSkoYGhqSJYgTJ06QzWZxOBx4PB4pqNRoNKRSKWw2G3feeSeZTIaqqiosFstlfY2uBn6/X7brxWIxqSm5nnE4HFJhnslkUKlU494LNwLCtjwvL++sf0+LxXLaIGb9+vV0dXWRyWQUZ8FLQIiQk8kkPT09p80qtbe3n3J7hQtHCRYmCR6Ph0gkgkqlIhqNjqvTwWgboNvtRq/X8+CDD/Lqq69iMBi4++675W1OnDjB9773PXK5HNu2beNv//ZvpbZAbHh9fX0MDQ0xODjI4sWLZa1Qq9XywAMPMDw8TH5+PiaTibKyMjKZDHa7ncbGRhoaGshmsxQXF5Ofn88999wz6cWExcXFmM1motEoTqdTDsu63uns7OT48eM0NzejVqu55557rqn0/+UklUrx/e9/n+7ubsrKyvizP/uzCy4v1dfX87/+1/8il8td98HjWK701MmFCxdiMpmIxWK89957fOYznznlNjt27ABGszyKpuniUYKFSYDYzC0WC36/n2AwSHNzMytXrpS3Wbx4MeXl5ajVanw+n4ywx6blOjo6pD3y4OAgsVgMh8MhLX31ej3JZBKr1SpLC+LDFw6H0Wg047QDFosFn89HU1MT+fn52O129Ho9RqORoqKiSR8owKi46pZbbiEWi2GxWCbFCfzQoUO88cYb9Pf3S2HrT37yE/7kT/7kgvwxrld6enqkaZjL5aKtre2iZpqcq2NJ4dxYLBbuuusunn/+eZ588slTgoVEIsGPf/xjAD71qU9dhRVOHq7/K5cCw8PD6HQ6aWakUqkIBoNks1n6+/ul4VJJSQlFRUXU1tZSUlJCcXHxuB7kRYsWyZOvyBoIrcPIyAhNTU14vV56enrIZrMYjUb279/PD3/4Q958803ef//9cfXXVCrF/v376e3tpbGxUQYm8Xj8nMI4r9dLW1ubVDtfz2i1Wmw226QIFGB0swSk7iQejxONRnn//fev8squDMXFxbJkZjAYrmlx7ZXmasyG+MY3voFWq2XXrl385V/+pezIikajPPLII3R2duJwOPja1742EU/xhkUJbScBohQgtABWq5VcLse3vvUtYNRTYfXq1dTW1gKjF/m6ujqCwSCvv/468Xic1atXU1lZybe+9S2CwSBFRUX09vbi9/vR6/W0tbURjUaJx+M4HA7y8vJoaWnhP/7jP/B6vTgcDj772c/icrkoKSkBRuu6onwBsGbNGo4fP47JZGL9+vVnfD4ej4dXX32VbDaLzWbj4x//uHIKuwqEQiH8fj+lpaXjUuVz586ltbUVp9OJyWSSQeqFtLtez9hsNr761a9y/Phx6urqKCwsvNpLuqGZO3cuTz75JI899hj//M//zFNPPUV1dTUnTpwgGAxiMpn49a9/fV7t4ApnRrkCTwKKi4tpbm7GYDCgUqmoqKhg27ZtDA4Oks1msdvtuFwuGSwIjhw5Ik1K9u7dS2VlJUajUeodHA4HarWagoICysvLSSaT2Gw2TCYTFRUVvPPOO8Bo8OHz+chkMuMMUEwmE1OnTqWnp4e8vDxmzJhxyvCo0zEyMiLFl0NDQxw6dIhFixYpAcNlIplMEolE5N8bRgO2d999l3Q6jdVq5Y477pDBQF1dHV/84hdJJpOoVCreffdddDqdFD3eCBQVFV1Um+9k50prFgQPP/wwc+fO5V/+5V/YuXMnjY2NFBUVcc899/DXf/3XzJgx45If40ZHufpOAsRUvdbWVsxmMzU1NWg0GkwmE5FIBI1Gc1ov/LGirNMJtBwOBxs3buSnP/0pPT09TJkyRQYSv/nNbygsLESj0WC1WvnYxz7GypUrxwULADNnzmTmzJkX9HwqKiowmUwMDQ3h8XjYtm0bXV1dfOITn7ig+1E4N5FIhHfffZdEIoHT6WTt2rWo1Wr6+/tl90o4HCYYDMoy0sjICCMjI9TV1Z0iklW4sblawQKMts8+//zzE3JfCqdyTQUL//AP/8A3v/nNs97mi1/8Ij/4wQ+u0IquXVKplHREBKitrZUCRq1Wy7333svBgwdxOBysX7/+tPbJCxcuRK1Wk0gkmD9//ik/j0QiMiuRl5eHxWIZN7Wvq6uL1atXU1NTw+233y4nPl5qBsBqtXLvvffy6quvyg4PYSOtMLEMDw+TSCSA0Xkh0WgUq9VKWVkZx48fJ5PJkEql+Jd/+RcikQiLFi2iv7+fTCZDWVkZjz766BXtq7+W8Pv97N69m6KiIpYuXXq1l6OgcFm5poIFQXFxMdOnTz/tz8YK8m5UBgcHcbvdaDQaampq8Hg8HDhwgPz8fObMmcPQ0BClpaWnbSMai1arZfHixaf92a5du9ixYwdGo5GCggIZmIjgJJFIkMlkiEQihMNhotEob7/9NpFIhPr6emlre7H4fD6qq6tpa2sjnU4rA4AuE+Jvm8lkZIkJRtPst9xyCx6Ph61btxIMBgF4//33ZYukGOA1Gc20zod///d/l4LeXC53xgFWCgqTgWsyWNi0aZNsd1E4FTG/IZPJ4PP5ePnll0kkErS3t3PkyBEKCgrIZDIsWbKEadOmneK5cC4OHDjAO++8QyqVYmBgQFoyixOkRqPBYrHQ19eHTqejuLiYN998E7/fj8lkoqWlhblz5150hqG9vZ0PP/wQgNWrVzNr1qxTnNfS6TQHDhzA7/dTU1NzWc1WhIHVZNwURakpEAhQXFw8TqSYl5dHXl4ehw8fHnd7o9FIPB5n2rRp17199cWSyWQYHh6W/x7ryHijc6NmmiY712SwoHB2TCaTHIhiMBjwer1yABOMCtY6Oztxu90cPnyYT37yk2cdtDKWYDDIkSNHiMViHD16FJfLRUFBAdXV1UybNo1cLkcmk0Gj0TB9+nSWLVvG4cOH8fv9ZLNZ4vE4FRUVl6SMHxkZkV83NzfT1dXFqlWrxgk0BwYGZNDU3t5OdXX1Zdm4RkZGOHr0KLlcjpqamknpDWGz2bDZbGf8+T333EMmk8Hj8bBp0yaKiopkl8SNujFoNBruuOMOXn/9dQoLC1m9evXVXtI1wdXULChcXpRg4TqkurqaQCCATqejt7cXg8FAOBwmm80yZ84c2tvb0Wg0GAwGgsGgHGJ0Poj7MhqNhMNhVCoVkUgEj8dDbW0tRqMRtVqNXq/HZrPh9/uJRqOo1WpUKhW5XI5Zs2Zd0gWgsrKS/v5+fD6f7Ojo6uriL/7iL2QQMjZbcq6R3O3t7QQCAaqqqi64fWpoaGicUdVkDBbOhVqt5pOf/OS4701Ga+4L5a677uK2225Dq9UqG97/QwkWJi/XZLBw5MgRHnroIVwuFxaLhVmzZnH33Xcr0fv/Q6PRoNVqOXToEOFweNzJcOPGjSxbtoyXX36ZaDRKYWGh7FAIhUL09PRQWlqK3W7nhRdeoKenh0WLFsmBUAaDgSVLlrB9+3YKCgpkBqO6upp0Ok00GpUjrX0+H3q9Xs5+yOVymEwmKZg7mTMNejmZ8vJyNm3axN69e+V432w2O27yZXFxMQsXLsTv91NeXn5Gy9yBgQGOHj0KjG78t9566wWVR/Ly8qSpVV5e3nn/nsKNwWSyalZQOBvXZLBw+PDhcXXSV155hf/7f/8v99xzDz/+8Y9Pq+y/kUin0/zXf/0XPp8PnU5HdXU1fr+fRCLBk08+yX333ceWLVvw+Xy4XC6eeeYZbDYbw8PDJJNJNBoNixYtoqOjA4D9+/ezcOFCaS4zb9489u/fz7Rp06iurpYBgbgwilJEOp0ml8tx33338eqrr8pN9WTXxd7eXp544gmi0SgPPfTQeQnBzGYza9euxePxMDIywk033XTKhbm8vJzy8nJ2797Nc889R35+Pl/60pfGmeSkUil52snlcvT29p7iN3E2KioqsFgspNNpxdRFQUHhhuWaChZKS0v52te+xr333ktdXR0Oh4POzk5+/OMf853vfIcXXniBQCDAtm3bznlC7e3tPaXdrrGx8XIu/4rh8/no6emRbYwOh4NsNksul8Pj8fC73/2OL3zhC/T19bF7924sFgtdXV0MDg6i0+nklEeBTqcbV+/v6elBq9VisVhIpVKYzWY0Gg16vZ5cLsfAwAA2mw2NRoPP58Pj8dDV1UU8HqekpOSUYGHbtm0EAgEAXnrppfNWjet0Ou6///5z3u65556TEx23bt3Kli1b5M8qKiro7OwkHo/LgU4XijLWVkHh/FDKEJOXaypY+PznP3/K9+rr6/mnf/onFi5cyAMPPMD27dv51a9+dc6hIE899dQ5PRuuV9LptBx1nE6n8Xq9GAwGEokEuVyOtrY2vv3tb+NyuchkMkybNg273Y7BYCAUCgGjwsHNmzfT39/PnDlzpNL/+PHj7Nixg2AwiE6nQ6VSYTAYcDqdJBIJotGotHvWaDREo1GeffZZRkZGyGQyJJNJKisrx613rNPd+WonxpLJZIjH4zKgicViGAwGWU7Iz8+XAcrJG7tGo2Hu3Ll0d3eTy+VOMY1SUFCYWJTNf3JyTQULZ2PLli1897vfZd++ffz6178+Z7Dwuc99jttvv33c9xobG3n88ccv5zInlEgkwsDAgDTJERQUFFBbW8vw8DBVVVUUFRURCoWIRqNks1lUKpW0TNbpdESjUex2O6WlpRiNRllCmDp1KnPnzpX3G4vF2LVrF6FQiFwuh1arpaSkBJ1OJ62A7Xa7zNiI4GR4eFjqEURHxFg2bdqExWIhEomwYcOG837+gUCA3t5eRkZGSCaT2O12OfHSZDJJB8EvfelLbN26lfz8fG699dZT7sfpdGKxWMjlcpOy/VFBQUHhcnPdBAswOoho3759HD9+/Jy3raysPOWEez2RzWY5fPgwyWQSGD0hFxcXc+TIEXbt2oXNZsPhcGC320mn0+j1enQ6nbR31mq1RKNRwuGwTMGbzWba2tqoq6ujrq7ulI1TpVKhVqsxGo0yc5FIJIhEIvh8PhloAFIBHgqFKCwsxOv1ks1mKSkpOcU4S6PRXFCQAKPZk8OHD0uPg1wuh9vtJpFIoFKpSKfTRCIRDAYDhYWF40oPp8NkMsn7SCaTOJ3O824nvRERE0sTiQRlZWUX1P0gWmsnC8FgkEOHDlFUVMTs2bOv9nKuaZQyxOTlugoWxMVdjCC93olGo0SjUfLy8k5R6OdyORkowOip3+/309LSQjgcBkY37HA4TGdnJ+l0GpvNRmlpqZwL0dfXRyAQIJlMykFTn/nMZ1i6dOm4i78wOIrH4yxfvpzu7m7MZjMzZsxg27Zt0qFR9NqrVCoSiYQc9rRs2TLmz59PR0cHZrP5ol02hT+ERqNBo9GQzWbRarUkEgmSyaRsz4TRDUkEO8KS+FzmUx6PR3ZXBIPBy2rkdL0zODjIwMAAMNpFs2jRonP+Ti6Xo6WlBbfbjc1mY968eZMiaHjqqaek98cDDzzAvHnzrvKKrl2UYGHycl0FC0KgeD1nDAShUIgDBw5Im91ly5ZJK2UYPY3X1tbS3d2NxWKhrKyMdDotN+hcLofP56Ojo4NUKiWHOhmNRvR6PXPnzqWyspKGhgZgVCtw++23YzKZpBZBsHfvXvbv3w9AWVkZd999t9yMp06dyqFDh+Rjer1e+fXQ0BDLli1j2bJl6HS6086XuBCamprweDyy3KHVaonFYrLrYurUqXi9XlQqFTU1NRiNRvx+vxyENGfOnHFllZMZG3yN/fp0ZDIZjh8/TiKRYMaMGTdc+UIMkTr567MRiURkR0woFMLr9V73kxnT6fQ4k7ChoSElWFC4IblugoXDhw/z5ptvAqM18OsdMdIZRi+siUQCt9uN0WiUF9iamhqsVismkwm9Xk97ezvBYBCbzUYqlZLagWw2SyQSwWq1kk6nSSQSGAwGbrvtNjn8aeXKlezevZtQKITRaOQjH/mIPIm7XC6Z2YhGozQ0NOD3+ykrK8PtdpNOp8ed6oVJk5g4OVG95sKfQbRm6vV6hoaGUKlUmEwmNBoNK1asQKVSySxTR0eH/D1hM30mnE4nwWCQZDLJlClTzrqW1tZWTpw4AYxqJ6638cvZbJbe3l4SiQQVFRUXHOyUlZURiURIJBLnHZwL0Wk6nZZ/s+sdrVbLunXreO+993A4HGecpaKgMNm5ZoKFPXv28Itf/ILHHntsXOSey+V49dVXefTRR2XL32OPPXYVV3rpdHV1cfz4ccLhMFarlYKCAvbu3Ss3p/Xr1zN9+nR27tzJ8ePH0Wg03H777QwMDDA8PEx+fr4c7KTT6dBoNJSUlGC321GpVFitVqxWKwaDgY0bNwKjKXjRCRGLxWhoaJDzABwOBy6XC5fLRXl5OR0dHcTjcXp6emS3RVFREQaDgVQqRTweJ5PJUFRUhNfrJRAI4HA4Lvl1mT59Os3NzXJA1vDwMDabjWg0ikajoaCgQBpCCcZ2P5yrxVGv15936UEEIJlMhnA4fF6GUkIPUVxcfMmTNy+V/v5+urq6gNHpiMuXL7+g39fpdMyaNeuCf2f+/Pl4PB4pRp0M3HHHHaxfvx69Xj8u+6dwKkoZYvJyzQQL8XicH/zgB/zgBz+Qswh0Oh0dHR0ytVlXV8fLL798XVvNZjIZGhoaiEQiqNVqioqKWLBgAb/85S/lbfr7+5k+fTrt7e3A6Mb1yiuvkMvlUKvVxONx1Go1tbW1+P1+dDqdFDpmMhmqq6tPudDb7XbpM6DRaDh48CDd3d0YjUbq6+vp7u4mEAgQDocJhUKUlJSQy+Xo6+uTLZEwuiE4nU6y2SxOp5N0Os3Q0NCEBAtOp3PcCb6oqIiqqiqi0egZ5xfU1tai1+uJRCITasU8Y8YMhoaG8Pv9GI1GWltbzxpouFwu+ffyeDxXPVU9tsxyJTU+Fovluv58nonT6WG6u7vx+/3MmTPnqgeH1wpKsDB5uWbe4bNnz+ab3/wme/fupbW1lfb2din+27BhA/fccw8PP/zwpLgQidZCYWGsVqupq6ujqakJtVpNTU0N8XhcnurFfIZsNovdbqewsFCe7qdMmUJbW5sUlYmgQJyABgYGCAaDVFZWsnHjRrxeL93d3TKLMTblL3QPdrsdvV4vx1CLjoRUKkVBQQF6vR6VSoVOp0On01FaWnpZXieNRiMnH56N8vLyC7rfvr4+tm3bhtls5q677jrte8pisVBRUSFLLCJgPRNCdAqjZZqrTUVFBcFgkHg8fkGC08nWyTARDAwMkMvl5Pusp6eHxsZG3n33XVQqFfX19Tz88MNXeZXXDsrmPzm5ZoKF4uJi/v7v//5qL+Oyo9FoKCsrkzV/cQFatWoV06ZNk9bKO3bsAEbdGdPpNKFQCIPBQEVFBWq1GqvVSnd3t6xL53I5/H4/ZrMZr9fLhx9+SElJiRQudnd3c9ttt1FWVobRaGRwcJAPP/wQi8XCkiVLKC8vZ+vWrdhsNj7xiU9gtVoZGBggnU7T2NhIf38/69at46677kKv15NKpXC73TgcjutO/PfSSy9JoabVauXOO++UP4vFYrILwOFwMDQ0BHBOoV5paSkej4d0Ok1FRcVlWvn5o1arsVgsWK3WcfbXZyKXy7F//356e3spKChg7dq1ytwDRsujb7/9NjBaHtRoNPzud7+T75HS0lJpmw6jB4C+vj6y2SyVlZVK4KUwabhmgoUbiRUrVuByuTCbzeM2obFfp9NpzGYzWq2WXC5HLpeT5Qe1Wk0ulyOVSpFKpWRbodAw5HI5enp6GBgYIBQKYbFYZFeBTqcjPz+fu+++m1tvvZWdO3dy9OhRVq1axerVq2WnhNvtZt++fRQWFvLoo49SUlJCSUmJXF8ulyOdTpNMJic0WBgaGiKbzV7W8cdj684nP4bb7ZZpe61Wy4oVK0ilUufUQ9hsNpYvX04mk7kmNtmmpiZcLhcwWsY6m/ATRkW2vb29AHi9Xlwu1zhL8BuVsZ4uJ06ckO8dh8PB4OAgAEuWLJG3aW1tlcGD3+9n4cKFV26xCgqXESVYmABisRjDw8MUFxeflwJcr9dTXV192p8lk0lCoRALFixg165dwKhOQKSURZo4k8kQCAQoKCgglUqhVqsxm83SnTEWi0knxng8zsqVK0/ZxBobG2Vb5MDAAF/60pfkz37xi1/IbguDwTCuLTKbzfLBBx/IEdarVq26ZBvlRCLBG2+8gcfjweFwMHPmzHNucBfL3Xffzfbt2zGbzad0OYytPWu12gsS6YmA7UIQupB4PE55efmEBV5j53Ocax5GJpORtWbRoTNZxImXyowZM2QQNWPGDEwmE8eOHcNisfDpT3+a5cuXj3NXFSLik7++UVA0C5MXJVi4RGKxGD//+c9lZ8OnP/3pi24ZSyaT7Nmzh1gsRiqVktbNXq9XDnfau3cvFouFefPmsXnzZl5//XUymYw0MHI6neh0OjweDz6fD7VazdSpU08ruDvZd2Cs4n/sBnPyZpNKpWSNXvg9XGqwcPjwYQYGBshms1KrcbkoLS3lwQcfPO3PiouLZeq4oKCA3t5ewuEwRUVFFzV1MhQK4Xa7KS4uPq02YmBgQJ5EvV4vK1asuODHGIvP5yOVSlFXV0dDQwMqlYpp06ad8faDg4P89re/JZfLSTtwk8l03Qj2hObncrFy5UqqqqrGaRYqKipIJpOn1crU1tbi9XrJ5XIXbU52PaMEC5OX6+OKcA0zNDQkN85wOMzIyMhFp29DoZA8EXZ0dEgPA5Ea7+npIZvNEggEyGaz5OfnEwwG0Wg08mK2aNEiMpkMfX1942Y3nI7ly5czPDyMz+dj2bJlRKNRuaHde++9/PjHPyaTyZySStXr9ZSWljI4OCi/TiaTtLW1AUjtBYxezMWgq9N1MwhyuZx8HrlcbkKNt86n7VEgbLVhdPMWmoVIJCKFn+dLJBLhrbfeIp1OYzQaueOOO05p/RQtmnBqwHahjIyMyHZJu91+2jkZJyMsxa1WqxRmCkOsa5l4PE5TUxPxeJzq6urLatR2sifH2fQrRUVF8nVX9AoKkwmlafgSKSkpkSlbu91+SY51NpsNo9FIMBjE4XDgcDgwGAyoVCrZupXL5QBkkCC+r1arWbhwIYsWLWLOnDmy7p5Op3G5XDz//POnPJ7RaOT+++9n/fr1HDt2jJdeekm2/wm75Xg8ztNPPz1O4a9SqViyZAnr169n48aNWCwWjh07Rl9fH319fRw7dkzetqmpicOHD7Nz504OHjx42oxBIpEglUphtVpxOp3ccccd1NbWXvTrKAiFQuzatYv33nvvjAHThXCmTTwej8u/y1ja29tldigejxMMBk+5TXl5OTabDZ1Ox7Rp0y7plDX2b3S+HRlOp1OezIXm5WJMnK40g4OD0mBLTBS9VhB25TciIrNwof8pXPtc28eH6wCTycSnP/3pC9IsnAm9Xs+qVatoa2ujtbUVlUpFOBwmk8lIT4a+vj40Gg1ms5mRkRE+//nPs3PnTmpqamQK22QysWjRItnalU6n2bVrF/fff/9pH7etrY10Oo1Wq6Wzs5O6ujp6e3tlliMSidDb2zvOZ0CYPwnG9vKP/drtdpPJZBgaGsLn8+FyuVi3bh12u13e9tixY4TDYfLy8shmsxfUTbB//36ef/55nE4njz/+uLxfGO0AESf3jo6OCx6PnZ+fT2lpqSxDnKz5yOVy/M///A979+6loqKCr33ta+PmVfT19aFSqeQEz9OJJA0GwwW7AqbTaaLRqLTuFjidTrxeL5lMZpwY9WwsWbIEg8EgPTfsdvuE+lVcLjweD4FAABj9O030hhMOhzEYDFdUrBoIBDhx4gTV1dXXtU22svlPTpRgYQIwmUxnFCxeKHq9ntmzZxMKhQgEAqjValwuF9lsVs6I0Ov1ZLNZGhsbqa2t5Q/+4A8AGB4eZtu2bUSjURKJBPF4HL/fz8DAAPfccw+Dg4McOHCAGTNm4PP56OrqwmKx0NnZKT0t5syZA4ymXoV2ori4+JxeBjNmzODw4cOEw2HMZrNMp5eUlNDd3U02m8VgMJDNZgmHw9jtdjKZDHv27MHj8eD3+0kmk+h0Oo4dO3be4sYf//jHxONx3G43W7du5b777pM/Gxu4XUwQp1Kpzhq4DA8Ps3fvXmDUu+HQoUOsWbMG+P3JXnSupNNpuru7L7mOnclkaGlpIZFIoNPpqKqqkrM0rFYrCxYskKPJz/c5zps3jzlz5hCPxzEajdeFS6GwNBefi4nk9ddfZ8eOHVitVtkJdLmJRqN85zvfwe/3YzAY+Iu/+IvrOmBQmHwowcI1isgSuFwu2bGQSqXkUCUxPrq5uVnedt++fQQCAYLBIMPDw3IS5fTp0/n4xz/OX//1XxMMBjEajaxdu1aOrNZqtdhsNrRaLT09PRw+fFgOborH4+Tn559VbwCjJZhwOExHRwddXV3E43EWL17M7NmzmTJlCs3NzXi9XvLy8uQJX4zQNplMhEIhWVZxuVwyWBgZGWFgYAC9Xs+0adOktkGkeS0WizS5OjkgqK2tRafTkU6nT6lpJ5NJGYSdSXx4Lux2OxaLhUgkgkqlGqeKN5lMFBQU0NfXJ1Pkbrf7koOFWCwmsyWhUIg9e/YAozqRadOmXXQKXHTTXC+UlpbKgOxCTbnORi6X4/333wdGswsHDx4c58NxuXC73fj9fmA0EOrt7VWCBYVrCiVYuIYQp26j0Ug4HOaDDz5gZGSETCYjNxytVkswGJT15bEpY3Gx9/l8JJNJstksuVyOuXPnEovFZM1czHcwm80YDAZCoRB6vR6dTsf7779PLBZDq9VSWlqK1Wo959AlQVdXlyxBHD58mMWLF6NSqcjPz6euro7S0lKqqqqkeM5sNmOz2WQ2QpRbRDCRy+Xo7OyU2gmXy4XFYpEnaY1Gw1e+8hVee+01nE4nt91227j1qNXqM4pNvV6v3HRHRkYuKlgwmUx8/etf5+DBg0ydOpWpU6fKn+l0Ovn8u7q60Gg0E5J9MplMGAwGObZb4HK5ztr1cDoGBgYYGBhg2rRp53TJvNaYOnUqRUVF0nxqolCpVEyZMkW2DU9kIHI2ysrKqKqqoqenh4KCAqZPn35FHneiUbohJi9KsHAVcblcdHR0MGXKFNxutwwM4vE4DQ0NuFwuVCoVFotF1uKz2SzTp08nnU7LWrPwXli7di19fX1EIhGp2ler1XzmM5/BbDazYsUKenp60Ol0bNq0CY/HQ3d3Nz09PXKmhKgDp9NpbrrpJunp8K1vfQuNRsNdd91FdXU1DofjlHS1SLlnMplxeoaenh4pevR6vXKokbCvzmazJBIJ8vLy0Gq1+P1+jh49yvTp02WQpNFoxo3oTqfTaDQaKioqeOCBB1Cr1Rek4B97+r4UMVpZWRmbN28+7c/0ej0rVqxg9uzZ6HS6084XuFA0Gg319fVEo1E8Hg+tra0AF9zWOTw8zHPPPUc2m2X//v380R/90YSs70pyrmzXxfLwww9z6NAhCgoKLniY1sWi0+n40z/9U4aGhnA6ndfd30KgBAuTFyVYuEoEAgF+9rOfEYvFiMViLFy4UHoMjJ14CEj3Ra1Wyx//8R8TjUalYVM0GiWZTEqzmLfffptIJEImk+Gmm25i8+bN2Gw22tvbqa+vp7CwkHA4zNGjR/n4xz/Ohx9+KNP3KpWKgoICotEoRUVFzJ49G61Wy9///d/j8/nI5XI8+eSTmM1mOenyD/7gD2S69MEHH+Stt97CaDSOa9s7k1GN2+2WJQRRghDjuvv6+hgZGaG6upqRkRGp0xCdIqIm397eLjfM+fPnU1FRwfDwMH19fdhstjN2GAgL5Gw2e8keEediojc1rVaL3W7HbreTl5dHJpM5L0vnsbjdbhl4RaNRuru7qaiomBSzVy4Vs9kstScTTVdXFyMjI8ydO/eUspnoRLmeUYKFycu1r2SaRPT29tLc3EwymcTtduNyuXC73YRCIaLRKLlcTvbaj4yMEI1GicViaDQa9Ho9ZrOZ7u5uBgYGcLlc+P1+FixYIC86QqioUqnQarWsW7eOGTNmAKPtfclkUqbf9+/fz759+8adnFatWkV5ebnciEXGIhQKyY0llUqhUqlQq9UMDw/zi1/8grfffluK6oLBIC0tLXR3dxMOh/F4POPuU6fTsWfPHnw+n/QciMVihMNhent7pSGQVqslk8lQU1PD/PnzZYAgggqR1fD7/cybN4/58+fj9/tJpVI0NTXh8/no6emRlrwnI7pLSkpKzlsMGA6Hee2113jzzTfHOSReTfLz83E6nRd8wa2trZUBhk6no6enh7179zIyMjIh6/rwww/ZvXs36XR6Qu5vMtDa2sp//dd/8Zvf/Ib//u//vtrLUVC4IJTMwhXixIkTvPDCC6jValpbW1m9ejVWqxWfz4dOpyMajaJWqxkaGpJdEIWFhUSjUblBixNgIBCQbXhjDZNWr17N7373O5kZGFtvra2tpbe3l1wuJ4VhyWSSDRs2MGPGDClyfOutt2RKu62tjeXLl2Oz2fB4PMBoal2clHO5HLFYjKNHj1JRUUFLS4scXPWLX/yC1atXk8lkqKioYP369Zw4cYLXX3+dXC5HY2MjDz/8MEVFRXR0dKDRaLBaraRSKfLy8mRA4na75aRL0S0x9kRWWVkpMzCnqy9PZP/9G2+8Id0Wk8kkH/3oRyfsvq8EonRRUlKCyWTiD/7gD/D5fFJAm81mGRwcvGRh3SuvvMILL7wAwLFjx5SJjP+Pnp4e+bXL5SKVSo0LzEWLrYLCtYjyzrxCbN++XXrMJ5NJ7rrrLpYvX05DQ4OcKplKpRgcHESlUqHX66UuIRQKSR3CG2+8wdy5c7HZbGg0mnG6geLiYv76r/+ahoYG6urqCIVC5OXlYTKZMJvNLFiwgFAoRFtbG5WVlaxcuRL4/SabzWZxOp243W6pP/if//kfqX8QxkliAxa3SSaTtLS0jDvdarVaOZkvGo0yb948Ojo65MYeCAR44YUX5DAqk8mERqNBpVLh8/nQ6/VotVp6e3txOp2UlJTIi+vY5+x0OkkkEvI1U6vVzJ49m97eXmw224SOzx7rtjj26+uBcDjMc889JzNVq1evZs6cOeTn52M0GonH46hUqouytD6ZsVMYx359ozN//nx2795NNBpl8eLFMlDo6Ojghz/8IalUii1btrB06dKrvNKLRylDTF6UYOEKkU6nUavVZLNZrFYrBoOB0tJS3nnnHdm1YDQaZUeAWq2WhkoilRuPx8lms7hcLubNm8e8efNkB4TH42FwcFB2D/z4xz/GZrPhdDr54z/+Y7Zu3cq+ffvQarU8+OCD41r4REnAbDbz4IMP0t7ejtPp5I033qCpqYlYLIbBYMBisZDL5cb1uIuT0NDQEJ/4xCfw+Xz4fD6MRqO8CIjWwtLSUtra2kgmk7KrA5C21sLuOZFIoNVqyWazci6FWq0+xSoZRi804vvi8UpLS88rSPD7/QSDQYqLi89LULZx40beeOMN1Go169evP+ftz4bwsBhrInU5cblcsiNmZGQEr9dLd3c3H/vYx1i+fDmDg4NYrdYJ0W+sW7eO5uZmMpnMJb9Ok4mSkhK+/vWvEw6HxwVl77zzjtTuvPXWW9d1sADK5j9ZUYKFK8TChQulG6No8Wtvb8fr9aLX61GpVIRCIaxWqwwQdDqdnCgp5jyoVCoSiQRz5syReoTW1lZeeeUVIpGItIwWcx7cbjcej4eGhgZgNGg5evSoDBbefvtttm7dik6n4w//8A+ZNm3aOEOkaDQqg5VMJoPJZCKbzcqJlmKz9vv9bN++nT/8wz9k9+7d9PT0yPq3GOE7Z84cksmkfB1Ee5rFYsFsNuP3+8dpI7RaLf39/fT19Z1R+HWxdrF+v58PP/wQGNWSrFy58pxdEWVlZfzRH/3RBT/WyQwPD3Po0CFyuRw1NTXU19fT2dnJs88+i16v59Of/vSEGwGVlZVhMpkYHh6WmpD+/n5gtLQ0keOoFy5cyHe+8x3S6fQ5R3vfaBiNxlMC09LSUpqamuTXCgrXIkqwcIWorq5m//79ss4PSIX/8PAw+fn5aDQa8vLy0Ol0xONxOjs7SaVS0tY3HA6j0WiorKyUJxFAznMQQ6cWLFhAXl4eBQUF5OXlkZ+fz9SpUzl69CgqlWrc3AVh6pNKpTh48OC4Xv2Pf/zjHDhwgHQ6LcsHPp8PrVYrN2ifz0dxcTGBQIDm5mbWrFnDlClT8Hg8GAwGamtrWbBgATCaHRDp12QyyaFDh6QOQaPRSFMalUpFMpkknU4zMDCA3+8/q0o8l8vR1tZGIBCgqKjovPwMxPAvQHoWXIpV94UwODgoSzkul4v6+nqef/55XC4XMFrz/9znPjehj2m1WtmyZQuNjY3s2rWLbDYr/y6Xg8vV1jgZ2bRpEw6Hg0Qiwdq1a6/2ci4JpQwxeVGChQkkEAiQyWROm8o9evSorFE2NDSwaNEiqqurqaiooLu7G61Wi06nw+fzkclk6OnpIRwOo9VqMRqNmM1mioqKsNls1NXVceTIEVwuF7fddhtTp07l8OHD9Pb2ylLHww8/zMDAAEajkd7eXj7+8Y8zd+5cHA7HuI23qqqK5uZmYDSgcbvdmM1mBgYGaGpqYtq0aRw6dIhMJkMsFpOlEVF+CIVCqFQqdDodJSUl7N69m/r6evLz86XRUm9vLyqVSo7TXr9+PfX19axYsYJcLscbb7xBOByWJkMqlQqz2UwikaCiokJmUM6Ez+fD7XYDo0ZDTqfznC2AhYWFJBIJYrEYZWVlp5z2crkcg4ODxONxSktLJzSQKCwslHoO0ZEw9vEvV9BisVhYuXIl8+fPJ5VK4XA4LsvjKFwYarX6ug8SBEqwMHlRgoUJoquri4MHD5LL5aivrz9ltkFxcTEnTpwAkCnmsrIyeaoWkwszmYwcQe1wOGTNvq6uDrPZzJw5c9i+fTs+nw8Y3WQ2bNjAzJkzaW9vJ5lM8sYbb1BTUyP1DPv37+dnP/sZVquVz372s3JNLS0t2O12li5dilqt5sCBA/zmN7/BYDBQV1eH0WikqKgIjUZDOByWWoVAIIDNZiOXy5FKpSgpKZHZCjESO5PJSJvmvr4+stmsdHc8dOiQHEp18OBB2tvbSafTlJSUyNcgGAxiMBhQq9XnHAs9VkEu2kbPRCAQ4K233pKbpdVqlaUWEcw1NTXh9/vlRczr9cpSykRQXl6OxWIhmUzKzoOHHnqIV199FZ1Ox8c+9rEJe6zTcT3ZOisoKFwbKMHCBNHf3y9Ty/39/eOChXA4TElJCdOnT6e7u5uhoSFefPFFqVcQ2oRkMilHT4sJjHa7nenTp8tTYGtr6zhjIyESrKqqki2WBoOBdDqNXq8nl8tJ98RQKMS+ffvYvHkzPp+Pbdu2kcvl6Ovrw+12093dLYMTvV7P9OnTpW9DLpdDr9eTn58vN/RcLofVapVOj8lkkpKSEplmH9u2ODYtPdZAyOPxEI/Hpd2wmH8Boxv/+Zyy7XY7dXV1BAIBnE6nFDwmk0lisZgUR0YiEbZv305HR4d8zUUniAgMXn/9dV544QWmTJnC7NmzKS8vH6cXmShOtlcuKCjgM5/5zITdv8L1x/DwMN3d3UybNk3ReihccyjBwlno7e1l69atqFQq7rjjjnGDgk6mrKxM1pzH3q6trY3du3czMDCA2+0mEAhgMBgwmUxUVVXJCY1i8zUYDHL6n6jdNzY2kkwmyc/Pp7i4mE996lO88sorOJ1ONmzYAMDSpUtZsWIFXV1dFBcXM2vWLFkO2b17N++//z6JRIJsNsttt90mB1LB6GyEoaEhkskkyWSSeDzOzp07ueWWW+jp6cFqtcrTaFlZGW1tbSQSCdRqNdXV1XLjKysrk5qLSCSCw+HA4/HgdDpZuHAhU6ZMIRAIyCyEGKXc2NjI4OAgtbW1ck1C6Dh23kMwGGRoaIi8vLxTvACKi4vlTAm/3y8zAyIr0dbWJgdwDQ0NyQ6PvLw8KisrZTaira1NviZ+v5/Kykqqq6snbarU4/Hw29/+lkQiwV133TVOz3KjEg6HTwk8Lzcej4fvfe97JJNJbDYbX/va165LN02lDDF5UYKFs7Bv3z4pJDxw4MBZTXimTp0qrXeLiorweDxoNBqamppoa2sjnU7LUoNI34vRyiI7AJxiOiRuK3wYtmzZQnl5OatWrSIej8vNUKVS8fnPf15upmNTzceOHSMQCJDL5Th69Cj79+9nzZo1rFixgjfeeIPh4WFCoZAcTiVaGHfu3ElxcTE2m41QKERRUZHsgsjlcmSzWUwmE52dnXKjV6vV4wYqjUWlUvHiiy+SyWRYtmwZZWVlxGIxamtrCQaDxONx6d2g1+u5+eabZWthMplk//79MutQX1/P0NAQDoeDGTNmyAvOrl27ePfdd6XfwuzZs2UZRYzJLigoIBgMkk6nWbJkybiL1apVqzh69Cgwmq1ZtWrV+b9hzpNkMimDqas9DnrHjh0yyH399df54z/+49PeLpvNEggEMBqNV0wIejUIhULs3r2bTCaD2Wxm7dq1lzQ75Hzp7++Xmp1QKITb7b4ugwVQNv/JihIsnAWbzcbQ0BDAefXDi5P8a6+9xltvvSXbIUUaW4zVHRoaIpVK4fV68fl848yVkskkDoeDQCAgSwp6vZ5EIjFOOPnaa6+xfft2HA4HX/jCF3A6nWg0mtNOiBT6BhhV/oshT7Nnz+Y///M/sdvtJJNJKaQUmopQKITf72ft2rUsW7aMdDrNP/7jP8rTg1qtJhwOc+LECYqKis6ZOj1w4ID0kWhoaMDr9coR0tlsVtpL53I5CgoK8Pl8NDU1MX/+fPLy8mSgkMvlZBcHjJZMxIn44MGD8jZdXV3MmDFD6ijEa+x0OikoKKCwsPCUC9vChQv5wz/8QzweDyqVCpfLddqMUiKRkK2uFzL0JxQK8dZbb5FIJCgrK2P9+vXnfXH1+Xzs2rULtVrN6tWrJ2RS5Nig8mxahsbGRvx+P2q1mgULFlwxf4grjd/vl50/0WiUeDx+RTbturo6aYhWWVl53pNerzWUzMLkRQkWzsL69evJy8uTF8jzZdeuXWQyGVKplLRxVqlUZDIZRkZGCIfDsm0SRjeesfMJ4vG4dAhMJpPk5eURCoWktfLg4CBbt25Fo9EQCATYv38/mzZtOuN61q1bx7Zt20gkEnzsYx+Tz8VgMGC32wkEApjNZubPn49Go8FkMhGLxchkMlIwWFRURFtbm/wejH7IRWun3W4/5ym5qqqKhoYGqYHw+/0UFBTIbIIwo4JRk6fm5mZpDf2Vr3yFKVOmMDAwgN1uHydAHOumWFxcLC20HQ4HwWBQdpaIIKmoqEgKQ0+mv79fzsKIRqO0tbWdEiykUimOHTsmg5dgMEgul2PZsmXn3ET7+/vlent7e3n33Xcxm80sXLjwnCnvffv2SdvtAwcOcMstt5z19ufDxo0bUavVxONxbr75Zvn9sRqNTCYj21qz2Sw+n2/SBgti4mM8HqegoEBmUXp6ejCZTJdshX0mLBYLX/3qV/F6vRQWFl6Q7fPg4CDDw8PU19efUwysoHCxKMHCWdDr9XKc8slEIhEGBweZMmXKKWnZ/Px8vF6vrJFns1nUajXJZJJEIkEmkyGbzaJSqaSTn/g3MG4SI4xeoEVr4Xe/+10WLlxIKBTC4XBIZ8Sz8cUvfpE777xTei/AaCfE66+/zowZM8jLy8Pj8cguDHHCNxqN2O12Wltb6enpob6+XnY0wO9nQ1RXVzN9+vSzruHw4cO0trYyZcoUrFYrLpdLjpkWnvjCyRJ+byUNo8FAe3s7v/rVr4jH48ydOxer1SrtqceWPe677z7eeOMN+vv7MZlMtLe3Yzabx/0ddDoddrtdniDHIsormUyGTCZDV1cXVquV2bNno9fr5QjxdDpNJBLhyJEjUog6MjLCXXfddVqPgcHBQd555x35vMTfvq+vT24MK1asOOtrOHYDmagZAnq9fpwuJBaL0dXVRSaTYcqUKRQUFKDRaMjPz8fn86FWqye1+M5kMrF27VqZUVCr1bz22mvs3bsXlUrF/ffff0qn00Qh2o8vhI6ODr7//e+TyWSYOnUqf/7nf35Z1qagoAQLF0EkEuHJJ5+UsxceeOABGhoayGQyLF68mPz8fJk5ELMORNpenMyTySQGg0FulGq1WpobicyC6PHXaDRoNBrZ5XD48GHuuOMOpk+fTnl5OfPnzz/relUq1Sk6gjfeeEOmPFOpFMXFxXi9Xjmnwu12c+eddxIOh+U0x+bmZvLy8hgZGZEtjYWFhaxcuXKc7bPomhDkcjkOHDhALpfDbDYza9YsLBYLAwMD0qAJkK8PIIOwgYEBli9fzksvvYTVaiU/P5/29nYcDgdVVVXjsgPZbJb29nZKSkqw2+2EQiFqa2vp7++nv79frkk8xwMHDlBTU0MgEJCajWnTpmEymYhEItJXwuPx0NLSInUVVVVVGI1Gnn32WTlmW5SODhw4wBe+8IVxdtoAL730Em63G5VKRX19PQsXLuS1116jvb0djUZzXjMZVq5cyYcffohKpZrQVs6xeDwemTEZGhqSweXcuXMJBAKYTKYLKrtcj+h0unGZPtFNlMvlaGlpuaRg4cSJE/h8PubPnz8hr2Nra6v8zHR0dBCLxa6qpkQpQ0xelGDhAjl+/Di7d+9mZGQEo9GIz+fj/fffJ5PJoNfraWhoYGRkBIfDwdDQEENDQ/KELFL6osVxrE5Ao9GwYcMGXn/9dSKRCMlkUg72yeVy4xwH4/E4RUVF3HHHHZf0QRPdD8LBUKPRcOjQITQaDYWFhbhcLjweDx6PB61Wy+23304oFMLr9aLRaNBqtVRXV8u2zh07drBv3z7UajWbN29m5syZ8nk7HA6pnRDPV3g1iJkYRUVFGAwGOTr6wIEDcgSzXq+XWYjCwkKSySQjIyOEQiF5kh8YGKC7uxsYrT1brVa5yXu9XjKZDDqdTp6WtVothw8fJhwOE4vF0Ov1BINBNm7cyO7du6WAVPg+iIxPT08PK1asIJvNkpeXh8/nY3h4mNLSUlKpFB9++OEpwYIICi0WC5FIhEQiQV9fn8x4iIDpbFgsFm666aaL/nufD2PT2GO/nuwZhbMxY8YMDhw4gEqlOqdB2NlobGzk+eefB0aN2R555JFLXtvcuXPZunUryWSS2bNnX3XxqRIsTF6UYOECCAQCbN26lXQ6TSKRkGOVPR4PqVSK/Px8SkpKmDJlCg0NDQwPD48rL6TTaTnrQUxVVKlUzJ49m8WLF0uXRxEoZLNZ/H4/RUVFsqYvBjD99Kc/BeCBBx447/Vv3bqVHTt2UFpaysyZM2lubsblclFaWko8HqewsJCFCxcyNDQkAwav1yuDAZ/PxwMPPCCDoIqKCubMmUM0GuXo0aPs3buXgYEB4vE4r776qgwWAO68806OHTuGz+eTbpPifoXrZHt7OzfffDODg4M0NjZK7cS+ffvIy8sbV54R2QvhpWAymca1XQo9iFqtxuFwyCFKRqORVCqF0WiUGZ1sNis7UmKxGJFIhPLyctm1kMvlqK2tlSdMs9mM3W5n+fLlHDx4kOnTp2OxWOjq6gJGO2NGRkbQarVyg928eTNvvfUWarWagoIChoeHKS4ulgLaC2lZTCaTtLa2kkwmmTp16kVt4l6vl1AoRGFhodRyANKEK51Oj/PDOB0+n490Oo3T6ZzUF/zNmzczd+5cjEbjWdunz4Vw7Tz560uhsrKSb3zjG3g8nvOyOVdQuFiUYOECSKVS5HI5NBoN1dXVLFmyhL6+PhkAAHR3d8uUdCwWkxuSWq0mGo3KAEOMds5msxw6dIiDBw/icrkYGRlBpVJRXFyM2WxmeHgYs9ksgw7hxdDb28u///u/Y7PZ2Lx58znXHo1Gefvtt4FRcZwYYhWPx/F4PBQWFmIwGLj11ltZt24dv/71r3n33XdJJpPSDjkajfL+++9z33330dnZyY4dOxgZGaGtrQ2/309vby/RaBStVis7PcRGZrFYWLp0Kb/73e+A0U6TSCSCxWKRHSMwOhcBRkWDYsS06BYxGAwYDAZmzZolRaHHjx8HRk9/5eXl+P1+mYXJZrMynVxXV4fNZqO1tRWTycTKlStRq9WcOHFCtgP29PQQiUR4/vnnmTZtGlqtFofDgclkoqKiQvpHCCOnLVu2sGnTJtlF0NDQQH5+PtlsVmY4KisrsdlsxGIxpkyZwuHDh9HpdFRXV/P4449z5MgRioqKxs3k2L59O62traxcuZJFixad8rfs7e2VgsPjx4+fUevQ0dFBIpFg+vTp4zQOwWBQ+km43W7mz58vXyeVSnVKkCBaZccKWPv7+2ltbQVGhx/Nnj37tGuYDJw8T+ViWbBgAYcPHyYajZ5Tn3IhOByOC7LuzmQy0k12olEyC5OXGzpYSCaT8rR+PjidTpYvX87x48eprKxkzZo1HDx4kJaWFmBUxJdMJqmqqkKj0eBwOKS3gtlsJhgMSj1DLpcjnU4zPDxMMpnE6XQSj8cpLi6WF24RbAwPD8sNU6PRSHGczWbj17/+NatXryY/P58TJ04QDAaZMWPGKWp1nU4nU+CxWIySkhJ0Oh1er1e2hhkMBtra2li2bBm7du0iGAzK+u2UKVNkMCA6MwCOHDkiOz6EKNBsNlNYWHjalGhJSQk+n4+8vDyqq6vl8CvBWI2HMKISPhNGoxGDwYDD4aCyslJOjUylUjQ1NaHT6eS0zdmzZ8uZG5WVlZSVlfHWW29hMBhkN0Mmk5EiUZVKhdvtJpFIkEgkCAaDzJkzR/o4iLWL943H46GgoGDcRVroCI4cOSK/FwqF2LNnD263m2PHjtHb20t7ezsf/ehHMZvNp/g4NDY28uSTTwKjbaDf/va3KSkpGbdRj/36TB4AjY2N7N+/Hxjd2Md2TowteWQymXFW1ycTjUZl50dNTY18Dca24479+mowNDREPB6nsrLyqvtWRCIRDhw4QDabZfHixePeH6WlpfzZn/0Z8Xj8qnaT/PSnP+Xll1++bPevbP6Tkxs2WHjllVf41a9+RXFxMV/5ylfOe0Tv8uXLx3VILF26lLq6Ol5//XV5AvN6vZSVlTE0NCR707VaLQaDYdwJTowKhtGLtsViQavVUlxcLKdRCvW90WhEo9HIlkxxH3q9HoPBQEdHh9wcent7ueeee8atW6fT8cgjj3DgwAFmzpzJyMiIDFZEN8bIyAhWq5Xdu3ej1WrJZDKySyGdTuNyucjlcuzbt08KAU0mEzU1NbzzzjsygBGK8u7ubgKBAHPnzpWn7/nz53P06FHC4TCLFy9mwYIF9PT0jLOwFu6VTqeTZcuW0d3dzY4dO8hkMhiNRunGuGLFCjQaDT6fj2w2SyQSkZmSWCxGLpejpKSERCJBa2urLDWEQiEikQharVZmIrq7u2ltbSUajeJwOJg/fz4nTpxg9erV407awWCQ73znO7jdbubOncsXvvCFUy6OxcXF9Pf3o1arZYDm9XpJJBJEIhH6+vp4//33KSgooKOjA4/HwwMPPIDT6eTYsWMyEIvFYrz77rtMmTKFZcuWydewqqqKTCZDMpk8Y+pZtFie/DWMdus4HA5ptCWCOtEtMpbBwUH5fuvt7ZXBQklJCSMjI9I/5GrR3NzMsWPH0Gg0dHR0sG7duitionQmjhw5IktLBw8eZOPGjeN+rtfrr3p7o8gIKShcCDdksBCJRPj+978vx0C/8sorp3Wuc7lcHD9+nLq6OioqKshmsxw+fJhAICDT3jB68S0tLSUvL4/u7m6CwaAUrxUUFBCNRvF4PNLAR5QThIbBYDCg0WgoLi7G4XBgt9vp7u7GZDLJzEQ2myWRSJBOp7FarcTjcVQqFV/+8pflhiQQHgknXzTLysqkC6Xf76ehoYFIJEI6nWZwcJBwOCwHRtXV1cnHTaVSUmgptABLliwhFovh9/sZGhrC6XTKUkJBQQGpVIoXX3wRGJ24ec8999DW1sbg4KDUAWzbto3W1lZuvfVWXn31VdmVsWzZMo4fPy6zFc3NzbK0MLbk89Zbb/H5z39edmeI2RqxWEzOhBgaGsJut1NQUIDBYJCTJoVoVNhru1wugsEgqVSKRCIhAyefz0dbWxsej0dmV0QmpKmpieHh4VPa3crKynA6ndJfo7S0lFAoRFVVlRy33dPTw8jICD6fj4GBAf78z/+cr3/96xw5cgSTySRLXQUFBYTDYT744AOcTiezZs3CYDCMK1ucjvr6enp7e0mn08yZM2fczzQazTg9STKZpKWlRU7gHBs4n2kaZlFREatWrZLvx6tFb2+vfJ9HIhGi0ehVHY99pgzQtYTIjiooXAg3ZLAQi8XGbaSnK0MEg0GeeOIJWRv/0z/9UwKBAB0dHcCoQc7HPvYxeT+LFy/mueeek5uaaHVUq9VyqFMqlSIYDGKxWKTpD4yKzbRaLYlEgqKiIpLJpKwRi7kRY90NhVGTqI+/9NJLDA0NodVqMZvNLFiw4JynK6/Xy29/+1sZuNhsNnlaFoFRUVERvb29TJkyhSVLlvD666/LzbqgoID29nY6Ojrk5i+mZy5YsIBYLCbHbUejUV588UWSySR9fX1yg1Gr1XR2dtLf38+XvvQlWaZRq9Xs37+f5uZmXnnlFQwGA4WFhVKMCEgNR1FRETNnzqSjo4OysjJCoZB8TBjVRgixaDKZpL29HY/Hg81mQ6/XS52CaGkV2RrRceJ0OmlvbyeXy+HxeOju7qarqwuj0UhdXd04F8V0Os2JEydIJpNMnz5dZgJWrVqFRqNh7969TJs2DZ1OJ0d9i24It9vN008/TSQSwW63s2TJEqZOnSo7NWw2G4ODg6jV6rO2ygqRZ2lpKVu2bJHZmLPhdrtlNsPlcjFlyhT5mSgrK0Or1cohYWO5Flooq6qqaGlpQaVSYbFYrvqaFixYID+zCxcuvKprORP33nsvWq2WF154YcLvW9EsXH5++tOf8slPfvKKv9dvyGDB6XTy0EMP8corr1BbWztubLPA4/EQDoeJx+PodDpGRkbOmD4Mh8M8++yzhMNhdDqdLCnA6AfBbDbLDgexoQLjShCdnZ0YDAa0Wi1Tp06Vo6BzuRwWi0WehLVarXSYc7vddHZ2SpW+Vqvlq1/9KhqNhs7OTl588UUKCwv51Kc+dcrae3p6pPuimFshTGFyuRzt7e2Ew2EZTAiXQpFG/fnPf05RURHZbFZqMETd/8iRIyxYsEC2RHq9XgYHB8nLy5Mti6JtVGgTdDqdTPdns1mOHz+Ox+MhFApRWVkJjJ6A9Xo9lZWVBAIBNm3ahF6vp76+nhkzZhCPx+nr62NgYIBUKiVV/TBat3e5XFIYGAgEyM/PJxaLyfR7VVUVsVgMq9XK5s2bpZ21mAgqMlFWq5VMJsO0adOk62Imk+Ho0aPs3LmThoYGrFYrf/Znf0Z5eTmRSISWlhY5UTMWi+FwOMjlcvT399Pc3Mxtt91GV1eXLE8VFxdLu234/dROESyNZdeuXfKELey016xZQ3l5+Rm1CGMZe9ERLaoCUQ56/vnn6ezsZOXKleOcHq8mQsBaWVlJXl4eVVVV5/V8T0ZkzJLJJN3d3eh0Ompqas4acAsDsZNvYzKZLss8kYnmcjlRKsHC5eezn/0sf/qnf8pDDz3E5z73uSsWlN6QwQLAZz7zmbOOBC4qKiKVShGJRDCZTBgMBmpqaggGg7IModFoCIVCvPnmm4RCIelVICZIio1WtEjm5eXJgUbCSEWc/KLRKJFIBI/HIwV+iUSCwsJCKisr8Xq9mEwmgsGgPAmr1Wp27twpN1mR9gb4t3/7NwYHB4lGowSDQb7whS+MS4vOnTuXN954g0AgQHFxMYcOHSKXyxGPx2VqHkYDkHQ6zfbt24HfbyxCSyEcEYVoTpQghDdDOp3GZDKRSCTw+/2UlpZKS10YzeCc7KSoVqspLS2lp6eHuro6ubHC6CYfCATQ6/UMDAzg8XjYsWMHHo9HzmtIpVJotVqZhWltbSUej4+zqhZdKXl5eXJuRHl5OVVVVSxbtkwOVwqFQjK4EULUvr4+DAaDfA5DQ0MMDg7S19fHoUOHUKvVxGIxPvjgA+69917a29tJJpNkMhnsdjt2ux2fz0dPTw/pdJply5bxZ3/2Z7z++uscOHAAh8PB0qVLefXVV+XzzmQyOJ3OceUDQOotYNR/I5vNYjQaaWxslGWysRw4cIDf/OY3FBYW8thjj8kSzbRp04hGoxQVFZ1y8W5oaGD37t0AvPjii8ybN2/cnJIrTS6Xo7W1lcbGRhKJBFqtlhkzZlzUhMhwOExjY6PUZYwdq36yV4agvb2dZ555hmw2yyc/+Unq6+sv7olMQpRg4fIzffp0Tpw4wX/+53/yn//5nyxdupRHH32ULVu2XNaS4A0bLJyLVCpFeXm5bN0Lh8Oo1WoWLVpEOBxm9+7dNDY2YrFY5PCZgYEBNBoNFosFnU4n2ybFCURs1iKIELXzXC6H3W6XJxwhjKutrWXKlCkyGyGGD4lSiOi4WLp0KR6PhxkzZhAOh3nllVfo7e2V5YG+vj56e3ulGO5//ud/2LNnDxUVFXzpS1/iX/7lX6Q24Y033uCRRx6RaxS6CRg93YpyiMFgkGtVq9UYjUaZyv7IRz6CSqWir69PXjzS6TQqlQqj0SjLMOLfomTg8/nQ6/Uyg2C328nLy8Nut8thU52dnRQXF6PX6/ntb3+Ly+WSaxWumaJjBEaFneJ1TiaT0hCrpqZGZo/MZjMmk4mysjIMBgP9/f1S2KlSqSgpKeHDDz+UmZ2ioiKqq6tly+rQ0BBdXV08//zz0n9ixowZOJ1O9u7dyzvvvIPZbMZoNFJQUMDmzZvZunUrXV1d4wK4W2+9lcWLF0ujLjFATK1WM3369NM6B+r1elmeGWuRfaa6/Y9//GNisRjDw8Ns3bqV++67D4DCwsIz+iqMPa2LjpxzkUgkeOGFFxgaGmLlypUT2irY1NTEnj17GBkZkdoOkYG5UEQWCkYDUdGlIDJSp+P999+XwfGOHTuuqWAhk8kQiURk+e105HI5KYZWuP5obW3lvffe44c//CG//e1v2b9/PwcOHODP//zP2bJlC4888sgZxxRcCkqwcAby8/NZuHAhR44coaysbNyJbt++ffT398t0+cjICN3d3fj9ftLptCwVzJ07V260QqgosgOiFi2EjlarFb/fLzdtkY4Wm7XH45GBy+LFi+nt7aW0tFSebH71q1/xy1/+Eo/Hg1qtltqH4uJilixZQjwe58CBA/ziF79g586d5Ofnk8vl6OzsRKPRyA07FApJ0V4wGEStVss0vGg7NJvN8vdFeUVkEex2O/X19bz++uuEQiGZIREeBe3t7VJsKGZkLF68mIaGBjo7O0kmk9hsNsLhMOl0elzpQ8yr8Hq9qFQqent7x6XQxawJoe3Q6XSyW8Tr9TI0NCSDB2GmJTJAdrtdloVCoRDLli0jmUzKdG1jYyN2u51oNMqtt97KqlWrKCwsJJFIEI1GOXHiBNlsFpvNRjAYpKamBr/fzxtvvCGdI8VES61Wy+bNm2WZZcOGDQwPD3Ps2DHef/99KioqePDBB1m/fj1Hjx4lLy/vjBuSXq9n9erVso1UlDBO588ASKMr8fX5MGfOHO666y46OztZvnz5efX0NzQ0yKB2+/btzJ8/f8LcBUVgYLVaCQaDpwg2L4SxkzaLiopkpuxsBkeFhYXyuZ2PTfeVIh6P85Of/ITh4WFqamp48MEHTxvY7dmzR2aKFK5P1q1bx7p16/jBD37Az3/+c370ox9x5MgRfvSjH/HUU08xd+5cHnvsMR566KEJmU4LSrBwVu644w5uu+02VCoV27ZtY2hoiJtuumncND4xh170mguRYX5+PlqtVtbNVSoVfr8fv99PKBSSGQUxkyAajWIymWSqXLQlFhYW8uijj/K3f/u38rRz3333sXbtWrnOdDrNhx9+OG4old1up6amBrPZTG9vL+FwmEOHDuHz+Zg7d640ZCopKWHZsmU0NDRIjwjhVyCsjoXvgBA22u121qxZw44dO6QgUKPRyLT3M888w7vvviu7QcaecOLxOAMDA9TW1sqMy8jIiPRvCIfDdHZ2yg1NvM7i9SotLaW8vJz+/n6ZwREBlSjNiL+DqLePPdUL8ajI9IiABJCBhlqtlidzs9mMwWCQMykymQyDg4Ps2bMHvV7PsWPHSKVS6PV6HA4H6XSaiooKLBYLJ06cIJPJEIvFiMfj9Pb28vOf/5xPf/rT5OXl8cUvfpEXX3yRPXv2sGPHDqLRKKlUiqNHj3Lw4EFWrVo1LhUei8Vob29HpVKN00tUVVXR1dUl9QwFBQVnrN1/5Stf4bXXXsPpdI4bIHUubrnlFnw+H++++6502jybw+PYTVhocSaKuXPn0tPTg0qlYv369cyePfui77+8vFyWmcrKys5L87Bp0yYKCwvJZDITmjG5VDo7OxkeHgagq6uLoaGh0466Fj+7XChlhSuHw+Hgi1/8Il/84hc5ePAgP/zhD3n22WflpN6vf/3r3H///TzyyCOXbBWvBAvnQK1Ws3v3bl588UX8fj+7du3C6XRSVlYmywR9fX2o1WrsdjsWi0Wm68UHV2x2IhAoKCggl8sxNDQ0ro1SpJxnzpwpRXCLFi3CarXy2GOPsX37dsrKyli+fDltbW3k5+fLcbYVFRXydOt2u6WgcN68efh8Pvr7+zGbzTgcDtlCuGLFCmbMmIFer2fPnj3y1LxhwwbeffddvF6vFAWGQiHS6bTMJLz55psyMBI6jRMnTqDRaGhvb5dlA5/PJx0dE4nEuC4AlUolMyp9fX0EAgH5Gmi1WgoKCsa1gYpOE6fTidfrxWq1ypKDeI1FZkf8X6VSSX8Lo9GI2+1Gp9Nxyy238PLLLzM0NCS7VsTmV11dTXt7Oz6fTzo2zpgxg5GRERKJBOFwmObmZhkkiM6WRYsW4XA4pH200+kkFovJSaODg4Mkk0meffZZtmzZwvHjx+ns7JTiURFcuVwu2tvbsVgszJ8/n3g8zrZt26SlOIymkseWJYqLixkcHDznUKqKigoef/xx+b68EHbv3i3f07t27eJjH/vYGW8rbMCHhoZYtGjRRQkPz0R+fj4PPvigLDldCucztfVktFotq1evvqTHvRwIq26R0TudhiMQCPDmm2/KTOJEo2gWrh5LlixhyZIlfPe73+U//uM/+Ou//mvi8Tg///nP+fnPf86sWbP4kz/5Ex5++OGL+twowcJ5EIvF8Hg8ckqk1+slEokQDAYZGRkhPz+f5cuXc/ToUTKZjBTFjTVgiUQiUnwmlNRiWJNQyZtMJkpLSykpKeHBBx+ksbGR9vZ2FixYwOzZs6Wl7k9+8hM6OjrQaDR89rOfpaqqikceeYTm5maefPJJ2ekgpi5arVZqa2sZHBzEbDZLV8OKigoAampq+Od//md8Ph8tLS3s3LmTSCQihZzxeJxgMEg0GmV4eJhIJEJFRQWlpaXytenr68Pn82EymWT6X7Qwiq6KbDaLVquVojJxgs/Pz2fnzp2UlJRgsVjIz8+X5k42m00KQpPJJLW1tVRUVJBMJqXhlXDIFIJQrVYrfRbGdh7odDp5QfX7/VRXV8vx1QAbN24kHA4zNDSE1+slGo2SSCRwu93y5Cq6GcauSbggdnR0MHv2bMxmM8ePH5fOgmMFkvB7x8mBgQHsdjuBQAAY1QYYDAYKCgpoaGigoaGB+++/nyeeeIKOjg6y2Sz33nsvixYtGifEA5g5cyZTpkxBr9efsaVK2Irn5eVRUlJCb2+vLBvZbLazjkfOZDK4XC6GhoawWq3ntfkvW7bsnLe5WERnkcLvcTqdrF69mmeeeYa8vDx+9KMfodPpKCsr47777kOv10uX0osRgypc+2zbto0f/ehHvPjiizITPXXqVHw+H0ePHuXzn/88//Ef/8Frr7122qzT2VCChfNg1apV/PrXv5abBIyqqE+cOIFWqyUajUo3OxjdDMRgJlFHFz4KIgUuTsJiGqOox+dyOVwuF0ePHuXw4cPAqOXul7/8ZXnfol4qTvNiZHJtba1Uh2u1Wux2O9XV1cyfP5/169eza9cuOjs7ZdfDW2+9RSKRYPny5ZhMJrq6uujr62Pr1q243W70ej1ms5mioiKsVquchhkIBCgtLZUXbBFEiGxCSUkJxcXFFBYW0tbWht1uR6VSEQ6HiUQisi4sxFhCyBgIBKS9dCqVwmazodFoZHBlsVhIJpO8+OKLsmQAoxuHEJSKNk5hXCVO/ZlMhp6eHqLRKFarle7ubtRqNVarleLiYtRqNc8++yzRaFRu2mq1WnZxHDp0iHg8TnV1NeFwmGAwKE9RYqy4wWBg7ty5uN1ujh8/Lv/WuVyO/Px8KisrKSkpwWg08pOf/ASj0Sg7MMTjms1mmaHRaDT09PTIv7dKpaK9vZ0NGzacYsokdBdnIp1OyzHhIyMjuFwuCgsL8fv9tLS0yPbcM52yOzs70ev1Um19LaXfFUavBUeOHOGXv/wlw8PDDA8PS22HwWDAZDJx9913U1VVxbx58y5bGULJLFx5XC4XTz/9NE899RRdXV3yYHTffffx+OOPc8stt5BMJnnuuef49re/TWNjI1/72tf45S9/eUGPowQL54HJZOJv//Zv+e1vf8uePXuwWq309vZK46RAIEAqlUKn00n9QTwel9MQs9ksgUAAn88nOx+EbbMYDCUGJQkzJHEKFRu7QKfTMW3aNNra2mTLmGBoaIjy8nLS6TSRSITi4mJOnDiB3++noKCA1atXs3btWvbs2cNTTz0FjKaWb7/9djZt2kQwGOTtt99maGhIlkxESUWr1VJYWEhvb68cdCUMhSKRiLxIZDIZ7rrrLj7xiU8A8Lvf/Y7XX3+dRCKBxWIhnU7LUdSA7DCYOXOmvE0qlWJwcJCRkRGKi4sxGAyMjIzIzAQgFewimNDpdFJvIISTQi+SzWal/0IulyMQCFBTUyOnQo4d9iXEnGKSqF6vp7u7W/pJiL8hIB9HZI3E/dTW1rJ3715ZmhICxTvvvJNQKERvby8wqt9ob2/n7rvvpr+/n+HhYdkaq9FoZNAlNBparZb777//vPqqhVDV4XDgdDrRaDSYzWb5tzKbzfJ5iNd0rAvoyYhgTJg0XYxLohguVlhYOGGiq0shGAzi9/ulruV65pe//CW7d++mra1Nlt3E+1f4R8Do3/Ev//IvWb58Oe+8886Er0MJFq4M2WyWV199lR/96Ee8/vrr8vBZU1PDo48+ysMPPzwuU6jX6/nMZz7D5s2bmTp1Ktu2bbvgx1SChfOkvLycL3/5y4yMjPD++++TTqflFEm73Y7ZbJZOi0ajkUQiQTwel4ZHYmjVWHMlIa4TGQWxOX/iE59gzpw5sn+/rKwMt9sta9EPPvggPT095Ofnj7vo1tTUyDS5uE+TyUQ4HObf//3fKSsr4+abb+app54iGAySzWYZHBzkwIEDHDt2jKKiItm1AUhNAPzeuMZqtcqhVZWVlXR0dMjnUVBQwMyZM2WgADB79myGhoZk14DRaKS/v1/en1Cgi66HcDiMx+ORIs94PC7nVwjx4sm9xOL72WxW2mCLQC6TyciWTDHvQugcxOOKbJEYSS1KOMIwSmg8xO8K3YbwzABkmaW/v19afWcyGUwmExaLhaKiIpn2mzJlCrt378br9VJbW8uaNWtIpVJ897vflU6Jn/vc5+js7KSrq4vbbruNZDLJxo0bz2nzDKOB1JEjR0in0/T19bFw4UIcDgebN2/m2LFj0p68u7tbuooaDIazjl+uqqoiHA7j9XqZPn36BWsQIpEIhw4dIpVKcfz4cerr6ydkkuPFItYjJoSuXLlyQnUVE8mxY8c4evQoVquVWCxGVVUVixYtGrfJiiynzWZDp9NRV1eH1+ulr68Po9HIXXfdBYyKG1999VX6+/uv1tNRuET+7u/+jqefflrO6tFoNHzsYx/j8ccf5/bbbz9r8JWfn8/cuXP54IMPLvhxlWDhAhCn3fr6eo4ePSo3EXG6FBuMzWaTg59E+txsNsu+8LGp9bKyMiwWC263G7PZzM0338zatWvR6/Vs2LBBDljq6OiQwYJGoznthVZsruK0LEofBoMBq9VKR0cHXV1dslSh0WikNbTX65WTHYUVs8gqADLIETVxtVpNKBSS2RSLxcK8efPGdWnE43H27duHz+dj2rRpzJ07l5/85CdyoxbGSOFwmFwuRyQSkad0+H0QIMoJ4qQufl+r1ZJKpeQJXzguipZT8bwSiQQlJSV86lOfwuv1MjAwIDUHYqKn1WqVbYVGoxG/3y8DAIfDIdtiRQZCdGfA709GouvF5/Nhs9lIJpOylXH9+vXydbHZbHz961/H5/PhdDrRarX4fD7mzJkjLb+rq6tpbGwkEonI9U+dOnXc3zsQCOB2u2lubpbeEbNnz5YaGPF3i8fjcozxypUr5e8L22jRRXK2i4xKpTplxsSFIISqIqN28OBBmpqauP3226/KYKWx77OxDqbXGm63m5/+9Kd4vV56e3spLCyktLSUdDo9rpd+xYoVvPnmm9TW1rJ582ZWrlxJMpmkqamJmpoaOe/jpZdekmUoheuT//2//zcwKlZ+5JFHeOSRRy5If7BkyZKL6h5SgoULQAx8Ek58ot6ey+UYHh4ed0I1Go3yNJvNZjGbzZjNZlQqFVOnTqW3txeDwUBRUREFBQXU1NSQSqWYMmUKLpeL6upqbDabDBbOx5krkUjIsdjiAiy6D0TKPRQKyYBFBBRiqqRIsQsjKJHKz2azcp5Gfn4+M2bMoLOzUz7OWH+DBQsWyPW0tLQwODiIVqulq6uL22+/XXZBCMae7EdGRojFYuh0Omw2G36/X4rpRFlEBExWq1W6bB45ckSaXIm/g9lsxul0So2E2+0mnU7z8MMP8+tf/1o6VhoMBjweD8XFxQDSyfDEiRNSKGgwGKitrcXv9xOLxcjLy5P6DZFx0Ov1zJgxQw71SiQSmM1m6urq2LBhwyneBAaDYZw+oLGxUQYjPp+Pzs5OZsyYIVslDQYDw8PD8nd8Ph/Hjh2jq6sLQLp6ik6dsrIyBgcHsdvt5/QCuBJCQTHOW0w7hdGyRGdn50V7JFzqekSgWlBQIO3ZrzVE9koEN5lMRmZ4xnLXXXexdOlS3nvvPd58802am5t57LHHWLdunbyNy+WSbduXC6UMcfnZtGkTX/jCF7jzzjsvaljZ9773vYt6XCVYuADy8/N59NFH+eCDDzAajYRCIXw+n/Q2EKdwnU4nJ0QK8V0gEJC1fzEJMZ1O4/f7paOhEE329PTwxS9+kQULFpCXl4daraaiogK/3y/FSicj6lfilK/X6+UHV7QsipO5cDIE5OlXqP9VKhXxeFwGNuL0brPZKC0tHaenEBu/CEQikQgjIyM4HA60Wi15eXkyGLBYLDJQEa+TGMMdDAblfYrTp8jGiO+LjIZoh9TpdIRCISwWC06nkxMnTsiARugXhBmUyJTs3r2b9vZ2nE4nVqtVrqe0tFSeKsXEUKfTSTQalfbMYkKl6GgR00GFBqOoqEjWiUVHi91ux2QynVd9fqw9dTabZe/evdIFUnSViIuqmIqZy+VkXRoY9/XMmTOZMWMGKpVKmj+J5301UKvVrFixgt7eXvbu3SsNya7WhEitVsvSpUulAZrX68VisUyYcdREUV1dzbJly4jFYvJ973Q6Wbp06Sm3tVgsMr3c1dXFgQMHZG99a2srTz75JIlEAr1ez6xZsy7bmpXN//Ly6quvXpXHVYKFC2TBggV0dnaydetWBgYG5PeFNa/dbqewsFCe6KPRKFVVVQwODkrnRjGWWq/XYzKZ5AyKadOmkc1mGRgY4ODBg6xbt45cLsfTTz+N1+tlwYIFVFZWsnTp0nGGOF1dXVLZKu43m83KTIiYeCkCBpvNJlsL4fdtaCLFHo/HsVgsqNVq+byCwSDxeJwvf/nL7NixQ450FlkJrVZLR0cHf//3f8+tt97Ko48+Kjf3SCTC1KlT+eCDD6Q2QwhyYrEYyWRSnjbNZrNU9YvTMoz2kIvXSmQahIDx6NGj48R54nmL11mcpNxuNy6Xi5kzZ2KxWKSXg7htZWWldEIUnSCi20XYQldUVMguCbvdLjUrQiMiTtBarZaf/exnUjdy++23n/V9Jay6x44kHx4ell0dQmAYjUblLINYLIbT6aSnp0dOoxz7vhCdGi0tLcCoAPZiU5ATRWVlJRaLhfb29nE6jquB2HwPHz4sM1Dz58+/KgFVNpvlueeeo6WlhQULFnDvvffKNd5///3cf//9uFwuMpmMbHk+GXE9EV1bbrebrq4umpqa+M1vfkMoFJLGaWPLhROJklm4/EydOpXly5fz7LPPnvO2DzzwAPv27aO9vf2SH1cJFi4CsUmKi7ioEWs0GtnuJ9pXRCahrKyMaDSKy+WSIjqTyUQoFKK7u5spU6Zw66238u6775LJZPjZz36Gy+WitbWVWCxGOBzm6NGjlJeXMzQ0JNsyxZyK4eFh7Ha7bB2Mx+Oybg+j6f6xGQZRdxfzGQoLC+Waamtr0el08uTq8XjkZh4Oh6murqahoWGcPqKpqUmmRp9//nmam5sZGBjAYrFQUVFBV1eXvJAJnYPY8EXAIQIbYZvc29srBV3CEEo4XQoRZDwel0LTTCaD1WqVvgqBQACPxyNFj6LrRGxUIsjZtGmTDOKKioqk06bBYCAUCjEwMCBdLcW0SbfbLf0VhINnOBxm4cKFLFiwgO9+97sy5fu73/0OgPfee4+qqioefvjhcfVxl8tFU1MTarVavkYqlYrq6moGBgZkVsVms+HxeKTGwGw2s2LFirPOARjbSZNOp+VzFlM5LyaNeakUFBRc1UFUglQqhdfrHecDEgwGr0qwcPz4cRmo7t69myVLlpxiOX02ASqMBgt//Md/zL59+zhy5Ahbt27l1VdflQF2MBjEbrezbt06ZYO+junq6jpjwHgyg4ODslR5qSjBwnmSSCTo7e2VFsz19fV0dXURCoUwm80y1S2CBLGRiTp6X18f0WhUbi6JRILa2lq6u7vlcCWfzyc9C5LJJMePH8fhcGCz2bBarVitVlQqFT09PfzqV7+ipaUFvV6PxWKRFr9iUxfp55NPmmL2BCBPzjqdDofDgdFoZPr06fzJn/wJzzzzDA0NDQwODsrbm0wmpkyZIkcfv/POO+j1esrLyzl69Kh8HOEPAKMtfGJiplarlWJF8fq4XC6pnxBzGMQo6Pr6epqamqSYULxu0WhUBhvJZJJ58+ahVqvlpg5ILwexdhH8iKBJlDfcbjfbt29n6tSpMpNisVjQaDTk5eXx3nvvjeugiMViUuwIoxtOIBCQE0f37NnD4sWL8Xq98nlqNBqOHTuGw+Fg//791NfXjxvzLMRmol0yFosRDAbp6elh+fLlpNNp8vPzpaW0CIxsNttZAwUYnWMwNDREOBymtLQUo9HIBx98wK9//WtMJhOf//znpfjtRiKZTPLBBx9IJ0Or1Yper5cOmVca8dkWXTwXq6GoqKigoqKCXbt2AaOf+Wg0SllZGXV1dWzZsoV169axZ8+eiVy+wjXK2C6yS0UJFs6DTCbDM888Q29vLwcOHABGFe3f//73ee+993j33XelHbEw6DGZTNLeN5vNSlHc2BO9EEKKXvxwOMzAwAA+n0/W7cPhsDwt33///dTU1PCVr3xFCp9EW6UQ6Pl8PtLptBzUlE6nZco9m83KjIjweEilUnJ+gwh0uru7iUQiDAwMSBV7RUXFuJPO7Nmzqa6uJhQKUVRUhN1u51vf+pa0co5Go/IkD6PixeHhYRkkZDIZWlpaZJpezGAQG3o6naahoYHi4mI5cloENSJzIroYRPaktLQUl8slZ2QIxDpEilQMwRIcP35cWi1HIhGi0ahs8xO/J1pctVotnZ2dUowIo/7sYz+QXq+XWbNm8f7772MwGJg2bRoajQaTyXRah8WCggI8Ho+8L6/XKwOdQCAwrgvCbDazcOFCYrHYOQMFGK3Nz58/X77nAN58800pmtuxY8dZR7WfiVAoxFtvvUU6neYjH/nIhA9UGhgYIBwOS8OxiUaIVcXftri4WG7UZ0I4qi5ZsoTKysoJXU9FRQUPPfQQLS0tzJs377SvZzAYxOv1UllZeU5R6rJly3jvvfcwmUx8/OMfx+12M2PGjMtuU62UIa4d0uk0bW1tE5bFU4KF0xAKhXC73UyZMoVUKkVraysul4uenh6ZsozH4+zdu5e1a9fS0NAgN+j+/n5ZZrDb7QSDQdmaNXaolM1mY3h4GK1Wy+DgIEuWLOGjH/0oW7dulW6JY8ctezwevvGNbzB//nypNxAb/6xZs+RmY7fbcblc0nJZZBvEY4rOBpFhSCaTuFwuTCaTFD39z//8D5FIRF6kk8kk+fn5bNmyZdwH22KxyBPQ2rVrefPNN/mv//ovnn/+eUwmk0z9G41GeeIXr4UQRo51tBQXQNFeJ1o/hbulVqslFAqRSqXk2sQ4XkBmZcbO2wBk6cVoNDJlyhQ5AVOYOSWTSY4cOSJHb8OomDWdTst2V/G3EBMxRVZj7OAtYeFdXFxMbW0tmUyGeDzOjBkzZJvmpk2bThkfW1NTg81mo6Ojg6NHj5JMJqUeQmSGstmszCSNHSJ1voz9u5WWlkp3v7NZPJ+N7du3c/z4cWD0/XExAcdYUqkUbW1tMtslgvLe3l4+8pGPXNJ9nw5RshP+Jy+99JIsQ33uc587ZTNub2/niSeeIJfL8d577/Htb3/7kjsoxOwRkVJesGDBuG6isQwMDPD973+fRCJBfX09RUVFHDt2jNWrV7Nx48ZTbr9lyxbWrFkjfVGuFEqwMPGIA+lYenp6+Na3vnXG34nFYuzcuZORkRE2bdo0IetQgoWT8Pl8PP300+Nsf9PpNAMDA3KksdhkWlpaaGlpkT3+YhMT3QbCflgI7iwWi8w6qNVqeaFyOp185StfwWAwsGjRImnAUl1dTXd3t8xOwOgbp7CwUM6d+OQnP8nHPvYxHnnkEamEF22dwiBKOAsKcdnw8DAtLS3SOEpswm1tbdL2V2yOYpMVrYoC4W8w9tQXCoU4fvw4NptN+jio1WpZKxVdCgaDQQ7UEnM0hMulMIYqKyuTYj9xeyE0BKQ7ZiQSkToIv98/buMWmZKx/8FoSSIvL0/OlhDdBiUlJfj9fkpKSuTf1GazyVS10IOIDI1YhxCDqlQqli5dSl5eHqtXr2bJkiWy+yQajcrX5XSYTCZ27NghhZVjnSdTqRR/8zd/w4kTJygqKuKzn/3sJV0APvvZz7Jz504sFgtLly4lmUye4nUgAkkx4KywsPCMp1nxWlwKW7dulUZBYydtiqBuorUVRqORNWvWEAwG6ezslJmokZERgsHgKRvsWDt3oSG6lGChpaWFJ554glQqxfr16/noRz9KKBQim83S3NzM1KlTx3mpNDU1SU+Xbdu2EYvFCAQCbNu2jeLi4nFDxQQTnf1QuDq88847fPOb3xwXVPX29vLNb37zrL8nZub8zd/8zYSs44YOFlKpFPv37yeRSLB48WIcDgc9PT3E43E8Ho80C0qn0xiNRtkiJ0Rnfr9/3ORBMZnxZOMe8T2V6vfjnEVrovje008/TTAYRK/Xs3HjRj7/+c+Tn5/P+++/z1/8xV8AyHazRCJBcXExf/VXfyVbqMTFQ5Q3RLdBOBwe5+aoUqnkQCnRoWE0GqUVsMFgwO/3y24KkQUIh8O8++67bN68mf7+fp566imy2SybNm2ScwIsFgulpaVSUCMu8EIAKi624rUR0zeFT0FNTY2c1SDWLrQFY7MpYiOLxWIYDAbpD2Gz2SgoKMDtdkt9iEajoaqqSg5yElbKJpNJpnpFECjEbaL9UvxtU6kUxcXFcviSSOmL5wGjAYjdbpdGRyLIFB0Z58oE/OpXv+LYsWOYTCZmz56N2+0GRgVKDodD6hrcbjdNTU2XFCyYTCZuvfVWfD6fLLfk5eVRW1uLxWLB4/HQ29tLOp2W7aUOh2PcqXfDhg0yKL711lsvei0C8XzHrjEWizFt2rTzChQaGxvp6uqiuLiY5cuXn9dp1Wg0ymB6165dxGIxysvLTztjY+HChbz33nt0dnayatWqi87ICA4ePCgDlB07dnDgwAGCwSBut5vS0lI0Gg1f//rXZffC9OnT0Wg09Pb2kkgkGBwclMHvvn37ThssXC2UTMHEsnDhQv7wD/9Q/vsnP/kJxcXF3HHHHae9vbBznzZtGvfff/95iyHPxQ0dLBw4cIDm5mZgtIZ5zz33yBppIpGQ44hzuRzRaJQNGzZIM57W1lbsdrsU7Y31ChBCQrHBiVZBUc9Pp9OUlJSwZMkSjh8/jkajoaGhQYoZxVhnGB31KzZGlUpFXl4eRqORdDrNW2+9RSwW4/Dhw4yMjMjalNBPmM1maTVts9nYvn279MMvLCyUJ2/hEGg2m2WJQjxncaEWrZKvvfYaL730EuFwGJ1Ox6uvvorb7WbatGnMnDmThx56iCNHjkhXRUC2/EUikXFrFIOcRHvkWH9+h8MhdQ/xeFyuQ7hmitc2mUzKi6bIdjgcDsxmMwMDAwSDQbq7u8dlRcZOLBQeEaLUIIIt0TGg1+u5++67Wb9+PU888cQ4d0lh/JTJZOjs7OTOO++Ua2ltbZUljHnz5o3zE/D7/fT29mI0GqUeobOzk9mzZ2O1WuXfQZRjROZEuEsuWbLkvN/jLpeLDz74AI1Gw9q1a8fVwsXwr0AgIN8XYuT62NkabrebWCzG/Pnz5UZgt9vH2XrDqKPk9u3bsdlsbNiw4YLMnubOncvBgwfR6/XMmTOH4uJi+Xk5F4FAQH6OOzs7KS8vv6ALZEFBAY8//jher1du1CdjNBr5+te/LrtJzpdwOMzXv/51BgcH+eQnP8mWLVsAqK+vlyJEkSFLJpOMjIzI96rL5ZLBQm1tLf/f//f/8S//8i9yeFsqlaK8vJzp06ef9rG7u7vZt28fTqeTdevWXRHzLaUMMfF8/OMf5+Mf/7j8909+8hOmT5/O008/fUXXcUMHC4lEAvj9QJ99+/axbNkyHn30Ud566y1+97vfyZNjLpdjzpw5DAwM8Nxzz6FWq8nPz8dsNuPz+eS8AJFNELV1YT0sTvrCf6GpqYmmpiYqKyuprq7G4XDItGZVVZVs3/rBD34gW+Xy8vLQ6/VyWFVDQwOtra0MDg7KNQrhoggSxMhoEQCItYiNTNgmixS5eL7CZEps0oFAgJ///OdSzCd0EO3t7fT394+bEik2JJ/PJ22sxQYfCoUwmUxYrVZZHhE+B2IzTKVS+Hw+mUkQG5cQoNntdnkCFpkb4SApdApi44dRYVheXt64yZTidRo7Q0I8ZxGQBAIB5s6dK0VhGzZsoKurC4/Hw/z58+VgrGPHjnHo0CESiQRqtZqPfOQjcvBVMplkeHh4XLBw/PhxotGoTPPPmjWLOXPmyFN8UVERvb29RKNRYrEYCxculC2q6XSanTt3kpeXx+LFi8/5Hj98+LB8nx88eJDbbrtNvi5Wq1VOHxS6kaGhoXH21X6/H7fbTU9PD2vXrj1r6v2pp56is7MTGA3cLiT7sXjxYmbOnCm1NsB52y8Lo66xWZ6XX36Z5uZm6urquPfee/F6vezfvx+1Ws3KlStPMcoaq78512NdCE8++SSNjY0A/Nd//Rd33323DPgKCgrkpNUnnnhCamo0Gg1TpkyRI+kFpaWl3HPPPbz22musWrWK+vp6Zs6ceYoGBkZ1P7/+9a9JJpOcOHECh8NxXu8XhWufzs7OyyL6PRc3dLCwZMkS/H4/hw8fxmw2s3v3biwWCwaDgT179si+dBg96apUKn72s5/hdDqx2WxUVlYSi8Xk5iMutMICWJQaTq65io1PpOAXL15MNBpl/vz5lJaWUltbKy/YIj0r0t4weiHweDz09PTIFLfYaMWgI5/PRzweZ+7cudLECEYDiqqqKlnrF90SkUhE6isMBgPBYFDeHpAOguJxRBeHKNeIjUwEJoAsuQSDQane9/v90pVSbNCpVAqz2UxrayuRSETWg4WVtHC5FAGN0FUIZ0XxOsZiMel9IQyOACloFBMTI5HIuLkOYgKjcLcTo8QNBgNtbW289tpr3H333dTX1/Ptb3+bPXv20N/fTyKRoKOjg8OHD8sPbygUkq1v7e3tMsNUU1MjT3bpdJpgMEgul6Ovr4/q6mo+8YlPsH//fnp7e/F4PPK0aTabaWtrk/ff2dkpBbf/5//8n3O6Q1osFilmTCQS9PX1yVp2eXk5er2eEydOSFGl1WqVItFMJsO+fftkBudcdfqxFsRic96xYweVlZXcf//95zzZXqwGwGKxsGbNGrq7uykpKSGVSrFnzx45r2XhwoWywwdG6/+Xy5ToZMYGPKI8KRCahFQqxbp16wgGg3zqU5+Sz+l05ZebbrqJJUuWjNPgnI6xLdKAzHoqXP+c7L9xpbihgwWbzcZdd91FT08P6XSa4eFhdu7cyfDwsBw2JGq5fX19fO9735MmQZlMRm6MIjUpNjjRGigujqJNTfxcnGqz2SzLli1j7969pFIpDh06xN/93d+Nuwhs2bKFjo4OXC4XPp+PvLw8eeJUqVSkUikpwOvv75cnrNLSUukjLzYUsam63W5MJpMcny3cHcX/xffGrl/YJws75hkzZjA0NCTXIS70IjASXQ9CiClKBCUlJfL5iQ1J1L6Ft4EwZBICR7H553I5OQ8CGDda2mQySQ8GkcUQbYqi3VIEL+J+RSeGGD8tRJTl5eXS/0K4IAr0ej1r1qyRJ8IDBw6g0Whwu93MmjWLDRs2AL/vpoDRACIQCMgSzNhR33a7XdprW61WOS0yEokwe/Zs0uk0L7/8Mul0WmoyhM20CADPxooVK3j77bel0ZV4rwiKiopwOp3jRI6FhYVotVoMBgMNDQ10dnayYsWKc9bpb7vtNp5//nkKCgpYs2YN3/ve98hms/T09FBVVcWqVavOud6LRfgLxGIxfvjDH3Lw4EE50E1ojgRX8lT22GOP4XK5aG9vl7NRTubZZ59l7969wOhrf88995z1Ps81Ttvn88msqEajYfr06Vcsq6CUISYvN3SwAKOR/8aNG/nNb34j2whdLpfckHK5HG63m1QqxYkTJ7BarTIF7/V6ZX3Z7XZjsVhkECFsekXpQaTF8/Ly5Am4srKSP/qjP+Jb3/oWAwMD+P1+fvrTn0oh2dq1a1m9ejWvvPIKmUyGb3/727z33ntyYxcZCqHmh9EASNhN6/V6IpGINIwSMyyy2az0LRDiQ1EOSCQSuFwumZIXZkCANJkSp3iVSoXVapUCSiFK9Hg8cqjVWKOZsd4IgPyZwWCQcxjEid9oNBIMBuVYaaEhGFtqERkAkSkQg7tCoZD0v7/ppptwu93YbDZOnDhBPB4f50Ehnrc4qYl2U+F9cPLESBjNDImNf8OGDTJAGEtxcbFszbNarePKENu3b8fn82G1WkmlUtKgSZSvYPQUajAYaGlpIR6PU1RUhMVikcFiUVHRKcOpTofBYGDhwoW0t7ej1WplDXwsosVVMLYv+8tf/vI4j4Yz4fV60Wq1bNmyBbvdTklJybjfuVz18uHhYfx+P9OmTSMWi/Hf//3f7NmzR37GhDBw6dKlHDt2DLVafUp6fyIZGRnhhz/8IeFwmPvvv5/FixezadMmXnzxRRoaGnjhhReklbNg7Ljo042Ozmaz7Nixg6GhIRYuXEh9ff1Z19DQ0EAoFJJD2E5+vMuJEixMLOJzU19fL3U5F/pZEqXvS+WGDxZgVFzV2trKkSNHpOhLROVlZWVyEI/FYpFGOWq1Gr/fL10XxdAikToUAYUQqTkcDp544gkikQivvvoqZWVl/Omf/ilarZbq6mr27duHXq+nv7+f/Px8bDYb+/fvl4rX9vZ2WU8Xp0yj0Sgn0IkP3G233UZTU5PcYFUqlUxDC88D8YHOZrOyfVCr1WI2m+VG/P+zd97hbZVn//9oWJblIcvy3iOJYyfOHiRkQhIyGGFDWyhQ9moLLaUtLXQXCm/ftvRltJSRlhJ2yChkJ2Q6e9iOR7ynbMuWtffvD/+ep1LsLAgQwN/r6tXgoXN0dHye+7nv74D+cYeI3Q41Uwo1Kgol/AUCATo6OsL4BmKRFzJRURyEyvLEYi06NMKfIFSmKnz84b9SPVGgiO6OQqEgOTlZJnhOmTKF4cOHM3nyZPR6PWvWrOHIkSOS4CheU8jkEhMTpU10QUEB8+bNQ61WU1lZSUpKyml3pC6Xi5qaGpRKJcOHD2fRokWYzWYZMiXQ0dHB4cOHAYiPj+e6666Ti9hFF11ETU0NkydPZuzYsWg0Grq6uoiMjJQmTOI+XLNmDaNHjyY/P5/u7m6qq6uJiIhg1KhRYeeanp5OamrqJ3qQw5k9zK1WqyT6+nw+Ro0axbe//W0+/vhjsrKymDx58lkf93SorKzkT3/6E36/n/Hjx2M0Gmlubqanp0f+TCAQkPbl48ePP6fHP3DggMx+SU5OJjIykg0bNmAymQB4//33mTBhggyH6+zspL6+njlz5oQVZPPmzeOf//wnCoVi0MKzoqKCgwcPAv33Tk5OzikDr0JHU2cSYnYuMVQsnFuEcuZO/NrZvsanxVCx8P8xZ84cufMAZBJkdna2TKMTD0OxwIkFRzDoXS6X7CgoFP2ZC5GRkeh0OuLj4xk9ejQxMTFhJjPd3d0cPnxYqgUaGxvD5HcCSqUSm80muwUajYb58+dTU1PDli1bCAQCkhwlFmNBahRjASGdhP8GX4liRtgwCzOg0Hm/IL+lpqbKDolYqIuKivD5fJjNZpqammShIKSIDocDtVotI7vHjh0rI7pramqkq6XwTRA8CGGXDMhxkCBnhspSRbpnqFxVFEXHjx+nu7ubkSNHUlRUREZGBlVVVfLn09LSJN9DqVQybdo0WRxoNBosFgtdXV2oVCo2bdp0WsLekSNHJMfE5/MxZsyYQVvG48aNk46bHR0dMsY7KSmJyy67LOxnv/GNb1BYWChNwv79738D/f4DZWVl1NfXM2vWLJxOp/TNaGhoGBD7/FlnQERERPDhhx9Kj4xp06Yxbtw4xo0b95kd88iRI9ICfM+ePRQUFEgjK+H+OGXKlDMmSp4NPvroI1asWEFtba1UvPz0pz8ddKEuKipi2bJlQP/f9J49e8KCxSZNmkRJSYnsBp6IExfT0y2uY8aMQa1W09fXR0lJySd8h0M4HyAIw6H3sPja542hYuH/w2g08s1vfpO33nqL8vJySf7r6OiQlZlOp8NsNsu2rNhp2+12UlNTZXtdtJDFnF608webMTc2NmIymeRCV11dTXFxsTRoEqqG5cuXEwwGMRgMpKWlERMTw4033khqaiq7d+9m7dq1KJVKmpqaMJvNYR0EQbiLiooiMjJSGiaJmb6IdtZoNDgcDrRaLVFRUTLvAJB21aL1n5KSwqRJk5g4cSLLly+nu7tbHkeMBQSnQKgk1Go1XV1dpKSkcOONN/KHP/yBzs7OsBZZZGQkRqNRchni4+Pxer2S1Oj3++nt7ZVdAXGtIyIi5M67u7sbrVaLwWDA6XRSU1PD+PHjGTFiBHv27JEKlWuuuYa1a9fS3Nws1R5z5szBYDDg8Xgwm83SdttiscjP3e1209XVhV6vDwsdEh0Um80WlsnR3NzMpk2bSE1NZd68eeTl5Ulpbnp6ukyEa2trG3S2HCqV9Hq9HD16lObmZskTEcFiQvXwWSyOp0NXV5csCIVPSWpq6md6zGHDhtHb2yt9OpqamrBYLCQmJnLLLbcQERHxie2N3W43JpMpLL48FPX19bhcLiwWi1TyrFmzhquvvhqVSoXVapVdggsuuIApU6bQ3d1NZGTkoKOgU/lwjBw5EpPJhMlkYty4caftcCkUCkaNGjXo9zo6Oujs7JT3yhDObwxGZhwiOJ4HyMnJkfNdYfgjZIHi4aFUKqUmGpDERvHgFm59oo3u8/lITExEoVDw0UcfMX/+fLl7h36zldzcXEwmE8FgkKysLObOnYvD4eB3v/sdNTU1jBo1ivb2dtlZELHOdXV1jB49miVLlrBkyRKam5tZvHhxmN+AWq2WfhBiFyZGEIFAAJ1Oh06nw+PxyALH5XLJBVzIKQOBgLS6Fiz+lpYW1qxZI7MWhIWzGCeITIbQVprdbqe7u5ukpCRJHBUERSGpVCqVZGZmSmOlQCAgHfRiYmJwu93Smld0d8Txent7JRlSrVYTExPD2LFjMRqN1NbWykAu6C+Apk6dSllZGSqVCpPJxOHDh5k2bZp0mBQclOLiYjn72759u0y6nDlzpny99PR03nzzTdxuN93d3UycOBGlUsmf/vQnyUXQ6XRkZGSQlZUluy6CFCoUEqE7x76+Ptra2sjOziYqKooJEyYwYcIE9u7dy44dO+S5+Xw+Kisr0Wq1XHDBBae8z9977z32799PcXHxAAvvT4qsrCzZfTMajZ9LqmR6ejrDhg3D6/VK2alo0Z8uEvxUsNvt/M///A9dXV2kpaXx/e9/f8BiPn36dI4cOSILFaVSSUdHB2q1eoBJlVKp5Mc//jF79uwhIyPjpAv5yaBUKgfwZj4Jmpub+cc//hHGcfosMDRW+Gria1ksbNq0idWrVzN27NgwY5lt27axZs2asBa8+LfIig8EAnJ3LYiG4msiy6C3t1faOgMyrXLTpk1s3LiR7OxsHn74YSIjI9FoNIwfP17K65544gmgnwS3fv16gsGgtGEWi1V+fj4qlYp169aFta137twpFQ3Qb5yj0+mkdFJ8T3xf/FsoDsQOSXhGhI4xxG5eIDRaWrhACr5BXFwcCQkJUn4J/YVCfHw8wWCQpqYmfve738nEyVD+Q6heXhA4xUhFOEkKK24BkTCpVCrp6emRHYGcnBzmzp1Lfn4+Tz/9tCTCeTweRo4cicFgYMuWLZKzIRQDY8eOpa6uTpJfBRkU+iWk4kEruhyiWBAk1+joaDo6OiSXJNRky2KxMHz4cPbs2UNXVxcul4vx48eTmppKZmZm2DXu7e3l+eefx+l0kpiYyJ133ikXrUmTJjFy5Ej52f7hD3+QCpD4+PiT5ik0NDSwbt06AD7++GPGjRsnM0E+DQwGA/feey/t7e1kZ2fT0tJCeXk5ubm5Z704ngiXy0VnZycpKSlSWdPS0oLRaGTMmDFUVlaSnJws793B5v4nw2AmS6tWrWLnzp2SCNvc3BxmQQ1QUlLCk08+yRtvvMGOHTuIjo4+ZcvfYDCwYMGCs3vj5xgNDQ2yuymyZM41hjgLX118LYuF0tJSUlNT2bBhA2PHjmXEiBFAfxFx/PhxFAoFRqMRvV4vuwlKpZKkpCS5qxYEPui/2QVzXygBgLDY6rq6OhISEiQrvqqqipKSErZv387+/fvRarV0dHSwb98+VqxYQV9fn1yM/X4/UVFR6PX6MGfE3NzcsPfV3NwsSZCA9EQQPAIxFgg971Bff0HsDP2++D1A+hAIe2uhpBCFw8iRI6XWXtgqhxYC4v9dLpckkoqHi3DLDAQCUsonzkd0SkSMr5AAOp1O6XYXGxtLfHw8I0eOZNeuXRQUFHDnnXfS3NzM+++/T1NTEzabDbfbzTPPPAMgJZOFhYW0tLRIMxydTndSMpwI5unp6UGj0WCz2WhubiYjI4Ps7GypgEhKSqK5uZk333xTdmvGjRvHrFmzqKyslO1g6CcHTps2LSwLAJDWvoKAuXPnTmbPnh1mqiS+LnIDBA/lZBDjKVGQnYood7bQ6/Xo9Xr6+vpYvnw5gUCAnTt3kpqaSnp6OkuWLDmrACyv18trr73GRx99REJCAkVFRdx+++0899xzNDU1ERsby0MPPcQVV1whFTmh9//JIDhHjz76KB9//DERERE88sgjXH755Xi9XrZv3y7JvS6X66TjlOjoaG677TamTp1KRETEAJ7I+YbCwkI+/vhjnE7nObMAHsJni9dee+2cvM7NN9/8qV/ja1kshCL0YdnU1CSdFoPBoMwciIyMZPr06Rw6dIiysrIwtz/4LwlQo9EQFxcnsxuioqKk2kCYC4nX3LJlCw6Hg66uLvr6+tDpdERHR/Pqq69KsmFWVhYmk4kRI0bInIHZs2czdepUent7B8xjxQPT6XSi0+no6uqSu2Ux9nC5XHLBgP/KF4UCQSgThGJASDQF4VOoG8Su3263M27cOPR6PTU1NRw7dgyVSiXn/sIlUkg3xWsrFAr0ej0qlQqLxSK7Gd3d3UREREijJEDu7ENtmoUqpKSkhKamJhITEzEajdx2223cfffdLF++nHfffZfGxkYcDocknoruUFtbG36/n3HjxkkppNVqpaWlhffee4+rr756ULc+QYS0Wq3s27ePLVu24Pf7KSkpYebMmdx///20t7eTn5/Pm2++SSAQIDU1laSkJH7wgx8A/UFJiYmJsisleCgnIjs7W46shO21w+EYYF6kVqtJTU2lqakJpVLJhRdeeNL7PSUlhdtuu40DBw5QXFw8oOA8Fwi1DBcyXJF7cumll57x62zfvp2PP/4Ys9lMT08PBoOBsrIympqaAGT4WaiDoUqlora2lp6eHpKSksjOzg57zc2bN7NixQp6eno4cuSIHBU+99xzXHbZZdKCfNiwYTgcDq6//vpTmkUpFIrzKpfhVBCBdb29vdTW1vKrX/3qnB9jqLNwbnHLLbeck+szVCx8QixZsoRAIMCYMWPCktkMBoOURfp8PtludrlcrF27Nmw3LRZOsVuH/ra0CEe67bbb2LdvH3v27JHOhiK9z+VyUVpaypYtW2SOQTAY5Hvf+x4vvfSSzEK47rrrGDVqFJWVlajVasaMGXPKHcGOHTvkTt/j8aDT6Qa09kWgUujYQDDphZFUQkKClEeKHb7Q94s0SwGbzcaHH35IcXExJpNJOj2KxE6xuIsRilCJiDmvyIYQqgZxrkInHxkZKTsq4rgajUYurm63m0suuYTMzEzy8vKkQZLoLtjtdhQKBXa7naKiIm644QYaGxvlgmMwGJgyZQr/93//h16vl/4OK1eupLq6mmAwyE033UR6erp8z0qlEr1eLxMhoV/bPnPmTIxGoyQ35uXlUV5eLv8t4HA4GD16NDk5OZJsKSRxYuwkTJxuvPFGdu/eLVU1g5Hbxo0bR01NDfv370ev17Nq1SrpBDgYJk6ceEb5EjU1NdTW1pKdnX1abX8oBPn1yJEjxMTEyMVWjPSgXwq8fPlyoqKiuPnmm6WCYfPmzZSVlaFQKEhMTJSupCIobMSIESQmJtLV1SXDx0LR0NDA3r17KS0tpaOjg6uvvpqlS5fK769fvx5ASoLFxkCQY1UqFXfccQebN28mNTX1M4nH/iIhOEoNDQ1f9Kmcl8jNzT3ttdmzZ48M8PusMWvWrPOmmDovi4U9e/bwhz/8Qe4qkpOTmT9/Pj/+8Y9PGppyNhg9evQAN7ny8nI5axVWu6GmR93d3fT29so2vFBDREZGhs3Yhczwz3/+s/QIEGZFkZGRcpQBSOdC4YxXUFDAQw89xPvvv4/RaOTSSy+VD0ShJjgVdu/eLeOvQxfd0M6C2+2WnQWxA4T/jhyECkF0XAR58MILL2TlypVhJEdhFd3T00N5eTmxsbGkp6fL/AVxfDGmENdTjBf8fj8KhYKkpCTGjBnDoUOHwgh+cXFxkmAoJGU9PT0kJiaiVCqljHT8+PF0dHSwa9cuJkyYQExMDFFRUfT09BAbGyuP9e1vfxuj0UhFRYW8ZvX19fz0pz/FarWSnJzM7Nmz0Wg0mEwmqqqqCAQC/POf/+SRRx4ZcL3j4+PluCjUdElg1qxZpKSk4PF4wub2PT09OJ1O6dlhNpvZsmUL9913n1TcQL/Bz6hRo5g7dy59fX0kJiYOasgi+Boik0OYt5wNvF4vVVVVJCQkkJaWRm9vLxs2bACQIzQh9zwTLFiwgAULFlBaWsr27dvR6XRhC+/y5cspKyvDYrHQ29vLzTffzFNPPUVHRwd9fX0y0yQiIgK9Xs9VV13FkiVL5OihurqazMzMsGCs9evX8+tf/1oWAlFRUTz77LOMGjVKPjfS0tKoqamRkdvt7e0kJyfz1FNPhV3PkSNHEhMTc8406l8XfFU6C6NHjz6p6dlgf+ufFTZv3vy5Het0OO+KhVdffZXvfOc7+P1+EhMTKSkpobq6mpdffpnly5ezcuVKLrroonN6TIvFwooVK+ScUkj3xGLq9Xqx2WzyIRTqzAdI58GIiAipOBC7YKfTKTsQw4YN4+6776a6uprt27dTXFyMw+GgqamJkSNHotFoyM7O5sEHHww7vzOZ84p5/2B6+q6uLrngCsKgIMaJwkIQ+JRKpSRrilm7UqnknXfekWQwsdgL8qNQTIT6HIivieMIvoAwX4L/SvwKCgpku95kMslzFWMM8f6FIZFOp5Ovr9PpOHjwoNwx7t27l4cffpjU1FSqqqpISUlBr9cTHx8vH0qZmZlScldfXy8/I7Hwi/cuCqmTSRGXLFnCtm3bcLvdJ239DzbHTklJkV0LMdIRhlaCPyPer/CoGCw2ORSjRo1i3759OBwODAYDHR0dZxWj/I9//IOamhoUCgXf+c53aG1tpb29XXprhErtOjs76ezslCZIubm5YVLRUEyZMoWsrCxcLldYsev1eqmrq8PtdrNq1So++ugjmd0gxk7Cqjw1NVV2zP7+97/T09PD5ZdfHlYoQP98V5xnaLz8m2++yU9/+lMAbrvtNnbu3ElcXJxMdA1dFLxeLzU1NQAyCnowqeMQvtr4y1/+ck4UKF8lnFfFQllZGbfffjt+v58f/ehH/OpXvyIiIgKHw8Gdd97Jv/71L6655hqqq6tP+nD6JAhNhBQmPaHKAKfTidlslothamoqer0er9criY0CobJKAZ1Ox4gRI7jtttuIiYlhyZIlMp983bp1vPTSSxw9epSXXnqJu+66a8D5HT9+HI1GEzYyCUUgEGDfvn3ExcXJOGNhqyxUEB6PRxYHQgYpOiRi4T/RsEkUIEKWKK6P6J6o1Wp6enrCdv7CYCk6OlruDC+77DJ27NhBRUUFTqdTmtWIoqG8vJyoqCjJdTAajXR0dMhCJnSM4vf7sVgscmQQHx8fdr27uro4duwYR48eJSYmRl4Pl8vF66+/zrXXXivb5MJZc/Xq1TL469JLL5ULiMfjoaur66S58W1tbdTX16NWqyktLUWtVjN27NjTLuyJiYnMmDGDo0ePSovx1NRURo4cSVRUFMOHD8disWAwGM44x2D06NHccccdPPnkk9TX1/Pb3/6Wxx9//IwkjD6fTy6QkZGRbNy4EZfLRX19PXv37iU1NZXY2Fi++c1vUl9fL6O6Ozo6yMzMJCoqiosuuojGxkbsdjvZ2dnSrGv37t1s27aNnp4e4uLiKCoqYtKkScyfP581a9YASNIr/NdtTvB9Ojo65L28fv16meD42muv8Zvf/CbsfaSkpFBTUyNHXEajMSyaXLxu6GbjRIKnsP8Wxf7ZpkwO4fzsFAzh0+O8+kv4xS9+gc/nY/r06fz+97+XX9fpdLz00kvs2LGDuro6nnnmGX7729+es+MmJCRw0UUXsWfPHiZPnkxFRQVtbW3yphfmQEK2Faq/F7HIooUv+Ak+n0/usEeNGoVGo2H58uVYrVYiIyO5//770ev1vP/++1KDv2fPngHFwgcffMDatWsBuP7665k5c+aA83/88cc5dOgQsbGxcoYeCARwOBzSQVAkSgrugGCEi8VYjATEuMDv96PVagd4Loj/9vl8aDQaafYkiIzBYH88ts1mk1HSH374ITNmzGDUqFEyNlcUKqKDk5CQgNvtpq+vD7vdTlRUlFRdiGssVBGCLFpQUMBNN92E0+nk0KFDWCwWZs2aJVMthTlUbGwskZGRBAIBOWZav349TqeTwsJC/vjHP3LkyBHmzJkTtriIUcaLL77IXXfdFTa3dzqd/P3vf5c5FA0NDeTl5eFwOM5I45+YmCh3LvX19ahUKlkYJCQkfCKfAvEZQj8vorW1Nex1Dhw4QENDA2PGjCE/P19+Xa1WU1RUxJYtWygoKJDjsfj4eMrKyjCbzZjNZjIyMnj55Zfp7e2VUlOfz0dPTw+vvvoqlZWVsiPj8XiIjY2VXh9CYltTU8OuXbtISUkhKyuLxsZGWcwJfs2iRYuIj4+noqKCrq4u4uLiWLx4seweiXM+ET/72c/4zW9+g9ls5pvf/CaHDx/G5XJx3XXXnfE1FG6Mra2txMTEnFV3ZghfnTHEEAbivCkWHA4Hq1atAuCee+4Z8P3IyEhuueUWHn/8cf7973+f02IB+i1Z//nPf7J//356e3tJSkqSD6SoqCiysrK4+eabeeWVV2Rkr0iqFLHWHo8HtVpNcnIyw4cPJxgMYjKZJHP/4MGD2Gw29Ho9L7/8MgUFBfT19cmd82CdA5EhAP32tqJY6OzspLW1lcTERI4dO4bT6ZSjAAG/309sbKwcJYRG5ArPBVEIiAe1IHeKZEOdTkd3d7fc3Qk5mSg4BA9DtH2F0VN0dLRsr3u9XtauXYvBYJA7udAIXbFIms1mWYSIY4sW99GjR3G73URFRdHX14fNZqOrq4s//OEP2Gw2kpKSuOKKK5g2bRper5fLLruMhoYGJk2aRG1tLXV1dSiVSnJzc6mrq8PpdAL9+QI33HDDoAS+o0ePynMtLy8P+5ldu3ZhtVpl0mVot6SsrIyYmBiys7NP+yCsqKhg165dABQXFzN58mRpCHa2u9q8vDyys7NpbGwkMzOTYcOGye/V1tby9ttvA3Dw4EF+8IMfyDGaSIZ0Op3Y7XbZNbNarfJzMplM/OlPf5KvJz57QY49cuQIdrtdkn+FQZYotMXIxWazYbPZaGpq4tZbb2X//v2YzWY6Ojpkt6q4uJiMjAyampqIiYlh1qxZaDQaLr74Ymw2Gz09PYNab8fFxfHkk0/K//6kbeT4+PjPPVPhq4KvSrHwwgsv8Mwzz8jQtilTpvCtb33rrHg75wKiC5aTk8PLL78c9rUzhUKhkPyjT4Pzplg4cOCAfIDPmjVr0J8R6Xz19fW0tbUNKjf7pKioqGDv3r309fXJ8YOYi4vZeWZmJjqdDr/fT0dHByaTib6+PlwuF9HR0QwbNownn3wSlUolJVutra2UlZVhtVrZvHkzLpcLq9XK8OHD2b9/PyaTSY4p7rzzzgHnNW7cOD788EMAmUbpdDrZtWsXbrebxsZGjEYjra2tAHLWD0jXRuEmKaKaPR6PzFWA/0ZQA2HR2qGySqvVSkJCgrSfFr8nEi5DCxVx3UTHRXxP5CyEyicBmTopOBeC1DZu3DgcDoe0ew61o/b7/bS3t9Pb2ysJpA6HgwsuuICdO3fS09ODTqejsrKSxsZGDh8+jEKh4LXXXuPqq6+W11d0IQZDSUkJBw8eRKVSDTAWUqlUJCYm0tvbi1arZdy4cQQCAfR6PU6nU44/Nm/eTF9fH4sWLRrUpjU0ZVBYOItuRUlJyaBZASdDZGQkP/7xj2lvb8fj8bB69Wp0Oh3z5s3DZrPJnxMjNlEs2O122e4XBmKRkZGSKBka1hU6GoqLi6OtrW1AISqKTsEpESTgtLQ0jh49ilKpRKvV0tnZydNPP43H4+Guu+6SXbeSkhLGjh1LRkZGGDk0MjLyrLoEQ/hyQYyYQpGZmXnS8etniTfeeCPsv5cvX85jjz3GH//4x0FHxZ8VBMExdKNytqTHc1WMnTfFQmVlJcApZ/OhLmrHjh07ZbHQ1NREc3Nz2NcGuxkF9Hq93BEJ4x+bzSYllI2Njbz66qtSN26327FarURFRREfHy8lcHq9nqqqKrRaLcnJyaSnp5Oens7evXtlJoNCoZA7XeF2uGDBgkHfz6WXXsqoUaOIiIiQskmz2czWrVtxuVykpKRQVVUlF3ChEhCkQFEoiPGAaB8DUqkgOBtilCDyEJRKpbRcFm3tqKgouXsUfAER4S1MqOC/PBCxuIgxQjAYlGMLIYcUHYPo6GjZUXjggQf48MMP5SIndpSioIiLi5OcCjE+Ea9lsViA/1pvl5eXy8Jo//79KBT98eKTJk3C5XLx4IMPkp6ezgMPPBC22xafn9FolMVfd3c35eXlHDlyRBYKc+bMkQTHo0ePyuu7f/9+KioqCAQCLF++fFBFRW5urpRxqtVqamtr0Wq1xMbG0tvbe9Y7GYfDwaFDh2QLv7u7m4qKCu677z5GjhxJfX09kyZNChu3CEvsffv2EQgEmDJlChdddBHHjx+ntrYW+K9hl/hMdTod9fX1eL1emVgaFRVFcnIyKSkpdHR0UFRUJDsvnZ2d8v4VrzV16lRp8/2nP/2JLVu2UFxcLH0LQsmeQ/jqY7BF+PHHH5eutp8Hpk2bxo9//GNmzZpFdnY2fr+fPXv28Ktf/YotW7Zw9913o9VqJefss4boJoSScMXXPm+cN8WCkIsZDIaTVkKh89fQGNrB8NJLL/GLX/zijI8/fPhwLr30Uo4cOUJmZibXXnstP/zhD2WHoauri71790pWttiph86aW1tb+d3vfofFYiEqKoqf//znkog5adIkioqKKCsrk4QuUSioVKpTVs8nOvu1tLTI3Z3IQhCpkvBfkpZwfxQ5CYIrYLfb5eKq0+lk1oIYTWg0GplTIGbQIqwpKipKFhxGo5H29nYAKbnUaDRhKguxuAume3R0tIzOFiQ26F+w9Hq9jFLesmVLWHKmKFrEa4rfF7tYrVbLhAkTpEnOzp07UalUdHR0YDAYJIdDo9FIp8vVq1dLo6iWlhZ2794t5X29vb1s374di8VCR0eHLE5XrVpFR0cH3d3dtLe3ExMTQ29vLzU1NRQXF5OXl0dXVxc6nY5jx47JIjS0e+HxeGhubpZt/4kTJxIRESE9GcTnEAwG2b9/P06nk/z8/DPqpLW0tGCxWOQoQ8h+Ozo6uOmmm4D+wuuf//wnDoeDRYsWkZWVxZ133klraysGg0H6IjzxxBP89re/paGhAY1GI+970XkTYyRRaI4dO1aaXxUWFnLPPffIaObi4mKpYtm9ezfp6elh9sgpKSlDXYOvAD7NGOKFF14YYJn9eTtNilTXUFx88cXMmTOHyy+/nDVr1vDwww9zzTXXnNKs61xhsKLk8ypUTsR5UyyIEcSp2q6hzPDTBaF85zvfGUA0O3LkyElbSGq1mp/85Ce0t7eTmJhIX18fCQkJkgsg3AxDrYtPnCsHg0E6Oztlm7+2tpbe3l5SUlI4cuQIF1xwAS0tLZIc6fP5mDt3rkxEPFOkpaURFxdHXFwcWq2WYcOGUV1dLWWKAk6nUwbdaLVaWUQIYymdTid3eaKjIFQRoeFPQsIn/A0EyXDmzJmsXr0am81GVFQUjzzyCKtWrSIQCFBfXy9f1263h5EtxesKH4rk5GRpsR0dHS07IKHFjlA2iCJEjCtEF6WgoIAZM2aERU6LbAaNRkNKSgp5eXmMGTOGNWvWSIKnGJeo1WqMRqNc2EX3CPoXd6F6ER0crVYr+R6hD0eDwYDBYMBqtRIXF4fD4cDv9zN58mT5M2JM0t3dLVUd+fn5kjgqvDn27dsnrbo7OjpYuHDhoJHXoYiNjcVsNktFS1RUlLxfBDZu3EhVVRUAr7zyCjNnzmTUqFEDHsyNjY1UV1eHKVJEsRYREUF8fLy8x7RarXyYimvW2to6qPnTpwl5Ggzi/jIajWcdxd3a2orFYsFoNH7u8+ivIj5NsVBSUjLA/+ZM8MQTT5zVxjAUBw4cOKMYdZVKxdNPP82aNWvo7u5m06ZNZ+VG+lXAeVMsiF3xibLDUIQ6wJ3uoZmVlXXaWVcwGOSNN97g0KFDFBUV8a1vfYvMzEwqKyvx+XzccsstvPzyy7IN39nZGWbCJHZuobP3hoYGent7SU9PZ8WKFdTX10vmv4jvDV2058yZc9ZRvllZWXz729+mtbWVdevWkZiYSE9PjywUhBui2OGHjgSCwSBGo1EmHooZuVgkY2NjJZtd+CPExMRIZYLwTnC73Wzfvh2j0UhOTg6//e1vqa+vZ8aMGWzbti1s0RK8B9HRECZCNpuNoqIi/H4/ycnJzJkzB5VKRXl5OQqFQhroCJ7ChAkTpA13V1eXjPtdtGiR3JHY7Xb+85//0NLSIosAkWb53e9+F6fTyYYNG+ju7pYqCaVSycUXX0xTUxPHjh1j9uzZJCYmUlBQII8zbNgwoqKiMBgM2O12nE4no0aNorCwkPz8fHJycrBardKwRag5RIEbaoAl1C/wX/moVqvF4/Fgt9vRarWkpKTI+10khJ5YcAnYbDaZMmqxWOQ9GRUVRWJiIiNHjgwj7IkC1+l00tzcTDAYZO/evTz44INhxfqGDRtkYqrwgxAupELp0tLSglarZfr06UyZMoUjR47Q1NSEwWAYEL50ruFwODhy5AgNDQ2oVCpSUlKYMWPGoD/rcrk4ePAgPp+PsWPHEhsbS19fH3V1dQDSwOtsszIqKytpbW0lOzv7M3+/QxgcWq32pAZKp8NgJmcnQ1FRkcyFEcX2+QLhAxQbGytHqeca502xIMJyRHbCYNWpGFWE/vynQX19PXv27AHg0KFDTJkyhY6ODskcPX78uGS8i2hn8XAH5A5dsLiFEiAyMpKuri5qa2tl9LCwr42OjpZt5kAgwMGDB0+q4z/xvb/55psoFAquv/56srKyMBqNvPXWW3R1dUlOAPzXzEfsskKLE2HAJGypBc9ALEziYSnm08JF0W63hxkIhe4g7HY7v/jFL6QXRWRkpGxHe71eyXMQIx0hk5w5cyYlJSWUlZWRlJREU1MTCxcuJCUlBZPJxK5du6T9tvCLuOOOOwgGg6xcuZKysjK6urpYsWIFpaWlcsEoLy+XRWdCQgIxMTGMGDGCAwcOUFZWht1uJz4+XgZjxcbGUlVVJTkRra2t3Hfffdxyyy1UV1eTkpIijXmuuuoqrFarlIxCv7fD//3f/+Hz+Zg8eTLz5s1DrVZTWFgYpu4QNtt5eXnU1tZiMBiIjY0lJSVFqk20Wi2BQIC8vDwZlQ79bfrB5JRNTU3s3bsX6H+YhfpdREZGYjAYwgyVxOcsiKZCGijSNEOLBVEQeDwe4uLiGDdunIzqzs/Pl0WnsL9WKBTceeeddHZ2kpCQIOPURQjYuUZlZaUMJBPKo8FSJKFfVSS4IR6Ph5kzZ8pRkCjoQkPVOjs7sVgsxMXFnbTj0NXVxcGDBwEwmUwYjcYhFQWfv7rh0Ucf5dFHH/1cjiX+PsSz9otETU0NTz/9NKtXr5YEd+iPbr/00kt56KGHzonjscB5UywItqfH46GxsXFQ5vjx48cH/PyngbBBFjuxmJgYPvzwQzl77+3tDVuAT2xxhqoCxO4rNAdCPDTj4uKYMWMGjY2NZGdns3btWrkIfPTRR8yePfu0O5rXXntNEjR9Pp+0Bh45ciRNTU1hN68otqKjoyWhMDR7QZx3TEwMgUBAWuuGvlfx3+JB7PF4OH78OFqtlpiYGMlhgP6FqbW1VapChP2xXq+nq6tLhkb5/X4uvfRSCgsLpdZ+9erVcg5eV1fHgQMHuPLKK+nt7eXw4cOyKwPQ0dHBiy++yGWXXca0adOorKyUnQa3201GRgalpaUy6CsYDGKxWCgsLKSyspLDhw9jNpulg6Uo2MRCLhYL4QmQlJQ0wAM+MjJygKPm66+/Lv3kvV4v2dnZciFubW3F4/GQkJAgf2/UqFEMGzZMEl6BsIU6NjaWjIwMaRUtcjwGewiHknibmpq4+OKLZfKj2+2mq6srLIJ67dq17N+/n5aWFjlzFV2bExe6b3zjG7zwwguyeLnxxhsHLMQnmkapVCrZKWtsbGTLli0EAgEmT55McXHxgPP/tAi9PxITE08qNw0tBAKBABUVFfT29spiPz8/X14Pp9NJW1sbgAwhG6yjE/qa8F9DqSF8NWEymTCZTABfiEIjFK+//jp33HGHJLCHoqWlhRdffJFXX32VF198kW9961vn5JjnTbEwbtw4oqKicDqdbN26VZKxQrFlyxagn0F+LmSTiYmJ3H777ezevZu8vDxef/11qqurMZvN5OfnM3nyZDZv3ixnoiL7QQTOiKRJCK+mu7u7USgU2Gw2qfkXO//CwkLy8vKoqalBrVZL9voFF1xwynMNLQZCRzW33HILLS0ttLW1ySJBjCNEASNuJrE4iiLAZrORnJyMSqWip6dHWikLWaV4EAsSp0i1FIRKv98vNelpaWls374dp9NJeno6Go2Gnp4e2Y0RXQyDwcA777xDMBhk586dkmAokiMVCgXr1q0jKSlJciMET8Hv99Pb28v7779PMBiUiZ5er5f29nasVivZ2dmy+yGSO1tbW1EqlfT29uJ2u2XxI2yM+/r6KCoq4tixY1itVux2O3/9618pKio6afpkKEJliT6fTxa1LpeLqVOn4na70el0YffIiQWHyE7o6+vDYDDI++t0Vt/JycmSZJqSkiID0nbs2CHVLZWVlaSmppKdnY3D4ZAPmEAgwLBhw7jhhhsG3T0nJSXx3e9+l+7ubtLS0s7a96G6ulouqJWVlWdVLJhMJmpra8nPzz/pzr6wsFA6NaakpISFfZ2IMWPGSG+U8ePHS/WVTqeTBlECJz58T1YEJCcnU1RURFtbG1lZWeek2/llx1fFZ2EwPPnkk3IM+0UGjO3cuZObb76ZQCBASUkJ3/ve9xg1apRUIZWVlfHnP/+ZQ4cOceutt1JQUPCJuCAn4rwpFqKjo1myZAlvv/02L7zwwoBiwe1288orrwCcMlHvbLF//37eeeedMKdAsbP++c9/TkpKCs8//7yc94tRg+gyhHoU9Pb2ygdxREQEdrsdi8XC6tWraWxsRK/Xs2nTJkpKSmTAUWRk5Bm5xN1444289tprKBQKbrzxRvl1QTwUhkliMRQLhSBhCtKlKAREwWEymaSNMyC5CkI+KTgawWAQjUbDb37zG959910aGhqIi4vj2muvJTExkYyMDB5++GG8Xq/kNwiraJfLJeWoFotFvp44B7Fwi51tXFwcw4YN4/Dhw9LBLz4+Xo57ent7iYiIoLOzE41GQ0REBGq1mtbWVlJSUpg5cyZVVVWym9HZ2Ynb7ZafocViQavVys5IMBiktbWVjIwM2tvbaWxspKysjEOHDtHc3MyDDz540nwI6M8/2LFjB729veTl5Un+h81mk7kgZwJRkJ0NCgoKpMW2RqPhzTfflGmeVqsVs9mMy+Xio48+YtasWcyZM4fOzk6cTiepqamkpaWd0jo9Njb2EwfnJCcny87H2ZAHLRYLzz//vOzwffe73x10Jq3T6aT3yIkQwVgej4e8vDzi4+PD/FtycnJkwX5i9oNOpyMtLU2OIU7Feh8zZgxjxow54/c2hPMXv/zlL0lOTua6664LG/n19fXxu9/9jv/5n/8B4MEHH/xCnT1/85vfEAgEuPfee3n22WfDvpeTk8OUKVO49dZbeeCBB/jrX//Kb37zG2l4+Glw3hQL0K+pff/999m+fTuPPvpoWDbEXXfdRV1dHXq9nh/84Aef6jh1dXWy0nr99dfp7OyUs3vR7nU4HPzjH//g9ddfB5AFwIlVsFgQRSEhuAuCI+D3++XsXuDiiy+WoVNjxowhKiqKo0ePMmLEiJOqQTIzM/nJT35CW1sb+/fvZ8SIEdKhLyUlhczMTOrr6yW3IhRCORAqdYP/dhoSExPlzDkYDGK1WuV1CE3UTE1NpaWlhZkzZ8rroVQq5cjohz/8Ibt27SI9PV0y+UPDpsQifdVVV7F8+XJ53aC/rZeWlkZMTAwxMTG0trYyZcoUWXRFRkZKZUB3dzd9fX0yATQ016Ourg673U5GRgYJCQlSQhkRESFJgkJtIc5LqVSSnZ2NxWKRIVIOh4Pe3l7WrFmDz+fjRz/60Unvp3nz5mG1Wjl8+LBsU2ZmZn4mhLdjx45x4MABkpKSmDt3Lp2dnZSXl2OxWKiqqqKtrY2SkhJycnLIzc1l3759ki9gMpkoLCzkgQcekB0VId0VsNvtmM1m0tPTz4r8NRhKSkqIj4/H5/MNOlY8GYSiCPoLyc7OzrMmsDU1NdHd3Q30X7MTO3epqamkpKScdCeclJQ0IFdiCKfHl7mzUFtby+OPP869995Lbm4uSUlJuFwujh07Ju/Hm2++OSyK4IvAjh07iIuL45lnnjnlzz399NMsW7aMHTt2nJPjnlfFwujRo3nhhRe48847efLJJ3nppZfIycmhurpaxta+9dZbA9LmzhbV1dUAsqUujJjE4hkMBjl48CCVlZVER0ej1WplzoDH45Ezb+FDIMyNQk2IhKmTWq2WLUqz2cyYMWNYtGiR3K3V1dXx17/+Fb/fT1ZW1qBW1wI2m40f/ehHmM1mSRC86667uOyyy2hvb6e8vFySAcUfoGhniwVTELrEqCIuLg6dTsd3vvMdampqpJLhggsuwGKxUFFRgd/vlxyFESNGsGnTJqKiorDZbLz88st89NFH3HTTTWRmZnLNNdcA/TverKwsysvLaWtrk4v7okWLMBgM/OUvfwmT5Ak/gPb2dnQ6neyWhJr0BINB1qxZw5YtW6SJk+hSiPGKyBmora2lsbFRSiOF86bY6cfExODz+UhPT2fp0qWMHDmSAwcO0NHRIXf4CoUCnU7H0aNHpSrkZBDkTTFumjdvHgqFQnZVziQ59HRwu91s3LiRQCBAd3e39KQIBoOYzWaioqJk/sWkSZO44IILiImJ4cCBA6jV6jCyk7DpDkVXVxcvvPACLpeL3NxcbrvttrACUvhsnA0+yWw3OzubjIwMWlpayMjIkIZYZ4PQBSj0316vl0OHDmGz2cjKypIFnVAAiWfBED4ZvszFwq233kpcXBylpaU0NTVx6NAhFAoFGRkZTJs2jdtuu+0LHT8ICFfT0z1TIiMjGTFihPRv+bQ4r4oF6I+QHT16NE899RTbtm3jyJEjJCUlceWVV/KTn/zknLi6iRaSMBwKJS+KdnvojlqlUkkTGsHwFi6GgFxIQ2fXgUCAmJgY8vPzSU9P57vf/S7R0dFER0eH/XHU1tbKhbupqUm2XgfD5s2bqa6uljK83bt34/V6ycrKoqysTC66ouUeGRkZxqkQcjqNRoNer5ez3oSEBKZMmSKjfxcsWEBKSgobNmygra0Nr9crXcvS09MZPnw4XV1dNDQ0SE+Ff//733zve9/j8OHD6PV6CgoKWLp0KUuWLGHdunX09PQwc+bMQee6osAxmUy4XC4SExNxuVxkZWWFtYhtNhtvv/12mCJFOFaG2liHenaITkFUVBRGoxGj0UhXVxcajYZp06axZMkSWeht2bKFlpYWhg0bxrhx41i3bh1qtZrs7OzTjgemTp1KY2Mjfr+fGTNmoFAoqKioYMOGDSgU/eFIoeFNnwTCUlncdyqVCp1OR1dXl+ySxMfHU1JSIn0dJk2axMiRI4mIiDjtw6WqqkqqJerr66VXRHV1NZ2dnSgUCoqLi88J4z8YDNLR0YHP5yMlJSVszKPRaLjzzjvp6+sjLi7uE3U4srKy8Hq9uN1ucnNz5dfb29vl32lTUxPZ2dnys+/r6yMtLY1p06adNwvYlxFf1ms3e/ZsGSlwPmPYsGF0dHSc0c+aTKZzpog474oF6J8Bi9CbzwJizvnuu+/KyGXxABbdAmE9LHauoW38UFWEaGOL0YN4HYfDIReM6upqWltbefDBB5kwYULYuRQXF7Nt2zbcbrdMpzwZ3G43er1eyhjb2trYtm0b6enpcrYqHoQiz0HELYtOiEKh4C9/+QsGg4Guri7a2tqYNGkS69evl/PlTZs2ccMNN9Da2orRaKShoYGenh6eeeYZXnnlFaZMmUJOTg7/+7//K500PR4Pf/vb36SM784772Tq1KlERESwePFidu7cya5du7DZbGFBQSIzQK/XS3OnQCCA2WwmNzeXmpoaufCJxVGYF6nValkcCUdNEYQFyKLO4XDQ09MjuwYpKSmUlJRIgmlsbCx79uzhyJEjeL1eurq6uPfee5k+fTotLS1MnDjxtLyD3NxcHnroIcxmM0eOHKGjo4OWlhZ5Pxw+fFi6V37SePWIiAgWLlzIkSNHpH/C1q1b6ejoIBAIEB0dzTe/+U3Gjh0b9sA+U9liXl6e7I6kpqbKWb1o54sOxrkoFlpbW2lsbAT6OQqDZW98GsKgWq0edGMR2hkRqbFNTU309fUB/bHjokj6KiNUhj6ELxduueUWHnroIVauXMlll1120p9buXIljY2NfP/73z8nxz0vi4XPGk1NTbS0tPDRRx9JAl+o86FWqyU9PR2z2YzFYsHj8eB2u7FarZI8KCB4DKKoCF3EhEwxMjISr9fLxo0bGTNmDHV1ddTV1TFu3DjS0tJ4+OGHsVgsp2RzA8yYMYPdu3fjdrulO6EwUYL+itNms8kHn1KpxO12Y7fbZbGgUqlYsWIFP/nJT0hPT5fkrNDF0Ov1snfv3jCvBK/XS0NDAy0tLWRmZpKSksLll1/OihUrUCgUXHbZZbz44ovyNSoqKpg6dSrQL3kVSpa6ujqMRiOzZ8+WjP2MjAwyMzOZMWMGpaWlbNu2jZSUFJKTk6WLIvTvWC688EJ27dpFb28vVqtVLooiPlzkTgiSobCyFu/f4XBQVlbGnj17GDVqFBMnTiQ2Nhafz4fBYKC3txeVSsXo0aNJTEw8KYFuMKhUKpm+eOI1tVgsvPbaawQCAbKzs9FoNAwfPvyU5Liuri4OHz5MTEwMEydORKVSkZubG7ZTPnjwoCxiBV/hk+7s0tLSuO+++zCZTOTn58v73GAwyILhXPkIiO7Pif/+tBBKHcHBORGJiYkUFRVht9tJTU0N84gQhOOzJZl+GSEyP4bw5cN3v/tdduzYwY033sjPfvYz7r333jASss1m4//+7//41a9+xbXXXst3v/vdc3Lcr2WxsHLlSimFFE6Gwm9B7NDMZrPUYYsUPyGbFHI+6JfHCdMdwVEQ8c1qtRqNRkN7e7ssPJqamiQJcf369fziF7+QpL5Q+Hw+3n//fTo7O1m4cCF5eXmkpKSwZMkSjhw5Ih9wWq2WJUuWoNPpGDNmDEePHuWpp56S4wyr1crIkSOpq6uT7okVFRW8++67TJkyRVr8zp8/X7bshSFSMBjkggsu4N///jeBQICcnJywxWLatGkUFxdL58dp06axYcMGIiIi5FgjNEMA+guRd999l7KyMlwuF0ajkYSEBHw+H8888wyjRo3i0UcflTkcBQUF/Pvf/6ayspJhw4ah1WqJioqitrYWp9NJbGysfLiH8jUEQVMUc4JMabFYcLvd9Pb20tLSwptvvsm9997L5MmTqa2tpaWlhTlz5nxiXkzoApWWlkZJSQkqlYr169fjcrnw+/1UVVWRm5vLgQMHyM3NPekudv369dLWPDIyMqxwcbvd1NXVSS8Fr9dLfX09P/nJT9Dr9URHR/Ptb3/7rBf3xMTEAe+9sLCQ3t5eNBpNmDJAyEyNRuMp1SKDIS0tTf59nSvNujBCAzAajSclmJ7IZI+Pj2f27NmYzWbS0tLOKunzy4rTOeB+UnyZOQvnI04VR+31evnJT37C448/LjdwHR0dNDc3yw1SZ2cnF1988VcrovrzRGNjI1qtVnYKQnfodrtdtqwBKUcUu8QTsyB8Pp/cfQtr4c7OzrAMBuGQGAwG2bFjB0ajUfpEiNCpE7Fx40bWrVsH9O/Mn376aQDefvttjEYjKpWK4cOH4/F4JOFw9uzZLFy4kI6ODj744APpeSAyLvr6+mR2wp49ezh69CgPPfQQMTExxMXFccUVV2A2m3n99dcJBoNUVVVhtVpJSkpi9uzZzJ07d0BRE8pSF+EqgiAouglZWVmMHz+epqYmjEZjmOGNcIcUMdwtLS3k5+fjdrsJBAI0NDSwa9cuFAoFx48fx+fzYbFYZBCWzWaTpFJR8AleBvTv9oXtsV6vp7W1laqqKrmDFDP6mpoazGYzWVlZZyyFa2xsxGq1kpOTI69LZmYmNTU1REZGMmHCBFnxHzx4UPpOiIVVFDEn4tixY9TV1dHd3S3vjVCehtVq5Ve/+hV2u10aaglfjA0bNpCVlUVycjLPP/88l19+ufQ32LlzJ83NzUybNu2sAnoUCsWAkUBvby+HDh0iGAwSHR3NpEmTzuqhHx0dzcSJEyUp+FxApI2e+O8zgeCzfF1QWFj4mbzuULFwbnEmcdQej4fa2toB3SKPx8PmzZvP2fX9WhYLwvY41Lyor68Pj8eDQqGgublZGrgIR0aNRiO/L1qWYsECpMueMGoSZkHi9dVqNVVVVWg0GuLj4+nu7mbx4sUyA2Dv3r1yDg39u6SOjg7pGCiKmri4OBkHPWHCBHkzOZ1OGhoamDBhAnfddRdLly7l+eeflwmJ8fHx5OXlYbFY5MLq8XiwWq1hBYDH48Fms9HZ2SkzDMR7PZX8beXKlbz//vtoNBoKCgqkHBWQ3RHon5W+/fbbaLVa0tLSSEhIkLsckVj5yiuvyDRMcWxxvqI4E90YQU4VIwZBahT+C3q9nhkzZlBVVUVsbCxXXXUVNTU1sgC55pprCAaDLF++HI/HQ3t7OykpKadlPTc1NbF//36gv8CZP3++zKyIj49HqVSGFYFLly5l06ZNkvi6fv16lEolFRUVYWFLFouF3bt3A+GWzKEz/UOHDskRjBh/iZGB+FpHRwc9PT309vYyb948kpKSeOONN4D+8Jxf/OIXZ9UNsFqt7N+/H41Gw6RJk2QqKfTLLcXfydngkywsp0JCQoIcl3xVFv5AIEB7ezter5fk5OSzVqOcDJ9WFjuEzwdfVBz1YPhaFgtOpzPMPlc45XV2dqLVasM8EoQNtNfrDQtZAqS6QHQYhOwyKSlJOhyKCGYxvsjPzyc+Pp78/Hxuv/12AB5++GHq6upISkrigQceYOLEiZSXl0st/NKlS+W5Pvjgg6xfvx6j0cikSZMoLy+XBLdXXnmFdevWcfvtt9PS0kJ9fT2BQACDwcBVV11FeXk5BoMBi8VCa2srY8eOHRBideTIEVJSUtDpdLS2tqJSqVCr1QNiskNRVVXFe++9R0tLi1QziCTJYDAoFQ1Hjx6lsbGRiy66iLS0NI4dO0Z8fLyUfnZ2dkrpoWi/i3l2qMeFCGgShYNSqSQhIUG6NCoUClJSUoiJiSEnJ4cLL7yQ6dOnyx1sZmYmc+bMCXsPwvdC/Pt0CE09FeqU0N2/MKUS0Gq1LFq0COi3+Bajk02bNg1IZhQFUmRkJBdffPEALotQbwBhXS+VSsWwYcMoKSmhpqZGGss0NDSEdTDsdruU/54pNm7cKJ0ig8Eg48aNkzbjiYmJZ10ofBYwGAyMHTsWn8/3ucQHfx4wmUx0dnYC/fdcqHX3+YihzsK5xRcVRz0YvpbFgoiIFr770dHR0hdBWAiHOu+JboBodws1QuiOLnTsEGoLHRrpLBjeI0aM4Nprr0WtVrNp0yZKS0sJBoP09fVx/PhxioqK2LlzJ3a7PYzACP3z1m9+85scPHiQRx99FI/Hw9ixY6moqKCpqYmmpib8fj/Dhw+XuQTDhw/n8OHDtLW1kZSUxD333IPf7x+wu3C73ZSWltLZ2UlGRgZTpkyhra2NGTNmMHfu3LCf9fl8VFRU4PP5OHbsGA6HA4PBgMlkIjIykjlz5pCQkIDX68VgMFBdXS2r5J07d/LYY4+xaNEieZ2ys7Ox2+1YrdYBwVciyEsQLcXiJPwSoqOj5WJlNBrxer0olUoyMjJYuHDhGT3AvvWtb7FlyxYSEhKYPn36ae+hnJwcmpubsdlsjBw5EpVKRWJiIr29vdhsNlJTU7Hb7ZhMJtLS0sKudSiP4EROgVB0HDt2DI1GQ19f34BiYcSIESQnJ9PZ2SlDmiIiImThd/nll2Oz2VixYgVKpZJJkyYxYsQIDh06REtLCxdffPFZL6ahia8ulwudThdmZX2+YLDsji8zQv/2Q0nYQxjC542vZbGgUChkNHNycjKxsbE0NjbKdEjR1hYjBbH4AJIEKEYSgpMQGgUt5uVut1t2JxQKBZmZmSxbtgzo3zE4nU46Ozul9t/v9zN16lTeeecd0tPT8Xg8Un5XWVlJQkKCNNLZtGmTXExFB0G8N7vdTllZmfQd6O7upq2tDZ/Px9atW7FYLBw9epSCggLuvvtueb6//vWvpZGRx+Nh4cKFjBw5Mqwlb7Va+eEPf0hjYyPJycmo1WqsVquMif3Od77D/Pnzgf6H2/79+2XHQEAkHIbOwceOHUt9fb2UOg4bNozo6GhKS0tloWC1WvF6vcTFxclrGhrGBMjPTqvVhn1up0NOTg4333zzGd9DWq2Wiy++OCwhValUSrlec3MzK1asIBgMkp2dHXYNp0yZgkqloq+vLyyoatWqVaxevVomlwYCAfbs2TMgNM1oNHLPPffQ0NCAVqslIyODp59+mkOHDhEREcEll1zCBRdcwMiRI1EqlZJA+WlY0RdeeCHbtm1Do9HITsjZWFkP4ZMhKSkJp9OJx+M5rVrqfMBQZ+Gri6/lX7pSqaSrqwuXy0VzczPp6ekyHTE0NEZo9jUaDRaLhejoaLnLDY1/FvHJ8F9XSOhvT4cmM4pFdNmyZbS3t9PS0kJeXh4jR47EYrEwYcIEnnnmGfx+v5y5p6Sk8Oqrr7Js2TKCwSAFBQX84Q9/ID8/X8bjjhkzhri4ODZs2EB0dDQ33HAD27ZtA/oX5tTUVDn7DAaD/Oc//0Gn09HX10dpaSkzZswAkKROv9+Pw+HA5/MRFRUVZhS1cuVKWltb8fv9tLW1SXtru93O7Nmz5XuEfmJmdXW1LFqSk5NpbW1lwoQJtLW1UVpayujRo8nIyEChUMi0RI1Gg81mY/HixdJtz+l0yvm8iAOOiYmRpEbBEREhYHFxcWclexwMNpuNYDB4ymyEkz3oWlpa5L3U2NhIZ2cn8fHxcpxyYpplIBDg3XfflcWnIA6ebIFIS0ujr6+PtrY2yZ8QPIbnnnuOyZMnn9O45MzMTG644YZz9npDODNERER8JrbhQ/jy4rXXXjvr3zmbjdDJ8LUsFoR9sUhGbGxslGQyUQj4/X6MRiMajYbs7GyGDx/Ov/71r0FbgWLOHhraJPwWRAGiVCopLS3FbDZjMpmor6+nrKyM8vJyMjMz+eY3v8kLL7wgux6CpCdId2I0YjabWbhwIWPGjCEiIoLLLruMzZs3c/ToUZkfkZSURE9Pjyw4xIIq3qPISQhdCMX5C1JjX18fb731Fkqlko0bN/LLX/6SiIgIMjMzZQdFnJMIgjKZTFLhIKQ7u3btoqOjQ1o97969m/b2dlavXo3P50Or1XLTTTexYsUKaZClUqmwWCw899xzqNVq9Ho9gUAAq9UqHTcdDgd6vZ5FixYxa9Ys1Go1GzduRKPRMG/ePPk6nxStra3U1NQA/YZLJ1oOOxwOqqqqyM7ODgudEcjOzubYsWO4XC5MJhN//vOfSUxM5K677pJdD/H6x48fx+l0ygLUarVKXsWUKVPwer1s3bqVvr4+JkyYQE5ODq2trXz88cdAP2lUcGzE/TiEIXxRGOoUfLa45ZZbzvoaDxULnxBC3QD9DGoxfhBtVY/Hw89+9jOuueYazGYzcXFx/PrXv5bBRYJ1LUhuYgGLjIxEqVTKEYXYCUN/x6GrqwuDwYBSqeTgwYNYLBYiIyPp6+vjP//5j1QgeDweRo8ejcFgoK2tTc7wBaxWKzabDY1Gw759+9i6dSuBQACbzcbmzZu59tprUalUJCUlodVqaW9vx+l0ytmyKGoWLlwod9//8z//Q3d3t/RFCM1saGpqwmazYTAYmDp1KjNnzuTYsWOyU6HVatFoNJjNZr7//e/jcrkYN24c48aNo7u7W577hx9+KNviHR0dko+wfPlyaaIkDJWEh4Qg8w0bNgyDwcDx48cld2Ts2LGUlJTIxXrp0qXn7B7p6uoK+3dGRgb19fXodDoMBgN/+tOfsFqtREZGcueddw6ITE9LS2PKlCls2bJFxod3d3fz4YcfsnTpUrZv305rayv79+/H4XCQlJTEsGHD8Hg8MjpdXNN///vfmEwmea/efPPNYRyC6OhoUlJSaG1tRaFQnNPr8EXBZDLR29tLYmLioMXYEM5PDI0hPnvMmjXrpNfMbrdTXV2NxWKRlvbnCl/LYuFE+aP4mtiNajQavvGNbwD98+Hvfe97MrwoNTUVtVqNTqejqqoqbIEVbo2AXGiFrl6tVpOamorVaqWlpUVyI7xeL2lpadTW1qJUKunr68Pn83Hw4EESExNZtGgR69evl0ZOwWBQhiL19PRQW1srDaYEwXL16tVs2rQJlUqF0WjE4XDgdrtlt0PsvkOtQpubm+W1EPI+Ednt8/n417/+xeLFi8nJySEvL4+2tjZaW1vljjgiIkJa5brdbsrKyjCZTGH2zOIai46Hz+cjNjZWjjKEyVIosdTlcjFp0iRuu+02oD9SfMeOHWi1WkpKSk6p0vg0SEhIkEoWg8HA2rVrpT3x8OHDZQfG7XZz+PBhWSzU1dWxc+dOuru7pYJG3A9KpTLM4rihoUHmI/T09JCcnMwdd9xBV1cX3d3dpKWlceTIESkh7e3tlQtnTk4O+fn5tLe3M2bMGILBIA0NDeh0ui+Fv/2pYLVaZdhbV1cX48ePJyoqCp/Px5EjR7BarWRlZX1mn/0QPjmGioXPHmfivfCvf/2L73//+wwbNoy//e1v5+S4X8tiIRgMSvJhb2+vJKkJVrl48Pt8Pp588kk2bNiA0+kkKioqzJ9BGL8IvoJIGBSLueArDB8+HL1ez9y5c1m2bBkNDQ24XC5JCrzyyispKyujtLRU8iKELPPYsWNceOGF5OXlsWfPHvbt24fL5aK8vFyqMsRYJSkpiePHj+NyuXA6nTJZcenSpbz77ruSNxAfH4/BYJB/pHV1dTIKPBgMYjAY5Ll7PB5JwNywYQNXX301H3/8MTabTbbT4+LiiImJke1wQHIMCgsLpV+ETqejvr6eYDDIlClTiI6OJj8/n46ODvbt2ydDoAwGg7TMTkxMDGuhTZgwYUC+xmeBzMxM4uLiqK+vZ//+/dTV1cmFX3AkRAEg5LMKhYKtW7fS0tKC2WwmEAjgcrlISUmht7eX+Ph46VXR1dXFgQMHZBclIiKC6Oholi1bhl6vZ+/evdxzzz3ExcURGxsrP2ORZqlSqcLc3caPH09LS4tM6/wyI3SMImTJ0M+pEX9zDQ0NZGRkfGncFoPBIPX19VgsFnkfDC2SQ/is8M1vfpPU1FQWLFjA9OnTufXWWz/1a34ti4WsrCwsFgtKpZL4+HisVqvsAgQCAW6//Xa6u7t58cUXWbNmjVxEOzo6iImJQafT0dHRMcAMB5CjCDGCCAaD/P3vf5djgV/96lfo9Xq5kBcXF+NwOGR7XiRhejweTCYTbrcbk8mExWJBp9ORk5PDgQMHZCs+1BwqJyeHYDAYxlBXqVRcfvnlLFq0iF/84hf09fWh1WrDgnOWLVsmCXmxsbGyoyCknhaLBavVilqt5umnn6alpQXo3/mnp6eHjQ6EL0N2drYcN0RHR0tCXkZGBomJiUydOpWSkhI++OADoL+g6u3tlR2T0aNHc+21155xmJDZbGbjxo0olUouvvhi9Hq9TLI0GAyfyO/fbDbzyiuv0NfXh1qtJiUlhaysLNRqNenp6ZhMJgKBAIcPH8bhcLBw4UIiIyMlp0MYfaWlpXHDDTegUqkYNWoUTqeT7du3h903ubm5YTwLj8eD3W5n7NixMlp89OjRg5rylJWV8eGHH5KYmMhNN90U9r3jx4/T1NSEwWCQHJi8vLzzOigpPj6e5ORkOYYQRVqoJFJwcb4sELJsgJ6enq9EUTeE8xsXX3wxWVlZPPfcc0PFwieFRqNh3LhxLFiwQM79d+7cidPpZP78+cybN49169ZJIqKAQqGQ4wLxkPf5fBQWFpKZmcmBAweknDL0+xs2bJBjjRtuuIEXX3yR2tpaRo0aJZMXBVlQmPmo1WqSk5Pp7u5GrVazb98+cnNzSU1NlU6HoeRJEX9tNptl90CtVjNu3Di0Wi3r16+ns7MTj8eDx+ORMrquri7JafB6vXR3d5OcnCwfxKFFlM1mk8mU4nvQPycTLn4ajYbY2Fhuv/12fve739HU1EQgEODyyy9nwoQJsjBSq9VhZkaiEyEKrZycnLNKHdy4cSNNTU1Af5vusssuY9myZdTV1REdHc3tt99Oa2srVquV4uLiMJtq8Tm53e4w/4GOjg7sdjuBQEA+6EX6aGhB5vF4OHDgACkpKdKjwWq1UlFRIdUPer1eSiA7OjokmVF0tK666ioSEhLYtm0bzc3NFBcXk5SUhEKhYPTo0Sd934FAgBdeeAG3201VVRXR0dFcc801QP8CdezYMQDpqKnT6cJCvs5HKBSKQWN1hcOp8LH4MhULoYFzoZbfXzUMjSHOLyQmJlJRUXFOXutrWSwI3bsw7BnM2jctLY3u7m6pGoD+BSUmJkYuuMJfISUlRXYqhKug4BAA/PKXv+Tdd9/lwQcfZNasWfz617/mt7/9LZWVlVKuOGXKFBoaGnA4HLhcLhISEsJis0VnQ6fToVQqMRqNctyg0+m44oorGDNmjFwwR4wYweLFi6XtrcvlkgROnU4nvz58+HA0Go3siNhsNind/OEPf8hLL70ksxwKCgro7e3FbrfLrkpHRwcOh0N2Q5KTk5k2bRoxMTFSYqnT6WhoaOCuu+7i2Wefxev1cvz4cWJjYzEajbz33ntYLBaMRiO5ubmkpKScNTEn9IGjVCqxWCzU1dUB/Qv3P//5Tzn6aWlpkQsq9C+qq1atwm63U1BQIN0di4uLiYmJkQ56UVFRMhzLaDQSFxcnlTAej0fyTITS5sILL6SiogKj0Rhmle1yuRg9erQ0tbr//vsZP348APn5+YMaZp0MgUAgLKhLcCkAaXgl7l9xjULlwZ8Xent7+fjjj4mMjGT27Nmf2DjpRMfRM4HH46G8vByNRiO9Jz5vaLVa8vPz6evrQ6/Xf6WMo07E0OJ/fsDlclFVVXXO7vevZbFw9dVXn3YxGj16NPfffz+bN2/G7XYDkJ6ezrx583A6nWzbto3u7m7GjRtHRkaGDOwQqgphwyuIgpWVldx5553MnTuXmpoaOjo65OuKLIbOzk4ZoGS1Wpk3bx4ffvihbIMLFcXIkSO56aab+Oijj/D7/YwfP57vf//7bNmyRRYL6enp0sAJYMGCBTQ0NGA2m8MWSq1Wy6233sozzzxDREQE3/ve95g9e7b8g//ud7/L2rVr0ev1zJw5k8rKSnp6emSr3eFwSEtmEaRlMploamqiqKiIyspKSXA8dOhQ2Dza6/USHR1Ne3s7LpeL3t5eRo0axfz588+6TX7xxRfz4osv0tLSgk6nQ6vVkpiYSFdXlwxccjqdMsI41EypoqICs9mMWq3m6NGjFBYWkpaWRmxsLL/85S/58MMPpeJEFIoej4ff/OY37N69mx07dpCdnY1CoRiQB3LrrbfKTk1zc7PsvAgPB41Gw8GDBykpKQmzbT5TCFXLxo0b0ev1XHHFFfJ7UVFRksug1+vxer243W7y8/PP6tqeC6xYsUJ2pYLBIJdccsnnduzNmzfLYzudzgH22gJutxubzUZ8fPxn0rWIi4s7r8c/Q/jqoLOzk/vvvx+bzTbAffeT4mtZLJwJ3n77bZYtW0ZBQQEOh4PCwkKcTicOh4OIiAhGjBjBzTffzNKlS7FYLFx++eV0dnbKBSAqKios+losTmvWrJHzc5EnAf2+BiJCWqlUcu+991JcXMx7772H3+/H7/fjdrsZPXo0jz32GEeOHAH6F5aysjIAZs6cSWJiIoFAgOLiYlatWsXHH39MVlYWt99+Ow8//PCA9ylcAkeNGkV0dLQcOwhkZmZKJcKqVauIi4sjMjISu90uyZxilKBUKsnNzZW/O3fuXOk1cOTIEf7zn/8wZcoU6f5YUlLChg0bpAxQ7HhFSuJgCAaDrFq1irKyMgoKCrjqqqtkyFRPT48kUVZWVvKd73yH48ePYzKZZNaGCOMS79HhcEh/CJFCumLFChYsWEB+fj7R0dHk5uZSXV1NTU2N/LwcDgfd3d0kJCSQm5tLREQERqOR6upq2aXp6+vj9ddf58ILL0SpVFJeXo7NZpORzsKHo62tjc7OzgHyyzPFFVdcEVYkhCItLe0Tv+65RKjUUxSXnxcEP+fEf4fC4XCwefNmPB4Per2eWbNmfanGHOcLhsYQnz1OFVstOtB1dXV4PB5UKhU//elPz8lxh4qFQXD8+HE+/PBDdu/ejdvtxmAwsGTJEsrLy2lra8PhcPD8888zbNgwoN/P/+9//zu/+MUvpJQxlOQoTJ5EeqKYeYsiwuv1Sj8BoVjo6Ojg9ddfl54N4jhPPvkkOTk5qFQqNm7ciM/nY/LkyZjNZhobG8nLy0Ov12OxWKTEpr6+np07d8psgIsuukiGGtXV1dHc3BymEDkR69evZ9euXahUKuLj4xk+fDjl5eVSFZCYmCjPv7W1lYULFzJ+/Hi2b98e9iDo6ekhIiKCO++8U35t4sSJREZGyoX8RGvjE9HS0iLTHsvLyxk3bhzDhw9Hp9NJPoG4VjqdjpKSEsmHKCsrIzo6Oiz7wWazERcXR1FREfv370ev10sL7ZycHN544w0qKytRKPpjmltbW4mMjCQlJYWWlhZKS0uBfh6MWFwEKVUkM65evZqSkhJZjNhsNnQ6nSwW9Hr9oPwMv99PbW0tXq+X3Nzc8yqD4WyxcOFCWSjPmjXrcz32+PHj2bZtGxERESflf3R1dckgMYvFgt1uH+oCDOG8xJlIJ6GfNP2///u/pywuzgZDxcIgiIqKorKyUu6AzGazJKJBf1CPKBSgfxF8/PHHOXLkCH6/X4b8CFKT2+2W9snCk0C0nHNycggEAjgcDpKTk2WL9rXXXgtrVavVaoxGoxwtFBUV8fvf/57e3l6MRiN//etfcblcREdH88ADD6DVatHpdNI4qrW1lYaGBgDWrl3LrFmziI6Opru7W1osAwOIZX19fdIp0Ol0YrfbZS5CaWkpVquVqKgorFarzHVoampCpVIxffp0cnJyaGpqkiMKkUApkJiYyCOPPMLGjRtJSUmRRkQnM+KJjo6W3RqAmJgYnE4nx44do7i4mPr6ejIzM8MIZFFRUcybN4/Zs2fj9/vDlBEGgwG3243T6SQhIUFmdIgOT01NDUqlErfbLQ2Cent7ycvLCyuEBI9B8BtiYmKkzC8YDJKYmIjJZJIFYnZ2NpMmTUKr1TJixIgBag2Hw8Err7xCe3s7WVlZWK3W85qUeDrk5ORwzz33fCHHLigokJ/XyXaxCQkJqNVqyUv6MhdmXySGOgufPU4VWy0cgIcPH05JSck5vbZDxcIgENyEw4cPy5t/+vTp/OAHP8Bms5GUlITL5eKpp56iqqoKvV5PaWmpVC44nU4UCgUul0uS6oTNspBp2u124uPj6e3tZdy4cVgsFrq7u3G5XKxevVoS1YLBIPHx8XLH63A45IPMaDRiNBqpqKiQbV673U5nZye5ubncdddd7Nu3T8r99u7dC/QvuIJglZycTGJiIi6Xi5iYGBITE+XrVFdXYzAY5M5fyDd1Oh1ut5tbbrmFZcuWYbPZ5Hv1+Xxs27aN0aNHk52dzdixY9Hr9eTk5HDZZZcNmnUwbtw4/H4/3d3dmEwm9uzZw9y5c8M09IFAgG3bttHW1kZJSQk+n49hw4aRlpZGWVkZXV1d9PT00NfXx65du2hra+PSSy8Ni/QVn0Eouru72bp1q3RYTE5OlsQgQQ4SHhGXXXYZ27dvx2AwyEU/LS2Nzs5OxowZw+TJk0lJScHpdFJQUMC//vUvGhoaKCkpYdSoUVJrLxQXRqNRBk91d3ezceNG4uLiuPjii6moqJAKjKampqF8gE+J05G8YmJiuOiiiyTRdiggawjnK76o2Oqhv4iT4PHHH8dkMrFjxw4WL14sFRNC575z506OHj0K9OvcRRdA7HwByVMQIwnof2iJubfNZuP+++/ngQce4D//+Q9vvfUWpaWl0m5ZZDno9Xpyc3PRarWD6uxzc3Nxu910dHSQk5MjlQ4ZGRlhO/kbb7yRlpYWpk6dKh+Gubm5zJs3j+bmZkaMGMH69etJT09n69at2O12VCqVNBXq6+vDYrGgUChISEiQRZEwZBKeDwqFgnXr1jFhwgQiIyMpLCwkOTn5pKFIGo0mzEkT+smPocVCS0uL7IyIxE5hQiRUKILXIVIzW1pawoqFwSC4Ig6HQwaGhUpjxZhg0qRJFBYWsnLlSnbu3CnNq66//vqw1wslD95yyy3s2rWLrq4uPvroI/k+e3t7qampkdwXgH/84x+0trbK3x02bJh0v4yIiDglj2MInxwOh4PW1lZiYmJITU0dtKPgdrtlp2kIp8ZQZ+Gri6Fi4RT461//etLviR24QHZ2NlVVVQNufGGYJIoErVYrF9Ts7Gzuvvtu6atQUlJCfX09x48fl1yHjIwM7r33Xmw2GzNmzAjzARBobW0lPj4erVZLZWUlN9xwAx6Ph+LiYu644w6Ki4tpb29HpVIxbtw4du/eTXR0NHPnziUiIoLU1FTef/99/vKXv6BSqeRiqdPpKC4uloFPSUlJ0tRp6dKlaLVaDh48SFNTk7Rp9ng8Ut6pVCrp6OggPj6e1NRUDh48yBtvvEFmZib33nuvfPhGR0czfvx4Dh8+jM/nIy8vb8D7FO6ZwWBQZmp4vV6OHDnCxRdfTCAQwGw2o1Kp0Gq1xMXFUVhYeNrPWLSojx49OuCzE3kfkyZNYsyYMaxfv15mOSgUClatWjWgWAhFfX299HYwmUxhttgOh4NVq1aRnp4u47mtVqs0CSsoKGDx4sV0dXVRVFR0Vp4TnxXcbjerV6/G7XZz8cUXk5yc/EWf0qdCMBhk7969siunUChISUkJ+5mVK1eyYcMG4uPjeeCBB2QhPoTBMVQsfHUxVCx8QpSUlPDggw9SVVVFU1MTTU1NdHZ24nA40Gq10ngoJycHi8VCQUEBr7/+OkqlkldeeQWLxcL3vvc9IiIiJFM/OTmZSy+9lD/+8Y9Af6Eh2ur33XcfVVVVvPHGGyxYsCBM+qlSqbDZbLS0tNDV1SWNnfbt28fRo0cpKSkB+osKi8VCYmIiWVlZQL+kUnQRxDFFYeN2u+nq6mLq1KkcOXIEj8dDQUEB48ePl3r3m266iZdfflmGa/X29hIREYHf7+fAgQPExcXhcDgoLi7mxhtvxOl0cujQIaKjo8NcxZKSkgb1uxBITExkxowZMlirvb0d6NfdR0REMGrUKEaNGiV9KgRn43RQqVTccMMNPPHEE1LWaTQaKSkp4fjx46SkpHDBBRewfft2Ojo6wqSRp0p33LZtGx9//DFarRa32y1jul0ul+SRKBQKDh06JG3Ce3t7USqVkpA0YsQI2Xk4H7By5UrpXfHuu+9y9913f8Fn9Ong9/vDVBricxHw+Xxs3LgR6PeJ2L17N4sXL/5cz/HLiKHF/9zhk8RRD4ah1MkvGDNmzGDGjBk0Nzfz97//nWnTptHU1ERfXx9xcXEUFBTw/PPPDyCv3XfffWH/3dvbKzMnoqOjB5jnNDQ08OKLL7Jt2za8Xi+rVq3i17/+tdSqZ2Vlyd2usAy22+309vYSExNDY2Mjra2tUjbW3NxMU1OTLCLEbkp0OMToJDo6mnnz5lFXVyc5DpmZmUyaNEmee3JyMpMmTWLv3r0oFApSU1OlzbEIUlIoFJLXINDd3R12DZxOJytWrKCnp4e5c+cOqorIzc0lNzeXSZMmUVFRgU6nCyOaApJTcaYoLy9n2bJlUgni9/vp7Oxk+vTpYUFbYrRUVFQknRmvu+46oJ9Jv2zZMsxmM8XFxVx22WV88MEHBINBGZjldrvxer3o9Xqio6PlwjR27FgaGxtJSEggISEBrVZ73qYshn5+QjnwZYZarSYvL0+miZ44JlOr1SQlJWEymQDOCwnqEL5e+CRx1INhqFg4T5CZmckTTzzBE088IbMN+vr6qKioYN26dWGLzmBIS0vDarXicrkoLS2VCoi4uDjpkiheU8grX375ZdLT0+WCn5CQQGxsLPHx8VRWVkq/BLvdjt/vl7tgt9tNZGQkPp+Prq4u7rnnHrxeL1dddRXTp09n1apVKJVKYmJiGDlyJJdffjl/+9vf8Hq9REZGDhi/QL8h0vDhw1m3bh0dHR1YrVY541Wr1YwZMwaj0ci1117LihUrSEhIGHDz7t69m+PHjwPwwQcfUFhYeNI/koiICMaMGXPWn9OJCAaDvPbaa1L1olKpsFgsOBwOXn75Za644gry8vJQq9WyQMrOzuaaa64hNjZWFioff/yxTNzcunUr0dHRqNVqvF4vXq+XqKgo6aExceJERo0axZtvvolWqyUzM5PU1FQqKipwOBzSPfJ8xNy5c3n//ffx+XzMmDHjiz6dc4Lhw4dTUFBwUj7Cfffdx+7du0lJSZFx7kMYwueFU8VRf94YKhbOIYTVr9iZq9VqGYID/Yvg2rVryc7O5sEHH5QdB+GNsGrVKioqKsjKyuKiiy7iwIEDdHd3y+Q94dEgduplZWWUlJRQXl5OQ0MDFouF+fPnA1BaWkpMTAxer5eMjAxJ4lKr1eTm5tLd3c17770nH5LPPfccK1euxOPxyIhkEaN85ZVXsmvXLgwGg7QlPhHZ2dksXbqUdevWkZycTFpaGiNHjpQBSQC33nrrSQNNQu1vxTU8FxCtf61WO8Dz4dlnn6WrqwudTif5EIKkWVVVxSuvvMKYMWOYNWsW1dXV6HQ6GewUivj4eOnGKRQP3/72t9m9ezeZmZnSfCoyMpIFCxbw97//nZ6eHgKBAO+88w533XUXP/zhD2W2xvmKjIyMAV2xzwrbtm2jvLycgoKCU46nzgVORVzU6/UsWLDgMz3+VwlDnIVzizP1VPg8MFQs0L/b7u3tJSkp6VMxnm+99VYyMzPJzc2ltbWV8ePHM3PmTFpbW+nu7uatt97CZDJRWVlJbm6ubGNDf2fgtttuIyYmhoSEBKZMmUJbWxsulwu/3y8lelarFYvFQmdnJ+vXr+fKK6/kX//6l5zh79mzhyeeeILbbrsNt9uN0Whk9+7dcqQxYsQIYmNjiYqKko6TQuYJ/V0OEaWrUCh46aWXyMnJYfTo0ac10zEajdxwww2f6NpNmTIFp9NJT09PmGnSp4HP5+Odd96hvr6elJQUvvWtb0kVyGuvvSaloG63W5IyhZpFmGa1tLTIgDC73U5dXd0AHsHs2bM5duwYhw8fRqvVMnbsWAoLC8MIlqHXRa1WY7PZaGpqoq2tjfHjxzNlypTzulD4PNHW1iYfkiaTiYKCgjBn0CGcvxgqFr66+NoXCz09PfzhD3+gt7eX4uJi7rvvvk9880ZHR7N06VKWLl0qv7Z161ZeeeUVfD6fTJj0er384x//YNeuXSxevJi4uDipCBA798rKSrKysoiKimLq1KksWLCAxx57DJPJRFpaGjExMbhcLmw22wBzoNTUVB5++GE2btxIZWWltP2MiIjAZrOhUqnkmKOvrw+FQiEfxhdddBFer5c9e/YA/bJQj8fD8ePHycrKIi8vL+w9n03o0amgUqnOymns6NGjlJeXk5+fH8ahCEVLSwvV1dWYTCaam5vR6/VceeWVQD9nQqFQoNFoiIiI4IEHHiApKYnly5dTVVWF3W5HqVSSnp5OZGSknNGLYqOpqYne3l5KSko4cOAAHo+H4cOHM3HiRCIiIigrKyMvL29Q/sT1119PWVkZsbGxpKSksGrVKsrLy4mJiWHx4sXnhSGQ2WyWEe6fNwRvRhS4Q7bLQxjCF4+vfbFw+PBhaX5TXl5Od3c3iYmJHDx4ELvdzpQpUz5VnOzevXtlQmNycjIajYaKigqOHz9OdXU17733HlqtFqPRyEMPPcRVV11FTU0Nb775Jn6/n4yMDK666ir533q9HrPZDPRzBYxGI3fffTe//e1vcbvdXHTRRVitVnbs2MH27dtpa2uTHIjIyEj0er0cZyQkJJCYmIhWq+XPf/4zXV1dvP766zgcDvLy8rBarWHdllD2f09PDy+99BI9PT3Mnz8/bNYeGtL0WcBsNvPBBx8AUFNTQ0pKCsnJyaxcuZLe3l5mzZrFiBEjiI+Px+VyyeTQxsZG+RpJSUl0dHQQCAQYP368dKe87bbb+Nvf/saxY8dwOp20trYya9Ys2traZE7Epk2b+Mtf/oLP5wuLStZqtXR1dZGcnExsbCxtbW3odDoSEhLCCJuJiYlceumlrFu3Duhn4Xd2dtLQ0EBfXx9XX331gAjtzxM1NTUymn348OFhiZmfB5KSkliyZAkVFRUUFBRI5c4Qzn8MdRY+X+zcuZPVq1dz7NgxrFYrsbGxFBUVsWTJEi644IJzeqyvfbEgchacTidJSUnExcWxfv16HnvsMdkSP5W95ulQUlIiQ5+WLl1KTEwMf/zjH7Hb7TJhMhgM0t7ezh//+EemTp0qtfzQb9xUV1eHxWIhEAjIiOT58+dz00034fV6KS0tJTExkdraWjZs2MDhw4dl/LXb7Za+CQkJCURHR9PY2Eh8fLz0clAqlZjNZh577DFaWlpISUlBrVbzgx/8gPXr18uky1Ar6N27d0tFw7p165g1axYul0uaC82aNYuFCxd+ik/m5DhRsujxeCgtLeXYsWMAvP/++/zwhz9Er9czevRo1q5dK4OdDh48yNGjR8nIyJBmO8FgkIMHD6JQKJg5c6aMDReR3ScmFW7ZskWaQB0/fpy8vDzJddDpdJIw2dzcjNFopLu7W3pNCCxatAij0Yjb7aaiooKOjg46Ojrk6OTmm2/+wlwEQ5Uq3d3dn3uxAP2unuPGjfvcjzuEIXwZYDKZ+Na3vsWGDRuA8Nh5hULBb3/7W+bPn89rr712zvxQvvbFQm5uLsOGDeMvf/kL0D+zr6qqknryDz/8kJqamgESvTOB0+lk+PDh/OhHPyIYDEo3wUAgwLPPPktjY6NMbFQoFMTGxlJZWSmVBIFAAI1Gg9/v58iRI5SXl+NyuUhISOCtt94iNzcXpVLJgQMHqKqqwu12ExUVRXV1NVarVe54A4EAMTExzJgxg6uvvpo33niDxsZGSehTq9W8/vrr1NbW4vf7aWhokGqDefPmMW/evAHvLVQVkZCQgFKpZN++fTIKePPmzcycOXNQE6lPCr/fL+14Z82aJVv9+fn5coGH/ra12K00NDTIRbe3t5cPP/wQlUpFW1ublDGKtEq/3091dTWzZ89mxYoVKBQKkpKSBvyxjR8/nr179+J0OmWAluA5RERE4PF4iIiIOGUQkfBwb21tJS8vT7pPJiYmykLyiyoWUlJSsFqtg5oUDWEIp8NQp+CzhdPpZN68eZSVlREMBpk2bRolJSWkpaXR1tbG0aNH2bFjB+vWrWPBggXs2rVrgHz/k+BrXyxAv9mMCCZatmyZnGtDPzNf5DScDRoaGvj9739PT08PUVFRzJgxg4iICGJjYzEajTzzzDP86le/orGxEY1GQ3x8PDk5ORQXF9PT04PZbMZut5Ofn8/q1atxOBxycRPSx+bmZsk1EIWBeB8ajYbU1FS6urqIjIzkiiuu4JprrqGtrY2CggIiIyNpa2sjNTWVxYsX88orr0hbarVaHca7GAyTJk1CoVDQ3d3NlClTAMLc7ULzJ04HYXR04rjnrbfe4vDhw0yZMoVLLrmEd999V46JrrrqqjD53pQpU7BarZjN5rCvGwwG1Go1gUCA+Pj4sPl3qJ+F6AY0NjZy9dVXM2bMGLZt20ZPTw+7d+9mzpw5cvG+4oor6OzsZMuWLdKhMzIyUrpzqtVqRowYIT0UjEbjgEW3t7eXbdu2yR3BvHnz2L17N729vTIu/ItCbm4uRqNREj6HMIQhnD949tlnOXr0KPn5+bz22muDEsJ37drFt771LY4cOcKzzz7LD37wg0993K91seD3+9m5c2fYDjA5OZkf/vCH1NTUUFZWxvz5808qFzwZli1bxjvvvENjYyNJSUlUVVXh8XjYu3cvRqMRn8/HoUOHqKmpkUFRv//978nMzJTt6pSUFJqbm3nuuedoaGigrq5OcgeysrLQ6XQsWrQIvV5Pd3c3GRkZ9PX14XA4qKiowOPxoFarcbvdMrWyvLycNWvWADBhwgR+/OMfA/2mQmPHjqW7uxubzcaSJUvIzs4+7fsMbc0DFBcXc8MNN9DS0sKkSZPOaGe8d+9enn/+eRQKBQ888IDsaFRUVMhzbW5uJjk5WbbHu7q66OjoIDMzU76OWq2WJlWhuPzyyykrK6O+vp6+vj6ysrIYOXIkY8eOlUVgYWEhH3/8MVarlbi4OEpLS6UiJBAI0NXVRUZGBkVFRbhcLl5//XXKysrQaDRS0hoXF4dOp5NW05MmTSI9Pf2MW/harZZvfetbAzIxviiESn6HMIQzxRBn4bPHW2+9hUKh4L333pM+Oyfiggsu4L333mPs2LEsX758qFj4tHjxxRfZtGkTCoWCOXPmkJOTwx133EFERAT/+Mc/5M+ZTCaioqLO6AEqLGJ1Oh3BYFDGP3s8Hg4fPkxaWhrDhg3DZrNJ457e3l42bdrEAw88IF8nISGBPXv24PF40Gg0KJVK/H4/Go0GhUJBQUEBe/bs4ZJLLiErK4vOzk7Gjx+PQqGgtrYWq9UqPQQiIiJYtWoVDQ0NNDY2Eh0dLccF0D9SGDt2LAaDgczMzAFFwNlAzJrNZjMPP/wwJpOJqVOncv/99w/686tXr8br9aJUKnnnnXdksXBioWE0GmX6ZWRk5CmzEqxWKx9//DFqtZp169Zx6NAhPB4PFosFv9/PwoULmTt3rvx5i8VCc3Mzdrud7u5uuru70Wg02O12IiMjUalUNDQ0UFRUxN/+9jdpnKVQKIiPj6ekpISsrCx6e3vp6OhAp9PJHbnP56OyshKNRsOwYcPkgzE+Pp4ZM2ZQXV1NRkaGLM7Oh0JhCEP4pBgqFj57VFZWUlhYeNJCQaCkpISioiKqqqrOyXG/1sVCZWUl0N/CLyoq4pFHHsHtdvPmm2/S29vLJZdcQk1NDYcOHUKlUnHllVeedsetVqvJysqiqamJoqIiLr74Yo4fP857772HQqHAYrHImbrP50OpVKJSqVi3bl1YsQAwatQotFotMTExcuaUlJREb28vpaWlbN26lbfffptAIEBkZCT79u1j/vz56HQ6bDYb8N8Wv9lslqmNBoNhQOTxhAkTmDBhwqe+psFgELPZzBtvvEFtbS0KhYJNmzYxa9asQV0XMzMzaWxsRKFQ4Ha7KS8vp7i4mOHDh3PDDTdw5MgRJk+ezLBhw0hKSqKlpYWMjAy5GAcCAV5++WWam5uZMmUKycnJlJeX09LSAvR3KESipdfrxWazDZAmirjw2NhYrFYrNpuN2NhYyRnR6XTEx8fj9XrZvXu3JFiKzzE7O5vExESampqIjo7G7XZTV1fHuHHj2LhxIzU1NUB/wmVoITZ69GhGjx4ddi59fX3U19cTGRnJsGHDvrayQYvFgtfrHdQxdAjnL4aKhc8eXq/3jOXVUVFRcg34tPhaFwvz58/n1VdfRa1Wy53mxo0b2bt3L9Df7hYjCr/fT1VV1Rm15x955BF2795NamoqI0aM4Mknn0Sj0Uj1gYAgMSqVykGlcpmZmfz617/GZDLR0tLC73//eyIiIuQD1OPxSAKf4C4UFBQwa9YsampqKCwsJCoqil27dkkug3gvZWVl1NbWkpmZ+al2s01NTezatYuIiAhmz57Ntm3bOHbsGNXV1WHvtby8fECxUFZWRm5uLvX19ahUKoxGo5SxAlxyySVhowW9Xh92nVpbW3n55ZfZsWMHgUCAvXv3smDBAvr6+uQim52dzbFjxySXICUlhcOHDzN16lT5OqmpqeTm5rJjxw6sVitutxu9Xs/MmTNJSUkhMjKSiRMn0t7ejs/nw+fzSR5EIBBgy5YtUkkjOAiCFNnZ2SmPE/rvk6GsrEy6QWo0mgG+Fl8HHD9+nI8++ohgMMjEiRPPuQRsCEP4MiMrK4uysjLMZvMpc2TMZjNlZWVntGadCb7WxcKSJUuYOnUqERERgy7WgUCAnJwcqqurUSgUZ6z3jomJkRa1W7ZskemLVquVqKgoGVUcFxeHxWIhIyOD3//+94O+lsFgwGAwyGRKQRoUhkLQH26k1WopLi5m9OjRbNy4Uao8BAEv1OQG+hm13/jGNygqKuLuu+8OWzzPBgcPHpQZCIcOHZLyRfE+BWHyxJCe2tpatm7dCvQXAVqtVkodzwRms5l//vOfMrUR+ougjo4OlEolWq2Wvr4+YmNjGTVqlCzMoqOjZUHS3NyMyWQiKyuLhQsXUl1dLX0penp6iIyMlP4RTqeTiooKoqOjMZvNuFwuGSwkQrKmTZvG2LFjiY+Pl4RGQZRUq9WMGjXqtO8r9DMKBoMcOnQI6G8pfhp3UQGv18vGjRuxWCxMmTLlC3dGFJ0ohUKBwWBAoVBILg9AVVXVULEwhCGEYOHChfzlL3/hlltu4Y033hi0y+Byubj11lvxeDwsWrTonBz3a1ksiPRFYECbc86cOTIXYeHCheTm5lJXV0d0dPRZp851d3dz3333EQwGSUhIoKCggOLiYsrLy3E6nYwcOZJHH330jBYRkRqpVqulzE+0y3/1q1+h0+loaGjgnnvu4eDBg4wePRqlUonJZCIYDKLVavH5fMTGxjJmzBiam5vxeDz4fD5WrlzJ1KlTqaqqwuFwMHbs2DNuDUZHR0uiYG1tLdXV1TLLIjIyEq/Xi8FgID8/X/5Oc3Mz27dvZ+/evfj9fjIzM0lMTKSyspKVK1dy3XXXndQIa9euXbz88ssEAgGMRiNWqxW/3y+7NqHKFbHgJCYmUlhYSFNTE06nkyVLltDd3c3OnTsJBoPU1dWxaNEikpOTUalUcjwUupDu2bOHlpYWpkyZgt1uZ/HixVRVVbF9+3ZcLpeUu4ZaPEO/wqOgoIDU1NQzKjaLioqora1Fq9VSWloqi4WamhquvvrqM/pMToVDhw5RXV0N9MuC77rrri+0DdzQ0CBlrxkZGWRmZpKVlSVHN0OGTF8uDI0hPns88sgjLFu2jNWrV5Obm8vdd99NSUkJqamptLe3c/ToUV544QU6OzvR6/U88sgj5+S4X8ti4T//+Q/jxo0bVEOu1WqZNm0aCQkJkkR3Ko+FlpYW9uzZw8iRIwfEKjscDpli2NbWRmtrKx6PB5vNJi2E9+3bR0JCQlghsnv3bqqrq5k+fTr5+fns27eP3t5edDodJpMJvV4v5+ZFRUWysrz33ntpaGjA4XBI5YVer0ehUBAREYFGo+FnP/sZjY2NuFwu2U3JzMxk8+bNvPjiiwQCAS655JKTBj6diOnTp1NRUYHT6eSVV16htbUVt9tNbm4uUVFRmEwm/H4/b775Jg899BAtLS28/vrrHDx4EOif+9fW1tLc3IxOp2Pr1q14vV6uv/56oqKiwo4VDAZ54YUXsFgsQD/XQIwXoL+jI4yWbDabnNcFg0FGjx4t8xkqKirYvXu39EPw+/14PB5mzJjBnj17sNvtjB8/PswUSPAeNBoN6enpjBw5kszMTNra2mhoaECv18uYazEC6enpkQtzQ0MDGRkZYfLSwWAwGCSvYeXKlfLrtbW1Z/R5nA6hD+bzgQ8huDWALPSKi4sxGAx4PJ5z1kIdwueHocX/s0VGRgYffPABV199NZ2dnfzmN78Z8DPBYJDk5GTeeeedAV3dT4qvZbEQDAbZtGkTnZ2d5Ofns2TJErZt28bx48c5fPgwbW1tREZG8pOfC1ogGwAAcppJREFU/CTMtfBE2Gw2fvrTn0oDpKeeekruRltaWvjXv/5FXl4eDQ0NKJVKUlNTsdvtMryovb2dTZs2cfToUZ566imgf7YvDKK2bNnCE088wXPPPSetlyMjI+nt7SUQCKBSqWQint/vp6mpSaos0tLSmDt3Ljabjerqanp6ejAajVx99dWo1Wp8Ph+bN2/G5/MRHR3NT3/6Uzo7O9HpdNjtdiZNmkRxcfFpFxStVsv48eNxOBxSehkIBGhqaiIlJQWFQoHD4ZCLZmdnJx0dHQSDQVnkBINBmpqaSE9PR6vVEgwGaW1tDSNhNjQ08M4778hMB5VKRUFBAXFxcTQ3N6NSqcK6RIFAgLS0NPLy8iguLpaz/4qKCnbt2iW7HwkJCeTl5REfH89bb72F0WjEaDTKgkQkbw4fPlx2YkRbXKvVUlhYKEmQQrEirpkgQH7SjINhw4axb98+gAEdi08KIRm1WCzSK+OLRHJyMnV1dSgUijDzq7Pt4g1hCF8nzJgxg4qKCp577jlWr15NZWUlfX19xMXFMXLkSJYsWcLdd999Sk7D2eJrWSyoVCo2bNiAUqnk6NGjqNVqjh49SiAQYPv27WRkZACwb9++UxYL3d3dcjckFmtRLKxatYrW1lZGjBgh2+VCQ3/RRRdRXV0txyG9vb1SitfV1SVfX2QTiGMoFAo6OjpQqVRyYeru7sbr9fLiiy+SmpqKz+fD4XBwxx13sGjRIvx+P4FAgJaWFhYuXCh34Wq1mnnz5hEMBrnjjjvo6+vD7XbLCOwVK1bI3zkT6HQ6xo8fz9q1a+V/C8lnREQEGRkZBAIBhg0bhl6vp729XYYzCTdDn89Hfn4+sbGxA9wPd+zYgdvtpqioiKamJnJycigpKcFsNhMfHy+Dn/x+v+y6pKWlSUlkVFQUqampMldDdFuKi4vp7OzEZDKRlJQknTtjY2Ox2+28+OKLOBwOtFott9xyi5RTQv9IRFhqq1SqAcmRcXFxjBkzhvb2dlJSUs46lOnqq69m1KhRqFSqAUmXnxRqtTosx+OLRnJysrwuQ7LRLz+GxhCfHxISEvjpT3/KT3/608/leF/LYsHr9eJyueTOViwuSqWS5ORkFAoFSqXytFyCrKwsJk2axN69e8nJycFgMEgNrHht4SEg9PpGo5GHH36Yjo4OnnvuOVpaWpg5cyZmsxmj0ciUKVPYunUrNTU1XHTRRYwdO5bc3Fw6OjpwOBz4/X56enrQarV4vV7KyspobGyU/gnDhw+ntbVVWkurVCquv/76k74HhUKBTqdDoVDItD+lUklHR4ecG58MgUCAZcuWodFouPHGG/n+978v2fziNZVKJSNGjGDx4sUolUpiYmL4yU9+wu9//3vq6+txOp1SESKyGFwuFzU1NSQlJcljGQwGjh07hsvlIisrS6oToD922+fz4fV6pRxWo9FQVVWFQqGgp6cHn8/HNddcQ3FxMfX19Xg8HqKjo3n//fcJBAJs27aN/Px8pk6ditvtZv78+ZhMJpnRYbfbWbZsGREREeh0Or7xjW/Q09ODUqnEaDSSk5MzYAwF/WqMT9pKVygU8nP8KmOoSBjCED49SktL2bVrFx6PhxEjRnDJJZecsYvumeBrWSz4/X4cDgf5+fkUFBSwcOFC0tLSqK2t5ec//znQ72eQk5ODz+djxYoVdHR0MG/evLAdnlKp5NFHH6Wvr4/du3fzu9/9Dui3A7766quJioqis7OT0tJSnE6nVAXcdNNNtLa2kpGRIfkQH330EZdeeilxcXE89thjYef76KOPUlFRwbvvvovf76eiokK20Ovq6mThEBUVhcfjYfLkyWe1yDz00EN4vV6OHTuG3++Xc/WTtbB8Ph8vvfQSb7/9Nn19fTIX4umnn+Yvf/kLb7zxBkeOHJFZCQsWLKC4uFj+vlqtZtKkSbS3t2Oz2fB6vQQCAdxutzROamhoYNq0aTQ2NvLss89iMpmkwZTb7Wbbtm1kZmai1WqJioqipKSEmpoazGYzNptNFmiie2G32ykrKyMhIYEbb7wRk8nEn//8Z1mkqFQqzGYzw4cPZ9KkSQSDQT7++GNaWlok2VHsgBwOByaTiZEjR3Lw4EEiIiLCCJxnitLSUvbv3092djaLFy8+698fwhDONwx1Fs49mpqaWLZsGQaDgXvuuWfA9x0OBzfccAOrV68O+3p2djbvvffeOQtk+1oWC3q9nmHDhnHRRRfJC3kyU6Jt27axadMmoJ9k9tRTT0kJmxgd6PV6SdiD/vHFddddxzXXXIPFYpFz59jYWDo7O2lsbKSvrw+TyURrays+n4+UlBTa29sHDR8yGAxMnz6d1NRUXnvtNaKjo2lqasLlclFWVsaYMWNQq9VMnz6d4cOHM2PGjLP6A8zNzeW5556jrKyMgwcPSuOiwUyUoN/MqqqqCrvdLufxFRUVQL/y4P777+fFF1+ktraWgoKCAYXLsWPHUKvVdHV14Xa78Xg8kkNQXV1NRUUFycnJ7Ny5k9bWViIiIgYlOyqVSrKyspg+fTpJSUmMHj1aGmmlpaXR3t7O9u3baW9vp66ujubmZlJTU5k9ezZdXV0Eg0HpkKlSqYiIiCAmJgaAtrY2ysvLyc3NxePxsHjxYvbv34/FYiE2NpbU1FSioqLIyclBqVSedehTd3c3q1atIhAISDvrSZMmndVrDGEIQ/jqY+XKlfzsZz/j+9///qDff+CBB1i1ahXQv4FNSkrCZDLR0NDAkiVLOHbs2Dmxb//0wu0vIcSOd+PGjbS2thIMBuXs+USExiGL+T/0S+nuvvtuHnzwQWpra8Oc+SZPnkwwGOT555/npptukmmRLS0t1NXV4fV6iYiIQKVS4Xa72bRpE2vWrOH555+nsbHxpOedn5/PE088QWJiIn6/n4iICGkOdMUVV3DXXXdx0UUXnbStu3btWv74xz/y1ltvDYh5hn5VRHNzM8eOHZM758Eg9PChN6AIkxK48847ueyyy+ju7uavf/2rHBmUl5fzz3/+k1dffRWPxyOVCHa7Xf6/1+ulsbGRpqYmfD4fer2emJgYVCqVlEkKzsUVV1wRNq4QXQZh0SwIhy6XS3JETCYTBoOBhIQEefySkhJmzpwpiYRCJaFQKNBqtaSkpHDjjTdyzTXX8M1vfpOoqCh8Pp/M3YB+Ey+hNDkdXC6XvJcAOe4YwhC+zBCdhbP93xBODuFHI9RcoaitreWVV15BoVBw1VVXYTab5UansLCQ9vZ2XnrppXNyHl/LzoIwEQoGg6xbtw6z2cyBAwcwGAwsWrQIj8fDhAkTyMzMZObMmTQ1NdHR0RFGEHznnXdwu9243W7WrFnD/fffT0FBAT6fj2HDhtHR0cGGDRvo6OjAZDKF+RyIhUGlUtHZ2UlkZCSBQIC+vj727dt32hn3pZdeSnl5OR6Ph9GjR/Pkk0+elvXa2dnJ4cOHgX5lQU1NzYBioKamBqvVitVqZdeuXUyYMCEsQ0EgPT2dO+64Q3YXMjIymDlz5oCf2717N8FgkJaWFl577TVuuukm6urq6Ovrk10Zn88nJYdi8RQPEJ/PJwmLYvceFxfH+PHjyc/PP2nnA+CFF16gra0NpVKJx+MhEAgQERGBy+Vi5MiRpKamolQqsVgsjBkzRnYUoN+H46233pKjnaVLl5KSkkJfXx+RkZGo1WrWrl1Lc3Mz6enpzJ8/n56eHsmXMJlMTJw48ZQPwYyMDMaPHy+7LG1tbRw6dIixY8ee4lMcwhDOfwwt/ucWZWVlREdHD9p5fOuttwgGgxiNRl5++WW5gSssLOR///d/WbRoEatWreJ73/vepz6Pr2Wx4Ha7USgUUmoSCASYMGECZWVlfPDBBxQUFNDY2Mg999xDZGTkoJ4DSUlJcrcsJF+hJj5xcXG0trbicDgIBAJyju5wOAgGg7IFrlAopFeA3+8fkNkwGJYsWcKMGTNoamoiOzt70NEF9Fed7733HjExMSxdulRKJhUKxaC/k5mZid1up66uDo1Gw9tvv82YMWMG9QYoLCyksLCQYDBIe3s7VqsVtVpNZ2cnSUlJREVFkZKSwpEjR+ju7iYQCPDSSy9x3XXXsWHDBrRaLU6nU3IKAGkeJeKeFQoFVqtVXqPExEQeffTRkxo2CbS3t9PY2CiVHRkZGcTFxREdHU1KSgqpqakAksDq8Xh44YUX6OjoICcnh9GjR4dlSKSlpdHQ0MDGjRsJBAJkZmbK7InW1lba29vDugR9fX289957KJVKZs6cOeD6CWOk0aNHM3nyZFatWkV3dzfbt28nKyvrnMqdzhYOh4P29nYSEhJwOp3Ex8cPGAENYQgnwxBn4dzDZDKd1Otn69atKBQKlixZMmDUcMkll0j333OBr2Wx0N3djdPpJDk5mbS0NEmwGzFiBN3d3XJ+HggECAaD1NTU0NraypgxY6SW/+677+ajjz4iKiqK+fPnDziGaIfv378fQMYdW61WyXkQJDwRBPXYY4+dUbEAA3MSQiGyC/75z3/KPAKDwcC1115LZWUlWVlZgxp1pKSksHTpUplWCYQt5gIiD6GnpweHw0F9fT1KpZL4+HhUKhXR0dFcdtllFBYW0tXVhdfrpbOzk/r6ekpLS5k2bRpWqxWDwYDT6QzrHIjALEE8jImJwWw2k5GRwfe+973TFgrinPPz86mrqyMiIoJp06bR2toKEBZrLXDgwAG5+B8/flymQ4r4cJ1Ox/79+2VBUFVVxYEDBwgEApSUlBAbG0tkZCQmkwmXy4XNZpNmQ/v37w+7P5qbm1m+fDnQXzSc2Fo8F5bOnxQul4s33ngDq9WK2WwmKyuLmJiYQR9EQxjCED4f9PT0nLTbLNaXwTrA0K/YEx3PT4uvZbFgMBj405/+xL59+1i/fj2xsbHyIW0wGFCr1cyYMYO1a9dSXl6O3W5HoVCwZ88ebr31VpKTk4mOjuaqq64Ke936+noOHTpEbGwsF154IQ8++CC//e1vpVmS2+0mGAxKQyUR7iTMg85EYmez2WRHQSQvhmLNmjW88cYb0kcA+gsXtVpNRkaG9JAQxlRtbW3MmTNHfn3WrFm0tLRQVVXFlClTBjXH2bx5M++99x7BYBCr1crw4cOx2+04nU7ZnVi+fDk9PT00NjbK6GalUonL5WLNmjUUFBSQnJxMT08PbrdbhjKJzAvRBYmIiEChUDBs2LAzWrDMZjMff/wxUVFRzJgxg8LCQiZMmEBzczPBYHDQYkGv18vOjoj/zs/PlxW9uHbHjx8H+kc6cXFxOBwOqQYRYVOikBL5EyfuykMdC/1+P/Hx8UydOpXm5maGDx9+1l4M5xJdXV3YbDbp1SFsrDs6OoaKhSEM4QtCTEyM3OyEorm5mY6ODhQKxUkTgyMiIs5og3Um+FoWCwsWLGDlypX8/Oc/R6vVMmrUKDIzM+no6CAzM5OkpCQUCgWtra04nU7ZBne73TQ0NIQ5zQkEg0F2796N3+/HbrdTWVnJmDFj+Mc//sHq1at588032bZtG8FgUC5KgNTtX3nllaf9UM1mMw888AB9fX1kZmbym9/8Jqxl/Z///IfHH39cejqo1WpiY2MpKSkZYK60Y8cO/vWvfwH96o1nnnlGthC/8Y1vnPI8enp6gP+2D0XAlTiXyMhI2tvbqa+vp62tjc7OTjQaDQqFgsjISFlkzJ07l7Fjx7JmzRrpShkfHy+LKEEyDAaDUi+8efNm6uvrKSoqYvz48ZSWlso8i5SUFN58801prJSSkiL/iAYrEiwWC+3t7fT29lJcXIzdbqe4uFiOKUILJbGQu1wudu3aRWlpKX6/H7/fz44dO5g2bZosOqdNmyYdHU/kIIwYMYLx48dTXV3NmDFjZAEXSpD9opCUlER8fDxms5no6GiioqLQaDSD3u9DGMJgGBpDnHsUFhZKmXVoUbBmzRqgX2V3sgC+1tZW+Tz7tPhaFgs7duxgy5YttLS0YDAY2L9/P2VlZSgUCsrKyiguLubYsWMyx0Gr1ZKXl0dkZCRlZWWMHTtWKg4cDgdWq5XIyMiwm158X6PRcOWVV3LppZfy0EMPsWXLFjnDV6vVJCYmMmLECObNm3fa83711Vc5fvw4drudhoYGHnvsMZ566iliYmLwer0sX75c7pBVKpUcp9TU1PC73/2OkpISrr32WmlUJNDX1yfdJc8Ec+bMoaKigtLSUhQKBR6Ph7lz5/Ltb3+b/fv3s2LFCurq6vB4PDKrQa1Wo1arJV9DpVKRm5tLW1sbM2bM4MCBA5JLItIhhVuiyLj405/+JEmTIoyrra1NfqZXXnllmKJlMHWLgM1mkyRGnU5Heno6CQkJpwwuEqqL5ORkIiIiqKiooKioCL/fLyWV0G8DPXXqVLZv387TTz9NYmIi119/PXq9HqVSybXXXntG1/nzRmRkJNdffz1dXV3o9Xr6+vrQ6/WDdrCGMITBMFQsnHssWrSI3bt388ADD/Dee++RnJzM8ePH+f3vfy/5CoNdw5aWFtra2k46ojhbfC2LhdraWoxGI5GRkTidThITEyXZrquri8rKSrngiuCg3bt3S/LbJZdcIh+gwitArVZTVFTEhRdeyLBhw3A6naxbt46RI0fyyiuv0N3djV6vZ8aMGWzfvh2r1Sr1/ZdffvkZt3mFSkCpVNLX10dNTQ3jxo2jp6eH9vZ2uru7iY2NRa1Wy1GH4A04nU4mT55MXl4es2bN4uDBg7S1tXHFFVeclYue0WjkO9/5DseOHZPXTfgsiI6Cy+WSHQKlUonT6USr1crY6rFjx/Luu+/K9yQkoB6PB7VaTU9Pj+QwGI1GqqqqqKqqwuPxoFQqZR6EgBgjXXnllbz77rtoNBouueSSk76Hrq4uyccQ7o8REREn/RwCgQB79uyhu7ub/Px8Lr/8ctLS0jCbzWi12gHppT09Pbz//vv4fD66urr4+OOPufTSS8/4Gn9RiIyMlCOpUIXIEIYwhC8G999/P88++yy7du2SCb0iX0elUvHwww8P+nvvvPMOwKBKtU+Cr2WxMHHiRHbs2MHEiRO56qqrmDp1Kj/60Y+orKwMm50HAgGcTiednZ3Ex8fT0NAgnQ7Fggz9u1S/34/b7ZZt8UAgIGfvEyZMIDU1lYaGBnbv3i2Li/Hjx2MwGNi5cycJCQkYjUaZozAYrrzySnbt2iV33F1dXZLn8Le//Y2enh6CwSB9fX34/X50Op00LxKWx2IxHMwp8kyxfv16du7cid1ulwt2RkYGGo2GzMxMPB6PNFoCZACTyFiA/+76nU6nLMzE79ntdgDJcXC5XERFRaFUKmUFLdJB9+3bh91ulzLK7OzsM5IJpaamotfrsVgsREVFYTAYSEtLO+kuurm5mZaWFrxeL9u3b8fn8zF58mT2799Pc3MzR44cCQtm6uvrk/8Wn8EQhjCEIZwtEhISWL16NUuXLqWtrU2q8FQqFX/84x8H5SsInx+FQjEoAf+T4GtZLFx44YV84xvfQKVSkZKSwgcffCB364MZhdhsNjQaDX6/n7a2NpllIBbDYDDI+PHjMRqNHD9+XBLhhDtgWVkZRqNRBkBBv8GSSGXs7e3lT3/6E5mZmahUKiZMmMDkyZNJTk4O2/Hn5uZy2WWXkZCQQF9fHxkZGZInIGKi1Wo1Go0GrVYrixlxvjqdbsAO+GzR0tIiOwLx8fGMGjWKgoIC5s+fj0KhYPLkyYwYMUI6WoqxgxiJOBwOVCoVHR0dxMXFcezYMZKTk6UxllKpxOfzSc6FSqXCbrfj8/koKCiQRJ/58+ezatUqsrOzueiii876fWi1Wq677jq6u7s5fPgwjY2N7N69m8mTJ3PhhRcO+HnBtRCf/9q1a+nu7qampgaFQoHZbCY1NVWOMbKyshg/fjxlZWWkpaWdsz/YIQzhfMbQGOKzweTJk6murmb16tUcP36cuLg4Fi1aJNN0T4TZbOa+++5DoVAwbdq0c3IOX8tiAZDSwdWrV/PII4+gVCqlWiH05hXsfK/XK1n78N9CIBgMotFouOCCC/D7/ezbtw+VSiU7FEJ+GQwGZRAU9O+onU4nOp0Op9PJoUOHMJlM+P1+tm7disvlIj8/n5/97GeMGDGCt99+m7b/196dh0ddnY3/f88+mWSSyb4DSQiEsMu+BFBARRBRENzaihu1fdzbqq39KdWnrT5ttdW616+1tAqiogLCg+yrsgSSACFkJftkn2Qms8/vj1xznsQshB3CeV0X1zXJfGbmTBLmc3/Ouc99V1aKWQqj0SgaROXk5GCz2UQCYXBwsEgI9CdUer1e5s+ff84/N39A5fP5CAgIYNCgQRw5coScnBxuvPFGWlpaKCsrE/Uc/LUT7HY7Wq0Wt9stEhYDAgIIDw9HqVRSX18vliL8Gbz+7ZX+KorDhw8nNjZW/Jx1Oh379+8nODi4233IPdFoNJSWlpKbm8vJkyfRarVYLBaio6M7PV90dDSRkZEiiVWtVrNnz54OrZXbzx4olUruvPNOEahJbd1V8/LySExMlC2o+zB58r8wDAZDr/OdwsPD+fnPf35eX/+qDRag7ST70Ucfia1vgGjT7KdUKomOjkan09HS0kJTU5MoGuSvBOnfPeHPS/D3OwgPD8dsNuPz+cjMzMRqteL1egkKCqKlpYXs7Gzi4uKwWq0kJiZSV1cnGikplUry8/P59NNPycjIYM2aNVitVnJycnjnnXc69CLw14TQaDSiPkF7TqeT/v37n5eGIrGxsdxxxx0cPHiQmJgYPvnkE6Atkj106BAKhUKcTNt3k/Qvf/hnSpqamkhMTBRLPhqNBp1OR0hICCqVCpvNJko8+3w+QkJCRJdKrVbboQjS7t27WblyJbGxsdx9993odDocDge7d++mtbWVsWPHEh0d3eX72bNnj1gKcbvd6HQ6URa6PbfbzWeffUZxcTF1dXWkp6eTmJiIw+EgOjoavV5PVlYWK1euJDU1lXnz5omum1JbDYf33nuPlpYWVCoVy5Yt6/Z3IknS5eeqDhZqa2sJDAwkODgYh8OBSqVCpVKJYEGlUqHT6cQJLjg4WNQsUKvVYnpcr9fT1NSEWq3GYDCQkJCA0Whkzpw5WK1WIiIiGDBgAF988QXr168XJ5DW1lbKysoYMGAAjY2Nol0zdOxJUV5eTmFhIQ6Hg6KiIt58800efvhhsdVy0KBBoqcCIBInlUolXq+XkJAQZsyYQWpq6hn9fPLy8ti5cyeRkZHMmTNHvF5GRgZTpkzh+uuvF701QkJC8Hg8oq6Af3uoP2Bof7Xhr86YkJBAcXExVquVoKAgkdDodrsJDAwUr+cvQa1QKGhtbUWlUhEWFoZOpyMuLo7c3FxUKhUFBQXs2rWLmpoacnJyxO+straWn/zkJ12+x7CwMJE46S/v7N+GlJ2dzebNm4mMjGTu3LlYLBbCwsIICgoiMDAQpVJJWloaR48epbKyUgRJlZWVqNVq5syZc0Y/776sqalJ1JjweDxUV1efl2ChqamJDRs2kJ+fT2pqKnPnzpW7Ny4huQzRd13VwcKECRPYu3cvHo+H1tZWqqqqRAlmhUIhdkOYTCZMJhPNzc1iy6PFYuHVV1/FaDQydOhQ9u/fz5YtW0QuQmJiIsnJycycOVO83rRp0xg4cCBr1qxBr9eTmprKnj17cLvdhIaGUltbCyCuSEeOHMndd99NaWkpgYGB2Gw2tFoteXl5ZGVlib35OTk5IrtfoVBQW1uLSqUiKiqKhx9+mMWLF3d673l5eSKw6YrFYuGll17i2LFjuFwutm7dyiuvvIJGoyErK4t//vOflJaWipO71WrF4/GIGRp/Xwf/Mo6/DbRSqSQlJYXGxkZxVR8RESEqXLZPYAwICBD1F7RarUjg9G9BfPzxx2lqauK1114TzcGKi4spKSkRjZpcLhdWq1WU9v6hhQsXivflP9H781NWrlyJ2+2mqqqKqKgoURJcr9ej1WqJiYlBq9VSXl4ulpf87+Ho0aMYDAYyMjLk7AJt3UhTUlIoKCgQt8+HXbt28f3332OxWKiqqkKj0XDrrbeel+eWzpwMFvquqzpYCAgI4Nlnn+3yvpycHL7++muSk5NJSkri2LFjFBQUoFarOXbsGBaLhQEDBoiEtsmTJzN58mS8Xi91dXUEBgaKksl+SqWSRx55hEceeUSUZH7++efZs2cPJpOJgQMHUlxcjMVi4cEHH+RHP/oRERERxMfHM3XqVDZt2iSqR/p3Z6xcuZKcnBzRm8EfaCiVSqKiojh48KCoreC3fPlyvv76a5RKJU899ZTIfWjPX/LXP1tRWFhIZWUl/fr1Y+XKlTgcDtEUKzAwUGx/bGpqEmWzGxoaRHfKMWPGMGPGDL755hvMZjO1tbUiq9c/o9DU1CR6Z3g8HgYPHozBYMBsNtPS0kJgYCB2ux2fz0d0dDTNzc28++67YtdKZGQk/fv379C50x+sNDQ0dBksGAwG4uPjqaurAxC7O/zvx5/4evDgQdEDwufz0dLSwp49exg1apTIc/Hf53Q6KSgooKioiOzsbP7rv/6r13+TfZVKpeJHP/oRTU1NYhbpfPDPnkHb76yn2hqSJJ29qzpY6MmwYcMYNmwYlZWVfPHFFyKPwGazER0dTX5+PitWrOgUbPj7ifs5HA727t1LSEgIo0ePFt/3f1guX75cfK+pqYlvvvmGcePGdbjyCggI4MUXX+Tee+8lJyeHfv36cejQIf7xj3+IzpdarRaDwYBarSYoKAi73U51dTUNDQ3k5uYyePBgzGYz77//Pp9++qlo0vTSSy9x6NAhwsLCuPbaa0Wr6fj4eK6//nr++c9/EhAQQHJyskjkMxqNlJSUEBkZSWJiIi+88AKvv/462dnZJCYm8sorr+B2u0VSZkREBHfccQc7d+7E7XZTU1ODy+XC4/GIdtQhISG4XC4xVe1wONi5cycKhYJhw4aJwMO/q2PBggXk5+dTWlqK0+nEYDCILZrp6emUlZXR1NSERqMhJSWlx4S6JUuWiBkIfwlvpVLJj3/8Y9atW4fD4cBms3XIZYG2WQS73U5UVBRmsxmNRsPIkSNFMRSA0tLSXv7F9X0KheKMylk3NjaSnZ1NQEAAo0aN6jLAmDZtGs3NzWRnZ4tOnllZWSQnJ8s6EZeAnFnou2SwcBr+6WV/Ep7dbhfLAV11Y/yht956i6NHjwJwzz33MH369G6PDQkJ6bJnuV9KSgopKSlUVVWxYsUK0VXR4/Gg1+tFToXX6xVb/AYMGMB7772HyWQSrbYNBgMOh4OQkBACAgI4ePAgarWarVu3MmPGDB5//HH0ej2PPvooS5YsoaioiPT0dFEj4Uc/+hG/+MUvCA8PR6FQ8OabbzJ69GjmzJnDoEGDMBqN+Hw+wsLCqKioIDw8HJPJREhICHV1daJSo393RENDA42NjWLpwf+e7HY70HbCHTJkCBUVFahUKvR6Pdu2bcNoNIrqk83NzRgMBnbu3MmAAQOYN28eKSkpYsdJ+wJOPxQcHMzPfvazTt9PTk7mxhtvZP369fh8PoxGIy0tLXi9XvR6vahC+cADD4gcE7VazaZNm/jyyy/x+Xyis6V05nbt2kVzczPQ9nPtKkE3MDCQxYsXs3jxYmpqavjHP/6B2+0mJCSEZcuWnVGxMUmSuieDhdNISEjgmmuuoaSkhPT0dFwuF5s3b2bJkiXMmDGDhoYGQkNDu318SUmJuF1cXNxjsNBbGo2GpKQkcnJycLvdxMXFodPpCAoK4pZbbqGwsJB169bR0NBAU1MTtbW1IifDbreL3AF/nQj4v8JB27dvZ9++fSQnJ2OxWAgMDGTGjBmMGzdOHBsdHS3yDvzT91u2bCEyMpIDBw5w7733YrFYOHLkCNDWj33s2LFil4O/j4RCoaCwsBBAbDNNSkoiMTGRvLw8mpqaRDfKxMREDAYDZWVlwP917PR3l/QXc/JfpdhsNtRqNeXl5ZSWljJ16tSzarU8cOBAIiMjRYDjDxI8Hg/p6emilGr7q97Zs2eTlpaGw+E4qy2dUht/oA4dE367U1FRIY5ramqiqampwyyfdHHImYK+SQYLvTBx4kQmTpwovr7hhhvYsmWLmCafNWtWtx0jZ82axZo1a0Sy2/kQHh7OzTffTEpKCjabjZkzZxIUFCRyFdasWUNMTAxKpVIkA5aXl4v19/bFp/xT6/4ERACXy8Xx48dRqVRoNBo2bdrEgAEDxDKKWq1m/PjxrFu3DpVKRXNzs0g8tNlsvP322zgcDhHMaLVavv76a0pKSsTWUn+FQ3/CqNfrJT4+npdffhmj0cjhw4d599130Wq1PPDAA6JA1caNGwG48cYb0Wg01NTUUFFRIWZ9DAYDMTExhIeH88knn/DNN9/g8/nYuHEjf/rTn874Z61QKJgzZw579uyhpqZGbK8cP348gwcP7vZxPfWYuJr4fD527dqFxWJh6tSp3bZV78qECRM4dOiQaPZ2OsnJyRiNRpqbm0lMTOzQZE26OOQyRN8lg4Wz5E+i8/l8lJWVdRsszJ07l4yMDHQ6ndgpcD7079+f/v37d3nfvHnzUCqVNDU1ccMNN7B8+XJRv8Hn8xEbG0tDQwPNzc2YTCbRs6H9lZz/RO71ejt0yfR6vTzxxBOYzWaRTKZUKgkICCA4OJjy8nIKCgrETIW/2NW2bdvEVlR/IavGxkYxy2EwGPjjH/8o6jGMGjWKN998s9N7W7JkCW63m8zMTGw2GyNGjGDbtm3U1dWhVCpxuVykpKTwzTffcOLECXGlWVVVhc1m65R06uf1eqmqqhKln6GtxPP//u//olAouPHGG4mNjcXhcFBYWNhlsqTU2fbt21m7di3QtgPniSee6PVjY2JiuOmmm3p9vNFo5Kc//SmNjY1ERET0uPQkSdKZkcHCWRowYAAFBQUolcpuAwW/i3ViKSgoYN++fZhMJm688Ua0Wi0Oh0P0pQgKCiItLY0BAwZQVlbG+vXrRaDg397nDxj8Gf7BwcGMGjVK9F44cOAAZrMZaJthcDqdaDQa+vXrh8fjQavVEhAQgNVqFU2f/BUkAwICiIqKEssigKj0GBAQwOeff87jjz/e6UrD4XBQXl5ObGwsAQEB5OTkiDyQkpISMVb/TIp/aSM8PFzsuNDpdGRnZzNhwoQuf3Zbtmzh+PHjqNVq5s6dS79+/di3bx82mw2A7777jgULFvD111+LpZc5c+ac9nd/tauvr+/y9oXQ3NzMgQMH0Gg0mEwmGSxI0nl0WQULAwYM6LDG35X9+/czduzYizSi7k2fPp20tDQMBsNlcZXp8/nYsGEDLpeLmpoaIiIimDBhAps3b6apqUnsrhg2bBhHjx4VOxD8JZl9Ph9BQUE4HA4aGxtRKBQEBQURExNDfHw8L774IkajkZSUFBEA+LuetQ82wsPDxTbO+vr6Dls5oa3PRlhYmAgWrFar2LHgr43Q/kPe4XDwl7/8haqqKkJDQ3nqqadEt0iAmpoa4P+2Xw4ePJgJEybw6aefYrPZCAgIwGg0dqj42JUjR46ImZIjR47Qr18/jEajCDaMRiMul0sECgBms1kGC6eRkZEh8k8udNfN7du3i9+Xz+c7b8t+Uu/JZYi+67IKFvyGDRvW7dpmb1s5X2gKhYKYmJhLPYwOflh9EhBX9f5uZYcOHSIyMhKDwYBOpxNT8/6TtH82wL8F1Ol0snr1aqqqqlAoFKSmpjJx4kS+//57UbHQv/0xKioKl8uFVqslNDSUlJQUfD4fxcXFNDQ0AG1VKy0WCyqVCpPJxLhx4wgODsbj8TBt2rROV4Pl5eXiBNDQ0EBxcbHYSmm1WomPjxfbGidMmMCCBQvE8klISIgogT106NAOSZrt+ZdF/EmM/qWKGTNmEBwczKlTp9i/fz/5+fn069ePU6dOodfrz1thob4sMjKSZ555plPPlQuhfRD5w22u0sUhg4W+67IMFl5//XVmzJhxqYdxWXA6nWzZsoXMzEySkpJYtGhRl/vNFQoFN998M/v378dkMjFq1Cjq6urIzs4mLy8Pm80mmjg1NzeTlJSEyWSitrYWtVpNbGwsGRkZ/Oc//0GlUonGT6GhoWJ7osvlorKyUuQHtO9FYbfbaWxsxGg0otfrCQ8PF1UnrVaraKTlr8Ko0+morKzE4XCQkZEhOqT9UExMDCaTicbGRgIDA8WuiBtuuAFoW3rZtGkTQUFBzJo1S+RauN1uNBoNISEhZGRkiNmoxsZGDAZDhy11CoWC8ePHk52djUqlIi4uDq/Xi06nY9KkSWzbtg23243ZbCY5OZk777xTVHGUeudinBCmTJnC7t270Wg0l8XsoyT1JZdlsCC18fl8vPLKK6IoVHh4OJmZmTzyyCNdlmmOj48nPj5efL1u3TrKyso6fFD7T9QPP/wwycnJvP322xw7dozW1laysrJITEzEbDYTFRXFs88+i8Fg4J133qGyslJsPfTnKWg0GrEU4fF4RMJkRkYGN998M6tXr+bAgQMiSCksLBQlof0zRxUVFWzYsIElS5Z0mb1uMBj4xS9+QVFREf369etU1Mdfe6I9jUbDzJkz+f777wkPDxf5Fp9//jn79+8nKCiIhx56SGyre+uttygrKxNFoioqKnC5XERFRTF16lSCg4PFentwcLBI5Dx27BiDBg3qNtG0Ky6Xi+LiYoKDg2UjpfMsOjpaFNWSLh05U9A3yWDhMtbc3Ex+fj4ejwen08mpU6fw+Xz893//N3/9619Pe2XrP7n7yx37ZyRmz55NS0sLjzzyCMePHycqKoqIiAhMJhPTpk2jtraWiRMnijbeTz/9NBMnTuT999/HZrNRW1uL1+ulX79+ou+D2+0WFfNqampQKBSEhYWJHRBms5ng4GASExPx+XwiL8Ln8+H1entcXjIajeKE31vDhw9n+PDh4mun08n+/fuBtryJrKwsZs6cyV//+lcKCgrENlGv18uxY8eAth0UxcXFjBo1iujoaBISEhg/fjyNjY289tprOJ1O1Go1Tz/9tKhueTobNmygoqIChULB9ddfz4ABA87ofUnS5UwuQ/Rdl2Ww8M477/DnP/8Zm81GZGQk48eP55577un1B3JfYTQaGTx4sFir9xcEqqurE8sEPdHpdDQ3N4sdCgqFAqvVys6dO/n2228JDQ0lOjqaxsZGxo4dy6JFi7rMw/B4PJjNZtRqNWazGbPZjM1mw2KxkJSUhEajQaVS0djYiEajYdKkSRQWFrJjxw5aW1vx+XyEh4eLJEd/XoBKpSIwMJBBgwZRVlZGUlJSj+/H5/Nx5MgRbDYbY8aMobCwkO3bt5ORkcHQoUOprq4WZah/+FwajYbo6Giqq6uBtlmYrKwsdu7cKbbZKZVK0YxLqVSKIk91dXVERESIWht1dXVifdxfvrqnv83a2loqKytJTk4WZaB9Ph+VlZUyWJAk6YpwWQYLn3zySYevV65cyXPPPcerr77KsmXLevUcpaWlotqfX3Z29nkb48WgUCh46qmnePnll/F4PFRWVmI2m3G5XKdtmOOf3jcajWI7ZHl5OYBoyORwODAYDMyZM4dHH32003N4PB4++eQTdu7cSVVVFc3NzVitVnQ6HQ6Hg/r6ejQaDWFhYSJ/Qa1Ws2vXLsrLy2lqaqK+vh69Xo9OpxPbJAHRwTMmJoagoCA+/fRTHnzwwR6rYe7atYvNmzcDcPDgQVatWoXdbudf//oX77//PllZWXg8HvLy8qirqyM5OVksbSgUCh588EHWrFlDXl4ee/fuZciQIQBijAaDgaFDh1JQUCDyHhISEkQehF///v0ZNGgQeXl59O/fv8fW39XV1bzxxhu4XC4iIiIYPXo0+fn5YgeIJPUlcmah77qsgoVJkybx7LPPMm3aNLFvf//+/bz44ots376dn/70p+j1en7yk5+c9rn+8Y9/dGjSdKXKysri2LFj2Gw2nE4nRqMRtVrN3r17mT9/freP02g0HbZFjhgxgpCQEIqKiqitrWX8+PFMmjQJl8vVoY12e9u2bePdd9+lpqYGj8cj1vj9fTICAwPRarUiV0GhUFBSUoLFYhENrgICAtDpdERHR1NeXk5LSws2m43GxkYSExNJSEgQWzFbWlrQarVotVo0Gk2n8fhnBQByc3NF7win08nhw4fFezWbzbS2tpKXl8fs2bPFuP3lov3JlUlJScycOVPUpqivrxcFl/r378+jjz7Knj17sNvtTJ06VTSOMhgM/PznP8dqtWIwGHr8sCspKRGZ+bW1tYwcOZLRo0cTEBBwVuWnJUmSLoXLKlj4+OOPO31v5syZzJgxg/nz57N+/XqeeuopFi1aRGBgYI/Pdf/994uMeb/s7Oxez0xcLvzb+EJDQ6mvr0etVhMaGnra/f2RkZEsXbqUb7/9lqysLDZs2IBCoWDQoEEiefF0yxh2ux2z2SxqKsD/XTkolUpCQ0NRqVR4vV6sViuxsbGkpqaSmZlJY2MjoaGhREREEBYWxtChQ6mtrcXpdOJyuUhPT2f+/PnodDry8/MZPHgwZWVlbN68GZ1Ox4033thplmHChAnk5+fjcDhYtGgRxcXFmM1mIiIiuOGGGygqKiIvL0/UXPB6vdTW1nYIcoKCgmhqasLn81FbW8vgwYOZM2cOmzZtYs2aNUBb7YeGhgY+/vhjHn74YbHb48MPP8RsNpOamsptt9122r9BgNTUVAIDA7FarfTv31/8zKTuOZ1OkYgrXVnkzELfdc7BwgsvvHDWV/CZmZlddpL7IZVKxZ/+9CfWr19PXV0dW7duPW2Bl8TExD5Rnz89PZ377ruPo0eP8vDDD+NyuYiPj+8x4a+1tZW//OUv7Ny5E51Oh8fjobGxEbfbjdvt5umnn+7Vtr8ZM2YQGhpKQ0MDQUFBOJ1OPB4PHo+HmJgY0YVy5MiRPPjgg+zfv58TJ05gtVpFCWh/o6u0tDTWr18PQFhYGKmpqZhMJubMmQO0lVv+6KOPgLZCTEeOHMHr9RIUFMQ111yDWq0mLi6ORYsWYTQaiY6OZtKkSZw4cYKUlBSCgoIICwvjmmuuYfv27ZSVlYnkS7vdLsZ6xx13sHXrVjZt2kRmZiYRERGkpqZSVlYmZia8Xi82m03sQrn++utpamoSlStPnjzZIQjpSWhoKPfffz8rVqwQ+Q2XW32Oy0lFRQXbtm3D6/Uyfvx4Bg0adKmHJJ0BGSz0XeccLOj1+jNqDtPemVxhDRkyRJy48vLyzur1rlSzZ89m9uzZvT5+z549bN68mbq6OlwuFzqdDoVCQUhICCqVik8++YQlS5actiNiYGAgr776Kr/97W+pr6/H5XKJugparZa4uDhuvfVWlEolq1atIi8vD6fTSUxMDAaDAbVaTVpaGsuWLWPPnj2kpaXR0tIiZkva/90olUrCwsLEFsXCwkKREKnX6xkxYgSrVq2ipKQEpVLJXXfdRUJCAiNHjuwwZoVCwfTp0yktLeXkyZNUVFSQnZ1NamoqI0aMIDw8HLfbLVpNm81m4uLiCA8PR6fTie/7n2vLli24XC5R6MkfBJ1JcbCNGzeKfJGVK1fy2GOP9fqxV5sTJ06IHJvc3FwZLEjSZeKcg4VnnnmGZ5555nyM5bT8V8OyOlvPQkJC8Hq9ojJhQkKCWMLQarUcPXqUVatW8dBDDxEREdHjc02YMIEpU6awceNGPB4PdrsdhUJBS0sLarWat956S/SC8OdT+AswQdtuge3btzN8+HAyMzPFcobRaCQ2Npbly5dTWlrK/PnzxVJCcHAw27ZtEzsO/AWh/KXAvV4vRUVFXdaagP+7UlEqleTk5LBlyxbCwsKYPn06CxYs4PDhw6LctFqtZvjw4YwcOZLs7Gz0en2HVtf+gFapVDJ9+nTUajWpqalipuKHdu/ezcaNGwkNDWXZsmWnzWmQOgoLCxOJybJrpCRdPi6rnIWe+LfsgWz/ezpjx47lscce49133yU4OJi0tDR8Ph9FRUW0tLRgNBpFJcfTBQvQ1n3RP5vgP5E2Nzdz7NgxEUC0X9bwBwRKpZLjx4/j8XgYNWoUo0ePFkWckpKS2Lp1K3v37gXatsvOmDFDjHXy5MkcPnyYoKAghg0bRmlpKWq1GqvVSmBgIMnJyT2OOSoqivLyclGaubW1la+++opjx46hVquJjIzEbrfz8MMPM378eHJzc0lISMDpdFJYWIjP50Oj0YgS0SaTiWuuuabHpESHw8Gnn35KbW0tAP/+97958MEHWbBggVgCkkWDejZixAiCg4NF91DpyiOD477pigkWXn75ZfEB3l32vvR/br31VmbMmMH27dvR6XRce+215Ofns23bNlpaWnpdebClpYWioiLUajUqlYqQkBCam5tRKBQiEa2lpYXY2Fj69etHQ0MDLS0tYu3S6/VSWFjIc889h16vx2g08uyzz3Zq7uTPF2hqauKbb77BarUybtw4RowYQUVFBevWrUOj0RAUFMQ999xz2uqHer2eCRMmoFAo+OCDD6iqqiIqKorW1la8Xi9xcXGYTCYmTpxIVlYWBw8eJC4ujvr6eoYNG0Z9fT0JCQncf//9+Hw+TCbTafM8/F04/Zqbm4G2QOOBBx447c9aajvRnK7ehnT5kjkLfddlEyz87ne/IyoqisWLF3eYfrRYLPzhD3/gL3/5CwCPPvqoLJPbS6GhoSxYsEB8PWzYMIYNG3ZGz9H+hK5QKFCpVKL/g3+5ISEhgcjISLxeL06nE7fbLYILf0Gn4OBgUWfhww8/ZOLEidx1113k5+dTXl7O3LlzCQkJYd++fVitVgAOHTrEiBEjxO4F/5bN3vZkUCqVTJw4UZS19p/IR4wYIZIhoS0/orS0VGTgOxwOjEYjFotFzA705jVVKhWLFy/m448/xuFwEBsbe0Y/a0mSpMvVZRMsFBYW8vzzz/Ozn/2MAQMGiGni3Nxc8SH/4x//mD/+8Y+XeKSXVk5Ojijwo9fre5WRf6bsdjt79uxh7dq1okOkP+nM7XYTGBgorgYCAgKIjIzs1JjJ4/GIx6lUKlQqlSg3XVJSQk1NDUajkTFjxjB37lwmT54M0KH3gz8BcuDAgeTk5FBVVUV6enqPhZvaKygo4NNPP0WtVrNkyRJKSkoIDw9nzJgxHY7zByN+brcbj8eDVqvF6XSKJla9MWXKFFavXo3b7Wbz5s3ExcUxffr0Xj1Wkq50cmah77psgoWlS5cSHBzM999/T2lpKUeOHEGhUBAfH8+kSZO47777rvrlh6+++op//etfVFZW4vF46N+/P48//rgoQ3y+vPLKK2zYsIHS0lJCQ0MJCgoSywT+NXt/wSedTodWqyUiIgKr1UpISIjYfhgYGIhKpaKiogKlUonP5xMnX6VSyYcffkhwcDAnTpzAZDIxdOhQ0tLSUKlUNDc3k5aWBrQVmLr99tvPuM3xV199JfIH9uzZw9KlS7s8LikpifLycvEeg4KCsNlsog31mcxkVVVV0dTUhNfrRaFQcOLEias+WKiurmbnzp0EBgZy7bXXdpscKl35rvRg4cCBA+zatYsDBw6wf/9+Tp48ic/n4w9/+EOvEvkdDgevvfYaH3/8Mfn5+ahUKtLT07n33nt58MEHxQ6vK9FlEyxMnz79qv9QPR1/uer6+nqUSiVer5edO3ee12Bh1apVfPrpp9TV1eHxeKivrycwMFBceXu9XrRarfgPPnv2bH75y1/y2WefsXfvXhQKBSaTSbSwjo+PJz09nZycHKKioqirqyM4OBiVSkVVVZUIHLZt20Z0dLSoe9CVM/1Q8Te2+uHt9mpqatBoNAwbNgy73U5VVRWtra3U1dVhs9nQ6XTccsstvXq9xsZGVqxYgc1mw+fzYTAYCA8PP6Mx90Xr16+noaEBaMslufbaay/xiCSpaw888ABHjhw5q8daLBauvfZaDh06hFKpZOjQoTidTvbt28e+fftYu3YtX3zxhZhhvdJcuWHOVWjq1KkoFAqMRqPI6zjTHISe/Pd//zfPPPOM6D/hPzm3trZ2qK/gcrlE/sF3333HL37xCw4cOCCWKtovOdTU1HDNNdcwe/ZsRo4cyY033khMTIyop+B0OtFqtVRWVvLCCy/w1ltvnbetsYsXL2bixIlMmzaNm2++uctjcnNzaW1tJSgoiH79+lFeXi4aP9XW1rJ79242bNjQq9c7deoUlZWVOBwO3G43FosFm80mtmlerdov8bS/LfVN/tmF3v67nCQnJ7NkyRL+53/+h61bt57RhdhPf/pTDh06RL9+/Thy5AhZWVnk5uayfft2QkJCWLt2Lb/73e8u4OgvrCszxLlKTZ8+ncGDB+N0OqmuriYgIKDLYCErK4vMzEzsdjuDBg1iypQpnRL0bDYb27ZtIzU1FbPZzJdffsn69etF9UWVSkVQUBAGg4G4uDicTidms5mamhpCQ0PR6/U0NzeLE2F0dLTYreKvteAvtDR58mQKCgrQ6XR4vV42btyIzWbD7Xaj1WoJCgqirq4Os9lMRUUFhYWFvPzyy+c8ZRcSEsKiRYt6PEalUongxD/L4XK5sNlsIqHTf1V8Ov369aOmpkbUZvB6vXzxxRdUVlby2GOPdVm++MSJE+zatYsRI0aIbZp9zZw5c9i+fTsGg4FJkyZd6uFIUrc+//zzDl/3tuT40aNHRQPE999/v8Pn8rRp03jllVdYtmwZf/7zn3nyySc75GZdKWSwcIXxlwrurjfEzp07eeutt2htbcXj8ZCZmUl9fT0LFy7scNw999wjqgomJibS0NCAQqEQPRWmTJmCQqEQMwB6vZ7Q0FB8Pp9oIKVQKHA4HCIR0R8cGAwGjEYjMTExzJgxA7VazeDBgwH429/+hsViEXkNdrud6upqmpqaaGlpEW2iP//889Oe6M+HESNGiPbfoaGhFBUVkZubi8vlEjUhKioqRH2H7OxsysrKGDRoUKc6ACaTifnz57Ny5UpxBa3VaqmtraWmpqZTEam6ujp+//vf43A4+Pbbb3nuuecYOnToBX/PF1tsbCx33HHHpR6GdBFc6TkLZ2vVqlX4fD5SUlK6rLb74x//mCeeeAKbzcaXX37Zq2aIlxu5DNGHeL1e/v73v1NXV0dLSwsul4uCggLefPNNTpw4IY57//33ycnJobGxkZaWFvLz84G2RML09HR++9vf8thjjxEZGUlwcLBIZnS5XBiNRnQ6ndhCmZiYKDpEBgYGolarcblcBAYGMn78+E5V+Pxtrf2zF2q1mn79+uF0OsXrKJVKCgsLe/Wez3Va21/0aeDAgYSHh7N06dJOywb+ttfl5eVs376dgoICNmzYgMVi6TSWO++8k+HDh6PX61Gr1SQmJhIVFUVUVFSn1y4sLMRqtYpqm719z9L55Q9O33vvPY4ePXqph3NFO9MliMtxKeJs7NmzB2ibReiKXq9n/PjxHY690siZhT6kqqqK+vp6kQfg7xapUCh4+eWX+eCDDwDYu3cvWq0Wu90ulg4sFgtKpZKGhgYMBgNpaWkYjUacTif19fXY7XZaW1tRq9Ud/oM3NDTgdDrFtJt/y6HP5xMnyOzsbP7yl7/gdrsZPXo0sbGxuFwuMfMwcuRIXn75ZXJzc6mtrSU+Pr7T9sauHDp0iK1bt2I0Grn99tt7vaWyJ3q9nqCgIDHT4m/1HRUVhcPhEMf5gydoy/Zfu3YtLpeLWbNm8eKLLwJtBa2+/fZb6urq2LBhAy0tLcTHxzN9+nRaW1tFYy2bzUZ8fHy3HzTShXXo0CFOnjwJwDfffCN25EhSb/kvxnrqt5OSksK2bdvIzc29WMM6r2Sw0IeYTCasVisOh4PAwECx3uZvnOSXmJjIli1bcLvd4gq4/bZEf5no3/zmN3z77be8/vrrNDU1AW19Gvx9ICorKwkICMDhcFBVVcXEiRNFOelrr71W5En861//ElfhR48e5cEHH0SlUjF69GiRCPmrX/2KgwcPsnnzZtxud7d9H9rbvn07Xq+XpqYmDh06xMyZM7FYLOTl5REREcGAAQPO6ue4cOFC/v3vfwNtLabvvvtu4uPj8fl8pKenU1ZWRlpamtjpkJmZKWYjvvvuO/GB0djYyI4dO/B4POTn54ueEmFhYaJVdmJiIm63m/vuu++sG7JJ56b9urQ/GJYuPv9ur/YSEhKuiPL+/uXanvqZ+O/rbQ7U5UYGC32IwWDg5ptv5ttvvxXf80/r+69a9+zZw0cffURTUxM6nQ6r1SqWGvwfkgqFgoMHDzJ//nyysrKoqanB6XSKhEOLxYLb7UalUuH1elGpVLjdbiZNmkRkZCQBAQEEBweLMfzwdlcZxjqdjtzcXAoKCgB4/fXXeeONN7p9rxUVFRgMBhGEhIaG4vF4WLNmjQiM5s2b121uR0/uvPNOUlNTaWlpYdq0aeJ9KxQKrrvuOgoLC9m7dy8BAQEMHz68w0m+/Xv1BxD++g3+3SL+Xhr+JZvIyMhut4tKF97IkSNpbm6mrq6OcePGXdF74S+1c8lZWLZsWaf7nn/+eV544YXzMbQLyv9/vadKr/76Iv4me1caGSz0MY8++igej4eTJ0/idrtpbGwkPT1dFCR67bXXRH6A0+kkPDyc+fPns2PHDqxWq1hn9y8raDQa6urqMBgMYvbB4/GgVCo7VGrMyMggPT29yw/axx9/nHfffRe73c59993X6X6LxcLmzZtF7gS0FTfxv15LSwu7du2isbGRMWPG8Mknn1BcXExoaCiTJk0iJSWFkSNHYrfbO8yg1NfXn1WwAG3NuLpSX1/PSy+9hMPhYOPGjTz33HOMHz+eqqoqzGZzhyzogQMHMnXqVI4ePUr//v3xeDwkJCSgVqv57LPPxBbYpUuXirbd0sXXPpiWzs25BAvvvPMOw4cP73Bfb2YYX3jhBZYvX35Gr+mXmZnJqFGjzuqx7fk777bvDfNDdrsd4Ir9vy6DhT7GYDDwxBNPsHLlSmpra5k1axajR48W98fFxaHT6fB4PAQEBPDuu++i0+lE0aKmpiYWLVok/tPOmTOHv//977hcLhE1azQa3G63SC4MCQlh1qxZ3V6RBQUF8eSTT3Y75ldffZWCggK8Xi9BQUGoVCpuuOEGsrKy+Ne//oXVasXj8aBQKFi3bh21tbUi2FGpVOI/u38raU5ODiaT6bxdrVssFnbt2oVarcZkMoncBf/yAiAKubz55ptMmDCB1NRURo4cyW233SY6Tfp7ZvhzFVQqFXa7/Yr98JCk82n48OFntbVWr9ef9RLe+cpNCQ0NxWq1UldX1+0x/qWK85FbdSnIYOEK4XK5OHz4MKGhoT0m0UBbwNBdaeM//vGPGI1GGhsb+eUvf0m/fv3Iz8+ntLQUi8VCaGgo//znP9FoNFxzzTXccMMN3HPPPXz55ZcdZhQUCgVqtRq3243ZbKawsJCdO3eSkZFxxrkCVVVVQNsV3oQJE7jmmmv4/PPPWblyJXq9XuySUKlUokCUx+PBZrN12r44bdo0xo8fz+bNm3njjTdISUlh7ty5PbaWPp0NGzZQUlICQFpaGnFxcVRUVKBSqdi2bRtlZWU4nU7Ky8txOBwkJCTQ0tJCYmIiYWFheDwePv30U/Lz80lKSmLKlCkcPXoUl8slmllJUl9xsXM+nnnmmV6VYr6Q0tLSKCsr6zA7+kP+JVZ/GfsrjQwWrhBvv/02WVlZADz44INiG86Z0uv1Ilvfb//+/SL34OjRo6jVao4ePcqKFStQqVQMHTqUhIQEvF4vjY2NeL1ekZioVqtRKpW89NJLeDwe3n//fe677z5uueWWXhceWbhwIStWrCAkJITZs2ezdu1aMZPg8XjQaDRi3d9fKtrtdjNz5kxRv+HLL79k9+7dpKSk0K9fP7766is8Hg+VlZWEhYVx3XXXndXPC+iwC8LtdvOHP/yBzZs38/LLL1NWViaqttntdhQKBSdPnmTcuHHiqqX9h0hRURFjx45l6dKlYqZCkvqKq7XOwuTJk/n222/ZuXNnl/fb7Xa+//57ceyVSGbyXAasVivHjx/vtG+/vfZ1EvLy8s7r6/sLLNlsNlpaWigvLxfbAn0+H42NjajVarRaLcHBwej1enEiVCqVqNVqPB6PmAX45JNPeOaZZ3qd9Ttr1izef/99XnvtNRISEoiLixMFovxVFPv16yfqIYwePZqZM2cSGxvL9u3bqaysZMOGDTQ3N3P48GEOHz4sPoDal61u7/Dhw2zdulW0w+7JddddR3h4ODExMUybNg21Wt0hgPA3zQoODsZgMKBSqZgyZYqYGg0JCRHBlcfjYcOGDXz00UdkZmb26ucjSdLl7fbbbwfaZg82bdrU6f6PPvoIm81GQEAA8+fPv9jDOy/kzMIl1trayltvvUVTUxMGg4Gf//znHTLq/aZOncrmzZvRarVnPatgt9u77Ph3ww030NDQwNq1a0VQ0D6r13/b3xwqPT0di8UirqR/WINBp9PR0tLCyZMnez3W9s1V5s6dS3x8PAqFglGjRmG323nttdeorq4mISGBMWPGUFlZCbQFWm63G41GIwKciRMn4nK5qK2tZdSoUZ3WQb///ntWr14NtG3XevTRR3scW3x8fKfEzOuvv55169ZRUFDAsGHDuPfee/nXv/6FQqHgvvvu67BUZDKZuOeee8jPz6epqUlMRx4+fJhp06bJPf1Sn3G1ziwMGzaMJUuWsHLlSh544AHWrVsnkp137NjBr371KwCefPJJmbMgnR2z2SxqGNhsNsrLy7sMFu644w6mTZtGUFBQl/f3xOfz8eabb7Jv3z769+/Ps88+S2BgoLg/KCiI22+/nX379olkQn9dAZfLRUNDAwEBAfh8PsLDw9FqtbS0tODxeNDpdAwYMICqqiqxE8HlchEdHU3//v27HZM/yl63bh27d+8mISGBu+++G5PJhEql6lCUKTc3l/z8fFpaWmhtbWXp0qU0NDRQV1dHfX09TU1NLF68mPz8fBwOBxaLhfvvv5/Y2FgKCgrIyspi6NCh4j37cyR+ePtM6PV63nnnnQ7fa59VXV9fT2NjI8nJyUBbVndCQgInT54UwUJ4eLgMFCTpMvLKK6/wyiuviK/9n80vvvgif/rTn8T333jjjU4lzN955x1OnDjB4cOHGTlypOg66Z8VnjNnDs8///xFeBcXhgwWLrGYmBgiIyOpqakhJCSkx61+cXFxZ/UaVVVV7Nu3D4CSkhIOHTpERkZGh2NCQkJ46qmn+Otf/0pZWRkJCQk0NzdjNps77JZwu90cP34cr9eLzWZDr9eL/AK3243H48FqtXL99dcTHR3daSwffvghH3zwAV6vV6zze71eGhoa2LVrF/Pmzev0mLKyMgwGAwaDQTSfSk9P529/+5vIodiyZQsDBw5EpVLR3NxMaWkpM2fOZN26dUBbMailS5fi8/nEjhCHw8HMmTPP6mfak/379/M///M/uFwuJk6cyNNPPy3uS01N5bbbbqOhoeGKTXSSpO5c6TMLNputyx0NNputQ30E/zbI9kJCQti7dy+vvvoqn3zyCfn5+ahUKsaPH8/SpUt56KGHrugaHjJYuMR0Oh3Lli2jurpaFDQ634KDgwkKCqKlpUWULv7ss8+orq7mpptuErsXhgwZwttvv82BAwc4deoUCQkJ3HXXXR2m1H0+H/Hx8eLK2WAwEBQUxJgxY1ixYoWou/Duu+8yceLEDluavvvuO95//33xgVJaWkpYWBgKhYLm5uZuZ0zGjx/Pvn37RL94lUpFbm4uLS0t+Hw+SktLUSqVuN1udDod6enpuFwuampqgLacgpKSEmpra8nMzCQ7OxuTycS11157QXYjbNq0SSyJ7N+/v9P9AwYMOOvqkpJ0ubucTv5n6oUXXjinIlB6vZ5nn32WZ5999vwN6jIhg4XLgE6nO+viQb0RGBjIc889x/79+xk4cCBFRUWiFevRo0f5+9//3uH4sWPHMnbsWFauXElCQgI1NTUEBQWJbZMvvPACa9euxWw2ExkZyfTp0xkyZAjr1q0Tsw12ux2LxdIhWKioqOj0QRIfH4/FYmH48OHdXmnHxMSwfPly7HY7RqMRaOu6aTKZaGhoQKlUEhUVhdFoxGAwEBoayuTJk4mJieHYsWMcOnQIl8vF888/T1JSkngfJSUl5OTkoFarWbx4cYe8iXMxZMgQESTExsael+eUJEm6lGSwcJWIj48nPj4eoEMjE6vV2qEvRHuHDh0iIiICk8lEfX09ISEhjBo1ivj4+C5Ls86ZM4eNGzcCbRH2D6uZZWRksGLFCmpqalAoFMydO5f58+dTWVmJyWSivLyc0NBQ0cWyPY1G0+H7aWlp3HXXXdTU1BAZGcnmzZvR6XTceeedHRKI7rrrLg4dOiQSIJ1Op9hlsWfPHvLz8/F6vWzatInhw4dzyy23dKrdcKZuvfVWwsLCqKys7HJZRZIk6Uojg4Wr0I033kheXh5VVVUsXry422nDn/3sZzz55JNotVpx5T516tQuj62oqCA+Pl40fWlububVV19l8ODBPPTQQ+h0OsLDw1m9enWHapCNjY2irvqZTl+OGDGiy9vtBQcHExYWRn19PQqFgpkzZ5KUlIRWq+XRRx/F5XLh8/moq6ujvLycjRs38sADD7B+/Xrq6+uZMmWKqOVwJqZPn37Gj5GkK92VnrMgdU8GC1ehoKAgfv3rX5/2uP79+/P444/zwQcfoFKp6N+/f5dNoJxOJ5988gl2u53w8HAsFgtlZWU0NDTQ2NjI+PHjsdls5OfnExcXxw033CAeGxISQnR0NDabjfDw8C5nFc7Vc889x65du0hISOjQuyE9PZ29e/cCbVs3y8vLGTJkCAcPHhSzL19//TWpqalXdGJSX2Wz2di6dSsOh4Pp06eLLqDSpSODhb5LBgtSjzIyMrjmmmuorKwkJiamw5ZLP5fLJbKDjx8/TktLCxaLRXS8VCqVnDx5kubmZmpqaoiPjxfbDBUKxVnv8uitoKAgbrzxxk7ff+ihh2hsbMTlcolkyXHjxomCS3a7nYaGBn77298ybtw4FixYgN1uZ/fu3djtdsaPH09kZOQFHbvUvR07dnDs2DGgbTntRz/60Tk9n9VqpaqqiqCgoC538kjS1UxeLkmnFRgYyMCBA8X2ya7unzZtGnq9HqVSSWhoKIGBgQQEBDBp0iTS09Ox2+2ipsSePXtwu90X+V10FhYWxrJlyzAYDISHhzNgwACGDx/OmDFjGDNmDA6HA61Wi8vlEltPDx48SEFBAeXl5WzduvUSv4Orm7/lN7TteDnX58rMzKSkpISjR49SW1t7rsO7KvlnFs70n3T5kzMLUq95PB527twpyhkrlUqsVitbtmxBq9Vyzz33MHz4cL744gvR+nrmzJlotVpGjRpFc3MzOp0OaFu6OF+7D86Wz+fD4/GwcOFCgoKCSE5OFssNs2fPpqCgQCRAut1ukUTZ/vHSpZORkUFraytOp/Ocen9A2992+4Rcfx6NdGbkMkTfJYMFqdf++c9/smXLFgBKS0u56667+OSTT8TSw549exg9ejRPP/10p+qNEyZMoKamhpqaGkaOHHlZtGXOzs7m8OHDeDweoqOjaWlpYcCAAaK5U2xsLEeOHEGtVlNbW8vRo0d56KGHaG1txW63M2HChEv7Bq5ywcHBLFq06Lw8l1arpX///pw6dYqgoCBiYmLOy/NKUl8hgwWp14qKisTt4uJioG03A7RdifmvxiorKzsFCzqdjoULF16UcfZWdXU1hYWFtLa2smrVKmJjYwkKCmL58uWEhoZiMplobW2lvr4erVbLtddei16vZ/bs2ZjNZsrLy4mIiJDJj+dBWVkZn376KT6fj4ULF/ZYKvxCSUlJITk5WV7pniP58+ubZLAg9UphYSFms5n8/Hz69evHrFmzAJg3b57YCbF161Z27tzJm2++eYlH2zsKhQKXy4XVaqWpqYmUlBRiYmL4xz/+wbXXXsvEiRPRaDSUlpYydepUUafiu+++47XXXsPj8ZCQkMBf/vKXS/xOrnybN28Wgee3337L/ffff0nGIU90ktQ1GSxIvfLxxx+j0WgYOXIkiYmJjB8/noaGBjQaDb/97W8ZOXIkFRUVAPzkJz8hKyvroo3NbDZTUlJCWlqaqPDYG6mpqWzdupWgoCCxhVOpVOLz+di7dy9qtZrPPvuMkJAQbrrpJvG4jRs3iuS6srIyLBbLGTf36k5eXh5bt26lsbGRsWPHXpDeFZej9r+3M/kdSpcXmbPQd8lgQeoV/39ojUaDXq+nuLiYN954A5fLxYgRI2hoaBDH1tfXn/XreDwejh8/jsPhYOTIkadNgjSbzfzud7/D4XAQHh7OCy+80GUb7q7079+f+++/n7KyMh599FHWrFmD1WpFoVCgVqv505/+hMViAeDtt9/ml7/8JQBDhw4lJycHAIPBcN5Obo2NjaxcuZJTp07h8/koKyvDZDJ16MDZV910000YjUa8Xi/Tpk271MORzpIMFvouGSxcoXw+H6tWraKgoIDrr7+esWPHXpDXKSoqYuvWrbjdbnw+HwaDgTvuuIPDhw+LZklZWVncdNNNot/EzTff3Ovn37lzJ5mZmRiNRmpqaigsLMTn89HY2EhgYCBPP/10jxUUi4qKcDgc+Hw+zGYzZrP5tH02XC4XKpUKpVJJcnKyaCN911138eGHH2KxWERjKqVSidfr7ZAdv3DhQgIDAyksLGTRokXn7cPO6XTidDrFLgv/e7oa+HNBJEm6PMlg4Qq1e/duVq9eDUBOTg7vvfdelwWTztW6deuor6/n1KlThIaGEhUVhcViYdCgQWzZsgWPx8OgQYP4+c9/Lnq1+9f2e+Lz+SguLmb9+vWcOnWK2tpaNBoNkZGR1NXV0dLSQlNTE++88w5//vOfuz0hp6WlERgYSF5eHsHBwZw6darHYKGwsJDc3Fw0Gg3jx4/v0OjKZrOJ8s9lZWUMHTqUEydOYDQaefDBBzs8T1dFns7W4cOH2b59O16vlxEjRmCz2WhtbSUuLk6WjZYk6bIgg4UrVPs94W63u0OBmvNJrVajUCg61BQICAggKSmJX/3qV9TV1TFo0CDg9EGCx+PBYrGwatUqKisrGThwIJWVlVRUVOByuXA4HNTV1Yn34q+O+O9//5uamhquu+46Ro4c2eE5Q0JCuO2229i3bx/BwcHk5uYyZcqUboOLgoICoG124dSpUwwfPlzcp1KpgLalFoVCQXx8POPGjWP27NkXbMfDr3/9a7HLRKvVkpeXx5AhQ0hMTGTOnDm9XlKRpMuBXIbou2SwcIWaNm0aubm5FBYWMmfOnPOWYPdDc+bM4c033yQgIICAgACuu+46kpKSgLbW0b3dj15aWsqbb76J1WpFqVSKE7v/g0KtVqPT6WhpaSEsLAyPx8OAAQNIS0vj4MGDQFvQMHTo0A55DC0tLVRVVYnS0uHh4T1++BiNRpFT8cNcg+joaGbNmsXJkyeZMWMGiYmJIunxQikpKRG3XS4XBoOByspKbDYbarX6jJZ0+jp/wCpPLpc3+fvpm2SwcIVSq9X87Gc/u+CvY7PZMJlMolDR2fZx+PDDD6mvr6e2thav10t6ejoBAQGkpKSg0WgoLy8nLi6O4OBgLBYLWq2WZ555hu+++048h9vtxu12dwgW1q1bR0lJCW63G6PRyJw5c3ocx5gxYygtLUWv13f5XkaPHs3o0aPP6j2eDa1WK/pqKBQKEZi43W7Ro+Jy0NzcTEFBARERESQkJFz01y8oKGDdunUolUrmz59/2rwUSZLOLxksSD2Kjo5Go9HgcrkIDAwUQcOZ8vl8nDp1iqqqKhQKBdHR0aSmpopiR8nJyYwdOxan00lubi5xcXFER0cTGhpKSUkJDQ0NTJ06tdO0fElJCdXV1eJq5nTT9hqNRiQ0Xg5eeOEFfv/739Pa2opKpaK5uZnQ0FDcbrcIrIqLi9m1axcmk4mbbrqpQ7D0w+DpQvB4PHz++ec0NzcDsGDBgoseMOzdu1ck1H733XcyWLhMyWWIvksGC1KPwsLCuPfeeykvLycpKYmAgICzep7Fixeza9cu1Go18fHxYrcDtC1n+EsnBwQEMHr0aBobG9m4cSNarZaf//znXQYB/l0QKpUKlUp1SffnV1VVUVFRwYABAwgLCzvt8T6fj7y8PLxeL6+//jr/+7//i8fjISMjgz/+8Y/U19dTX1/Pq6++2mGWQavVMn78eNRqNZs2baK6upqBAwcye/bsC/ah63A4RKAAUFNTc9GDhdDQUKqrq8Vt6fIkg4W+SwYL0mlFREQQERFxTs+RlpbG8uXLeffdd/H5fAwbNkzcFx4e3un4rVu3im2DKpWq0957l8vFZ599hs1mQ6lUEhsbS0pKyjmN8WzV19fz1Vdf4fF4OHz4MHfeeWe3QZXP5yMnJ4d169ZRVFSEWq3mpptuYt68eeKY9smrdXV1Hfpo5OfnU1pait1ux+Px0NraKoKwc22m1B2DwcDgwYPFzpCBAwdekNfpyezZs0Vp7Yu5TCRJUhsZLEgXzaRJkxg6dCjQtlyQm5uLwWDo8uTTfndHV+2sa2trOXHiBE6nE4VCwYgRI0hKSmLt2rXYbDYyMjKIjY3F4/GIXQ4XSkNDgxiv/yq8u2Dhq6++YseOHdTV1YlaDtu2bWPu3LnimP79+1NUVIRCoWDKlCkEBgayb98+AgMDRU5DU1MT1dXV+Hw+jEYjZWVl1NTUiB0k59vs2bOZMmUKOp3ugv88u6LVamXjriuAnFnou2SwIF1U7XdtjBgxotvjpk2bxp49e0Q9hB/67rvvxBq2QqHAaDSyZ88ejh49CrRVQxw9ejS5ubnY7XaSkpKYMmXKWS+j9CQxMZHIyEhqamro169fj7MwhYWFAHi9XnHi/2EHzieeeIJTp05hNBrFlPuMGTMA+Prrr6mqqqK2tlYEG62trXi9XrRa7Xl/b+1dDp1CJUm6NGSwIF2WoqKiWLBgQbf32+12VCoVPp8PhUJBZGRkh5LTTqeTvLw86urqsFqtNDc343a7z2sxJT+tVsvChQtxOBynTbAcP348lZWV6PV6vF4vJpOJxx57rNNx3SXwzZkzh5KSEsrLy2lpaUGr1YoKk+0LTEnSpSBnFvouGSxIV6Rrr72WiooKrFYrQ4cOpV+/fkRGRtLc3IzVamXq1KkcOHBALA8olUrMZjNZWVmkpqae9xkGhULRqwJKU6ZMYciQISiVyh53lrz//vtkZmaiUCi4/fbbRSVHtVpNSkoKgwcP5vDhw/h8PjQaTYeiWZJ0KcmTf98kgwXpjHk8HrxeLxqN5pKNITo6mieffLLD9wICArj11lvF1yaTiezsbPLz83G5XLS2tnLo0CGKioq45ZZbqKmpEX0vMjIySExMvChj781uicOHDwNtCZFr165l+vTposNlWloaQ4YMIS8vD4fDgVKp7NAVU5Ik6XyTwYJ0Rqqqqvj6669xOp1Mnz69w66Gy43JZCIjI4OMjAz279/fIZ+hsrKSzZs309raikaj4eDBgxctWOgNlUolEjsNBgMHDx5ky5Yt+Hw+srKyuOOOOwgICMBsNjNmzBiZTyBJ0gV14erYSn3SkSNHRH2DQ4cOXerh9NqgQYPE0kNycjIbNmzAbDZTVVVFdXU1hYWFfPvtt2RmZopAIj8/v8fndLlc7N69m127dolky/Plv/7rvwgNDSU2NpZf/vKXnDx5Uiw1VFRUADB48GAyMjJkoCBdNvw5C2f6T7r8yZkF6YyEh4dz8uRJoHfT6ZeLkJAQbr/9djweD2VlZaJLpd1ux263i3oFer2e4uJiUejpgQce6LRrw+FwoNPpWL9+PQcOHADAbDZz2223nbfxpqam8tJLL4mvBw4cSGlpKT6fj9jY2PP2OpJ0PskEx75LBgvSGRkzZgyBgYHY7XZRM+FKoVQqUSqVJCQkEBUVhdlsRqFQiFkBr9eL0+nE4XCIxlZHjx4VwYLX62XFihXk5ubSr1+/Dg2mamtru3zNHTt2cOjQIZKTk7n55pu7/WB0uVysWbOGzMxMbDYbBoOBRx55RAQGY8eOFe3B09PTz+ePRZIk6bRksCCdEYVCwZAhQy71MM6JRqPh5ptvxuVy8d5771FZWYnX60Wn06HVasV2RI1Gw7hx48TjysrKyM3NBeDUqVNMnz6dqqoqALFbob3a2lrWr18PwPHjxyksLGTMmDFMmTKlUyfLjz76iMzMTLHU0NLSwsqVK3n88cfFMbIfgnS5kzMLfZcMFqSrktls5tChQxQWFmK1WmlqakKn04ltmGPGjCElJaVDKWqTyYRWq8XpdKJSqRg1ahSzZ88W/Snaq6yspLy8HGir+WC1WvF6vRQWFpKSktKp42VOTk6H7Y9er1fkIvhrSUiSJF0qMliQrjo2m43//Oc/NDc34/F40Ov1aLVa6uvrUalUBAUFYTKZqK2t5bPPPiMmJoZ58+bhdrsZPXo0VquVyZMnEx0d3eXz5+bmsnLlSnw+H1FRURgMBkwmE+Hh4SgUii5rPAQGBuJ2u/F6vXi9XoKDg1m8eDGbN2+mubmZwYMHX/EzOtLVQQa2fZMMFqSrgr+HhEajwWKx4HK5UCqVqNVqcdtgMIgqiFarlX//+994PB6OHz9OaGgoBw4cwGq1AjB58uRuX6ugoEDMEtjtdp588klKS0spLS0lPj6+Q9fE6upqdu/ezdy5c3nzzTeBtgTKX/ziF1RXV9PU1AS0LWOkpqZe8HbUknQu5DJE3yU/eaQ+r6SkhIMHD6JUKpkwYQLR0dGkpKRQUFBASEgIERERpKWlMXDgQKqrqykqKmLVqlXk5uYSExOD0WjEarWKQAHa8hEGDBjQ5eulpaVx6NAhPB6PSAJNTEzsVMfB6XTy2muv0draCsADDzyAw+FgyJAhJCYmUlZWJo7V6/WXpIGTJEkSyGBB6iM8Hg+ZmZk0NzczZMgQYmJixH35+fn4fD48Hg/5+fnExsZy22234XQ6UavVHZINhw4dyu9+9zsAYmNjqaurIy4ujpkzZ+J2uzl8+DARERE97khISUnhkUceoaWlhfj4+C6P2bNnD9nZ2TQ1NYkGULW1tSxcuFAck5CQgMfjwWKxMGDAgG6vwJqammhtbSU6OvqKvEpzu90cOHAAjUbDNddcc0W+B6mNnFnou2SwIPUJJ0+epKioCIC9e/eyYMEC8SFkMplobGwUt/12797NgQMHRKKiX2hoKFarFZPJRGRkJD6fjxUrVjBixAiuv/56NBrNaT/gTCZTt70fTp06xZdffonb7UahUODxeAgMDGTy5MnU1tbicrkwmUzo9Xr69+/f4+ucOnWKr776Cq/Xy5AhQzq8jyvFqlWr2L9/P9CWeDpnzpxLPCLpbMlgoe+SwYLUZ/h8vi4bKo0ePZrQ0FBUKpXYflhYWMiKFSvw+XwcP36cuLg4sWRw//33s2LFCo4ePYrVakWn03HixAny8/PxeDwMGzbsnKom7ty5k5aWFqCt9sOyZcsYOHAgDQ0N5ObmUl1dzXfffUdTUxNTpkzhnnvu6bTV0q+goACv1wu0BUxXYrBQWloqbrdfeumtgwcPcuTIEZKTk0Urb0mSzi8ZLEiXrQMHDrB7926GDBnC9ddf3+Oxra2tbNq0iaamJkJCQrDZbCxZskQsMyQnJ3c4vra2tkNgUVdXJ24bDAaCgoKw2+3iuZ1OJwaDgc8//5xvvvmGjIwMrrvuurN+b1qtFo/Hg0ajIT09HaVSidVqxel0UlZWRnl5uehZMXnyZAYOHNjl8/Tv35/s7Gxx+0o0ffp0Vq1ahVqtZsqUKWf02Lq6OtasWQNAUVERCQkJ3f6sJEk6ezJYkC5LdXV1vP7663g8Hvbv3098fHyPFSPXrVtHa2srVqsVu93OsWPHyMnJYdSoUV0eP3bsWAYNGkRBQQH9+vXrtLuhuLhY3PbPWHg8HrFscPDgwbMOFubMmUNJSQktLS2Eh4eTmZnJmDFjiI6Oprq6moCAANRqNQqFAq1WK3ZodCU5OZk777wTq9V6xRZtmjhxIsOHD0epVJ5x6/AfziT5W5J3x+12k5WVhUqlEq8pnT9yGaLvksGCdFlyOp0dPvhtNluPx0dHR3PixAmxPRIgKCio2+OVSiXPPPNMt/ffdddd/PGPfxSBgr+wUmhoKD6fD5vNxu9//3vuvffeTgWWTicsLIxp06ZRUFAAtCVgjhkzBqPRyMSJE0lPTyclJQWz2cw111xDeHg4H3/8MTU1NUyePJmxY8d2eL7IyEgiIyPPaAyXm8DAwLN6XEREBDfddBOHDx8mKSmJQYMG9Xj8pk2bOH78ONDWfbSrypvSuZEn/75JBgvSZSk2NpaFCxeyY8cOhgwZwpgxY3o8funSpRiNRk6dOkVsbCxDhgzpMB3d2tqK2+3GYDBQVFSEwWDo8SQ/YMAA3njjDb744gvWrl0LtFVV9Ded8ng8NDU18Yc//IGXX375tDkMq1evZseOHYSEhPDEE08QExMjgoX2OzdUKhWhoaHMnDlTfO/bb78lKysLgC+++IL09HTZabKdSZMmMWnSpF4dW1tbi91ux+PxUFNTc4FHJkl9hwwWpMvWrbfeyq233tqrY9VqNXfccUeH7zkcDgoLC2lpaaGwsFDMCPiTC6+//nrS0tJ6fM4FCxawd+9e6urqUCqVBAYGikJJPp8Pl8uF2WzutuYCtBVm2rx5Mz6fj5qaGtauXcuPf/xjkReRkJDA7t27qa2tZcqUKURERHR4vNPpFLe9Xi9ut7tXPxOps6CgIPH7r66uvsSj6XvkMkTfJYMF6ZLweDw4nc4zXqP+ocbGRnbs2IHH4yEjI6PDifbgwYPU19dTX1+Pz+dDp9NRXFxMREQEdruddevWYTKZOlzZ/5BGo+H/+//+P9asWYPFYkGlUrFz5040Gg0ajQaTyURCQkKPY/Q3p3I4HMD/bd/0v+7evXv5/PPPgbYeEb/5zW86PP66667j1KlT1NXVMWHCBIKDgzu9htVqpbm5mcjISFm8qQdOp1P8/Gw2GydOnCA3N5eRI0f2GPBJ0tVOBgvSRWez2Vi7di3Nzc0MHDjwnNaNv//+e8xmM9DWDvqWW24RJ0t/noNOpxO3k5KSqK6uprCwEI1Gwx/+8AeefPLJHncSBAYGYjQasdls4rX8gc7y5ctPW4JZqVTy8MMPs2HDBqKjo5k3b16H+xsaGsTtpqamTo2j9Ho9P/3pT7t9/sbGRjZv3ozb7SY8PJyZM2fKq7VuDBs2jJKSErxeL2FhYXz44Yd4PB6+//57nnrqKcLCwi71EK9ocmah75LBgnTRFRUV0dzcDLQl940bN+6s1+D9yYxms5ny8nKys7NRKpVMmjSJIUOGkJWVRUREBElJSajVahISEnjvvffQ6XQoFAp8Ph9bt27l3nvv7fL5CwoK2Lx5M3V1dbhcLqxWq2j4ZLPZ2LFjR69qG6SlpXW75DF58mSOHTtGbW0tN9100xl/eFZXV+N2u7FYLJSXlxMaGnraHI+r1dChQ4mJicFqtXLq1ClOnDgBgMvloqKiQgYL50gGC32XDBakiy4sLEycqIOCgtDpdGf9XBMnTsTpdFJZWYnP52P//v1oNBqys7NZvnx5l9UAp02bxrFjx8QV/Pjx47t8bqvVyq5duygvL6e1tRWfz4fX6xWZ+wkJCZSXl+PxeM5p6t9kMvH4449jsVh63CbZnZiYGLxeL2azGY1GQ1ZWFnFxccTGxp71mPqy8PBwwsPDCQsLY/v27TQ1NREZGXnanRSSdDWTwYJ00cXGxnLjjTdSV1dHcnLyOZ1oAwICuO666ygrK+PkyZP4fD6USiVer5eqqiqGDBlCTk4OTqeT0aNHo1AoGDJkCPfffz87duxg6tSp3fZ58Pl8onmUP7FQoVAQGhpKcHAwAQEB5OXl8be//Y2f/exnZx30OBwOPv30UxoaGoiKimLhwoVn1F0yJCSE6dOnd+gzcbp6A1JbsuPTTz9NXV0dkZGRsubCeSJnCvomGSxIl0RcXNwZ1yfojkajYdGiReTn5+NyuSgtLSUpKYmMjAw2btzI6tWrAZgxYwZ33303ACNGjGDEiBE9Pm9QUBBpaWk0Njbi8Xiw2WximjUkJASv14vT6aS8vJxXX321x7oNPSkvLxd5C2azmZqamjOeFYiLi2PKlCkUFhYSFxfXbQMrqSO1Wk10dPSlHkafIZch+i4ZLEh9QkhICGPGjOm0Vu9fk/bfbmlp4dSpU/Tr16/Hok1+M2bMwGg0snHjRtGDQaFQYLPZOsyItG9f7dfY2Ehubi4NDQ1ER0eTnp6OXq/vcIzH48FqtWKz2dBoNBiNxm6XIqxWKxs3bsTn83HDDTeI8a9Zs4bCwkJiYmK444475BWyJEnnnQwWpD5t8uTJHD16FK/Xy9ixY3nttddobGwkODiYJ5988rQBg1KpZNy4cRw+fJgTJ06g1+s7nIz9V0Xh4eEcOXIEn89HREQECQkJZGdnU1xcLPIJPB4P48aN6/D8J06cYOvWrSiVSiIjI7n55pu7TfZcvXo1hw8fBqC5uZl7772X4uJijh49CrQljh4+fJhrrrnmbH9ckiRJXZLBgtSnjR07luTkZLFbYMeOHQBYLBbKysp6LMrUXlJSEiUlJSIx0+PxiHyJ+vp6dDodW7ZsEUmTixYtwmazid4Fbre7y9mHvLw8nE4nCoWClpaWHhMc2z/eX1io/a4OQFZ2lC4puQzRd8n5SqnPCwsLIyoqivj4eMLDw4G2HQiJiYm9fo5Zs2Yxd+5cBg4cSEhICDqdjpCQECorK9Hr9Z0qK5rNZpE46fF4xBLGD0sMR0dHo1KpsNvtp63OOG/ePKKjo4mKimL+/PlAW7LoddddR2xsLJMmTep18CNJF4I/WDjTf9Ll76qaWfBfmflb+kpXn0mTJlFTU0NERITot9AbXq+Xuro6HA4HRUVF2O12iouLSU1NJTg4GKvVisfjoaysjICAABoaGnA6ncTExFBRUUFWVhZZWVl89dVX3HDDDVgsFgoKCoiMjCQvLw+bzYZarebdd9/tcRnBX8CqvLyc8vJy8f0hQ4YAbdUgJel0/J+BXc12nYucnJwzPvnn5OSc1zFIF8ZVFSwUFhYCsGzZsks8Eqmve/nll7u979VXX+32vg8++OBCDEeSuuT/TDxf5Gdr36Xw/bAhfB9WUVHB2rVrSU5OPuuWuNLpZWdns2zZMt555x2GDx9+qYcjXUDyd31lslqtFBYWMm/evPOyhbm5ufmcZwiGDRuG0Wg857FIF8ZVNbMQFxfHQw89dKmHcdUYPnx4r1sHS1c2+bu+uhmNRvn77+NkgqMkSZIkST2SwYIkSZIkST2SwYIkSZIkST2SwYJ03iUkJPD888+TkJBwqYciXWDydy1JV4erajeEJEmSJElnTs4sSJIkSZLUIxksSJIkSZLUIxksSJIkSZLUIxksSJIkSZLUIxksSJIkSZLUIxksSJIkSZLUIxksSJIkSZLUIxksSOfN/v37Wbx4MbGxseh0OhITE7nvvvs4efLkpR6adAaqqqpYsWIFjz32GFOmTMFgMKBQKEhLS+vV4zdt2sTcuXOJiopCr9eTkpLCo48+SlVV1QUeuSRJF4osyiSdF//85z+5//778Xg8RERE0L9/f06ePInFYsFgMPD1119z3XXXXephSr3w2muv8cQTT3T6/uDBg8nNze3xsS+99BK//e1vgbYurzExMRw/fpzW1lbCw8PZtm0bw4YNuyDjliTpwpEzC9I5O3r0KA888AAej4enn36aiooKDhw4QGVlJXfffTc2m41FixZRV1d3qYcq9UJwcDCzZs3imWeeYfXq1fz+97/v1eM2btwoAoXXX3+dsrIyDh48SFlZGTNnzqSuro4FCxbgdDov5PAlSboQfJJ0jm6//XYf4Js8eXKn++x2uy8pKckH+J599tlLMDrpXP2///f/fIBv8ODBPR43btw4H+C76667Ot1XU1PjMxqNPsD3zjvvXKihSpJ0gciZBemc2Gw21q5dC8DDDz/c6X6dTse9994LwMcff3wxhyZdREVFRezfvx/o+u8gIiKCRYsWAfLvQJKuRDJYkM5JZmYmra2tAEybNq3LY6ZPnw5AcXExlZWVF21s0sWzZ88eALRaLRMmTOjyGP/fwXfffYfX671oY5Mk6dzJYEE6JydOnADaThKJiYldHpOSkiJuny5BTroy+f8O+vfvj0aj6fIY/99Ba2srJSUlF21skiSdOxksSOekvr4egNDQUBQKRZfHhIWFidsNDQ0XZVzSxeX/O2j/u/4h+XcgSVcuGSxI58S/BKHVars9Rq/Xi9s2m+2Cj0m6+OTfgST1bTJYkM5JQEAAQI/b4ex2u7htMBgu+Jiki0/+HUhS3yaDBemchIaGAm3Tyr5u6nv5p6jbHy/1Lf7fa0+1NOTfgSRduWSwIJ0Tfwlgp9PJqVOnujymoKCg0/FS3+L/vZ46dQqXy9XlMf6/A71eT//+/S/a2CRJOncyWJDOyahRo8QU9I4dO7o8Zvv27QAMGDCA2NjYizY26eKZNGkS0BY07tu3r8tj/H8HEydORKmUHz2SdCWR/2OlcxIYGMjcuXMBeOeddzrd73A4+PDDDwFYsmTJxRyadBElJyczduxYAN5+++1O99fW1rJ69WpA/h1I0pVIBgvSOXv++edRq9Xs3r2bZ555RkxD22w2HnjgAYqKiggJCeEXv/jFJR6pdCG9+OKLAPznP//hjTfeEDks9fX13HHHHTQ3N5OcnMzSpUsv5TAlSToLsuukdF588MEHPPTQQ112nQwICODLL79k9uzZl3qYUi+UlpYyevRo8bXD4aClpQWVSoXJZBLfnzJlCl9++WWHxy5fvpwXXngB6Nx1MiwsjK1btzJixIiL8TYkSTqPZLAgnTfff/89r7zyCrt27aKhoYHIyEhmzZrFr3/9awYNGnSphyf1UnFxMUlJSac9bvr06Wzbtq3T9zdu3Mhf//pXvv/+e5qbm4mPj+emm27iN7/5jcxZkaQrlAwWJEmSJEnqkcxZkCRJkiSpRzJYkCRJkiSpRzJYkCRJkiSpRzJYkCRJkiSpRzJYkCRJkiSpRzJYkCRJkiSpRzJYkCRJkiSpRzJYkCRJkiSpRzJYkCRJkiSpRzJYkCRJkiSpRzJYkCRJkiSpRzJYkCRJkiSpRzJYkCRJkiSpRzJYkCRJkiSpRzJYkCRJkiSpRzJYkCRJkiSpR/8/s8ZFy2vIQnsAAAAASUVORK5CYII=",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "xlow, xhi = np.quantile(reduced_features, [0.005, 0.995], axis=0)\n",
- "\n",
- "plt.scatter(\n",
- " reduced_features[:, 0],\n",
- " reduced_features[:, 1],\n",
- " s=4,\n",
- " alpha=0.7,\n",
- " c=labels,\n",
- " edgecolors=\"none\",\n",
- ")\n",
- "plt.xlim(xlow[0], xhi[0])\n",
- "plt.ylim(xlow[1], xhi[1])\n",
- "cb = plt.colorbar()\n",
- "cb.set_label(\"Solubility\")\n",
- "plt.show()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "```{margin} Dimensionality Reduction\n",
- "Reducing $\\vec{x}$, your feature vectors to a low\n",
- "dimensional space. The classic example is PCA, which is a \n",
- "linear operator. However, most prefer nonlinear methods \n",
- "like [t-SNE](https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html).\n",
- "```\n",
- "\n",
- "\n",
- "\n",
- "The dimensionality reduction has made our features only 2 dimensions. We can see some structure, especially with the solubility as the coloring. Note in these kind of plots, where we have reduced dimensions in someway, we do not label the axes because they are arbitrary.\n",
- "\n",
- "Now we cluster. The main challenge in clustering is deciding how many clusters there should be. There are a number of methods out there, but they basically come down to intuition. You, as the chemist, should use some knowledge outside of the data to intuit what is the cluster number. Sounds unscientific? Yeah, that's why clustering is hard."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 49,
- "metadata": {
- "tags": [
- "remove-output"
- ]
- },
- "outputs": [
- {
- "data": {
- "text/html": [
- "KMeans(n_clusters=4, random_state=0) In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org. "
- ],
- "text/plain": [
- "KMeans(n_clusters=4, random_state=0)"
- ]
- },
- "execution_count": 49,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# cluster - using whole features\n",
- "kmeans = sklearn.cluster.KMeans(n_clusters=4, random_state=0)\n",
- "kmeans.fit(std_features)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Very simple procedure! Now we'll visualize by coloring our data by the class assigned. "
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 50,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdwAAAFxCAYAAADZIRnFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAABP+AAAT/gEHlDmEAAEAAElEQVR4nOy9dZxc9b3//zznjNu6u2Q37gkxJGhwUryUtpQCt6Wl5da9vdzKr+XWvrQUWi5ULoWixUmQIHH3rLvP7syOy5HfHyeZzWY3vvF58thHT2eOfEYyr/N5f97v11vQNE0jSZIkSZIkSXJCEU/1AJIkSZIkSZJzgaTgJkmSJEmSJCeBpOAmSZIkSZIkJ4Gk4CZJkiRJkiQngaTgJkmSJEmSJCeBpOAmSZIkSZIkJ4Gk4CZJkiRJkiQngaTgJkmSJEmSJCeBpOAmSZIkSZIkJ4Gk4CZJkiRJkiQnAcOpHsDJpLOzk9dee43y8nLsdvupHk6SJEmSJDkDCQaDNDY2cs0115Cfn3/Ex51Tgvvaa69x3333nephJEmSJEmSs4DHHnuMe++994j3P6cEt7y8HNDfpClTppzi0SQ5FuJKHEVTaBxs5Pna51FUhVx7LpcWX0p/tB8DBhBgSuYUzAbzSRuXrMoYxOH/nPrD/USVKPmOI78DPl6e3PEkA5EBAMpTylk6bulJu3aSJEdE+wbY9fLQ/z//G2BNOWXDORa2b9/Offfdl9CUI+WcEtx9YeQpU6Ywf/78UzyaJEdKX6iPem89K9pWsLFvI06TkwgRyqaWEVNifGH6F/j7rr/TRx8dgQ4MooHl7uV8c+43WVSw6FQP/6Syw76DrX1bAZhfPJ/5407D77kiw8e/gZ7tUHYhzLn7VI8oyclEngVZIeivg6olMGXJqR7RMXO0S5PnlOAmOfPY07+Hb3/0bbqCXQBYDBaC8SBxNU6GNQOLwUJ/uB9ZlQnLYfwxP6qm4hE8PLHtCebkzsEsnfiZri/mY2XHStIsaZyXex6CIJzwa47GpyZ+iqL2IkyiiQsKLzglYzgsHRuhY4O+XbcMKi+FtJJTO6YkJw+DCS761qkexSkhKbhJTmvean4LT9SDoinIqoxJMmGSTBS7irEZbczMnslFRRexpXcLnogHAV3ojJKRqBpFFE5OIv6jWx6lzd8GQEyJnTKxsxqsLCk9zWcMtvShbckIZuepG0uSJCeRpOAmOa0ZnzEeoV7AIlnQJI0iZxHVadU8MPMB0ixpAITiIcJyGJfJRVV6FeF4GAS4b+p9GEXjcY9hWfMyPur4iPKUcu6ceOeItVqAnlDPqNtnNKqqr7UFeqD6qrGbhWaOg4VfhZ4dUDx/uAAnSXIWkxTcJKc1S0qXEFfi7BnYg4hIk6+JvnAfL9S9wOenfB6Aem89feE+JFEizZLGvVPuZWr2VNItx/9DPhAZ4JWGVwDYGNnIpIxJzM2bO2K/q8uu5uX6l3GZXVxQcJqGco+WumWw7Vl9u2srLP3T2J27ZL7+l2Q4XdugZycUzoHMylM9miRjTFJwk5z2XFtxLddWXMsjmx9JPOaJeBLbBY4CLAYLETmC0+Rkdu5sHCbHmFzbJJowikbiahwAm9E26n6XlFzChUUXIgnSKVu/HXOivv22/aBpcLa8ttMRTzOs+DloKtS8Adf+Ljn7P8tICm6SM4aryq+iK9iFoilcV3Fd4vEMawYPznyQt5rfYnz6+DETWwCHycE9U+9hTdcaylxlTM6cfNB9Rws1n9FUXaHPtgI9MPXWpNieaAK9utgCKDEIe5KCe5Zxlv1CJDmbKU8p56eLfjricVmVeWjtQzQPNpNhyQBgYcFCZFWm3ltPhiWDLFvWMV93YsZEJmZMPObjz1gsKXDZT071KM4d8qZDziT9Jqd4HqQfXY1nktOfpOAmOeNZ172O2oFaFE2hI9BBnaeOhQULeXzb4+zq34UkSHx5xpepTDtxa2KheIjHtz1OZ6CTK0qv4JKSS07YtZKcpRhMcMkP9TplKfnTfDaSbF6Q5KShaRqrOlbxVvNbBOPBMTuvQTCQYdVntpIgMTd3LrIqs6t/FwCKprB7YPeYXW80Vneupt5bT0gO8XL9y0TkSOK5Dn8H77e+TyAWOKFjSHKWkBTbs5bkJ5vkpPFu67u8XP8yADUDNXxl5lfG5Lxzcudwx4Q7qB2o5aLii5iYqYd/J2VMYmf/Tgyi4YSHhF1mV2LbarQm1nP3DOzhwfcfJCSHyLZl848r/3FSLSeTJEly+pAU3CQnjX1uUQDdwe4xO68gCNxQeQOgC9w3P/wmoiBy16S7uLj4YjKsGWRaM8fseqMxJ3cOwXiQzkAn5xeenxDcVZ2rCMkhAHpDvewe2M307OkndCxJkiQ5PUmGlJOccELxENv6tjE9azp2ox1BELiy7MoTcq3XGl4jFA8RiAV4u/ltqtOrT7jY7uOioov45IRPUuQsSjy2IG8BJtEEQLolnTJX2UkZS5IkSU4/kjPcJCeUmBLj4Q0P0xvqxWKw8M3Z3yTNmjYmDlCjkWHNoNnXnNg+1VSnV3Nr9a1s6t3E0sqlpFjOrK4oSZIkGTuSgpvkhOIOu+kN9QIQkSM0+ZrItmefsOvdNv42smxZSILEJcWnPlN4c+9mtvRtQRREXm18lXn583Cakt7BSZKciyQFN8kJJcuWRZGziDZ/Gw6Tg6q0qkPuH1fjrOxYiSiILMhfcNRmElaDlWvKrznsfrIq4w65ybBmYJROzGwb9AzpfWiahrrP2CBJkiTnHEnBTXJCMYpG/nPWf9LmbyPbln1YF6h/1fyL1Z2rAb0JwM1VN4/5mOJKnPvfvZ9aTy0Z1gwev+zxExZ+npUzi6bBJpp9zSwqWESKORlSTpLkXCUpuElOOEbJSHnqkbnmdAQ6Ettdga5D7Hns7OzfSY2nBtBD3q81vsZnJn3mhFxLFERuqb7lhJw7SZIkZxbJLOUkpxWXl1yOQTRgFI0nbA222FWMRbIAuiAeLsydJEmSJGNBUnCTnDb4Y36WtSxD0zQuK7mMSZmTTsh10i3p/PfC/2ZSxiSuLb8Ws2Rmffd6FFU5/MFJkiRJcowkQ8pJThtWda6i1dcKwJtNb3JpyaWYJNMJudb6nvWIgsjarrWs6lxFrj2XmoEaPjXxUyfkekmSJEmSFNwkpw37N4x3mpwntN3dvlKlkBxCQG871zTYdMKulyRJkiTJkHKS04Y5uXO4bfxtTM+ejiiI/Nfq/6LOU3dCrnVtxbUYRSP5jnxy7DkICCwqWHRCrnVaEAuBtw3UZFlSkiSniuQMN8lpxaKCRewZ2IM36gXg+drn+c553xnz68zKmcXM7JkIgoA/5kdWZdIsaWN+ndOCQB8s+x5EBiFvGlz0nWQz+SRJTgHJGW6S0w670Z7YPlTdbkegg7Vda/HH/Ed87qgSRVZlQG96AHr4+qwVW4COjbrYAnRthdDAqR1PkiTnKMkZbpLTjqWVSzGJJmJqjKvKrhp1nzZ/Gw+vfxhFU8i0ZvK98743qmNURI7QG+olz57Hxx0f82Ldi1iNVr48/csUuYpGOfNZSOY4EA2gyuDMg6Sf83DkKNQtB8kIFZck+9EmOWEkv1lJTjssBgs3Vt047LGoEuWj9o8wSSYW5i+kebA5YZvoDrsZjA2O6AoUjAf55fpf0h/uJ9+Rz0BkAA2NUDzEhx0fcofrjpP2mk4pGRVwxc/A2wJ505OCciBrH4OWlfp2oAdmfvrUjifJWUvyX16SM4K/7/o7W3q3AOCNenWbxOYUBqODVKdXD8tw3ke9t57+cD8AnYFOMq2ZROQIAHn2vJM29uOhzd/G/+3+PwDunHgnBY6CYztRWon+l2QkviF3MwY7hj/XVwu+diicA+Zk04kkx0dScJOcEezfsH5L7xa6Al3My5vH7JzZZNuyEYWR6QhWyYo77EYQBMpcZXxp+pfY3LcZl8nF3Ny5J3P4x8xLdS/R7m8H4MW6F/nyjC+f4hGdhUy8AVY/AqIEE/ZrfNG9Hd77KaBBzZswaSn0N0DpIkhP9jVOcvQkBTfJmLGibQXb+rYxNWsqFxVdNKbnvqL0Cv6x6x8IgkCrr5XeUC/b3dspchaR5xh9tvr33X/HZXIRkkMsLlpMpi0Tq8HK8pbl1HpquX387Se01ncssBgsiW2rwXoKR3IWUzIfCmcDwvBwu7sW0PTt7h0w0KSLcuP7cN0jYLKditEmOYM5vX9tkpwxtPhaeL72eQBqPbVUpFSMaVLSnNw5TM+ejj/q50erfkRcjdPmb+O1xteYmjkVURw+w1VUBW/Ui0kyYZJMRJQIgViAZ/c8i4ZGd7CbitQKFuQvGLMxHg+yKo8q/reNvy2RtX1dxXUne1jnDqO1aCyer89so37IqISgbpZCLKj/JQU3yVGSFNwkY8L+fV8BZE0+quNbfC3scO+gOq2ayrTKUfcxikbSrencWHUjD61+iEA8wPKW5VgMFr4+++sANHgb2NW/i0kZk/hE5Sd4tfFVsm3ZXFB4AaIgYhANxNU4ACbxxNhGHg1xJc6jWx+l1lPL9Ozp3D357kS5EoDL5OKOCedIctfphisfrv09RH36+u2Kn+sh5aorwJF1qkeX5AwkKbhJxoTylHKuLr86EVIuSznyNS5vxMvvNv2OmBJjWfMyvnPed8i15x50/4uKLuKX639JWA4TlsNs7tlMTInxdvPbPFf7HE6Tk3db3+V7532PxcWLE8dFlSiTMidRM1DD+QXnMytn1nG95rFg98Buaj21gL423exrPqr3LskJxmQbmsle/t+gaUnTkCTHTFJwk4wZV5ZdyZVlVx71cQORAWJKDNBnyn2hvkMKLsC83Hm83PAyoiCiaip/3PJHNvRsoM5TR6o5lVJXKf3hfrJsQzORp3c/nch0jiiRYTPJU0WmNTPxGkySiTTz6WvA8UbjGyxrWUa+I5/7p98/zKDklBAL6iFfgxmqrjw55U6nwXcmyZlLUnCTnHJKXCVMypzETvdOKlIrGJ8+/rDH3Fh1I+3+dgRBoCfUwxtNb+CNeIkoEcJymJAc4sX6F/mq66vYjPoMZV/DAoCeUM8Jez1Hwz7xqvXUMjlzMqmW1FM9pFEJxUO80fQGAK2+VtZ0ruGSkhPTr/iIWf1H6Nigb4c9Y1c/274BendDyQK9hvlsYNu/oOF9yJ4A8+/Xk7+SnHSSgpvklCOJEl+Y9gViSuyI2/FNzJjIpaWXsrpzNSbJhNVgpSfYg4ioJ5sKEp2BTna4dzA3Ty8BurLsSp7a+RSSIHFF6RUn8iUdFdXp1VSnV5/qYRwSk2TCYXIQiAUASLeOrHs+6QT2u2nyj9ENVF8NfPgwoEHDu3Dd/zvz6299nbDjBX27ZaVeU1wy/9SO6RwlKbhJThuOpvetIAjcUn0L8/Pn88t1v0RDI8uWRVyJE5bDZFozEQRhmMHF1KypPHzhwwgIeKIefDEfLpNrTF/Dqs5V1HnqmJ0zm0mZk47rXKqm0hvqxWVyJWbppwqDaOCBGQ+wunM1+Y58ZmTPOKXjAWDqLXr9rGSCidePzTl7du0tBwJSiyHiO/MF12DRrT1DA3qmdcsqKJ6XDI+fApKCm+SMQ1Zl/l3/b3pDvVxacimfmfQZdvXv4rOTPkswHiSuxlE0hfKU8hGlSaIg8l7re7xY9yKSIPG5KZ9jWta0MRlXnaeOp3c/DcCmnk38eMGPj7kpgqZpPL7tcXa4d+AwOfjarK8NW48+FeQ78kdYbp5SiuZC4V/HVji6toKmQiygC3nKMTp7nU7Y0mHBA/DaV3Uf7fZ10PQBlF90qkd2zpEU3CTHRbu/na19W6lMrTxpYdEP2j/gvdb3CMkhlrUsY2nlUm6quumIZ4Hvt72PN+rFIllY3bl6zAQ3GA8mthVNIapEj/lcvpiPHe4dAARiAba7t3Nx8cXHPcazjrGepUkGyKoGNCiYM7bnPpXkToG0Uv1mAiAeOaXDOVdJCm6SYyYQC/DbTb8lIusZv9+c802KnCeuA08oHgJgIDxAjacGb9SLUTSytmstVqOVm6tuPuw5ZFWmxddCm78NAYHFRYsPe8zB2Nm/k7/u/Csm0cQ9U+9hSuYUZufMps5bx3l55x020/pQOIwOcu25dAe7EQUxWSp0spjzedj4FAgizPrsqR7N2GGywdx7Yferuqd2RfLm7VSQFNwkx4w36k00A9A0jZ5gD0XOIlp8Lfx525+RNZlPT/w0EzMmHtV5/13/b3b172JWziwuL70cgA3dG/jbrr8hIFCRWoHNYMMf8yMIAhpaosft4cz+A7EATqOTImcRoiCS78g/5tf/Sv0rhOIhQoR4s+lN/mPaf/DZyZ895vPtjyRKPDjrQXa4d5DvyD+hNzJJ0Otr5Qg4c+Gib5/q0Rw525+Hvj16eLh00aH3rVis/yU5ZSQb0CcBdFOIow2BFjgKEskzJa4SpmRNAdBLdKJeArEArzS8clTnrBmoYXnLcjoCHbzS8ErCuH9F2wpUTUXRFLqCXRS7ipmYMZE8ex5TsqZwdfnVgG7w3+5vp93fzot1LybOq+4NpaWYU5iYOZFUcyr5jnwmZ04+qvHtz/7rs6N1Kzpe7EY75+WdlxTbE000AG9+E577LKz6f7r4ngm0b4Ttz+lNFlb/AYL9p3pER0/nFljzKDR9eKpHclJIznCTsKV3C0/ueBJBEPjspM8yPXv6qPut6ljFC3UvkGZJ4wvTvkCGNYO7p9w9opwn3TwkPkdr5LC/n7CAgEE0JG4EokoUs2Rmds5sHEYHKztXElNiiIhYJN3kf9//yqpMVI6iqAor2lbwcsPLZFgy+NKML/EfU/+DrmAX6Zb048r+vXPinbzT8g4mycSlxZce83mSnGLa14G3Vd9u/him3KzPdE931P3sUzVtaH32TCHYDx/+Sn8djSvAkbN3/XwviqyXZmkqVF46ut/1GUZScJPwbst7hKISBoPMe23vHVRw/7rrryiqngz0o1U/oifUw/i08fxkwU+G7bd03FIcJgeyKnNpyUghiimxhK/xgVSkVrB03FI9pJw9ixxbDg9veJjmwWYicoSryq4izZLGs3ueZffAbtKt6QTiAVZ3rqbAUUBYDtPp76Q33Is77OaxbY9RM1CDpmm4w24+av+IpeOWUugsPO73zW60c33lGJWjnCo0DVrX6D9mhbNP9WhODa5CQAA0vQTIPLalYieMorlQtUQPKVdcfOb5O8cCw28aIoPDn9/0V6hbpm97WmDef5y8sZ0gkoJ7jqOqGut35VPTnYLNIjP7gtFDo682vKqLnhIh3ZJOT7AHo2SkN9TLyw0v84lxn0jsa5JMiRDvgazsWMkzNc9gkSx8YfoXKE8pH7HPJcWXcEmx7mIUiodo8bUgCAIp5hSsRis1AzUIgoAgCLoRgx06Ah38Yt0vEuvKRslIX7iPLb1byHPkJRrRZ9uyj/ctO7vY+BTUvqVvT74Jph4+8eysI6sKFn8X+uugaN6Z0wVIEGD2Xad6FMdOWglUX6WHk3MnQ/7M4c8Pto2+fQaTFNxznL+tbqauNQ0ZAUmykieNbui/pXcLJa4S+iP9ZFuz6Qn1EIwFEQQBVR0ZyvJGvOwa2EWJq2RY4tI/dv+DPf17iCpReoO9LChYgNPk5Jrya3CNMrOwGW1MzJjIrv5dmCUzUzKnkGHJYId7B6WuUjKtmVxWchlNg03E1BgRJYKiKWiKhlkyU+Qs4v7p97OycyUZ1ozTph3faUPfntG3zzXypup/oM/6VfmsCGGeVOSobrFpzwbxCNODZn1G/xuNCddCf73+eYyVsckpJim45zhNA/1EjHuIxyUGomZy00b/SkzOnExPqIc8ex63VN9C14Yu+sJ9OIwO7KbhJvYROcKvNvyKweggBtHAt+Z8K9EkvivQRSAeQNZk9nj20BfpIyJHeL72ef5z9n+yqGBkpuV9U++j1d9KuiWdFHMKBY4Cip3FxNRYIqFoRdsK0sxpuMNuREEk3ZzO5aWX89VZX8VisHBtxbVj+8adLVReCuuf0GdL53KpiCJD21o9zLnjBd1hatZnoXrJqR7ZmUHYA8u+D0E35E2DC7995KJ7MApmwU1P6oJrOPWtNMeCpOCew2zp3cLG2C8Qs9uRwsVIZh9vdfQxs+i7I/ZdOm4pkzMnJ2aNbzS9QWFMXwe1GYaH4AYiAwxG9fUYWZVp9bcmBHdC+gS6g93E1TgxJUZ/uB+jaETRFN5ufnuY4MbVON2BbjKsGSPqUHPsOYTiIV6qewmAK0qvYFbOLILxIMF4kAxbBg/MfACLwTJ2b9jZyLjL9FCeIOiOROcqqx+B1tX6WqHRBnIY3v6eXo9bdfmpHt3pT+dmXWxBd+sKdOv9hI+XsyzKkBTcc5iX6l9CEuOIUhijowaDaBjWRafOU4eiKYnuPePSxiWe+8K0L/Be63tk27I5v/D8YefNseUwLm0cdZ46MqwZTMiYAMDL9S/jjugzUKfRSVSNomoqUSWK0+hM+B63+drY7t7Omq41DEQGSDGn8I3Z3xjRSefZmmfZ2LMRgMHoIMWuYipSK9A0jer06iPOQK7z1OGNepmePR2jeHb9Az8i7BmnegSnnn3hdKNF9xuWI2BywIb/1Wdayffo0KSV6X7Nqgy2DP0vyQiSgnsOk2pOJaSEEEURVVVJt6RzacmlvNX0Fq82vkpvqJccWw6XFF/C0nFLhx1b4irhrsl3EVfiPLbtMZoGm7iw8EKuLr8aSZT40vQv4Q67SbOkYZJMKKrCuy3vYpbMicYC3qg3sb47P38+d02+C0/Ew282/QZf1EeDt4HKtEoGo4Ps8exhXt68YWPYN4sG3YTj3qn3YhSNxJTYQZO2DmRd1zr+tutvAGzo2cAXpn3heN7SJKcr3nbo2gyl54M1deTzFRfroWRnPpQsguYPwZ6lz3CTJv+HJ70MLv9v6G+Agpl6j+IkI0gK7jnM5yZ/jlUdq0gxpeAyulhcvJipWVP51fpf0eJrwR/z4zA62D2wm6UsHfUcG3o2sNO9E4A3m95kQf4C0ixpSKJEjj0nsZ8kSuQ58ugMdJJmTiPdko6MTKO3EUmQmJQxCavBSoe/I1HXa5AMxJQYTpOTUlfpiGtfV3EdT+58Ek3TuK7iOmxGG7dU33JU70HDYENie5d7F6s7VzM+ffwxNx1IcgoZbNcbDjgOyER318E/boR4SBfRu5eD2TF8n6m3QNkFemcda+qQg1PFJed2qP1oSC/T/5IclKTgnsOkmFP49KRP83bz29iMNhYXD9m+pZhSCMQCCAjMyhk9cxkY1t7OJJkwSwe/s/3yjC/zbsu7PLHjCRp9jaiaSpY1i75wH9/48Bucl3ceS8qWYDPYCMQDXFJ8CYuLFlOWUjZqOU95ajkPLXzoGF+9zuyc2azrWkcgHsAX8/F/u/8Pl8nF9+d9/5S3xEtyFOx4EbY9q89IF3xZbx6/j/p3dLEFCPbp641l+y2DqIr+mCVlyPBiyk0nb+xJzhlOK8H98Y9/zE9+8pND7nP//ffzyCOPnKQRnT0oqoIv5iPFnIIoDGUPXltxLRcVXYRFsmDcm6BwS/UtbOndQqGzkPPyzhvhR7w/kzIncfv422n2NTM3d+5BRcoX82GVrJSnluMOuwnLYRRNSXTY0TSN1Z2rqffWU5layYzsGdwz9Z7Ec/tcpsaacWnj+K+F/8XarrW8XP9yYqzusJtiY/GYXy/JCWKfNaCm6m5R+wtu2WI9KUqOgjVdnwn/dprudbHk/wN3jd4jFmD+l4aLcZKjIx6G2rfBZNejA8ebqXyWcVoJ7j6ys7MZN27cqM9VVFSc5NGc+UTkCL/d9Fva/e1UpFbwpRlfwigaeav5LRq8DczLm8fkzMm83/o+dqOd8wvO54LCC474/AsLFrKwYOFBn3+h9gXeb3sfh8nBvVPuxSAYUDQFIPG/oGclD4QHkF0yvaFeQF+n/e2m39IX6uP8gvO5dfytx/gujI6syjR4G8i15ZJpzcQddlOWUpbIqk5yhpA7Gfxd+nbOAf7YOePhzn/rFo4Vl8A/b4N9rRQ//rXeaH4f3duTgns8rHoEOjbo22GPHqpPkuC0FNwrr7ySp5566lQP46yh1lObaALQ4G2gzddGSA7xWsNrAOwZ2ENZShmN3kYAmgabmJgxkfEZ448ra3cgMsAjmx/hnZZ3yLHl4I/5ebXhVebnz+ft5rdRGW6YISJiFI2omsrUrKk8s+cZ9vTvoSPYgVky81HHR1xdfjUOk+MgVzx6/rrzr2zu3QzA7eNvpyK1gkxr5qi2k3Elzp+3/5k6Tx3z8+cf9XrxWBBX43QHu8m0ZmI1WE/69U9bZt8NeTP0ZJ3cURpSZFbqfwD2zCHnIlumnkhV84aeZVsy/+SN+WzE1z60fZa4Q40lp6XgJhlb8ux5GEUjcTWO1WAl05bJ+q71dAQ6MIkmsmxZdPo7AQjEA/xzzz8pdBZSlVbFAzMfOObrftj+IVv7thKSQ9R767EZbETkCJIgIQgCHNCUJdWSyv3T7+fyksv56dqfsrVvK/6YH1mVKU8ppzKtcszrams8NYntD9o/YGvfVqrTqrmk5JIR+27t28qu/l2J13Z+wfkndSYcV+P8buPvaPY1k2pO5RtzvkGKOeWkXf+0RhCg8OC5BsO4/o/w3n/rx1zyQz0pquwC3UfZnnlix3m2M/lGWPuYnrw2/ppTPZrTjqTgngNk2bL42uyvUe+tZ0L6BFwmFyvaViCgl+YsLFjI9OzpPFfzHDEllmg1V+upRVblUWd7R0K6JR1v1IvNYCMshwkrYeq8daiaiiiIKJqCgF5yYTPasEpW1nWvozKtEk/UQ0SJEFWiSKKEL+7jmvJrjnksB+O83PN4v+19FE2hdqAWh8nBrv5dFDoLqU6vHrbv/i34TJJphMPWaLjDbt5ofAO70c41Fdcc1zp0d7CbZl8zoJdB1XpqmZM755jPd87iyILrfjf8sWR27dhQdgEUzwdBSq7fjsJpKbhbt27ljjvuoKurC7vdzoQJE7jhhhtYsCDpg3usFDoLUaJpvLa5hzmlXgLxQKL5eqGzkPMLzmd2zmw6/B38cesfiatxpmZNHSZw/pif7e7t5NvzKU0pRVEVntz5ZKJZ/CfHf1Kfue7l/ILzWZC3gG3ubUhRiYHIAIIgoGhKYu3WLJqxGq1E5Sg94R40t8YLtS9wVdlVtPvbCcaDSEhYJEsiwWo0NE0bdu0j5caqG5mXP49gLMjvN/8+8XhcjY/Ytzy1nM9N/hz13npm5cwalqF9MP53x//SMtiCP+7HE/Hw+amfP+ox7iPLmkWaJQ1PxINJMlHiKjnmcyVJcsI4y9yhxpLTUnC3bNnCli1bEv//tdde41e/+hVLly7lqaeewuU6Q9pnnUa4AxHufHIlvkgIs2Tly1cuZavvTWqbs/hjfSvL6x7iu4vuYlz6OH44/4d4oh4MgoEfrvwhYTnM7eNv57XG1+gN9SIIAg/OfJCQHGJL7xYAVneuZmH+QkpTShPXFASBW8ffSuv6VnxRH8Le/0REREFE2/ufqqlElAgAgVgAg2hg6bilXF1+Nfcsu4emwSaC8WAikepAVneu5tmaZ7Eb7dw//f7EjcSRsi8L+7qK61jXvY7q9GomZUwadd+ZOTOZmTMTVBVW/g46NkLReTDvi6MaJITiIVr8ek3z67HXmV8w/6DnPhwWg4VvzPkGtQO1FLuKk52PkiQ5wzit5vy5ubl8/etfZ9WqVfT09BCJRNi9ezff+ta3kCSJl156iaVLl6Jp2mHP1dbWxurVq4f9bd++/SS8itOTLe1d9EXaiNDLoNLOBzsMZIQ+jbs/i/5BGx9vd/Hw6qdQVA270U6Tt4lnap5hIDJAi6+FB1c8yIftH+IOuakdqOXVhldJMackQsKSIOE0OUdcd03XGlRNxSSZsBqt5NpzyXXkJmajBtGAxWBB3ftfSA5Rmaont7za8Crt/nYUTcEgGnCH3aO+tlcbXkVWZQajg7zf9v4xv0eXl17O9+d9n5urbj78bLlnh15KIkf1kpTe3aPudmv1rcSUGDaDjSxrFnv6j68jj8vkYnbu7KTYJklyBnJazXD/4z9GNhgeP348v/jFL5g+fTq333477733Hv/617+49dZDl4c88cQTh63pPZdIS/VjsXkIh1yoQpi+cBedtQpxBQLRCIrs5L1dPTzl2M2KwZ+zZ2APsiZjk2z44j5AD/+6w24kQeLF+hc5v/B8Pj/18+zp38O07GlkWIf8U/tCffxl+194v+19QvEQUSWamNUuzFtIvbcef8xPIB4gxZzCQHhADzWrCn/e/meybdn8aeufGIgOIKsyETmCL+Yb9bVlWjMTz2Vajz/pZZ9l5L6EpI5AB8DwemRrmm6yoKn6epV1dGeqCRkT+OT4T7KhZwMG0cDUrKnHPb4kSZKcmZxWgnsobrvtNn7zm9+wbt06nnvuucMK7t13380VV1wx7LHt27dz3333nchhnjK8oRjLdvXgshi5bGIOkjh8hlbkKOGSaUEaPHW0Bhpwa8UYhUvJsKXiCcaRBJWov5RXt7fS5azV11g18Mf9iXNE1Shm0Zwwt6jz1HHr+FuZljVtxHheqHuBHe4dCcMKDY2qtCo0TSPfkY8gCESUCJeWXMo7Te/oyVR7y4QC8QCPbH6EmBpDVVUEBCRRwhv1jvra75l6DyvaVuAyuUY0UjhSGr2NPFf7XKLsRkDg9gm30+ht5M2mN0kxp3BT1U1cXLy3hV1qEVzwdd2hqGAWuA6erfyZSZ/hwqILSTGnDEu8SpIkybnFGSO4AAsXLmTdunXU1tYedt+ioiKKiopOwqhOD/7wfj2NfXpSUVxRuXaavo65tc3Lb9+tpb43QGHaZaSlr8eQGqe+N4Rg+Ii+3itQ4qloRJEkFY/fRFpmBj2hLlRNTYSMNTSskpV8ez7emJccew5XlF5x0PEYRAMOkwOjaMQk6hm9ETlCd7CbsBxmIDKA0+RkYf5CPu76OHEdAKtkxSSZuKDwAt5uehuADEsGS8pG703qNDmPq9+tqql89+Pv0hXsIhQPkWfPo9hVzIu1L7KrfxdBOYg36mVTz6YhwQVdaAsOX4oiCEKiveCu/l3s7t/NlKwpVKVVHfOYkxwFiqw3Jgh0w4Trjj0jWYkDAkhn1M/m2NOzE/pq9NyFlIO70CUZyRn1zTGZ9CbE8fjIDNKzlf5wP52BTipSKw7p7dsfiCW23YFoYvuZ9W3s6fIzGIqjKBr5YiH2/M3IUg+q2I2a4YHeJWjxLERBIMdp4etz/sxju39IZ7ATl8lFk6+JNFMaU7Km8LXZX8MoGkkxpySsIPfhjXhZ3rocp9HJ0sqlCAhMzZrKgvwF5Nvz+cOWP2A32hMi5g67+dnan6FqamJdXkDAaXKyIH8BD8x8gPum3sfKjpXkO/KPefZ6IHE1zjst7xCIB1iUv4in9zxNg7cBURAREBiMDaJpWuKmISgHCckhJmUOT3byxXxYDdYjNgfpCnTx6NZH0TSND9s/5AfzfzAmIfAkh6H2Ldj5or7duxuW/unoz9G8Etb8UTfHuPCbkHNsiW9nPP0N8O5DgAZ7Xofrfq/bOCY5Is4owd2X9HSuzFx7Q738cv0vicgRcmw5fHvut0eI3D5uml3IP9a04LIYWTI5N/F4IBKnPxhDUTV8kTjzMyysG2xAkwJosQwQZERrG2o8C0XRsBglZhTmcbfhbp7e8zQAZall3DP5HtKsaQyEB8iyZY06jse2PcYO9w4sBgtxNc6nJ36atkAbObYc7EY7N1XdxB+2/IGYEtNFFo2QHCLLmkUwHkREJN2SzozsGXxl5leQRIlCZ+GY2zm+2fQmy5qXAbCyfSWyJmOWzPhiPgRBIMOQQbYtmzsn3pm4STgv9zyuLLsycY5n9jzDxx0fk2JO4cFZDx6RcA5EBxI3Foqm4Iv6jui4uBLnrea38MV8LCldMmytPMkRENuvnCwWAE07+pZ7O1/Se72qMux+7dwV3ME2Eo41sYBu35gU3CPmjBHcLVu28PbbenjxyiuvPMzeZwcN3gYisl4u0xPqoT/ST6Ylm52dPtLtJorSh2a8CyoyKc2wI4kCOS7djaltIMTmVg8xWV8bVVSN9shmNMWGQAjR6EWRXSihcgTAbJAozbRjlETm588nokToCfVwYeGF5Npz+e2m39LobcRqsPK12V8j1z4k7IqqsLJjJYOxQUREGrwN/Hrjr6kZ0J2cvj/v+/SEeugN9mIUjUTVKBp6RnREjpBuSU+s91alVSGJ0gl7X70Rb2I7rsYRBAGjaMRmtGEUjViNVvrCfRS7inlo4UOE5NAwYYzIET7u+BjQE6w29GxgSeno4e79qU6rZkrmFHb272RG9oxEmPlwvNk8dIPQEejgm3O+eRSv9sxDURWWty6nP9zPJcWXDPueHRPjr4L+OvB3w7Tbj62/bUrBkFVhSuHxjedMpnAOpL4O3lYongeuZEj5aDhtBHfNmjX83//9H/feey9TpkxJPK5pGq+//jr33HMPiqJQXFzMvffeewpHeuIJxxR+vbyGnZ0KEXMl+QX1FDmLyLBm8Oj7DWxp8yII8OWLxzGtKBWAZTu7eXZ9G4IAn55fygVVWbR5QgwEh0LN4bhKXacJ2ZaCQbIQj1kxDF6M05BJTFCpznUyLkcv7REEYdh6pSfiSXgth+UwbzW9lZilTs6cTHVaNSnmFHwxH7ImE4wHaRxspHFQb8N3/7v3J7r+hOWwfo2967ZWoxVZlZFUiVRzKnWeOoLxIHbjiblzvrz0clp8LQTiAW4ff3vCznIgPEBXsAuH0UFVWhUG0YBBNIwI5ZslM9m27ERdcJHjyCIuBtHAfdOOPmnPH9MT1+JKnFZf61F3TtrUs4nB6CDz8uedEf7LK9pXJHy+az21/GTBcVYbmJ1w8feP7xzzvggZlSCZoXKk7ec5g8kOV/5Sb3eYnNkeNaeN4EYiER555BEeeeQR0tPTKSkpwWg00tjYiNut119WVFTw6quvYref3R/0x3V9vLm9m0hcwW6ZyrcuXsKMvHKMopHtHXrJiqbBzk5fQnDXNA4AoKoaT69t4YWN7cQVFfGAbOWwZzJWxUGGUyDoL8cdVNE0mUynhYpsBzfOHP2O1WVyUeQsos3fhobGqs5V9IX7GIgMUJFSwXWV1zErZxZdwS5ETaRxsJGoos9iFU0hEA9gEAz0R/rR9oakzJIZTdMoTyknGA8yGB0k05bJYGyQNn8b49PHn5D3N9eeyw/m/2DYY/Py5rHDvQNFVTAbzCNsHfdHEAS+OuurbOjeQL4j/4SNcx9XlF5B7UAta7rWkGPP4Tcbf8PXZ3/9iGwuP2z/kH/V/AuA7e7tx+WNfbLYd4Nx4PYpxWCGCceemHdWIQgHF1t3HQTdUDg76Tg1CqeN4E6cOJGf/OQnrF27lpqaGhoaGgiFQqSmprJ48WKWLl3K5z73ubNebAEGQjEicd36MBxTSTcWYJL0hLG5ZemsbujHIAnMKE4FwBeJ4w5EaR0IoQG+UIzBiIxBFJBlZdi5TZJEiW0azb1BvCE9+cwgkghD20xDX4l2fztb+7ZSmVpJdXo1X531Veo8uhfy49seT8xUFU2hzd/G5yZ/jm192zBJJgyigSWlS/io4yO6g92E5BBxJY4kSmiahqZpmCUzl5ZcilkyYxAN9IX7CMVDpFvSKXKe3HV6g2hgevb0I97fZXINz1g+St5rfY8NPRuYkD7hsBnWmdZMLiu9jP5IP6B/Lp6Ihyxb1mGvs69L1IHbpzOLixZT76mnP9LP0sqlx3YSJZ78wT8RRHzgadYzvc17jW6ifj1rOTQAG/4X0CBvOiz+zikc6OnJaSO42dnZ/PCHPzzVwzgtWFCRSXl2O/6ITEGqlfzUoTDg3YvKWDw+mxSrkUyHHlb859pWApE4ogCRuIrZKKKGNRQN4ipIAigaOMwiqTYj0bhCTFETzXpkDUQBurxhfvr6Lu44r4RMl8bvNv2OsBxGQOAbc75BsauYyZl667NLii8hpsToC/eRZknjwsILcZldXFV+FSvaVpBpzeTy0stZOm4pvqiP9d3r+bjjYzb3bcYf9ZNqSeWeKfewpGxJYqYWjAdp97dT5Cw6ZEb2mU53sJsX6/Ss2VZfK5WplUzImDBsH03T+Nuuv7HDvYNpWdO4rOQyrAYrYTlMkbOINMvoRhsHsrBgIVt6txCSQ1xacumYv5YTgVE0Up1ejUkyMSNnxtGfYPP/we5XwJk31A0oyfETGYQ3v6UnStkzYcn/B6IEb38XAr0Q6AFLqh4N6N058viBJr1uPXfqUKvEc4zTRnCTDFGUbuPnn5hKXU+A6UWp2M1DH5MgCFRkDe8HG4mrdA5G6A/EkCQBl8WI06wiiuBV9FmsiIYoiASjCilW/c5/nxCLgp5g5TAbMEoif13VzNwprbT520gzpyGJEr2hXopdQ426l45bytJxSwnGg6zrWsfqztUE40FuqrqJayuuxSSaEvaIUSVKV7CL2bmzubnqZmJqjBnZM0YkRsWUGP2RflLMKSdccJsHm+kN9TIla8pJX9fc5ym9L7QuCiMdVms8NazvXg/o9pjz8+fzvfO+R0+oh9KU0iPumlTiKuGni35KTI2dsDXxsWbfjQbo3to3Vt145AfHQrrYgt6QvulDmHTD2A/yXKS/Xhdb0MPG3hYwWHSxBTDaQInpglt24fBjg/3wzo90K9QdL8BVDx/SLOZsJSm4J5DW/hARWaEqZ6TH8OGoyHKMENb90TSN2p4ATouBW+YU8s7ubqwmibwUK6qmYTVJeIIxFItGKKZgkUQqsux4wzLpDjMIAo19ARRVQ1Y1gjEFTYP+QBRVGmD3hpUEpTD+mJ8Liy5MzGwPZCAywAt1LwCww72DImcRhc7hWZyPbXss4YN8TcU1o2b0huIhfrX+V/hiPkySiW/P/fYJ8QsOxUP8YcsfWNG2ghx7DtVp1Xxr7rfG/DqHIseew23jb2NDzwaq06tHXS92mVwJURYFEYfRQaollVRL6lFfzygZD1pOdqR0Bjr5oP0Dcmw5LC5afEydmY6U/nB/Yvtg/tmjEguCZObfBpl1kR7GCxbucOadXobxZzIZlbqF6b4ZblqpXpecWqxnLacWw4Xf0i1P0w7oZBXo0cUW9NIqf1dScJOMHR/V9fHUymYArpiUyy1zxnZN8qlVzXxc50YQBGaN78ORt4bB9nH0h/IQNAPeUIyYoqIoGmaDSK7LwucWleO0GPj3lk52dgyiqBqiIGCSBDIdJkwGiSyXhRavG0/XOCzmIhbOqj9kGUpUHjLZ0NCIKbER+4TiocR2OB4e9Tx94b6EH3JMidHubz8hgvt289us615HIB4g5tebCsSV+HEL0tGysGAhCwsWHvT5fEc+n5/6eXa6dzI1ayo59hw29mzk/db3KXQWclPVTcfdGzimxNjSu4V0SzqVaQcP8WmaxiObH0l8PhaDhQX5Y9sqs83XRsNgA5MyJnFtxbX8bdffMImmg7qLHTBAWP0HaP6IbslAmxomZktjrcXFNKuVs869WlX0UO7JxpKiZyjvW8Pdlzh12UP6bNeVP7SueyCZVZA7Bbq369s5o9/An+0kBfcEsaXVm9je3OYdc8HdvPf8cVXhyQ+7ULUyUlPcVGZFaW0bR0RWUTSVqKyCDG2eEC9uaucH10yk0xtG08BuMuCwGLjvwgrc/ihF6TaissJfPvbhHTSgoVG3qwh5oYpBGn2eUJlWySXFl7DNvY1pmdMwG8wjSno+OeGTiSSrg/VwzXfkU5ZSRtNgE5nWzMSsbzA6yOuNr2MQDVxTfs2IUHN3sJv+SD/VadVHJECqpuIyuugX+kGD2TmzT6jYHmufXoBpWdMSPtVhOczfdv4NRVNo9jVT5Cw6pGAfCX/a+idqBmoQBIG7p9zNjOzR10sVTRnmqb2vucNY0R3s5n82/g+yKvOm8U1+OP+HPHzhw0d+gkAvNH8EsQDpfXu4yCAyaHXxbGURDuPBo0RnHMF+eO8hvZ54yk3638nG4oK8A25hjBbIOnhWP6DbYV78fT0KYbQdWy30WUBScE8QM4rT2NLmBWDm3mzisWRaUSqr6t0MhuL4A2m6k1TAiRS109IXJK6omA0ikiigqBoxWcUXjmMQRQpSrTT0BgA9dH373KG12SZ3kF8vr0USJFQ09rQLPLyslm9cUT2iIcI+9q3nPr7tcX6+9ufYjDb+c9Z/JgwLjKKR5sFmgnKQ7370XZ5a8hS5juFmBkbRyFdmfgV32E2GJSMhgk/vfpqd/XoCRkSO8OlJn04cUzNQwx+2/AFVU8mz5zEndw5Ts6Ye1CihcbCR1V2r8UQ9zMqexU3VNzE3d+4xfgKHJhQP8ciWR2j3t3NJ8SVcX3n9mJ7/cCIeV+MICAe9Cdncs5kXa19EEARKU0qp99YfVHANooGbxt3E642vk2PP4fyCsbHY3EdHoANZlQE9cW4gPHB0682WFDC7INCLCYFiRwFeNcanyq+lPLV8TMd6Sml4F/r26GHc7c/DxOvPvEzsc7x2Nym4J4hF4zIpydBnjJXZR7+Gezg+t7CUBRUZ7Ory8fM3Q0TiMSRRpMcjIooqgiqgahqKqiWc7AZCMZrcAR66YTJ/eL+euKLy5YvHDTtvWaadG6YX8PfVzcRVsJkl6nr89AeiZO8tHRqNYCzIhm69BV0oHmJb37aE8DUNNhGUdXu9sBJmm3vbCMEF/Yf9QLEMxods+fadYx+7+nfpzevlCMtbltMZ7OSdlnf40YIfjfjBrvfU81ztc4TiITKsGUiSxHl55x3BOz0KkUG9+XygF6bfASXzR+yyrnsdrb5WAJa3LGdx8WJcJtexXQ+wGqzcNfkuVrStoNBZyHm5Bx/7tr5tPLnjycTM9cCG96qm8v+t//+IKBFiaoxWfyuTMw4d4ruw6EIuLLrwkPsciq5AF/64n3Gp40bcLExIn0CuPZfuYDdVaVXkOY5ybc9ogct+AnXLoOZNXICrYDbFRxKOPpPo2KgnLoGe6XucSwpHhKro33dr2ukzK40FoXOL7vh14FrxaU5ScE8g+1svjjWCIDAhz8W4bAfbOwb5qLaPqhwnHZ4wOzoHUTVQVDBJIAoCUUWj3RPmp6/v5i+fmcM3lwyZNfhjfv687c90h7opNy1hT48Vk9WPGoM0l0SOK5c0u4nBUJy1Tf3kp1qpzrXxxI4naPA2MD9/Pl2BLlr9rSiaQmVqJeUpQzOL0pRS4kqciKJ7Qk/JnDLaSxqVT1R9gr/t/BudgU7sBt0G0mLQhX9q1lQ+aP+AiBJJJBmF5BCeiGeY4L7a8CpvN7/Nrv5dBGIBNDRy7Dk8X/s8N1UdQ1huz+t6xxSAtX8aVXD3t4J0mBxYpePPhJ6ePf2IaoWXNS8jrurZ6cubl48QXE/EQygewiAaiKkxREReqn+J8enjT0gy1JbeLTyx/Qk0NObnz+faimtxh90UO4sTTl7fnvtt/DE/qebUYxuDKx9mfRam3gYRLzhyTh+BGCtiAT1RSY5AwYwT//piQXjnx3pCVO4UuOg7p2bteH9UBZb/SLfZFA1w6Y8hc9xhDztdSAruGY5BEvnxtUM/qLc/vgp1b4GtBiAIxNV95ScCgajMnm4fxRlDNwMftX9E46Bu2/jczl2EfeXIikpaip+cglb+4+LzMYgCv3hrD70+3dv50pmBROnGm01vAlDmKsMf93NV2VU0+5p5oe4FJmRMYDA6yNSsqfjjfrKsWUc1gylPKSfLlsXqztU0DjbSGejk2+d9G4CK1Ap+MO8H9AZ7ebnhZToCHUzKnES+I3/YOXb27ySqRJFVGUEQElm/m3s3DxNcd8jNV97/Cr6YjwdnPsiCggXUemrJtecOT+Dafx3ZNPoa4eTMyXx20mdp87dxXt55o64T9wR7eHLnk4TiIT454ZNj5liV58ij2desb9tHvtcus4vp2dNZ170OFZVCZyGdgU7CcviElGNtd29PlECt7VrLlt4thOUw1enVfGn6lxAEPfR9pLXFh8RoAeNxei+frpQs1MtxBBEqTkJNddc2XWxBT3byNENGxYm/7qGI+oY8rVVZN9xICm6SE4mmabQOhHBZjKTZTezp9vHvLR1kOczs6BhuhWc3G8i0m3AHY8RlFUGAsqzh4VaXeSjUGYs6CUVFYnETAlCWq5LrTCUqqwmxBQiEhwTEZrAhIOCJekg1pZJvz+d3m39Hb6iXVZ2ruKHyBv0H1Zw2bOZ7pGzu2UxE0a+9rnvdsOcyrBm4TC7m5c1DQxu1ZGV61nRaBlsSDQr8MT8WycLEjInD9vvGh99g98BuAL6/8vtcX3k9bf42jKKR/5z9n0PuV+Ov0WcZgV59He0gzM6dzezc2Qd9/o2mNxLuT8/VPDfCbvJYuaX6FvLt+QiCwKKCRSOeN4pGvjX3W6zsWMmrja+iaRrTs6efsNrnKZlTWNe1Dg2NVHMqAxHdhrRmoIZAPIDTdOxLLm3+Nmo9tUxMn3j0oegzjemf1BsGGG3gPAk3FalF+ixSlfUbS8fYVw0cNZZUyJ+hG2iYHEfUj/p0Iim4pzldg2E2tniozHYQlzWW7eqmpT9EfzBKpzdChs3I1o5B4oqGgG7TuD9FaTbG57oQBI0NzR5yXBZe2dLJ1y4fyipcmL+QFneY9c1eKlPzCFslgnEj4wps/OesT2CSTKiiSl5+HVs7OyixzuWGifOYFjBR762nIrWCp3c/TUyN4TA5yLRl0uZvQ9XUhFPVnRPvxB/zMytnFj9b8zNWda6iKq2KuybfRZo5jUJXIYqqjNolaG7uXJp8TYC+3ncg/9j9Dzb2bAT0Nd8DrRI9UQ+yJjMhYwLdwW6sBiuheIgtvVuo89Rx9+S7KXIVJawqQW8UsMO9IxGarvPUDQmuZCA08Tp6Q70UOPI51rQVx36zY8dBZsrHglE0srh48SH3sRvtXF56OYsKFuGL+cix5YzZ9Q9kevZ0vjfve/hjfoyikd9u+i2yKlPsKj6uLOK+UB+/3vBr4mqcNw1v8oN5PyDFnDKGIz8NST+JSWAphXDZf+mJWvkzDl7yczIRBLjgmzDYCraM02NMR0FScE9jQjGZn76+m/5ADKMkoGlgMohsa/dikEQ8oRhN7qFEIg0QRQGrCFFZoyrHwT/vmYfVJPGXj5ro8+s1st2DkWHXCURlXl3roKEXVC3M1IIUphXlc/eiMjKs+nrp+23v45VWkZYdpCa4nIfWjedbc7/F3Ly5rOpchaIpZFgyCMQDmEQTxc5iekI92A12ilxFiQSl1xtf58X6F4kpMVr8LXzQ/kHCackoGjkv7zweWvjQMAG6a/Jd5DnyCMaDXF56+Yj3qSPQMeo26CUnKztWYpbM9IZ6MYgG+oP9eCIednv02ewLdS+w/o71/GDeD3jg/QcIxUPk2HLoj/TTE+phcsbkYbNhT8STMOkocZXw4KwHMYgGZFXmpfqX6Ax0cknxJQc1C9nHdRXXYRAMhOQQV5Vddch9TxQ2o+2k2Gjm2nMTCXHfmfsdukPdx71m3BPqSaxVR+QIewb2EFfizMqddUZ0RTojyKg4uWHkQC90b4Os8QdvgyiK+lr2GUjShOU0YlenjxU1vYRieomE2x9lW/sgdT1+arr9+CL6j4vDYmQgGCMSV0ecw2E24rAYSXeYcFmNdPkitPSHaOgL0OYJoagaN8wY3hEoEJVpG9BrcwUgw2nmO1dNGJaVvK+HbONgHf0RN1vdW/np2p8CUJVWlfjRLnQWkmXL4sZxN2IQ9VpeRRlqoKCqKjEllljTi6kxIkqEiBIhEA/wUftH3L3sbh7d8ihRRTfVMEpGJEGi3d/Olt4tgO58tL1vO3E1zqUllyIIAibJxMSMibza8GpifdlutGOSTMTVOJ6Ih+bBZjwRDwrDmzpc9fxVTMqcxLs3v8vvFv+OQmchZa4yCh2F3Dv13mHZ07sHdrPdvZ0d7h181PERfaE+AFZ3ruaDtg+o89TxxPYniO+11TwYZsnM0nFLuWPCHce0fhlX4rxU9xJP7niSrkDXUR9/qsix5zAta9pRtRgcjXFp4xJ2o2nmNH648od8b+X3uOutu4aZrYwp8Qg0vKevbyYZWyI+3Zd53Z/hre/o9cZnGckZ7mnC+uZ+fvlmDQZJ4KM6Nz+4ZiJGScQo6TOAmKLS44/gD8e5clIuT61uGnEOgwA2k4g/oqCoGo19QWKyyr82tNHnj1KYZmNuWToLKzOHHZeXYmVCnpMtbV4cZgOzSlJHnHtx8WJqPbVs6d2CRdKFOKzoIdhMa2bC57fEVYJBNNAZ7KTUVQrAmu41XF6mz0ynZE7BZrCNKPEB3akqqkZpG2zjHfUdMq2Z3Fx9M7WeWt5oegOAZl8zRtHIkzueJK7GmZM7hwdmPsD0rOnElBhfevdLCT/mhxY+REVqBV+e8WX+su0v1Kq1hORQQuz3xx11E4gGcJj1XrgukwtfzEd1ejUVacPv8FVVJRDXs53Dchhv1EueI2/Yeff1Cj6RLGtZxrut7wLQ6m/lR/N/dEKvd6oJxoO0+dsochZhN9oxS2a+Pvvr+GN+ntn9DB8qHwLQFeyi3lvP1KwT4DH14S+HMtTnfwnKxrYm+Zwm0KN3HgLdk9nbOnKtWo7ptcdnaAZ6UnBPE/66qiURHo7JKpqmkeEwc155BtvbvOzo9CW+Y+/W9KKv2A7/QZc16PPHUDSNuKLhj8KNf1zJpRP19TkBMB3EMeqnSyfz9NpWCtNszK/IYEfHIONznQmHqTRzGndMuIMF+Qv4w5Y/6D1hZ341cXyKOWXY+lllamVillmRWkG9p54ndjxBT7CH8enjafe30xPuGXUsYSVMZ6CTN5re0GevDP3jUjWVZ/c8S523DlEQ8cf93D/9fiwGC9vd22nxtwAQiAdY07mG52qfI6bEGJ8+nuWtyw/6/mto/Hn7n3lw9oOkWlL53jz9BqLIUYRRHL5KW5lWSVVaFaF4iBRzSqIEaH7+fNr8bXQFurik5JJES8UTxf5rzvtvn40E40F+se4XeCIeUg1WvpNzEfbsiYjpZaSYUzgv/zyeq3uOuBonzZx2UEez48ZdO7TdX5cU3LEkrVTPOHbX6WVe2cOTGtn9Gmz+h250cvH39aSuM4yk4J4mRGUVSRJQFI2cFIseIjUI3L2ojC/8fSMaumUsQLM7OKrVokkSsJsN+MJDocxQXGVn5yDXTSvAZjJw0+zh6yJ1PX5EQeCPKxrwhmJsaPbw6tZOjJLI1MJUvnKpnnL/5M4n2dSzCZNk4lcX/mrED1pEjuCP+cm0ZiIIApeWXEqeI4+oHGV69nR+veHXbO3diifiIaJESLekMyFtAjWeGlSGQuMmTEiShMPoYDA6yKrOVVxdfjXXVFzDrv5ddPg72OHeQSgewmqwYpEsiUQrl8lFmiUNT8SD1WClLdCWyAI2iAamZ01nTdeag34G+9fO2o32g2ZU59pz+crMr7CrfxdTMqck+tIaRSN3TLjjoOcfjabBJpoGm4ad50i5rOQyOgOdeKIePlH5iaM69kho97djMViGvS+nijZ/G56IBzQVb/s6WttrmCA54fL/hvQypmdP54+X/JFt7m1cUHjBiUueGncF7HkNjFYoTYrtmCIZ4ZIfQ7BPb45wYCnd9ucATa+zrlsGc+4+BYM8PpKCe5qwuDqbSFxB1TTuu2AohNnSH0ys3e5DVjUsRgGjJKCqGgZRZMmUXNY1DRCNK7isBvqDQ8f4IwrVuU6WTB5eNvGPNS28v6eXSFwhEldItZkYCMawmiTSbCa2d3jRNA1FU9jUswnQDe+39m0dJri9oV5+vfHXBGIBZuXM4q7JdwEMM1xIMafo67SybinZG+6lP9yPiDhMcGPEmOCcQG+4V88+bXyTqZlTWVK6hEuLL+Wr73+VbFs2YTlMijmFz0z6TOLY6vRq7p58N9vd25mVMwt32J0QXJNoosBZQKG/kK5gF7Imj/gMNvRsYEnZkiMSvokZE0eUFR0t7f52frvxtyiawrKWZfxw3g+PKoEpxZzCAzMfOK4xHIx/1/+b5S3LEQWRz0/5fCI8W+up5V81/8JmsPGZSZ8hw5pxQq5/IEXOIlLNqXiD3aQqCkWSSS9XGWjQjfSBqvQqqtKrTuxAZt4JVUvAZDvnbQpPCJLh4F2EUgqHnLZSzrzZLSQF97RhelEqb+3oQhQEun0Rpu19vNcfHZHJqQHFGTbsZgMCICsabQMhrEaRknQrvoiMURLp8UUxGvS2fMGocuAl2dSq97Y0SALs1efiDBuxvTW35dkO4oqGyWCgMrWSem89giBQlTb8R21L7xYCMV1IN/Zs5NbqW0cIxycnfJKmwSZebXw18diBiUv78MV8TMiYQEyJ0TDYwJ+2/YkHZz1IpjWT6dnT2dK7halZU/nspM8Oq3ONK3EuL708URYUiocwSSZiSoxcWy4v1b9EeWo5bYG2Ua+raAoDkYEjnmkG40Ge2P4EPaEeri6/+qg76HQGOlE0/T0IxAJ4o96TkjF8JOyrd1Y1lY09GxOC+8yeZ+gN6f1P32h6gzsn3nlSxmM32vnOed+hdbCZoi3P4ejdDbZMyJ95Uq4/DMfRRSKSjBEXfgvq39HLgcqP3Wb0VJIU3JNA20AIWdUoyzz4HfGHdX0Y94aJ393dwxWT9GSBwlQbJek2egYjQ/NADXZ1+TGIAqlWQ6KfrcUgkW43YzMbyHFZyEuJke2yUJXjJMVq4C8fNTKnNJ1pRakAzChK5a0d3dT3BXBZjMwoSePrl1fz+IcNrKzvxx+ReXptC59dWMbnJ/0H9b49ZFgzhupR91LiKkn0bs2152I1WPFEPIiCSIo5hbea3+KDtg8ochSRac7EHT10j9OoHMVpcrK7fzdG0Yg34uWlupc4v/B83CE3BY4CFhcu1q0a4wEuKrqIPQN7eHzb48iqzKcmfIq5eXOxGW3cXHUzoN8UuMPuQ5aLfNj+Ib9b/LtDjm1/Pmr/iFqPvqb3zJ5nmJs796ha5k3MmEgwHqQ72M2MnBkHbboA8HHHx/QEe1hUsIgc+4mrmd3H+PTxrO1aCzCsX+8+W03gpJfe2I12JmROgosn6Ak2tnS92XmScwOLCyaP/dLJySQpuCeYD2v7+OuqZgCunZY/oiRnH6UZdtY36Q48pfsJc5bTxIVVmWxs9aAq+iKuCqDqjQl6/DEkEVQVZEUlHFe4akoeW9u8pNhM3DSriLJMOz9/Q685Xdc0wM8+MYVMh5lPzSthMBynZSCEJxjj5c0dXDEpl2BUwWHWvxod3gi/fGsPNd1+Jhek8MAlw9eA95XGzM6dnXA3eqnuJd5vex8NjZurbua1htcA2DWwi1uqb+F/d/wvEXWoFtgoGhP1lFbRSmlqKfn2fAodhQlBM4gG/r7r7wxGB1E1ld9s+g1ZtizWda/DZXKxtnttohfvspZlzM0b6gIUiod4es/T2I32EU5V+6OhjWq8cTD292u2GW1IwpEdu6x5Gdvd23EYHdgMNopdxfiiPvwx/7C1R0/EQ62nFk/Ew2uN+nu4uXczDy186IQ2gAe4Y8IdTM+arq9l79dx565Jd/F64+vYjDauKb/mhI7hoIjiOdm8PMmZT1JwTzAbWzzDtg8U3Ehcoc8fZVy2gwUVGbgDUVr6gzz2QQNmg8hHdW5kRSXbaabDGznw9AjoTQpEAcwGiYvGZWAxSiiqhiQIvL6tk88sKE3sr6gaoagCDr0BwvyKDP66Ss/stRglanv8XDM1n0c/0NdKJuW7eHVrJwA7Ogap7w1Qnau7u4TiIf6y/S/IqqyXwWjg96fRHmjBZOslFA8xEBkgx5aTENSt7q0IooCkSRhFIxMzJiaymUEPMw+E/Xh6ZmIWXJSmOslwwo1VN/I/G/4H0MOcqja07huIByhwFLDTrZdrFDiGv8e+mC8xlkMxP2tkE4JDsahgEUE5SE+wh4uLLh4mgm2+Np6rfQ6TZOKTEz6JrMq0+9sxS2ZeaXgFVVPxxXyYJJNujSkIw44PxoP8cv0v8cf8DEQGcBgdmCQTg9FBFE3BIJzYf7qiIDIla2STiSxbFp+d/NkTeu0kSQ5JoA96d+rmGCfD4nIMSQruEdLri/Cbd2rxBOPcMa+Y88cd2TrOtKIUdnQM7t1OHfZcIKo7STW7g3R4QzjNRjq8YSRRwGEewG42kJdiwSCJSIKGKJBoTLDvp1kQ9OxlVYNgTOHlLR1cO72QHl+ETIeZwjQb0wpTmV+Rwc5OH/PK04c1LphVks4nZuazpnGALIeZ2SXpVOc6eeR2fW2s1x/l/9Y2Uud2I4hR3u+opyrnNgRBQNZkFFVfg4yrcRpb8/B7ywjF88C1FpNrJ82DzSytXEpYDlOaUspjWx/DarBilszk2/P55QW/5KoXh1yWTJKJAuM82nutQJyi+Fy+Pl9Pvvr85M/zWtNrpJpTSTOl8WHHhxQ5dRcro2gk05pJIBplvGs2qqohigKaplHXKWEOz6M/+NdRPyMJiUX5i/h/l/6/YY+7w25Wd64mz543qieyIAgsKR1qAReTY+zs38m2vm280vAKg7FB0ixpqJpKs6+ZmBLDYrDQHeimL9KHQTBwfeX1KJrCooJFw9r39YR68Mf0mkSnyYnD6EDRFK4tv/aowtbnCq82vMqarjWMSx3HnRPvPKpIRZKDoGnQvh4kE+RPP9Wj0YkMwtvf0et1jVa46mE9o/kMIfkv9whZtquHXp/ufPTs+rYjFtyLx+dQmmEnrmhU5zqRFZU2T5gsp5nabh/b2jx4w3EiMQUBgbiiIooi4b3ZxnFFJRST6Q/KCbEFsJtEMh1mmgeG1192DMZYUdOH1SSR7jDxxcUViKLA58/Xw4LhmIKmacNmU9+5aiIt/cFEMwTQLSIBJEOIJl89QUXFQIzltd0sLqulOr0al8nFzdU382rdu3R2WejvHo8gBbAbHQSjBVgNjRhwsKe3D5M5gCAIXFN+DY9vfxxRELmu8jpeqn8JYe9/AJIgEVUiuFlNBnNRtaEXXeQq4gvTvpD4/0vKh/c7rXLN4mdv7ObZ0B7KcmUunCzT1ZvN29t8QDUZ6ifJz3ibnd6diWMkJK4fdz3fnvPtYe+Jqqn8duNv8Ua9+n6ihM1gY133OipSK0YkSPUEe/iP5f9Bo68RAQFVU7Eb7cTVOA3eBlp8LVgMFtIt6Who2Aw2UswplKWUjfB+BihyFFHkLKLV10qKOYVvzvnmSS3P6Qn2YJbMpFpST9o1j5XuYDdvN78N6Jnm07KnMSN7xqEPikfAXaNnu9rST8Ioz0A2PAF1e2vXp3/ykI06ThqDHUPmGPEweFuSgns2kukwj7p9JJRn6b7Aqqpx3z82sqNjkDSbiaocBzU9enavURKoyLLjj8TxheMIGthMEu2eMCZJJBwbntErIJCfZqNrMEJUGW6A0dIfZE5pOqlWIzbT0Ef85MomPq5zk5Ni4dtXjsdlGapzK8kYPaGrxdeCIMoYjLpVXkxWhmXSXlB4Adtq8xiQvRSlROnwK0hCiBSrBXPkPAID1bzSbiAzPUxF6VqWVi7lhWtfQEMjw5rBvW/fS1yNJ1yZFFWhS14L1kwsphTuWnjk/Wq3tnkZDMWJ42N59z/YKcfp7qoihwtZ0xAAsoFbcYz7bwSDvt5rw8b3532f7X3bqfPUMTNnJuPSxhFX4wmx3fc+fND2AXE1ztqutWRYMoYlEy1rWUZfuA9N01BR9RsIDdIsaTR5m+gIdqBpGunWdEyiiWxbNk6Tc9T2eaDbWV5QeAG/3/R7+sJ9/M+G/+Hrs79+yDKcjkAHbf42JmVMOq4OPK83vs6bTW8iCRL3TL3nsJ7QB0MJBBl48kkUzwApS5dinXLkfZCPBotkQRKkRMb3/mvrow8sDst/oDsZGW2w5OdnXGjypNCza2i7d8/pIbgZFbpBhqcZXAV6WPkMIim4R8gVk3IwiAIDoRiXTTi2LNGGvgBbW70A9PmjtA2EEn5R6XYzF0/MYeNbNezTz+Z+/XmHSRoWTgYwGUXcgSgmg0h0P69iUYC4orK2qR9BgK2tHtq8YbKdZj6u07ODewYjrG8a4JIjeB3VGZXMqFrGjmYjJnOIr1945Ygs5Wynnrma4VSJpr5HxFdJvzcDTa4gz5FFkG76PemUFTcjiRJpljQEQSCuxOkN9ybEVkAgrsaJqxGqM+1cXpp2yMzuAynOMCOJAkF1AE3y0Rl0Ezf7WV9TDew9jyATC0zEnLoFAD9+/l3/b1a0rQBgTdcafrzgx6SYU7ii9AqWNS8jy5bF5MzJvNPyTuJavphv+PuUVo1FsuDHrydfCRJZtiwenPEgP1r9I4yikbAcZjA6yLi0cVgMFj43+XPMzBm9rKU/3M9TO5+iPdBOVIkyGBtkQ88Grii9YtT92/xtPLz+YRRNIdOayfkF57OzfydTs6ZyUdFFR/wegu4JDXqZ1MqOlWzr20YgHuCa8mtG9Bo+FP5ly4js1KMJA08+RcGv/+eoxnGkpFpSuXfqvazvXs+4tHHDytZG7UAV7Bvq8xoP6VaNScEdScVi3dlJEIc7asVCMNCoOz1ZTnJ3JoNZNzsJ9IA9GwzH6OamKtC1BazpiTruk0FScI8QQRASFokHwx2I0uOLMC7bienAPnlAtsuMySASiMoYREE3qAjEAY2J+S7qe4IcMFlFA0JxBVEQkNBQ9jYYCMdkurwq/v3qawX0WXEgqiCrGh/VuVlZ72Z8rotslxmDKKLsVe381CMr6XCanPz2yi/THeymwFkwzHD+w/YPeWbPMwT92XiCF2GSDBQXprG+Ww+pSmKMnoCXcVn5SOZe5uedzwdbMvnHexu5fGION8zIISIPJYJp6C/OJJmoSqticdGhW8ztz4t1L/Je63ukFhRzfe4NvNi+nHqvG5c9SqcyVMqCZgVl+GuPytHEdlyNE4qHaPW18tcdfyUsh3GZXPxl+1/ItecSiAeoSKkYEbKcmzeXnyz8CU/veprOUCeZlkyy7dnMzZ9LiauEbW7d7F4URLqCXUiCRM1ADVOypoywjgSQVRlJkIircWRVxh/18/Tup9nh3sEt1bdQ5CxC0zRiagyzZKbF14KiKSiawnb3dmoGasiwZlA7UEOlYKYwa/IhW5k1eBt4vfF10i3plKWUsbl3M6BnSm/u3YyAQG+ol+/P+/4RfyaCeejHULBYDrHn8TMpcxKTMicNe+xfNf/io/aPKHQW8uUZXx6KzNizhmZJRhvkTBpxviTAhGuhcA6IRrDvjazEI7Dse+Dr1MV2yS9OfkheMh68k9CRsvJ30LYWEOD8/4SiuYc9ZCxICu4Y0dof4udv7iYmq1TmOPj2kvGsaujnuQ1tZDrMfOniSgJRGZtRwh2IIgqQ6bDhD8eJqxobmwcwiqOXeqgaOMwSEVnFbhApSrfSH4jhDsSG7ScA8f0UW92bTFXfGyDHZeHaafkIgl6CNCHPxZFiM9qGlYYAaJrG33f9nTpPHe62PKw0UJlaiW+ggoyMPbh7y5AZJCtvE2npBfz6igfY2Bzkja5GREHg7Z3dzCqXKEkpwRfzEYwHMUrGRKj2QAelnmAPMTU2YnYNekbve63vARCiFYujjZ8teoifrvkp2zv6R+wvWGsS25kWvUHCQHSAOk8diwoWkefI46vvf5U6bx0qKu2BdtIt6UiixG8u+s2o2bvrutaxvns9i0sW44l46Ax2cnPVzex07yTDmoHT6EyIeVSJ4ov6aPG1sHtgN/dNvY9NvbqT17a+bThNTj4z6TN8Ytwn6Ax06l2TNPBGvTQNNvHPPf/knin38LtNv8MddrO4aDEXF19MijmFLb1biKtxoopumHKzu4u0jp/pJhGX/hjSRvcYfmL7E/hiPmRVZm7eXD476bM4TU6eqXmGPQN7EAQB81HWvLouuww1FELpH8B11ZVHdezx4ol4+LBdb2bQ5m9jY89Gzi/cO0uTjHDpT3Rf5JTC5BruoThw5u/r0MUW9ASmvhooObrs/kPibdMjDrlTIGX0EsoxoWvL3g0NurYmBfdModcf4aVNHTT0BQjHFCRRoL4nQE23n//3Xh0Wo4Q/IrNsVw85LguDkTiCABFZo7Z3qGNOVD54KzejJFCUbsMdiDIux8Gc0gzWNw3Q5x8uJqKol/bIqoqyX+e+mKyCoDGlIGVYje/xIAh6BrCGBpqEP2hlj9xAYV4P1UV+qvLq6Qq3kedMxyB2ElED7OjwUdcTAAGqcpzku7KYljWNvlBfomTHJJk4v2C4R+367vX8beff0NC4suxKri6/etjzZslMijmFwaieDZ5mSdPHpbhoa64CoxviOYCA0RBm6fjFmIwq+c58bq66mRZfC02DTWiahsPooNHbyGB0EA1NT4BC1cuaBL0v8IGC64l4+Puuv6OhUeupxW600+Zv48erfozD6CAkhxAQEBETiVn7ZqMN3gYe3vhwouG9qqkYRb0d4f0z7qc6vZpn9jzDyo6VKJpCTIlhEA2s7V6LO6wvEbzf9j5Xl1/ND+b9gG988A1UTaUv3IdVNLIgDnabTQ+dtq8/qOCqqESVKI3eRvrD/fhjfr4848uE4iEcRgeyJo8otzrsd8RkIu3mm4/qmLFiX5/ffW36sm3Zw3cwWiDvBHQTOttxFYAjRw/pmp2QOYZWmoE+ffYsR/UM5Kt/feJuhkoW6m0WRQMUnXdirjEKScE9Tp74qIn63gDhuII3FCMvxUq6w8T/LK+ltT+EQRIYl+0k1WpkSkEKLqtxxMz0cFTlOMh0mrn3wnL8kTibWwcZjMQwGQTC8aEZrbxXZEvTbTS4h/qBqsDaxgG+/twWHvnkLHJTji2892FtH/9c10qa3cSnF2awuHgxHb5+euN2DAYN0daAM9WNJBq5pHIRO/t30h3sZnLGZPpCfdS7/RRn2AjEB9BS1vD0np3cPv52rq+4nk19m4jKUc7LPY8ilz6LrRmood3fzra+bbR15dHVk0NTYw8XFsgJYw7QTTG+OvOrrO1eS5o5jZfqX8IT8bC1twVVzUeU4mjaIHMLS4kJsHXnDP7xmUtZ7/6Il+tfZiAyQEyJEVNi/H7z7yl1lSYSn0RBxCSZSDenk2HLINeeS3ewm5gSS/Ri3Z+oEqXN34Yv5kNRFQyigYkZE4kqUcJyGINkICJHiKtx0i3pic5JYSWcqLEFeKH2BW6supEiZxHlKeU0eBvoCnYRlsN8asKn6A4O9QpNt6RjlswIgsCVZVfyRtMblLhKuH/6/eSsflz3G0aAzCp6Q73s6t9FRWrFsGjBXZPu4tGtj+IwOci0ZVLnqUusNwfj+o3hzOxjt1FsHGzk2T3PYjaY+fTETx93xrWmaaxoW8FAZIALiy4ccT6zZObBmQ+yvmc9xc7iYQluh6Rnl35zkj9Tv4NNMhyjBa74md4pKbVkbAXR166LLegZyL7OEye4c++Fikv0sPhJtOpMCu5xEonrP5BWo8TsiTlcMSmXmi4/r2/voizTTl8gysLKdFbWufmgto+fLp3Ml/5vEwOh+LAkqEMRU1SCEZmv/2srcWWoMZ/hgBC0AEzIcTI+z0mDu2XYc4Gowo4OH996YRtfuXQcM4uPvuH5sxvaiMkq7Z4A31v2Dnl5DcRkGYvBQlQeIKZGaA/VE8JJji2H6yuvJxgP8mLdizy27TFaokUYpZlgWwnmfjb36u357p5yN0Yy+M3yOpav7eG2OWYKcwZ5ZPMjaGgEozId3XP12WYsg5X17oT15T6ybFlcU34Na7vW6l1lgCy7nW5bG0pgHCh2Nne0E4vbAYk5v3idyy96j45AB8F4kCJnEXE1jlE04g67iSpRxqWNQ1EVHr7oYXb178IoGXEYHfx0zU/R0FhStoRryq8hzZLGzVU3s6ZrDSWuEl5tfBVfzIdRMuo1w5Y0Liq6iCJnEY9tewyzaOaeqfdgNVrJs+Vx/3v30xnoHEoeEwRCcoivvPcVrii7AkmQMIgGipxFZFozybZlk23L5t6p99IZ7OS83PMSM+eryq9iUeEizJJZX2+/5AfQvgFc+fid2Ty85iFC8RBG0ci3536bHHsO9Z56+iP9XFdxHY9ve5yIHKEytVIPbU/8DBPSJ2A32pmePX3Ye+6L+Xi14VUEBK6tuPaQmdHP7HmGzoAeiny14dVEg4uDsbFnI8F4kHl580Ztc/hB+we8UPcCALv6d/GD+T8YsU+eI4/rHNeNPLkSH9mJBqDuHVj/Z327/CKY94WR+yQBswPyD1N2dSxkTYD0cj0hK6NybGfPByIIkFl57MdHfYffZxTOecGNxPUwsPEgfWIPx53zS/j76hYsJok755WS5TTjNBt5d49u8D67JJ1/rmvHG4pTkmFDEgWyXVZiigZomAzSYWe8tT1BDGIwMYPdp9NxVUOE/XrtwEAoSlge3QA/pqiomsbfVjUPE9wVNb10eiNcVJ11yGSqTLuJ9liYmBIFSS9nEgxhjKlrCHoKwFxDWPFT6JjAspZlLChYQKu/lTcbl9PfW4Umm5lQ5MbiTMMd9bG9bzubejbRHeymXLyTXp+eQPWvDW3ceqGe7RtXVHp8MZRIDmaDgRxrGpmOg2cmlrhKElaRE7MqWeS4jWU7+plalMq/NgzdhKiKjb5wH76YDwEBi8HCJ8o+wftt79Pp70QURAyigUJnIRE5wsXFF2M32nl066MJYXyj8Q2CsSAqKqs6VpFqSWVRwSKKncU8seMJDKKBy0svZ0npEmxGG49ueRSH0YEgCETkCM/XPU+7rx1ZkalMqaTGU0NMielrvXKIWk8tjYONzMqZRaolFavByq3VtyZew9SsqUNN1sNeECUwO4cZaGC0JjJM3YNNiRBrXI3TFeyiN9TLY9seI6pEqffUYzPa0DSNT0/8dMJgY2HBwlHf64fXP8w29zZSTCmE5TC3jb8Ng2gYlli3D4s0FFUZ7fn9ebflXV6qfwmA3f27uW/afSP22XdTBRzWQWwYG/4Xat/W628v+aHuz7uPnu1D2907Rh57OhH16zdSKQUnVpjGkp0vQesaKJgFU28Z+bzRomcghz1gTdO/z6cj0QCs+dMxHXpOC+7jHzbwwsZ2sl0WfnzdJCr21sseDZXZTn5y/fA6xeIMGz/7xBQ8wRhPr23Z6wal0eeP0uuLEInLhGIKosCwOtlDIaujP77/wxq693EoPjJRCPSbOkkUcFiGrrm6oZ+/r9aFaEPzAA/fPC1henEgX7m0iuW7unFaRLaF1tIegOnZ01kdW49RrEEw+IkoevjQJJroDnbzp61/orcvh86eFMySiWYphd/ediff/ei7DMYGEQSBF+te5N7Khewr3clympmRXcm/a5ezpbOFgLeENIsNs0FifkUGs0rS2dTqodcXYUFl5rB64lx7Lhdk3M3z2zaT4qzic5dV8Z+X6QL9/KYW1P06QBQ6CvHFfGRZs8iz53F95fXMy5vHrzf+mo6ODlp8LXQHuvlZ6GeE5TCXFl/KuLRx7HTvxBv1EpbDfNj+ITWeGrJt2exw72B583JiSgxRFEkxphBTYrxU9xJZ1iwavA0UOgvRNI0frfoRnqgHAQGzZKZX6sUoGbEarARiAQJyAFmTkRWZdd3rmJY1jXum3sP49FHqDuuWw/on9B+oRQ9C4UhXLNBb3O3r+pTvyKcqrYp3WvVSJ2/Ey2BsEH/MTzfdvNLwCpWplWzs3UhvqJdUUyo3VN3A9KzpgP4Zb+jZQDAexBvxsqV3C1t6t2CSTHxx+hepSK0Ydu1PT/o0rzS8glkyc0PlDaOObx+t/tbEdpt/9M5OFxZdyM7+nQxEBvjEuCFDe03T9mbIj/JjHfboYgsw2AYtK6F6v2Su0vOhbT1oCpRdcMgxnlJiIXjh89CxSf/ML/0xTLvtVI/q0PQ3wNZn9G1PM+RMhpxR2luK0ulvZOHrTM5wj5bW/hBPrmwmLqsMBGO8sqWTBy87+J1iry/CplYPZZmOhJcw6LPDfaU3N84aSlVPsRpJsRopTLeR6zQTiirYTRI9vgiN+62v9viijCUCGqGonAg774+igsNk4EuLxyUeGwgOza59kTgxRcVykDvLdLuJW+fo65aXq1+jP9xPl9/Hx5tLiQQiSJY2TJnv0RXowhf18b33f01HTxHxkAVVEREkAx2BLoziHOblz2Obe5vuwSxolOZGGZc2gfreAHu6/XzzxTVo6mLi3WFiIZFBY5gZRVlcVJ3N2sZ+Hv+wEYCV9f08dMNkWnwtbOndQkVKBW9tjWBRxtPuVvn8XzdgM0t87bJq/vTJ2Xzx6c2oGlw/LZ+fXfALXqh9gZ5QDwX2AmoGajBJJjb1bMIf8yMiohk12vxtCILAhp4NZNuz+drsr/FB2wds6NkA6O5YnYFOwnKYsBzem7AFvUovQTmYCPdqgqb7J4smgvFgwhNaQMAkmYjKUQJqIDGDHv7ZKTQNNlGVVsVzNc8BcHP1zfraZe1b+qetynr7soMIrkE08MDMBxiMDuI0OTGIBmblzOLj9o+JKHp0QdZkBASe2PEEJtGEJEqE4/ra8+qu1fz1Sr1U6vebfo+syIl9YmoMo2gkqkR5Zs8zOE1OylLKuKb8GgRBINOayecmf+7QX969LCpYxHb3duJKnEuKLxn9u2hJH1Gi1DTYxKNbHyWmxPjUhE+NtOM02vU1u4ieXIfrgJriwtlw7e9ADkPqyPX50wZfx96+sHs/892vnv6Ce6Ad6Wgh/TOFtBJwHFvd9jkruN5wDItRIi7rpvtptoN/ASJxhZ+/uUd3gBLgO1dNoCLLQa8/wj/WtKBp0NgXpDLbMcIveemMAp74qIkuX5jOQUas2x7hMu5BkUTd8hRNP5esajiNEpIoIx9wMaMIHd4wuSkWdnYO8tKmDhwWAwVpVnp9Ua6bno/FeGRhHINoQNEUfvHhP4nF8hCJokaKQLajGMMM+p18tGcmEhZUoiiKQFSB0oI6+sJ93Fp9K3/Z/hfiahxVU+kJ9XB9pYV3m1eyK7SNAHX0dyxCUJ3EBBXJEGbBJCvVuU7+taGFFn8tISWAN1pOy2AKv9n0G+JKnO5gN1GxBKeyiB2ttkSd8sZmDzv/awlrv5fBYCiecP+6dfytfH3F13m7+W3k7TLj08bjiXrQ0FBQUFQFk9GEKIhYDLqjUVlKGdm2bNxhN13BLr44/Yu8WPciu/p3jRBLERFFUzBLZuxGOw6Tg809m4koEVRNRRREsqxZ9EX6UDUVg2hA0zQMgiFxrnRLOunWdM7LPY/nap5jZ/9OVE3PnLYb7fR5t6BGfVxgymZRxujrUivaVtDub2de3jwq04b2KXAUcMeEO/jNxt/QH+4nJIcS11Y1lbgcR90bR4koEdr97fx5+5/ZM7CHiBwh25bNpyd9mg5/B6s6VyEJEgORAdIt6dR6ailwFBzU3ONA9plUjEsbx8/P/zmyKh/eNWo/3m19NxEyf73p9ZGCazDps8Hmj/W1wrxpI09yJvS6TSnS/yKDunCdpJKW4yKtBGbfrde+FsyEzHGHP+Z0xWCGufcBTx/9oWM/mjODSfkpfGJGAStq+5ic7+LT80cvlwDwheP0+aMMBKOYDbrdYkWWI+H/u48DO6ZtbvXwz7UtdA1GhpXpHA9GEeL7nWtfpyBBBLMoUpRhY3ZpGq9u7cIfkYcdG1f1hglxReXxDxsJ7H3+6ql5fGLm0Oy8ptvPsp3dFKRZuWF6wUFDzB2BDqxWP0apAIvBCpIPg0FC0SRk3xRUxYDVZCEQNiJKChDFRj7jUsfR4msB1QCqhiYo/HHz42zo3sDG/h0EGMSAA4O1CcXYgRRLg8hsNnfVAovpUN6m1/43NOLEJBs/WV1Gq7+VVHMq7oibHKeZLs9r+KNLAX1tPrjXGjPDbibDPrSGGIrra6VhOUwwHmRj78ZEmz/QQ9QPzHiAjzs/pthZnHB6shvtfH3O15FVmZgS00uCBmqHvT8iIpk23fVpQ+8GonKUmoGaRKcji2ShwFlAX6hP7yesaciqTKG9kKgaxWKwcFv1bTT7mukMdLLdvR0Nja5gF+6wm219eoQgqkbIMRppcJipLFvIvntvTdMIy2F29e/in3v+SdNgE/+743+5d+q93DZ+aEa0rW8bzT7dBcxqsCa6F0XlKAi6MYhRNDI+fTxTsqbQE9ST3SwGC2UpZdxcdTPf/vDbDIQHkCSJDMuQ/eS+rOsD6Q/385X3v0JPsIcLiy5E0RTcITdXl1/NkrIlQ0lfR8H+pT8jyoD24cqH6qtgzaOw7Vl9Zlgw66iuc8rp3AwzPqXPxB15UHHx2JxXjuqNCuIhPfyrxPW11iPNFFZkkA4hKVWX639nA4Zjm6Gfs4IriQJfvmQcX77k8HdamQ4Tg+E4vb4oJqOIvFc9s5xmPj2/lJUNbsbnOplamAroP3SPrmjgyVXNqKpCbKzUFjAbJURZJaYMzaVSrUYsJgmH2UCmw0y3N0JBqpWYrNDpjRBXVTQVEPQQ8mvbOpH2E9H9t2VF5ffv1uGNhOjd1cO2AYVvXXTtqM3Gq9KqKM90AXtIN1RTmZXPX3apaKoZlzEL0WEnEhMxSho2sxGwMD03h++v/D6eiAdVk0DQQ+oxRWNL3xaiaghBUEGIYE7fRCiYimTpRlZbIKbPlPYMbsRgDKFpENP6afGJxNQYgXhAn0UaXdT0lQGj3yjsT4o5hVx7LjvcO4ircRRVGTZLHYwO8nHHx/RH+hN1xw3eBp6rfY5Ofyf9kX4Go4N4o15CcmjYuTU0XGYXL9a/mCitERCGZSNLSCiqoofW0dBUjc5QJ2nmNL4x5xuIiKzsXAnoM7j7pt7HG01vYJbM+GTf3uPAK0nkWFJQ9547rsT5/ebf0zTYhIhIT7CHiBxBFEQ+aPuAa8qvwWFysL57PWu61qCoChElQqmrlPPyzmNixkTWd6+nJ9SDgECWNYsfLfgRgiBwcfHFLG9ZjiRILCldgqZpbO7dTFyLE5fjpJhSKHIWUeoqZVbO6GL2911/T6zPvtb4GlMzpmIymHi98XUuLbn04B2RIoOw8ve6PeP0O6B4qIby6rKrcZlcROQIFxQeYg12z2vQoS8HsOoRuPnJg+97uhAPQ82b4K7Txy6IeibvjDvH5vxrH9PrUlMKwVUIbWv0x0NuuPgI3MW2P6//ObLg4h+eGZGCU8A5K7hHg6JBjstMut2IJOrWjPu4oCqLC6qy2N4+yM/f2E22y8KCinRe2dpBKBonKh9v0Hg4gejwGYOAnq1869R8XDYjG5r17E2nxYCmGZhUkEJDT4AGdxBV0zBKIr6wzBcvquCVLZ2k2U1ML0olEpOp7RvgH6u72NruRZV6kQmzo6+NNxolbqy6MXHNnmAPf9zyRwYiA1xRegX3z1hAmjmNpf9eiskgICsaOfnbuaXoFp7b0EbnYBirSSPNGWdr+F+0ueswiWYMag7xuB+jUSXNlIlfaSKm6rPLNLMNl1hMRzxERFaQcPHZ2Xq27KLCRWzt20pU1R2YgvEgiqrgogKDUoQ3bEIOjGM0wdU0jWZfMynmFNIt6Wzo3kAoFkqsYaoMvznyRX20+duwGW0MRAZ4veF1/rjlj/RHhxLT9tXrCoLe51dBSTze4GkgqkYTIquhISHhMrtwmBx0BDsIyIHhY1Q0+sJ9/HXnX/na7K8lHrcarJSmlDI+fTybejYhazJmyYxDcjAudRy3VN+S8Dqu8dTQNNhEIBag2deMpmkE4gE9CxkNi8FCvaeeJ3c8yZ6BPbjMLiyKhclZk7l1/K0UOYvwRD30hfsAEMUh044vTv8i8/LmYTPaEo0N8ux5NPmaMIpG5uTNOex6bY5tyCZ1n4WlCRMZ1oxDtx/c8zr07M0gXvvoMMGVROnIfKP3Xz88SvcsAOQYrPytLn7VS2DyjYc95LhZ/QfduMTbpofSUgqH/KCPl2C/LrYAg+16Fu4+YqHRj9kfRdbFFg0CvdD4/uhZyKc7YY9u9Xkk34l4+PD7jEJScI8AoyRy/fQC/r2lk2yXeURrPk3T+NMHDUTiCvW9AdY2umlyh4jLB/58jy0C+r89RdXY3jHIvIoMrCbd2UpRNdJsJkJRhc8sKOXZDW30+qMsqszkqil5ZDnNPHhZFb99p44fv7KDznA9EXUQSc0i05FHm08gK8tDVoabiBIhGJXZ0ualNvABb7Q9gzfqpcxVxtvNb7OkbAmCoPsnR/cKV5pDICqrZDrMxCxr8SqtDBji9PT5iEkqGoNoQgBDfApWSeOaqqmsaIvQG+4jGldQ46lcX/0pHt/8LGY5lXFFUSYUmAlEZXw983HwBorQiMkAYTmMikprZDNS3E248yaUmAURjb0Te+45X18yeGrnU2zs0cPGFxRdQG9QT2w6GBoajYONuMwuqlKr+Puuvw8T2337jBY6VVFB00twDtw/x5aDN+pNzHwPPE7URPYM7KEv1MdnJn2GZl8zc3Pn4jQ5WVK6hBZfCzn2HAajg0zLmsblJZezuFj3ntY0LbEe64v5EASBVHMqCgr59nzMkpk2fxtfeOcL+swdjbgS54ZxNwwT+KvLrmYgMkAwHmRx4WK29W2jOr2a7X3beaXhFdKt6RS7inGZXHxj7jd4vuZ50ixp3Dju8AJ0+4Tb8UQ8vNH0BinmFBQUZmTPOGwGM/t1qhq2fTSMvxYiPn2WPOkTh9//QFo+ho6N+va2f0H54hNvD7nPTtGeAaG937+x6t5jdgxPJpt6C9QtAyUGsz5z+OMlAziydfcpGJmMdiaw8a9Q84bunnXJj/TGDIdizxvHdJmk4B4h107L5+opeYiiQCgm8481LcQVlRumF5BqMw6bTLV7IliNEpqmJbyNx3aeq2M2iJgMIpIoYDZKhGIKv7ttBu5AlO+9tJ19rWTH57l48Ysjayn7gzF2dAwSiAfwhGIYDAbCcoCcVIWLxhWyuz/CQFcW58+5nF++tYfdnu00Cf+LWS4lHMvELgSYnpefmJHMzplNVI0iITE1ayoFFj0MHTbsIcUep79rBrh8CKKEJoiISFjtXhwWkXum3IVRc/Gvun8gawIp8oW8V9PLrAoDAkEgSFewi1999Ayb+z8mxiAIGoIY3+sKJaIBijCIam7CJOciGiA/K0BR+WqCKRb6Ql9lY89GwmE/jYFmGgcbicgRbIaD/3AbRAPVadWE5TDplnS6Al0j9tk/THwgUTWKXbITVIaEVUNjfMZ4grEg3g5vYnYtImIz2gjLYUySnqilaioT0idgFI0JY4mZOTMpcZawqXcTvpiPtV1rGYgMkO/M573W93iz8U36I/3YDDYmZkwk3ZKOL+bDaXRilsykWdJY07mGQDyAou6djQsCy1uWI6sy35zzTV2kLancP/1+nq15ll9t+BWSIBGUg6iqSmlKKd6ol/da3+OGyhuYlDGJSQuGNwGIKlGer30eb9TL1WVXU5pSOuz5z07+LLsGhlrAFTgLDtl+EIDx1+hrjMG+Yxccgwlm30UoHuJvu/6Gu/4Zriq76oiTuzDv1yHHYD62WfLRMuVmWP2I3njhil9AeimYxsamFYNZTyZrWaUnkxXMhMrRs8MPyiU/goZ3dbEtXTQ24zpZqKoerge9vrn5I73/78HQtGOu004K7lGwL3no2fVtvLW9m67BMH/6oAGLUaIwzcrk/BTSbEZkVeWvq1qwmQ3E4gpxVUPZK7xjNeM1SAJT8l3Imr4uK4oCF1VnI4kCOS4Ln1tUxqr6fqpynUwrSk0Y6penlCfWY1OsRrJdZiIeM6IAohhjMGihWWhBFAvIM08EDVbsDtLs6aebN4kGcvF5J2M2mFCkVB64eqhd3OVll9MX0ROALiy8kFk5OTgtBl5rnopX24PsEzCrl9EvvIRoHCAUDxKhhQxzDne98gMcwRsx9H8TixpDtLpQLRp2MZtG/3YKHAWs71rPNt87xImiEkUvi9AFQ9v3zhr8mFI2oCrpCIIdIW0jklFhMBplfdcmippC7BysJUWI0p6uoUr6zLzcVU6zr3lESDnPnodRMmIymIipMewmO9HoUCmXKIho2sFvp2RNxigYERET59bQKHAUcHHRxbqPs09fZ7UZbBSnFOONeJFEifNyz+O8vPP42dqf4Q676Q31MiVrCjdU3sCdE++kPdCesKSsGajhi8u/iKqpupBqeoZ142Aj3537Xfoj/fxl219oGmwiJIcosOQiy7HEmLxRL1ElyrM1z9Lia+Hn5/+cFHMKK9pW8HLdy/QEe/DFfIn9ByIDzMyZiTMShF2v6Bm/+3ya+xugbR0rDAqre/S1wO5gNw8tfGjYe2Mz2piUMYmd/TsxS2YmZxy+764mSgj7/Rjucwc7Fla0rWCHW//h/PuuvzMje0YibH5ICmfpGbf99boj1VgJ36Eoma9nIwviyOzMscCVD1OOvPf0COwZZ2YYGXQLz7RS3a4y5IEDIlIj2PYs9CYF96QRjMq0DAQJxRQCURmjJNIfiDKjKJX39vTS3B8izW7ippmFrGpw82Gd+5iF1iJBVBk5Q1ZVjSyXhZvnFFGYauXtnd1sbfNSleMg1WZiQUUmCyr0AvK+UB+/XP9LwnKYXHsu35rzLYySEaMk8p2rJrCtbZBGj5Pfv7cHqymMomm0DHZQnaa78LisRqYVuWhsUzEqxSCZyLPlkmMuxGVMTYxpXt48JqRPQBRE/r1pgP99dxOVWQ7ypCsYdE/hU7MMFDpz+PnW/yOugoZCHAV/LMBAuJusWC+DIQdGyUR9IEh5bpyPWzeDsQ9/zI877MZpNqOoMgbNiiSpRORwYs10X/GxaOlEzPkXSCE6Y2ZiHit2eSYPfzjAPat9lJUX0Bvr4NnZIcJOE0bJyNSsqXhj3mGuRSIiD856EHfYTUSOUOup1W9W9iud3pdxfDD29fjdN1sFfc0yy5rFRx0fcUHhBaS50+gL9xFTYlxTfg1Lxy3FG/Gytmst77a8y0BkgIHIAH3hPuo8dTy14yn+a8F/EZWjhOQQmqZhM9qQkfX1bE1P/IqrcYwRIy81vMSFhRcSUfWkqfbBNl7ufAqnIqOaIWbUbwKiShRREOkP97O6czVVaVVs6tmE3WjXy7f2+xZHlSgllkwu3PGGXgu643m45rfg74WnbwQ5ynzJwPJJFxAxmBIz6QO5d+q9tPpbSbekk7L/zHEU1nev5597/onVYOW+qffxetPr7HTvZFzqOGbnziYQD7AwfyEO0+ENbBRVYU3XGmo8NWRYMihxlRyZ2O6j6nLgJGfcnq7OS2cDF38P/nk7qDHY/TpYM6Bzk167PedzuvPVPty1Bz/PYUgK7jHwiZmFvLipA0VVCUT12ldN03h9WyfdviiyqhGVVd7Y0c3uLt8ReSYf2GB+HyajhKYpRNWEngB6VGNTq4c/fmoWf3i/ns17G9tH4sqIzOt6bz1hWV/k7w520x/pJ9euF4+4LEYWjctk+SvdRKN2orIRrAGqywNUpTooSbdz1ZQ8jFI+JTWfYm3nBhqbsnGK+bisRn77Th1LZxYkXLpSzCm0DYR4f08vnZ4wK2r6MBlUZNHDilqBzNJHiEqDxBQZVdPQNAl30EeeJQ8xkoYgxMl1WWj3hAkY1xDUOhFkGRWFXHsuc3Pn0DjYyEVFF6GpGo9ue/SAuxG9p64mhtHjCTI9HjMpoQmoQirNtlyyOkNYDenEgk6iYhOlTju9wV6cRieeiCcRHlZRMUpGntr5FB2BjoOGjQ+Fhl5TG1WHVNogGPjpmp8m6nM1tERY+RfrfoFBMPA/G/6HoBzELJkpSyljMDJIIBbAG/GiqArf+fg7ekcgyUpMiel1vao6Yoy+uI9WXysT0iZgEk0MqoOoqkxck/CZ1b1r3AKSIGExWLAb7WRYM/DH/Pxm42+IKlEC8QA5thy6Q92JTGwRkbqBGryKTKZg0EtK/N3Q9EHCgN4px7nIkM4uVzrXV4we/pVEva75SHil4ZXEjP652udoGmwCYE3XGjb1bsJpcrLDvWPYOvTB2NS7if5wPymmFILxILePv/2IxpDkLEOJ6xaZ3Vv1VoNo+o/rew/pa+WiAeJB3QZ0H5OWwrKXgI6jvlxScI+B/FQrj35qFi9v6eDtHd14QzHSbCZUbW9jAQ0CkTi7u3xED+bJeAAHiu0+cfVHFAySgCToO+xrd6sBFVn6ml50bwMFFY1gbKQv87i0cYlWZQWO0dfJurwRJuSmU9fbj9efysdbMthgaGRaUSqyonD11AJuHL+EG8frZSDPbmhj+c4eBkNxapf1cOHMNqrSqpiTO4eW/iB1vf699cfq/8/eWcfXXd/7//m14xb3NEndW1paistwGzDYxu425n7v3Hc3tt25MFe2Md9gyJAxtEBb6q5JG2ncj8tXf398kpOkSZXC5f7gxSMPkp6vnpx8X5+3vV6kdQtJdqOEtzCQ6cfjUTCdHI4tg6NhOyrLqmuZLtWwsWUYpCw5OUHMGQRHRUJ0hV9Rf8WEB2Nfqo8Hmh8QZOg4uGU3tq1iOjaWPNpFaGEbBaBXkXYk7ppzGREri+3yYOkWZryAXcMqkrsDJZBBcjkjUpzg2C4+/MQXMaSBE/odHg2KrKA4Sr6eMJ58M9bEbkfLsfju5u/m/z1n5WiLt2FYBjjQlmhDRkaVVHRn7HetSiqSJCE5EpIkYTriPRtVsupIdfCjS37E1zd8nYN9+0hqcWxFwm1JoHq5bf5t3DjzRtb3rKfcV05XSpgpuBQXZb4yPrfyc/x272/Z0r2FnnQPpb5S3N5CtjpZLkulcUrmsk4fwPK6OFf1IJtZpEAp15z7ea5xn5xk6v6h/ewb3MfC4oUTRDqKvcV5DeXqQDUdiQ4M20C39XxUO95F6VjwKB4kSaLcX44iKZOkKE8FrbFWdg7sZFbBrKklOF+OGG6Fnl3Cf7ag7n/7al56rLlDjFkNNInSgJ4UPQKjs/i2KcwUxqN8IVzzffjWRSd9ulcJ9xQxuzzIp66Yw/JpBfzPI/uQJImqkIfBlI5uWUiI7uETxWgyy5ni/47j4FYVFEXCMG08moxbU/jkFUKK8g0ravnB0zvZ1rcN2WpmdftVE8Yjir3FfG7l5+hJ9VAXrpuy5rWyoZDvPtZIWh8zcciYsL4lyvqWKLc/uJefvXk5s8uCvO+PW2jqTYAkHIscJUE69Ay/zf6WKu9sYr3LkKRqTMsZKTdJyN42XOGtyFocwxGE49g+bCOEW46wt7+ZvoRI53ZnW6idvoFt7cO4pUIU280t06+ZFIUUegtZVbGKnnQPOSvHwuKFNA03sf1wjKHsII6jIMkGVrIeb/XfSLSfhWFUE9OC2GovWuRx9MEV2KYbd2ArthFCVhKgCLKTZIOcPSRc2k6xbDaq2KRKKh7Ng0txMZQdOma0nDSTuCRXPlVu2RaGM1ZXsrHzZDvasGU6Jioj6lTjDi1LMoZt0BJt4fHWxzkwdIAMOXQXuHDj9nqpCdbyutmvo9hbzHXThbvO4fhh1nSuIWtmOavyLMoD5XxmxWewHZsvrv0i7Yl2HCRqz/0k+Ct5vGc9/2z8OwAHz7yFtxcuEXrEJ0m23clufrr9p9iOzTMdz/CFs76QXyC+fcHbWd2+Gr/m54LqC1hRsYLdA7sp9BTyUPNDJPUkV9afmNH9wpKF3DDjBg7FDrGqYtUxnY5OBLFcjB9u+yG9qV76M/1cOu1S/nPph3Crp2aF+ZIgNQCP/7fISKhu4T/7ctcxPh5MHfY+AHpCuA9174BguRA7UacwPRkdMfMVgp6CwnpYfKuQSG3fIGrmS/9jbHvLgPU/hfXrTunyXiXcF4i1BwepLxJNE12xDDWFPlr6k2TNkdTECUKWQJFlTNtGU2QsW0hO2o7QSlJkoWvlUmVmlAa4cmFlXmijMuJl4ewmUiHx4Xm09dFJ84hhd/iYNbJD/al8pDwVDBveeddmzqovYHfXqHC3Qw4bSYY9HTl84SyNud1k7S48oWlo0cuEjaBk4ynajilZ4Ciiu9hxoaoOqDHC3hwJI4jP6UbPFtExqKJ4y1CVQYIspoiVLCtYNema7jt4H13JLvwuPx9f9nFUReX7m39Ad1cFrshWcGTMzDRqq8Xsoqm1YksF6JKBu3A1srcNSV6EY0WQJAdJi4I0Xp1rJNrl5Pj2yK5l3db5z6X/SUALkDJSPNryKHuHJstAjkKTNc6qOAu34qZxuJGOZMdRz+VW3OSsXP68NjbyiLrWqHqVYRls6N3A7v7dJI0kEhKSJCMrGtXBGv5z2X9O8pOtDdVy+9m3k9AT+fIDwM6Bnewc2EnGzDCvaB71kQZQ3PSm+0gbaTqSHbQpbVy+5B1UeSOTrvfg8EHaE+0k9ASPtj6KW3Fz/Yzr85/XodxQvtZt2iaxXCxPuEFXkGunX5s/Vn24Pp+OXlW5Csu20E5Co/eSaZdwCSfZjXsURHNRsmZ2JNtis7Pxn6xpXM0li9/+0szpngriXWP+s2ZO/Px/nXB33yMIN9Ej5pRlRcwsJ/tg5bsnb99wodAiD5bD8ndCUYPQ0Z59hXA2ClVNNFlofkZ0c6dPLev1qsPyC4TfPdbIUFPgI62bZA0bicl+tUdDaUCjttCLS5WQJYmqiIdrF1Xkn/KqqiBJojN5SXWY2iI/LkViT574hPfnKCr9JzcHZ1o2B7pj+XT1sbC+ZXjcT4KKHNtNJlVEJice/qbSTVLajaoJKcyg240RX4jiGkRSU8jIaJILt+KixBdiZmQm0wtq6IwPsacrjmV5aO0uIp0qJCd1Mbu0jBX1E+cch7PDPNP+DIqskDWzdCQ7qAnW8Jnln8dKziPbdQu5/iswBi6mKhJhIJlD8h5CllMooU1ogUYcKYer6BlQDPThlWBrTKJWyTnpplAJKU96o2/TX/b9hYtqLuKt89/Kh874EIuKF02SBh2FR/Fw/YzruW76dZi2edQuaBk5r8/sU4WgxfhuaBASlHEjzr7+fSiSgiIp2I6NT/Uxu3A2Hz7jw6won1qL16/5J5AtwM+3/zxPLvuH9nPPgXuI5WJcWHMhA5kB0kYaj+rhnwf/Oel4TcNN/GDrD/jVrl/x7c3fZvfAbnYP7uYfjf8QKXNgdsFs5hXNQ0JiSemSE67vypJ8UmR7ulEbrGVp6VJkScbvQNAy8TrAzrtF1PVyRMmcMWu/4lni5//rSI80PWajY2nhzDAkuqbefvnb4KrvwDkfFt3HT34ZuraLedyZl04k21iHIPHjNEoeC69GuC8Qbzunnvu3dRJN53hsdy+to05AJxjcBtwK00uDHOhJoMgyEa9CxOciqVuEPBrxrEFGtwh6VAzLQbcd9nXFiaUNnmsa4KuvXUBpyMPFNRcT0AIk9AQrys7Csi3aEm0UeYqOGtk6jsM9Tffw02d20NK+GDhyHvXIm5COeM1CfIQUsgMXIsk6auR5kC1QQfU3kokuJGs4WNk6XPbr8FQ8hFt2EfaGmFVUy6zILLrT3fQNFJGKV2DbFqrtRsZFha+O6dVt1BXE2Hp4mGXTCnCrYoHj03x4VS+xXAxN1ijxlZDUk/yl6ffgNOBYLhxLpDPXb16JKcWwc+XgeJBSszCCO5FdaSRtGI+/g2x8BrmBC3GXPYok6y9o8mJ8lAliNKg73c1V9wpz+BnhGUiSRMgVIq7Hx6QeRxSrlpQuIZqL8rMdP2MoM5Qn0CMjZxsb2xKGB1knK5qwZDcmJoXuQizHIuQKkTAS+DQfhm2wonwFKSOFW3bjUT3UhI4z4H8EvKoXRVKI6WJ++1e7fsWW3i185dyvUBGoIKbH6E/3kzASE/ZrjjazvW87Dg66peeNCgxLGDCM2umpssr7l7wfx3GQJIm0kebp9qdxK24urLnw2CpU/4uQJIl3LXoX51efz3O7/0jF4U2skvwiVflydcZRXXDpl4XghScsXIhinWLES3sZp8KPhfk3iJprNgaugEibB8qOLXASqYHtf4bMCFnv+AtULpm4Te9eeOqroqYrayJdzVMnfXkvz0/v/yEU+l28/dx6rv7hcxzoS06ovbpVGd06eppWAhZUhRlM6ThAWjdRZZnO4Qx9iRxZwxqJgkTXc0XYw4q6QnZ3xXGAgWSOf+3u5vVn1uLRFJaXreDHTx3kL0/vI6s0ES5/Ho+m8ZFlH6EmOPnBuqF7Mw/tX0/r4aXgeJmYPD3eikFijHABZCzLg2oFgCzYLjy+XnKxRVgOaIqDQghHr0J2G2TSPqqq5vFfyz6A4zi8867NaEoc27HIGg4Bv0FFaQ8DgwX8YJ2FbW/l0nmlfPvmJYAQ1PcoHlqyLUwLTaMuVMfjbY/z/OEDwDRAgZF3T88VAGNt/WamBvPwe4SdYOE6VKucwqLDJMwYjqUhaaN3JKPJGrqtn3SH8lQaYxkrw+Ntj/Oc/BwBdwAciLgjhF1hetI9uGQXFYEKZEnm7wf+LhqeRnLaPtVHoaeQrJllIDuWzho2hiecI2tnkZEJuoIUe4uRJZmAEaDYW0xtqJZPnvlJHjz4IN/Z8h1whNn7m+a96YTuyXGcvBLU9r7tIvrGoS/TR2+qF5fsotBTiIREhX8s43Jf0308efhJobjliNr7aHf2jMgM3rXoXcjSxGTb6IjO7/f+Pj8rm9AT3DDzhhO61v8tzC6czezzvwLNqwV5zbjkxZmbPV2QJPBGoL8RnrxdEErhdLj8f16+1735t8LxqWIxrPqgmKMdRbgKrvme+H6gCZCgaPrx78U/rpHUE4HDGyBYBu6QkPHs2CRm/r0Fwi950euBn5z0pb9KuKcJiawxYWxHliCtH51sR9E+lCbgVikPeRhM5UhkTXTTJq0LX1JVFmnr0axiSdDNivpCHtvTQyJr8syBfgYSOS6cU0pLf0roIDsWTb05ZgeCyKE4ewb25AnXtGxSukU0rfPTp1vY3ufBsU5+NSsDSqAZIzULHNFVZMQXIns60DzdVPrrqfVdzGHDRzSdJGVncLmzWJafRO98VFVnuFpotkqSxKLqCL3xLBnDor7IRzgwj9fNmcV3HrAZTumAzf3bu3jL2XW8/8/P0acfxFO6iYpCyJpZmoabyOYUDnTnkNQYjilS0FPRpKSkkdw92HoBjhnm2kX1bM08gpFqGdmAvEVdUAsynBvGZvLIzakia2fxWB4yVgbbtKkP1/ODi3/Auq51rO9eT9pIY9omqqziU0VkWugp5MyyM3mw+cHj/24kmWg2yqqqVeTMHN3JbhYWL+Tm2TcD8Of9fyaei2M5FndsvYNFJYvY1reN5lgz84rmcfOsm6ecSf3jvj+yoXsDqqyysmIlW/q2YDs25f5yKgOVLCldgoMj0sEjRvUAO/p3AKI2vbB4Ia+f/Xoinkg+ij0WBjJji4tRXedR6JaOS5miEeblgIYL/7ev4MRgZGG4RaRR7ZH+haFDooHoJBveXhIMHhrxfwba1kLdOUd3ezoZC8ClbxZEa+mikWrN90TDVNkCMS4kKRBrE4RbtfzYrkjHwKuEe4qIZw2a+1NUR7wcHk5z7aIK/ryxnXjGQJVligIu+pO5vMLUVJAkYQjfE8+hKRLJnKj/ZgwbGZhVFsSwbXyaQnc8i0dTWN3Yz1dfuwDdtLh3aydNfQmaB1L8a3cPIa9GxhCRcMDlxe3KoUgKtYEZfP+xAxweTpPKWVi2I0aNzGnEB7NgjxLu+IffkRb2o7G2M9KcAw3+RRiBAToHXJimF8coJtv5ZmS3zJXnTefDr5lFdyzDV9d9gx3928hJ/aQ7XgeWB80pYYZ3Yf7oH7hoOvOrQvxpQxsyEjPKAlzRMIfvS88CYzWwT9y9g87EEJKqkhk6gz7XUxjZYfZ1SCRMD5K7G61gM8bwChyzAFk28BVuI5UsxslOQ1IyuMseQlLSyK5BXK4UjeZveduCW/nGpm9gOSKrMCoeMZB7YSNBR0PCSOT1l3f07+C+g/exd2AvSSNJTI+JmdlsjLAnzNdWfo2OZAf3HbwvP+5zLJiOiSIrPHzoYZJGEkVSCLqCFHoK+VfLv+hIdOSPo9s6n13zWeJ6nEp/JQOZARYUL2Be0bwJx3Qch409G8XxbZNllcu4fsb1/G7370gbaX6757e8Z9F7WDW0irA7TFWgKr/vwuKFPN3+NBISi0sXE/FEAE5IaOKahmv4/d7f41JcXDrtUkCMOt2560529O+gPlzPB5d+8KSt/F4Fgmz//VmRSlZcosHItqBiycuTbEFEnLI6sjiQBEmeDqhuobRlmaLpCkStdjTN7PJD/Xlw7seES9OGDad2mtNzta8sJHMmX/rnHqIpnUP9KVK6iSxJ3Ly8mjetnMbagwP88flWehPZYx5HAvqSOWQJFlaGeLZpIE9zDpAzTWxHwlRsCnwuqiJeIYZvOuzpjNM1MueqSBIhj8ZAUse0LNqHUlw4awa3nTGX6lAZdz49xO/Xt2HZDi5FYtX0YvriOQJuFcxjadceUbOVTXCkkWhbpa3fwu8uwac6xM0xIggGhjmsP8X2vjSaopGR2slInRiGF9uWqQgUMiMyg5rQ2ENZVWReM7eM5dMK6EvkqC/2I8sSn71qDh/88zYMy+aSuaWs7r4PSRuJXiWDTLqY4Z4L+VJjM7Z3JwQ8KO5unPBGjMHLUUNbkSLP4HaXY0RzgI3s7kVS48hKBtOBxuFGvrf5J5T7y9EtnWg2OmEM53RDZqIcpOVY/H6PIBWf6iPiidCT6sHGJp6N87m1n0OTNQazg5OOpaJiMpmEJUkioYs6qi3Z7BncA8C+wX3UBevYObhTCF6g4FW8JEgQ1+MUeYvwTDHKIkkSswpmcWDoABISc4vm0pHsyDcq7RnYQ9bMTiJqgJtm3cSikkWiZjxFaeNYWFK6hMUliyeQc0eiIx81t8Ra2De4jyWlS07quFMiNQhbfiMeusve+tKI8NuWcOqxTZh+ydSjKy8WYu2CbEFEdme+GxRF1D5te2Kqdir07BKawtXLXzpD+UAJnPcxMbJTvkiki4+GbEx0JxfUn3hEqqhQe5boUFbdcOa7oHu7qAXPf63oeH4BeJVwj4ODfUlUWaKu2I9tO+zsjNEbzxJLGwyldLpiGWRJjF/cvbmDN66Yxq0rp/H759uOqzAlSeRnVQ/2pwh6VGIZ8fCUgMGUQcawCLhVLNthXmWIi+eUUlvkI5EzCbpVdNPGsIUMVTJnABIONg/v6mXNQZVPXVnA8y2D2CMP+OyIEMf00gC3LK9mXfMAJ2TXK2XwVNyPlZyNo1dArgrLccgYFqpi4y3YjmNrVHsWo5U/xv7MAJ989l4KPYUcih4iq2vkuq9Fdbz4VD8XzinlNXPLJp0m4nMR8Y09dC6aU8aeL1/BmsY+vvv8fShF/0JNzEPWotiOQ6brJjBKSQPkFiOlS9EimzCiwrZN8jXiKDFUfwLF14pthJGUJJIs6rKO5UKSIKWnyVjRkVrP6beakJBQJZVCdyFpKz2pqcjGFmpRjmiCMm0Tx3bIkSOn546azva7/KSM1ITIV0JiIDMw1ozlSCwsFtmEZWXLaI41M6doDiFXiNpgLb3pXlyqi5pADVc1XEVDuGHKc7130XvZPbibgcwA9zbdi+OIGWNZkqkL1U3wTDYsg4PRg7gVNw2RBmYWnPoD+chIOOKJ5MehZEmmxHeavFe3/V6oDgFszAlB/9ONXALanhdjKBWLYNsfhUsNwFALrHr/6T/n0RCqEmNAqQFBso4F638FOFC7Cs798NH3jR6Gp78mosADD8M1P5hYBz1dSA1CLi7mY0dRdYb4OhZinfDY54WIRdl8OO8TsOlXYoGx6PXH3v+cD8PcZpE+9hVC6enr3n6VcI+BB7Z38s/tXViOw7JpBaSyJk19SSzbwbRtOqIZFFlCN21kCTyqzEf+uo2QT6M7mjnuGK5pg26KFK8sCcWooEdFN01sZCzbwXGEgIZLlXnfhdOZUx4imta5eE4p7UMpvC6ZmgIfJUEP3bEM29ujmCOl42jG5LP37qIy4kGTJRygttDP68+sYdm0AooCbhTg+JVmBy28EzUkviJqBYMHPoplWORMG8u3Cc2/F5cikTJ1kn0hLMeDGllPV7JbzLLahdi2ii1nsaQEc+r6cKnTJpwlo1sosoRLnbyy3tQWJekcQpINtPAOcCRIN6D5WzCipSNbSTh6OXr/ZSNNYGCnG3ACTaLzGANF0nFsF1Yugp1YjJGejuLuQCt9VLSMOc4pi1wc+x0U4hTD+vAku77xUGWVhkgDu/p3kbKPbhsI4Ff9yJKMS3Fhm/YEc4RRUwUJKa+fDXBBzQXMLpwNkB/5aY42o8gK00LTpj7RCDRFY27hXD7y9EfyXryVgUoORQ9xMHqQ3QO7WViykN0Du/nq+q/Sm+qlOljNW+e/lddMe80Jv1fHQ8gV4sPLPszO/p3MLJhJibeEwcygaNiaIk3dk+rBsA1qJA/07xMdplMZpI8f9ziJGfqTwlNfFepOAOd+VESZozhd/rYnCpcPrviGaJgqrIfd/yC/2Ozefux9k31j75dliNTr6Sbcnt2w+usi+p95KZz5TshERVbAE4JDT4uMQP0Fk5uiurcLsgWxwMl8TtR804PCGeidT079GQBxrGNFzi8ArxIu8OjuHloGUpw3s5gFVWMjNKP6xM39KZr7kwwlRTdxwK1y2fwyDMvBrcrs60ng0WTiaZ3dXTEs+8RjJDsvDCQIMWtYuBQZRZFRZYmwV8NGzPT+bPUh3rqqjt+sbSGjW5wzo4S3nVPPrLIAkiRqwK/98RoO9o+3goPuWJYCr8YNZ1TzoYtnEB6JIB3HwTihkTIJV8HG/NxoSCsgpcn5pjA7V42RADWyj2guRXboArTCZzCjS7GT85C0IRwpjZ2ejqFkcco6+P3e9cyMzMzX8x7Z3c3v17YS8bn4yKWzmF0+UflnbkWIRzt8opEBG8f2AgqScgQpyTmwxyJkI34GsqcHNbQLcMSErGIgOSD5OlDMOnRkJEdj1JVAkVSsE6iVjkJhzHT+WBg1FHAprrxYxYRLR6Y2WEtHouOYHr0l3hKmh6dTHapmXec6kkZyUlf0KNl6R2Qbi3xFE/bvSnWRNtL4NB8Nkakj2iNh2aLJ6lDsEFkry7TgNKK5qJCetA0+s+Yz/P7K3/Pk4SeJ5qLY2AxkBtgzuOe0Ei5ATbCGmmANg5lBbn/+dqK5KKXeUl4z7TWsqFiBJmukjBRPtD3BY22PIVkGVw71crXtEdHc1d+ZKEgPcMZbBXlYhpjPPN2wLRhuG/t5qBnmXC2achz75O0GbRs2/hJ6d0Hd+bD49Sd/Te6gcD8CkRpuXi0Irnay0MwEVCwWkWPvHuFiVDTj2NufCg4/P9bI1fIclC2EdT8U76OvaEx8ItEDi98wcd/SuaLWmx4Ugh65hFjouINg5aDlWVj40guSvOIJd0vbMHdvFqvMHe1RvnvLYvxu8bYsrY1weChNWjcxLZvkCMFkDIuBpM7bzqnn2aZ+loy4BPXHc9gnQbYAluPgcykkcybmSA7aceDc+giqLPGxS2dzx5MHMSybZNbkvu2dZEauoz+Ro8Cv5Vf1fpfC5fPLObj60IRzOI6wFhxO6/x6TQuXzy/Hrcp889H9J3ytntSFGPIz5IbPYH98qXgojcA2wiBZSFYnVmwZ2B7M1AywfUhqFDtbgZ2pBmQc20NvYojSjBBPWHdwgPu3d/L43l5kwONSeHR3N3u6YpiWzeuWVSPLMpfNK+NXa1eQS3WhBvaDZGNbboz4AhiR4A+6NUoiLpp7xUiQuDgvuZ5rsdLTcJc8IYQszBokR8WRHCzfdtyBfUjKCAFKCgXuyITRm+P+Dk+AbEchIcZ8FEmZZFrv1bx8aOmH+NG2H025ryzJfOPsb3DlDCFf+MDBB+hN9eLTfDRHm/OkKyMjSRIexcMts27JR7QgiPinO37KgaED+DU/H1/+8SlTsg8eepADQwdYXr48rwKV0BN0JDoIu8LEEjH60n2UeEtIGWJxMJAZYN/gPir8FUhIZIwMHsXD0tKlJ/z+jIdhGfxq169oGm5iVeUqbpk92f5te992Yjkx+7t7YDfdqW4ORg9ydcPVfHvTt9kzuAfbsal3F7E118/VaVnMmEbbJxOuvxgu/PTkCzFzsO9B8fCfe+2p2/HJinAZavy3ePDXnStmQG+6E3BO3le3ays0Py2+33OvqD0WHDtLcUxULhXyjrn48QlU0YSgv2WecscuALvuhrU/FAR6wy/EKM4oyhbAwScBB8oXiHsdJeDOLWP3OpoxGI/CBrjq27D9T2LEByB2WPzuQlXHN5iPdQghDHdISDtq3mNvf4J4xRNuZtzoTmc0wy+fbeby+eXMqwxx/ZIq5leGuW9rB79b1wqIx/gowV2xoJxpRT5+9GQT0YyB7Uw1fXlsOA5kDTtPtgCG7fD0AfHAf6ZxgNctq6E3LhqwFlWFGUrqZA2LmkIfhePqnc82DfDE/j5EDDjuHEDWtNh+eJjDQ2kO9iXRFIlNrRNnOI+Fwb5F0Dd/5GhHfGxsH3bWS7xjrKHAMcJIii7EGoxCQFynJJlksxG2tx3i6j99DKJXUOWrI2fYQr7SsHnu4ACtI1H6neu3kLGSpJKFDCYBrkXvuxq18Ek0fxuKtx1LTYPlQfVoDNCI4ivBSs8U74KcBRzM5Hys5FxKwwqFxe308gQ2A0iKF0lJj7sZi6SenKTYdLrgUlxU+isZzA4S02MTXjNtky89/yXSRnpCM5RHEc1GZ1WcxaUNl+a3P7vybDb1bKIn3UOxp5iEkSBn54T2tuJGt3VWd66mJd7Cp1d+mqpAFdFclANDB7Aci/50P1t7t3J5/eUTrmP/0H7+3fpvYrkYz3c/T8gV4oyyMwi7w8yIzKA51oxf81MbqiWkhWhLiAg3pIXwq37mFc0j4ongU324VBdbercQy8W4uuHqSfO2x8KO/h3sHdxL2khzd+Pd1AZrOavyrAnb1IZqBbmbGdyKG0VSaE+0s3dwLykjRVAL0pXqwvBVMC+TgWQCVO+YItGJYOvvhbYuiGjpvI+e+L5HYvnbYd5rQfONiUucaqPUeOKXFHFMMwfPfhv698OM18Cy28TrXdtFNKx5RSo7XDXVEQXhBSf3VhwVL4RsAZ74MpgZSHTD01+F68YtNqetEougzDBUngH7/gld28Rr9ecJUpQVmHX51McOVcIZt4naeHpQ3HekVjQ+1UytrpbH2h+MpfhVN5zxlhd2nyN4xRPuyoZCdnXG2NQq/gB3d8Y40JPge69fjM+lsu7QAP/e04umyLgUC9uRCHlUrlpYgW3bfPPR/ezqiDKUMk6p1caBCWR7JHTLYUZpgFXTC2lL7kENd/CxK84hnXUzozSAqow9wAaTOXTDQlEkZGficTO6RctgmuaBNBGfRmnQTTJ7rE7c0X3H10aUI15j3DZH1FDMYlDasfVCHDMI2CBZaJ4BJDmNg07acLD0BL1OlKDHi8+tMK3IT28sS0o3sR2Dgc4cEBb7I498SchKDsXXhuJvxjaCgIyt6TimC9legJUeSZPaCrK/BcUsxK+UMpzQSVtecn4NK30ZirsPRRsW6lgjyNrH7i5/ITBtk85k5wTHoFHkrByxXAzLsajwV+BW3NSF6wi6hW3g4cRhHm97PC/QX+Ir4SvnfIU9g3u4Y8sdNMeaKdPKyJk5snYW3dJRJAUHh6QuZp5HBTHWdq3FsAweb3uc86rPw6eNqYxJSCT1JIcTh5GQ+O3u3zK3aC5e1csHl36QiDvCE4efoCvZRWlJKW+a+yYeb30c3db5W+PfuKDqAgrdhThuh31D+9g7uJdD0UMUeYo4u+rsE36vCj2FGJZBS1zMR/9h3x+oC9dNkJucWTCTjyz7COu617G+az0SEhfWXEh9uB5N1ijyFlETrOGts9/A/MGvgzcLqgeyJ77YJDVu/jc1kvno3ikiIH8JrHi3qIeeKHyFx9/mRFA6V3TR9u6CaeeImmTLs9C6VszR7rkPZl4OoQrY8jtBOiD0hs/5r9NzDS8U4z1+pxrtGt/9XHeeiGZ9xSLqNDMjC41j6AgESuDaHwqLPc/RteQnwHHAGOfiZU7+Wz1VvOIJV1NEM9KCphC/W9uKYdscHkpz53MtXDynlD+vP0xnNIPtOJSFvLxuWRWHhzLcv62TTS2D7O2Kk8yaeUu340EGOIr37chLyNKYDZ8swVULy9k5/Bz7B/7J/sNijOVTKz41ad+LZpeysWWI6B5hURbPGCNuQ6BIkrAPHBHkiGf0Y2gnO0d8f7JdRDZa4XNIrl7M+FIcoxBJyVBQ9TSlRUN0DBlYliaO7d9BKlHBO86uYV93nEN9CQ4PZTBHDOqF3OT4qMgBOYcaaARptIZcjplYgO0/iBrajZ2ay9giQENSokjB7cT6rwE5hR4vh/jbQTJx3O1owZ1IcuLImzhljEowSiP/yZJQrMpZOSGkoR/9Ya/bgiT9Lj9l/jJqQjU0DTflJQ3jufiE7SVJYkHxAr55/jcZyAxQ7isnbsS5t+leDg4fxKW6OKP0DGYVCM1cVVa5fsb1HIwexKN4yFpZ2uJtzC2amz/m7MLZVAWqOBg9SNgdxsEhbaTxql5UWeXN897M2q61KF4h8XhJ5BJ2B4QaVONwI41DjXhVLzWhGkq9pRiWgYyc9/w9UTREGrh2+rX8ZvdvCLvD+e7rI/WdGyINNEQauGnmTdiOjV8Tkd+nV3yarlQXswtmiwXFwpsFCYWqTk6Yomal6F72hMZqhet+KOqCgwdFx/GRNcSXCjNfI75ANAet+4nwdlW9I36uI7Jp3oiIIuH0za6eDlz1bXjueyJFfcabj76dqcMTXxxZNEiiy7h8wYmdQ1FBOUGy7dgsolsjBZ5CKKw7reYTr3jCHcVZDUXs7ozzyK5uPJrCxpYhDvUnSekmpi1SiznT5uI55Xz73/sxLYdH9/SSMy10S3QZHw8iHS2cf/RxbOdSpHwz1vzKEHu64kK5SpL45o0LKQ97Wd09hOM4tA9nONjTzLJAD92xLDs7YpxZV8gtZ9ZQ4HfxjZsW8Y2bFuE4Dv/9wG4e2tmN7TjYto2ec9AUCY8m0x3XJ1yXR5XImc5pSaJKagLV14KZmg62G3BwbA3TVAh7gnQ4CXKD5yJrcexcOZbu4jdrWkgbVp7rxXSOa4R0J5K+JJkosoxt+nEcN2ZsGWZ6OnamHkk2UbUk1qgzETa2XoStl+FggxkmH6k7MpKaRlKT+ffhlO4XifpgPR2pDtyym5ydQ3ZkDMcQ2sOyQtgVJmNmJo0DjT/GaBq7zFvGTbNuYm3nWlpiLaTNdF57eKo5V4Aib1HeVSfsCfNfZxw9gpkRmUFtsJa4HifkClEdnDhbGMvFhEa1ojGUHeKS2ksmeSgHtACGIjIkDg6VgUo6Eh0MZAaoCdYQcUc4t/JcelI97B7YjVtxU+A+omZ6Ariy/krak+3sGdjDjMgMZhfMPuq248eSAMr8ZZT5x6VHF90iSPdkJAu7d8LGXwlCCFWJUR4Yad4bgaRMve+LhdEGoII6UQs2sqKGu/7n4jUzJ1bZBXVi1Afg7P8U22h+WHAMXeEXEzv+KkagimbA+Z8Q6e2Zl0LnVlGPfvIrcMGnoObMyfvqybEIHUd0dx+NcHMJ8TvLxWHJm05uRnjX3WImWdZEp/JFnznp2zwWXiXcEYxGulnDYkvbMAd6E7gHZbKGJYQlvBqLayJsah1kX3cCyxaNOpoioyjSMRWlRuEgIltNGpOhlyXQVJkbllbx5esW0DGc4QdPNpLImrz3ggbOmCbSTxfXXsyDuw7S2T9AibSQXz3XjFtV0BSZf+/pYXldAQ0lY+owh4fSdEWzVEa8NPYm8GoKAbfEJXNK6RzOsK0jlk85u1WZz1w9F9u2+NKD+5moMnUKNCQLAhOp5JE0sCOTjs1ky3Y/jiONNFKBIolziGsRUbgii9NrqoztSCiSeJ+yUjdqeAdYfoyh88FzCEsvxkzOEdGu48YjlbB00TD790h0DdmgpJAUA0nrxDbDOM5I3UsykOQMirddNFKd4q2K3SQkWSKgBbAcC68kHvxZI0vWylLkKuLWubcylB3ij3v/OGFfFVUYq+eGsRyLAncB713yXsr8ZaztXAuAbuoUeArQbZ3vbvkut599+3FHeMbDsAweaXmEWC7GFfVXUOor5VMrPkVbvI1poWmTvGAN26A/249pm2iyRl+mb8Lriqzw9gVv59+t/6bMX8b51eezomIFz3c9jyZr+WawiCdCW7wtn66+/9D9pMwUhZ7C/MJhc89m7j94P0XeIt6x8B2EXKFJ53rf4vedPhnHk9UH7t8PtiFSjP37RaSluoT4wq67RXpz7rXHP87pQi4B//q06ND1FcOV3xBE1vQYJHsEMcmq+ApVjdVjfYVirObFhONA+0Yws4JUNe9Y+jw9JLILIDqbW9cIsgXhWTt4SDj8PHk73Pq3yY1pvkIx/tPyjDAjqJ1Yy5+AXfcIYQyAdT+C63544vcQLB9rwgqWH3PTU8GrhHsEXn9mDU19CdyqjKaI0ZfysAefS+XTV87h248eYEZpgFhGx7IdeuJZHPvEVXYlSXwF3QolQTeyIqPJMhfNLkWWJWqLfHz3liWT9tt40KT10CqGolmiEpSHM8woDeaP6XNN/FWmdYtkzkRCpJMVSaIg4OZTV87lD+vbaI9m6E3k0GSZxTURHAe6Y+NrFcd6MB2bkB29CiO2HOQstl4EyCBlkX0HkdUEZmwZmmsIyddKsauGBSUL2No2DDkL1SVx49Iq+hI52oeTDDmbiekx0sPzcZetRpKzIBuQaSDbey2OI8gcR0ZWcyypVYn4be57/7n81z+eYHNrHDW8C9vwoZb8G1DI9V2I7IqjBBrRCp4fs2sYHcE9yWeyLMl0JjvFiE2ogc5kJ0NZ0RPg4GDaJvXhekp8JZT4SjicOIyDQ9gV5iPLPsLT7U+TMTKkzTSXTruUhJ5gWdky5hbO5YFDD5DUk/Rl+vJmBt/f8n0+f9bnJ3nYHg2Ptj7K422PA9CR7OCzKz9L2B1mUcmiKbcv9hYjI5MxM7hkF7qpkzbSbO/bTomvhJkFM1lYspCFJWPSnJqicVndZaysWMmmnk2U+8uZXzSfIm8Rfek+ZEmmO9nNX/f/FYC3zHsLKypW8Jf9fyFn5Yjmojx1+Km8OcKR+F/TTC6bL0TwjbRouLENwAUls+Hiz7/01zPUAqk+Ee2lBgRRdW4Rc7GRaYIsAiUQKIclb3xpr23PvbDz75DsBT0tmpbO/yTUnS3IV/ONzcaOr2OXL4SOjSJr4Ngi4q0/b/LxV71fpJ01//FVsEZxEk16AKx8n3gfFQ1mXXFy+54AXiXcI1AZ8fK1Gxby5Yf2sr87wUAyx3BKZyilc9+2TqoKvAymcoCE1yXjVhViJzGz6Tjg1WQsR8gZ5kwbWROEeCzs646TzFnII0b0miLz7vMb2NkRY9m0AspCbtK6ic+lcqg/yfcfbwTA71JZNb2InKmzqLqA0pCHD79mFpfOK6O5P8nzzUMU+l0ksgZ/3XAyg/fHvl4zMT7dY6CGt6J4ugEHV+EaFMmNbfnoT6qsa/FTFynF70ty8ZxC3rxiDh+/ewdDbCGubsCWHVzFvYz2XstqDNxdyN42UGJ4yh5Fkk2s9DQOdM1kYX2KuDHEz2++ntf++u/0ufqQNAlJkrBtBVfRBmzDhadgM7LkFipcI8bzJ1uxVlAIaAEyVoZoLko8F8ejelBlFcmRUGWV+UXzmR6ZTrG3mL8d+BuWbeFSXLx38Xu5oOYCDgwfoCPeQWu8lV/u/CVlvjIORg/SEG7AsA1UWSVpJHErbqYFp2HaJv3p/gmE2xprZSg7xMLihZN8YdNGGsdxyJgZotnopHtY17WOllgLK8pXMLNgJkk9iU/zEXaHsWyL+nA9P97+Yw7Hxefj3YvefVSyDrvDE2Zuf3TRj7i76W6qA9U80/5MXhGrNd7KiooV+DV/fiY5oL0M9XstXaQkLUM05wy1nHjt8MVAQZ1QX4odFqSw7feiWzfVL+aLb75LeL/6CqHhotNzzmxcEHxk2rGJbuCg+H+yTwhUZIbgqdvhrQ8Lwr3482K0p2jGRMOBsz8ohCosXTS0HUs+0R08+mujWPg6kU7OxkRK+WSgeY6dcs/GhbnBaPPcSeJVwp0CEZ+LG8+o5ul9vTyx32AwqaMpMk/s7cUBhlM6Hk3G56hHNQc/GhxgOG3i1mSiGYPSoJvSoIc/bzzMOTOKSOaE2tT47mOAs6cX89CObtK6iUdVOLO+kHNmFHPOjGKyhsVH/76D/d1xzqwrZGVDIUMpHd20KfBrLFu0k209+0gEfcT1j1LgKWBprfi6aZmYR7vyjmeJ5U58nvS4kLOogb04ZgjbCIlIFAdJNikNSiTTFkO9Z2KbEQxbY3da1DY3HOzl56v/SaG3kJQcxx55GyQljT54AVpkEy5fN7aVwV3yGLK7ByRBk7Kni/6Oq2iXJIIrq3CrKrMjs4nqDqbSjWN5MAcuxdZLULxtmJlqwl6NrG6Rik1H8TWjBved8C1KSBR5iyj2FtMabxVzvY4lDN41HyXeEpaWLuUt899Cmb8M0zbxaT6mFwgVGxux3ZvmvIm3P/Z2+jP9SEi0J9upCdawqnKVqOtKNsWeYmYXzsawDWZEZjAjMjYnubN/J7/a+SscHGYXzuZDSz804TovnXYp/zz0T/oyfSiyQneym4qAsM/bP7SfP+/7M4DwtT3nK6LhKViD4zjotk59uJ6Hmh/KN261xlunJFzDNmgcaqTYW5yvnZYHyvPXI0syj7c9jlf1srJCSG9eUXcFv9v7O8p95Zxbde4Jve9D2SF+t/t3JI0kN8+6eULD12lHQb2YEc3GxP9fyJzr6YAnJEQnVJeI9IbbRPq1fKGIIOtOvAv8hBDrgMe+ICLTyjPgwsnNmnnMuAR6dorO49HuYyMnUt3halETnUrByR2Ea74v0tElcybKOJ4K3MEXpwvb1IVcZLIXDsWOv/0UeEUSbiwX43ubv0faTPP62a+fpPPaMpDix081oZs2li3StbbjEMsYGCMyUhIS/Ykslj3ZV+d4cBA2ef3xHImMScawmFse4ufPHGJ7e4zSkJtPXzmXsHcsUin0uzijroDauI/LFpTx5rPq8q8909jPmqZ+HAce3NVO1OygbUgRymuyyb7oNrweiVgux7a+bVxce/GE69nXHad9OMNphZzBytQgKVkkRcdKzsdU06haijNrLuKpwb3Ylk9INEo2yBkkycIxgwynHLK5LLY8H1dRDyYppMRZaE6EosJ+hrqvQAlvQZJHHENG7B7M5BykwG66sipv/8NTVAbL6dWbwAngOAFQdHAcJDkjomTAdhwcK4ytF2PrxcjeduTRJqpjhLqqrKJKKqZjsrx8OYZtMJAZEOpNqo9l5cu4bf5tLCheQNNwE/+z/n/wal4urb2UZzqeocxfxnnVIm324+0/Jp4TRvQODtiiWejyusuJ5WJs6N7AmeVncvPsmzEsY8IID0DTcFNeN7lpuGnStWqKRoGngAKPaFraM7iHikAFaSNNc7Q531GtWzoZM4Nf83NJ7SX8eNuP6U/388udv8SreQm7wkQ8EZaVTW2H9rPtP6NxuBHLtnjP4vdMMhS4fsb1nF99Ph7Vg1f10hxt5n82/I9YtDqwtmstl9RecpwPFvyr5V80x5oB+Mv+v/Dlc7583H1OGd4IXPlNoQpVNAPcQVIbN5LbfwDfmcvxzH0RyD7eLVLXkdqxf0sNihpnYQMsuAHW94poc9HrhbtNLnnqzVBHE6+wTHjyq4IIAyWisSmXOHqUWb0cbvi5SGv/65MinVc0XdSaj4dQpTAHeDkj1S/IFkZKCyePVyThrutcx1C5qLH9df9f+cKqL0x4/fG9PezqjIEDRX4Xt509jSf39XF4KI1Xk8kYNi5Vpi4oUmA72ocxT6K9V5MlHEl0BOuWTedwlsvnlfPgzm4iXlGr2t4e5YJZYwpAf1jfRjxt4FJlcoZNMmfyy2eb6U9kqSvy4wCGY5I10+zp78TtLaE6UEfQI5pyBjODSEhTurVE0wamdRqjWwBbwcENjgpIYIWwhs9HkmV2ESHkeBm0HMDEXf4AsrsPKzUDffAiJBwK/RpZI0y9+mYWVYc5PJRix/CzeN0GlunByZai+OIjgpiIRZAaRdai6Mg0ZywO9VyOrZhopQpQAVo/WngbSBK2EcbtGcDRINu3GEbkQhxLPe5fhVtx41bcBLQAIVeIAncBX1z1RX68/cdossZt829jduFsHjz0IN/a+C0cxyE8MgNY5Cniuxd+d8LxvKo3PzYEIi27oWcDF9dezBvmvIE3zBkbOdHkieligKWlS1nbtRbd0lletpzH2x7HcRwurLkQl+IioAWoCdbQnmhHkRRmRGbQm+rlu1u+S1JPols6hd5Czqs6L5+m7kx2EnQF6Un3kDAS1IZquW76dZxXfd6kbmAYiW6HGxnMDNKd6ubrG77OZ1Z+ZhLpjpI+CLJMm2lsx6Y33Ytpn1hpxqeOLTiOXHy8KPAW5FOguUOHGPrNbwFIb3ie8nNtVGsQzvnPqeuOJ4MD/4JtfxL+tKEqWHKrIKG+/UIUwjKg/nxY9QFxPaMzqLOuFApMx5pHHQ/bFo1NLh88+jnY+jvx70v+A6765th2bWtFN7Cli0i3fLFIWx8L7qCItm/8tViklC888et6uSNQBsWzYKARXCeQ2p4Cr0jCHd+AMdXDY3PrMI4Npm2TMS1Kgh4xi2s7WA5cv6SKJdVh/r6lg9b+5EmR7fQSP/XFfja1DpEYnd/FYd2hAeIZg+GUwbzKIC39STqHM1w2vwzTcuiLZ0nlTPxuFZ9L5Ym9vezpFFHaUFLnmkUVPNnYSpG/i9rqdhoPefG5FK5eWMlF8z7Ktr5tVAeqmVEwWbKt0K+hm8eK0U+hY9kOAhaOLYbZlcBOtGATyvBVeDUFXW3EHyjCCv9LzNQCshbFiM/H49QyvSQgOsOrw6w+0M+m7h3g6yA57KAWrBUjP0piJJ0Mju1CcfXjWEEcR8WWsuKezGLsgfPQfF3IWjFqaBuO5UGSc1jxMzFDG5B8TcjZMiQ1iuIam3N1nKmj3DmFc0gZqbzn6+zC2SwuXcyvLvsVpm3yq52/4usbv86h6KF85FkTqKEh0pD/vCX0BM92PEvYHeajyz5K2kyzs38nSSNJxszwVNtTtMXb+PYF36bUVzr5IsahIdLAl87+Egk9wRNtT/D9zd8nbaZ5vO1xvn3Bt5EkiQ8v+zD7BvdR7i+n3F/OE21PkDbSyJKMR/Xw32f9N4FxD9NFJYv4V8u/UCSFsDuMT/VxRtkZU/69gFgILChewH1N9yEh4df8PN/1/DFt80ZT113JLoo9xVxQfcEx73MUVzVche3YJI1kXgTkpYIVG/f56NmPve8wBIEH/xM+uHmikMPJINEjxCkGmkT90RUQnbzzXys6bkelVFvXCsId38WrqOIr3gXrfyYaj1a8S9R7j0SyH578kqhBRupg612CfCUJdv0Nzny7aAgDcQ53QLjlWCZc/LkT7/IOVx1dzer/KhQVLvmiqJ/vbgUeOOlDvCIJ99yqc+kr7SNtpLm64epJr5eG3PjdKrZtUxZ08/0nGumJj3Twpg0Gklm+9q9udMMikTPQZAnjeF58iNGWaxdXcFZ9EW5F4sn9/eiWjVuVaR/K4HYplAQ1FlcX8FyTKMrv6YqRyApj+qG0zrkzS7jxjCqeaRxTv/G5Vb503QLekyziB9vWkNQz/NcVhVxVf4bwvIW8Hu5U2N0ZPcb87amKYEiMqkKBiZWahWOGCRasp9D/egq9VUSjBjl3z8ghhQyjFtpLNlrAc002M8r8xNIGTX1R5IKnkWQdJBvH0XCMAJo/l78eSTaxzTAoabB8GNHl+SuxMvXIdoRAyW5cbjfpjJecESaTKkc2l+MueQItDI4j5Qkcjv5sMS2TC6sv5KLai/Cq3gkliUPRQ+wZ3EPGyEyw1Eubac6tOpdrGq4B4Jc7f0lLTCgo3TDjBr5zwXfY3redzz33OWK5GAkzwc7+ndz26G38bPHX8N7/FMgyBbfeilY2mYBDrhAhV4id/Tvzxge7B3YTzUbzdnbjya8h3IAsydiOTYW/YlKkuLF7I5qi4df8zI7M5uyqs2kcbqTQU5iXZzwcP8ydu+/EtE3ePO/NvGvhu9Atnd2Du3HJLurDx67FvWX+W8jsyJDQE7gUF3c33s2b5x1D/GAEbsXNTbNOUoyga7vwnS2e+YLGeLyLFuJdupTcgQP45hTgCo40Gpo5EWWOJ9zunUIW0hMWJDnamWuZYh51uFWQpKKK6BJJ1GhzcfHhG535LV8gol8cETFOBT0Dz90hRpdibeJer/uRSPOOR8szYw0/LavF+BCMKLa6JxJ59XKh6DTQCNMvhsCxF36vCCiqSOtrvae0+8uScDdt2sS3v/1tnnvuOYaGhigtLeXSSy/lM5/5DDNnvnCjY7fqnlIIHeDxvb1oskxDiZ/24TSd0QxpfSIdPbyjG1WRsR0H0wJJOj7ZqrJEwK3ymzWt/OAJ0c2nKcKKzrBsigJuMrrFpfPKKPC7oUvs1xvP4jhiVramwMeyaQV4NIVL5pSSypn0xnNcuUDMi1UEKvjK2V8hY2UmzTMeC3c81njC254cRglaAkfGNorIxFQ+8NrpPH+ogANtTeh2CMfOIkk6OC5Ubyc4G9AHL6KpN0lbtBNsDT1zJZJkIanD4PhAspG0BFrgACBhWy5svRRZi+PoIRx9onxeSeU2zqovpyB4KU/tztEZiyAhTxgbkKQTG+9qibXwk0t+QsQT4fnu5+lMdnJO5TloikahpxBFUij3l9OZEubeEhI3zbxpQmq4N9074fvvbf4eDxx6gJyVw7IsHMfBo3mE482/f8ZlTeI6o3ffTckHP3DUa7uk9hK29W3DwaE2WIv3KKLrDZEGPnHmJ+hOdrOgeMEkjeOmaBMD6QHiepz1PevZO7SX2lAtfem+/OjOwy0PM5gRYgQPHHyAT634FB9Y8gG29m3FpbhYXLL4mO9jsbeYunAd3SmhgLSrf9cxtz8RZMwMjcONVPgrxjIDuQQ89x0RJbZvgGDFZCI6QUiqSvF73i1+iHXCP94hCGzFuyabD2z4hUirpgdEl++1d7CtdxvRLb/hnO4DuIZbRTOS6hGRa6BUpFUW3yrqtBVLxHGqlsEVXxfnqVwy+aKGWuD314narySJ6DiXgIc+ImZaQ5Vj24bHlZRK5ojO466tYlFw6VcndggbWejbJxqzyv4XO7P/P8LLjnDvuusu3vGOd2BZFsXFxSxcuJCmpiZ++9vf8re//Y0HH3yQiy+++PgHOgU09ib460axYh1O69QU+mjqSWAe4dBuOqBKjKVhT+ApXeDTMCyHRNbMb27aDmG3Ska3mFboI+xzcds59eQMm6beBEMpnTesqGFbW5TNrUO4NZnigEiHq4rMjWdMbp/XFG3SWMjx0JfUj7/RKWHERkEyxIPEcmNkC3nXXZsYzpiowT2oRiHIKVAkHMuDI+l5yUYQNW5ML+ATLUVGMYpi4KhR5OHrWFXsZU90G0PWXnAkcgMXYCVnAiMPPymHGtzFovosDf4z2XnQS7FlMEwPlmcPrqLt6OO63o6aMRsX3Ds4HE4c5pnOZ3jq8FMAtCfaefO8NxNyhyj2FnMwepC6UJ0QwlC9nFN1Dlkzi0cV9axrG67l7sa7CbqCXFRzER94UpCoW3FTFa4ilovlR4GWOtWMrsAk9dgpy6sarqLYW8zh+GFWVq7EPZU+7QhGLe6mwsqKlWzv256Xphz18O1Mdua3ibgj+e/DblGjVmSFM8unUAo6ChYWL2R993oky+IyxyNEECqOTdRHg2Vb3LHlDjqTnWiyxkeXf5SQFuJAzyYqzBQ1kgvbcZBHdKVHYTs2ewf3EtACFHgK2De0j7pQ3SQJyUkIV8F//AMGD6GHKtD15IS0PJKMPnSIP7ss2jv+TfBf7+Hh6F6mJfrZmTP4r2xS/F2oHoi2iZpssBxwhHMPCIP67h1CK/loTUWb7hQpaRizF1RdorN6/U/hsq+ObVu7Es77OMQ7hJCE5hWiHlPpOzc/LWZ8ATb/VrgbnapT0qsAXmaEu2fPHt75zndiWRaf+tSn+MpXvoKmaaTTad797nfzpz/9ide97nU0NTVRVHSazY4BfVwx1qXIKJJEachD1rBIH2EcWxXxcngwjXmCohepnDEpilBkobBUV+znsnnlXDSnhMODaYoCLr58/diKcmV9Ee+6a4iuaJavPbKP269bQG3R1M0iwymdzmiGGaUBPNqxH84DySybWoepLfLR1Dfmv+pWJAxrVObxBapOwUjjlPioObbKYNpEcvWjhDbhSBayrGOmq1E8vTi2jBFdPHJOG8zxzQni/JblAaucnA4zI9P56c2v5Yrffo3OzEEcK4AgW6G5LLv6UV0xDgz0sP/QVg63z8BxJAoDPv7r3Bv5e+cGOiY+f4+4dsByg6wDDpIkUR2sZm7RXNZ0rclv1pUUhLipZxO96V5CrhBdqS6mhabRlezizl13Uhuq5ZNnfhJJkjiv+jyWli4V9U6XnzmFc1jbJZSllpct501z38TarrUsK11GlRkgqtzDkD6MddXZHKvncyAzwHOdz5ExM1QEKvhXy78IuULcMPOGY5Lvkbhu+nVU+Cu4p/EeorkohmWgydqE0sSNM28UEo+2weV1R3FsOQ4WlSzicys/h7rmDoq69kPX10S0OOPk/XPjejy/IMhZOe7Ycge7B3ajyRrFHokZyT58QKLzST5YsTAvV/mz7T9j18CufIpdlVU0WeOTZ36SHf076Ep0cGHOpEFy48y9jhYjJhZWPfvhue/QKln8RE6SKZnFedMupipQxayCWZSufA9PtD/NGpeJIct09q5Hk12YksQ+TcHWvMiaD5DEfOdwCzjm2Ixq905hCwjCuaZy6dRjSZGavE80qkcsWNIDgrytKbppa84Exi2KjmY9N55cNc+YLvOrOGW8rAj39ttvxzRNzj77bL7xjW/k/93n83HnnXeybt06Wlpa+O53v8vXvva1037++ZUhLp1Xxs7OAVbNkTnYJdOrN6K4QmCMffhcisSFs0t5dHc3PXExGnQ8GBaEvQqKIuE4wrtWUWRmlwlCiWUN/rG1kx3tUWRZ4sOvmYlblVFlmcbeBLs7RbPGcNrgUH9ySsLti2f58kN7yegW1QVePnf1PFzq1IPqA8ksr//FeqJpg7Q+sTs0N0mm8lSIdvQYow4/E4+T7y7GwjYKMIYuwLB9SO4uUGNgFo3bf/z5pZGIWcFyZH72zCGe2t/LH277ON97ool/D/YQH7G1k+QcSCaS9xAD2X7MVBe2VAW2n8GEzZ1bHoECXYz3cJQOWQmwwiAlcMt+PrT07dwy73V4VA8X114sfGgdOy/2MJrKL/QUosgKlf5KNFl4Frcn2kkaSYKuIDv7d/Kb3b/Bdmz+Y+5/8NVzvspDzQ/hVt158rpx5tiYx/rLqni0ZRc0/ZJb5Fs4v/r8SZeaMlJ8fs3naY23Uu4vZ3PP5rxOskf1HFXF6Wg4s/zMfLQ6kB6gLd5GpX8sPelW3Fw7/YXLGpb7yyE5IkoP0N84JeFu79vOnsE9LCldwvyi+ZNeD7vD1ARrWNe1jqSexKt6yVpZYtko7WaabQ7IskJh9zrKG6t5z4zXsfORD1LQu5VYpBilsJ6knqQ6WI1hGzzc/DCrO1YzGGvjn3qaO7M+5Mc/j6K5+HXNAq5PZ5k70MI6v4cKVSGuHubXsV9TG6yhL93DispVlNWvIt27AV1WMTUXUi6FaVvMMkzkudfDa74o5AyHW4VghOYV7kMwVl8F8d4cLXO14t0w1Artz8O8G2Dpm0TzlJkVdoCnirrzhCRjtE24Dp2qjeCryONlQ7jpdJqHHnoIgPe9732TXne73dx222188Ytf5C9/+cuLQriSJPHaM0rZa/yWf3UdpiOaQPUppHquRpJVHNuNLMGCqhBn1Bbw5rOmcf2PnyOWPf5Ijd+tEvRqXDi7BFWWGEjqaIrE4Eg6tyLs5lfPtTCc0ol4Nf7wfBv9CdGoVRnxEPCoJLMmluMwv3Lq+mxjbzLv79sxnGEgmaMyMrZ6Xd88KMQx6gs5PJQmljbIGBYZ4yTarE8TbL0UI3aG8LPNVGLnqoREo+lC8bVgZSWEycBE8tfCm1CDezGzlRgDF2M7Cvt64rztt5swHQcr37xm4jgOrtAWJDWNZbmwHUnM+goVa4YTGporQDhkYlkWCSOV3yag+claWWRkcJs4kkbAJePIFu95/D3olk6Rp4jqYDXvWvguikdmDct8ZUyPTMd2bK6bcR0pPcVde+6iL93HrIJZeTWlZzqeyY/BPN3+NCsqVnDdjOuO+n7t7N+Z/35H/44pCfex1sfoS/eRMTN0JDomaCT3pfr4zqbvIEsyt8699fjp0nHImBl+uO2HDGWH8Kk+Pr3y0xR6CulP9yNL8iRjg1PCzEth9z8EqdRPvrf2RDt37roTB4eN3Rv5wqovTJK2zFk5BrODeVlNQzdwKS6SRnSsjONYDOeGeaTlESp33E3ZwCFmInP9UC87ZC8+byG9epJQoJI1XWvYM7AHl23hkWQeyXbyWjNLgW1yTcdudgYizM0lWGEmySgqLbrOgUgBVmIbBbYBBmRmXE5NsJCORAefVcuYsfufdCpwTs4WhOYrFA1J2/8s5m5nXyVmfwHK5ommpe6dwht2fC12PCQJrvz6xH+75AtTb3sykKSX/2zs/zG8bAh327ZtZDJCfOH88yf/wQFccIEYG2htbaW7u5uKiorTfh2dyU7WtzWTypmkdRO35EHz9GKk6kCyUVUdW1YoD7upK/aT1o9NtjLwtnPreO8F0xlKGcwoDaCMWAtlDYvVB/rxuhQKfRpDSZ3BlE5fIkfasJhREqAnnuVAbwIJmFbs5+Zl1ZSGpp5rm1UewOdWSedMagp9lATHUogH+xL8/Nl9OJg83zzIx14zC8txjnr9YY9ylIXEeAI8Ub3lqWEmFmEmjui6dDycVX42axOjqbDxx7FQfM1Y6Wk4Ug6UpIg+kdjfe2ReWAHbhz58Noq5C8XVhWVEkBw3SDaKJOEy5lNkyVwwLcmC4GXc/q814N2GT5pGXW0rnckOLMfCcoRwvibL/HrXr7Eci5SRQpM1SmOlTAtN49a5t5Kzcnx/6/fz3rN/2vsnelO97B7YTc7K0ZHoYEHxAm6adRPVgWoODB0AyEehjiNS1lNhSckS2mJtKLJy1GYkVVYp8wmFJ7fi5sPLPsyTh58k7A4znBumPdEOwH1N9/Hexe/lgUMP0DjcyFkVZ01J4KPoTfXmSSxtpmmLt7Grfxd3N96NhMSb5r2JsyqOISZ/Ilh0CzRcyKCZod/KsGbXr4m4I7x2xmtRZZW4Hs93fVuORUJPTCLcgfQA8Vw87wFc4i3h/OrziW9azz/VPWQUO/8+xXIxhvU0BZZY8Ia0IB/PSoQyw/Rkm1kzu5gN8XYcHHQJyh3QJAVV1jBwyKlu5mWz4Aoww9KJBaspcvnYbeU4iEOp7XDBUDeNLj/fXDYy29q7D/Y+RoORFRZ5o13I864Xna+WMVa7HcXca19ac4RX8aLiZUO4Bw6Ih4/L5aKmZupGjunTx2TB9u/ff0zCbW9vp6OjY8K/7dp1/C7IQncZhu5DlhIEtQgRaT7zF/axY1cN0YSJbqgcjvZRVaTz89UHOW5wKMH5M0so9LtpG0yzvyfO/ErRYOLRFK4Y6TBu7E3kdZIVSSKaNjg8mCKaMagq8FHkd3Hx3FLesKL2qKcqDXr4yvXz6YpmaSjxo42Th9w70Egzd+JgUGydTXe8lkR2chq10KeRNSwSxyXbE8GJpKInEnNAC7Dj8JFv6uhxZPThVThmEMc8ehe27OlADe7BsVWs1HRk2cTO1WEmFuJRVRwJFEnGJat8+vw3csGsEt5850ZSw3ORonOwVYfBkp3E9BiO4+DX/AS0AG7FTVJPkjbT4kFs60RzUXYPCC/YhJ7Ik61u6TQON5LUk8T1OJIkIdsyT7c/TZG3iOe7nsen+rh82uXUhGr49HOfRrd03jLvLVPOrg7nhsmYGULu0ASLuuHsMJt7NzOcGaYl3kLGzKApGvOK5lETrOGzKz8LwE+3/zS/j6Zo7OzfyUOHhFxje7ydeUXzjmqGUBmopMJfQXeqm7A7zMHhg/z1wF+xbIvKQCUbuze+cMIF/tH1HE8efpI9A3uQJOGn9dThp/jOBd9hbuFclpUtY+/gXpaWLqUuVDdp/3J/OQ2RBlJGipSR4qZZN/GG2W/AbngL6gOf4HnpEDmvRs7Wcatu/u4zuTTtwicp7CmdxvlZF61d21jtVrnv8GPENTWvKFZQOJtrF12Me/tfybn9VJzzX1Su/5no5E0PEnaHCHtCfLJiCX2Hn8MwBhgurps4DVE2F974N2h+SjQslcwad/FHGfd5Ff9f4WVDuENDYgVdUFBw1FV+YeFYJ93w8PAxj3fnnXdy++23n/R1FHgDvLb2/aw7vJeIp4LPX7mcnGnxrqb1xJIiAo8ngnzx/mbWNsWPczRhx/eH51s42J9i3UEx//ams2q5eE7ZhO1mlQU5f1Yx/9zehT7SzWw7DjNKAxT5RaQ63n7vaIj4XER8k2stw/YeQl5I5CQ8wf3oli1E+8dBliDoURhKn5ps2QuFhM2v3rKKN/16Y55ig26VeG50YSBjZ0eH6ZUJe47BxFW0GkkykZQ0kpJGdvVhZ2vQZBUZBY9LYlZZCE2R+cfWTv6ysZ2UbiJJNoaTxiFNYsQkXpZk4UebEalov+onY2ZEqhkIu8LMjIhRtWJvMSsrVrKhewNV/iqe734+P/4jSRK2Y7OkZAn/aPwHDsJM4A/7/sBwbjjfIftQ80OTCFe3dO5ruo/+TD9qSuWpw0/xxrlvJKEn+NqGr7G1dytZM4siKwRcAXJWjt50L3/e92c+fubHAXjjnDdy/8H7kSWZ1854LT/e9mOaok0okkJDuAHpiMVRS6yF5lgzfs3P9r7tzCmcwy2zb0G3dH649Yf0pHrImBlSRoqr6q+iNdbK5p7NbOvbxoyCGbxtwdtO+vf/bMez9KSEspXt2LgVNwOZAXYO7OSsirMmHLM51sy9jffid/l509w3EXKF0BSNj5zxEXpSPRT7ivMiHUokwoduvQNtx8/Z2L2RMl8Zuwd202XEuTMcRJEUQnaa1rSDblhs83mJmTY+TUbWgpxTdQ7vIox//yPgCRFZciuRuvOEZGH7RjEnG6oCxYXqLaCyZQXoSaZNv2SyylL5fPH1Kl6ReNkQ7mg62eU6emHe4xn78KbT6WMe7x3veAeXXz6xc3LXrl285z3vOe61/OdFC7gpOp2Iz0XArRJLG5QGAhwezIm6oOoilpbyfrLHQ3WBXwhY5Ew8msyBniQXzS6ldTBNgU8j4nPx8M5uqiI+rl1cyd2bO3CAVE548d5yZg0lQTdn1BYc91xHQ114GnXFovFrXtFcNEUm6FGJZcaiXNuBtqE0k5qUXnRIuBWJT10xh91dcUJejWjaQJbg7efWc+HsEn7ydBMeTaYzmmXr4RhHjbYlhDYz4DgKmqcfv1RLifc1tCUUCnwuysMe/G6VWEZIZVq2g2k7VNSuZyDbTTjSjiyDBw+yJAsykxSyVpaMmSHiiWA5FkFXkOunX8/rZr8OEMToOA41wRo0WSNtpnEpLgzboD5UzxvmvIEbZ97IZ9d8lpSRYjAziF/zo8oqveleCjwFFHuLSRtp3IobZUREQZVUErowdzBtk+GcWAx0JbsYzg5jOiYWFjji9VHyHN8VX+ApyBNWzsrRneoWPrzZYerD9RPqsJ3JTu7YcgembdIYbWRGeAaKrFDiK6E2WEssJyJ/j+KhyFuEX/PzrU3fYlPPJgDWdK3Brbi5de6tJ/UpCLqC+Znc0Xsochfl0+Tj8ce9f6QvLXx6/7r/r1QGKqkN1rKoZBE1ockZsqHsEBs61+KLddKe6CZhZ9BkLe/GVBms5kE9QLMnxrCeQnZJoPm4dsa1fHTZR+Ghj44drG+/SAOXzhVfR6LhxBSzXhAcR4hceCIQeoGltYGDwqs2UCrkJE9yrPBVnDheNoTr9YrVqK4ffSY0m83mv/f5jq2hWlNTc9TU9JHY3DrEXc+3EXCrfOjiGVRGvFQX+BhI5tjRHmVmaYB3nlvP4cEUqZzJwqowjf2JCWNEx8K8qhA/Wr2F4ZRNwBXiXec28PNnmvOztVcuKOf+bWKsJJkbI0AH6EtkuWRO6ST3oJPFBTUXEPFESOgJuror+d3aVgp9GqmsyZiq41RKUuP/7cUj35zl8OWHDyBLQuSjusDDT289g3mVYfZ0xXnfa4r50ZZfEdUTFIRWEkuEsZ0p3hNHxRg8GzW8DUVzCGdvYEHpLOLZNMWle1kx/zDXVr8PRfKxtW2YbYejKLLE65ZV81hrMT2DXgaz5cyoSnLNvHm0J9vImBk29mwERPdxyB3iY8s+xvLy5ROyMU+3P80jLY/Ql+4jZ+awsfGoHnySj+9f+H1qw6IccF7Vefxg6w/IWTkUSSFtplEkhaUlS/G7/PzX0/+FhMTHln+M2YWzkWWZc6vOZe/QXtyKO++0My00jbpwHb3pXrJmljJ/GfOK5qFKKgFXgBtn3kjaSOcXB6NwK26qg9UcGD6A7dg0R5tpj7fniaor2YXliIjesAwM20CRFQzLoMhbhKoI0wa34mZGZAb96f6RWvdYGWK0Xnw06JZOZ7KTMl9ZXuVKlmQKPYX0pnqRZIlSXymzimZNqVilSGIxYjs2q9tXU+gR2a8PLPnAlO5Bz3Y8y41dB6lNDZOTJH5UWEi/N0jOzNEQbqDIW8TSOau4aA9sMZsZLPeSnDePN88dUb6afjFs+4OYlZ2iqeslg54Sc7cHnwDbEoIVF3xicu33SGSGhXSkZQpP2fHm6s9+S8zsgjjeC22U6m+E3feIDMAZb/n/R0v5NOBlQ7gFBSJ6Gx4ePmrzyGjaefz2pwN/29ROOmeSzpk8squbd57XQDxr8JWH9pLMmnhdCqZtk8iZJHMWa5uHjn/QcfjMvTuxcZC1KN7AFixnMZtbxTFyhs3erkR+W69LwavJ+blfVZbY0RFl2bQpBtOPgYHMAPcfvB9N1rhx5o0EXcF8s82P9jfRGc3QG88xUUL5aI1OJyPp+MJgO5AxbLqjWb757wMsqy1gT1ecLulBYvZhFEnCW7wZv3IdvbHspBp6WcjNqpkrWdthoulhvnLVa1hYFeatD34c07efDb0GjmTyrfO/xRm1BUJZTJEYSuls2jMD2zEBhUMJmcPeGr5+43swLIMN3Ru4/+D9bOjZwHBumC89/yVeO/213NN0D5Ikcfuq23ng4APsGdwDiKi0xFtCsa+YJaVLeL77eZJmkgJ3Ad/Y9I28q1BPugdVUnFw+GfzPyn0FNIWb8NyLL78/Jf56Wt+KvSWl3+Ujd0bKfGVsKBYzGh7VA+fPPOT9KZ68WreCbKLAGs71/LLnb/Eo3p46/y3cnblmHXbW+a+hd0Du3Erbryql5Z4S55w5xfNp9xfTk+qh3OrzsWjeqjwV3Bu9bk0DTcRcUdYXLKYrJnl5tk3E9SCrO9ZT4m3hLgep9hbzBvnHN38XLd0vrP5O3Qlu4i4I3xqxacIuoJISKRNoe+syirVgep8ZD8e2/u2E3QFGcgMCM/ecUTfk+qZknAr3QUU6QZZWcUra3y2+krWFVVw2bTLGMqJ7uslpUuwF97A8myWpE/Gr/nHRGTmXiPUqWQN/CIbkDWzxHIxSn2lRy2DnXbsuU+YCvTvF2ND5QuFOMXxCHfr7+HwevG9kRbjSJlhaHoCou3CdECShETleDiOWGgMHhSjQXXnHP8a13xPHBuE8cOim0/+Pv8/xcuGcOfMmQOICPfw4cNMmzZ5wPvQoUOTtj8dKPS7GEqJyLoo4MJxHNYdHKA/kcOrKWR0i3jGIHuK4zNiTlfD0gvIOcP8+KmD2I5DyKuhyjJXLiynKOCieSDFRbOFQ9BzB/pxJOhP6ty/rYvF1ZGTinL/tO9PE6za3jr/rfnvL5tfzv3bO8eN0LxUGKdTPELgR7sClyrTNphGkyViGZNe08HxWPhcCkFXgGUzS3hkVzfRcSnxaREX77tkFq9dWsrvdu0jZcapr0jx6X8cpqWnGjWYIFJ0iK29W/nI6o9wy+xbuHbx2dy9uZ3vPdaI7UiAeMDmDJuHWv9O7sm7uW7WJVxYcyEzC2Zy84M3o8oixfvLXb8UKVxJ4gvrvjDhZkzHpDZUy6dXfppvbfwWT7Y9mR8DiuVENDE6K5pyUrhlN5Ztia8RApElOd+o5Nf8XFR70eT3SXFNmUKN5WJ8Z/N3GMoOoUoqj7c9TtgdpjnazJLSJVQHqjmr4iz2D+0n7A5PmGv1aT4+s+IzJI0kIVdoAplMC00j7A4Ty8Wo8FcwMzITn+bji6u+SEJPUOgpxKW48t65U6Ez2ZkXConmohyKHmJJ6RIuqLmA7f3bkSWZaDZKU7SJ19RNnMftTnZz5647ieaitCfamRGZgXtEUrHcX87y8qklGy+sv5KuaffhGjhEga8EdcnbWD6+aWkEss+H7PMRmeog46LC/nR/3m1pSekS3rnwnUe93xcFnrCIdiX5+GQLIhrOfz/yN7P6G2L+1xl5rlUtEwuL8WhdA/sfFt8PHBQE7zmObOx416cTdIB6peBlQ7hLlizB6/WSyWR49tlnefObJ4uYP/PMMwDU1dWd1pGg9104nYd2dmFaDqvqC/niP/ewpzNG+3CairCXBVVhrllUQctgioFTlkGUwFHIDV7IHjuOIsPc8iBnzyghljEYSunIkkR9sZ/pJQFa+lP0JbL43Spd0QxNfUnmVpy4PrIxTmHGOMK7cXZ5kO/dspj3/GHLmCkDMDGSzSDIZ7JoxanBRvZ0Iru7hBhFcjnnz6jCMGFt8wCWPdK05VawHXBrCktrI8wtD3HXulZkzqLA56c8oFGpnMO/dvcQy5jiqiQhtenzuFlUFeaxtsfYPSQk6T7+4D/YfmAejjQXI1NBKNxLdUSYwT9w8AHOrjybfd3x/B2Ocqbia8XxNLK5w0XG/jtberewoXsDCT2RT7eOQnFEenN6wXR60j04OLhkFw3hBn645Ydi/EeCWDYmaq0jsLBImqKrOWflqAvXcWHNhfx+7+8xbZOsleUfjf8g4ApwTuU5RyWTqdCd6kaVxJ+36ZhYjsXPt/8cB4dnO57lS2d/ifcveT+9KVE7HpWczN+TrOTlGscj6ArymRWfoSPZQW2wNp8ODrvDU24/Ho7jEIvFcGIOVwavxLItZEnGNeTiQPQAZXYZ76t6H8PZYaHjr3gIxoNs3LWRkCuEIiukjBSX+i8l68liBA1hbShpzCqchSzJ9LT10EPP1Bcw9+Ok9SRR1QVRCaKTvYNPFAOZAc7WzhZ/IinYf2B/vuZ+0tBTQl7REz5+/dS3HGaUCz9Wd0h8pT3QdJx7Kb4ctHmAIxq8mpogsAL8I4pT/mLx721dE/dLu6B6NEKVoLXj+Nc4+/1CalLRwFtz/Gv7X4IkSbjdboLBIOFw+CXJUrxsCNfv93P11Vdzzz338Itf/GIS4eZyOX73u98B8PrXv/60njujW/xx/WF641l+9NRBJAniGROfJpEzbT5x+WwiPhc1hV7+86/b6Ypmj3/QCRh9lKtIVgjTsTEs2N2dIOR1cffm9nw9eFdHlKsXVVJT6CWtW4S9GpoiUxw4cVk+gNfPfj1/PfBXNFmbUmHI51KZXxlmMNk3kpYdJZBR0j19dReXDKarE3fxkyAb4IA73Mq0Gcv4wjkf5fG9Pfx5g+gUnlcZ5razpzGY1FlUHUFTJA6M6Eq7lEu4rK6MP284TFq3kCWR8ZIlibBPI+LXSOZElDiK3U01QqLSUXH0Yv5j9rvZmxD6xyXeEhp7E1RGvHg0Bbcq43MpSBJkZTdel4LjwHA2zuaezbQn2ieRrXjHHM6vPJ+FpQvJGTkGc4NcUH0Bu/p30ZZoI2kkkZAmkO1UmFUwi21922gIN9AUbSKtp3ms7TGqA9U83f40b5zzRl4383Un9GCvDdayoHiBMIR3LIrcRQykB5AlmYwpHHr8mp+KwMkvXAOuAHMKTy7D5DgOXV1dxONicTM9NB0bG1mSkSRJNJyNGC5UBaqEbvZIF70kSZi2iSIr+FQf0yPTxe9hpPSkSMok2dQpIcvHj85OEAXuAvyaaEIc1Zs+JdgWIBq0hNuQemwLPFmZWt5xPBxHeNg6jiA9WREqUUXTJ25XMlfM/krSZOOFUXgLhEWfbQunnGNkLvJwB49uUv8ygmVZJJNJkskkqVSKysrKF510XzaEC/DFL36R+++/n7Vr1/LpT396gpbye97zHlpaWgiHw3z84x9/Qedp7E2watzPf9l4mOaBFJZlM5pldQDLgWpZ1Pfu3tzOL545xEDqVEdmxC9yVpmfA70psYIfkV3Mmpb425AEwZ87o4hZZQG6hjN4XAqLayIU+DS2tA1R6HdTX3x8AfGaUA2fOPMTGJbBuq51aLLGWZVn5R8MJUE3HpdCgd9FLK2PyDmeeneyjPi7PVIVUpMlQj6NrOPHdg0iKaILujY8jb5cC0kjySVzy1l7cIhDfQl6YxlUWWZ53VjN+gvXzOOxPb0U+DTOnlHME/v6aBtMk3YcIRypyOBAImNiWjaX113OYHaQRzfL6PrYH35RQGNpdSF9rcWU+cs4u+R6vvXofhwHlk0r4OpF5WxsGcbnUhhOV7I7ZlJRHOeC6fX8auevyJiZSWQrIeGSXdx/6H4ebn2Ycn85t8y+BZ/q496D92LaJn7Nj27p5OzchP0mRMmSwoU1F/JY22OkzJSoYyoqmNCR6CBtpvnJtp+wf2g/X1z1xeP+PnyaUIT63e7fsaN/B/uH95M1s/g1P2eWnzll5++LgcHMIH/a9yeCVpBlvmUEvAHKy8uJ2TEM28C0TWzHxuW4cCkuFEmhwl9BXI+Ts3IYtpEvP1QHqycQ22j6fby/9Shsx8awRAfyKUeex0HOFNfnVb2nfo5sbMwuD4R7j/ICH8vpQchExfeyOjVBj5o9j44GvlQ16JcRHMchm83S3d1NPB4nEAgQDh87S/NC8bIi3AULFvCLX/yCd7/73Xzzm9/kzjvvZNq0aTQ1NRGPx/F6vdx9990UFx9Lvv342NkRm/BzMmdiWfYksrBs2N0V5+LvPvOCzjcKITAlM6ssyGAyi1tTcIBbltew+kA/ad3inBnFzCoLMq9y4i/+h082saM9iiSJFPiJNlH9ZPtPWNe1DidXQzA3yDnTFvAfZ9US8bn45GWz+dHTTTy6q5ucBScvbCFoWZXBpSn899VzKQl52NA8yJP7+ohmDKaXBPjxrUv5xbON/L29EMkJo2hJ3C6LhkgDAS1ANG3QMZzGrSmkdYuP370DVZF47/nTOW9WCcUBN7euHBP8+Oils1h9oI9k1mRT2zA502IwqbOgOszKhiIUWeKdC9/J1/788LgrdZg+czPf27yNMn8Zfek+uvtC9KQilHiLSeZMltQUcNn8sYjPcebTG8/xqQf/xXB8No5/GGmcc7AsySiSgmEbWFjk7BxtsTb+vO/P+Qe+7dh4XV6CriB22iZn5ZAkiVkFszAsg5gew6t6+cCSD3BBzQXMLpzN422PgwNZK8vMyEy29W3L6zHv6t/FQGbgqCIV4+FW3Oi2niepOYVz+Njyj+XrqzkrR87KnZSV48liVM1qhXcFhmVQUVGB2+NmIDEguqBtYerh4GDZFm7NjaZoFHmLMCyD3nQvtmPj1/xTmH8oKEwmOsdx6Ev3oVvi3sv8ZWjjhPct28KwhRnDCyFjt+rGzcllniZB84McFdGtK3DqBvYTcBzyzMaFucGoO9H46NaxR9JGL84i5eUESZLwer1UVFTQ2tpKPB5/ZREuwNvf/nYWLFjAt771LdasWcOuXbsoKSnhhhtu4LOf/SyzZk1udDhZ1BRMdMcYTuuTyPbFgO3AYDInMjiyTGnQQ02Bl9ctq+bjl80mZ9ojKc3JfzB7u0QqznFgX3fihAh3MDPIv1v/TcpIM9h6FkXuNMOxLjRF4rJ55fzgySaiGYNTGfvRZInSkJvpJQEkIOTVuOGMGnrjWTY0D3Hp/HLetLKW6gJR47vpjDoe2vdaknoGd7CD2dUzed/Cm5EkibBXY0ZpgIN9SdqH00TTBook8ZWH9/LYLDHTuG9wHzY284vmM7cilK9n7++J88jObsrDXm5eXp2XzRx9v8e9+6iBfXQn+/BpPvoz/aTcFjFrEbFolFUNZXnrw1FIksTfN7fTE5Uw1UEcR0KSJFRZzStQFXuLaYu15dPFhmPQn+nHo3hQJRVN1Yh4IoS0EIOZQYKuIPMK53E4eRif6uO/V/33BAeecn85B4YO0Jfpo9BdSImvhA8u/SA/2f4T0SAVrMmnMk8El067lJZYC47jcHnd5XmybYm18JPtPyFrZrmm4RquqL/ihI95MhitIwflIC7VhcfjyatIZcyMmGtXXKioeFXvhIWEpmhUBirzDj4nCtMx0UckG23HJmtm0VyCcC3boifVg+VYqLJKub/81NPBx4HjOCSNJLZjE9ACU5O7ogq3H9sWJHc6Ik1PRBC4bYmU8JHIDIsHiWOKCHvUWN7UIdE1sl8EfKffke3lCI/HgyzL5HK542/8AvGyI1yAFStWcM8997xox1/ZMPZB2tA8yBN7e4+x9enFUFrPC2bEcyY9sSwdwxnmV4X56KVHX0ycPaOIZw70oykyy+tObCSqP9NPkbeItJHBsm36YyoxKcU9WzrIGBaxjCE0mos87OlOHfd4AHVFPv7y7hUMJU1mlgbY0x3n8FCasxqKcKkyf954mIN9ohHovq2dfOgSocK0uW2Y2YUz2NrRTbSvhMfiAWb4u7jtnHpkWeJjl82mZSDFT58+yNoRRa7RuvYjzY/wSMsjAFxed/kEh5o55SGml3i5/9D9/Hr3w1xedzkN4QYAago9dKabkByNukohvxfXw3hVL6XeUgIujUDlIyiOj3SgjKfbJS6ZdsmE+3WrMmW+UgYsCRsvNga6LR7mMT1G2kxPchrKmBkyphBykQyJlJES0ZvqxqN6GMwOMi04DU3R2NG/YwLhbu/bzu6B3XmZyIZIAzfMvIGGSAOtsVaWly/PKyidCOYUzuHb538bB4evrP8KX9vwNc6rPo8iTxFZU/QiPHX4KS6vu5ymaBN+zU9VoOo4Rz1x3DDzBhwcIrkILtWVr8eOioRISHgUDyF3aMqFhCzJJ02IqiQkGUc7yMfbEuasXL4LfPQ6jmwYO12I6/F8R/ronPSUkGR4gXP2EyDLYyQ6FRR1rHt4fANULjHWzZyJgbfwFZFqliSxkB7tGXgx8bIk3Bcb3bEMuzujPLWvlzvXtpLIHd/t53RAhgnOPLG0gW07GJbNzo4obQMpaot8mLbDmqYBVEXinOnFyLLEW1bVceGsUoIelQL/idlkTY9MZ3nZcizTg1WQYqDLiynZhL0azrjw74xpxVw0u4wfr26edAxNkTCtEX8dCfqTOX7wxCG+fuNCJEliaW0BS8cpYKnjIkxVkdnUOkR/IkdVRKg2mYYHFQnbdtjQMsRt5whRA5cqM7s8yLvOa6BtKE1aN3njiG70geED+WMeGDowyRLu6faneaZdpP3b4m1847xv0J5o5y1XNPNE8xa8msyKqsWkjXouq7uM66Zfx66BXfxp35+QJSgPiDRST3pid6tpm9jB50ipSer89fTancT1sfdtVE/5WHBwyFk5ce+2SUJPoEgKfZk+0bTkr8C0zXwEp1s6Zf4yTEfUNm+eJTpEF5csPqppwfGgyAoPHnqQ1e2rAbin8R7etfBd+ddrQjXcuftO7mu6DweHN8x5Ax2JDmRJ5i3z3kJl4CguNeMwlB3inwf/iaZoXD/9+rwRe9AV5K3z30rTEZ2qpm2KxiicfMr4dEGSJMp8ZeSsHJqsjc3SIsaoRn1vFVmZkGo+3TDHjcSYL/Z4jGWIGVrNe/x0cKBMpJVlRXQ5j2K8/Z7qekWQ7SheqjnqVyTh/nZtC3ajxr7uOC/lKKp0hK6EA8Szwr2nrsjP7Q/uYVldIW5V5vlDgwD0xLLcvFzMWR7NdN60TR5ufpieVA+XTruUhoiI8DRZ4y1z3s/evZswhjJEvBKmbRP0qMyqjVFd5sbtlLGyoRCPqrC6sZ/9PQlGBbTcCiyuDnNoIEUsY45EJLCvO8Zdz7dSGvTwmrllEzx333p2HX/f3I4iSdQV+fn5ajE7XVPo48OXzOSnisSerjhel8rK+slp8QXVYe56+wqyhkXZiCvSmeVn0hxtxsFhRcUKAFoGUiSzJguqQhNIz7AMHjr0EI+2Psr+of24FBduuRhZkvnY8o/x9Y1f596me7m6/mq+ef43ea7jOe5uvJuAFuDCmgtpT7Tzm92/wbRNzig9gz3DmyHcTW+6VzyskY/bbTzhdz6SppccCZfiIqgFaQg3sGdoD5qs0Z3q5pmOZ7ikVkTWy8qW0RRtoiXWwvnV5zO/+PTo7o4qM41e0/Ky5SwqWUQ0F2VlxUre/MibSRoiM/H7Pb/PdyHff/B+3r/k/cc9/p/2/SnvfmTa5oS571HYjk3KOCKT4kDSSNKX7kORFHRLJ+gK5gn7VKHICj558t/LaBrZsIR135FpXt3S0S39hTVCjSDoCpIxM9iOfdyRqRcEU4d4p6i/KhqEq0cM6Y8CWRW2gEfCHRT7Wcb/iS7j/4t4RRJufyLHsJN8ychWAlRlJGUxxTkNyyHsVRlM6dy7tQO3JqNIMqVBN+1Dx9aMBljTuUY02gCHoof45vnfzK/YHt/bg2m5iPgscqbFh18zh0H5Ke5t2QDALbNvIeQRUnW3X7+AXz/XwubWIWRJGCGkDZu55SH2dsfJmhYSEoMpnSf39uFSZfri2XyUClAccPP+C2cA8PdN7fkho6cP9PHQzi68msKbVtbRUOrn4jlTp73CXo2wdyzyOKfyHAYGixhIZpkXmce6gwPcuaYFgHNnFvP6FRfTneymP9PPtQ3Xct/B+/K1u7geJ22kuW76ddzTeA//bv03AD/b+TPOrT6XSvdSZktllPs8lHrK+MLzn6dpqIlCbyHru9eT0lO0xdtEtIs9qUv5WFAlldpgLTkrR02wBlmWqQnW0J3szssYguh2HcXGno20xlqpDdayqnLV0Q59VGzq2URnspNVFasmpDCnR6ZTG6xlODfMa6e/ljlFE8d6qgJV9KZ7kZAIuwQ5OI6DTz26hGraSPO3A38jrscZSI912uasybWwUaJtjbUCgvhGR6wcHAYzg7hVN6qkMpQdwsFBlVS82lj6PKkn0S0dv+bPi12cClRZnbImnLNy9KZ689tU+CteUOTjUlz59PyLGkGZ2THxCssQ8o2nahbvOn2ZhlcxGa9Iwh1M5rB9L53puiJLuFUZ3Tx6ZLSlLUrQo6KbNsUBF1nTJuRRuXTemLpNd7KbQ7FDzCmcM6G5pDvVTU+qB5/mQ5VVkS4biWjCXhcSUF3gpSzs4bVLq/jvtWPpvabhprwX6rJphSybVkg0rfORv20nmtbpimXxuxUaSgNi9CZrUhJw5aPa3sTUjQa27dA8kGRfdxy3KjOc0nEpMhndorEvwfsumj7lfuNhWjZ/2dTO2qZ++hM6EZ9Ga18jNQVjJLC7M87btHretWgsRXpg+ABdyS4UWaHGV0ORt4hCTyHdyW4cR3TG6pbO59d8nvY+Nx59Jf0x+F3jJjLqARJ6gu5UNwsKFxDTxfjKKDGcKFRJpcxfxp2X38kf9/2RQ9FDLC9fzhvnvJH9Q/vpSnaxqWcTxb7ifA03baT58/4/4zgO3aluGiINnFt17gmfc3vfdu7acxcgiPfLZ38ZRVbImBl+sfMXeXGKM8rOmLTvl8/5Mr/c8UskSeL6Gddzb9O9bOzZyO7B3TTHmvN18fH4d+u/2dIrBEZciovqYDWaLFLKR6I31Uupb2yBNZpGt7DGamcjqzPd1hnKDiEhEbEjhNwhMmYm78mbMlNUBapeULOTYRnEdeGdG3KHkCU532g1en2WY+Wbvk4VL0mqcjSNbFugel7Z5gNGRjSCKS7RMPYyS4u/Igk3rVtEVJm0bp/CIMzJQ5ElZFkakXicGqORoM+loMgyC6qCfPDiGSysFtHG3sG93P787SiSQk2whi+c9QUCrgBZM8vmns2kjTRxPc6NM2+ckAq7dF4Zlu0wmMpx+fxykjmThUXLeKbzcSzb4lD0EO/49zuYXzyft857K0XeIloGUuztimPZDgV+Fx+7bDapnMlje3qpK/azoq6QX69pAQmuWTS1cMLB/iRNvUmmF/vFjLPtoGPjUmSml5zYKnrNwQFW7++jK5phIJkj6AkzkNC5YWk1m1qF5vaK+rH68Z7BPRyKHmJF+QoWFC/g6fan2TOwh3J/OWeWn4lH8XD/wftpjDbiOA7b+raB4wXpMLJyLr3GfnRjUIhD2Dme79gDWoKjjUvJyNjjxoQkJFaUr8jXbK9uuJpiXzEfXvZhLNvK/14WlSxiUcmiSZ3BsiSjSiqGI2a9T7a+2J/pz38fy8XIWTl8sg/TNicoj6XNyVmToCvIx878WP5n0zYp85WRNbP8u/XfvG/x+6Y8Z9bMkjbT1ARq+PSKT5/U9SqygmRL+Y7hvC7yuHLnaLQ8XszEcUTd94UQbn+mf6yuKkHEHcGreolJMWxHmE6MT8O/rKFoEK4R0e0rrPY6AY4tFK4cG0iJ9+Vllhp/RRIugKbIuFWHrPniU27OtMmdgLOQR1OoiHipjHg4f2YJy0aakRzH4cfbfkxPSjT1SEj0Z/oJuAK0DvfxTMs+cqaOx5OZ1JyhyBJXj5Di1sPD/Hz1IWynkmvOeB9RaRMPNT9Ef6ZfCObbFp848xNsaRvGchyypo3lOFREPHz/8SbiGYML55SydFoBP66NiGs5yh/3fds62dcTR5YkdMtmTkWQwaTOm1dN4+3jUtDjkTUsntzXh1uVKQ66WXdokKxhURx0k8iZqIrEzcurWTatgK/dsICUbuVFQFpjrROkC28/+3bet/h9+XnLUcwomEFPuoekLsY1vKqE48jIgUYUzSBnOCJ9bMk4cgYsBVmZuuFlPNmOvhftiXbqw/W8bcHb8q4+4vdw/Ie3R/XwzoXv5JmOZ6gJ1rCifMVx9xmPsyrOYlPPJrpT3Vw27bK87GLQFeSGmTewun01taFaVpavpCfVw2B2kNkFs6dMrxZ7i+lMdua/nwpLS5fyw20/JGWkSOgJ4rk4IffUM73FvuIJnxVN0Yi4I6SNMfIPaAHcqpt4Lk40FwXIN1P5NB8pI4Vu6wS14EmNCU0F27Enfa/KKpWBSixbLABeMkOC0wFZmbJZavXq1Vx00UVMmzaN1tbWl/66Xko4jAl5wET96JcJXpGEKyExpzzEwd44WfPlIa6tSPDZq+dw5YJKXKrMUHaIw4nD1AZrMR1xjR7FQ9bKUuApoDpYDcBXHmxi+PD1KN7DOKG9HI4fZiil0zGcZmZpEK9r7I9w9YH+vGHBtmaHZQsK8wStSEremaWxV/zfo8qEvRrPNQ4SSxsYts2vn2umukjmia6/0Jfu4+r6qzm7asyFBuAT9+zg/m2dOIBPU2go9hPxuphbEeId505OTf5jSzvffayRlG5RV+hDt2x64lnKwx40RebMukI+/JpZnFEbyT8ES0MeVh/o4841zdQV+VkwfSCf8s2aWeK5uHB7OSJKvKLuCrb2bs0/VAs9hZxVcRaVgUrubhwgZ2XIWlkk2YLR5qgjRLgkhJyg7dgTSNdxnHxa/2TSz+Mxv3j+KTdKBV1BPrvys1O6bV1cezEX114MiE7vn2z/CbZjM69o3pRNUW+a+yYqAhW4ZBcX1Uw0TUg8vZq+736XtdOyWGeLBqO4Hmdd17qjzvOGXCEs26IiWIEqq0LIAykfiSuSgumYzP70E6d07y8HtH7j6hf1+L29vfz617/m8ccf58CBAwwNDeF2u6mqqmLlypXcdNNNXHXVVSjK/5HI/AUil8txxx138Je//IWDBw+iKArz5szmtjfcwLve/lbkoyz+/jfxiiRcy3FY33JyFnunF6MP47GHYtCjccncclyqzIGhA/xsx88wLIOwO8zswtmcV3VePu32+lmv5yvPf4XhpEzLwDIwCzETEVQnzPrOndyz+QuoqZWk0gFW1hfyzZsWE/RqNBT72dMp5gLri/1cUnMZ7cNDPN/3JGW+0vwISm2hj4A/SSybJhBSKA1Nx3YcGnsT5Ayb2+56goqqfmorYvztwN9YWbFyQgQ3aj3oOJAzLZbUFuB1yVRHhMfwkbrQv36uBd20yRkWLYMpUrqJZUMsYzCzNMh7zm+gNDRxVjKZM/nj+jYMy6Z9KE19STX14XoORQ8xv2g+EXeE5zqeYyg7xHlV51HoFQ1KsiRzRtkZHBw+SHuyPf/Av3XurSiSwne2fCd/DmnSNwIexZMXoWgcbsSwDTyyh5mFM4l4ItQEa055hOdo6Eh04CDM7Y+H40Vmewf35qO6fYP7iGajZK0s5f6xfgGf5uOahmum3L//hz/AGh6mwbBwLdQxCgL4NT8zC2Ye87yKrKDKKhkzg6SK+WR9RPPXwqI/3X/M/V/JuOOOO/jc5z5HOi0yAuXl5SxcuBBd12lra+Ouu+7irrvuYu7cuTz55JOn1dzl5Yh4PM5FF13E1q1bkWWZ+fPno+s66zduYv3GTTz01Druu+8+VPnFETU5VbwiCfdkMac8gEuVcRwIuDU+e9Vs1jYN8NNnDhLPHjtVrEjgd6s4QCprIqrGNmIqdyx0ypkWm1uHuHB2KTv6d2DaJv2Zfnb072DP4B4KPYV8duVn+duBv/G1DV9DUzSMVDXxrIFH8SMrOebUD9Ae7yRJjGRsFo7u5pHdvezsfI5bV9SyoyNKacjDVQvKKQinuPk3/yCT83HV3I/z8QsW5R/Uq+ZYPNxyCG9IwlvUwVBuNoZlk8ya6KaNnQuQys3F5z5AfbkxoZaW0S2CHg0QKkKaovD7da3ijiW4a10r937gHALusY9eyKvRMpjCtB1sw8RysiDbOCgMGL1sHkhyVegqDMugK9VFibcEWXIxlNTZ0x3HcRyqCnxcf9a5PNvxLPuH9vPAoQdIG2lM2+SX3l/yzfO/ye6B3fx8x89RZZXB7CCO46BbOvc23cs/mv6BX/MT0kLE9TgmJrKkYI/zWlUllfpwPe9c8E4Wly2mxFtC2kjzxOEnCLgCvKb2NSP3fHqbVla3r+aeRiEEc8OMGyaJc4yiN9XLzv6dLC1dSrHv6NKPC4sX8kzHM6SNNEFXkHc99i5yVo4bZ97IbQtuy2+X1JOs61pHxB1hQbdGas1zuOrrkTxi8VOaVPhsy0KazzmXpSVLmR6Znr+Ovx74K44jZnpHidx2bAYzYtwtbaRxyZqQA5OYmAp8FRPw8Y9/nO9+97sA3HrrrXzuc59j3rx5+dcty2LNmjV85zvf4aGHHqK3t/f/e8J973vfy9atW6mtreXhhx9mwQLhEf3ss89y3XXX8dBDD/HlL3+ZL3/5y//LVzoRrxLucfC6M6r4zi1LMC2bgaROod9FPGvw+L4+kschW4DSkJuQV6MrmkVRJOy8ScDEPKVl27QNitXrnMI5PNz8MO2JdtJmGtuxiefi/Gjrj+hN93Jg+IBIGw7V4fXkCKtFLKyqwF+1hZ52E9uW+H/snXeYXAXZxX+3TJ/dme29p3dSSSeBUIJAqAoCihBUVPgoKqCCgmIBREVsdASRXgRCCaSSENJ7djfbe53eb/n+uLuTbLJpEgQlh4fnmezcfmfm3Ledoyv75hi7AjE+3NuN1STR6Y+S7jTz6w/eoL7DgShqvL27mqtnjiTdYSYSV+n2Q3FRHSZJIBq188CSbuIKRBPGWIwsmnDIbgpto7luwowBEdX1z26iuTeMLIo4LQLBmJpMumo61HaH6ArEBhDu+RPzaeoNE1c0gmoXgh4E1YHk3Im7sJoXKzN4dX2Yht4oOXk7Kc6U+P6U76MKhqWhJIl8VNuDlP0+nqiHiBJJ6ugKgkAgHuDFqhdZ2bwSf9yPpmtJecH9rQuDiSBlqWXkOHJIMaUws2AmL1W/RG+0l5gao8BZQElqCaeXnZ6sIZolMxcNu+jYP1jHgM2dmwe8PrXkVGJqjG1d28i2Z1OSWkJroJVr3ruGUCJEmiWNJ858ArfVPej2hqQN4eoxV/Pg5gfZ3LkZX8yHjs6ft/6Z+cXzKU41BEf+svUv1PvrKdjTg/XNblLTcohs20b6V79K4O13EMxm5vzgduZn7FNu8zz3PFWvP0Fmmsr6s8t5Xnie6ydeD3CQko9TsBFX/UQkFVkTyLUdnT74/xJ0XUfz+9ETCcSUFETLwOzPyy+/nCTbe+65h9tuu+2gbUiSxNy5c5k7dy7PP/88Dsf/9mjPzp07+ec//wnAI488kiRbgDlz5vCb3/yGb37zm9x///3cdNNNuN3uz+hID8YJwj0M0h0m7rtkAmCoJuW6rOxo9vL1J9YftS9uVyBGm+9Az1kAAZtJwCzJaDpkpZgxSQZx9Q/LZ9uyaQ21ouoq+c58JFGiNdiKKIioukpM94MeojvcTXWnyE+mf40GfyNaPERMjqP0HWJ5pgOrSSQcVxAFgVc3t7Cl2k0iAQgavohKbVeQFKub657ZyOZGL4J1MpfO0inNHM/WLR4EdGwmMUmuU4qz+fH8sbjtA+f9aruNSFUSIaboJA4QqdZ1nfvfrWRkXirfnFOOLIkMyXJikgUCURVFCCHKAZD9WDKXYbdlUtduxdceJxix0R0YgcOxjrs/upuQqxNLIhvJvwCn3c/unt2GjKI+sFkiy5aFy2x0wNpkGzElRr4zn55ojxEF6/vq+NPzp3PbtH0/ameUncGTO56kPdxOcUoxp5ee/okbdo4VYzLHUOM1BET667sPbnqQen89AgLfnvBtdvXsSs66emIetnZvZW7h3OQ2QokQj25/lNZgKy6Li4SWQBIlzJI5aX0nCALvNrybNFNvDbWS3uRn8pJa6FaItnQh2O2Yy8qw3ftT1rSuITdRyxQMwlV6egguW4aoC6S1h8nb60XO23etREHEYXIQUSLYTXYcphTM3hDEFJBlTNb/baIYDFoohOr1Gq8jEUyFhcnvmK7r/ORHtwMwZ+bJ3PbDHx5xe5dccslR77u5uZlXXnmFJUuWUFVVRWtrK5IkUVZWxjnnnMNNN91Exn4PU/tj5cqV/OEPf2Dt2rV0dXVht9vJyspizJgxLFy4kMWLFw9Yvq6ujt/85jcsXbqU5uZmBEEgOzub8vJy5s+fz/XXX09q6tHVXJ9//nl0XaeiooIFCxYc9P6VV17JjTfeSDgc5rXXXuNrXztYhOWzwheScM8em8vSoyjhzthPc1nVdNq8Eb7x5IZjMqEfMAokd4KaAroJEHCYrVw2raRPeUli5pBMar21/H3X34koEXxxHwXOAiyyhblFc5maeTrN3jvZXZdNImFDdlYTU1KxSDLRRCZ3vtyK0/ItLh6SQTRbZVuTj6beMN5IHE3XCcYU/JEE25q9hOJmdF3DZI6SbnXzlxU1fPuUCjY3eQnFFYjn8PE2N9dfM4H3t21mc6MXl91MaYYdkyQyLDdlANnGFY0VVV1YZZFAVBm0ZUgWIN9to9MfxR9JMLUsnSml6ayo7KbNGwV0JLOEKhrXVwyPJz8vm487hhCICGiKRDhso8sro7h8DM9JwSL3MK5MImxfTYJsPFEPqq6Sbc/GKlmZkT+DEldJ0nmnMdA4oEEsw5aBN+ZF1VQmZk08aLSlwFnA7SffftT3+9PAgpIFVLgq6Ax3Uu+v58kdT1LpqcQiWdDRqfHWMMw9LOmCY5ft1PvqmZY7LakT/EHjB1R5qqj11RJRIhQ5i+iOdJNjz0nqPhenFJNly0ru9+RtCYb/bQOyqiNaLSAISKmpxBob+dP6B+hNeIE+5arcyYh2O6LdRp6WByEoKh3LGcP3eVcLgkCGbeAPuCkvDz0eRzCbET5n9bb/CDRt4Ot+2zxg48fr2LXHUO+6YfEVEA8eNz9fMOrC999/P1arldzcXMaMGYPH42HPnj1s376dp59+mlWrVlFcXDxgvccff5yrr74aXddJS0tj9OjR6LpOU1MTr776KqtWrRpAuFu3bmXu3Ln4fD6sVivl5eXYbDZaW1tZsWIFy5YtY9GiRYwpzTbOUbZBSs4h1bLWrFkDGNHsYLBarUydOpXly5ezZs2aE4T7WaPdF2NMfiqt3gg5qRZiioY/qgwgUhH4znxDMaknGOPXb++hsTdM1yGEHgaDKBgetwlNB3TQraDvSxm57GZuXDCMnlAch1nGZpbY2mUQQY49B2/MiyzKlKSW0NM2nrtXtxBKfJ1MoYfGSA/xUCm6YiOi2fCZ9iKnbkPUImxcPQFZKUUWhb40sHHOVpOY/DeAgIikp1DgcqNqOoFIAqtJJBQzfhwl0RhV+svlk/BFY9z+xrtUt3vIsmXhCQ186HhmXQPL9nTS0BtGEuHAKSi7SeJrM0v4+9oGOgIxo66t63xc18OfVtQku6eJ5CBJThBkRGUSKzd4QfIiyBFkKUqRK58rRl3BBx1PU+dtRZfjnDoO1rQ56QyHGZI2hBRzCvmOfC4adhHFqcX8duNvqfXWIosymbZM9vTuMWYtRSsF7gJum3YbpxSe8m9J+bUEW3ix6kXMkpmvDP8KadZ9o1ytoVZSzCnHxf4u15HLrz7+FZs6NxlSgWYXZa4y0qxpTMiewOs1rzMsbRgN/gYC8QCP7XiM1S2refj0h/uuvzEipGoqIiJt4TbMouE/+9D8h6gP1GOTbcmouMHfQM6raxD708CxOKbyCkwFBQi52fQm9j2xdoQNdSbRZiPrxhsJf/wxuaWlzJw06bDn1BXuIqJEDEEO8dMxEPi8Q3Q40CIR9EQCyeUa8NCx6sMPk69PmTnt6MzfjwFnnXUWZ599NrNnz0aW9227s7OT2267jccee4zrrruON954I/meqqp8//vfR9d1HnroIb75zW8O6Iqurq4esDzAT3/6U3w+H1/72td48MEHSUnZNxvb09PDCy+8QHqqwzBPAEiEIR42jO8HQWWl8RAyZMiQQ55bRUUFy5cvZ8+ePUd/Qf4D+EISrqZDXqqVkysy+MbMMgJRheWVnVS1+1lWaXRK3nz6cEbmGaITH9X20hOMU9MZPKphD5MkUOC2UpxuxyRJbGr04AknQLWzf902llB5cWMz54zPw2oyPrRjMsYwOWcyO7p34LK4yHXkUtXZza7KVSjBkZglkcyUdLSojWR6WkggSFHUcDmJaAHoFhKoJNSBT4gJVU9Wj/uPM99tJaHqdAViPLm2gTNH57KmpgerLHL5yYZxtSAIrO9cRcS6iqheQWskwG2TBnbhtngi1HWH0HQGFfhYOC4PSRCQBQFdBAEdRdNZV9u7j2yTN8iBpquEU1YgWTqQ9VRMsaHY7J18b84ZnDM6n5U1DTS3bEBWs3lafp8fzLqCzZ2bsct2w8FHU5J6vP2NOoF4gJ5IjzHOo2vEtBgj00cmdYz/HTy7+1nq/fUAvCq9ylVjrgLg77v+zsftH2OWzFx/0vWUpJbwQeMHdEY6mVc0b0BH8P7oT3EfSNL+uJ/mQDOarqHrOt6Yl85wJxElwsPbHkYUxCSpIhgNStu7tnPPR/dwxagr2U9vkQAAyLxJREFUmF0wm5erXyYQD2CRLEi6RL4zH4tkoTfWe1BHcrWnms5UhbQO0EQQ09MpuPc3JNrasE+ezFndq3i77m0ybBnMyN83FmYuKsJcdOROal/MR0/UuC8RJYJNtg1qJP+/DkGSMOUM7iLU3NIKgNvtIr1oGJgPLbP57+DUUwf/3GdnZ/PII4/wzjvv8NZbb9HR0UFO3zF2dXXR09OD2+3muusOHicbOnQoN95444C/7d69G4Abb7xxANkCZGRk8K1vfctwL/I27mueO8zDRW+v8bCXnn7omn//ex6P55DLfBb4QhLusNwUyovcXDatODmiMjz30IokRemGnqvhHXt4WGQRq0mkwG2Q7a42P/5o/3r7R1ACLb4oP35lG39aXsO35pYzvsjNiNxUvj7m6zT6G7l/w28JRXVqGnNIRPLQdYirGqlWCUEAXe+jT0EBUUNL9Kerje2z36vsFDP5aXbafRE8oQSCIDAqL4XffnkCG+o9vLW9DYBmT4Snr55mCF649unYRpUoDnuE8aN3YJbMjC38+oDzPmtsHm9sb8Nhlsh0mlFUja6+jMGZo/O47+Lx/GNdAw6riVhCxWU3MSwnhe5AbMBDgIhhaE/mq0iOOkTZB7oJd7SQGcXjWTA6x0hfdaQjRkYQjlmprE3BNMvNV0d+lWd2P8Pa1rWA8aN+/cTrObfiXB7Y+ABtwTbiWhyrZEVHJ9ue/YkbnvZvGOvv1tZ1nfXt6wFDDH9J/RKqeqrY1buLNGuaQYSz7zloW5W9lfx1219JqAkWDV004EEgx57DuKxxdDV2kdAT2GQbESWCN+alJ9pDhauCfGc+uq6zo3sHETWCXbbTGmrl+arnGZUxinVt69B0jYSWYFjaMCySBZfFxZjMMQcdi6IrvPLVUmIvNZHlh5n3/RnryJFYR44E4OzUswf46x4r9hdo0dEPqrv/VyLYAYIM9rTDmwccJfx+wwPb6Uz55IpJumZEjQeQdjAY5IUXXmD16tW0tLQQCoWSzW2BQMBQZNu8mTPPNOars7KysFqteL1eXnvtNc4772AZzwNRXFxMZWUlzzzzDGPGjBl8TliUISXfSCmbbGA6dMYjEjFKIGbzoR/QrH2d9P1jVJ8XfCEJ98tTipg+/fAzg/tjXKGb/zttGG2+CLvajLSHCNx82hAeXtNAOKb2Sc0JpFhlzh2fT28oTiCq0B2M9TnGHKCeQN+cqmo43/zwpe0Uuq3ctGAYy2vqWV1bj6KPRVXMxGMp6IpBpCYR9naGkAQBpf9pUJMwuT5C8Y9DTWT17cfYlyzC8NxUvj23gjy3lT8vr0VRVcYVurnp9OEAA9LkBW7bQTOvYAgnNAYa6Y50D6qVO6kkjUsmFfL8hiYcZpk/XT6R0gzHAEK6cFIhINDYG+KSyUVYTRKr93ZjM4vEFM0oYQGIOmb3JhCMH2Etlk25fTpdPTJvbGvjokmFzCgrpCb4MbqlDtlUzDMfevjBmdnJeiSQfD0tb1qfOEMArc84/vSS05heMJ0haYdOSx0Nvjryq9y7/l5qfbXkBfIIJUI4TA6GpA2h2lONgMDmjs00+BvoinThj/uTTXH7j1NpusZze56jM9yJy+Lizdo3KXeVU+YyVLkEQeBXc37F6ubVLG9czubuzXSEOggmggQShnfuNeOuYVLOJGq9tTy186lkqtcsman11iZnbzVdo8JdwTfGfIM8Zx4WyYKiKezs2UmqOdVIVVvSCMWDxExgcqQQfe4ltB9WINr3/WB/kuaxNGsawUSQmBrDaXIek8fv5xYxw20JQRjcjecY0R8NBoPBf38j/WpLugaBNkgtSJLZ2rVrufDCC2lrazvsJnp6epKvJUni5ptv5he/+AWLFi1i5MiRLFiwgKlTpzJ37lwKCwsPWv+WW25h6dKl3HvvvTz11FOcccYZnHzyycyaNYuxY8fuW9BkPSzR9sNmsxEKhYjHD91LE40aXs92+/HNCnxSfCEJ91gQVzQeXlXL0t0dSILAsGwH+W4bZ43J451d7Wh96VCrSWbesEx+dt4Y0p0WogmVcFzltN+uIBDdFxlLgkEqgzkVNXuj3PLiNtKdGuGEDVV1oGsCAmZMEthMEqk2mRZPFEEAq0nkq9OKOX9CPhmO07nwr6tp7VNHEgUodFnJSLHy20vGU5blNNx7dB1JFNnVN78qCAKTS9P5v9Mk2v1RplcYTS1Ld3Xw4sZmMlPM3LRgOOkOB9+Z8J1DXqeqDj8vbWpBEMBlN7GnLUBZ5sAajEWWuGzavgaMt7a30emPkWa30BOKEdOM+nIsIaB1LER2bUGydOBUJiD1jRH1X+8Lpth4rX07eqIVn76dtxriBF+7gG+fuhBv1EtMjXHJ8H0dmx1BfzJ1HU0kuHnKzaSYjy5q6Ah18PD2hwnEA3xlxFc4Kfuk5Htp1jTiapwCZwFtoTY+bPmQ00tP57rx17G9ezsZtgwe2vwQLWILkiAhCiK59tyDdIBfrn6ZXb27aAsZrkcW0cL9G+5nYdlCFpYvTC43s2Am23u2Y/fasct2AokAAgIRJcLyxuVMypmEIAiUucuQJZkCZwEnZZ/E91d8P6lBXOAsoK2rjvteu4Vvll/O2FmLeGLnE6xpWUNzsJlR6aMYlj6MifE8CsMREAWUjg7i9fVY95v//CQQBZGS1JLjsq3PHY5TtN5PXl6vl97e3sOmUI/6WLQEYCUQCHD++efT0dHBvHnzuPXWWxk3bhzp7lTMkS7QFOaccxmr1n5MIjEws3f33XdTUlLCQw89xNatW5MpY0EQmDt3Lvfddx+T9qvfn3766bz//vv88pe/ZPny5Tz11FM89dRTAAwbNoyf/exnfOUrXznqU0pLSyMUCg14EDgQ/WnntLS0Qy7zWeAE4R4Ba2q6WV/Xw/ZmH4qm4zRLfHNOBbIsIiBwUpGbrmCc284azuxh+9xQrCYJq0ni0Ssn8Yu3dqNoOtUdflRNOKyusqZDb1DEbNYRBQ2TyUQsAaIgkJViocMfTS5nN0lcMrmIh5bVsLczSCwhIQoqum6Q8dwROVw3ryKZGj6p2M0HezpJqBqTS9MRBIHGnjAt3gjji1xJowRd13l+Q1NfZ3aU93d3cM6ELP6y9S/U+eo4pegUzh96/oDjfvqjRjzheB+hRwbY6+2PQDTB75dW0+qLMCw7BUkUGJrtJMUvUdW+70neHpuFPTwcMWxFUrOoCQdZdFIBC/t0oWVJwuWM4vfFQdURHDvoDZ1Fr9/KLVNuOWi/U9LOpzX4ICBgIReHfPQjKEsblyZ1rF+qemkA4cqCjMPsIBg3jr2/acokmZKuPFePvZpndj/Drp5dZNuz+fJ+nbv9aPA3kGnLxCSa8Mf9SVu3rV1bk4T7YtWLPLbjMQKxABXuCnIduXjjXgDMoplsRzbhRJg/bv5jUvT/gqEXsKp5FXEtTqolFV3XKbLno1TtJaJpLK99jGF5Yw0Ho1ArMTVGQ6ABu8lONMuJYrfgUq2ITiemgoLDXif/ypUkamqxT52CbfTx8fH9r4JkMvSMrcfnR37/Ltzly5dzwQUXHPtG9pc2la3Qp029ZMkSOjo6KCoq4s0338Rm68swxENGPRXo6R18lEMQBBYvXszixYvp6uriww8/ZPny5Tz33HMsX76c+fPns3XrVkpLS5PrzJs3j3nz5hEOh1m3bh0rV67kpZdeYvv27Vx66aWYzeajPr8RI0bQ3NzM3r17D7lMTU1NctnPE76AffjHBodFpt0XQ+mLjkJxlU3NHqaWpZNilZElkYsmFQ4g237s7Qxyz5I9dPpjaJpORVYq6Q7TUTVeFaSkk+1MJcXi5KQiNzMqMrCaJFIsJlKsMllOM9+bP4QXNjTx/p4OKjsC+KMJZNFI4UqCQJrdNKAOOzQnhXsuGMvtZ4/km3PKqeoIcNcbu3hkVS2/ebsyWbsRBIEM5776SGaKhU0dm9jr3Yuqq7zf+H7SKq0f1R0BLJJopNUtcjJSPhArqrqo6w4RS2hsa/aQk2olqqh8fUYZV8woJivFQoY7gMXejUm009btpNUboc0bIRpXk4IZ+c58TiuZR7rdQYqciV3MwmY2U5oxOJHecPIlTHfeSKpQTrbDxp1r72RXz66juBMMaGByW9zJ13t69/Dr9b/GIlpINacyLG0Yuq4PSGsDDE8fzl0z7+KZs5/h3rn3MrdoLgdiet50OsOdRNUo47PGU+WpotJTSVuwjcd3PI4v5uOJnU8QSoTQ0GgINJCfks9lwy8j1ZxKujWdoe6hRNXoAD9ab9TL5NzJ++waLS5G2suS4yiFUTuq18vU3KnJFHEoEaI12Mqpo84h+7YfMu6GO8j50e1IrsFN1EOJEL9454fctPEnvFT3Gj1/+Quqz3dU1/Z/Cu5iI2UrHZ84ZtKkSYzsq5n/4Q9/+Pc20l/SEWVwFUBfF3Q/IU2ZMmUf2QJIFhAleno9VO6tO+Lms7KyWLRoEb/73e+orq5m6NCh+P1+nn766UGXt9vtzJs3jzvvvJNt27Zx2WWXAfCnP/3pqE9pxgyjSW/VqlWDvh+NRvn4448HLPt5wYkI9wiYUprOaaNyqO40areCIDCuwE2ey8avLhxHMKYkG68UVeOhZTXsbvMzY0gGDd0harqCeMMJGj2Rw+1mADQdarqjmESBEXk2YopGntvE9PIM3trRTk1XEFXXeXtHOx2BGJG4EdXqgqFsFUtoWGSJ6CCRdLrDTLrDINPqjmCSZJt6w4T2I7SbFgzngz0dZKdYOWVYFpWefQRrk20H1dzGF7rxhBPoOiwYnTOgdtsdjLG7zc/Q7BTS7Ca6AjGiiopNlogkgjjMMkt3d/CrC8fx7VOz+NZbd1LXUEIwZgGGoWoiCjpLdrRjNUtcO6ec9nAjtb5asuyZ5GYWcGb+NZyUX0pWyuDG5OkOMxdPzSa+20aNt4aVza14oh5+OuOng7rh6LrOk2vq2dDgYVzhCM4sNRya9u/mfXrX03iiHqo8VZglM2ta17CxYyOjMkbxw6kHixRYJAsWafDjaww0km5NJ5QIsbxxOW6rm95oL+va1rG2bS2Pbn80acQgizIz82fy81k/55HtjzA8bTiarrG0cSkn55/MgpIFrGheQWlqKZNyJ2GRLPxu3u/Y1rWNU4tPJdOWyfIWCXl7NWNLJmMbP56izjiz8mexx7MHf9yPTbaxpnUNv5j1iwHHmWhrI/D+B8jZWaQsWIAgCGzs2EhzsAUdnXVpPczqzSAnGkManJ9P4CghCAJ33XUXF198MStWrOCXv/zloEpT++OFF15gwoQJDB16+B6V/tpmS0vLwDckGVILue+Xf0RVjy017nQ6mThxItXV1bS2th7VOrNnz+Yf//jHUS8PcPHFF3PXXXdRU1PDe++9d5D4xVNPPUU4HMZms3Huuece0zl82jhBuEeBW84YTiShsGxPF1PL0vnyFKMO2Z827sfWZi/bmr0ArKjsIjfVQiSuDlqvPRoomo4vovDzRWOYM8wQJKjvCYGuU9kRYHuLH3OfOpUoGB3S4wrdKIohXVicfviGgdH5KfxpuSFCMXtoFlZZRFE1ZEkkK8WSPE8w5Ca/Pvrr1PvrmZI75SDCvXp2OU6roRl92dRiXt3cjKLqzBiSwc/+tQtF1bGYRM4cnYcgQCim0umPIokieW4ruak2REHAKtnoDcdIzdyFqul4wkOIJcRkKmZ7s48P9nQStW4irsZJt6aj6nFOHz78iNczzZqGoino6Em3n0A8MCjh1nQFWVXdDcDaml5y4vUEhT20h9q5cdKNWGUrFsmCqqvEtXhSKjKqRmkKNBFTY4ck18HgiXmIq3F2du8koSfwxD2IiJglMzE1RkJL4DQ5GeIeQklqCTdNvgmAFFMKu3p3EYgFaAg0oKgK5w05j/OGDGxs6/fg7ceCy27lvYb3eKBpOa7Nv2V3z250dEKJEKmmVJqDzfRGe+kIdZDj2De20vWHB1H7Ri1EiwXn3LmGtrXLheR2YQ3EyVqwEFPOwRmfEzh2XHTRRfzf//0fv/vd77j99tvZuXMnP/rRj5KRL4Cmaaxdu5Z7772X1157jc2bNx9miwZOOeUUANatW8eDf/gD3118pTGqJ9n5/YN/5Nf3/Rar1ZpsPurHrp07uf/++7nqG99gxowZiPvNDS9btowlS5YARuTcj4svvphLL72UM888c0ATU319PX/+858PWv5IGDNmDF/+8pd57rnnuOaaaw7SUv7BD34AwE033XSihvvfip98aTQ/Gdw8JYk0u7lvXMfw2w3GVDKdZpo80cOv2AcRKMmw0+QxhP9FQeBrM0qSZNsTjLGz1U+rN0Jc0RAEQxVPwNjf0BwnPzhjOOvqerHI0iHN4fuxpz1ApsOMy2piZ4uXOfcuIxxXKU63Mb0ik8Wzy3HbTMiSSJWnClEQOb3oS6yp8bDUW8f8EdlJP9qsFAtjC938fW0Df1u5jEDUeDo2iQKSJJDhMDMiN5X6nhCZTgu+SAJZEslOsSAJItfMLuuLvM2Md15EjX8rvb503DYncZNqzJn2WQ3aTBIJQaIj1IHL4mJ8tjET3OBr4KEtD+EwObh58s3JOdx+nJR9ElePvZqXql4irsWZWTCT0tTSQa+N02IySFQ3SLQz2oDdZghd7PXuZUzmGK4eezVv1b1FijmFnkgPbaE23BY3k3ImHRPZAiwsW8imjk0DZCYlUcIiWYirccySGVmUuXrs1cwunE1nuJMHNj7AXs9ePFGDALvCXfyr9l8H1dcHgy/m47W9rwGwuWMzneFOLLKFDFsGwXiQ9lA7giDwzfe+ycvnvowoikQTEdo7apA04+GlP208MmMki8ctpqG0gam5U8ly/m8L5/+n8cADD1BQUMAdd9zBM888wzPPPENeXh4FBQVJtyBf370YM2YMubmDz3jvj/Hjx/P1r3+dJ554gutvuIF7fvFzCvNzqW1optfjYfHixVRVVbFixYp9KylR4t0NPPb44zz2+OPY7XYqKiqSqlHNzc2AIahx5ZVXJld77733ePHFF5FlmYqKCtxuNx6Ph+rqanRdp6ysjHvuOXhM7nD461//SmVlJVu2bGH8+PFJt6B+UYyzzjqLO++885i2+Z/ACcI9jijPcvLtUyrY3RZgcmkav19azbCcVIJRFV80MSDSPakwhbguEIjEMUkSV88o5bLppQC8vLGJd3d1cuaYHBadtK/N/pYXttLkCROMKqh94lWAUbcVDHOBXy2p5GszSpg9NItlezpYXtnF3OFZzB9x8HC9KAj4owq9oTjdwRgWk0gwmmBvp4qqwZq9PVRkOThlXJD3Wp+juTeGz5tPvGcOFdlOtjZ5+e0l45El4yn3X1tb0XU9SbYACU1HkgS6AnEmlchcPKmA9fW9hOMqDotMnsvGOePzOXk/Gc2fn3UG/9o2llc2t5DqkukMxHBYJVRdwS9u5PmmRwkrIVLMKejoXDnS+HLfvvp2moPGlz6uxQ9KhwLMKZzDnMLBJeH2R67LyvfmD2Fzo4eybJk3WiGiGCM2/aIV+c78pO5wOGGYTAQTQXLsgwsZHA4lqSX8YMoPuORflyRJt8hZxNNnPc1vNv6G3T27mZwzmVkFswB4pfoVarw1tIfakxG7qqscTYPA6zWv83Hbx3SEO3CZXXSGO1E0BTWhkmPPQRf3+el2hjup89VRkVbB03ueoWeiyIiP2giluymYt88nd0L2BCZkTzjm8z4Qn7an7P5QPB6Ujo6+fwlYhlQgyJ/Pn8RbbrmFyy+/nIcffpilS5dSWVnJ1q1bMZvNFBYWcu6553LJJZewcOHCAVHn4fDoo48yduxYHn34r+ytrSMSjTJ6xDCu+dZ3uOqqq5JRcBJRP8PKi3n097/k/VUfsWlHJc3NzQQCAdxuN6eeeiqXX345V1555YBjeOqpp3j33XdZs2YNLS0t1NTUYLPZmDRpEueeey433HDDUeso98PlcrF27VoeeOAB/vnPfyb9cKdOncpVV13Ftddee9TX4T+Jz+en678Yk0rSmVRitO9fMb2EFzY0M3tYBrVdYSJxhbiqY5JEFk0s4mszygbdxgWTirhg0kC1HkXVaOqNICIM6mSmajpxRaPFE+a59U24rDI/fGk7cVXjtS2tLJ5Txjdmlg8wpJ9YkkYkoSIIYDGJJBQNVYNwXGNXq5+SDDuBqMJbO1rZ3T6aLp+EydZJPBQn2OxlWHYKiqYj920y32XFE4ojCbC/Z4HdJOGwyvzfaUPpCMQxSyJjC1yE4grfmFXGzCEDU7ouu4lLJhdR1RGgxRPBJAuYJYnuaCdBr4A5I0B7uJ2R6UZaLaJGcOEimNjX5dwf9R0ILRym5/HHUTq7cJ3zJeyTJw9+I4HxRW7GF7kBGJF/C5WeSoa4hwyagu5XeTowqj4aJLQE1y29js0dmwcIQMTVOK3hVu6eefdB6/RbAKZZ00iPpqPpGjnOHM4qPyu5zNKGpdy74V4SWoKvj/o6V46+kkZ/I+/WvwuAQ3bgsrgQRZH+pP2ojFGYRFOSyAtTCslyGBmW9lA77SMzaBqZwdjMscxI+YRiDJ8xdEXZ/1/oqvq5JVwwPHB/8pOf8JOf/OSo1znllFMOcmnqhyiK3HTTTdz0vesg0A5o4MhKimwsX7584AqSGbvdxje+ejHf+PqVkJp/VMdw7rnnfiq1VKvVym233XbEuvbnCZ/fT9f/AGZUZDKjIpO/rawhFNPY0eLDG0mQYpF5fE39IQl3MMiSyKyhGayq7iYQU0DTkzIaWU4zFpNEZyCGSRLRgfveraI7GEPXQRQFXtvcSkLV+b/Thu3bpihQmGZH13VUTcMkiayq7iauamg6tHgjVGQ5cZnyiccjiGKceHAIAjqyaChqeUIxbntlO3VdYW5aMJThualcOrmQ+9+rpNUfI91uQpYkbjptKOVZTna27utedVrkQyp8mWWR284ayd7OIBsbPayq6sIkmtBVgVRzatJWb2ru1GREec3Ya/jz1j9jkSx8e/y3B91uYNkyott3AND75FPYJk48KtH8HEfOgFrm8cQfN/2RdW3r0A8ITzsjndz10V0sHrOYPGcew9P31akvGnYRkiChaAo3T76ZQDzA8PThSbMCINndHFfj/GXbX8h15DI+azwCRr3ZaXZy5cgrqfHW4I15sct2Lhx6IROyJ1CcWszq5tVMyJmAXTYeJk4vOZ1ndj+DSTIxv3j+p3It/pOQ09PRgkH0eBxpEGu8LwxMVkjrm4ner9nxIFhdxtiTpn5y5asvKE4Q7n8A/V3MJlmkb2oHu0lOCk/0Y1V1F89vaCbDYeb6U4cmu4n7cdvCkZzd7OOfHzeyqdFLTFGZOzSLcyfk8+u399AbMlyB3HYTdd2GGlVC35d73ljfi6bpiH0H8ea2Nhp6gigafGNmKRdOLGT+/cvp8BtjJYIgcNbYXF7e2EIklEOGTSKiC2S7zaQ7rXQFYpz9hw/pDRuKLzc+v5XNP1mAy27GZjXx2Oo6FE2n1Rvh4/peRhW4GJ3v4uLJhexuC3ByeUby2gwGm1libKGL8iwH4bhCT9BOYb5MqjOD+cXzcZqdyc5dgHMqzuGcinMOey/E/UYgBIvl8D8wxwERJYJJNA2qytQb6eU363/Dhy0fDrKmEflW9VZxx5o7GJUxigUlC7hg6AW8UPUCe3r3MDV3KmeWnXnIfWdYM6jyVAFgEk3s6tnF6aWnc+XoK9nSuYVRGaMYnzOe26bdxtrWtZS7y5mQPYGwEmZT5yZsJhu7e3bzYeuHzC2cy9S8qZyUfRKCIPzHLQo/DQiShKXs6B96PxXoOoS7QYmCJdUgtc8CR/M9EIQTRPsJ8d//rTmO6AnGkCXxkKIN/y7OHZ+PzSTRE4qzpdGDL6qweHYZgiAQias0ecIUuG08/VEDezuDROJGLe6n5w0UD7DIElNK08lOsfD4h/VIosDVs8roCcZx28y47QnCcYXJJelYTT7CMQVF19F16A3HsVkkXt/ayqKTCugOxnhmXQOekBEpVncGsVtkfnz2SH70yg4QYEhWCk+sqaOyPQg6ROKKkQqOqeSmWpEEaOgNJY9P02FLk5e5w7MpybAjSwIt3gjBmEJdd5jfvlfFkCwndovMtXPKcViO7uPnsMhcd0q/BOMnE1RwzpmD6vejdHSScvqCAQ88xxvvN77PK1WvgADXn3Q9w9KHDXj/lhW3sK17G5qmIQsyoijiMrtIt6TTGGxE1/WkzrCma+zs2cnw9OGsbF4JwBu1bzA+azx5h2hSunvW3dy0/CYa/Y2UucuSQhxTcqcwJXdfV+i0vGlMy5uW/LeAgCRIeGIeGgONPLLtEWySjal5U5Op7BM4ToiHIGpoJqN0G8IUx2mO9wQ+fzhxZ/vw9o52XtjQhCQKXDdvCBP6anfHA7IkctZY40ex34EHIJpQufvNXXT4oqQ5zARjCr6wQYArqjr5wYsK6Q4zZ4zOJcNhodkTZnyRm5IMBz891yAeVdPZ1erDZpaoyLIzpTSDb59SQZs3wo9f3YkkGunZcFxFFATafH0ao2ZpgDm8r8+Y4exx+XgjCuvre0kxS7yxvQ1VMyJxQTfGkkQELCYRkyxS7LZS1WUIhDstEhNLjDb8wjQ7Pz57FI+urqO2K4gkCuxu8xOMGnUzsyxyxX7XYn+omo4kfjpEKMgy7kWL/q113294n2pvNSfnnXxUDUJv171Nnb+OYCLIHWvu4I+n/jFZ/42pMaq8VYa+sWAIavzo5B8xp3AOsiDz2I7HeG3va4SVMAICgXiAMZljBnQ/CwhJAuw3LbCb7FS4K1A0hSd2PoFNtjEldwoXDb2IHT072N65ndFZozml6JRDHrfdZOcbY77Bbzf+lkxrJqnmVENtK9zOtq5tjMsax7kVn6/5xkNB1zT0aBRMJkTT5/BhYcADn3Cg3PoJ/I/hBOH2YUVVJ2D82K+u7koSbkLVWF/Xi9MqM67QfVz32dQbpqOPAD2hOLOHZtIdiBFXNDzhOEt3dxBXdJ75qAFNB4dFYlSei79eMQlL3/zvsx838NCyGqIJlaHZTr4xy4ic39rRjiAYUafTKpNQdawmidNHG3VIu1nmxgVDeWhZDSZZZMFI4+972gPsbPWxs9VHTzCGL2KYyYvoFKXbCcdVXDYTHcFezO4d1OxNA1ykWmU+uGUuKVYTMUXlrytqqe8OMWNIBplOM4Gogt0iE44ZhKsM4uHXG4pz37uVdPqjnDuhgHPHD2zKODAF/5/Ezp6dvLL3FQB29ezirhl34ba6iakxnt71NJ3hTs4qO2sAEWfaMgkmgklj+J3dO5MqUxbJQo4thzatDQ2N84eeT5Yti5erX+aMkjO4euzVnD/kfO5Ycwc7unfQEmxhc+dmzik/h4uGXURlbyWTciYlCfy+DffxVu1b6OicUXoG69rX0eBrwC7bcVlcvFP/DoquYBEtTMiagDfqpd5fT74znwuGXnBQinhc1jjOH3I+7zW8B4BVsiabrfZ6jVGkM0rPOKTN4OcBuq6jdHSgx+MgCMi5uYiHcZj5TGB2gC0NlJiRrv0fSNWfwKFx4u72YUh2Ch2+KIqmU561r9P0oWV7+efHjcQUja/PKOWG04YdZivHhny3jTSHGU8oTopV5itTiilJd/DOzg4qO/y0+6LEFRVNN5yGYorKuroefvPOHn7yJSPCffbjpj5HImjoDbOnPcCEIjeeUBwdI4r+qKaXMQWp3HbWCPLcRg1zV6ufzY1eKrIcbGzw8Ou399Dqi7CnLUBNd5BWT4SYYpgJSCI4zTJXzypjRVUXiqbSpa2huaEXXZIQNDOBqI1OX5x0u5lvP72JTQ0ecl1WfJEE918yHrfdTE1XkGfXNWK3yJx/0sG6vKuqu5IPIK9vaeGsMbmY+kaOntvzHKtbV1PuKue6Cdcd85zrJ0Vc3edM0m9xB7CiaQWbOw2hgSd3PsnYzLFJI/trx17LW7VvEVbCtAXbCCVCtIfaeb7yeUySie+e9F3+uu2vpJpTKU0t5YZlN6DpGi9WvshzX3qOnmgP3pgXHeNBo9HfSHu4nVOKTjkoQl3TugYNwyv3tb2vEVWiqKj4E378CX9yuZgaozfWy8t7XybVnMpe715yHbmDjkqdU3EOWfYsEmqC4pRi7t94P+FEmHpfPSuFlezq2cVPZ/z08+v0o6oG2QLouhHpft4IF46Ls9AJ/HfgBOH24bKpxaze283OVh/3vrOHdIeJk8szeWtbGz0h40v7+If1XDdvSJIEPgliikpPMM6tZw2n2ROlNMOO227mrLF5zBmWxR/er2Z5VRfd/hiCsM+L126WqesKEU0Y4yMWSUAUBDRdx2mRyXNZWVfbw5YmL42eMD3BOHFFpc0XJRhTePIbRq3urytrCEYVNjZ4UDQNqyzx9NpGooqKP5IgpmjJ7JYsipRk2KnIdjJ3WDbtQQ9PVtcS0Mx4ekFARZIEitKt3PbyDj7c242q6dR2hch327D0zQ1VZDn58ZcO7TaTnbKvwzbDYUle565wF6taDN3UGm8Nmzs3c3LeyZ/4HhwJiqbQHekm3ZrO+KzxzCyYyV7PXmbkzyDLbozK7B8ZyqI8wAWo0luJKIpYZSuSINEcaGZP7x5qfbUArG9fn4xQX6h6wSByNUFTsIldPbsYkTGCcVnjaA22YpWtFKcUk20fXMFpZPpIVrWsMgzsNQWNQxtkTM+bTkOgYYBd32AQBRGrZOWj1o/oCHdwybBLWFK/hKgaxSbbCCVCBOKBzy/hShKCxYIei4EoItg+p8d5Al8YnCDcPtT3hGjsCSEAgYjCk2saOLk8k1yXlbqeUF+9TCChap+IcBVVo9Mf44/Lqunwx0h3mBiZ56K2K8iXxuWj6Tof1/WyYFQOV80s4+bnt9DkiTAiN4WOQIx8l5Uxhe6kpOSsYdmYTRKRhMp35w2h3RflpU3NCALkpVpp90WTsoOt3n2KV1JfatZiElFiRi03nFBQNGM4xSQJ5LttKJrG0OwUpldkMLU0ne0tPtq9AqcUnoXbuoYsS4SoZxQ3nTaCvV0hNjb09kXkIEsCV80sGTD7ezhMr8hAR6fdF02qawE4TA6sspWoYhx/hnVwY4QjIaJEDkkO/rffIbx+PdbRo3FfcD6KpvCHzX+g1ltLpi2TmyffzKUjLj1ovTmFc/BEPXSEO1hQMrAJyypZSbOk0RPtQRRERmWOShrTA30+yQaGuIfQ4G8gqkaxy3b+secf/GLWL/jBlB9w+YjLebXmVbZ3b+fe9fdy/cTrBxgqAPx81s/5xbpfsL5tPU2BpgEkKvT9J4kS47PGc/OUm9nSuYWlDUvJc+Yxs2DmoNcknAjz5M4nUXWVWl8tl428jJ+c/BN+t+l3tAZbmZwzmSxb1qDrfh4gCAJyTg56LIYgy5/rGdsT+GLgxCcQQ5+3xRfGbpbxhRMIokBRuvHD/MCXJ/DtpzfSE4pz5fRS7OZ//5IFogl+uWQP1R0BugMxyjIdfFznoaEnTIrVRELVaPVG2dFizKp2BWLs6QggohNTVJ65ehqqDhVZ+xxxrp8/hNruPFw2Ew9+UE2bN0pNVxB/JIGOMesaSxgykF+dtk9M47p5Fby2pZVJJWn0BGNoQH13iI/repEEgRSbiYDagWDfQ8yWzlemfptdbX7++IFhieW2F/LrC+9GnrXv4ePDvd0UptnwRRKE4ypfm1HK7KHHpqk7o2JwUYnrT7qejR0bKXOVMTTt8MLsByKmxnhw04PU++sZkzmGa8ddOyASjTe34Hv1VQASLS1YR46gq9BJrdeIRLsj3ezp3TOgs7cfsihz4bALB93vhOwJzC6YzYrmFWi6xn3r72NE+giGuIdgN9k5pfAU3m14F0mUuGTYJQxLG8Zzlc8hI9MV7sIT9fBC1Qt4oh52dO+gJ9pDrbeWktQSrhh1RXI/SxuW8lLVS7SH2gkpIURBRBZk0A3bvhxHDr3RXnIcOVw+6vLksf07ylB2k53bpt5GTI0NmPn9vEIQBATr5/84T+CLgS884X6wp4NnPmoEYEZFOiCQnbpPuD/DaeH5b+2zePKFE3jCcUoy7MfcwLO92UeHL4rNJBFOqIYvrgBWs4QnFOeFDUZkmmo1oeo6VZ0B4n2OP/FAjAc/2MuvLxqXlFIEowN6WE4Kbb4IbX0RrFkWsZokgjEFkyQwtcxNZoqVnlCCDn+UnFQrxekOitLs+KMJFs+pINdl5ZYXtpDhtOCPxBHFBKq5EmdKDU3Rvfxrx2xq2gw/XlkSiSsaUUXDud+xTCtLZ2erj1yXjVOGZ3PmmOPXUFOcWkxxqnFPusJd/GDFD6jz1zEtbxq/nvPrw667u2c39f56AvEASxuWMi5zHDMK9t1TQZZIimADSBIZ1gxcFhe+mA+TaKIopegQWx+Iyt5KPmz9kNLUUlwWF6/sfQV/3I+ma7jMLqq91SwsX5isme4/KjQ2ayxP7HyCqBLFarKypH4J27u3o+s69YH6pMXepo5NScKt7K3kzjV3EogbblZWyUquPZcMWwYZ1gyuHH0lr+x9hSpPFTn2HIpTigcc717PXpoCTUzInpD08u2H3WTna6O/xvKm5RSmFDIt1yhHCILwX0G2J3ACnzd84Qm3umOfHGB30Gjw6ceWJi/v7GynKM3Ol6cU0dgb5t539hBLaEwpS+dbcyuOaV9F6fa+cReRySVpXDKlCEkUefD9Kna2+bGaRDQdyjIdZDrMA3RxdR02NnroCsQoGsQFKMtpoTjDTmNPmJxUK7oWIZZQUVSdNTW92M0Skijwz48bOX10LkOynKzea7jhNPWG+dl5Y3BaTJRm2NnVpiCJApFAMZIpiNnq565X24grhrpVilWmPMvJgZM7siRy7ZxjuybHAl84QUxR+efeZ9ncuRkNjbfr3ubk/JM5f8ihBfuz7dmGsbq/AUEQ+GflPxmdORqXxRAZMOXmknb5V4ls3Ih11CiswwwSvGXyLezu3U1ZatlB3bh7evbwt21/I8eRw/T86fREepiUM4m/bP0LCS3Bpo5NlKSUGP61uoaOTlgJ4415cZoGl38MxoMMcQ9B1VUCsQC13loC8QAOk4NCZyGKpmCVrZSk7hunenb3s/jj+zVFaTEjei4+BXQoSi0iokTItGWi6ioft3+czBDUemv5/abfo6PzfuP73Dn9zoPmbCfmTEzO7+4PPR7H8+KLqN3dpJ51FpYj2MGdwGGgxEAQDQP7E/ifxheecGcOyWRzo5eEqjFvxL56VDSh8ufle1FUnar2APluKz3BOLGEEXGur+vlmlllA6LNI6Eo3c5tC0dS2xVkfJGbTKeFDfW9aDpouk40oeG0yJwyLIuYorK7PZCcm5VEAUkQyHMNHlnIksitZ42gvjtMntvKhrpe7vrXTpo8EVQd4hEFSQCzLLGl0UtXYJ9JeTBmNGBdNbOUh1fVUtMZwBNS0bVspHAqTtVBm2IsowNOq4lANME/P27k8mklCKJwXBrJ+hGJq/z+/Wrqu0OcNiqHiyYVsr3Zxx+XVaOoOnJWDyr9x6OzrnXdIQn3o7aPqPPVMT1vOr6Yj1RzKpqu4Y/5k4QL4Jw5E+fMgbXMNGsaM/IHGli3BdvY2bOTu9feTSBhRJXvNbxHlj2LdxveRURMZj7KXGXIopwkXLNoJseew4etHw5KYmMzx5LvzGd1y2piaozK3kqjWSq1mLum38Xmrs1E1egAT962UNs+4wLALtnpinTxzO5ncMgOmgJNlLvL2dm9M3lM/WgONiflJL0xL8FEkDTp6OzMAh98QGil0cgWb2ik4P77jmq9EzgAoW6I+owMizMXzIe31DyB/2584Ql3TIGLey8eR0zRDpIZ1A+IMEfkpbBkRzu6rjMsN+WYyLYfZZmOpKWdNxznwferqe00TNjDcZU0h5nm3jBbW3xkpVgQBegJxslMsXDvAenkA2GRpaQ2sSecwGqSB5gIqDqomoai60wqSaM3FMcXSXDpVCPNaJZFPKEE3ohCOK4iiwLRqJMerzJgP5G4giyaeGt7G29uayczxcw351Ywsfj4eE+uq+uhusMgsyXb2zh1RDZrarpRVEN5qdMrIwsyqq4iizIVrsGj6j29e3h619OAUWudmjuVen89k3ImUZhSOOg6h4Mv5uP+jfcTiAXojfUmm556I70ktARtwTYuHXEpq1pWkVATLKlfQllqGSbRhCiK2GQbsigPMFbY2bOTnd07GZs5lpEZI7l1yq182/dttvdsR0UloSfQ0clLyWNYxrABx/Ji1YuomkqaJS1p4Zdpy6Q72o0n6sGLF0VXeHbhs+zO3o3b4mZE+ojkNsZnjef9xvfpifRwUvZJuC3uo74WurLPZEHXVHRdJ7J5M/HmZlJPOw3R/ukRhxYOo/p8CLKMlJFxVFrYnzW0eBw9Fke0WQc2b8X6Mmy6DvHgCcL9H8cXknDbfQP9aVOsJg5UCLWaJBbPKefdne0UuG3MHpqJLInc8aVRdAWjjC1wf+Lj+Onru1hT04OqG8pK35s/BJfNxAsbmgnHVQJRha9MKeLyk0vITj22mlm7P0qrL9L3r37W1bCYZPLdVr42ozTZ6RyMJvjJqzuobPcb7kH0CeAIRrS5v6T+uePy8EYSSKJAbXeIFIuMouos2d6WJNzK9gCRhMr4Qte/JVSR4dj34GMzS6yo6uLNbW10BaNkZleh2ipJlVMJJ8K4LK4Bov4ACTXB2ra1bO7YzPr29ai6SrGzmLPzrmfLtg6W7AVTeC8XTyo+4jxvJBHh9tW30+BvYFreNKJKlEpPZd9VNa5MQk8QTUTRBcM2rzi1mMZII96Yl6FpQxmWNowLh13Iw9seJqJEuGDoBcY9CrXzl61/Qdd1Pmz5kB+d/COy7dlML5jOrt5dCBiaxXmOvIPS0C9Xv8zmzs1YZAuTcydzWslpzC6YzQdNH/D3XX8nEAugYUhG+uK+QceoLPXtXPu+RMRVRNmkC4/pXqWcdipKextKVxepXzoH32uv03nffaDr+F5+heLHH/tUREp0XUfp7jbmauNxBLMZyfUZ6Q8fJbREAqW9HXQdVZIw5eUhSH2d+2bbPtI1nSDb/3V8IQn3sQ9rKR01gZOOEJGVZTq4/OQSSjL2dQUXZ9gpzjj8FyOhaqyu7kaWBGZWZCbNAg5EU28IBJAwjM53twUoSrcnHwgsJpE0h5l3drZz6sgc8t0DR1pCMYV3drZjlkVOH5WLWRaJJlSeXFNPTVfQSL+KAoqWAEQEwCyrzBqSlSRbgDte28nKqi4UTUfVdWwWCQSjw9likmjxRACdFKuJn543ht1tfl7b0gLsywL0H9uyPZ38bWUNug5njc3jazNKD3utBsPYQhdXzy6jvjvM5JI0fvjSVlp9EWIJDXvEwYgSF56YRqO/FatWyMNbnmVS7iQcJuM+PbnrSda0rGFz5+akt2yDv5F7V71KT/so4qpCde9e1vY8xQ9nLk42Yx0IXdd5ZvczbOrcBMCSuiUsKF7A2vjag5YNK3HQzXSoPcTUGGm2NPwxo7Za5iqjwFnAT2f8FIDucDe/3fBb1L7IEEDVVXwxH9n2bM6vOJ/ndz9PRImQYkrhZzN+dhB59aeQBUEgz5HHGaVnAHBGyRl4oh4e3f4oiqago7Ota9ug59j71FNoPb1YWsC/ZAlplx489nQoiFYrGddcs29bTz6Z/DDE6+vRIxGETyvK3b/B7b8Aejy+73hVFV1R9hGuIxvMTsOF50Qj2v88vpCE6w0n2NXmxx9V2NzoYUKRm1OGZ6OoGk+ubaCpN8ywbCfLq7pQNZ1TRmQfUvd3MDy5pp61NT0AdPhjXDRpYPqysSfMw6tqcdlNmESBmKJhMYnGOE27nzy3lYRqRL3v7GjHYZHZ2uzjvovHD9jOY6vr2NLkBcAfUbhsWjH/XN/I4x/Wo6gaGU4zcUWlI6ACgjFfK5q5bOrAH98dLT780QSyJJLltHDrWSOwmkVG5bm4951K0u0BIgmNb8wsI91hZuaQTGYOyURRNVZUdaHpMHdYJo9/WMcTa+rpDsQwyyIxNU5ZcSPD0oYdswSgYW0ImqYTiquEYyqRhEq0IwVndgKLFZR4Kj5dwRcN0tATZFSuQbhNgSbaw+0DvGUTepxuYRWqM0DcMxYZiBNibevaQcloT+8eHtn+CPW+ehRNQRZlJEHimrHX0B5pZ3nT8gHLCxhCEbomYBKtTMqexMiMkZS7yhmfNfC+3bDsBpqDzYAxf5tqTmV81niGuA2Dhn/V/ouQGsJhchBWwuz17mVC9gQUTWF793acJifnDzmfqBJF0RQuHn5xctuyKDM0bShD3EMQBRGzZMYX9zEYRIuF/iskmD+Zcpdj7hzCH3+MrqpYR4z41FLKgiAgZ2UZKWWTCfG/wJNXtFpRZRkUBcFiQdhf7UoQDHnHTwnLly9n3rx5lJSUUF9f/6nt5wSODl9Iwm3sCZHnsvLUmnrAGNcpz3RS2x1kTV/n7pqaHvJdViRRYF1tzzERblNveNDX/XhhYxOt3giaBgXp9uSo0e42P2ML3Ny0YDgbGzyEEwoN3cb6/khigLUeQHdwX+NTfxNUdUcwqVMcTWhYTSKwr8blCRujQv3r3P9uJQ29YRRVR9U1zhyTmzRaAPjOvCG8vqWVdIeJ804aqG0sSyKn9mkwb23ysrq6G3/fDG5M0ajz9vDMrlU4zTZ+fPKPDxo7ORqIosCV00v5+Ru7kEQBs2Cj0ydSbBWx6vnIWHHp4xH0fdH/qcWnsqVzC2bJTEzdd40UqQXNHsEtiZTmRUjoYXLtg9dy3657m6gSTXrtOs1OFpQs4NWaV8m15zIrfxZburYQToQxS2ZU1Y6qhxEEgXMrzsNhtrC0YSlW2crZZWdzasmp++5VpCv52mVxcfPkm/mg8QOWNS1jXtE8yl3lSc9as2gm32lc9yd3PpmUkfzqyK/yjTHfoMZbg1XaFxm9UfsG79S/Q0yNEVfjjM8ez+klpw96jhmLF+N7/V9IqSmkfunsY701A+A+5xwsFRUoHZ045h4sE3nU+OmR08MDP9GfI/x08AcboS+N3G9w/++m2js6OnjkkUd47733qKyspLe3F4vFQkFBAdOmTePCCy9k4cKFSNLRCc38N2P58uWsW7eODRs2sGHDhuTDxLPPPstXvvKVz/bgDoMvJOEqmk5Dd2jA3+KqOqDTNs1mShp5jM4/thrRGWNyDfs8QeC0kTnUdgXRdJ0h2cbTeL8tXULV0DQddB1JEJAFgVH5qcwbkc3cYVl0BWM8vLKWVl+EodkpfFzfy7Sy9OQX9oKJhTy8qhazJPKl8QZJLhybx8d1vcQVDadVosUbGXBsFllkd3uA9XW9bGv2srcziK7rWGQRh0Vm1tCBwhNlmQ5uOO3IIx/2PjUpURSQJQGzDHHdz65WP6m2CB2hjqMiXF3Xeb3mdZr8TVwz9hqsJiuXn1zCh3u7WLu3B9zLiZu30x6RiZsExsn3MKWkgBH7GdnPKZzDqIxR3Lz8Zqo91cZoDhqIEWRrO3b3MkicQ6RzHG9vSGFKrjJA0ETXdbLsWezo2sEezx4kQeLiYRcnI0yAgpQCFo9bzGM7HgOgsqcGp1RGut1GfWAvoXiIPZ49yY7oDFtGUmjirLKzeG3va1gkC2eXn813ln6HtlAbmq5RkFLAxcMu5pYpt7CpYxNnlp6ZlHOs9lYnj3FP7x7eb3yf9lA7FsnCD6b8gBxHDk2BJsAg8nxnPrdPu/2Q19qUl0fmN6894j05WthGjYJRh5bu/CJDEMVP1Nz1u9/9jh/96EeEw8YDeG5uLmPHjiUej9PQ0MCTTz7Jk08+yciRI3n//ffJyxvcsvF/BYsWLcLnG/wB5/OMLyThajq8vrWV00bl0uaLcFJRGkOyU6jIctLmi9LYG+bUEdmk2kx4w/EBLkE1XUH+tbWVDKeFSyYXJnWC98eMikxOKkpDEGBlVRfPrTd+BM+dkM95Ewq4/OQSHBYZVdNo80V57uMmdEADhmQ7eHJNHX9bWUtc0ZhcmobLZmZHi48dLT48oXgyAh1f5OaPlw0cL5k5JJP7LxlPhz9GXXeQ17e0EosHiCg6JhGmlKbz0AfVJFSd+p4QdrOUfAAYX+Rmevm/J5s4NCeFK6aXYF4v0tQTJqGr+MReAGKRdGzC4X8AfOEE979XyVrv43TxAaIo8HbD27xx/hsA/Pnyyby4oYnlXZvZ7jeO1yLDnecOJ8N28DFn2jI5pegUAvEAtb5aBN2IGGVRRtE0QvE4GRTQ5vfT2BtmRG4qkUSEv237Gy9Xv0xICaHrOgnN6BL+xbpfMDV3alLwQRRETso+idNKTqPeV8/IjJHs7tkNwIi0EazvWG+4GyEQU2M0BZoIxANk2bO4cdKNXD32aoLxIHeuuZM6fx3oRhOWJ+phbetabp1664Dxn9drXqfeZ4h3VLgrGOIewsaOjcb1VWPU+GrIceQwt2gu1Z5qFF1hfvH8f+te7o/AylV4nnkac1ER2bffjvhf0BH8v4ZbbrmF+++/H4DLLruMH/3oR4za78FGVVVWr17NfffdxxtvvEFHR8f/POGOGjWKoUOHMnnyZCZPnswll1xCc3PzZ31YR8QXknABtjX7EASBBy89iYI0o94kCMJB9VYYWF95aNnepGety2Y6pIVcv37w1mZv8r0tTV7Om1CA0yJzxcklRBMqu1t9vLyxBUGAgjQb7d4oT69rpDcUI6HpvLerk1SrTFmmk1SrzPYWHwtG5Rx2PKj/AcEbTiMYVRiVn0ple4AWb4RtzT5kSWB4Tir5LhuZKZZkTXZKafq/NerUj1OGG5H5jhY/nf4Ij66xIGhTyLSlke0cXOyhH6v3dtPiieBnNxpGyrAj1DFgmYsmF7Ewfj23rGykNdTKGaVnYB+ks7Mn0sOa1jXk2nPpjfYma7kmwYRZMmOWTHQJH9Csv4Is2Hh411Q8W7rY1r2NhJoYVPhfR6cj3MEFQy8glAixaMgiBEFg0ZBFyWUqeyvRdI2RGSMZ3TqaN2vfZFv3NnwxH3/e8mdyHbnYTXauGXsNE7InsLxpORElgizIJPQEAgJpljTMkpkU876I3RP18G79u2TaMnGanJxdfjbT86eztm0tjf5G7CY7w9OMTu3RGaP51ZxfoWrqoNfmWKDF47TfeSd6PE50x06kjEyyvv2tT7TNEzg2vPzyy0myveeee7jtttsOWkaSJObOncvcuXN5/vnncTg+vZrw5wVr1qwZ8O//ljT6F5ZwVR02N3pZ/NQG3rrBqDlFEyr+aGKAa82BUPYbbD3Q0/XDvd38fW0DTqvMjQuGUeC2MbE4jT1txkzp/nOqL25sZsn2Npq9EWRJIBBVqWoP0O6LEIwqxPv2I4pgkkWaPWEUTSeUUPnNO5V8/4zhRxSbcNvN3HT6cDY3evj5G7v6oihjDEqWBMYWuvjOvCEDOpYPh9e2tPDmtjaK0u3cuGAYTsvBHx9BMLb74PudaBqoip3FZ1Qc0cAgO9Vo2kljMhHhXwCUu8oPWs5utvOn0/7Epo5NPLnzSW5deStXjblqgC7wrz7+FZs7N+OJegY0Tqm6itPsJKJEiAsRVFVCJcjSpqXoGIR3KJcds2hmVMYorhpz1SHPoX88qTXYSq2vllkFs/BEPejobO/ejjVmxW6y0+BvYEL2BLLt2bjMRuo3qkSZXTibURmjmJg9cYAoh6ZriIKIpmtYZSuFKYXIosyNE2+kwd9AjiMnSdB6PI7FbIH9Lnd482YSzc3Yp07DlHMM2taJBHoise84/P7DLHwCxxu6rvOTn/wEgDlz5gxKtgfikksuOertNzc388orr7BkyRKqqqpobW1FkiTKyso455xzuOmmm8jIGDzjtXLlSv7whz+wdu1aurq6sNvtZGVlMWbMGBYuXMjixYsHLF9XV8dvfvMbli5dSnNzM4IgkJ2dTXl5OfPnz+f6668nNTV10H39L+ELS7hgkM/ezhB72v24bWZ+tWQ3gajC9IoMJhS5WVvTw8i8VE4blZNcZ/Hscl7e3Eym03KQVvBLG5tJqBqeUJx3drTzjVllnDoyh6HZKSialvTZVVSNf21tocUTxROOIwg6JlkkllDxhBNGPbevOUoUIRhVSLXKhrhAXKGmM0irNzJgXOlwGJWfyqj8VFq8Eaxmmckl6dxxzqijJlqAcFzh9S2tgGFysLq6+5BaycGYwpYmL2ZJpC0Y5Yk1DfzkbAcu+6Gl66aUppOYrdHqvRZX2lmEtU7OKT/nkMsva1qGqqtElSh/3PxHLhh6AWeUnoGOzl7vXhJawlB42m98REOnI9SNoGQQCVagxbKQbPUIooJsr0MX1QH7EBD41rhvYZEtmEUzFw2/6IjXSdM1bl91O56YJ6lnXNlbSUJN0B3pJt+Zz+TcyQCcnHcyIiKdkU5m5s8ctMZd5aniL1v/QjAepMBZwNkVZzM6w/BC9sa8yWhYDYboeuABEi0tOGbPIv2rXwUgsn0HPX/9GwCh1R+S9/O7EUxHJyEoOhykX3kF3pdfRnanoWsqnQ/8jrTLLsWUk3PkDZzAJ8LGjRvZtWsXADfccMNx3/7vfvc77r//fqxWK7m5uYwZMwaPx8OePXvYvn07Tz/9NKtWraK4eGAX/+OPP87VV1+NruukpaUxevRodF2nqamJV199lVWrVg0g3K1btzJ37lx8Ph9Wq5Xy8nJsNhutra2sWLGCZcuWsWjRIsaMGXPcz/Hzhi804QLYLAIWWeJHr25nzd5ubCYJfyzB0l0d2M0SW5q8FKTZGJlnPH2NLXQxtnDwJqqsFAu+Pt/a/ogNOGhuV5ZEvJEE3nCcmKKi60YDlaLpiAKoGMIbSp8VYDSu4o0kEASBhKrjspvISjn6MQ6LLHHXeWP47ryheCJxSjMcRyTbrkCMJ9fUo2g6l59cTG6qlRSrTCCq9J3roY28HWaJwjQbq/d244skaO4N8/S6Br4zb8hh97nPKaiQ3lCcZk+U4gw74bjC3s4gxemGZzBAobOQOl8dDf4GUswpvF7zOmElzMLShUzLm8bbdW9jFu2oqkSCABoKuiaiaBJaOB3FMw0tkY4SHIFk9iIJVgT7bhBUZEHGLJn51rhvcdXYQ0e0g2Fl80rq/fXo6ATjQc4uO5uOcAfZ9mwkQeLUklMpcBYkl5+aNzX5ujPcyfUfXE9PpIcvlX+JGybdwLq2dcTVOHaTnYSeSApYbOncwqM7HkXXdeYXz+f01gwSLcZsdGjValIXLkROS0Pp3JeWV30+/G+/TXDlKsxFRWRcuxhxECcdLRzG9+aboGqkXXopmddeS9dDDxHdvgMAzz//SfanQAAnMBCrVq1Kvj7llFOO+/bPOusszj77bGbPno28n/pVZ2cnt912G4899hjXXXcdb7zxRvI9VVX5/ve/j67rPPTQQ3zzm98ckM6trq4esDzAT3/6U3w+H1/72td48MEHSdlvlKunp4cXXniB9PT0435+n0d8IQlXAqwmEYsscufZowCd9XW9xBSNaEJjR4sfuyySajdTnulImr3ruk6bL8p7O9sxyxKLTioYkCr9zvwhLN3VQYrVxKkjDp+6m1GewfJEF63eKFaLSHcgjigYAhjoOsGYQWxRRTNMAjSwm0WuOLmEhWPzjtkmUBAEclxWcg6hxdx/fppu6DY/v6GJ3W1GCvHpjxq59awRfP/MEayq6qIo3c6kkkN/QQRB4IdnjcD/yg46/IY7UiSuHnJ5MEQ8luxoxyQZ1oh/WV6LqunMGZZFZUeADl8Uh0XmjnNGYRJF0rXZzMnNIBD/O5qmsal9Ex82beaXK5/kqnGXc+2oH/Dcxr04GUodj+OPRoh0z0LXRLRwOYIoAQqgoqtWtNBQbM5aVGKkWlK5ZdItnDPk0BH2oRBVo+Q78+kId2CVrMwvnk+dr456fz0CAiPTRx5y3cd3PE5bqA2AV/a+wuKxiylzlbGubR0AZan7dJC3dG5JRu8bOzZySvMoojt3IlgsWEePTs7B2qdOJbh6NUpbO46ZM/C/tQR0neiuXYTWrCVl/ryDjsPz/POEPzL2qXp6yfz2twd02BrX7gQ+bfQ3Abnd7k+FkE499dRB/56dnc0jjzzCO++8w1tvvUVHRwc5fRmNrq4uenp6cLvdXHfddQetO3ToUG688cYBf9u922gmvPHGGweQLUBGRgbf+tYXpy/gC0m4Q3JSWHbXmQiCQFV7gL+vrSehaoiCgIaOJECu24YnFOfk8nTKsxzc/cYuVlR10eIJEVN0ZFFkyY42nrhqanI2NtVq4oKJB891VnUEeGJNPVZZ4to55eS6rHxtRhkxReODPUZTlC+cQNV0lEEEdDQdMuwmRuWmMrrARZrj0NHlgdB1naqOIC6bidzDkG2rN8K971RS3RlgQqGLmKoTiCZIsZroLxUXuG185QDRjOWVnTR5IpwyLGuAi5HdLHPTgmE8/qER7X15yuHt7R7/sI7NjV7AGF1SNeNCrKzaN7MaiilUtQf417ZW2n1ROgMWKoq/xMbwHwiGXUQ7zyQQKeK3dXDB+HzS9UzD7pDhhENOUJ1osRzAitUcQhG8iFIEXVARXCtJ6BEEBAqdhf8W2b5b/y7VvdVJ4YmF5QtJs6bxvYnfY0f3DrJt2RSlHvo6pFnSkvVai2zBLJuZVTCLNGsagXiASdmTksuOzBjJho4Nxmv3CELPrsVUVIQWCiFlZaK0tWEuLUVKSSHvzjuNWmyf3rEWNkbFpNTBRSO0wD4HLdVv9B+4v/IVQw1JU3EfQ53wBP59+Ptq5s4jNBx+EgSDQV544QVWr15NS0sLoVAo+SAXCATQdZ3Nmzdz5plnApCVlYXVasXr9fLaa69x3nnnHXEfxcXFVFZW8swzzzBmzJj/mganTwNfSML9wZnDiSRU1tb0cOdrO4j2OQBZTRKaphFXNJp6w2Q6LZw2MofllV3sbvPT7osQSfRJ8Wkau9v8+KOJZJrzUPjHukY6+uQaX9ncwrdPMfxn7zhnNBdOKmTZnk7SHR7W1fUgCCQbpvohYjRrjSlwMyb/2BoLfvzqDjY2eHDbTFwzp5zTRh5ce9vY0MtPX99FY2+IaEJjd6sfm1nCbpaZWJx2SHnGj+t6+fvaBgA21Pdy/8XjB3Q5F6XbueOco5vL7AnFk69NfSl3s2zYGHYGYrR4IjgsEqIIbd4oPcEYbb4wnV3/ImryogRnoidSMGesRBATrGlUufGUWTR7IlyS923WNTTz8uYmQpZeZPNe3PJw5NQG/EobOelhepQAmi4hCAJmad/93Nq5lRerXiTXmcsVo64g1ZzK6zWvs7tnN5NzJicFLbZ2beX1mtcBkASJn8/6ebKRySJZmJQzicHgjXqp9lYjCRKVnkpSzak4TA5+OPWHyKLx9eyv2e6PaXnTyLHnEFJCjEofRVvqblBVlM5Oolu30dHyG7Ku/x7WkUZE3V+3zfzu9witWompqAj75MmDHpNr0XmGXrGm4r7oQgDktLTjOrN7AkdGfzQYDAaPsOS/h7Vr13LhhRfS1tZ22OV6enqSryVJ4uabb+YXv/gFixYtYuTIkSxYsICpU6cyd+5cCgsPDjhuueUWli5dyr333stTTz3FGWecwcknn8ysWbMYO3bscT+vzzO+kISbajPzqyV72N3mpzMQw2GWcZhlclItNHoiJFSFmKJilgVufmEr+W4rwViChLJ/xyv0huL8+JXtPHjZxAHqMYqq0R2Mk2qVk8TRD4dl4NPd6HwXo/NdeMNx7n5jJ6uru+kMxAcYBhSm26nIcvD1maXHNLazrraH93Z1GKpP3SF+s2QP3nDioNGn/jnhSFxF6Yssw3EVsyzS4PHx0PZfElNjXDHqigE//r37kWQwqpBQdQYZSz4qXNgn4tHUG2ZXmx9V0xiem8pXTy7BZpKo7gjwz/VN3P7yDjzhuFGDTl1GRNyFrlqQrO3o2i4kazugE2UVC8dezMauNTQFmrh85kz2hpdT29tNUK8jGA6ht08mv2Qd2a5mYn4ncS1OqiWVU/LP5qm19SD5eKj6m8TVGKnmVNKt6ZyUfRLv1r8LGBKSozJGkefMI6bsU7TSdA1FUwY/0f0QToS5d8O9+GI+usJduCwuylxlSIJ0SILeH6Wu0uTrrP+7Af+776F0dyOlp4OuE6upTRJuPyzlZVjKywiuXUv95VcgOhxk33xT0gMYwFxURN7PfnrE/Z/Ap4t+8vJ6vfT29h7XtHIgEOD888+no6ODefPmceuttzJu3DjS09Mx90lPzpkzh1WrVpHYr1Md4O6776akpISHHnqIrVu3JlPGgiAwd+5c7rvvPiZN2vf5Pf3003n//ff55S9/yfLly3nqqad46qmnABg2bBg/+9nPPtfqUMcTX0jCDccVWjwRnBYZh0VG0XTS7WZKMh10+GMkRIGYqlPZbjxZbmo0okxJErCZBCJ9EbGmw5vb29l+73JG5aXS5osSiBnNUIIg9KVFdcoyneS7beSkWlk0IZ/VVZ3YLBITi9P507JqXt7cSjBmSC5mOC2MzEthc5OPaFxFEAUcZonzJhQcU6MUGFGjy2bqGynS0DFGl/Yn3KbeMHs7gzT0hJKRdb9bkKZDs8dP14dlDC3by2vm1wYQ7qyhmWxu9NDsibBwbN4RR38OhzEFLn5z0Ti+/tjHJBTj+npCcao7gkwtS0+Kf3hCcUJxlbiiITl7QEygqzYkey1IQdBsCILOyaXZVHq38Xzl84BR8yzLt1EZ2o4atZJICFhMPkTndvb0duA0OckwlXFWznWs2mxB17vYG3+ViDkOgoon5sEX9SUt+YzrJCAKxgPQxJyJVHoqqfPVJdPAR0JHuANfzFDLMUtmIkoEs2Sm3H3wONSB0HUdz1NPEd21G/vUKbgvvJCMKy6HWJTwho2Idhu2CRMGXVcNBun4xS9QPV4Aeh9/gvxf3nPEfZ7AfxZz5uyTyFy+fDkXXHDBcdv2kiVL6OjooKioiDfffBObzXbQMvtHtvtDEAQWL17M4sWL6erq4sMPP2T58uU899xzLF++nPnz57N161ZKS0uT68ybN4958+YRDodZt24dK1eu5KWXXmL79u1ceumlmM3m43p+n1d8IQnXaZEZXeBiZ4uPmUMyuXRqMWMKXFS1B2joCSMHBXpCcRLq/iMloKk64n6RbP+7Db1hGgbRTO6Hp9HLpkYvIvD46rrkpKdVFogeVLSNUt1hqCIpGqDq7GkP8NCyahp7QpwzoQBVM7qXjzQWNGtoJmtrunl1SxRRMAgs/YD67+/fr6bdF8Ef3ReR6YCoQyCcQBdkgtF0vN7JzCwbmHpyWmRuW3joJqCjRSCa4Mk19fgiCRxmCZMkklA1UqwypX0d3lkpFtx2M7vbAsRVjYQKQvdk7I5NiFIUXTcjmrzoehBZjuB2jsMfN2pgMTVGIB7gOxO+w6q9TYSCRRAZhskRoCPoR0FFVWJ0dZzEP+sDhKIRhmU7kWUdQRBBEBARObvsbIpcRZxbcS57evcwKWcSOQ4jRS+LMleMuuKYzrvQWUhRShFNgSYq3BUMdQ+lK9LFV4Yf+Wk/umMHobUfoWsann88ixYO477kEtKvvhrbhAn431uK75VXSLv8q8hpA8nfmKfdT8/3C1xT+zxj0qRJjBw5kt27d/OHP/zhuBJSTU0NAFOmTDkk2VZWVh5xO1lZWSxatIhFixbx85//nIkTJ1JdXc3TTz/Nj3/844OWt9vtSfK98847+epXv8o//vEP/vSnP50g3P9VCILADacOpcUTId1pxmmRiSZU3tlpdMmmWk0Daor7Q1G15E/VsRqEHSipcDDZGkhoA/+uA9WdIR5eVcuSne3ku4wvyNnj8hiRm0phmg2nRT7IBjDVauJ7pw6l1RslGFNQVI25Q7P27T+hsKXRS4c/xoFIJs91I4rTdZHTCo48h/rv4F9b25INU06rie+dOoRoQmX+iJykD7DNLPH7r0zg9AdW7Eu5xzPQFCeiySBWQYojCYZN3samVr477iSy7StZ0bQCKVHCHa9W0tN9JrG4iN0sIplaiCfMiCaZeEImFkmjQ41gEs2AkwlpC9gQ/4iwEuC0ktPIrO+ld/tKZo8fx+kTBzcEOBaYJBM3TbqJjnAHNb4ant/zPFnNQZYu2cD5C2/CPnHiIdcVHX0z3e1tKD29BD5YRqKtDfcFFxBY+j6JhgYSgO/ll8m4+uoB68p5ebgXnYfvjTeRMzPJvunGQfZwAp81BEHgrrvu4uKLL2bFihX88pe/PKL4xQsvvMCECRMYOvTw+uf2vi72lr5RsgNx3333oaqHnyw4EE6nM0m4ra2tR7XO7Nmz+cc//nHUy/+34wsrjCqJAsUZdpwWmcaeMNc/u5lnP25kW7OPqs7ggOh2f6i6ERt8Fm6cgZihRtXQG2JDfS+3vrSVr/xtDWf+biW3vrwNf9SotfgiCf6yooY/vF+NrsNpo3Jw2UxMLc9gavm+OtDbOzqIJBS0I5yMpgsUpTkYkZt1+AX/Tez/nOCwyHxpfD57u0Lc/cYufv9+Nd3BGDVdQX744jai/eNFQgzJvR49kYYSMpycdM0QB9E1EymxBbyyqYuJ2ROxylaam0ZS1RHGH7KgST2EtA66u4sItVyAEB6FqKUiYUXVRHRB4aGvTmTCiGbGZI5kSu4UhGiM7r/8ldDq1XT/+S8kOjoGOZNjh0ky4bK4eGrnUzQ2bGfsv3aTvqWBnocfId7QcMj1LOVluC64AF1RkVJTUb1eAu++R+d99xNvqN/v4h4cvQqCQMY111D20osUP/Iw8hdkBvLThq6qqIEAWjR63LZ50UUX8X//938A3H777Vx++eXJmmk/NE3jww8/ZNGiRVxyySWEQqFBtjQQ/XO969at48EHH0x2JiuKwv3338+vf/1rrIPMaO/atYurr76a1atXo2kDQ4hly5axZMkSwIic+3HxxRfz8ssvJ40X+lFfX8+f//zng5b/X8YXMsLdH9GEyn3vVrKr1Uc4rh4VkfZ/zMySgKL1za4KUJFpN6zuNKP+eaRtyaLRkRtLaFhEiAyuKjgAqm6oY/UjrqoEoiqr93azrraHBaNyeWFDE+/saCfep3p157mjufSAcR4gOQp1pOMsSbdxxfTSIx/cv4lzJ+QTjCn4owpnjs7lZ//awe7WAGZJ5O9r61lX001VZ5DeUBxNB0FQsea8jWDpADGEFs/AeHY05pidYi4+tqCokyh1lRJOhDHGm1Usua8jmjtRgiNJxCdDtJBot505oxN80CyjEcHqquGZPV2s71xJe7idbFs2BXIK6H3OS5pG2NPFM20v0RRo4rTi0wbY76nBEF3PPIXu8ZF2/gVYhw8b9Lz78XHbx0iCRGpCQknEyHIXgq6jHkFKMbx+PVJGBomGBgiFMBUZtXk5Kxs5JxtdVbFUlNPzj2cJvPEGluHDyP7hD5H6fkiFE6nk44pERwf0NRjJ2dmIg6Rq/x088MADFBQUcMcdd/DMM8/wzDPPkJeXR0FBQdItqN85Z8yYMeTmHtl7evz48Xz961/niSee4Prrr+eee+6hsLCQ2tpaent7Wbx4MVVVVaxYsWLAevF4nMcee4zHHnsMu91ORUVFUjWqf274rLPO4sorr0yu89577/Hiiy8iyzIVFRW43W48Hg/V1dXouk5ZWRn33HNsPQTf+973ePbZZ5P/9ng8AFx77bV897vfTf79tddeY+bMmce07U8TJwg3oRKKKRSn22n3x5JduoeCAMiigKrrfT/iBnECqAjkue0EIgksJonyTDura3oH3c7wHCdXTC9FFgXKs5yYJYG/rqzhvZ0dqH1kLQpG85J6BCLWwWgi6gsVK9sDNPWGianGeJMoCtxw2lBSrQMl/aaUHjmyyU21MKk0nbMOIeN4tGjxRlhR2YlFFlkwOnfAsdjNMtfMNhqFvvK3texpCxCKK32WfwLVXUEjxa+DKPuRnLsRLe0IllZ0zQRqEXrChSDGQIyRYrNhEruYUCawpyGVUe7ppJbVU9kmIDn3oKOjRYsQxCi6asNGLkWWYhxyI7hWoFrreK1mDU6ziYSaoCXYQk52DtFpY7Bt24t9wgQ22btYWrkUX9zHnp49TMubRluojTs+vIP2ngbQo6SkmLnmn9Wce+ejh702WfYszJIZf2EOf/1SgKxEJ7eaT6ZwP0eYWG0d3ueeQ7DbSL/ySuS0NNTeXiSHA4YMQS4oQO8yZpYds2eBKNFy0030xOPGhxSIbNmC6vdT2CeGfwLHGft18+rxOBwnwgVjtObyyy/n4YcfZunSpVTu2cPWrVsxm00UFuRz7rnncskll7Bw4cKjdnR69NFHGTt2LI8++ih79+4lEokwevRorrnmGq666qpB1a2GDRvGo48+yvvvv8+mTZtobm4mEAjgdrs59dRTufzyy7nyyisHHMNTTz3Fu+++y5o1a2hpaaGmpgabzcakSZM499xzueGGG45ZRzkQCAza1BUIBAb8+8AO688agr6/2Oz/ONauXcuMGTNYs2YN06dPT/79xY3NvLuzHUkU6A7GaOgJoesG4UUTKr7ovlrGSUUuEAQ8oTiZDpltLX7iqrHshRML+fHZI9nbFWR0ngurWeLFDU2srOqi3R9lY4MHVQe3zcSr35lBaebBA+1ra7r57XtVNPaGGZqdwiWTC7ntpS2EDvO5yU0xM6Ekjd99+SSsJolHVtXy948a6PRHsZlkTip2s+ikAs7Zz9moOxjjw+oufv7WHoLhOJH9Uug2k0BphoPvzh/K2ePyB9sl0YTK3s4ARekOXLbDa/Mqqsb3X9zGtmYvvnCCoTkp/PrCcQMkL5+vfJ7NnZtZsnw6EjZUTcckC3jDCXRdR9UMXWnB3EFq8T8RTD3EtTgCAgnveHRkZHOAdKfCuPxC3JY0/M1fIhgV8UVDzB+X4K36N2iL7kET/YTaFqJF85G0NOYPKyGhqqyp6YHMV0lxekhz+fDFfaiaSp4jj+LUYr4y4ivMKphFVIlyz0f38F7je5glM5Ig8ft5v+eRHY+wpXOLYVig68i6QKZi42+X/JMyV9lhrhBs6tjELStuIaElEAWRidkTeWDeA8n32++6i0Sr0bTmmH4yqeeeS/fDD+P9x7PosRjIMpaRI8m++Sbs48ez99RTUXsOftizjBmD+6KLMBXkkzJ79mGP6Xiiutrw8j1SbfG/GUp3N1ooBJKEnJODeJSa1ceMRBT8LZDoS9HKVkjJBcvgQiYncGQc6+fzUFxyJHzhI1yAiyYVDmLLtw8f7O5gXW0PYwpdzKjI5Km1Bpm9s6ud/pKipoNFFnDZzQNkDy+aXMRFkw11oWZPGH8kQUW2c1AfXYDpFZm8UJFp1CJ1w9A93W7mu89uwh9VkATom0pCAM4Zl8fiORWUZ+3TRz5nfD6V7QFW7e0my2mMEmU4je7kpt4wH/XN5waiCYJRBVkWEVQjnW4SBVxWE/luO3Xdg9eCInGVS//2Ec2eMGkOM3+5fCIV2Yf+sidUHW84nrQ1DMYSbGr0JAm3zlfHyuaVAKSmNePvLcNqMuQx39jWljzXSaXpON1hGrDTHOzFIloQBIEhZSHumvwXQlGRd3Y3sKPWQ9zqYFODH0XTkYC3N9qZNGImy1t7CekK9uwP0CMVWM1w/Wn3cP87DeQVrccndiOafcRVjXRrOoF4AAQwiaake9F33v8OVZ4qIkoEm2Sj1FVKmjUNh+xIeuDqgg4ISKmpNAWajki4E3Mmkm5NpytiRKkWeeAIWL9wher14l+yBO8rr6IGg+j99cJEgti2bbT98FbKX32FAV3I/RBF9FiU7gcfNFb57ndIv/TSwx7XCRw95MxMdLcbPqHZ/BEhwEEFK/0o6lEn8JnjBOEeBeaPzGF+n0LTX1bUsKPFR1NvGF9koLjBO7s6uXWhMqhtHUBhmh0OGM/c2eqjzRtlWnk6KfulWQVBoH8CadawLLbceUbyvXhC4eUtrYzKTWVckfug/eSkWrn34vE09oZYXd1DntvKhCI3t760jTe3tRlm97qO1SRikgSiCRWHRcIkCQiCiI5AZUeAJk+YM0bnMjQnBU3TiasaD6+sZWNDL9WdRurG1x3kG0+s5/RRuYTiCpJodIBn7mdxaDNLXDCxkLruEKqmk+m0MDx3H0HbZTuCINDUkoeqypwxJp0bTx2H1SSxsy1AVyBKRZaTP10+EYs8hdbATN5teJe1rWtxmB18a/y3GJaWzYb6Xhq6NDTFzofVPlJthtmCLW07HudOVrVamZo5lw59LTs9m8G8CUmyUBNcT438JD69g0TXWQhCNvH0tVQUiHQIrVglKxcOu5B8pxHt7+ndQ1yNYxJNCILAUPdQVjatZEL2BFRdpaq3iu5ot2FSnzeZ8VnjD/8B68Md0+/goS0P4TA5+P7k7w94L/2qq/C9+ir+t99BsNmI19cbacsDoHR3oysKmddfT8cvfwnxOEJaGq6FC8n42pU0fPXy5LKR9RvgBOEeVwjyv/eTqisKqtcLgOR2H347shUcWRD2gK6A2QkmB8QCIJmM90/gc4kThHuM6Nf4tZoknBYpSboihtbwIHHFIbGlycuD7xupjBVVXdy96Ojsqcwmma9MObgJ6kAUpzu4bJoxq/vmtja2NHkNdyKMLu14QiPVbiLTacYiS3jCxhxsuz+KGtUZmp3CU2vrsZllaruCuO0mKtsDdPijRBKGy5EONPZGeHh1XXK/z69v4ubTh3H59NKkycI54/NZMCqH7S0+clKsA9LJOY4cFpV8nV/vbCTX6qSuU+XWl7dTmGbjx2ePpMkTZnp5RjIrkJ+SjyU8H71jFAU5KZSmGC5EaQ4zqq7T0BNC0XRiCY1cl0DUvQV/IgByN6u6Wkm1OHGYHMTVODn2HB7b9Qia3IukKSjWZqR4DlnqGcQTaxAFkXRrOq/tfY1ZBbOo9dZiFg2RCk1TccdlPqz5gE0pbnLsOZxeejq/nvNrEmqCQCJAiikFk3R0qcVxWeP464K/DvqeKTeXzG99i3hjI8FVq9E1DQ7oEkUQkNLSQJJI//IlpH/5ErRIBMFqTSqh2SZOJPzxxwiSRMoZn3y06QSODxSPB72vi1fXNEzZR/AttrqM/8Go0ftbQIkBAqTmgen41Y9P4PjhBOEeIy6eXEgkrlKRrXLVrFJiCY0tTR5kSeRLY/Oo6w6RlWIhJ/XIT5kNPftStq3eCHFFGyADeTzhsEikWmVDVELTKUqzM2NIBo09YQrTbJwxJo+cFAtPrKlnfX0vPcE44bjROby7LYAvkmBDfYxIPJFMaUui0aV9YBNATNW5Z0klv32vmhkV6cQUHU84QYpVZu6wTL4x62AlpUl5Yylz68QVjc1NXpwWmWBU4Sf1O8h321hV3c1d543BaZFp90VZuqsDENjVGmRjg4fpFRl4QnGCUYWoolGaYUcQ4Jzxubzc5CCietF1AUUVEJA5reQ0fDEfl4+8nJ+t/RmCAHazCafdSpFzGC6rjdnlDla1x/vO1SD7hJZgVMYovFEPTe2VmDw+pEQcU74V7CSVo0ySiWgowgfVbzO5aAal7tLjch8zrr2WyPYdIIqowSD01QwxmbCMGEHODdcPELo4sFO28IHfEvr4Y+TsbCz7KQGdwGeM/Zs1D3yQOhJ0rY9sAXRQoicI93OKE4R7jMhOsXLLGcMH/K3fQec3b++hsj2ALAl8/4zhDDlMXRPg5PIMVlR24YskOGVE9qdGtgBzh2URiCpUtvnJTrVyxugccly2g0jebTeR77IhCgJDs52cOiKbO1/fSSimomgaIsYok64baWlR4JBzvFFF44PKbsDo7LaaRMJxlXy3nUUnFQxY1moSKc2ws6XJh0UW8UUSdPqj2M0SLrsxX/vq5mY2NHgwSyKbGz0EogpWs4QkCny4t5v6nhDhuEqqVabVFyXFIvPG1g4ae+cipewGIYbd3caFw8/imxMvS+77lsm3JFO5ty74HsFQKsXpdlJsY9AkLz2RHhaWLQRgePpwTi89nS0NH1G+u5pGV4yYCYZ4rZgr8jij9Ax2dO+gs6eR36y6m5Aew7LBwt8WPU15WsUnvo+W0lJyb78N3xtvovR0g66j+QPYJk0k55ZbjmobjqlTj7zQCRwVtHgcLRhEMJuRPoGrj5TmRu3RAN3Qwj4WiBKYHRAPgSAZ6eUT+FziBOEeJ0QTKpXtRl1TUXV2tvqPSLg5qVZ+deE4wnHliI5DnxSCIHDO+PwBncrAQSR/7ewK3tzeht0ssXBsHluavLhsJhKKhkmSUHWdFItMWZ/udLs/Skw58hO5oulEExpxRUU4IO++pdHDpY98RCyhJZW+InEVXdeJxBW2N/uxyCKr9naj6TopFhPeiNGAlYgqfLCnk49qDaclk2iQeo7LSiyhUtkRQNPTSPTMwCTpXDQ+j2smDFRwml04m9mF+3XsZux7eekIo8bZG4rzyKpaLLLI+SctZNSLm9lepVA/SUGVTXSUpvKHKd9nRfMKXtv7GnptA349jKhBVA3z0YbXKF9w0xGvk64oRPdUImdlYsrZ5+yk9PTQ9cc/onq8uC++iPxf/Dz5XmT7drRgED2RSDZXncCnD13TUDo6QTM6JwVRTPoQHytEsxkx7xOM3jlzQI2DKA8qdnICnw+cINzjBKtJSuozmySRsQWuo1rPLIuY5U+XbI+Euu4Q/1jXgNUk8fUZpVw2bV99WBSMOVlBiJPnsnDK8GwmFLnZ2uwjGld4a3vbURGuAKRaZSaWpHHG6IE/LA8u20ssoaHrEFd0ooqG1SSiKDqKriPoOr2RCILcg4CML5rG/iJpmq4TSajYTRI5LiudfsO+L5rQBkTfAiK7mlXe29XBmYeZK1a6utDCYcwlJcm/Pbq6lj1txgOV7vMyc91WmrMlYhaNqNsOZhOBeIAar6FRa01JJ6W9gZAFbAmBMZs8sOCIl4mOe+8l/PF6JKeDnJ/8JOniE1j6PkpbOwDeF1/E2TfMH1i+HO8/nwMgsm37CQu9/yR0PUm2YDwsfSaHoWmoHg9oGqLbjXiCcD+3+FwRbmlpKQ2HkbMDWL9+PZMP4eP5WeP6+UOo6QqR4TST6Tw2Z5/PEk+traexx2jYeGlTM9fOMVKf0YTKI6vqyHNZcdtNTK/I4Etjc7nv3WqiCZWG3hCZTgvdBwwJDyZ9aTNLFKXb+casMv65vpFdrX7cNhPnnVRAhsOCLArEVR3R3EV2cSUoTtqaxiHqMnFFRbS0Ibs/AjUFMZGLJTKZYEJB18EsiQiiRnp2DSHi2ExjyU210uqPklBUQjGjUaw0w44oCASihx5qjmzbRvdf/waqinP+PNL6zNbD8X0/rKbKXej+ALM8ZmpydKKjKzg572QybBnMyJ9B98aPyKvsYVHPUNpMQYYqmeSOOLJ7kBaNEnj7HXRFQemEwLvvJQlXSt+3vpy2L+UYr63b73XtEfdxAscPgiQhulxofj+CyYTo+GxSuarXi9bnmasrCmJe3mdyHCdwZHyuCLcfY8aMweUaPELsN2X+PEKWxAHjLv8tMO3nsbv/a10HtS96bPVGeOajBp5YXQeCwKj8VBRVx2KRSLWI+GNGlJtqlZlcmk67N0J1l/EjYDNJjM1PJctl5a8ratnd5qfdF8VhkfmwpofffXkCzb0hdrX5kQpfoVfqIkXTKZDaERKn0GiSENLXIph6kCxVlDpHMDPlApbt6URRdRRNw6PW4gvYkSUrwVg77dEEdpOVGUPKyU91MKYghdU1vWQ5LZw+6tDRbXjTJugTbQ+v35Ak3K9OK+HJNfVYZJGZrlQoLyc9GOT/Om1knXY/TrsbgNGWUlLWW9HUHEy6wJCcccjp6bi/fMkR74OuKIg2G2ogYDgUufap76SceiqCIBDv6eGNgg62Lr+JSTmTuGD6yUQ2b0ZPJHCeMvco7/gJHC/Ibje6yzXAD/s/jv2arPRjbbg6gf8oPpeE++CDDw4qK3YCR0ZDT4gVlV0EYgrTytKZfBTyjVfPKuOFDU1YTVJSACShajy5tp5wTGFvZ5CEqhGMJnBaTPTpa3D66Fx6gjHSHWaCffZ+F08qZObQTL77j824rCZDeEIUsJgk5g03hCwEIKqoeMOGNvI5f1zNpOI0RDlEXGwGXSWiqxQrO8mrS6V04nQaXPkEpVac1hRun76YFz6MUZhmZ1ebj55QHFW0IegyFqsfzfU2erSQkJBgbYNGjr0AQYR7LxqflL88FKwjRxH+aJ3xej9pxSHZzuTYlhYtp7e9iURrG6lnL8TRR7ZgSPrJugCiGURwnb0Q+37C7KrPZ0RDg9T6BFkm5fxFhFetRkxzYykpQQ2GkJwOBFEk5bTT2NG9g/VbVwGwtnUts6bMovCXv0SPx06YEHxG+EzJFmNuV1cU0LRjb7g6gf8oPpeEewL/HlZWdfHHZXup7QySlWJh2Z5Ozhqby4KRuQPmXg9ETqqV784fKGn2UW0P6+t60XQdTTNEMnwRiCsquW4H3503hGnlGWiaTlVHgHvfMbwzP6jsZEKxm6wUC3FFJaZo3LhgGDOHZJLptOC0yLywoZl2fzTp/BNXNLY2e8nI6MKLGfQoOjCvIcDk6vf5V0UpSub5LBz9Nc4dV45ZMrM9t4Z1tb34owqaBrpqR9UllIQdURuL2b0BLZaDPywQDAbpDsa4amaZIT5yGDimTcWUk40aCGIdPWrQZUSrlcxvf3vQ9+TMTFznnUtw9WosFUOwnXRS8j3/O+/ie+UVBIuFzOuuG2BqEN65k+bF16KFw4h2O4Ik0dXZheR2I6WmIqU4SbvsMlzZLkPJCh1JkHCanEg2B+AgWllFvK4O20knYco5whznYRDbuxfV48E2fjyC+bPtLziBI0OQZUxHYVhwAp89ThDu/xC2NnnR+rqEuoNxugIxPtjdyeZGL/deNB6b+eibKex9y9pMErIk0h2MIYsioiRy3vh88v+/vfMOj6Ja//hnZmt2s+mVJLTQSagiIArSVLChIFe52Dt2xSvqtSt6r/qTa70WVFCsWLiiKEV6lSJFWggtCelte5uZ3x+TbBKTQIAQEObzPD7PsnPm7Jl1st8557zv940KY1eBgzd+Vcvn+YMy0RYjigI2s4G7h3Vg/f4yureKZFCHuFC/w7smMrxrIt9vyuPp//2B3RtAV5VapJOjCRdaYzC6SfG7SZDb8Em/bhxo1Z0IBIorDRh1qgD8zb+fAdmr6OKP4gNDOsFgjTDIri74FT2i3o4ihaMIqh1ltKVpEbzG48xPjRg1iohRo+q971y8GADF58O1cmVIcF1r1pB79z2qDy8g+XwIUVHIBw6gZGUhmEwYWrXCv/8A5h6ZTOx7HvvjFXom9CQ2TA2p9u3dR/G0aaAoOBYtIvm5ZxEbKK92JNzr11P6gVpswdy9O/H33H2EMzQ0NJrKKSm47777Lq+++iput5v4+HjOPvtsJk6cSMKR3FfOcHq3jub33ApiqnyTXb4gJU4fOlHA6QseleA6vEH8koxeFBjWNZ5ftqn1X93+IIt2FrH+QAVJkSY8fgmLUY+iBEmMNDOgfSxpMRbSYiz0ad1woJDdG2Dn3nz+VrSRqNJDrAxLZX1iV4rKI4iSL8Ep5pMrdeDFzEj8QRlfoYPeaVEM6aTW4/Xn5mGfPZtIRSEjfwdt24Wz15oQMuQAHbK7c6iMoiioAVMr95Qyomsi4hGWlWvj3bED//79hPXtiyEhAf+BA9h/+YWwPn2xntUXgDxnHstzl9MqvBWDUwc32pexTWs8VfZ9xrY1EdAFz7+A7PGEqvogiqq1n8+HaDKBICCVlCA7HAhGI6327OGsl16qk/cZyD8UOl92OJAq7U0SXEVR8G77A8FkxNypE74qE3dQZ7oaGhrNxykpuF988UWdf3/55Zf885//5LXXXuP2229vUh85OTmh+ozVbN26tdnGeCpybsc4jHqBz9YeJKfMTbHDR5HDR6UniN0bIN7WtMhppy/Ip2sOYKwKoDq7bQwbDlSQW+ZGFARMOhFFUV2hQI1KHtwpnruGdjhsv6v2lLBwRyH5lV66L/meHjvX4PUFsITlEOmq4Mf2g3AVxSAKMVQKApLiRScKGHQi3ZIjcPuDvPzLTjopTroH5dDMulWkmRKDEb+kRiRXpwIJQKLNiNmoJyEijC9/y0FWOGxKUG18e/ZQ/Pob6qxx8WLiH36Yg7fdrhodfPoprf7vNcx9evHGpjdw+tUAMX1JJT09cYT16FEvajX25puxL1yI45f52H/8CdEajrW/akIhGAwokgQ6HaZu3bCc1RfPxk0oPi/ICvrkZJTqUmNSfVvHsJ69cC5aROBQPpaz+qJPiG/SNVZ89XVo5h01/iosZ52Fa/UaFL8f6znnNKkPDQ2NpnFKCe7AgQN59NFHGTx4MK1bt0aSJH777Teee+45li5dyh133IHZbOb6668/Yl/Tp0/nmWeeaYFRn1oszyrB4Q1S6vLjD8pEmA0Y9SJLdhWTHt80Jxy9KKAXRQJVhXgNOh2X92zFmr2lHKrwkFvhoUtSBDef2468Cg++gMzQLodffShyeHlz8R625FbglxT2hrUnM7gCt86EXpGI96iWiAogVblYCYIqmia9iAK8t2wvkqywxu2nbXgG3bz72JyWjD+tHe0lGQHIKnJQ7lYDuAQBOiTYCDPpQ0vtZS7VqrHSE8CgE0Jezw0RyM+vmTXaHfi2b69Jv5BkvJs2oe+dgctftRTscnJg8SeklcRiaJVM4hNP1AmoEYxGZLsdxedD8fmo+OorrP3PJvHRKRQ+/wJSRQXGDh2QPB7KP56h1iO0WEh+/DEiL7uMii+/xLdvH+FDhqCLiEBRFGSXC9FqDeXtyi43uvCmp6d4d+6oeb1jB7Zhw0h+4XlkpxODll6iodGsnFKC+/nnn9d7b/jw4Zx//vlcdtll/PTTTzz00EOMGzcO6xFy3m6++WYuvPDCOu9t3bq1yTPkvyrVy8ZJEWZcPgm9KJAcaSYtuuneqmaDjruHdWDxziL2lrj4cv1Bdhc4sVbl0sbbTDx+cVeiLEY6JzWtcLQsq6UBfUEZSVbINUex09aKJHsxPp2Rla0ya32+SLTFGLKN7JgYzvCuCbyzJJvdhQ5KnD52RXZkZUI3OiRYGdk1kc5JNh77bhsuf83ML9Zq5MnLulNo9/L5uoNEWYyM6JbAwu2FfPHbQfSiyN3DOpDRiElJWO/eOH79lWB+AZb+/bEOHIixdWv8Bw8ihodju+hCjDoTYzqM4ef9PxPjE+hTpu4TBw7lNyh+uqio0GvRZsO9aRPBomJS33oLgIpvvqHsww+rcrIkcDop/ehjjGlpRNeq7CP7/RS/Ng3/vn2YOncm/p67EfT6oxJbUG0eK+f8DwQBy1lqNLXOZkN3CqffnS4o1f+PdbqTHums0TIct+A+/fTTxzyT3LRpE7169TpiO51OxyuvvMJPP/1EaWkpixcv5pJLLjnsOWlpaaSlpR3TuP7KTBzQBotBhwJcnJnMltxKbGY9/dvHHvFcgEK7l9cW7OaPQ3YyUyIpdvg4WOamzO2nxCkTkBWevLTbUVtRJkWa6dc2mh+3FiCj4DOYeKnv3xGqnHpkUYcA2MyqbWSrqDAmnd+BhAgTn6w+wLcbcskrd1Pk8CHLCjpRISjJJEWGcdVZaazdV0pBpSe0zA2QEGFGLwqc1zGe8zrWLLEu2rkbRVFTn5buLkYnCizYXkhqdBhjeqWE9nhFq5Wov/0NQRRDBhStZ3yMb/duDK1bo49QHzaGtxnO8DbDCRQWUrT2FXV2mJqKa+VKLH37oI+rCRqzjVTtpty/b8a5ZAmV//sfxrZtMS5eTPKzz+BctqxmLxdAUfDv2sXBG28i9f33VAtAqxXF58O/TzW98O3apQrvMRR3jxg1CtFiwbFkCd7t2wnr1VPdN9Y4oSiKQrCoCMXrRTAY0CcmIuia3yFqyZIlDB06lDZt2rB///5m71/j6DhuwTWbzY2aVBwJ3VHcYF27diU6Opry8nJ27959TJ93JhBhNnDDoJpi5yO6HV2k6o9b8tlwoJxSp499JU5Meh1BWUaSZQQEih0+Pl65jwHpcVzQLRG9rukFF566NAODXmTRjiJc3oBaaaiWDV201Ui/ttE8NqoLm3MrOVjm5sOV+1i8swhvUCIYlBFFAUEQMOpELspI4olLumEy6DhY6sZq1OGpipwSBTDoBNrF1Z/xtY21UmRXq6u0jrHwxq9Z+AIym3MqiLeZQuJc8cUXOJcuA0Eg5oYbsPY/G9FoJCyj4TKKhsREkp99Bs+WLZTNmEllbi6OX34h6uq/YUpPRx8bi6DTEXHRRVR8PweprAwlEMB/4ACGhASkigrEcCsYDBCo64alBIPkP/Y45ipRjbj4YnXfNxBAMJnQxzdtz7YhKufMQXZ7COYXoE+IJ/Lii4+5r+Mlc0bmkRudomy9vukxIorfj+L1qq8DAWSvD5318ClrhYWFfPDBByxYsIBdu3ZRVlaGyWQiJSWF/v37M3bsWEaPHn1Uv6t/RZxOJz/++CPz589n3bp17Nu3j0AgQEJCAgMGDOCOO+5g+PDhJ3uYDXLcgjtlyhSmTJnSHGM5IsaqnMBAoHFrPo3jI8piQFYUfEFZzb8NE4kMM7OvxFkVjKTw665i8iq8BCSZy3ulHKnLEJEWAy+MyWRv8Rp2FjiglvesCHRJshGUFe6ctYkiuxerWY/TG8ATkAhKqi+yJNWUA1QFeT93np/OwPQ4Pl93EKdfQpYVUqMtXN4rBUEQKP3oY+w//4y5S2cSn3qKm85tR7dWEZgNOjJTIvnf5kOhcXhrQp3xbKn6AVUUvNu2hgKcDodosaD4fKAoKJKEe9MmpMoKxIgIEqZMwZiYiOPXX/Ht3Km2E0UEUcRyVl8MbdqQOGUKuXdOQgkEUIJBFI+nVuc1DzfBokISHnoQ767dmLt3r7NU3RD+gwcpfPkVpLIyYm+9BVttYxmhpl9tabNlEPR69f+nLIMgIBgPn7I2bdo0Hn/8cdxVNXOTkpLIzMzE7/dz4MABZsyYwYwZM+jatSuLFi0i+TTef7/zzjv59NNPATCZTHTs2BFRFMnKymL27NnMnj2be+65h//85z+n3P18Su3hHo6ioiKKiooAzsil4pbi0p6tcPqCzFi1H49fonWMle6tIhjZLYGFO4oodviwVu0TVwcgHQ2yLLO32IXDW9foXQZ+P1iGKIp4/DI2kw6nN4goCBhEEVmWq6oMqTV4KzxB1uwtxROQuPP8dNq6S5jZS2SjtRP5fpHU6DDO75yAb98+Sj/4AIBAbi7mjAyir7oqNIsNSDI3ntOWn7blkxJlYXCnOBRFwbViBaDOPgSjkbCePZt8jWF9+uD4dTH+/ftVEwuDEf/efRy6/wHCevTAf/AgpvR0fFlZiFFRJD3zDNbevZAcDvx79xHWqxeKJOHfvw/Z40XxetHFxRJz6624fpkPeh2Wfv3Upegm5gyXf/kVnk2bQFEofPElrP36haKoY2+7FfvcH9HHxxM+YkSTr1Pj2BF0OvRJSSgeD4LJhHiYKk+TJ0/m1VdfBWDChAk8/vjjdKvlgiZJEitWrOCVV15h7ty5FBYWntaCCzB69GjuvPNORowYgbkq/c3lcvH444/zn//8hzfeeIPMzExuvfXWkzzSuvxlBPdf//oXiqJgMBhO2eWC0wGDTuS6gW0Z1zeVr37LweWXGNsnlcQIE4M7xbMlt5Lf9pcRGWZkVMbR/1G/s2wv5e6GhdodUBCQEABXQCJcFIgMMxBuVHAHdLj8QZy+miICfkmhtMRO+VdfcfCnhchhFnqnJnDRlEdC+2G+P32GItXMYL/ZkMtPW/NJiDDx8IVdiLGqKyjOpUsp/1xNTdNFR5Pw0INHFbGrs9lIeupJJLuDkrffwp+9F6miAn1cHP4DB1AkCcFgwNytG9ETrsHauxcAJe++i2f9BmS/D31CIuFDh+HbvRuppITw4cOIHDoU24ABCGZznSLzTUKgZm9YEAiWlWGsElxz586YO3du/FyNE4JoMKjbB4fh22+/DYnt1KlTefTRR+u10el0DBkyhCFDhvDVV18dMaD0r860adOIja0fk2K1Wpk2bRrbt29nwYIFvPPOO5rgNsazzz5LQkIC48ePJ6aWH6jdbufFF1/k//7v/wC49957SaxVJ1TjxGAx6uvsBQP0bRND3zYx3Pin948GpzfA4RZ5lKr/TAL4ghKVHgGTXsSgo47YAhglP+2zd/Hr/BXMbncesmTmwm17GHHnJMydOxN3z92Y2rUjeuLfcS5chLFDB6LGXwWoff+0NR+AIruPlXtKQrWCA1UrKaC6Qh1LeowgiuijIkmcPBnfvv2UvPNOaM8u5oYbCBYVoY+LxXruuTXfzbLl+LOzQZbxZ+9Vg2p8PqSKCipnf0OwuJjkp59WlyOPkthbbsG3Yye+/fvQ2cKRqpYmNU5dFEXhiSeeAGDw4MENiu2fGT/+yEUyqsnNzeW7775j3rx57N69m0OHDqHT6WjXrh2XXnopDz74YIPCBrBs2TJef/11Vq9eTXFxMRaLhfj4eDIyMhg9enQ9odu3bx///ve/WbhwIbm5uQiCQEJCAu3bt2fYsGHce++9REQ0LeOhsTFVM2rUKBYsWMDOnTub9kW0IKeM4O7du5ennnqKSZMm0bZtW+Lj4/F6vezcuRO/X50RXXfddbz00ksneaR/LXLK3BQ5vHROtFHq8hNvMx0297S5OVThYXeBg+V7Sihx+oizGrAqfvRVe5NlYfUD7gwCGPQ6ApJMYqSZgkoPSu3CtlUkeiu5cs9S1sR2QhJECATYYEnh/JLfcObnY+7ZA3Pnzgg6PdETriHysssQqvZBjTqR2HAjpU713kqOrAkuCx8yBO+WLQTLyom84opjuu5gaSml772P5HAQ/bfxJD48GdeatRjbtMbSSHlJxeVS9/QUBSUYDJVdE3Q6FEEgWKTW6dU18YepNvqoKCKvGkfhM88S8Bwi7557af/dtyetpJzGkdmwYQPbt28H4L777mv2/qdNm8arr76K2WwmKSmJjIwMysvL2blzJ1u3buXTTz9l+fLltG7dus55H330ETfffDOKohAdHU337t1RFIWcnBy+//57li9fXkdwN2/ezJAhQ6isrMRsNtO+fXvCwsI4dOgQS5cuZfHixYwZM4aMRoIRjxZv1YOtpYECISebU0Zwb7zxRiIiIli3bh05OTls3rwZQRBISUlh4MCB3HTTTdpS8lFSXVQgKMmq2IabiLQYeOLibkRbT7wpfU6Zm+d/3M7OfAfFDh+x4UYMAty+eQ5Wtx2Az7qMZHd03T/ocLMeg07N+Y0MM2D3BDCIUO6p2fcVgITEaFKiwmhtL2BHVBqS3kA7qZJgoWpD6fj5F5y/LkYqK1PPMZtDEbiCIPCPi7qwIquElOiwOlWVDAkJJD/3HIqiHHPQhf3nn/FX1XYu/+JLWr04laixVx72HMvZ/bD/+FPIcUp2uVSzDI8HU/v2WPuffUxiC2qUs2vlKmSfD4JBZI+HQEEBpvT0Y+pPoz5SZSW6Y8zYaIjly5eHXp+I6mmjRo3i4osv5rzzzkNfa9WkqKiIRx99lA8//JBJkyYxd+7c0DFJknj44YdRFIW33nqL22+/vU5UdFZWVp32oKaOVlZWcv311/PGG2/UKbFaWlrK119/XWdV83iQZTnkVDhkyKlXrvKUEdzqPQiN5mNngQNZVi0YD5V7iLEaqXQH2J5vr1NQ4IR8dr6daQt3s2F/GRXuAJICFZ4AFskXEluABHd5HcE1iPDkpd24ok8abn+Q1xdlsTPfjjcgoRfU4CpZAVEUaN+lLbaJ7xB46R36+B3s6nAWwyUJfVk8otWKVFmJLztbtURUFAKFBSj+AJGXXoKg1xMXbmJM78ajrI8nwrG2z7EYfniHL8npUs0uBIGIK69AEFSHKfvs2UilpQD4c3Px7tt/zOMpeee/eHfuVKOeBQGdzYZUaT/yiRpNRqqoUAOgjqFoRENUW9NGRUU1myDVprEJTEJCAh988AG//PILP/30E4WFhaFtvOLiYkpLS4mKimLSpEn1zu3YsSMPPPBAnfd27FDdzB544IF69cxjY2O54447muNyAHXWvmXLFkRRbNISfEtzygiuRvPTOy2KX7YVIMsKSVFmdIKAUS/SPv7ELiN+tymXl+btxBeQcPiCCIJqF+n1B3HJIusSu3B24U7KzTa2xNX1X9brRD5dm8OyrBLK3QFE1FlmQFYQRAFZUqrifxRWZ5fyxCXd+GPwZXj8EkZRIO68vhgUL4H8fDxbtyJVVoIsI5pMSHYHBf/6F+vnr8QyfCT9rxx5xPq4x0rEqFGq9aLdQcSoiw7b1vnrIrxVS4eCyUTy1BfIufNO5MrKUBu5ogLHDz/gGjs2FGTVVJRAAO8ff+Dfv18NnFIUJKeTYFERksOhuUqdotjt6gNR+BEe2I4Hp9PJ119/zYoVK8jLy8PlcqkOWIDD4UBRFDZt2sRFF6n3cHx8PGazmYqKCubMmcPll19+xM9o3bo1u3btYtasWWRkZJywPOGFCxfyyCOPAPDoo49yViNbNycTTXBPY9JiLEy9MpMyl59oi4HdhU5ax1hIimz4CdwbkPh6Qy4VlW6G2bNJs4qEjxiB2EhN1Aq3n2VZxfRMjSLaauSnLflsP2Rn7f5SKt0BdKJqUBFrNaITRfyHDvH3P+ZhDXhYmNqXlak9UIS6xhlBSaHQ7mVLTgUI6iyzXUwYkixh0Okod/uRZNCLakGDCLOBR0d3ZXNOBZ2TbKRGmymJjKTyp5+Qy8pqInPNZqTiYkp1YXg3/Y57dzafbM9m3CO3Em5q/j8DwWgkasyYprUNq7HdFKvGqbg9NXmaoO7rKgrB4qJGejlM/1UR0c4lS2re9Pmo+P47nEuWkPjPx+vMyP+M5HRS+uFHiGYzMTffhHiaGyscK2JkZLPNboHQbNBZ5d/d3KxevZqxY8eSn59/2HalVassoEZEP/TQQ7zwwguMGTOGrl27MnLkSM4++2yGDBlCampqvfMnT57MwoULefnll5k5cyYXXnghAwYM4NxzzyUzs3mMTtasWcMVV1xBMBjk6quv5tlnn22WfpsbTXBPcyLDDESGqakHZ7drfFmqwu3n3i82qZ7JXgcLXZX8w72FruXlxPz97/Xbu/yM++8qyt0BzAYdQzrFU2j3srdEfUIOM+rwB2W6Jkdw06B2fPd7HuG/7yTcr0bHDs7fwoq0XvX6lWSFEoePoKxUzT5VowtZEZAUhcyUKCLMerokR3D3MHV2nBIVRkqUKlqezZup/P57dXZYq9ydLjISCZCCIomuUvxeOwc2beGleTt4+tLuR+WY1dzYhg5FdrkIFhcTceGFGJKSCOvTm0BxMVLVfjQAOh32H3/E0qNHqOC4b98+HAsXYkhIIOKSSxq1B4ybdCcl06eDr1ailKwgVVQQyMlB17Vro+PLmzwZ79ZtgJrLnPzsmVcUpCnoj2A+crRUi1dFRQVlZWXNuqzscDi44oorKCwsZOjQoUyZMoUePXoQExMTMhgaPHgwy5cvr2c09Nxzz9GmTRveeustNm/eHFoyFgSBIUOG8Morr9C3b99Q+wsuuIBFixbx4osvsmTJEmbOnMnMmTMB6NSpE8888wxXX331MV/Lxo0bGTVqFE6nkyuvvJJPPvkEUTx5f8+H49QclUaL886SbDYeKKfE6WO/X8cOXRQ32AZzye8G5v9RUKetNyDx+PdbOVDmVnNjvQEW7iggv9KNLEtIsky3VpE8OLITX90+kOQoMyhga52KXiciCFAUFtXgOGQgxmpAJ6jpQeEmPaIg4A/KOL0SAVmmX7sYHh3dFZu5fg5joKgI2etBMBjUckE6HaLNRsTll2POzMQmBFEEEREFxRZBfoUX+59MOI6EotSPmD4eBL2eqDFjiLv1VoytWyMYjST+4x8kTpmi5mlW7SWLYWHg8+NasyY0jpK33sazYSP2eT+rNpSNjFXQ62n/048INhsYDJi6dEEQRXSxMRjSWtc7rxrZ48GfvTc00/Yf2N+s167ROIMH19RWXlJ7daIZmDdvHoWFhaSlpfHjjz9ywQUXkBAbi1BaRiA/H9nnqzOzrY0gCNx66638/vvvFBUV8d1333HfffeRmJjIkiVLGDZsWD3f5qFDhzJ//nwqKir49ddfefrpp8nMzGT37t1cc801fPvtt8d0HZs3b2bkyJFUVFRw+eWX88UXX9QJADvV0ARXA4BdhQ4kSUGSFWREZAQCgo58nYWn5myr0za72InTF8QgigSCMpXeIMUOP9vznRwo85JT7mVrThl+SUIQBDom2ogNN5LfpQ87zh3Ninb9+KzLyEbH4i+r4Ip9K7in8nemjkrHHZAw6kT0OgGXT2JIp7qlAEs/+pg9w0ew94orEa1WTO3aY2zdGnOvXiT84x+k/mcaCXffRfILzxM/aAARmd2oTGlHXkZ/urWKINpyePOB2ni2biPvwQfJe2gy3hPo6S3o9dhG1nJ9qhXAZax2WlMUtV5uFbKnbm6tc9kycu+5h0OPPU6gsBBTSgpdfltH161baDvrU6InTMCQmorjl59xrV5NyXvv41y5MnS+EgxS9MqrYDQiu1wgCERd1fQ8T43jo2/fvnStWnl4/fXXm7Xv7OxsAPr160dY1ZaGVF6O4veh+P0U7clm165dR+wnPj6eMWPGMG3aNLKysujYsSN2uz1kvfhnLBYLQ4cO5amnnmLLli1MmDABgLfffvuor2Hbtm2MGDGCsrIyLrnkEr766isMRzASOdmcuo8CGi1KepyV9fvKMOkFJBkCqEuTCuD01zWcaBVZvedY42ssCHWL3Nh9MtMW7qHY4eeJS7rxzGUZ5Fd6eHKOxNpAIoHDTBJH7VpKemUeyZ4w+m1fwcQB5zJvawHhJh1X92tNZmrd1IuyGTOqDOC92P/3A4mPTsG7ezeWXr3qWB8ak5Jo9eKLeLZsIXzZStrvnEds6wCC0HSXJfvcuSgeLwpgnzcvVEVIkWVcK1cie72EDx7cLBV3RL0ey6BBeDdtUiOYL7iAqLFjCctU8xUFUSTmuuuo/N8P6BMTsQ0dWuf8yu+/h6CEVFaG89df65T3E61WHAsWECwuxu3zIVVWYkhIwLNxI8aUFIxt2yJVVhLIy8OUloYhMZHIcWOJHD36uK9Lo2kIgsCzzz7LVVddxdKlS3nxxRePGHn79ddf06tXLzoeoXJUdY5qXl5ezeeJYujv+f/e/S+SJDVwZuOEh4fTp08fsrKyOHTo0JFPAM477zw+++yzJrevZseOHQwfPpySkhJGjx7NN998E1oKP5XRZrgaAFzTvzUdEsOJtqi5uma9enMYRDXauRpFUXhyzjbW7C3DG5QxG0TEqkLxf0YQYEe+gwp3gDCjjrwKD/tLXA2KrUGs6WN9QucqK0KQ3W5uG5zOf67uzdQre3BxlRtUbWqbN+jiYjF360bUmDEN+gyLVityUML9v+9h1w5K33wTzx/bj/j9yD4f/pwcdLX20WpX6LH/8APlsz6j8ptvKZsx84j9NZW0t98i6aknSX3zTZKffiokttVY+vUj+blnMbRKpnTGDIL2mlQffXzNSoA+oe6qAKjLxeoLqU4hCdnjQZEkvFlZiFWBO/qoKKx9T72oz9OdcePGcf/99wPw2GOPMXHixNCeaTWyLLNy5UrGjBnD+PHjcblcR+y3Oq937dq1vPHGGyiKgi46Gtlk5j8zZvDKm2+GPIprs337dm6++WZWrFiBLMt1ji1evJh58+YB6sy5mquuuopvv/02VHihmv379/POO+/Ua38k9uzZw4gRIygqKmLUqFF8++23fwmxBW2Gq1FFhwQbT1zSjTd+3YPbL+ELSJQ4fXRLjuDZMTU/8lvzKlmdXVprhVOgbayV8f1S2V1g58etBQSDCjq9SFq0hY6J4URUBW2VufzEWI3kVnjrfX601YTdG8AbkNkZ04Ytcen0TA8jsirSt3Vs464xrf79b0rffx9DUiLx997baDtfdjbebdvqWDeiKMiVFXXa7S508N3GPARB4ep+rYnZvpHit95GNJsxtm2LbdRFiCYTtmHDQucEaj2hB/KP7mn9cIiieMRZZfE7/6W8agnPtWIFbWfNAiD29tsoefsdEMDcu3e982KunUjF7G/QxcSgT0jAu/0PwjIyMHXpQvknn+BatRpFlrGecw5RV15xzKYbGsfHa6+9RkpKCk8++SSzZs1i1qxZJCcnk5KSEqoWVFmVQpaRkUFSVUDd4ejZsyc33HADH3/8Mffeey9Tp04lNTWVvXv3UlZWxq233sru3btZunRpnfP8fj8ffvghH374IRaLhfT09JBrVHXe8KhRo7juuutC5yxYsIDZs2ej1+tJT08nKiqK8vJysrKyUBSFdu3aMXXq1CZ/H3fddVdoRlxcXHxYQ6TZs2c36ftoKTTB1QjRt00Mz12ewfQV+1AUhRsHtaVtXN10kXibCYNeJEzWgQI906J4fkwG6fHhvLZgN+d2UGd90RYDfzu7Nd1bRYRyXc/vnMDyrGK2HrLz57ijMpcPfVVkoSKKLO01kmuv64ch+cgm/WHdu5E67bXDtgkWF1M8bRpKIAh6Hebu3fHv34+lb18Cvc7iYImTm2asp9ztx6ATKXX5MepEtqzYxD2L3sXirMRoNiLo9cRcO7GeQ1P48OF4d+1GCQaIuPDwebfHi3fHDpwrVmBs25aIkSPx1dprCxyqSfFwr11LoOpHsOiFqeiiotDHxRJz3XWIVithPXvWqYKkBAJqsBngy94LVC0zeo7NTlKj+Zg8eTITJ07k/fffZ+HChezatYvNmzdjNBpJTU3lsssuY/z48YwePbrJEbrTp08nMzOT6dOns2fPHjweD927d+eWW27hxhtvbNDdqlOnTkyfPp1FixaxceNGcnNzcTgcREVFMXz4cCZOnMh1111XZwwzZ85k/vz5rFq1iry8PLKzswkLC6Nv375cdtll3HfffU32UQbw1Yq0X79+/WHbVts8nioISnOHXJ7CrF69mnPOOYdVq1YxcODAkz2cE4o3IPF7TgWJEeYGi7AfD0t3FzFn0yH6tIlm4oA2ofe3zplP9ozPsdrLiOrXl9WDLme3XeK8RCOjjRVYBvQngMiE99fwR14lPqnm1tMLqnuUv+o9vQgLHhzCjnw7xQ4/l/VMJtp67Pui3l27KH5tWujf8ffdi7lrVz5YvpfV2aWs3luKxy+F9rAMOgFREMgsyuL67fNIdBRjUiRiBp9Lq5deQhde/ztVgkGk8nLKZ8/Gt2MnYb16Ef33Cc2yn1uN7HJxaMqjqnsWEHvbbUhOJwVPPokSCGDu2hVddDTWcwYiu904fpmPb+9eZKeTsD59EI1GIkaPIvKyy+r0WTTtPwRycrAOGkTMtRNxLFpExdezQa8j7tZbj6o8YUNkZWUBHHFvUUPjZHC09+exaok2wz1NeXX+LvYWuxAEeGBkJ7q3aj6P1yGdEupFCst+P1G/zKG7PRfZ7WbngXzWmbOIigiD/75Ldsl+TEqQ8gk3U2bqXUdsAcwGHZ5gTZCGJMPYd1bh9kuY9To+WL6XcX1TuaBbIl2P4VpM6emYu3fH+8cfmLt3x9SxIw5vgNXZaupDICijUHcvWlYU8uPbUGKLRUAhLMJG+2uuQTSp+0WKolA+cyaebX9g6dOb6Guuofjtd3AuXIgiywQKCjAkJRLRjIFGSjCIUme/1Y1t8HmEff8d7m3bKHzsMRRJxrVqFYlPPYlv3z5kux1FUfDt3k1YRgbCn/a73Bs3EsjJAcC1ciURo0dh6dcPc2YmYliY5kSlodFMaIL7F2JfiQunN0hGSsRhfX79QbXIO6iRw1mFzmYV3IYQRBHBaKxagvSQ5YYcu5+0Q1mY/R4kQcAtGvHM+Z6S89uAXo10FoCIMD0mnUhAVlAUGVkBk0HE7ZcIBGWCkoLdG2D6in18szGPZy/vzvmd6wcBHXZ8ej3x99xdZ9nUIirE20wUO3x0SLCyp8iFAgzuFIfdE8SkF3H5JX5JuIlO5QeYkLuWik8+wfPbOhLuvx/fjh24Vqs5sc6ly7D0H6A6QVX9v1F8PtUtqgEUvx/nipUIOhHruec2aljxZ3SRkUSNG4vj118xtm2L9eyzATWoSZCVOvV+FZcLfXw8QVlGkSREs5nwoUPr7D0D6GuVuxTDw3EsWoTz18WI4eHE33+/JrgaGs2EJrh/EVZnlzJ9xV4UBc7pEMfN5zZek9aoFzm7XQzr9pVhNuro0/ooi5U3gjcgYTY0LAyCXk/cpDsp/+xz1q/9g/WtMrBJPkoCAq2cJRRYYyk1R7Ilvj26YDB05yXajDh9EvZAAKNO5JIeKRwsc1No92H3BPAHZSRZ9U/2BWX8QZm1+8qOWnBD46yVp6cTBaaM6sJv+8tJjQ6ja7K6j7Sn0M5nb38DKBxs040pl/QjZrUTV4EqpL6du1D8fjWCtzofShQRrVYiL78cqdKObLdju+iieuJWTfnnn4fEOlBURPRVVzX5GmzDh2NrIFDEeu4gwnr2xLN1K6YO6USMGoUuKpqiV15B0OtJevopLA0ET5k7dSLurkn49+0j7KyzKHxBDWCRnU7ca9dgTB3b5LFpaGg0jia4fxH+OFQZCjTalld5+MbAbYPbMzozmSiLoUFHpqPBH5R5beFudhc46J4Syb3DOjRohWju1ImEyZORn56GqIQR7nbhjIilPDWdSk+QBenncDA8nkpjTcRxkcNPuEnH8JwNdCk7QIzQm4q2Z9M6JoyUKAuzN+RS7PQRlBRkWSGlljAeDklWCEgyZoOObXmVfLB8L5KsMLZvah2xjrIYGdktsc65sct+4eI9y7F7A5gj/HRIGIAvMxP3woUEy8tRAgHyn32OyItHE3vzTXj/+AOMRiq//QZzRgZtPvoQQa/Hn5OD49dfMXfpUi9FqU5Uc61cyONBFEXS3n6rznu2oedjG3p+nfd8+/cj6HQ1BhpAWGYmYVW+tsbU1FBpQUOtNhoaGseHJrh/Efq2iWbN3jIURaFf2yN7qgqCQFpM8xRg3lXgYHeBA4A/8irZW+KiU2LDy4y6cCsjH7yJ7B83k7W/iAH2/aQkRZEd3gZdn8Ec2F1Sp70MZCqVnHdoCzpBwPzbCmKtrSiNT+WC7pEs2FFImduvCq6ikB5n5dIeyY2OdX+Ji2veX02h3Ue4Uc/N57Vj/vZCCiu9RFoM+NYeZHDHeMTDVAkK5OSSYDORYDNhDKgPN6b27Yi75x5ybruNYGkp/j178GzejKV3L0ydOuFcugwB8GzegiElBV10NEWvvIri82E3/ETiE//EUJULGygsxNiuHb6DBxENRmwjGnfdam6K33mH8k9ngSAQd8cdxEys75Mdf+89uNauQx8fFxJhDQ2N40cT3L8IvVtHM/WKDFx+qdmjjo9EvM2EThSQZAWjXiQu3ITDG+D7TXkowJjeKUTUmkVbWiXz4K3JSBUVVP4wF8HQiTFDLiBvdU6D/V96VhsStpmxmfUU2r0E9QZ0okDfNtGc3zmBvUX7UABJgW825jK6R3KDS8oVbj83fryO/Eo1bcDuC/LJmgOhwgYOb5CIMMNhxRYgfOj5+Paq1ne24TVLwr7du5Cr0gxkn49gQQG+PXvwHziI4veHio8rXi/B4mJ1DxeQXC4ci5cQdfllBIuKKHr5FZRAAGOrZBL+8Y9mrTBzJBy/zFdfKAr2eT81KLii1Ypt2NB672toaBwfmuD+hUiIaLkf5tokRZr5x0Wd2Z7vIDMlkhirkXeWZLN+fxmgCtldQzvUO08XFUXMtRND//503ep6bTrHW7n6sgE4YyU8v/+OPrEdPVt1o2+baOLCTTxyURd+3JLHwTJV6CRF9X1uSHBLXX48/rqFCGxmPYkRZiSfn8TKQq7P3U2wvDX66Mb3tS29e2N++WVQFERLzSqBsU1bDK1aEcjNRZFl9HFxiDY1gM3UpzdSaZkaAd21K0gSpi6dca/fgG/XTnw7d2L//nuib7ghlNITOJSP4vVSNvsbgkVFxFx/HfrY2MP9rzhuTOnpBIuL1ddVtpQaGhotgya4Gk2iQ4KNDgk1y8guX42wOX1HV22nNi+OU5cswwcNInzQIOKBP4f1vDyuJxM+WIssqwJqNuhQFKVepHa7WCvj+rbmnaV7kGSwmXR8P+kcAjLsm/YWSUVZUASV35qIvfnmw45LrFWjtpqwzAwSH3kE/8EDWAcMwL9/P87lyzGldyBq/FV1x6PXk3D//RRNm4Z/3z4A/AcPogu3IlosyG43ps6dKf3kU8o/+QQkCfu8eYT16oU+JobYO24/7EPBsZL8r5eo+PxzMBiJGt/0QC0NDY3jRxNcjWNi/FlpfLBiL7Ki8LezmhZYYzPqcNQqhGA1ivRIPbyobMurZGeBk8t6tsLuCQIKf+RWcuPHv9GvbQx3DkkPLRELAky+sDP3DO+ASV83mloySfir/3EcBdSt/c/G2l9NxTGmpRF+3nmHbz9oEJXffosiyegiI7H07k1Yjx4Ei0swtk4jZ9JdqqexoiDn5CC7XJgzMnAsXEj0VVcRKCyi/NNPUWSJmAkTMKSkHPPYQS2IEHPttcfVh4aGxrGhCa7GMdE61sKzl2ccuWEtlk8ZxsTpa8guchFjNXBln7TDFn4vcfp4fVEWkqxWJerWysauAicLdxQiigIOb5DhXRNoHxfO64uy2FlgZ2B6HDcNaluvr5jrrqNi9mxEs5moK688yqs9dqz9+pHyxht4Nm/GdsEFoSXq6tzW8CGDca9dW7PfW1aGZ+NGoq4aB0DFN7PxVbnglH/xJQkPPdhiY9c49VAUBamiQo0ZsNnqbHlonPpogqvRYkRZjMy9ZzDZxU7cPomMlMOn9zi8QSRZzYWqcPtZs7eMvHIPLr9EuFFHuctPjMXI5twKduTbqXD7+Xp9Dl2TbJzTIa5OX4bEROLvuuuEXdvhsPTsiaURa8To8eMJFBZS9t77ofcURQnl7wp6NRhNlmXKv/6ask8/xdSxI+2++jLU3rVuHa7lyzG2bUfklVcc1hRF46+N7HIhV1WECvp8GFJTEZrondxkpCD4KkHUgymiTi1mjeNDK8+n0eKkx4eTmRp5RGFoF2fl/M7xhBl1pEZbiDAbiDDrCTPoiLOZGNs3hYQIM3HhJly+IAdK3ZS5/Hy8ej9u/7HvK7ckgsFA4oMPYj6rr/rDJopEX3N1yHkqevxVWM7qCz4fssuF4vfj3baNstmzAZDsdso+noEvaw+OBQvwbNhwMi9H40RT2/pe+dO/mwtnAXgqwFUCXvsRm2s0HW2Gq3FS8WzeTLC8HGv//nUClVxr1uLbm834s89mUIdOyLLCjNUHEAUY2S2RIZ0TOKuNuv/bLs7KqMxkvlh3kEiLAUlScHqDWIx/jdvbu2MHsROvRZg0CUObNphr7dPqoqKIveUWhDAL7nXrQj+wlZ99Tsy4cfV/cM+cWiRnJGJ4OIrfH3I6a6ol6FEhBWpey4HG22kcNX+NXySN0xLXqlWUzfwEAM+GjaH9Se+uXZR9/DEAO+ctYea5EwmaLdw1NJ1eaVENzoz/1i+NAruX7CIn53dOOGkpVEeLd9cuil9/AyUYRBcTQ8ID96vWjOnpdfbn9HFxYDSCzweCQLCiAlC9lWOunYhz2XKM7dsRdpZWJP50RhCEE546hiUG3KUg6sCslWVsTjTB1Thp+A8ebPC1VF4eem2vdGIM+AiYwthwoJzejfhCmw06Hrmoy4kb7AkikHcIf85BpPIK0OnILy9HEEX0SYkkPfZYqLKPGG7FlJ6Ob88eBFTf5GqsAwdiHTgQz44deH7/vUG/ZI1TA9nrJVhSAoKg5nE3Y+nGZsMcqe3dniA0wdU4KazZW8q7e4xcdMhFjxgTrS6uKWFn6dMH92/r8WVnU352L5aVyghl5Vx3duuTOOITg6ljB2SXG1ALQEhlZQhmM85vVlL5/RxsF15Ayr/+hfWcc4hzOPHu3oW5ewYRw+sWRSh46SXKP/scFAXbyJGk/t+rJ+NyNI6AVFEBkhR6LSYmHv6Ek4UmticELWhK46Twwo872KrYmNbnaqadPYHISy8FIFhejj8nh7hJd5I67TX+j/ZUeoJUuAM89eP2kzzquni2/YHnjz+Oqw9DUhKW/v0xd+2KsV07dDEx+PbsAUlCkSTs835G8ngI5OZSOWcOvu07MKW3r9eP45f5of1b16pVxzWmphAsL6fk4xkcvP0Ocic/jGf7jhP+macFtfZcT8j+659YsmQJgiDQ9k/FMzRODtoMV+OkoKsyqwjoDEjWcAD8Bw5Q9H+vofh8mDMyiL/7LuzemmjjEqev2T5fURTyKjz8frCCzkk2OjZSjKExKufMwT7vZwAiLr6YyEsvOaZxCAYDiQ9Pxr1hA8a0NAypqRx6+B84V65Uj+v1KF4vhx59LORYVfDUU7SZMaNOP6b27dSlSjhuc4ymUPbhR9gXLCCQl4doNOLdto0OP8877n53dOnaDKM7OXTdeeSHDn1MDJJe/dnVRRzd/mhhYSEffPABCxYsYNeuXZSVlWEymUhJSaF///6MHTuW0aNHo2sBIT+ZVFZW8u677/Lbb7/xxx9/UFRURGVlJTabje7duzN27FjuuOMOzC3oUd5UNME9w5i75RC7C52c1zGuSVWHmhPZ56NsxkwCBQWcH9eDTwUL0VYjT1/aHQDPtm0hAwjvtm3IPh9DO8fzy/ZCBODynscmJNsP2flxw37aH8piaNdEvPN+onjrDr6P7srKpAwGHdrCBV3i6TfphiYHpHh37gJAkSS827YeleAqkoTi84WCovSxsURccEHoeKu33iTnxpvwZWVh7taVQ48+qppfBIMIZjOyt/6DR9oHH1D02mvIHi8JD09u8liOFdnlCv2/UhRFzQ+VZcTmzgk9zRB0umOy7Jw2bRqPP/44bre6/ZCUlERmZiZ+v58DBw4wY8YMZsyYQdeuXVm0aBHJyY1X1Pqrk5OTwyOPPAJAREQEycnJtGnThtzcXFasWMGKFSt47733WLBgASkt8PB5NGiCewbxe04F321Ua6/uyLfTMSGcKIuxxT7fuXgJno0bcXiDtFu/m15j7kIRdXiD6p6WuUsX7PPmQVDC1CEd0WTiv9eeRU6ZE5NOT0Jk059Yq72WFUXh7SV7OGv+51gPZZPrKiXMqMMfUCizKly+eR7RkgeHK4fyWQbi7723Sf1bB/TH8/vv+HNykBwO3L/9hqVfvyOeFywupuj/XkMqL8c2YjhR48bVa6PT6TCmpqKzWPDn5SEIAsb09vj3ZKNPTCTh4YfrnSMIAokPnjgXKn9eHq7Vq3H8uhhduJWov11NoLwc9+rVCHo9UWPHamJ7gpg8eTKvvqruyU+YMIHHH3+cbt26hY5LksSKFSt45ZVXmDt3LoWFhae14MbGxvLmm28yfPhwunSpGyi5ePFiJkyYwI4dO7jjjjv44YcfTtIoG0YT3DOIgCSHXiuKQlBu2ZzN6ohbBYWgKKIIIoIAVpN6G5rS00n65z8JFhdj7tw5dF5aTHiT+g9KMu6AhH7bZso++RQxLIzYuyZhKy+i67ZVWDwOBL0OCQWr3sCle1dhkAK4w2xEJoSjBIK41m+g9L130cfGkfTPxxGtDZdCDB8yBOeSJQhmM6LJhGPJkiYJrmvN2lAUtmPhIiIvuyz0vdT5rqqWBXVWK7LHgz4iEtvNNxN3+21N+i6ak4q5c8mf8igEgyAICBYLzhUrMbVpQ1j37kT/fULIGUujefn2229DYjt16lQeffTRem10Oh1DhgxhyJAhfPXVV1gbuWdPF5KTk7mrEde4oUOHMm3aNK6++mp++uknXC7XKfV9aIJ7BtG3dTTnd0lgT6GD8zrGExfesikJ4YPPY9fOg/y+aTcb+vYiMdLM2L6pJEfWGF4YkpIwJCUddd/bciu5c9YG/JLM5fZdXOvzIfl8OOfPZ6LPi8sShuixIwpgaN0GxeOhDeCwJBCnBInvm0H0NVdz8OZbkKqs84pes5D0z382+HnOZcsIVlSqNniYMLZu06Rx1t5f1ScmNii2ALG33UrlnP+hi4ggrF8/FK/npBWDL3vvvVBkLYqC4nKhuFx4ysoQw8PxZWdjPeecFq3reyYgyzJPPPEEAIMHD25QbP/M+PHjm9x/bm4u3333HfPmzWP37t0cOnQInU5Hu3btuPTSS3nwwQeJbWSLZdmyZbz++uusXr2a4uJiLBYL8fHxZGRkMHr0aG699dY67fft28e///1vFi5cSG5uLoIgkJCQQPv27Rk2bBj33nsvEUe5p90Y1bN/WZbxer2a4GqcHERR4NoBTROGE4Gg17Og3dnssah/EFaTnr5tmmcf+aGvN1Ng99KuIo99LjsOo4hNlBFtNlKiorF364h/rw4UhfBzzsGckYF97lzMgO3CC4m6Ygyg7jNXIztdDX6WZ7M6g5aDQVAg6pqrj1g1qBpLn94Ik+4kkF8QqjrUEMa0NOLvPjnez3/G2LUrvqw9DR5TgkGUYLBGkDWaBcnlYt3ixWzfrkbm33fffc3+GdOmTePVV1/FbDaTlJRERkYG5eXl7Ny5k61bt/Lpp5+yfPlyWreum4730UcfcfPNN6MoCtHR0XTv3h1FUcjJyeH7779n+fLldQR38+bNDBkyhMrKSsxmM+3btycsLIxDhw6xdOlSFi9ezJgxY8jIOLpiKI2xdOlSANq1a9foA8PJQhNcjRalY4KNPYXO0OvmQlJkupXs5cpdizHoBKzpsRhat8WxcBFihA3b0PMRLroQ63nnYaj6IzR16giShLlrTWRs/N13UTr9Q3SREcTdc3eDn+Xbtw/frl0okoQuOhpLr15HZSAf1qMHYT16HNf1tiSp//oXeXo99rk/gkEPbrWcIHo9gsUCej2ln31GfNWPbOn06bg3bFQfZC6/rF5/iiw3v+H+aYZUWcmKtWtD/z7//POb/TNGjRrFxRdfzHnnnYdeXyMFRUVFPProo3z44YdMmjSJuXPn1oxLknj44YdRFIW33nqL22+/vU5UdFZWVp32AE8//TSVlZVcf/31vPHGG9hsNX/3paWlfP3118TEHN+DdyAQIDc3l2+++YYnnngCo9HI66+/flx9ngg0wdVoUcb2SaFdnAVFgb5tmq/A+mOjuzF/+wpMepFOSTZEgx5/bi6CKKI4XWpgz5gxdc4xd+oEgL8qx1VniyDqqnGHLd+n+P34c3LUpWC/H9FobLBY/amCZ8sWdTY9oD+6yMijOleRZdzrfgMUWj33HPF3303FZ59hbN8e29CheLOyOHj9DaAolLw2DX10DPqoKEo//Ej97K1bCeuRiT46GtnrRTCZCBQWoni9CGYz+oQErbJRIwh6PXkFBQBERUYetyA1xPDhwxt8PyEhgQ8++IBffvmFn376icLCQhKrDDqKi4spLS0lKiqKSZMm1Tu3Y8eOPPDAA3Xe27FDTZd64IEH6ogtqAFQd9xxxzFfw4gRI1i0aFGd9y6//HKeeOIJ+vbte8z9nig0wdVoUQRBaLZl5NoM65LAuU9dT/Fr05DdbsLPPx//nj34D6iWkYaU1EbPLX3/A4KFhQCIVgtRY8c22E5RFIr+8x88v29G9noxpadj6tSp0X3Yk4174yZK33sPUM0wkp95uknnBQoK8O/fT8m77+HZsAHBZCL+3nuIufZaEh56qKb/9etriiUoCu41a+p6Ocsy7k2bcC1ejH/ECIzp6SheL4okIVdUoAQCGJKSEPTaz9Cf0cfF4fT7AQi3Nd9K0J9xOp18/fXXrFixgry8PFwuF0rV/1OHw4GiKGzatImLLroIgPj4eMxmMxUVFcyZM4fLL7/8iJ/RunVrdu3axaxZs8jIyGjWPOHMzEy8Xi8ej4cDBw5QWlrK4sWLad++PZmZmRhPsb9N7U7XOG0wpqWRPPUFZLdbNRhwunCtXoU+Lu6w/sJKsKYiihJovKxfsNJO5Zz/ITkciBYLpq5dSKhKI6r84Qd8WXuwDhyAdeBAtS9JahE3ocYI5OWGXgcLC1ECAQSD4fDnFBZSOPVFgg4HntWrQRBQAgHKv55NzLXX1mkbec01lE7/EMXlAqOR2El3YkxNxbn4V/x7srH074/idIW+UyUYRHK6AEVdeQgGkex29Cdg9vZXRxBFIqq2PpxO5wn5jNWrVzN27Fjy8/MP2660tDT0WqfT8dBDD/HCCy8wZswYunbtysiRIzn77LMZMmQIqan1H2wnT57MwoULefnll5k5cyYXXnghAwYM4NxzzyXzOAMBX3vttTr/XrhwIffccw+vvfYae/fu5fvvvz+u/psbTXA1TitEszkULasLtxIxcuQRz4m5/noqv/kGMSKCiFqezn+m7P33kcrKQFGQg0H0sbGIFgueLVuw//gTAL6sLEydO+P+bT2V33+PIgUxd+9O+LnnYmnhJS5L//64Vq1Wc35Hjjii2AIEDh5E8fvrBUHpExPqtTVGRdFhzWp8mzZh6t4dfZWRR+t33w21ca1ZW2M1qSiqR68sq/u4sgzaXm6jVItXRUUFZWVlzbqs7HA4uOKKKygsLGTo0KFMmTKFHj16EBMTE5oVDh48mOXLlxMI1C3R99xzz9GmTRveeustNm/eHFoyFgSBIUOG8Morr9RZzr3gggtYtGgRL774IkuWLGHmzJnMnDkTgE6dOvHMM89w9dVXN8t1jRgxgp9//pkOHTowZ84cVq1axTnnnNMsfTcHmuBqnPGYO3XC3ISUi2BJCYLBgCJJIIqY0tPVA7Jcp50iSVT+8D9ktxvfnj0EC4vw7dyFITUVQwua1RsSEkh+/rk6rlZHwtSlC7pY9Yfd2KULgcICDHHxpP5pJlGNXq9Hf5j8Y+uA/ujjYnFVVlaJba30okDgqO0NzyQGDx4cer1kyRKuPExswdEyb948CgsLSUtL48cffySsgTiE2jPb2giCwK233sqtt95KcXExK1euZMmSJXz55ZcsWbKEYcOGsXnz5jr+zUOHDmXo0KG43W7Wrl3LsmXL+Oabb9i6dSvXXHMNRqOx2a6vTZs29OzZkw0bNrB+/fpTSnC1x0sNjSYSd8ftGNJSEa1WIkaPJnzoUADMPXtiGzkCY5s2RF/9Nwzx8ejj41VhBgSTSd3j/G099p9/QaqsbLExCzpdk8UWQGezkfTkkyQ98U/az/6aLqtXk/7D/9CFN24+cvCOO9nRrTs7MntQ+dNP9Y6bOnRAFxHR4PK6Fq3cOH379qVrVQR9c0fcZmdnA9CvX79GxXbXrl1H7Cc+Pp4xY8Ywbdo0srKy6NixI3a7nU8//bTB9haLhaFDh/LUU0+xZcsWJkyYAMDbb799HFdTn2BQ3caQTrF0Ne1u1zglkN3uULDGqYqpXTvS586l89o1pLz0YijCVhAEosaOJfHRKYQPGQJA/L33EnXVOGyjLsKUno4xPR373LlUfv89RdOmhfqUHA4Kpk4l9557sDcgVicD0WTCkJLS5GAm17Jl6nJxMEjRy6+E3vds2Yp9wQLkqhUAQaerEl1BrQebUH+ZWqMGQRB49tlnATW39MUXXzziOV9//TVZWVlHbGepegjLy8tr8Pgrr7xy1GIVHh5Onz59ADh06FCTzjmvKn+9qe2bQnUeMRAaz6mCJrgaJxVFUSh5/33yHnyIwufVgKfTAX10NFGXX07yP/9JqxenYu7UMXQsWFCIEgzi3rCB4jfewJ+9FyUQpGLO/5C93pM46mOjtjBXB0BVfPstOZMmUfD0Mxy6VzVtEAwGDGlpGJISMXfufEwm/mca48aN4/777wfgscceY+LEiaE902pkWWblypWMGTOG8ePH43I1bNhSm+q83rVr1/LGG2+EHnaDwSCvvvoq//rXvxqstrN9+3ZuvvlmVqxYEXqQqmbx4sXMm6dWjOpXa5vhqquu4ttvvw0VXqhm//79vPPOO/XaH4nnnnuOL774AofDUed9RVGYP38+o0aNQpZlzj777JCgnypoe7gaJ5VgYSGeDRsBCOTl4dm8ORTlezphGTgw5KNsu/ACPJs2UTr9Q6SKCgKFhegiI5HKysh/4klsI0cgVVYSfu65BItL8PyxjYgLLmhyJSPXmrUES0qwDjqnRUQt5Y3XKXj+BfRRUaTN+BgA55KloZSh2jWDdeHhcJjlaY36vPbaa6SkpPDkk08ya9YsZs2aRXJyMikpKaFqQZVV2xQZGRkkNcEatWfPntxwww18/PHH3HvvvUydOpXU1FT27t1LWVkZt956K7t37w65NlXj9/v58MMP+fDDD7FYLKSnp4dco3Jz1aj4UaNGcd1114XOWbBgAbNnz0av15Oenk5UVBTl5eVkZWWhKArt2rVj6tSpTf4+NmzYwJNPPokoirRr1464uDgCgQB79+6loqICgN69e/Pdd9+dcgU1NMHVOKnoIiIQrVZkl0tdZjwGH+W/AoaEBJJfeB7F70c0m6msqmKii4pCliSC+fnIDgeOBQtwrV2LaLFQ+s5/1RmvIFDx+Re0nf01YgN5hYrfD6KIoNfjWrWKspmfAODesJ7kp5464ddmGzIEW9VSejXhg8/DvWEDAOauXWnqvL0pNWXPRCZPnszEiRN5//33WbhwIbt27WLz5s0YjUZSU1O57LLLGD9+PKNHj26yyEyfPp3MzEymT5/Onj178Hg8dO/enVtuuYUbb7yxQXerTp06MX36dBYtWsTGjRvJzc3F4XAQFRXF8OHDmThxItddd12dMcycOZP58+ezatUq8vLyyM7OJiwsjL59+3LZZZdx3333HZWP8pQpU+jSpQsrVqzgwIED/P7774Bq2DF48GDGjRvHNddcU8c961RBUE71jbNmZPXq1ZxzzjmsWrWKgafhLOqvSiA/H8/vv2Ns375OlaDTmWBJCUWvvYZUWoahbVsqvvwSpXo5WRRVIXa7QZYRq2aEbWZ9iqlW5CeohhZlsz5DNBmJu+suPFu24vjll1A/qW+92aibkz8nh/LPPkcwGIi57lr0cXFHHLcSCFA0bRrO1WsI5uaCLBM5bhxJUx6p19a9aRPBoiLCR44MBel07NixXjsNjZNN9b53U+/PY9WSU+8RQOOMw5CcjOE0rt/ZEPq4OJKffx4lEMC5ZAkV334LHk/VQX1oth8sKgLA2KY1hj+ZyAPY5/0MkoTs9uD49VeixozBvf43pLJyIi+95LDWieWffY5/3z4UWSZv8sPoY6IJP/98Ii+r739czaEnnsRe20zAYKDiiy8aFNzDmY1oaJyJaIKroXGS8O3OwrlyBfYff0KpdhPS6dTCBlIQQW8g+Yl/oigKlr59G1wq1CcnESwuBsCQ3Ap9fDzJzz8PwWCjRhfeHTsQDIZQsJNUWYHsdCGazdh/mof1vPMa3fu1L1hQ9w1JUtOeqlAURfNH1tBoBE1wNTROAv6cHApffhnv9u3I5eU1Lkx6PYGDBzF17owgigTyC4gaeyX+nBwqf/ghVGBBNJuRKisxpqQgCALmjEys5w4C1HQSGhHbim++wbFgIQC2Cy5ADA8nWFaGv2rJVzCZEE2N10k2tW2Lr1YQlGizqXvTikL5J5/gWrMWU+dOxN955ynrMa2hcbLQBFdDowWQHA7EsLDQrDJYWAg+n+pSVWtGqIuIQBcZGTKEUPQ6/Pn5lLz/AVLV8rJosRA19kqKX3+DQFUeZVivXk2aWXr/2B56HcjLI76qBKFz5Ur8+/ZjHTignlGGLMuUf/opitdL21mfsvvc81T/ZJuNVi+/jG3wefhzc3GtWg2Ab8dOPFu3triVpYbGqY4muBoaJ5jSjz7GvXYturhYEh56CH10NOaMDExduxIsKUHS6xHDw7H07kXU+PHobDbs8+cjRkRQ+eVXFP/7ZZRgkLCMDNVaMhhEURQCVeXbAAJNNA6w9DuLyjn/A0HAclaNIIYPGgSDBjV4TuFzz+GYry4le7dspdPSJdgXLsLUoQNh3bsB6oOCYDKh+Hzq/vMpVvhbQ+NUQBNcDY3jQAkEKP/qK4L5+dguvJCwP1U/kSoqcFcVEpdKSvFs2oRt2DBEs5mkxx5F9j2IoNfXsz2M79ABx/Ll+A8cAFQnLvemTZi7diVi9CgEQSBi9CjsP8xFFxWF9dymJfhHjBqFOTMTQa/HcJgULEWSKP/iCwIHD+LeuDH0vv/gQUSrtV5heV1EBPH33Ydn4wZMnTph/FM0db3+FQXF51Ov/RRM3zgRKMEgstuNYDSGCmxonFmcGXe6hsYJwrl8Oa7lKwDwH3iflNf+r46AiFYrupgYtcqQINSry+tatZrKOXMI65FJ7E031Tlm6tABwWhEcjjUIKiwMPz791NUVfM3/u67sI0cqQZAHUWgkrGBEmp/xv7zz5T+V636I0RGqsveikLExRer17p/P77sbExdu6KPilLLFbZvh6l9uyP2rSgKwaIiNQ2qKhq7ofzi0wlFltUViSq7RH1S0mH3yjVOTzTB1dA4TmRFAUWhocq3gsFAwsOT8WzYgCEtDXPnTqFjgcIiCp5+WrV5/O039MnJRI4aFTpuTE4m5f9epeS993EtX47scICiUPH556DX41q2jA7LliKVlTX7Em7pRx8TrHLt0ckybb/4HAwGjElJBPLyKHzlFWSHE9+BA4h6PbqYGKInXEPUmDFH7lyWa3KOFQXF44HTXHCR5TolDxW/H45DcBVZRiorQ5EkdFFRmngfJy0VXX9q+V5paJwkvLt3U/Le+1T++ONRFVEQDAa8v/+Oe+1afPv2UfDc86Fl4Gr00dHYRoyoZ+ohlZehBGsK3gcbKARu6d2bsB6ZEAyGrBJRFAgEkMrK2DNqNHsvu5zc++5v+sU25bp0OnXWqRMRIyIwpqVhrFqCDhw6BEFJ/cF3uZCcTgL5+TiOUAkp9L2KIoKxSiAEAeFMWF7V6RCqg9H0esQGKvQcDZLdjuxyoXi9obQwjWNHE1wNjRZC8fspefsdPBs3Yv9hLu41a5p8bvmns9R9SEEgkJdHsLCQyjlzmnSuuUsXwocMQTAYMLZvT/Tf/tZgO/f6DY32IeXkqDPk9evxNyDYx0r8vfcgRkcj6PToIiKo+Pa7mnF3746hVTKC2YxgtSKIImKYGdFiaVQ8DQYDkiQRDAYRBAF9YgL6+Hj0yclnxOxMEAT0cXEYUlIwtGp1/PvWx2EQKHu9SJWVyH7/8Y3hNCEYDCLLcotYQWpLyhpnPIosq0t8VcjVjk9NwJCWimfbNnWmZlRzX0Vb031hW0194Yhtkp74J3svvqTOkmRtZJcLMTqanEl3YYiLo9Wrr6A/zsLu4YMGETPx77jXqAFfrtWribryCkBNS0p8/HFkhwPvnj24161DZ4sg/PwhiCYTwdJSCp5+Rt1nvu8+wnpkYrFY8Hg8OJ1OoqKiEESxZsZ3hiBU5Vk3B7qICHV1JCihi45q8nmyz6empAHY7ar4N1Cn+EzCWWU6Y2mB+1ETXI0zHtFsJvqaq3HMX4AhpRXWRtJjGiJhyhR0UVEEi4oxtk5DjIwksiqwqDaBwkJEsxldZCT+nByChYWYMzObNLsztW1Ll9834Vi/nkOTH0YpLa1zXDAakYuL8RcX4wf2XnoZnZYuafI1AOQ/8wzOpcswpqaS9s7biFYr5k6dQoJbe+8Z1CVnXVQU1rPOwnrWWXWOFb4wNRTZnP/007T/9hsiIiIoLS2lsLAQnU5HeHi45kh1HAg6HYb4+KM+TwkE1AjxQABB1KFI0hkruIqi4HQ6Kax6ADmaAgrHiia4GhpA+HnnEX4MtTNFvZ74u++u977i9+NYtAglEED2+XAu+hXBoMc2ahT2uT+CLGNs147ER/7RpM8RDAYiBg5EfPUVcu+cpAYaAZhM6Fq1IrhnT6itVFZ2VNfgzc4O5dn6srMpmzWLuNtuw3rOOeji4pCdTsJ69ED2+XDMnw+AbeTIRlNbZJ+vzvcAYDabSUxMpLCwkNzcXERRRBAETXRbGEVR1MpcVYjZvjMmLas2iqKo30VVTd/ExMQG6/82N2feN61xxiD7/Sj+ALpwa7P3XfHd93g2bSKsZw+ixo6tf/zbb9WasECgsABDYhJKIIhz8WI1YhVw//47+VOnEnfbbRiaUKkHIHzAAFLefIOy6R8SKCxUo4b/FDRjPsqiAfqICAS9PhTApU+syc81d6qZ2ZbPmoVrtbq/HSwuIfamGxvsL2HyQ+Q//jiyx0N8VfF5gOjoaEwmE+Xl5Xi9XvUHz+tFkSR1/1cT3xOO4vfjrWXNqU9IwJCSQjA/H8EchiEx4SSOruUQBAFRFLFarURHR7fIcjJogqtxmuLLzqb4zTdRvD6ixo3FNnx48/W9d2+oBJ59wUKMbdsS1qdPHcEIltQs+4rmmohU66BBOJcuxbcnG39WFt5Nm6j4/As6bNyAoRH/4z9j7tARfVycmiYkikjlZRhat0ZyOrFdcgmtHnv0qK5HHx9P0hNPUDlnDqZu3eqZWoSuqbSs1uuSRvsztWtH288+q/e+IAhYrVasVvUByL1+PaXTPwRFwTr4PGImTDiqcWscPbIsk/Pyy/j2ZCOYTKROm0bBk08hVLmWxd5xOzHXXnuSR3n6ogmuxmmJc9lyFI+a6+mYv6BZBVcwmkAQUCQJ/759FL/+BvrWaeD3o4+PJ/7ee4kYPRr/wQMQDBJ7xx0Q8CNGRGDu3Bnb8OHsu7LWrDgQwDV/AVEXjz7s5wYKi6j4+mucv/4KgkCgoABZllH8ASRvOYrPh/e336ic+yORl9TfRz4cthHDsY04/HcUccnFlL6vRkIfroRfU/Fs3gKKgmS3U/HFl4gWC5GXX67NdE8goiiSNn06no0bMbZpiy4+jkB1EBV1vbY1mh9NcDVOS4xpqSFLRUMTnJWOqu/UFGKuuxb7ggVIFRWIYWE45/2s5lrq9Sg+H0mPP07Kv//d4Pk6m42Iiy+m9L//Vd8QRaz9zz7i55bPmoVzzRp8WVkgCGrFoMJCEAUUGbVCkCji2bL5qAW3KZg7dSL5maeR7Hb0iYnH3V9Yzx641q7Ff/AguuhoHD//giG5VZO+C41jR9TrsZ5d8x2HDxmCc8kSBJOJyHHjTuLITn80wdU4LbGNGIEuMhLJ4cQ66Jxm7986cCCmzp0peOZZFJ9P3YesWhIOFtTMGILl5fh27cbYvh2GhJr9sYT770MXHYVzyVLiH3ygSXu4iiwTPHRIzcGUJGS7veagwYBgNKLodDiWLsW1di2tXv0/wjqkN9s1BwoLKXr5FTWIqm8f4m699bj6s5x1FomRkRQ893woRUgJBppjqBpHQasXnsefk4MYHY0+PPxkD+e0RhNcjdMWS79+J7R/fUwMCQ8/jG/nDkxdulD53XeIFguxt98GgOR0UfTSS0iVdoQwM0n//GcdC8bY668n9vrrm/x5MX+fgHPpUmS3Ww1w+pNxgalTRwIHc0JRygevuYbOv61rhitV8WzahFyVs+jZsBH57+56pfyOFlPHjsTdcTuOxUswpqVh7d+/OYaqcZQY09JO9hDOCDTB1dA4DoypKRhTU7CNGEHC/ffVORYsKkSqVGehiserLp3GxODbuRPRZmtSEYHaGJKTSXv7LcpnfUb5d9/VMetAkpCKS5CrPYqhzus/EygspPzzL/Dt3o0hNRXbsGFYBzQudp4//sC+aBH+gwcxpKRgTEtDOII9oSJJ2H/+GamkhPDhIzCmpoSO+Q8cIO8fjyA7ncTedhtJjz/WhG9AQ+OvjWbtqKFxgjCmpmJorc4c9PHxmDp2onzmTIr/87pqDrGhccvGRvtMSyPhHw9j7tixjo2iYDQgVVQQPXEi6HQgCOgiIyl49ln8OTk4ly7Fs3VrqH35F19gnzsX5/LlVH4zm5J33220pq6iKOQ/8STuVauRvV6MHdJJeOjBIwY3OZcswf7DXFyr11Dy1lt1jhW//gaB3FykigpK3nzzqL8HDY2/ItoMV0PjBCEYjSQ+/DCBwiL08XGIJhOerdvUg4qCd9s2LH37Hr6ThvoVRcLPPRf/vn0oej2yz4egVwvTB3JzafP55xS/9SYiAoFD+RQ8/QxC1f5yzPXXYR04UC0+4HCoQ5EV5MpKZK+vwc8L5OYiVblbKT4fosWKaD1ybnP18nP169oG8WKt3GjhDPBS1tAATXA1NE4ogsFQZynV0rcPzqXLQBQJ69nzmPuNu+N2TF274s/OxpedjWvZMsToaBSXC8+6tZjbtMF/4CAAksOBPiYGUJdyrQMHEn3tRFzr1hHIzQW9HlNmJu61axCsFox/ikDW2WyYOnTAt2cPiiRhSE5u0hjDhw3Dt2cPweISIseMqTMjTvzHP1B8foLlZcRNmnTM34OGxl+JM0pwXVWWZltrLa1paLQobdviNxgQw8LI9Xhg9epj6kYJBAhWlCObTXhkCafPh7x/H3qHnYj27TD36YPL60MfGYHs9+NesxbRbCLKaMRQ9ZnynXfg37sXf34+lV99jaLI6P77LklPPonOEkbl/Pm416/HOmAA+v5nU56VhWgJQ5w1ixiDAUNCE7x8z6mKEFfk+tdaZbCR53Yf8/egoXEyqNYQVy2bzKYgKEdT/PMvznvvvcftt99+soehoaGhoXEa8O6773Lbbbc1uf0ZJbiHDh1i7ty5tG/fPmQvp/HXYevWrdx+++28++67ZGZmnuzhaJymaPeZxpFwuVzs3buXSy65hFatWjX5vDNqSblVq1ZH9TSicWqSmZnJwIEDT/YwNE5ztPtMo7nR0oI0NDQ0NDRaAE1wNTQ0NDQ0WgBNcDU0NDQ0NFoATXA1/jKkpqby1FNPkdrM1X80NGqj3WcaJ4ozKkpZQ0NDQ0PjZKHNcDU0NDQ0NFoATXA1NDQ0NDRaAE1wNTQ0NDQ0WgBNcDU0NDQ0NFoATXA1NDQ0NDRaAE1wNTQ0NDQ0WgBNcDU0NDQ0NFoATXA1Tnl+++03xo8fT3JyMiaTibS0NG666SaysrJO9tA0/iIUFBTw6aefct999zFo0CAsFguCINClS5cmnb9gwQIuvvhiEhISMJvNpKenc++991JQUHCCR65xOqEZX2ic0syYMYObb74ZSZKIi4ujTZs2ZGVlYbfbsVgs/PDDDwwbNuxkD1PjFGfatGk88MAD9d7v3LkzO3fuPOy5zz//PE888QSgVhxLSkpix44deDweYmNjWbJkCRkZGSdk3BqnF9oMV+OU5Y8//uCWW25BkiQeeeQRDh06xPr168nPz+fvf/87brebcePGUVpaerKHqnGKExERwYgRI5gyZQqzZ89m6tSpTTrvl19+CYntG2+8QW5uLhs2bCA3N5fhw4dTWlrKmDFj8Pv9J3L4GqcLiobGKcpVV12lAMo555xT75jX61XatWunAMqjjz56Ekan8Vfmo48+UgClc+fOh23Xr18/BVAmTJhQ71hxcbFis9kUQHn33XdP1FA1TiO0Ga7GKYnb7Wbu3LkA3HnnnfWOm0wmbrjhBgA+//zzlhyaxhnCvn37+O2334CG78G4uDjGjRsHaPegRtPQBFfjlGTTpk14PB4ABg8e3GCbIUOGALB//37y8/NbbGwaZwarVq0CwGg00r9//wbbVN+Da9euRZblFhubxl8TTXA1Tkl27doFqD92aWlpDbZJT08PvT5S4IuGxtFSfQ+2adMGg8HQYJvqe9Dj8XDgwIEWG5vGXxNNcDVOScrKygCIjo5GEIQG28TExIRel5eXt8i4NM4cqu/B2vfZn9HuQY2jQRNcjVOS6uVko9HYaBuz2Rx67Xa7T/iYNM4stHtQo7nRBFfjlCQsLAzgsOkWXq839NpisZzwMWmcWWj3oEZzowmuxilJdHQ0oC7TKY14s1Qv+dVur6HRXFTfU4fL89buQY2jQRNcjVOSass9v9/PwYMHG2yTnZ1dr72GRnNRfU8dPHiQQCDQYJvqe9BsNtOmTZsWG5vGXxNNcDVOSXr16hVa0lu2bFmDbZYuXQpA27ZtSU5ObrGxaZwZDBw4EFAf+tasWdNgm+p7cMCAAYii9nOqcXi0O0TjlMRqtXLxxRcD8O6779Y77vP5+PjjjwH429/+1pJD0zhDaN++PWeddRYA//3vf+sdLykpYfbs2YB2D2o0DU1wNU5ZnnrqKfR6PStXrmTKlCmhZT23280tt9zCvn37iIyMZPLkySd5pBqnK8899xwAn332GW+++WYonqCsrIyrr74ah8NB+/btufHGG0/mMDX+ImjVgjROaT788ENuu+22BqsFhYWFMWfOHEaOHHmyh6lxipOTk0Pv3r1D//b5fDidTnQ6HVFRUaH3Bw0axJw5c+qc+8wzz/D0008D9asFxcTEsHjxYnr06NESl6HxF0cTXI1TnnXr1vHvf/+bFStWUF5eTnx8PCNGjOCxxx6jU6dOJ3t4Gn8B9u/fT7t27Y7YbsiQISxZsqTe+7/88gv/+c9/WLduHQ6Hg5SUFEaPHs3jjz+uxQ9oNBlNcDU0NDQ0NFoAbQ9XQ0NDQ0OjBdAEV0NDQ0NDowXQBFdDQ0NDQ6MF0ARXQ0NDQ0OjBdAEV0NDQ0NDowXQBFdDQ0NDQ6MF0ARXQ0NDQ0OjBdAEV0NDQ0NDowXQBFdDQ0NDQ6MF0ARXQ0NDQ0OjBdAEV0NDQ0NDowXQBFdDQ0NDQ6MF0ARXQ0NDQ0OjBdAEV0NDQ0NDowXQBFdDQ0NDQ6MF0ARXQ0NDQ0OjBfh/DuKL+Z04T/cAAAAASUVORK5CYII=",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "point_colors = [f\"C{i}\" for i in kmeans.labels_]\n",
- "plt.scatter(\n",
- " reduced_features[:, 0],\n",
- " reduced_features[:, 1],\n",
- " s=4,\n",
- " alpha=0.7,\n",
- " c=point_colors,\n",
- " edgecolors=\"none\",\n",
- ")\n",
- "# make legend\n",
- "legend_elements = [\n",
- " plt.matplotlib.patches.Patch(\n",
- " facecolor=f\"C{i}\", edgecolor=\"none\", label=f\"Class {i}\"\n",
- " )\n",
- " for i in range(4)\n",
- "]\n",
- "plt.legend(handles=legend_elements)\n",
- "plt.xlim(xlow[0], xhi[0])\n",
- "plt.ylim(xlow[1], xhi[1])\n",
- "plt.show()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Choosing Cluster Number\n",
- "\n",
- "How do we know we had the correct number? Intuition. There is one tool we can use to help us, called an **elbow plot**. The k-means clusters can be used to compute the mean squared distance from cluster center, basically a version of loss function. However, if we treat cluster number as a trainable parameter we'd find the best fit at the cluster number being equal to number of data points. Not helpful! However, we can see when the slope of this loss becomes approximately constant and assume that those extra clusters are adding no new insight. Let's plot the loss and see what happens. Note we'll be using a subsample of the dataset to save time."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 51,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhMAAAGwCAYAAAATw+f5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAABP+AAAT/gEHlDmEAABjhklEQVR4nO3dd3xUVfrH8c+kkQRSCC1AQgkdEnpvAZdioyMo4oqAirsqy+qiotJUdNGf3VVUiooK0gRxEXDp0hFCgASEgIReAgmQnrm/P2LGDMmkTjIp3/frldcm955z7zMT3HlyzznPMRmGYSAiIiJSQE6ODkBERERKNyUTIiIiUihKJkRERKRQlEyIiIhIoSiZEBERkUJRMiEiIiKFomRCRERECkXJhIiIiBSKkgkREREpFCUTIiIiUihKJkRERKRQlEyIiIhIoSiZEBGbxowZg8lkol69etmeN5lMmEwmpk+fXqxxlVX16tXDZDIxZswYR4ciki9KJkTKoE2bNlk+6PP61atXL0eHXar16tUr2/fVyckJX19fQkJCeOyxx9i5c6ejQxWxOyUTIiJFyDAMYmNjOXToEJ999hldunRhwoQJmM1mh8Sjp0lSFFwcHYCIFK0nnniCv/3tb7m2q1ixYjFEUz6Eh4dbvjebzVy6dIm1a9fy4YcfkpiYyJw5c6hSpQqvvfaaA6MUsR8lEyJlXPXq1QkODnZ0GOVKdu93nz59GDx4ML179yYlJYW3336bf/7zn1SpUsUBEYrYl4Y5RESKSbdu3bjvvvsASExMZOPGjQ6OSMQ+lEyIiN2sX7+eQYMGUbt2bdzd3alTpw5jx44lMjIyT/337NnDuHHjaNiwIZ6ennh5edG8eXOeeuopfvvtt2z7HDhwwDIPYPHixdm2GTdunKWNrZUSK1assLTZtWtXnuItiC5duli+//333wt0jZ9//plRo0ZRt25d3N3d8fX1pXXr1jz//POcP38+2z4ZK0UyzJgxQ5NwxW6UTIiIXUyfPp1+/fqxatUqzp07R1JSEtHR0cyfP5/WrVuzaNEim30Nw+Bf//oXnTp1Yt68eZw4cYKEhARu3rxJREQEH374IS1atODDDz/M0rdVq1b4+fkB2PxLf9OmTZbvc2vj5eVFu3bt8viq88/F5c/R5dTU1Hz1TU5OZvTo0fTt25dvv/2W06dPk5SURGxsLGFhYfz73/+mUaNGLF++3N5hi+RIyYSIFNqPP/7IjBkzaNiwIZ9++im7d+9m06ZNPPPMM7i6upKUlMTo0aPZvn17tv2nTp3KW2+9hWEY1KxZk3fffZedO3eybds2Zs6ciZeXFykpKTz11FN88cUXVn1NJhM9e/YEsk8UoqOjiYqKsvx8+vRpq58zZCQT3bt3t/rAt7ewsDDL97Vr185X33HjxvH1118D0LhxYz777DN2797Nxo0befbZZ3Fzc+PWrVvcd999Wd6LdevWWU0MfeKJJwgPD7f6mj9/fiFemZRnmoApUsZdunSJQ4cO5dqubt26eHl5Fegee/fupVWrVmzZsgVvb2/L8dDQUPr3789dd91FWloaEyZM4ODBg1Z9IyIieP311wFo0KABv/zyCzVq1LCc79atG0OHDqV79+5cv36dp556ioEDB1K5cmVLm169evH9999z7Ngxzp07R61atSznMj5UGzZsiJubG0eOHGHjxo0EBQVZ2ly9etXyQdu7d+8CvQd5cfLkSUsy4OTkRGhoaJ77rlu3joULFwLQqVMn/ve//1mtwOnVqxf33HMP/fr1IyUlhbFjx/Lbb79ZEqPGjRtbXU8Tc8We9GRCpIz7+OOPCQkJyfXrf//7X6Hu89lnn1klEhn69u3L+PHjgfQlk1u2bLE6/9FHH5GWlmaJNXMikaFFixa8+uqrANy4cSPLX9CZE4DMQxqZf+7du7el3e1/tW/evBnDMADsPm/AMAwuXrzIl19+Sffu3blx4wYADz74IIGBgXm+zvvvvw+kJyFffPFFtkt5e/XqxcSJEwE4deoUq1atssMrEMmdkgkRKbTg4GA6dOhg8/y4ceMs369fv97qXMbPdevWpW/fvjav8fDDD1OhQoVsrxESEmJZYnl7opDxc07JRMbP3t7etG3b1mYMeXV7BUx/f38efvhhzp07B0CPHj34z3/+k+frpaamWg3DNGnSxGbbxx9/3PL97e+TSFFRMiFSxk2bNg3DMHL9Gjx4cIHv0bFjxxzPt2nTBjc3N8C6oFNSUhLHjh0D0h/d56RSpUqEhIRkuQakf3hnDBlkThROnz7NqVOngPS/2kNDQzGZTJw7d85yX/jz6UWPHj1wdnbOMY6CcnNzo0uXLnz66ads3LiRSpUq5blvVFQUt27dAqBz5845tm3YsCFVq1YFsr5PIkVFcyZEpNCqV6+e43kXFxf8/Py4cOECV69etRy/du1anq8B4O/vD2B1jQy9evVi+fLlnDhxgujoaAIDAy2JRdOmTalZsyaQ/hQlPDycjRs30rhxY65cucLhw4cB+82XyPwh7uTkhJeXFzVq1LAkVPkVExNj+T6v79OVK1eyfZ9EioKeTIhIoWWuX2BLxpwEe1wju7bZzZvIPMRxe7uMc5s2bbL7fIng4GDLV/PmzQkMDCxwInG7wr5PIkVByYSIFNqlS5dyPJ+ammp5CpG5fLSfn5/lA+/ChQu53ufixYuWfrdr0aIF1apVA6wTBbBOJjIShoxzGf/r4+NDmzZtco3BETK/Z4V9n0SKgpIJESm03bt353j+wIEDJCcnA1jmPUD6PIKMJYu5VZ28efOmZfigZcuWWc7fPm/i5MmT/P7771bHIX25qpOTExcvXrQsEwXo2bMnTk4l8/8Sg4KCLKs3ctvC/Pjx41y5cgXI/n0SKQol878cESlVwsPD2bdvn83z8+bNs3x/+4qNjJ9Pnz7NunXrbF7jyy+/JCkpKdtrZMh46nDq1ClLcasWLVpYzTPw8/OzfMguXryYiIgIoGjrSxSWs7OzJb5t27blWJ78008/tXyf3fvk7u4OYHkvRexByYSI2MWjjz7KzZs3sxzfsGGD5QMuJCTEUq0yw9/+9jfLCoq//e1v2Q6ZRERE8NJLLwHpyzcfeeSRbGPInBC8++67WY5lyEg63nvvvSKrL2FvTz/9NJA+H2LMmDGW1R2Zbd26lffeew9I34tj4MCBWdpkTEQ9fvx4EUYr5Y1Wc4iUcXmtgAnZb52dF+3bt2fv3r20bduWyZMn07p1a+Lj41m9ejXvvfceaWlpODs78/HHH2fp26xZM6ZMmcIrr7zCiRMnaNOmDc899xydOnUiLS2NjRs3Mnv2bOLi4oD04k2+vr7ZxtG8eXOqV6/OpUuXiI2NBbJPJnr37s27775raVO5cmVatWpVoNdeXPr27ctDDz3EV199xa5du2jXrh3/+te/aNWqFbdu3eK///0v7733HsnJyTg5OTFv3rxsl7l2796dkydPsmrVKt5//3169OiBh4cHAJ6entSpU6e4X5qUBYaIlDkbN240gHx/3e7hhx82AKNu3brZ3iej37Rp04zp06fbvK6bm5vxzTff2IzXbDYbzz77rGEymWxew9XV1fjggw9yfe0jRoyw9DGZTMbVq1eztLl27Zrh5ORkaTdo0KBcr5ub0NBQm+9jXtWtW9cAjIcffjjb80lJScaoUaNy/B1WrFjRWLp0qc17hIWFGe7u7tn2DQ0NLXDsUr5pmENE7GLatGmsW7eOgQMHUrNmTdzc3AgICGDMmDGEhYXxwAMP2OxrMpl488032bVrF4888ghBQUF4eHhQsWJFmjZtypNPPsnhw4d58sknc40j85OIli1bZruiwdfX12rlRkkf4sjg5ubG119/zfr167n//vsJDAykQoUKeHt707JlS5577jl+++03hg0bZvMaLVu2ZNeuXYwePZp69epZ5lCIFIbJMHJZ/C0iIiKSAz2ZEBERkUJRMiEiIiKFomRCRERECkXJhIiIiBSKkgkREREpFCUTIiIiUihKJkRERKRQlEyIiIhIoWhvjjLi3LlzrF692mqrYhERkfy4desWUVFR3HvvvdSqVSvP/ZRMlBGrV6/m8ccfd3QYIiJSBsyZM4fHHnssz+2VTJQRQUFBQPo/gJCQEAdHIyIipVF4eDiPP/645TMlr5RMlBEZQxshISF06dLFwdGIiEhplt/hck3AFBERkUJRMiEiIiKFomRCRERECkXJhIiIiBSKkgkREREpFK3mEIvY+BSW7Ivm54iL3EhMxcvdhb7N/RneNgAfT1dHhyciIiWUkgkB4Ls90UxdeYjEVLPV8Z1RMbz5UyQzBwUzokOgg6ITEZGSTMmE8N2eaCYvO2jzfGKq2XJeCYWIiNxOcybKudj4FKauPJSntlNXHSI2PqWIIxIRkdJGyUQ5t/TXM1mGNmxJTDGz7NczRRyRiIiUNkomyrn1Ry7ks/3FIopERERKKyUT5dyNxNR8tY9L1DCHiIhYUzJRznm5528Orre7loiKiIg1JRPlXN/m/vlsX6OIIhERkdJKyUQ5N7xtAO4ueftn4O7qxLB2AUUckYiIlDZKJso5H09XZg4KzlPbmQOD8fHQMIeIiFhTMiGM6BDI7GEtbT6hcHdxYvawlipYJSIi2VIFTAHSE4r+LfxZ+usZfj5ykagrN7kYlwTA039ppERCRERs0pMJsfDxdGVc9/p8+1hnVj3ZHSdT+vGfDuevFoWIiJQvSiYkWzW83enWsCoAB8/EcvzSTQdHJCIiJZWSCbFpSJvalu9X7FcZbRERyZ6SCbGpfwt/PFydAfh+/znMZsPBEYmISEmkZEJsqljBhTuD04tanb2ewO5TMQ6OSERESiIlE5Ijq6GOX886MBIRESmplExIjro1rEp1rwoA/Df8PIkpaQ6OSERESholE5IjZycTg1rXAuBGUio/R2gLchERsaZkQnI1pM2f+3FoqENERG6nZEJy1byWN039vQDYfOwyV28mOTgiEREpSZRMSJ5kTMRMNRv8EHbOwdGIiEhJomRC8mRg61qY/iivvWK/hjpERORPpTaZuHDhAgsXLmTixIl069YNT09PTCYTTZs2tdln06ZNmEymPH317t07S/9evXrl2m/p0qU27282m5kzZw6dO3fGx8eHSpUq0bp1a2bPnk1ycrJd3peiUtPHg64NqgAQdiaWE5dVXltERNKV2l1DFy1axKRJk/LVx8fHh27dutk8n5qayq5duwDo3r27zXaNGjWievXq2Z6rWrVqtsdTUlIYNGgQa9asAaBJkya4ublx8OBBwsLCWLJkCRs2bMDLyyuvL6fYDWkTwC/HrwLpEzGf7d/EwRGJiEhJUGqTCW9vb/r06UP79u1p3749x44dY8qUKTn2adOmDdu2bbN5fsWKFQwdOhSTycQjjzxis92UKVMYM2ZMvuKdNm0aa9aswdfXl5UrV9KzZ08ADh06xN13383evXv5+9//zpdffpmv6xanO4P9een7cBJTzKzYf5Z/9m2MU8bWoiIiUm6V2mGOsWPHsn79el5//XWGDRtGzZo1C33NefPmAenDGUFBQYW+XoarV6/yzjvvADB79mxLIgEQHBzM559/DsDChQuJjIy0233trVIFF/q3+LO89h6V1xYREUpxMmFvFy5c4KeffgJg3Lhxdr32qlWrSExMpGLFijz00ENZzvfr14+goCAMw2Dx4sV2vbe9ZS6v/f0BTcQUERElExZffPEFqamp+Pj4MHTo0BzbLlu2jKFDh3LHHXcwbNgwZs2axcmTJ2223759OwAdO3bE3d092zYZTysy2pZU3RtWpWql9PLaqw+qvLaIiJTiORP2Nn/+fABGjRqFh4dHjm1Xr15t9fPy5cuZNm0aL774ItOmTcNksp5HcPToUQAaNmxo85oNGjQAyNMwR3R0NGfOnLE6Fh4enms/e3BxdmJQ61rM3XaSG4mpbIi8xN0hhR9iEhGR0ktPJoBt27ZZPvDHjh1rs11ISAhvvfUWBw8eJDY2llu3brF9+3aGDBlCamoqM2bMYObMmVn6xcSkzy3w8/Ozee2Mc9euXcs13rlz59K1a1err8cffzzXfvaSeahjucpri4iUe3oywZ8TL1u2bEn79u1ttvvggw+yHOvSpQvLly9nwoQJzJkzh1mzZjF27FgCAwMtbRISEgBwc3Ozee2M4Y/4+Phc4x03bhz9+/e3OhYeHl5sCUWLWt40rlGJYxdvsunoJWJuJeNX0fZrExGRsq3cP5m4efMmS5YsAXJ+KpGbN954Azc3N5KTk1m5cqXVuYxhk5wKUyUmJgLg6emZ670CAwPp0qWL1VdISEiBY88vk8lk2fwr1Wyw+qDKa4uIlGflPpn47rvvuHnzJm5ubowePbrA1/H19aVFixYAHDt2zOpc5cqVgfQlorZkDIVktC3pBrf5s7y2hjpERMq3cp9MZAxxDB48mCpVqhTqWhnDGCkpKVbHM0p8Hz9+3GbfEydOWLUt6Wr6eNAlKP39OhB9nSiV1xYRKbfKdTJx9OhRfvnlF6BwQxyQXoo7YyVG5vkSAF27dgVgz549luGM223ZssWqbWlgVXNCm3+JiJRb5TqZyHgqERgYSN++fQt1rY8//pjY2FgA7rzzTqtzAwcOxN3dnVu3bvHVV19l6btu3TqioqIwmUyMGDGiUHEUp7tCauLumv5PaMWBsxiG4eCIRETEEcptMpGWlmb5YB8zZgxOTjm/FR9//DGzZ8/m3DnryYaJiYm8/fbbPPPMMwAMGzaMtm3bWrWpUqUKEydOBGDy5MmWpxCQvjfH+PHjgfQaF82aNSvcCytGlSq40K95ennt6JgE9v6e+7JWEREpe0rt0tDo6GjatGlj+TkpKQlIn5eQeefObt26ZVldAfDf//6X8+fP57qpV4aLFy8yY8YMnnvuOQICAqhZsyZpaWlERkZalnP269ePBQsWZNt/5syZ7N+/n3Xr1hEaGmrZNfTw4cOYzWbatm3Lf/7zn/y8BSXCkLa1WRWWnmAt//UsHerZrqUhIiJlU6lNJtLS0rJdHXH78Yyhh9tlDHH07t2b+vXr53q/QYMGcfPmTXbv3s2pU6c4dOgQZrOZatWq0b9/f0aPHs2QIUOyVL/M4Obmxpo1a5gzZw4LFiwgIiKCtLQ0goODeeCBB5g0aRIVKlTIy0svUXr8UV77ys0kfjx4jmkDmuPu6uzosEREpBiV2mSiXr16hRqjX7FiRb7at2nTxupJSEE4OTnxxBNP8MQTTxTqOiWJi7MTA1vVYt4vJ4lLTGVj5CXuUnltEZFypdzOmRD7Gdo2U3ltreoQESl3lExIobWo5U2j6pUA2HT0Etdu2a70KSIiZY+SCSk0k8nEkD+eTqSkqby2iEh5o2RC7GJw69p/ltfWUIeISLmiZELsopavB53rp5fX3n/6Oiev3HJwRCIiUlyUTIjdDMk0EXOFnk6IiJQbSibEbu4K9qeCS/o/qe/3q7y2iEh5oWRC7MbL3ZV+LdLLa5+OiWefymuLiJQLSibEroa2Uc0JEZHyRsmE2FWPRlWpWskNgB8PnicpNc3BEYmISFFTMiF25eLsxIBWtQCITUhhY+QlB0ckIiJFTcmE2N3QNgGW75f/qqEOEZGyTsmE2F1wbW8a/lFee6PKa4uIlHlKJsTuTCYTQ9pkKq8dft7BEYmISFFSMiFFYnCmVR0rfj3jwEhERKSoKZmQIlHb14POQX4A/Hr6OqdUXltEpMxSMiFFJvNETJXXFhEpu5RMSJG5KyRTee0DKq8tIlJWKZmQIuPl7krf5jUA+P1qPL+eVnltEZGySMmEFKkhmctrq+aEiEiZpGRCilTPxtWoUjG9vPZqldcWESmTlExIkXLNUl77soMjEhERe1MyIUUu81DHiv2qOSEiUtYomZAi1zLAh6BqFQHYEHmJ6/Eqry0iUpYomZAiZzKZGJq5vPZBldcWESlLlExIsRjUOvNQh1Z1iIiUJUompFgE+nnSsX56ee19v1/j96sqry0iUlYomZBiM7SNnk6IiJRFSiak2NwVUhO3P8prr9iv8toiImWFkgkpNj4ervRt9md57f3R1x0bkIiI2IWSCSlWVjUnVF5bRKRMUDIhxSq0STX8/iiv/cPBcySnmh0ckYiIFJaSCSlWrs5ODGhZE4Dr8SlsOnrJwRGJiEhhKZmQYjekbYDle63qEBEp/ZRMSLFrFeBDUNX08tr/i7hEbHyKgyMSEZHCUDIhxc5kMlkmYianmfkxXOW1RURKMyUT4hCDtZOoiEiZUWqTiQsXLrBw4UImTpxIt27d8PT0xGQy0bRp0xz7jRkzBpPJlOPXW2+9leM1Fi9eTO/evfHz88PT05NmzZrx4osvEhcXl2M/s9nMnDlz6Ny5Mz4+PlSqVInWrVsze/ZskpPL106agX6edKyXXl57z6lrRMfEOzgiEREpKBdHB1BQixYtYtKkSQXuHxgYSJ06dbI9FxAQkO1xgEcffZTPP/8cgHr16lG3bl0OHz7MrFmzWLRoEVu3bqVWrVpZ+qWkpDBo0CDWrFkDQJMmTXBzc+PgwYOEhYWxZMkSNmzYgJeXV4FfU2kzpG1tdp+KAdInYj79l0YOjkhERAqi1D6Z8Pb2pk+fPjz//PMsXbqUWbNm5av/2LFj2bZtW7Zf999/f7Z9Pv30Uz7//HPc3NxYunQpJ0+eZP/+/Zw4cYKWLVsSFRVls++0adNYs2YNvr6+bN68mcjISA4ePMjBgwcJDAxk7969/P3vf8/3+1Ca3a3y2iIiZUKpTSbGjh3L+vXref311xk2bBg1a9Ys0vulpaUxffp0AJ599lmGDRtmORcYGMjixYtxcnJi69atrFu3zqrv1atXeeeddwCYPXs2PXv2tJwLDg62POlYuHAhkZGRRfo6ShIfD1f6NKsOwMkrtzig8toiIqVSqU0mituWLVs4fz591cGECROynG/atCmhoaEAfPvtt1bnVq1aRWJiIhUrVuShhx7K0rdfv34EBQVhGAaLFy8uguhLriFt/hxSmrBwH/e8v5X7P93B3G0ntWRURKSUKLVzJgpr48aNHDlyhCtXruDt7U3Lli257777CAkJybb99u3bAahfvz6BgYHZtgkNDWXjxo2Wtrf37dixI+7u7tn27dmzJ1FRUVn6lnWXbyRavr8Yl8TFuCQAdkbF8OZPkcwcFMyIDtm/3yIiUjKU22Riy5YtVj+vXLmSV199lccee4z3338fNzc3q/NHjx4FoGHDhjav2aBBAwBOnDhBamoqLi4u+e6bl2GO6OhozpyxXk4ZHh6ea7+S5rs90UxZccjm+cRUM5OXHQRQQiEiUoKVu2QiKCiI6dOnM2DAAOrVq4enpyeRkZF89NFHfP7558yZM4ekpCTmz59v1S8mJn3VgZ+fn81rZ5xLS0sjLi7O8nN++l67di3X1zB37lxmzJiRa7uSLDY+hakrbScSmU1ddYj+Lfzx8XQt4qhERKQgyl0yMXXq1CzHWrduzWeffUaDBg144YUXWLBgARMmTKBTp06WNgkJCQBZnlhklnkIIz4+3pIg5KdvfHzu9RbGjRtH//79rY6Fh4fz+OOP59q3pFj66xkS87hjaGKKmWW/nmFs9/pFHJWIiBREuUsmcvLss8/ywQcfcO7cOZYsWWKVTHh4eADkWFwqMfHP8X9PT88C9c3cz5bAwECb8zZKi/VHLuSz/UUlEyIiJZRWc2Ti4uJiSSCOHTtmda5y5cpA+jJPWzKGM5ydnfH29i5Q34y2Zd2NxNR8tY9L1MoOEZGSSsnEbTKGIlJSrD+8Msp0Hz9+3GbfEydOAOmTKTMmX+a3b27lwMsKL/f8PRTzdtd8CRGRkkrJxG0yVkXcPozQtWtXAE6dOkV0dHS2fTdv3mzV9va+e/bssRoKySxjdcntfcuqvs3989m+RhFFIiIihaVkIpMffviBI0eOAHDXXXdZnevZsyf+/ukfgJ988kmWvpGRkZZkYuTIkVbnBg4ciLu7O7du3eKrr77K0nfdunVERUVhMpkYMWKEXV5LSTe8bQDuLnn75+fu6sSwdrb3SxEREccqV8nE8uXLeemllyxDChnS0tL48ssvefDBBwHo0KEDgwYNsmrj7OzMtGnTAHjrrbdYtmyZ5Vx0dDQjR47EbDbTrVs37rzzTqu+VapUYeLEiQBMnjzZqsbFoUOHGD9+PACjRo2iWbNmdnq1JZuPpyszBwXnqe3L9zTHx0PDHCIiJVWpXc0RHR1NmzZtLD8nJaVXTjx+/DhVq1a1HO/WrRsrV64EIC4ujtdee43XXnuNGjVqEBAQgMlk4rfffiM2NhaAdu3asXLlSpycsuZZEyZMYPfu3cyfP5/hw4dTv359fHx8OHz4MCkpKdSrV49FixZlG+/MmTPZv38/69atIzQ01LJr6OHDhzGbzbRt25b//Oc/dnt/SoOMQlRTVx7KcZlo1JVbxRWSiIgUQKlNJtLS0rJdHXH78YwkAaBHjx5MmTKFXbt2cfz4cY4ePUpSUhJVqlSha9eujBgxggcffBBXV9t/Bc+bN49+/frxySefEBYWxvnz5wkKCmLo0KE899xz+Pj4ZNvPzc2NNWvWMGfOHBYsWEBERARpaWkEBwfzwAMPMGnSJCpUqFCId6R0GtEhkP4t/Fn66xl+PnKRuMQUvN1d6Vjfj7nboriZlMbcbSe5o2l1ujWsmvsFRUSk2JkM7ftcJuzYsYOuXbuyfft2unTp4uhw7OL7/Wf5x+IDANT0ceeniT1VBVNEpAgV9LOkXM2ZkNJlUOta3NMyfWv587GJTF2Vt/LbIiJSvJRMSIllMpl4bXAwNbzTh39WHjjHqrBzDo5KRERup2RCSjRfTzfeuq+V5eeXVoRzPjbBgRGJiMjtlExIidejUTXGdK0HQFxiKs8uCcNs1lQfEZGSQsmElArP39WUhtUrAfDL8ass2H7KsQGJiIiFkgkpFdxdnXl3ZGtcnEwAvPFTJMcu3nBwVCIiAkompBQJru3DpL6NAUhONfOPRQdIzqHYlYiIFA8lE1KqTAhtQPu66du0Hzkfxzs/H8ulh4iIFDUlE1KqODuZeHtEayq6OQPwyeYT7DkV4+CoRETKNyUTUurUqeLJtAEtADAMmLT4ADcSUxwclYhI+aVkQkql+9oH0K95DQDOXEtg5g9HHByRiEj5pWRCSiWTycTrQ0OoWim9OuaSfWf46dB5B0clIlI+KZmQUqtKpQrMHh5i+fmF5eFcupHowIhERMonJRNSqt3RtAajOtUB4Fp8CpOXHkQb4YqIFC8lE1LqvXRPM+pV8QRg09HLfL3rtIMjEhEpX5RMSKnn6ebCOyNb4/xHdczXfowg6vJNB0clIlJ+KJmQMqFNnco82bshAAkpaUxafICUNFXHFBEpDkompMx48o6GtArwASDsTCwfbjju4IhERMoHJRNSZrg6O/HOyNa4u6b/s/5w43H2n77m4KhERMo+JRNSpgRVq8SL9zQHIM1s8M/vwohPTnVwVCIiZZuSCSlzRneqQ68m1QA4eeUWr/0Y4eCIRETKNiUTUuaYTCZmD2tJZU9XAL7edZoNkRcdHJWISNmlZELKpOre7rw+9M/qmJOXhnP1ZpIDIxIRKbuUTEiZdWdwTYa3CwDgys0kXlgeruqYIiJFQMmElGnTBjQnoLIHAOuOXGTJvjMOjkhEpOxRMiFlmpe7K2+PaI0pvTgmM1Yd5vTVeMcGJSJSxiiZkDKvY30/JoQ2AOBWchr//O4AaWYNd4iI2IuSCSkXJvVpTPOa3gDs/f0an2w+4eCIRETKjmJNJs6dO8fevXu5detWcd5WBDcXJ969vzVuLun/5N9Zf4xDZ2MdHJWISNlg12Ri7969TJ48mf/+979Wx2/evMngwYMJDAykU6dO1KxZk2+++caetxbJVeMaXjx/Z1MAUs0G/1h8gMSUNAdHJSJS+rnY82ILFizg448/pm/fvlbHX3rpJVatWgWkFxS6efMmY8aMoUWLFrRq1cqeIYjkaEzXevwv8iK/HL/K8Us3mbn6MEFVK/FzxEVuJKbi5e5C3+b+DG8bgM8fRa9ERCRndn0ysX37dtzd3enTp4/lWGJiIvPmzcPV1ZV169Zx69Yt/vWvf5Gamsr7779vz9uL5MrJycRb97XC2z09j/5mVzSv/hjBzqgYDp+LY2dUDK+sPkKnWT/z3Z5oB0crIlI62DWZOH/+PLVr18aUsQ4P2LZtGzdv3mTAgAH06dMHd3d3Zs6cSaVKldi8ebM9by+SJzV9PLinZa0c2ySmmpm87KASChGRPLBrMhETE4Ofn5/VsV27dmEymbjzzjstxypUqECDBg04e/asPW8vkiex8Sms+DVvxaumrjpEbHxKEUckIlK62TWZ8PT05PLly1bHtmzZAkD37t2tjru6uuLs7GzP24vkydJfz5CYas5T28QUM8vymHiIiJRXdk0mmjZtyqlTp4iMjATg4sWLbN68mapVq9K0aVOrtmfPnqV69er2vL1Inqw/ciGf7bXjqIhITuyaTDzwwAMYhsGdd97JM888Q58+fUhJSWHkyJFW7U6fPs358+dp2LBhge914cIFFi5cyMSJE+nWrRuenp6YTKYsSUtmhmGwc+dOXnzxRUJDQ6levTqurq5UrlyZ7t27884775CQkGCzf69evTCZTDl+LV261GZ/s9nMnDlz6Ny5Mz4+PlSqVInWrVsze/ZskpOTC/xeSP7cSEzNV/u4RA1ziIjkxK5LQ5944glWrlzJxo0beeeddwBo1KgRL7/8slW7xYsXA9C7d+8C32vRokVMmjQpX302bNhgtdKkXr161K1bl+joaH755Rd++eUXPv30U9avX09AQIDN6zRq1MjmU5WqVatmezwlJYVBgwaxZs0aAJo0aYKbmxsHDx4kLCyMJUuWsGHDBry8vPL1miT/vNzz98/e211LREVEcmLXZMLV1ZX169ezevVqIiIiqFOnDoMHD8bDw8P6pi4uTJw4keHDhxf4Xt7e3vTp04f27dvTvn17jh07xpQpU3LsYxgG9erV4+mnn+b++++nZs2alnM//PADDz/8MJGRkYwcOZJffvnF5nWmTJnCmDFj8hXvtGnTWLNmDb6+vqxcuZKePXsCcOjQIe6++2727t3L3//+d7788st8XVfyr29zf3ZGxeSjfY0ijEZEpPQzGYZRJnY8WrBgAY888ghNmjSxzNm4XVxcHB4eHri6Zv+X5jfffMODDz4IQFhYGC1btrQ636tXLzZv3sz8+fPzlUxcvXqVgIAAEhMT+fTTT3n00Uetzq9bt47+/ftjMpk4cuRIjkM1tuzYsYOuXbuyfft2unTpku/+5UlsfAqdZv2cp0mY7i5O7HqxDz4eejohImVfQT9LytVGX97e3jYTCYC77rrL8n1ERITd7rtq1SoSExOpWLEiDz30UJbz/fr1IygoCMMwLENAUnR8PF2ZOSg4T22rVKpAprIpIiKSDbsmExcuXOC///0vR44cyXLu3XffpXHjxlSqVIk77riDQ4cO2fPWdpGYmGj5vmLFijbbLVu2jKFDh3LHHXcwbNgwZs2axcmTJ2223759OwAdO3bE3d092zYZwx4ZbaVojegQyOxhLXF3yf4/gYz84ez1BMYv2EtCsvbwEBGxxa7JxIcffsiAAQPYv3+/1fGPPvqIZ555huPHjxMfH8+mTZv4y1/+wqVLl+x5+0L7+uuvgfS5H127drXZbvXq1axYsYKNGzeyfPlyXnzxRRo3bsz06dPJbtTo6NGjADmuXmnQoAGAzSEasb8RHQLZNaUPL9/bnC5BVWhRy5suQVWYem9z1vyjB7V90+f67D4Vw4SF+0jOY20KEZHyxq4TMDdt2oSLiwtDhgyxHDMMgzfeeAOAF154gZ49e/LWW2+xYcMG3nnnHV5//XV7hlBgJ0+e5JVXXgFgwoQJWSp5AoSEhDBgwAD69etH3bp1cXFxISwsjDfffJMVK1YwY8YMTCYT06ZNs+oXE5M+2S+7a2bIOHft2rVcY42OjubMGetCSuHh4bn2k6x8PF0Z170+47rXz3Ju4fhO3PfJDq7cTGLzscv8Y/F+3r+/DS7O5Wp0UEQkV3ZNJk6fPo2/vz+enp6WY/v27ePs2bN069aN1157DYA2bdoQEBDAmjVrSkQycePGDQYNGkRcXBxNmjSxGdMHH3yQ5ViXLl1Yvnw5EyZMYM6cOcyaNYuxY8cSGBhoaZNRu8LNzc1mDBnDH/Hx8bnGO3fuXGbMmJFrOymc+lUrsnB8R0bO2UlsQgr/Db9ARbdw/j2sJU5OmkghIpLBrn9iXb582Wq5Jfw5B2DQoEGWY9WrV6dRo0ZERUXZ8/YFkpCQwL333kt4eDg1a9Zk9erVOc6XsOWNN97Azc2N5ORkVq5caXUuY2lsToWpMuZrZE7EbBk3bhzbt2+3+pozZ06+Y5bcNfX3ZsEjHfB0Sy/9vmTfGV758Ui2w1kiIuWVXZ9MODs7c+PGDatjO3bswGQy0aNHD6vj3t7eDq/6mJiYyKBBg9iyZQvVq1dnw4YNBa7K6evrS4sWLdi/fz/Hjh2zOle5cmUgfYmoLRlDIRltcxIYGGj15EOKVps6lfn84faMmb+H5FQz8385hZe7K//s29jRoYmIlAh2fTJRr149jh8/zvXr1wFISkpi7dq1eHh40K5dO6u2V65csVktsjgkJyczdOhQ1q9fT7Vq1diwYUOB6jtkljGMkZJiXX4547rHjx+32ffEiRNWbaVk6dqgKh8/2BaXP4Y33v/fb3y+1fFP1kRESgK7JhN33XUXKSkpPPDAA/zwww+MHz+e69evc+edd+Li8udDkNjYWKKiohz213VKSgr33Xcfa9asoUqVKvz888+0aNGiUNdMTU21rMS4/XVlrAzZs2eP1fLTzDJ2V81pFYk41l+a1eDtka0tdSde/TGCb3efdmxQIiIlgF2TicmTJ1OrVi3Wrl3L4MGD+frrr6lQoUKWvTl++OEHDMPIMvRRHFJTUxk5ciSrVq2iSpUq/O9//8tS6bIgPv74Y2JjYwG48847rc4NHDgQd3d3bt26xVdffZWl77p164iKisJkMjFixIhCxyJFZ2CrWrw2OMTy85QV4awKO+fAiEREHM+uyUS1atXYvXs3EydOpF+/fjz66KPs3buXVq1aWbXbunUrrVq14t5777Xn7XNlNpt56KGHWLFiBX5+fvz8889ZYrPl448/Zvbs2Zw7Z/3BkZiYyNtvv80zzzwDwLBhw2jbtq1VmypVqjBx4kQgPeHKeAoB6XtzjB8/HoBRo0bRrFmzAr8+KR6jOtVhyt3pw1GGAf9cfIANkdqmXETKr1K7N0d0dDRt2rSx/JyUlMTNmzdxdnbG19fXcrxbt26W1RXffvsto0aNAtKHIurUqWPz+mPHjmXs2LGWn6dPn25ZjhkQEEDNmjVJS0sjMjLSspyzX79+LFu2jEqVKmW5XnJyMgMGDGDdunXAn7uGHj58GLPZTNu2bdm4cSPe3t4Fej+0N0fx+791R/lgQ/o8mAouTix4pCNdGlRxcFQiIgVX0M8Su67mKE5paWnZro64/XjG0AOkJxwZoqOjiY6Otnn9zFuVQ/rS1ps3b7J7925OnTrFoUOHMJvNVKtWjf79+zN69GiGDBmCycZGDm5ubqxZs4Y5c+awYMECIiIiSEtLIzg4mAceeIBJkyZRoUKFPL9+cbx/9m3MjcRUFmw/RVKqmfFf7OHrRzvTOtDX0aGJiBSrInsyER0dzdq1a4mMjOTGjRt4eXnRrFkz+vfvT0BAQFHcslzTkwnHMJsNJi87yNJ96RVJfTxc+e7xLjTx93JwZCIi+VdinkzEx8fzj3/8gwULFpCWlr45kmEYlr/YnZ2dGTt2LG+//XaeCjSJlGROTibeGBrCraRU1hy6QGxCCqPn7mLJ412oVzX/xc9EREoju07ATEtL495772Xu3LmkpqZSu3Zt+vbty8MPP0zfvn0JCAggNTWVzz77jAEDBliSDZHSzMXZiXfvb03PxtUAuHwjiQc/38X52AQHRyYiUjzsmkzMnTuXTZs2UblyZRYuXMipU6f46aefmD9/Pj/99BOnTp3i66+/pkqVKmzatIl58+bZ8/YiDlPBxZk5o9vRoV56BdOz1xN48PNdXLmZlEtPEZHSz67JxMKFCzGZTCxbtoxRo0bh5GR9eZPJxAMPPMCSJUswDCPbmgsipZWHmzNzx3QguHb6ipyoy7f469zdxCak5NJTRKR0s2sycejQIerXr09oaGiO7UJDQ2nQoIG2zZYyx9vdlS8e6UiDaunzJY6cj2Psgj3EJ6c6ODIRkaJj12QiISEBPz+/PLWtXLmyzdLSIqVZlUoV+Hp8ZwIqp+8Wu+/3azz+1T6SUjVHSETKJrsmEzVr1rQq4mRLfHw8ERER+Pv72/P2IiWGv487X4/vRHWv9NohW3+7wtPf7ic1zezgyERE7M+uyUTv3r25deuWpXS0LZMmTSI+Pj5LYSiRsqRulYosHN8JX09XANYevsjkZQcxm0tl0VkREZvsWmdi8uTJfPPNN8ybN4+dO3cyadIkQkJC8Pf358KFCxw6dIh3332XQ4cOUaFCBf71r3/Z8/YiJU7jGl58ObYjoz7bxc2kVJb/epZKFVz4Z9/GLN13hp8jLnIjMRUvdxf6NvdneNsAfP5IPkRESgu7JhNNmjRh4cKF/PWvf+Xw4cM8+uijWdoYhoGHhwdfffUVjRs3tuftRUqklgG+zH24PX+dt5ukVDNf7vidr3edJu22JxQ7o2J486dIZg4KZkSHQBtXExEpeew6zAHpu2YeOHCAcePG4e/vj2EYli9/f3/Gjx/PgQMHGDp0qL1vLVJidQqqwiej2+H0x9YttycSGRJTzUxedpDv9tjeN0ZEpKQpko2+GjVqxGeffQbAjRs3iIuLw9vbGy+vP/craNeuHdevX+fEiRNFEYJIidO2TmWcnUyY03KfMzF11SH6t/DXkIeIlAp2fzJxOy8vL2rXrm2VSACcPn2aU6dOFfXtRUqMpb+eISUPiQRAYoqZZb+eKeKIRETso8iTCRFJt/7IhXy2v1hEkYiI2JeSCZFiciMxf1Uw4xJVhltESgclEyLFxMs9f1OUvN01X0JESgclEyLFpG/z/FV87du8RhFFIiJiX0omRIrJ8LYBuLvk7T85NxcnhrULKOKIRETsQ8mESDHx8XRl5qDgPLU1AVGXbxZtQCIidlKoOhNjx44tcN+bN/V/lFL+ZFS2nLryEImpWTf9cjaZSDMMklLN/HXebr59tDPBtX2KO0wRkXwpVDKxYMECTCZTgfoahlHgviKl2YgOgfRv4c/SX8/w85GLxCWm4O3uSt/mNRjUuhZTVx7mx/Dz3EhMZfTcXXwzvjPNa3k7OmwREZsKlUz07NlTCYFIAfh4ujKue33Gda+f5dy797cmOc3M+iMXuR6fwui5u1j8WGca1fDK5koiIo5XqGRi06ZNdgpDRDK4Ojvx4ag2TPhqHxuPXibmVjIPfLaLxY93pkG1So4OT0QkC03AFCmBKrg48/HodvRoVBWAKzeTGPXZTn6/esvBkYmIZKVkQqSEcnd15tOH2tM5yA+Ai3FJjPpsF2euxTs4MhERa0omREowDzdn5j7cgfZ1KwNw9noCD3y2k/OxCQ6OTETkT0omREq4ihVcmP9IB1oH+gIQHZPAqM92cSku0bGBiYj8QcmESCng5e7KF2M7Elw7fYnoySu3GPX5Lq7cTHJwZCIiSiZESg0fD1e+GtuJpv7pS0SPX7rJ6M93EXMr2cGRiUh5p2RCpBSpXNGNr8d3olH19CWikRduMPrzXcTGa7tyEXEcJRMipUyVShX4+tFOBFWtCMCR83H8dd4u4hKVUIiIYyiZECmFqnu5882jnalbxROAsDOxPDJ/DzeTUh0cmYiUR0omREopf5/0hKK2rwcA+36/xtgFe4hPVkIhIsVLyYRIKVbb14NvH+1MTR93AHafjOHRL/eSmJLm4MhEpDxRMiFSytWp4sk3j3amulcFAH45fpXHv9pHUqoSChEpHkomRMqA+lUr8s2jnahayQ2Azccu8/evfyU51ezgyESkPFAyIVJGNKzuxcLxnajs6QrAzxGXmLhoP6lpSihEpGiV2mTiwoULLFy4kIkTJ9KtWzc8PT0xmUw0bdo0T/3Xr1/PPffcQ/Xq1XF3d6dBgwY8/fTTXLhwIde+ixcvpnfv3vj5+eHp6UmzZs148cUXiYuLy7Gf2Wxmzpw5dO7cGR8fHypVqkTr1q2ZPXs2yckqPCSF19Tfm6/GdcLb3QWANYcuMOm7MNLMhoMjE5EyzSil3nnnHQPI8tWkSZNc+77yyiuW9rVq1TLatm1reHh4GIBRpUoVIzw83Gbf8ePHW/rWq1fPaN26teHq6moARlBQkHH27Nls+yUnJxt33XWXVZwhISGGyWQyAKN9+/ZGXFxcgd+P7du3G4Cxffv2Al9Dyo4Dp68ZwVN/Muo+t9qo+9xqY9Li/UZamtnRYYlICVfQz5JS+2TC29ubPn368Pzzz7N06VJmzZqVp35r167l5ZdfBuCDDz7gzJkz7Nu3jzNnzvCXv/yFq1evMnjw4GyfFHz66ad8/vnnuLm5sXTpUk6ePMn+/fs5ceIELVu2JCoqivvvvz/b+06bNo01a9bg6+vL5s2biYyM5ODBgxw8eJDAwED27t3L3//+94K/ISKZtAr0ZcHYjlR0cwZg+a9nmbIiHLOeUIhIUSii5KbYzZ8/P09PJjp06GAAxqhRo7Kcu3z5suHl5WUAxpw5c6zOpaamGjVr1jQAY8qUKVn6RkREGE5OTgZgrF271urclStXDHd3dwMwPv300yx9165dawCGyWQyIiIi8vJys9CTCcnOzhNXjKYvrbE8oXhpRbhx7VaS8dmWE8bIOduNu9/bYoycs934fGuUcf1WsqPDFREHK3dPJgri5MmT7NmzB4Annngiy/mqVasyfPhwAL799lurc1u2bOH8+fMATJgwIUvfpk2bEhoamm3fVatWkZiYSMWKFXnooYey9O3Xrx9BQUEYhsHixYsL8MpEstcpqAqfP9yeCi7p/6l/tfN32r36M6/+GMHOqBgOn4tjZ1QMr6w+QqdZP/PdnmgHRywipVG5Sia2b98OgJubG506dcq2TUZCsGvXLsxmc5a+9evXJzAwMMe+GW1v79uxY0fc3d2z7duzZ89s+4oUVreGVfn0r+1xNpkAbE7GTEw1M3nZQSUUIpJvLo4OoDgdPXoUgLp16+Lq6pptmwYNGgCQkJDA77//Tv369a36NmzY0Ob1M/qeOHGC1NRUXFxc8t03MjIy19cRHR3NmTNnrI6Fh4fn2k/Kr9YBvjg5QVoe6lhNXXWI/i388fHM/r8REZHblatkIiYmBgA/Pz+bbTKfu3btmiWZyE/ftLQ04uLiLD/np++1a9dyfR1z585lxowZubYTybD01zOkpOVt8mViipllv55hbPf6RRyViJQV5SqZSEhIANKHOWzJPAwRHx9fqL4ZCUJ++ma+py3jxo2jf//+VsfCw8N5/PHHc+0r5dP6I7nXT7Fuf1HJhIjkWblKJjw80ndXzKlAVGJiouV7T0/PYu+buZ8tgYGBNudtiGTnRmL+dhKNS0wpokhEpCwqVxMwK1euDMDVq1dttskYksjcPr99nZ2d8fb2LlDfzPcUsRcv9/z93eDtrvkSIpJ35SqZyCi1ffr0aVJSsv/L68SJE0D6sEPdunWz9D1+/LjN62f0bdCggWXyZX775rUcuEh+9G3un6/2AX4eRRSJiJRF5SqZ6NKlC5A+3LBz585s22zevBmAzp074+T059vTtWtXAE6dOkV0dPZL5zL6ZrS9ve+ePXushkIy27JlS7Z9RexheNsA3F3y/p/7kr1n+OfiA8QmaLhDRHJXrpKJoKAg2rdvD8Ann3yS5fyVK1dYunQpACNHjrQ617NnT/z9/W32jYyMtCQTt/cdOHAg7u7u3Lp1i6+++ipL33Xr1hEVFYXJZGLEiBEFeGUiOfPxdGXmoOB89Vm+/yx3vruFrb9dLqKoRKSsKFfJBMArr7wCwDfffMOHH36IYaQvl4uJieH+++/nxo0bBAUF8cgjj1j1c3Z2Ztq0aQC89dZbLFu2zHIuOjqakSNHYjab6datG3feeadV3ypVqjBx4kQAJk+ebHkKAXDo0CHGjx8PwKhRo2jWrJmdX7FIuhEdApk9rKXNJxTurk7MHtaS+Y90oLpXBQDOxyby0NzdvPz9IeKT8zeJU0TKD5OR8WlaykRHR9OmTRvLz0lJSdy8eRNnZ2d8fX0tx7t168bKlSut+s6YMYPp06cDUKtWLfz9/YmIiCAhIQE/Pz82btxIy5Yts73v2LFjmT9/PpBeDdPHx4fDhw+TkpJCvXr12Lp1KwEBAVn6JScnM2DAANatWwdAkyZNcHNz4/Dhw5jNZtq2bcvGjRutJm7mx44dO+jatSvbt2+3DOeIZCc2PoWlv57h5yMXiUtMwdvdlb7NazCsbYClUNX1+GSmrjzMqrBzln71qnjyfyNa0a6u7XopIlK6FfSzpNQmE6dOnbIUlMpJaGgomzZtynJ87dq1vPfee+zevZsbN25Qu3Zt7r77bl588UVq1qyZ4zUXLVrEJ598QlhYGImJidStW5ehQ4fy3HPP4ePjY7Of2Wxmzpw5LFiwgIiICNLS0mjYsCEPPPAAkyZNokKFCrm+HluUTEhRWH3wHC99f4jr8elzJ5xM8FjPBkzq24gKLs4Ojk5E7K3cJRNiTcmEFJVLcYk8vzycDZGXLMea+nvx9ojWNK9VsCdpIlIyFfSzpNzNmRCR/Knu7c7ch9vz72EhVHRLfxoReeEGgz7axkcbj5OaZs7lCiJS1imZEJFcmUwmRnaow0//6Emn+ulzJlLSDN5ce5Thn+wg6vJNB0coIo6kZEJE8izQz5NvH+3My/c2p8Ifq0IORF/n7ve3suCXk5htbG8uImWbkgkRyRcnJxPjutfnx6e70zIgfcJxYoqZ6T8cYfTcXZy9nuDgCEWkuCmZEJECaVjdi2VPdOWffRvj4mQCYPuJq9z5zhaW7I1Gc7tFyg8lEyJSYK7OTjz9l0Z8//duNKpeCYAbSan8a+lBHv1yH5dvJDk4QhEpDuVqC3IRKRrBtX344anuvL3+GJ9tjcIw4OeIi/z67jVeGxzMXSE1iY1PYcm+aH6OuMiNxFS83F3o29yf4ZmKZYlI6aRkQkTswt3VmSl3N6NPsxo8uySM0zHxxNxK5omvf6VNoC9HzseRlGq9jHRnVAxv/hTJzEHBjOgQ6KDIRaSwNMwhInbVsb4fayb2YFSnOpZj+6OvZ0kkMiSmmpm87CDf7cl+N14RKfmUTIiI3VWs4MKsISF8NKpN7o3/MHXVIWLjteW5SGmkZEJEisyFuLxPwExMMbPs1zNFGI2IFBUlEyJSZNYfuZDP9heLKBIRKUpKJkSkyNxITM1X+7PXE1RFU6QUUjIhIkXGyz1/C8ZOx8TT661NfLrlBNduJRdRVCJib0omRKTI9G3un+8+p2PimfXfSDq9/j+e+S6MsOjr9g9MROxKyYSIFJnhbQNwd8nb/824uThxZ7A/rs7ppbmTU9MnZA766BcGfriN7/ZGk5iSVpThikgBKZkQkSLj4+nKzEHBeWr76qBgPhndjl+ev4Nn+zWmpo+75dzBM7FMXnqQTrP+x2s/HuHUlVtFFbKIFICSCREpUiM6BDJ7WEubTyjcXZ2YPaylpQJmdS93nryjEVsn92bOQ+3o0aiqpW1sQgqfbT1Jr7c28dd5u/n5yEXSNGFTxOFUTltEityIDoH0b+HP0l/P8PORi8QlpuDt7krf5jUYZmNvDhdnJ/q38Kd/C3+iLt9k4c7TLNkXbVkhsuXYZbYcu0xtXw9GdarDyA6BVK1UIdv7a18QkaJlMrRPcJmwY8cOunbtyvbt2+nSpYujwxEpEvHJqfwQdo4vd/zO4XNxVufcnJ24O8Sfh7rUpW2dyphM6XMvvtsTzdSVh0jMppy3u4uT9gURyaSgnyV6MiEipYanmwsjO9RhRPtA9kdfZ+GO31l98DzJaWaS08x8f+Ac3x84R/Oa3jzUpS6pZjMvf3/Y5vUy9gUBlFCIFIKSCREpdUwmE23rVKZtncq8eE8zvtt7hq93/c6ZawkAHDkfxwvLw/N8vamrDtG/hb+GPEQKSBMwRaRUq1KpAk/0asDmf/Vm3pj29G5SjT9GOPJM+4KIFI6SCREpE5ydTNzRtAbzH+nIpmd7USvT0tK80L4gIgWnZEJEypy6VSpSuaJbvvrEJWr7c5GCUjIhImVSfvcF8aqgKWQiBaVkQkTKpPzuCxJx4Qbf7j5NcjZLSEUkZ0omRKRMys++IJBeXfOF5eHc8X+bWKSkQiRflEyISJmUn31B2tTxxemPFSBnriXwfKakIiVNSYVIbpRMiEiZldd9QVb8rRvr/xnKkDa1syQVvd9SUiGSG804EpEyLa/7gjSoVol3RrbmyTsa8uGG46w8cBaz8WdS8eHG4zzZuyHD2gXg6qy/w0QyUzIhImWej6cr47rXZ1z3+rm2zUtS8dQdDRnaVkmFSAb9lyAiko2MpCK74Y/nlqUPfyzeo+EPEVAyISKSo4ykYt2kUAa3rqWkQiQbGuYQEcmDhtUr8e79bXjyjkZ8uOE3VoWdswx/PLcsnA82ZB3+iI1PYcm+aH6OuMiNxFS83F3o29yf4ZnmaoiUBUomRETyIbek4sONx3mqdyNSzWZm/nCExNvqVeyMiuHNnyKZOShY255LmaFkQkSkAG5PKlaGncMwIDomgcnLDubYNzHVbGmjhELKgnI3Z+LUqVOYTKY8fdWvbz3ze8yYMbn2eeutt3K8/+LFi+nduzd+fn54enrSrFkzXnzxReLi4oryZYtIEclIKtZPCmVQ61r56jt11SFi47XBmJR+5e7JhLu7O926dcuxzY4dOzCbzXTv3j3b84GBgdSpUyfbcwEBATav++ijj/L5558DUK9ePerWrcvhw4eZNWsWixYtYuvWrdSqlb//MxKRkqFh9Uq8d38bavl68PGmE3nqk5hiZtmvZxibhyWrIiVZuUsm/P392bZtm83zBw4coE2bNgCMHTs22zZjx45l+vTp+brvp59+yueff46bmxvffPMNw4YNAyA6Opp7772XgwcPcv/997Nly5Z8XVdESpb9p6/lq/2aQ+eVTEipV+6GOXIzd+5cAIKCgujVq5ddrpmWlmZJPp599llLIgHpTzkWL16Mk5MTW7duZd26dXa5p4g4xo3E1Hy133PqGvd9sp2PNh4n4nwchmEUUWQiRUfJRCZJSUl88803QPrTB5PJZJfrbtmyhfPnzwMwYcKELOebNm1KaGgoAN9++61d7ikijuHlnv8HvntOXePNtUe5672tdH1jAy8sD2f9kYvcSspfYiLiKOVumCMn33//PTExMTg5OfHwww/bbLdx40aOHDnClStX8Pb2pmXLltx3332EhIRk23779u0A1K9fn8DA7Gduh4aGsnHjRktbESmd+jb3Z2dUTJ7bB1T24Nz1BMx/PJA4H5vIt7tP8+3u07g5O9EpyI/eTapzR9Pq1KtaMc/XVY0LKU5KJjKZN28eAP37989xIuXt8xpWrlzJq6++ymOPPcb777+Pm5ub1fmjR48C0LBhQ5vXbNCgAQAnTpwgNTUVFxfbv5ro6GjOnDljdSw8PNxmexEpPsPbBvDmT5FZ6ktkx93ViR+f7oHZbLDlt8tsiLzE5mOXuf7HCo/kNDNbf7vC1t+uMHP1EYKqVqTXH4lFh/qVqeDinO11v9sTzdSVh1TjQoqNkok/REdH8/PPPwO2J14GBQUxffp0BgwYQL169fD09CQyMpKPPvqIzz//nDlz5pCUlMT8+fOt+sXEpP+V4ufnZ/P+GefS0tKIi4vLse3cuXOZMWNGvl6fiBQPH09XZg4KzrXWBMDMgcH4eKQ/JRjUujaDWtcmzWxwIPoaGyPTk4sj5/9cNh515RZRV04y75eTVHRzplvDqvRuWp3eTarj7+MOpCcSOd1bNS6kKCiZ+MP8+fMxm81UrVqVgQMHZttm6tSpWY61bt2azz77jAYNGvDCCy+wYMECJkyYQKdOnSxtEhISALI8scjM3d3d8n18fHyOycS4cePo37+/1bHw8HAef/xxm31EpPhkfEhn93QA0p9IzByY/dMBZycT7er60a6uH8/2b8KF2EQ2Hb3EhshLbDt+hfjkNABuJaex7shF1h25CEDzmt50aeDHVztO5ynGqasO0b+Fv4Y8xC6UTACGYbBgwQIARo8eneOHvi3PPvssH3zwAefOnWPJkiVWyYSHhwcAycnJNvsnJiZavvf09MzxXoGBgTbnXohIyTCiQyD9W/iz9Ncz/HzkInGJKXi7u9K3eQ2G5WPegr+PO/d3rMP9HeuQlJrGnpPX2BB5iU1HLxF15Zal3ZHzcVZPMXKjGhdiT0omSJ9QefLkSSD9r/6CcHFxoVOnTqxYsYJjx45ZnatcuTIAV69etdk/YyjE2dkZb2/vAsUgIiWLj6cr47rXZ5ydPrAruDjTvVFVujeqytQBzTl15RYb/3hqsSsqhuR87ly6/shFJRNiF0om+HPiZceOHQkODi7wdTKeaKSkWJfHbdq0KQDHjx+32ffEifSKeQ0aNMhx8qWISIZ6VSvySNX6PNKtPreSUrnrva2cjonPc/+rt2w/LRXJj3JfZyI2Npbly5cDtide5lXGiorbhyC6du0KpO8LEh0dnW3fzZs3W7UVEcmPihVcqOXrnnvDTI5dvEH/d7bw2o9H2PrbZRJT0oooOinryn0y8c0335CQkICnpycPPPBAga/zww8/cOTIEQDuuusuq3M9e/bE398fgE8++SRL38jISEsyMXLkyALHICLlW9/m/vnuc/TiDT7bepKH5u6m9cx1jJm/m3nbTnL80k1V45Q8K/fP0zOGOIYNG5bjXIXly5fz66+/8sgjj1hqQkD6Us6vv/6aJ598EoAOHTowaNAgq77Ozs5MmzaNJ554grfeeou2bdta7c0xcuRIzGYz3bp1484777T3SxSRciI/NS5cnEx0CvJj3+/XSExJb5+YYmbT0ctsOnoZgNq+HvRsXI3QxlXp2rAq3u65TxpVsazyqVwnE4cOHWLv3r1A7hMv4+LieO2113jttdeoUaMGAQEBmEwmfvvtN2JjYwFo164dK1euxMkp6wOfCRMmsHv3bubPn8/w4cOpX78+Pj4+HD58mJSUFOrVq8eiRYvs/yJFpNzIT42LWUNCGNEhkMSUNPacimHLsctsPnaZYxdvWtqcvZ5gqcbp7GSibR1fejaqRs/G1Qip7YOTk/WWAyqWVX6V62QiY1OvBg0a0LNnzxzb9ujRgylTprBr1y6OHz/O0aNHSUpKokqVKnTt2pURI0bw4IMP4upqO/OeN28e/fr145NPPiEsLIzz588TFBTE0KFDee655/Dx8bHr6xOR8ie/NS7cXZ3p0agaPRpV48V74HxsAluPXWHzb5fZ9tsVYhPSJ5SnmQ32nLrGnlPX+L/1x/Cr6Eb3hlXp2bgaPRtVZdPRyyqWVY6ZDA2KlQk7duyga9eubN++nS5dujg6HBFxsNj4lELXuEgzG4Sduc6WY5fZcuwyB6KvW/YQuZ0JyMuHiburE7te6KMhjxKqoJ8l5frJhIhIWWWPGhfpQxuVaVunMv/o05jr8cn8cvyqZUjkQtyfxfby+lepimWVTUomREQkT3w93binZU3uaVkTwzD47dJNthy7zAcbjluGQ/JCxbLKnnK/NFRERPLPZDLRuIYX43sEEVDZI199D5+LZdm+M1y9mVRE0Ulx05MJEREpFC/3/H2UxCWm8sySMEwmaB3oy1+aVqd30+o0r+mNyWTK/QJS4iiZEBGRQunb3J+dUTH57mcYsP/0dfafvs5b647h7+1O76bVuaNpdbo1rIKnmz6iSgv9pkREpFDyUyzL3dWJb8Z3ZvepGDZEXmLf79dI+2OJyIW4REtdCzcXJ7oEVeGOP5KLQL+cd1MGFcxyJCUTIiJSKPkpljVzYDBt61ambd3KTAhtQGx8Cpt/u8yGiItsOnaZ6/HpEzmTU81s/mPVyLRVh2lUvRJ3NKvOHU2q065uZVycraf8qWCWYymZEBGRQstvsawMPp6uDGxVi4GtapFmNjgQfY3/RaRvqx554Yal3W+XbvLbpZvM2RyFt7sLoU2qc0fTaoQ2rs7PRy6qYJaDKZkQERG7GNEhkP4t/AtcLMvZyUS7un60q+vH5DubcvZ6AhsjL7Ex8hK/nLhi2UMkLjGVH8LO8UPYOUyQXjErD6auOkT/Fv4a8igCSiZERMRu7FEsK0NtXw9Gd67L6M51SUxJY8eJq2yITH9qcfZ6AvBHsaw8VsxSwayio2RCRERKPHdXZ3r/sYR0pmFw7OJNNkRe4j+bjnMjMTXP11HBrKKholUiIlKqmEwmmvh78USvBtTJwyqPzC6rUFaRUDIhIiKlVn4LZh2/dJOBH25j3raTXL6hxMJeNMwhIiKlVkEKZh08E8vBM7G8+uMRujeqxuDWtejfwp+KFfSRWFB6MiEiIqXW8LYBuLvk7aPM1dlElyA/nP5Y/WE2YMuxy/zzuzDavbqep7/dz4bIi6Sk5V58S6wpDRMRkVIrPwWzXhscwogOgVyKS2RV2Dm+P3CWQ2fjgPSVHqvCzrEq7Bx+Fd24t2VNBrepTZtAX+0XkgdKJkREpFTLb8Gs6t7ujO8RxPgeQRy/dIPv96cnFmeupS83jbmVzJc7fufLHb9Tt4ong1rXZnDrWgRVq2QzhvJeyttkGEYeV+hKSbZjxw66du3K9u3b6dKli6PDEREpdrHxKQUumGUYBvt+v8b3B86y+uB5S1nvzFoG+DC4dW0GtKpFNa8KluO2SnkDuLs4lapS3gX9LNGTCRERKRMKUzDLZDLRvp4f7ev5MfXeFmw5dpnvD5xl/ZGLJP2RJGQ3cfNWUiovrzxs87pFXcq7pDwRUTIhIiKSiZuLE32a16BP8xrcSExh7eGLfL//LNtPXMFs/Dlxc8uxy3m+ZlGU8i5Jm5spmRAREbHBy92V4e0CGN4ugItxifxw28TNvEov5R3N2O5Bdonruz3RJWpzMyUTIiIieVDjtombD8/bY9kjJC9eWR3BJ5ujqOzphq+nK5U93ahc0RVfTzcqe2b8b+bv0//X2cl6NUlsfApTVx7K0z2La3MzJRMiIiL51LC6F76ervlKJgzg0o0kLuWj8qbJBN7urlYJxtWbydlO9sxOcW1upmRCRESkAPJbytvb3YVavh5ci0/mWnwKyXlICAwDYhNSiE1IgavxBYqzODY3UzIhIiJSAPkt5f2PPo0tH+qGYZCQksa1+BSu3UrmenwK1+KTuf5HopH+ffr/Xrv157H87JCaIS4x6zJXe1MyISIiUgDD2wbw5k+ReRpycHd1Yli7AMvPJpMJTzcXPN1cqO3rked7pqaZGfnpTvb9fi3Pfbzdi36JqPbmEBERKYCMUt55MXNgMD4ehf9Qd3F24u6Qmvnq07d5jULfNzdKJkRERApoRIdAZg9raXOzMXdXJ2YPa2nX5Zn52dzs9iciRUXDHCIiIoUwokMg/Vv4F7iUd37lZ3Mzez0RyY2SCRERkUIqTCnvgsjv5mZFTcmEiIhIKVTcT0RyomRCRESklCruJyK2aAKmiIiIFIqSCRERESkUJRMiIiJSKEomREREpFCUTIiIiEihaDVHGXHr1i0AwsPDHRyJiIiUVhmfIRmfKXmlZKKMiIqKAuDxxx93cCQiIlLaZXym5JXJMAyjiGKRYnTu3DlWr15NUFAQFStWdHQ4kkfh4eE8/vjjzJkzh5CQEEeHI2WQ/o1Jfty6dYuoqCjuvfdeatWqled+ejJRRtSqVYvHHnvM0WFIAYWEhNClSxdHhyFlmP6NSVHSBEwREREpFCUTIiIiUihKJkRERKRQlEyIOFBAQADTpk0jICDA0aFIGaV/Y1IctJpDRERECkVPJkRERKRQlEyIiIhIoSiZEBERkUJRMiEiIiKFomRCRERECkXJhIiIiBSKkgmRYjZ9+nRMJlOOX08++aSjw5QS7MKFCyxcuJCJEyfSrVs3PD09MZlMNG3aNE/9169fzz333EP16tVxd3enQYMGPP3001y4cKGII5eySht9iThI9erVadSoUbbnGjRoUMzRSGmyaNEiJk2aVKC+r776Ki+//DKQvkFgixYtiIiI4IMPPuCbb75h06ZNBAcH2zNcKQeUTIg4yF133cWCBQscHYaUQt7e3vTp04f27dvTvn17jh07xpQpU3Ltt3btWksi8cEHH/D3v/8dk8lETEwMI0aM4H//+x+DBw/myJEjuLm5FfXLkDJEwxwiIqXM2LFjWb9+Pa+//jrDhg2jZs2aeeqXkUiMGjWKJ598EpPJBICfnx+LFi3Cy8uLEydOKMmVfFMyISJSDpw8eZI9e/YA8MQTT2Q5X7VqVYYPHw7At99+W6yxSemnYQ4RBwkLC+PBBx/k/PnzVKxYkWbNmjF48GC6du3q6NCkDNq+fTsAbm5udOrUKds2oaGhzJ8/n127dmE2m3Fy0t+bkjdKJkQc5MCBAxw4cMDy8+rVq3nzzTcZMmQICxYswNvb23HBSZlz9OhRAOrWrYurq2u2bTIm/iYkJPD7779Tv379YotPSjelnSLFzN/fn2effZbt27dz8eJFEhMTiYiI4LnnnsPZ2ZkVK1YwZMgQtKGv2FNMTAyQPj/Clsznrl27VuQxSdmhJxMixWzChAlZjjVt2pQ33niD1q1b88ADD7Bhwwa+++47Ro4c6YAIpSxKSEgAyHGVhru7u+X7+Pj4Io9Jyg49mRApQe6//346duwIwJIlSxwcjZQlHh4eACQnJ9tsk5iYaPne09OzyGOSskPJhEgJ061bNwCOHTvm4EikLKlcuTIAV69etdkmYygkc3uRvFAyIVLCZDyGTklJcXAkUpZklNo+ffq0zX9bJ06cANKHO+rWrVtssUnpp2RCpIQJDw8HIDAw0MGRSFnSpUsXIH2YY+fOndm22bx5MwCdO3fWslDJF/1rESlBDhw4wNq1a4H0ctsi9hIUFET79u0B+OSTT7Kcv3LlCkuXLgXQxF/JNyUTIsVo586dPPXUU5anDxkMw2D16tXcddddpKWlUadOHR577DEHRSll1SuvvALAN998w4cffmhZfhwTE8P999/PjRs3CAoK4pFHHnFkmFIKmQwtZhcpNps2baJ3795A+pr+jAJCUVFRXLlyBUgvHPTDDz/QrFkzR4YqJVh0dDRt2rSx/JyUlMTNmzdxdnbG19fXcrxbt26sXLnSqu+MGTOYPn06kL5rqL+/PxERESQkJODn58fGjRtp2bJlcbwMKUOUTIgUo0uXLvHJJ5+wa9cujh49yuXLl4mPj8fX15eQkBCGDBnC2LFjqVixoqNDlRLs1KlTeapOGRoayqZNm7IcX7t2Le+99x67d+/mxo0b1K5dm7vvvpsXX3wxz5uGiWSmZEJEREQKRXMmREREpFCUTIiIiEihKJkQERGRQlEyISIiIoWiZEJEREQKRcmEiIiIFIqSCRERESkUJRMiIiJSKEomREREpFCUTIiIiEihKJkQERGRQlEyISIiIoWiZEKkDNi0aRMmk4l69eo5OhRxoF69emEymViwYIGjQ5FyRsmESAlz8eJFXnvtNXr16kXNmjWpUKEC3t7eNGvWjDFjxvDDDz+Qlpbm6DCz9f333zN9+vRst70uKTI+cE0mE2PGjMmxbUa7nTt3Fk9wIqWUkgmREuTdd98lKCiIl156ic2bNwMQEhJCvXr1OHfuHF988QUDBw4kJCSE8+fPOzjarL7//ntmzJhRopOJzL766isOHTrk6DBESj0lEyIlxLPPPsukSZOIj49n1KhRHD58mPPnz7N3714OHjxITEwMmzZt4t577yUiIoKLFy86OuRSzdnZGbPZzAsvvODoUERKPSUTIiXA8uXL+b//+z8AZs2axddff03z5s2t2jg7OxMaGsoPP/zA4sWLqVixoiNCLTNGjx6Ns7Mzq1evZuvWrY4OR6RUUzIh4mCGYfDyyy8D0LNnzzz9pTxixAgaNWqUp+vXq1cPk8lkc+ghp8mbN27c4JVXXqFt27Z4eXnh5uZGrVq16NixI8888wxHjx4F4NSpU5hMJr744gsAZsyYYZlvYOvax48f529/+xuNGzfG09MTLy8vOnTowNtvv01SUlKW9hn3MJlMAKxZs4Y777yTatWq4eTklO9Jh02bNrXMmXjuuefy1Xf69Om5zrmw9b5n7pucnMwrr7xCs2bN8PDwICAggCeffJJr165Z2i9ZsoTu3bvj4+ODt7c3d999NwcPHsw1xjNnzjB+/HgCAgKoUKEC9erVY9KkScTExOTYb8WKFdx7773UqFEDNzc3atSoweDBg23++8n8ehITE3n11VcJCQmhUqVKlt+VlH1KJkQcbN++fRw5cgSAiRMnOjiaP928eZOuXbsydepUDhw4QM2aNWndujUVKlQgLCyMt99+m/Xr1wPg7u5Ot27dqF69OgCBgYF069bN8tWhQwera3/99dcEBwfz8ccfc+bMGRo0aED16tXZt28fzzzzDL169SIuLs5mbG+//TZ33303u3fvpn79+tStW7dAr3HGjBl4eHiwY8cOvv/++wJdo6BSUlLo168f06ZNsyRc58+f56OPPqJv374kJyfz/PPPM2LECE6fPk1QUBApKSmsWbOGHj16cPz4cZvXPnnyJG3btmXBggVUrVqVRo0acfr0ad599106dOjAmTNnsvRJSkpi+PDhDB06lB9//BGz2UxwcDCpqamsXLmS3r178+9//9vmPRMTEwkNDeXll18mISGBZs2a4e3tbZf3SkoBQ0Qc6u233zYAAzCuXr1aoGts3LjRAIy6detmOVe3bl0DMDZu3Jivvu+++64BGK1atTJOnz5tdS4xMdFYtmyZsWXLFqvjDz/8sAEY06ZNsxnrtm3bDBcXF8PZ2dn497//bSQmJlrOHT161GjXrp0BGA8//LBVv5MnT1reJ1dXV+Ott94yUlNTLefj4+Nt3jOz0NBQAzBef/11wzAM47nnnjMAo1mzZlbXMwzDcr8dO3ZYHZ82bVq2MWZm633P6Ovq6mo0adLEOHLkiOXc3r17DV9fXwMwhg0bZlSqVMlYtWqV5fylS5eMNm3aGIAxevRom6/N1dXV6Nixo9XvLSIiwmjatKkBGHfccUeWvk888YQBGI0aNcoS85dffml4enoaJpPJ2LBhQ7avx9nZ2ahTp46xZ88ey7m8/k6k9NOTCREHy/gr0dfXFz8/PwdH86eIiAgAHnnkEQIDA63OVahQgaFDh9KjR498X/e5554jNTWVadOmMXnyZCpUqGA517hxY5YtW4anpycLFy7k7Nmz2V5jzJgxPPPMMzg7O1uOeXh45DsWgOeffx4/Pz8iIiKKtT5DamoqX375Jc2aNbMca9euHY8++igAy5YtY+rUqQwYMMByvlq1arzyyisA/PjjjzavbRgG3333ndXvrWnTpixcuBCADRs2sH37dsu5Y8eOMWfOHDw8PFi9ejW9evWyut5DDz3EjBkzMAzD5tOJtLQ0vv32W9q3b285VtDfiZQ+SiZEHCzjcX6lSpUcHIm1OnXqAOnLPWNjY+1yzXPnzvHLL79gMpl4/PHHs21Tt25dOnToQFpammV57O3Gjx9vl3ggPYnLmKcyffp0EhIS7HbtnLRq1YqOHTtmOd6uXTvL94899liW8xkf1teuXbM5/2HIkCHZDv20a9fOkgBmTkaWLFmC2WzmjjvuoHHjxtlec/jw4QBs2bIl2zonzZo1o2vXrtn2lbLPxdEBiJR3Xl5eQPochZJk7NixvP3222zatIlatWrRp08funXrRpcuXejcuTOurq75vuaBAweA9JUpQ4cOtdnu2LFjANmO7QO0aNEi3/fOyVNPPcUHH3zA6dOn+eCDD5g8ebJdr5+dhg0bZns8Y95J1apV8fHxsXke0v/NZPc0Kzg42OZ9W7RowdatWy1PngDCwsKA9N9P9+7ds+1nGAYACQkJXL161SqOjOtK+aVkQsTBAgICALh+/ToxMTElZqjD39+fXbt2MXPmTL7//ntWrVrFqlWrAKhSpQpPPfUUU6ZMyVdSkbFKITU1lV9++SXX9vHx8dket/ey2AoVKjBjxgweeeQR3njjDR599FEqV65s13vcztZryFgBkdt5ALPZnG2bGjVq2LxvxrkbN25YjmX8Xs6ePWtzaCmz7H4vWqpcvmmYQ8TBevbsafm+KCpHZnz4ZPxlebtbt27Z7NugQQO++OILYmJi2LdvH++++y79+vUjJiaG6dOn88wzz+QrloyhnICAAAzDyPVr+vTp+bp+Yfz1r38lODiYa9eu8cYbb+TYNrf3FHJ+X4taTgXNMs5lPBGDP38vL730Up5+L9oDRm6nZELEwdq1a2eZhPf+++/b/foZfzHa+oDJGFLIibOzM23btmXixImsXbuWTz75BIBPP/2U1NRUS7vc6gqEhIQA6cMXv//+e57iLy5OTk7MmjULSP892Bpigdzf02vXrnHlyhX7B5lHhw8fzvVc5omfGb+XvDwtEsmOkgkRBzOZTMycOROAzZs38/rrr+faZ8mSJfz22295un5GcasdO3ZkOZeamspnn32Wj2jTZTxNSUpKspoE6OnpCWBzEmNQUJBlguGrr76a7/sWtQEDBtCjRw8SExNzfCqS8Z7u378/2wJb//nPf4oqxDxZsWIFp0+fznJ8//79lmqf99xzj+X4fffdZymwtW3btmKLU8oOJRMiJcDw4cP5xz/+AcCUKVMYPXq01QQ5SB8f/+WXXxg8eDAjRozI82P0gQMHAjB37lyrYZS4uDgeffRRm8WPXnjhBT7++OMsf33HxcXx2muvAelVHqtVq2Y5lzGpcNu2baSkpGR73bfffhsXFxc+//xznnzyySx/wScnJ7N27Vruu+++PL0+e8tY+pjTMtE77riDihUrcunSJSZPnmy1umHx4sXMmjWrQBNU7en++++3erpy7NgxRo8eDaTvnJp55UVISAjjx4/HMAwGDRrEokWLsqzYuHDhAh9//HGuQ0BSThVfSQsRyc2bb75peHh4WIol1axZ02jfvr3RsmVLw8fHx3I8ODjYOH/+vKVfTkWrUlJSjE6dOhmAYTKZjPr16xtt27Y13N3dDV9fX+O9997Ltu+gQYMs96tTp47RsWNHIzg42HB3dzcAw8PDw1i/fr1Vn9OnTxuenp4GYFSvXt3o2rWrERoaaowcOdKq3eLFi42KFStaih01a9bM6Ny5s9G0aVPD1dXVct/MMhetKozbi1ZlZ/DgwZZ7kU3RKsMwjPfff99y3tfX12jfvr3h7+9vAMbMmTNzLVplq+BVTr/LDBn3PXnyZLavberUqUa1atUMFxcXo1WrVkZwcLBhMpkMwKhXr16WImSGYRhJSUnGgw8+aLm2t7e30a5dO6NDhw5GQECA5fjtceelgJeUfXoyIVKCPPvss0RFRTFz5kx69uyJ2WwmLCyMEydO4O/vz0MPPcQPP/xAWFgY/v7+ebqmi4sL69at45lnnqFOnTqcOXOGc+fOMWLECPbv30/Lli2z7ffyyy/z0ksv0b17d6s46tSpw9/+9jfCw8Pp06ePVZ/AwEDWrVvHXXfdhdlsZufOnWzevJmdO3datRsxYgSRkZFMnjyZ4OBgzpw5w/79+0lISKBz585MmzaN/fv3F+xNtIPXX3/dqiBWdp566ikWLVpEx44dSUpK4ujRozRs2JDly5db9lpxlPr16/Prr7/y17/+lcuXL3P06FECAwN5+umn2bt3b5YiZABubm4sXLiQ9evXM3LkSHx9fTl06BDHjh3Dy8uLIUOGMHfuXN566y0HvCIp6UyGkcN0ZBEREZFc6MmEiIiIFIqSCRERESkUJRMiIiJSKEomREREpFCUTIiIiEihKJkQERGRQlEyISIiIoWiZEJEREQKRcmEiIiIFIqSCRERESkUJRMiIiJSKEomREREpFCUTIiIiEihKJkQERGRQlEyISIiIoWiZEJEREQK5f8BK3m50Mkr+J0AAAAASUVORK5CYII=",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "# make an elbow plot\n",
- "loss = []\n",
- "cn = range(2, 15)\n",
- "for i in cn:\n",
- " kmeans = sklearn.cluster.KMeans(n_clusters=i, random_state=0)\n",
- " # use every 50th point\n",
- " kmeans.fit(std_features[::50])\n",
- " # we get score -> opposite of loss\n",
- " # so take -\n",
- " loss.append(-kmeans.score(std_features[::50]))\n",
- "\n",
- "plt.plot(cn, loss, \"o-\")\n",
- "plt.xlabel(\"Cluster Number\")\n",
- "plt.ylabel(\"Loss\")\n",
- "plt.title(\"Elbow Plot\")\n",
- "plt.show()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Where is the transition? If I squint, maybe at 6? 3? 4? 7? Let's choose 4 because it sounds nice and is plausible based on the data. The last task is to get some insight into what the clusters actually are. We can extract the most centered data points (closest to cluster center) and consider them to be representative of the cluster. "
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 52,
- "metadata": {
- "alt": "Grid of rendered molecular structures that are representative cluster centers"
- },
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyAAAAMgCAIAAABUEpE/AAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdeVyN6fsH8M+pU1ppQ0VIoUUqIdmXGEYk+zJ2Y/DDNMY2ZuaLMV9jGcuMYRgMWZJtpLJmrYhJdaI9lYoW2pdzTp3l/v1xTN+GGVTPcZLr/fLHeXWe53quHqdc7vt+rpvHGAMhhBBCCOGOmqoTIIQQQghpbKjAIoQQQgjhGBVYhBBCCCEcowKLEEIIIYRjVGARQgghhHCMCixCCCGEEI5RgUUIIYQQwjEqsAghhBBCOEYFFiGEEEIIx6jAIoQQQgjhGBVYhBBCCCEcowKLEEIIIYRjVGARQgghhHCMCixCCCGEEI5RgUUIIYQQwjEqsAghhBBCOEYFFiGEEEIIx6jAIoQQQgjhGBVYhBBCCCEcowKLEEIIIYRjVGARQgghhHCMCixCCCGEEI5RgUUIIYQQwjEqsAghhBBCOEYFFiGEEEIIx6jAIoQQQgjhGBVYhBBCCCEcowKLEEIIIYRjVGARQgghhHCMCixCCCGEEI5RgUUIIYQQwjEqsAghhBBCOEYFFiGEEEIIx6jAIoQQQgjhGBVYhBBCCCEcowKLEEIIIYRjVGARQgghhHCMCixCCCGEEI5RgUUIIYQQwjEqsAghhBBCOEYFFiGEEEIIx6jAIoQQQgjhGBVYhBBCCCEcowKLEEIIeZ2oqKirV68CkMlkZ86cUXU65P1ABRYhhBDyOuHh4Z999lleXp5MJvPx8Xnp3aysrDt37qgkMdKQUYFFCCGEvMGCBQtWrVqleC2Xy7/88st58+YtWbJEJBKdOHHC398/NzdXtRmShoav6gQIIYSQhs7e3j4nJ+fGjRsA1NTUZs6cef/+/e3bt2tra8+YMSM/P9/U1FTVOZKGhUawCCGEkDdbu3btjz/+CODhw4cbNmzo2rWrkZERgObNm9va2qo6O9LgUIFFCCGEvJm+vv6cOXMA6Onp5eXlHT9+vLy8XNVJkYaLxxhTdQ6EEELI+0QikfB4PD6fltmQf0UFFiGEEEIIx2iKkBBCCCGEY1RgEUIIIYRwjAosQgghhBCOUYFFCCGEEMIxKrAIIYQQQjhGBRYhhBDyOpcvX965cycAqVS6adOml95ljNHz+ORVVGARQgghr/Po0aNff/314cOHcrn89u3bAHJyciIiIsRiMYDExMQLFy5QjUVeQgUWIYQQ8gYrV65ctWqVXC4HIJfLjx07JhAIxo0bJxaLL1++HBYW9uzZM1XnSBoW6kJLCCGEvEGLFi2GDx9+6NAhAGpqaiYmJg8fPkxNTdXS0pozZ055eXnLli1VnSNpWGgEixBCCHmzBQsW+Pv7A7h9+/aDBw82b96sKKr09fXNzMxUnR1pcKjAIoQQQl6nRYsWzZo1U1dXX7dunZWVlY2NTXZ29sqVK62srFSdGmm4aC9CQgghhBCO0QgWIYQQQgjHqMAihBBCCOEYFViEEEIIIRyjAosQQgghhGNUYBFCCCGEcIwKLEIIIYQQjlGBRQgh5IO3cyeiol68njkTAGJiMGUK5szBggUoKVFdZuR9RVvlEEII+eDl50MofPE6KwuMYfFiBAaiWTNcuYJ167Btm0rzI+8fKrAIIYQQ4NdfERAAAIzh2TOYmqJZMwAYMgT//S8H8dPT8d//gjEYGGDtWujrcxCTNGBUYBFCCCHA1KlwdQWACROgrf2/AS2JBBoaHMSfNw+HDqFVK1y4gP/8B9u3cxCTNGC0BosQQggBmjaFsTGMjV+8VlfH3buQSrFlC7y86hu8rAxNmqBVKwD4+GNERtY3IGnwqMAihBDywevRA+bmL157egLA0aMIDsbChWjTBgsXorwc+fl1iVxYCAB8PiSSF19hDDxe/VMmDRxt9kwIIYS8VnY2RoyAtjauXYO2di1ODA7GhAnYtQtTpmDUKHz/Pbp0we+/4+lTfPut0tIlDQKNYBFCCCGvpamJsjKEh2P6dMjlb3vW3r34+GMUFyM4GHI5Dh3CkSOYPRtFRfjqK2WmSxoEGsEihBBC3iQhAb16obgYX32FDRvecDBjWLcO69YBwJIlmDQJc+fi3DlYW7+DTEkDQSNYhBBCyJvY2uLkSWho4Icf5H4+rzlQLhdWrZ6LdeugqYmDB9GnDwYPRnw8dux4Z8mShoAKLEIIIeQtDBmCPXsqJneOtVlVWnr1Hw+RSHKTkwekTLgp69IOly6hpASTJkEkwty51JfhQ0MFFiGEEPJ2Zs8u3jxSIstNSxsvFse/9KZIFJuY2LOiIoJpQHI7kJ05AW9vANi6Ffv2cdNMi7w/aA0WIYQQ8vZYevrUwsLjmprtbGzuami0VHy1tPRqWto4maxEV7enpeWxrKxF/PSydqPu49AhTJyo2oyJSlCBRQghhNSCXC5KTh5cURGuo9OtU6dbamo6YnFyfHxnxiSGhhPNzNampY0Vi+M1NExtjc5rtO6q6nyJatBWOYQQQkgtqKlpW1sHJCa66eg48Xj88vIwHk+9ZcsvAL6BwciUlAESSZ62dmdr6yANzbaqTpaoDI1gEUIIIbUmlRbw+cZZWZ/z+SZ8fgs9vT4yWUlKirtcLmra9KP27U+qqzdVdY5ElWgEixBCCKk1Pt8YQGVlqrHxNB2dbgDkcrGOjrOWll2bNrt5PFrS/qGjESxCCCGkdsTiZE3NNmpqWpWVKTk566XS/DZt9mhqtpHLhWpqOqrOjjQIVGARQgghtVBaejUtbXzTpkPat/dTdDsqKblQUXHP3HydqlMjDQhNERJCCCFvKz9/f2bmQsYkAE8qzX/+fC+fb1xaes3EZLZYnKCublTduIF84KjRKCGEEPI2WHb22oyMTxmTtGixpGXLL+LjHdXVm+nq9mzTZiefb5SY2Cs11VMuF6k6T9IgUIFFCCGEvIlI9Dz0i5ycdTyeRtu2B/T1+ycnD5ZIcktLL+voOGtomDdp0oHPN6mouPf48TRArup0iepRgUUIIYS8VkEBhg41+Wi3oaRvhw4X5fKy1NTxcrnQxGS2lZU/wAPA55tYWweqqxsWFZ15+nS1qjMmqkcFFiGEEPLvUlLg5oawMJ5p6/a6u8qfXsrK8gbQqtWmtm0P1GzHoKVlY2V1lsfTzM3d9Pz5r6rLmDQIVGARQggh/+LaNfTogZQUuLoiOBhffWU8w09TvbWl5TFT0xWvHq6v379t2z0AsrI+Ly0NfufpkgaE2jQQQggh/0QshrU1nj7FuHH4/nuMG4fYWLRsyS4F8py6v+a8p09X5+b+AHTX0jpob2//zvIlDQoVWIQQQsi/uHcPgYEYORKjRyM3F/b2CApCu3ZvOo39+ecXI0bs19Nrfvfu3ZYtqXHDh4gKLEIIIaSG+/exYwc0NWFsjPXrUVwMa2tUVGDIEJw6hWbN3iaGWCwePHjwnTt3XFxcbt26paurW9sssrKyBALBrl27Pv7444ULF/L51LfyPUMFFiGEEPKXqioMGYKgIOjr4/BhZGdj1Sps3IiUFOzZA41a7DCYn5/v5ub26NGjMWPGnDp1Sk3tdYuepVJpUlJSfHx8XFxcZGRkREREXl5e9bujR48+e/Zs3b8pogpUYBFCCCF/SUzE9u3YuxcAKiowbhwuXqxHsMRevXoVFRUtX7588+bNNd8qLS2NiYkRCAQCgSAmJiY2NraysrLmAcbGxs7OzmVlZZGRkVKpdNeuXQsXLqxzJuTdoyFHQggh5C9NmqC60KmshJZWfYLZ2Nj4+/sPHTp0y5YtBgYGDg4Ogr+kp6fXHODg8XhWVlbOzs6Ojo5OTk6dO3cuLi5OTk6eMGGCn5/flClTlixZYmFhMXLkyPrkQ94lGsEihBBC/iKXY+hQ7N4Na2v85z/o2BHTp9cz5KFDh2bNmtWsWbOSkpLqL2poaHTo0MHFxcXFxcXe3t7a2vrJkyfVU4SRkZFisZjH4xUVFTVr1mzt2rXr1q3T19cPDQ11dHSsZz7k3aACixBCCKkhLw9btqCkBP36Ydq0+seTSCTGxsZisbhnz56urq6KMSotLa3Y2NjqWcLHjx/XPEVNTc3a2trJyWnbtm2tWrVijM2YMePIkSPm5ub37t1r3bp1/bMiykYFFiGEEKJEQUFBI0eOtLOzi4uLO3DgwNGjRwUCQXFxcc1jtLW1HRwcnP7i4OCgp6dX84Cqqqphw4bduHHD2dk5JCTkpXdJA0RrsAghhBAlOn78OIBPPvkEQEZGxs2bNwEYGBjY29tXTxE6ODhoamq+Joimpubp06fd3Nyio6MnTpwYEBCgrq7+TtIndUQjWIQQQoiyCIXCli1bVlRUpKamWlpaJiYmpqenOzo6mpub1yFaWlpaz549nz9/7u3tvX37ds6zJRyiAosQQghRFl9f36lTp/bu3TssLIyTgGFhYe7u7pWVlTt37ly0aBEnMYky0GbPhBBCiLIo5gcnT57MVcA+ffr4+PjweDxvb++AgACuwhLO0QgWIYQQohSFhYVmZmZyufzJkyfc7kioaNygp6cXGhrq5ORU29MrKioePHjg5+cHYMmSJVZWVhzmRhSowCKEEEKUYs+ePQsWLBg+fPiFCxe4jcwYmzlz5uHDh83Nze/evWthYfH644uKiqo7bEVGRiYlJclkMsVbBgYGjx8/bvZ2eyySt0dPERJCCCFKwfn8YDUej7d///4nT55cv37d09PzpcYNMpksOTlZ0WQrOjo6Jiam5s6GADQ0NBwcHMzMzMLCwoqLiydNmhQYGEj7SXOLRrAIIYQQ7mVlZbVr105TUzMvL69p06bKuERhYWGvXr2SkpI++uijzZs3CwQCxQCVQCCoqKioeWTTpk0dHBzs7e3t7OwUvSG0tbUBpKWl9erVKy8vb+7cufv27eMqsYICiMVo1QoAYmLwYTafp3KVEEII4d7x48flcrmnp6eSqisARkZGQUFBrq6uISEhL22hY2Zmpuiwpaio7OzseDxezQMYY+vWrUtISAgICBg4cOD+/fvt7Oy++OILThILC0NmJhYvBoAvv8TVq5xEfc9QgUUIIYRwT3nzgzVZW1v36dMnMDDQwsJi0KBBTk5Oiq14DA0NX39ienr69u3bS0tLO3bs6OPjM3HixGXLlrVr187Ly0upCX84aIqQEEII4VhiYqKtra2hoWFOTk6TJk2Ud6Gqqipzc/OCgoK4uDg7O7tanXv58mUPDw+pVLp3796CgoLVq1dra2vfuHHD1dW1nlmdO4eNG6FIJyQEKSn1jPdeoj5YhBBCCMeOHTsGYNy4cUqtrgBcvHixoKCga9euz58/nzFjRq3amX700Ud79uwBsGjRoh49esyfP18kEo0ePTozM7P+iU2ZggMHcOAA2ratf7D3EhVYhBBCCMdOnDgB5c8PAvD19VVcyMfH5/Dhw1drudxpzpw5X375pUQiGTt27Geffebu7p6bmzt8+PCX9qImdUBThIQQQgiX7t696+bmZm5unpmZqdQtmcvKykxNTcVicXJycrdu3YqLi+swUSiXy8ePH//HH39YWloGBwd7eXk9fPjwo48+CgoKqnPjhsxMpKejf38ACAqCh0fdwrzfaASLEEII4VL18nZ1dXWRSCSRSJR0obNnzwqFwn79+gkEguLiYsXTgrUNoqamdvTo0Z49e6anp0+ePPnEiRMtW7a8fPnyggUL6pxYejq8vJCWBgC//FLnMO83KrAIIYSQepHJZImJiSdOnFi1atWwYcMOHjwIwMvLKz8/f8iQIfPnz1fSdasruXo+saitrX327Nm2bdtGRESsWbMmICBAR0dn//7927Ztq0M0xcTY1KlYsaJu6TQSNEVICCGEvCwj48Xq7IIC6OtDU/Nv71ZU4OFDJCXlhYevEQgEDx8+FAqF1e/yeDzG2NixY1esWDFw4EChULhx48aVK1dym+Hz58/Nzc15PF5ycrKdnV1lZWVGRkbr1q3rHDA+Pr53797FxcVff/21k5PTxIkTAZw+ffqNjRskEiQnIzISkZGIj4dAgCNH8OABJBJ06oT9+3HpUp2Teo9RgUUIIYS8zMgIBw7AywvLlmHmTLRqhbi4FzVEZCSSkiCTwcJCmpWloTi+ZmNPIyOj6dOnFxUVrVy5sm/fvp6ennK5/OjRo1OmTOEww19++WXx4sWjRo0aPXr07NmzBw4ceP369XrGvHLlyogRI6RS6Z49e4qKir766ittbe3r16/37Nmz5mHPnz8XCARxcRkREXMFAiQnQyr9W5xff0VpKT7/HKNGobISN2/WM6/3EhVYhBBCyMuGDweAU6ewdi2srfHSeiQNDdjZwckJTk47HR07v9rY89atW0OHDq2qqtq9e3dFRcXy5cu1tLSuX7/u5ubGVYa9e/e+c+fO8ePHf//99+Dg4N9+++3TTz+tf9gDBw7MnTtXQ0Pj4sWLp0+f3rNnj6mp6blz5/Ly8hT78MTHx6elpQHg8dSaNpWWlPD4fLRpAzs7uLjAxQXduyMpCffuYcUKXL2KTz9FejoYw987yTd+VGARQgghLxs5EkuX4vx5ABg2DGPHwsEB9vb/KyO0td8Q4eDBg7Nnz9bQ0Dh//ry/v//u3btNTEzCw8Otra3rn15GRoalpaWOjk5sbGyHDh3U1NSys7ONjY3rHxnAihUrtmzZYmhoGBoa+vnnn1+7du2lA/T19R0dHR0dHV1dv7e1NejcGVpafztALIZYDAMDAHj6FBcvws8PFy68PNPauNFWOYQQQsg/GDgQhw6hoAAzZ6KkpNanz5o1KyUl5Ycffhg3btytW7cyMzODgoJGjRp1+/btN+5j80bHjh1jjHl5eZ07d04qlXp6enJVXQHYtGlTVlbWs2fPWrVqtWDBgmvXrunr6/fr18/pL1ZWVrzXjkdpaf2v5NLVxX/+g5wcLFiAAwe4yvF9wAghhBDCGGMsIoJVVjLGmIcHY4xlZ7OmTdnDh3WMJpfLp06dCqBt27aPHj3q0qULgP79+1cqrlEPnTt3BnD+/HnFtjZ+fn71DPgSoVCoSHL69OkA1q1bV59okZFMV5cB7IcfOMrvfUBThIQQQggAlJTA1BT6+oiPx7lzmDULamp4+BCWltDTq2NMsVg8ePDgO3fuuLi4HD9+fNCgQU+ePJk1a9bvv/9e5zwfPHjg6OhoYmISFhZma2uro6OTl5enq6tb54D/RiwWm5qalpSUJCUldezYsT6hzp+Hpyfkchw9Ck7X+jdc1AeLEEIIAYAzZyAWw9ER169j7lyMHg0ADg51r64AaGlpnTt3ztraOjIyctWqVWfPntXV1T148ODGjRvrHFPR9WrChAknT55kjI0ZM0YZ1RWAgICAkpKSHj161LO6AjBiBDZvBmOYMwd37nCSXUNHBRYhhBACAMePA8DkyfD1BQB3d27CmpiYBAYGGhoa/vHHH6dOnTpx4oS6uvrq1asV2wjWFmPMz88PwJQpU5S942E9+5e+ZOlSLFgAsRgTJ7L09Oz6hAoJgVwOAKmpKC3lJDvu0RQhIYQ0ROXl5Q8ePBAIBGfPni0pKVm4cOHMmTNVnZTKCIXCc+fOaWlpjRo1Skm7++XmonVr8PlITISNDSQSZGXB3Jyz+CEhIUOHDq2srNy9e7dQKFy2bFndGjeEhYX17du3TZs2Z8+edXFxad68+dOnTzU0NDhL9C/FxcWmpqYSiSQzM7NVq1acxJRKMXlyZVKSt1R6686dOwaK5wxrz8ICq1djwQJ88w28vODiwkl2HKOnCAkhpEEoKiqKi4uL/EtiYqJc8Z90AMC8efO6du2qWCX9IXjpbiQlJclkMgC2trZxcXGvf4Stbvz8IJPB0xPBwaisxJAhXFZXAPr167dnz55Zs2YtWbLk/PnzCxYs+PXXX0ePHv3w4cMWLVq8/tz8/HzBX65du8bj8dzd3S0tLXft2iWRSJRRXQE4ffp0ZWWlu7s7V9UVAD4fv/9e1bdveEJCgqenZ3BwsGadOjd06YJLlzBmDFd5KQUVWIQQogIymSwpKUkgEMTExERHRwsEgufPn9c8QFNT097eXvFI/KlTp2JiYoYPH37v3r367IXSYMnl8pSUlOpbERMTk5OTU/MADQ0NMzOz7OzshISE77///ttvv+U8h+r5wd27X7zg3MyZM1NSUjZs2DBu3LiQkJCnT586Ozv/Y3WVnZ1d3dUzLi4uISGh5nRTkyZNLl68uH79+oULF3Kf5V+4nR+spq+vf+HCBVdX15CQkPnz57/NYv/s7Beb8Cia6a9eDR4P69dj5Uo05J8GmiIkhJB35OrVq9evXy8oKIiOjo6NjRWJRDXfNTQ0dHJycnR0VLQasrOzU4xMyOXynJycadOm3bhxo2vXriEhIUpa0fwuSSSS5OTk6gGqmJiY8vLymgfo6+t36dJFsfOMi4uLubm5ubn5jRs3Ro0aJZPJDh8+/Mknn3CYT2oqOnSAvj6io9GxIzQ0kJODus5fvQ5jbNq0aceOHWvVqlV4eLiFhQX+fjfi4+Ojo6MLCgpqnqWnp9epUyfFrejSpcvatWtDQkKcnZ1DQkL06rMC/9/l5ORYWFjw+fzc3Nw6T+S9RlRUVL9+/SoqKjZs2PDVV1/VfKuqqiouLk4gEKSleYWGGsTEoLj4b+cuX474eAQFYelSCATYsqWBThFSHyxCCPk7mYw9esRSU5lczmFUX19fPv9vkwZmZmYeHh4rV6708fGJjY2V/9PlRCLRpEmTbGxsHj16pHiSS7FVHIeJvWPx8fEWFhZqai8/YmVhYTFy5Mhvv/32zJkzycnJjx49CggIWLNmjYeHh6mpKYDLly8zxn766ScAmpqa169f5zCrdesYwGbOZD/+yAA2diyHsV8mEol69eoFwMrKavLkyZ07d37pgwHA3Nz8448/Xr169cmTJ5OTk2UyWc0IBQUFig/Dxx9/rKQPw9atWwGMGTNGGcEVgoKC1NXVeTzevn37QkNDd+zYMW/evN69e2v91aK0T59kgAHM0JD17s2WLGE+PuzhQ5aZyUaMYIyx0lLWqhW7f5/bn1TOUIFFCCE1SCRs7Fi2di375hs2YQKTydjNm+zkSSYS1TOwl5cXACMjox07dty8ebOoqOhtziorK3NycgLQr1+/+Pj45s2bA/jiiy/qmYwKde/eHQCPx7Ozsxs/fvyaNWsCAgJSU1Nv3769a9euefPmde/eXfuVbWgMDQ19fX0VERYvXgzA2Ng4KSmJq6zs7BjArlxhLi4MYKdPcxX4n+Xn5zdv3rx6tlddXb19+/YeHh6Ku5GTk/PGCKmpqYoPg7e3tzIy7NatG4BTp04pI3i1bdu2AdDX16/5d62mptapU6cJEybs2vXnxYssI4PFxjIfH7ZkCXN3Z8bGzNiYpaS8iJCRwSIimLMz4+6zwBmaIiSEkBpOnsSTJ1i6FADWr4ezM/r1g0QCQ0O8Mujy9qqqqszNzQsKCh48eODg4FCrc7Ozs3v27JmVlTVp0qQFCxYonkTbuXPnokWL6pyPqkgkEjMzs4KCgosXL1pZWZ0+fVqx6Co1NbXmin4AlpaW1bOljo6O7dq1q35LLpePGTPm3LlzVlZW4eHhijqjPrKy4OAALS3cugUbGzRtitzcN281WB8SicTU1LSwsHDNmjUjRozo3LnzqzXlG4WFhbm7u1dWVv7888+KopMrjx496tChQ9OmTXNzc+uQ2NuTSCRGRkZSqdTOzq5bt27Ozs6Ojo6tWrVKTk5WrOiXSMb+8YeXVPq3s8zN8eABqncGmjoVvr7o0AHh4eBuuyAuqLrCI4SQhmTDBnbhwovXp0+z7ds5ierv7w/A0dHx+vXr7du337lzZ61Oj4qKUiy1Wb9+vZ+fH4/HU1dXP3fuHCe5vUsBAQGK+8AYCwoKqv6XiM/n29nZTZs2bePGjQEBAc+ePXt9nIqKCsVIWN++fcVicf0TE4lYTAxbs4YBbNas+sd7A8V96NKlSz3jKOnDsGbNGgAzZ87kMOY/UtwHOzs7xpiPj4+Hh8dLz3DY289WV2ft2zMPD7ZmDQsIYK+O7lVUsB49GMD69mVcfBY4QwUWIYTUcPgw2737xesff+RqrmjixIkANm7c+OmnnwL49ttvaxvh/PnzigUrR44cUfz7p6+vLxAIOEnvnVE8krZx40bGWG5urre396FDhwQCQVVVVW1DPX36VLFCfNKkSf+4fK0OOnZ8MVGobIr78AMXO/OtXbsWgJ6eXnR0dP2jKXTq1Al/LXpTKsV92LBhA2Ns+fLliqJKT0+vV69eCxcu/O233yIiooXCN8fJzmYWFgxgEyc2oPVYVGARQkgNQiEbOpQdPswOHmTDh7N6b8rLGCsvL9fV1eXxeMnJycbGxgBiY2PrEGfHjh34a333tGnTAJibm2dlZdU5sefP2b59L16fOFHnMG+rvLxcT0+Px+Olp6dzEvDhw4fNmjVDvbcirqpiFRWMMZaUxNauZcp+hIDb+yCXyxX7MZubm2dmZtYtSGZmZkBAQFpaGmMsIiICQIsWLSQSSf3Te43q+6C4bnR09D+u6H9LsbGsWTMGsLVruU60rqjAIoSQvxMK2ZUr7NIlVo/apabDhw8rJrMUE4XOzs51DlW9vjsuLm7gwIGKaGVlZXWLFhfHTExYYCBjjH30UZ2TeltHjx5V3AcOY164cIHP5/N4vMOHD9c5iL8/s7JiipGSYcM4y+3fKO5Dnz59uApYVVU1aNCgt/8wSCSS2NjYkydPKh7SbNmypWLoaNu2bYyxpUuXAliyZAlX6f0bxX3o3bs3VwHPn2fq6ozHY6dOvfkpgTcql5VL5BLG2LniOk6/UoFFCCGvCAlhWlps4EBOgg0fPhzA7t27FROFW7ZsqXMoqVTq6ekJwMrKKjk5uc7P6stkLCmJPXjAPv+cDRnCysvfRYE1YsQIxX3gNuzevXtRv8YN/v5s0iS2ejVj76TAUtyHXbt2cRizoKBAMa83fPjwV0eeSkpKQkJCfv755zlz5ri4uDRp0uSl1djGxpFhtE4AACAASURBVMbu7u5+fn4SicTc3BxAeHg4h+n9I8V9+OWXXziM+csvbMCA602aaN26davOQcpl5V6pXvMz5nulet0quzXi0Yi6xaECixBCXvH0KQOYgUH9F3Q8e/ZMQ0ODz+enp6fr6uqqqanVZ1KP1Wjc0Ldv34SEhLd8Vr+q6n/PuvfuzfT0GMCCgtiKFezSJbZq1d8KLC7mRV9WUFCgqanJ5/Pz8vI4D75kyRLUpnGDWMzu32f797PFi9nw4ezsWbZ3L5s8mcXFKb3AkubnT7W35/P5b1zIX1upqamKpvDVg09JSUljx45t3779SzsL8Xg8KyurcePGrV+/PjAwMC0tLSoq6uDBg59//rniaU0DAwOulrX9m+rPQ25uLreRvb29ARgZGdW5i8dPeT/te/5i7lzGZHUusGirHEIIeYW5OVq2RF4eMjPRtm19Ip08eVIikYwYMSI0NLSiomLAgAH13OtGT0/v/PnzPXv2DA0NXbdu3ZkzZ4YMGbJjxw4rK6uajRueP38uEAiio6MfPIh98MAnPp4nk/0tTuvWUHQL/+gjHDmCJ09efD04GHPm4MIFdO5cnzRfduLEiaqqqhEjRrxx37062L59e0ZGxrlz54YPH3737t1XGzcUFhY+eJARFeUsEEAgQGIiJJL/vevlBQCbNuHzzzlP7WXqp04djYvbM2WKXr27S7ykffv2ig/Dzz//bG1tvXjxYk1NzTNnzgDQ0NDo0KGDi4uLi4uLvb29tbX1kydPFJvwbNy4MTIyUiwWV8fh8XhLly5Vxm6PNf3xh0GXLk+6dr1ePUHJla1btz5+/Njf3//fPgwvKZOVJVcmx4njIoWRkcLITk06NVFrMs9knuJdNdS9OQsVWIQQ8k8cHXHlCgSCehZY1Ru6KVaccLKzm7m5+blz5/r16+fn52dnZ+fj4zN58mRvb++srCw+n69oIJSdnV19vLX1bzyelp0d7O1hZwcXF/TogZYtkZSEtDQA2LgRAwcCQH4+9u1DVhZGj0Z4ODisART3YcqUKZxFrEFNTc3X13fgwIF//vnn2LFjg4ODCwoKXtrLT1fXtKIiW9H5UV0dtrZwcnrxp6QERUWwsICbG/z8lJFgDcePA9D7+GNlxO7Tp4+Pj8+kSZO8vb3btGkzatSoY8eOdenSRUtLKzY2ViAQ3Lx5c8eOHY8fP655lpqaWseOHZ2cnJydnW1tbS0tLd/BnuJHj6rdv998yZKJnEdWfBgGDBjw559/jhkz5urVqy9NiWZlZQkEgnSj9BCzEIFIkFaZxvC/hqCF0sKxBmNzJbmof/+vug18EUJII7diRf0fScrIyODxeDo6Ounp6Xw+X0NDIz8/n6sEAwMDFY0bLl269J///EddXV1dXb36d7u+vn6fPn0WLVq0b9++qKjCNzail8vZmjXMzIwlJbGePRnAund/8Wxd/WVmZqqpqeno6NR5Pf7bePr0qWJ0sHqvlWq6urpubm5Llwr37mX37r38fT19ylJTGWOsqooFBysvQcYyM5maGtPRYcq8D9999x0ATU3Nfv36DRgw4NWdBHV0dHr06DFv3rzdu3ffuXOnvLxcecn8o6dPmZoa09JiJSXKukR2dnabNm0AjB8//uHDh6+u6Hdd5YpIIBIaURp2cXbT0qftyNsRXBqcL8lPEaf0T+p/q+zWlZIrCaIEmiIkhBBOOToCkBak1ue35LFjxxhjnp6eQUFBUql01KhRxty1mvbw8Ni+fXtUVNTAgQPV1NRkMpmRkdGCBQsU3c+trKxqNcsjleL2beTkYMwY/PEHhg5FRARmzsSJE6j/ZJGvr69cLh89erSSdiaOiooqLi4eMGDAN9984+3tXVlZaWhoqNgaWcHGxqZm9fkSc/MXLzQ04O6ujAT/4usLuRyenlDOfVD45ptvrly5EhYWFhISovhKzbthb2/v4OCgqampvATe6NixF7ehaVNlXcLMzCwwMLB3794BAQGnTp2q+ZaxsbGTk1Pvlr0XtVvkpO1ko2XD5/3tp9yYb3y43eHLpZe11bS763b3buFdxyQ4LRkJIaSRqCyKj45q9vChZX2CKHbFCQgIUGzue/z4ca7Se8ns2bMBrFmzpj5BSkpY584MYMOGsQcPmIEBA9g333CQnmLKKVDREEIJJkyYAODnn3+eOXMmgBUrVijpQvXl6MgAFhCg7OuUlZVt2LBh1KhRFy5cyM7OVvblasvZmQFMeTsRbNu27dSpUyKR6OOPP+bz+S1bthw7duz69esDAgLq3CqsDmgvQkII+QeMyQSCpnK5yMmpQF3dsA4R4uPj7e3tDQ0N//zzz44dO+ro6OTl5enq6nKeamVlpampaXFxcWJiouJZ/TpLT4ebG/LyMHcuxo2DhwekUuzdi3nz6h4zISHBzs7OyMgoJydHGQMnZWVlpqamYrE4OTnZxcWlpKSk/vdBKRISYGcHQ0Pk5kKlA0iqlZgIW1sYGiInB6/0i+BARUVFy5YthUJhcnKyq6trYWFhXFycnZ0d91d6k7ovjyeEkEaMx1PX1u4MMKHwQd0iKFa1T5gw4eTJk4wxLy8vZVRXAM6fP19cXNy9e/f6VxWWlggMhI4O9u9HfDz27AGARYtw7VrdY1bfByVNS509e1YoFPbr1y86OrqkpKRbt24NsboC4OsLAOPHf8jVFYBjxwBg/HilVFcA/vjjj4qKin79+sXGxhYWFnbt2lUl1RWowCKEkH+jre0EQCQS1OFcxpifnx+AyZMnVz9IyG161Xx9fTmM3707Dh2CmhqWLYOxMZYtg6YmhMI6RmOMKfvbr34+UdkXqhepFN7e8PHBggWqTkXFWrZE+/aYNElZ8as/Bqr/PLyzyUhCCHm/PHu26/59pKfPqsO5165dA2Bubh4bGwugefPmddjP+G2UlJRoa2urqak9efKEw7D//S8DmLY2u3OHJSbWPc7t27cBWFhY1G2DuTd69uwZn8/X1NRMT09Xxn3gxrffsqlT2aefslmzmFTK0tNZZCRnj2g2VJcuseq9yH/4gT17xubNe7HP4/ffK2tLZkVfXw0NjcePH+vo6NS/r2990AgWadAYY7m5uarOgnygFCNYVVWP3+bg4uLisLCwn376afr06d26dRs2bFizZs0cHR3t7e1jYmJ+++03DQ0NZSR55swZkUg0cODAVq1acRh29Wp89hlEIowdC+3aNwQqLCy8fv36tm3b5syZA2DMmDFqamqHDh2aPHmyXC7nMM8TJ05IpdLhw4dfv35dJBINGDCA2/vAgchIPHuGo0fx22+wt8fJk5DJIJWqOi2li4//W/daoRDBwdi5EwBCQzl4NPUfKfr6Dhs27NatW4qJ43r29a0PatNAGq6UlBQ3N7fmzZsnJCSoOhfyIdLV7WZvH1dZmS4Wx2tp2QI1/02QV1amCYXRQuGDhQsFkZHRT58+rXmuurp6WVnZ1atXr1696u7urrzOjcqbB9m5E6mpKC/HK12l/kFaGhMIzgoEgpiYGIFAkJmZWf2Wvr5+REREbm7u0qVLi4qKLCwsNm/ezFWS1dOj+/fvR8OcH3z4ED16vHjdsyeCgjB5MqysVJrTO3L7NkQiAC/65g8fjps3MW6cEq94+nQAgEmTJh05cgSq/jxQgUUaLktLy8rKyqSkpGfPniljew1CXsWYVCxOEokEcrnI2HhmRsZnJiafisXJTZq0F4lihcJooVAgEsWIRA9ksjLFKcXF7Z4+faqvr9+xY8fqbkNdu3Zdv379xo0bx44dGxYWpujXwLlnz57duHFDU1PTS7HbC6c0NHD6NJo0waefont3LFmCq1eRmorPPoNEguRkREYiPh5xcbh7F/n5vBYt1j179uKBAF1dXQcHBycnp3bt2u3YsePOnTtff/21v7//0KFDt2zZ0q5du4ULF9Y/w4yMjLt37+rq6nbv3n3q1Kmamppjxoypf1iOGRsjLu7F67w8mJioNJt3SksLNZ/r4PHwww9YtUpZl8vIQGTkpUGDkt3cWv/3v6MHDbo6blwfZV3sLVCBRRouPp/v6up67dq127dvK+PfD0IAoKwMDx7kWz+oEEcLhdFicaxcLgagoWFuZDRZLq9o1syDzzcSCgUJCd1rnqeh0UpHx0lb23HTJlcTE7tXG3tu2LAhMzPT19d31KhRd+/e5XzPNQDHjx+XSqVeXl5GRkacBwfQrBkAVFTgxg2MGQOJBKWlcHJCfPzf9vIDYGqKESMWNG+eoWhz2qFDBzW1F0tQ3N3d+/fv//vvv3fs2HHPnj2zZs1asmRJmzZtPDw86pne0aNHGWNjxowJCAiQyWQjR45U0n2olyFDsGMHuneHnh527cLRo6pO6N1xccHw4QDw448vvmJri9at6/VQ6mv4+qKsjGdm1ikwEPHxsLYepdqPAxVYpEHr06fPtWvXwsLCqMAinMnLw/37iImBYuPf1FTI5c8iO4hYiuL9Jk3aa2s76eg48Xha5ubrHz+erqlp0br1Nh0dJy0tex0dR21tZx0dJz7/xVDEv6354fF4Bw4cSE9PDw8P9/DwuHnzJudtGt7Zc1LffYflyzF9OjQ1kZ8PiQRmZnBxefGnWzeYmQGY/4/nuri4+Pn5jR49+quvvjp27Njq1as3bNgwZcqUsLCwes6cVj+nuXbtWqh6PuhfaWnhjz9w6hQkEvj4KO7Uh8DUFNWb9NjYQFMTFhYA8O23+PNPMIaYGDg5cXnF48cBYPJkfP/9ixcqpqrV9YS8jatXrwLo3r27qhMh7zORiK1cyebMYTNnsoQEtnw5A/73R1OTOTs/v7sqL++nsrJblZWZZWW38vJ+evx4dnl5uCLA48fzKiqi63bx58+fW1tbAxg7diy3T9I9evSIx+Pp6+sLhUIOw77Ky4tVVrLVq5m3N9uxgyUmsjpsXrdlyxYAWlpat2/fnjp1KoBWrVrV54k/gUAAoHnz5omJiYr7UNHYn8trNCQSNn4809Jid+5wFjMujgHMyIglJjIej+nq1uVTyi0awSINWs+ePTU0NKKjo8vKyvT19VWdDnk/bdwIZ2dMnIhnzzBuHLy9MWgQHB3h5ARHR+jrIzZWW/g4t+zWs2c/VVamVZ+nqWlRWOjXpEl7sTixSZN2dbu4iYlJYGBgr169zpw5s3r16o0bN3LzTQG+vr6MsTFjxmjX4TG/2vv6azg54f/+D3Xr4rls2bL09PTdu3d7enrevHkzPT39zp07np6et27dqtvAnmL0bsKECSdOnGCMeXl56ejo1CUz8s7x+WjRAmIxRo1CeDisrTmIqZh6nTgRp06BMXh5QTltfWtDxQUeIW/So0cPAMHK3eOeNGoDB75ov8MYmzyZpaUxHx+2dCkbNIgZGSnGsUrnOd+/j/v3ERWlFR/f7fHjT589+0UkSpBInpeXR4rFac+f7yssPFHnFG7evKnoY757925uvinG7O3tAVy6dImrgP/m8OEX9y8khIWF1T2OVCpVrLuytbV99OhRhw4dAHh4eEir/3bemlwub9euHYCwsDBFn+6LFy/WPTPyzkmlbORIBjAbG1ZYWN9ocjmztGQACwlh9vYMYOfPc5Fl/VCBRRq6L7/8EvXexZZ80NzdmVj84vXYsezpU6at/b8pQhMT5u4u/eGbgoKjQmGsXC6pPq+yMiMuzj4uzr609Or9+0hM7FWfLH7//XcAGhoaV65cqcPpGRkZAQEB33333Y0bNxhjUVFRAJo3by6RSN50agNSWlqqWHfVv3//Bw8eGBoaAli2bFlt44SEhABo06bN/fv338f7QBhjpaUvNr/u1+9/P6B1U1DAhg9nVlYsKurFz7Ry2vrWDk0RkoauT58+W7duDQ0NVXUi5L01YgR+/RXe3khORmkpzM2xeDGaNoWTE5ycFGvU1YFXnzfS0DAVi1MYkzZp0gGAUBgDyOu8w9isWbNSUlJ++OGHcePGvbFxg1QqTUpKio+Pj4uLi4yMjIiIyMvLU7z1xRdfDBgwQDFBNmnSJD7/ffo1rq+vf+HChZ49e966dWv79u2Kxg0//vijpaVlrRo3SKVSV1fXQYMGKda5T5w48f26DwSAvj4uXICrK0JCMH8+Dh6seygjI1y4gKoqREaid284OkI5bX1rh8cYU3UOhLxOfn5+ixYttLW1i4qKlLRZLGnk5HLs2oXoaDRrhlWrUJt2CfHxTiJRjI3NnbS0CVVVT+ztk7S0OtY5EcbYJ5984uvr265du5caN5SWlipadCp6dcbGxlZWVtY819jY2NnZ2cnJ6aOPPlL0bc/LywsPD+/Zs2ed81GVqKiofv36VVRU/PDDD6amprNmzVJXV/f3969t4wapVGppafnkyZPbt2/36tVLSdkSpYqMRP/+MDaWfP758aVLp9c5zoYNGDMGNjYIDYWODlxcOMyxjqjAIu8BOzu7hISEu3fvurq6qjoX8mF5/HhWQcGhNm12l5RcKCkJat/+hKHhhPoEFIvFgwcPvnPnjouLi2J99+PHjwcPHpyenl7ztzGPx2vfvr2ionJ0dOzcuXNFRUVkZKRiTOvmzZvl5eXa2toVFRU8Je05omTnz5/39PSUy+VHjx5NSEj4/vvv9fX137Jxg0QiSUhIiImJ2b179927d5s3b56Xl/ee3gcC4MIF4cyZ3fLzE48fPz5x4sS6BRk0CAYGOHMG+/bBxAQNoeMsjamS90CfPn0SEhLCwsKowCLvmI6OY0EBRKIYHR2nkpIgoTCmngWWlpbWuXPn3NzcIiMjZ8yYcfLkSTMzs6ysLD6f36FDB0UXeHt7e0tLy8zMTMWY1qlTp+Lj4yV/7+ypqanp4+Pz/lYVI0aM2LRp07Jly+bMmXP16tXHjx+Hh4c3adLkHw8uKyuLiYmpnjCNiooSKXZgAQAMGzbs/b0PBMDHH+t89dWnS5cunTlzpoWFRa0GI4VCPHwIQ0Po6GDgQPj4KC/NWqMRrMZLLMa1axCLMXgwDAwQHQ1ra+jrQyJBZCTeq2mFI0eOTJ8+3dPT09/fX9W5kA9LWdnN5OSBerpu5k1XFsT9aFDYxWDirvqHTUxM7NWrV1FR0YoVKzZt2pSSktKkSZOaNURCQsJLv5zNzMxc/mJvb9++ffv6p6FyixYt2rVrl4mJyc2bN01NTY2NjRVfz8zMrN7WUCAQ/NvwnpWVVcuWLb/44gsVpU+4tHjx4l9++cXY2Dg8PFzxhOk/KipCXBwiI1/8SUqCTIYvv0RiIs6dw/DhcHeHtXWDGMGiAquRkkoxahSmTEGzZti+HSdPYu1aLFoEGxsUFWHePJw6peoUa+Hx48eWlpZGRkbPnz+v3n+DkHdALiyqnOSmdSeXd/sebGxgbo6/b+pcZ9evXx82bJhEIlE8AVdcXFzzXR0dnc6dOzs5OTk7Ozs6Onbp0oXzLvANgUwm8/LyCgwMNDc3nzt3bnl5uaKiKiwsrHmYlpaW4m4oJkwdHR2pK17jI5PJFLse2djY3LlzR/GEqUwmS0lJiYmJiY6OjomJ4fF2Xrz4t65ZGhqwtcXUqQgJQVAQwsMxfjx+/rlBFFg0RdhIBQfDzQ2ffAIAYjGOHAEAiQRVVS9vIfY+aNeunYWFRVZWVmJioqLnDSHvhpqOofbDShSUQCZD06bIzkZeXq2Wyf+bQYMGLV68eNu2bc+fPwdgaGhYvVG0vb29g4PDh/BIh7q6+rFjxzp37pyZmfndd99Vf93AwMDe3r76bnTu3PnfZg9Jo6Gurn706NG+ffvGxMT07dvXzc0tNjb24cOHFRUV1cf07/+gaVNrBwfY28PO7sVOTYo+u9nZAODmhqlTYWioou/h72gEq5E6dAhSKebOBYDwcPj7o6ICBQUwMEBVFUpL368RLACTJ0/28/Pbu3fvvHnzVJ0L+cB4ecHfH76+2L0bYWG4fBlDh3IVWyAQXLhwYdasWWYfzBZ1r/rzzz+//fbbjIyMadOmKcaoWrdureqkyLsmk8nU1dWzs7M7d+6sq6v75MkTxdfbtGlTPXjp7Oxqafkve382PDSC1UjZ2uLYsRevBQLY2SEiAmvW/G+K8H3Tt29fPz+/0NBQKrDIu+boCH//FzvThoVBIOCwwFL8y8FVtPdUjx49Ll++rOosiCoJhUJra+shQ4bs2bOHx+M9efJk+fLlw4YNc3Z2Nmwg41G1RwVWI+XqiqNHsXgx9PSQkgJfX0REqDqneunbty+AGzduSCQSjYbQQo58OBwdAUAgwPjxABATo9p0CGl8zp07l5OTk5qaGhwcXFhY2KVLl82bN6s6qfqiAqvx2rkTBQXIysLTp9DUxIYNL7a+NDDAvn2qTq7WRCKRvr6+UCg0NDQcOHDgyJEjR40aZWpqquq8yAfA2RkAYmOxbRumTYO7u6oTIqSxUexMMHny5OoXqs6IA7QGq1GTy2FoiNJSZGfjfV7hcePGDU9Pz7KyMhMTk/z8fMUX1dXV3dzcPDw8Ro4cSSvfiRIxhuhomJjgjz8gkWDcOFhaqjonQhqPoqIiU1NTuVyenJzs4OAgFArT0tIUm3m/1+iJ90ZNTQ1ubgAQFqbqVOru/PnzI0aMKCsrmzJlSk5OTnp6+t69ez08PPh8flhY2KpVqxRdGT/77LPAwMCXdhchhAM8HqytMX06evXCsGGYPZurTg2EEAAnT56sqqoaMmTI7du3Kyoqevfu3QiqK1CB1fj16QO8xwXWiRMnvLy8RCLR/Pnzjxw5IpPJevbsGRgYOHLkyISEhICAgHnz5pmbmz9+/Pi3334bNWqUkZHRyJEjf/vtt5ycHFXnThqRixcxZgx69ICDA/7v/3DypKoTIqTxOHv2Mhrd/CBoirDxu3ULAwbA2RlRUapOpdaOHDkye/ZsqVS6cuXKjRs3AggJCenfv7/i3eopwhEjRlRWVgYGBgYFBUVFRSk+0mpqas7Ozop3u3XrRjtpkHr57Tdoa2PaNAC4dg2hoVi7VsUpEdIoPHmCTp3QrVvm4cN6AwaMefLkdnZ2dvPmzVWdFweowGrsRCIYGEAmQ0EBmjVT4oVycnDzJgwMMGQI+Bw8PPHLL78sWbKEMVZdXSlkZGRcvnw5MDAwODi4ekKwXbt2Q4cO9fDwsLW1vXLlSlBQ0I0bN8RiseLdpk2b3rt3z8bGpv5ZkQ/U/fvYtw979wLAmjXo3h0eHqrOiZDGYMsWrFiBiRMxYAAWLsTMmfm//26i6qS4QQXWB6BXL4SH49IlfPSRsi6RnIwlS/Dll8jIwMWLOHOmnvE2bdq0atUqHo+3bds2b2/vfzxGKBReu3YtKCgoKCgoW9HEF9DR0Rk0aNDIkSOHDBmSmpoaGBi4b98+kUjUuXPnhw8f1jMr8kFbvx5JSeDzYWiIbdtAY6KEcKFrV0RHw98fW7ciNBRHj2LqVFXnxBEqsD4AK1di82Z8/TW+/15Zl1i2DGPGQLEF+oIFmD//Reug2mOMLV++fOvWrerq6vv27Zs1a9YbT5HL5REREYopwpi/ehSpq6u7urru3bs3MzNzxIgRNjY2CQkJdUuJkP+Ry0G7YRLCkcRE2NrC0BAREejYEVpayMuDnp6q0+II/aZo/AoHDjzfv/+GtDQlXuPZM5ibv3jdqhXy8rBmDQIDIRTWKoxMJps3b97WrVs1NTX9/PzeproCoKam5urq+v333wsEgtzcXB8fn/Hjx2tra9+7d8/U1HTo0KF6enpJSUnPnj2r7bdFyMuouiKEO76+ADBuHE6fhlwOT8/GU12BCqwPAc/VdVRo6PqzZ5XYwsDWFgLBi9cxMWjaFN99h1GjYGyMIUPw00/IynpjDKlUOnv27P379+vo6AQEBIwbN64OibRs2XL69OknT57Mzc29evWqiYkJn893dXVljN2+fbsOAQkhhChJcDAATJ6M48dfvGhMqMBq/AwNDe3s7MRicWRkJPfRc3KQm4sFC3DgAL75BjNnwtkZlpb473/RsyeqqnD1Kry90bYtXFzKf/ghIiLiH2elKysrx48ff/jw4WbNml2+fPmjei8X09XVHTBggOJ1nz59AIS9t70qCCGkUQoNxeXLaNECMTEwNFTiOmGVoALrg6DYyC80NJTjuBkZ6N8fQ4dCJkNgIBYuxM6dWL0aLVti9WqEhyMvDydPYto0NG2KqKi0S5d69OjRokWL6dOnnzp1qrS0VBGmoqLCw8PD39/fyMjo8uXLinqIQ8r69gkhhNQDn4+hQ18MX02YAE1NVSfEKVrk/kHw9fWdOnWqh4dHYGAgZ0GTkjBkCLKy4OKCS5dg8toHaysrcfPmydu3Vx458vjxY8XXtLS0BgwYMHjw4BMnTty/f9/U1PTKlSsODg6cZfiXiooKQ0NDxlhRUZFeY5rhJ4SQ919WFvz8MHAgunVTdSqcogLrg/DkyRMLCwtDQ8P8/Hw1TlbpxsVhyBDk5KBvXwQFoWnTtz81LS1N8cTfzZs3pVIpAG1t7RYtWty4ccNSaVu89ejRIyIi4urVq4MHD1bSJQghhNSKhgbu34ejIz77DF9/jTZtVJ0Qp2iK8IPg7+/P4/GKiori4uI4CBcRgf79kZOD4cNx+XKtqisA7du3//zzz4ODg7Ozs318fCwsLEQi0RdffGFqahoSEhIfH89Bhq+gWUJCCGloXF3xzTeQy1Wdh3Kor6UNHxq7NWvWKJp28ni806dP8/n85s2bGxkZ1S1a7s2beh99hJISjB+PkyehpVXnxHR1dR0dHRljV65cad26dVxc3IwZMzQ0NIYNG1bnmP9GJBKdOHFCXV19xowZnAcnhBDyNgoLcecO/P3x66+wtER4ODw8EBWFnBz066fc3UbePZoibMwYY8uWLdu2bZu6uvqiRYt27twp/+t/CjY2Nh4eHh4eHr179+a/9c42QUFBEydMuN+tm23btjh4kJMtcSIiInr06NGpU6c9e/YMHDiwa9euynjaMT8/v0WLFtra2kVFRZqNbCElIYQ050vcWQAAIABJREFUSIyxtLS0Bw8soqM1BQIIBH/r2PPLL7h0CefOwcMDurrYurWxTRFSgdVoyWSy+fPn79+/X1NT09fXNysra+nSpYyxXr16paWl5ebmKg4zNDR0d3f38PAYOXKkoaHhawIeO3Zs5syZUqn0S2/vH7nbKkQqlRoZGZWXlz9+/LhDhw4ymaygoKCZEv4jY2trm5iYeO/evR49enAenBBCiEQiSU5OjoyMjIyMjI+PFwgE+fn5jo5FMTEGigN0deHgACcnODnB3R3e3ggMRGQkevVCSkpjK7DASGNUWVk5YcIEADo6OpcuXVJslszj8bZv384Yk0ql9+/fX7NmjYuLS/UnQV1d3cXFZc2aNffv33814J49exSr41euXMl5tu7u7gDOnDnj5uYG4NKlS5xfgjH26aefAvjxxx+VEZwQQj5kQUFBnTp10tDQeKnGMDMzW7AgetUqduIES0xkMtnfzrp48cWLc+dYWdm7z1q5qMBqjITCqrFjp9naGhgYhIaGLlu2TFE/HThw4NVj09LS9u7d6+Hh0aRJk+ofifbt28+bNy8gIKCyspIxtmnTJsUSrs2bNysjX8VCwC+++GLFihUAvvnmG2Vc5fDhwwA8PT2VEZwQQj5YVVVVfD5fsdrEzMzMw8NjzZo1AQEB2dnZqk5NlajAanRKS1n//gyQduggiIxUDNtoamqeOnXq9ecVFxefPHly2rRpJjU6WhkYGDRv3hyAmpranj17lJTytWvXAHTr1i0gIABA//79lXGVtLQ0ACYmJnK5XBnxCSHkw3T+/HkApqamFRUVqs6lAaE1WI1LURE+/hh378LMDBcuiHft+vjKlXv5+WfOnHn7R/Pkcnl0dLSiVVVUVBRjTF9ff+fOncp7/k4oFBoaGsrl8rS0tHbt2mlqahYXF9ccUeNKmzZtsrKy4uPjbW1tOQ9OCCEfpmnTph09enT9+vXffPONqnNpQKgPViOSl4cBA3D3Ltq1w9Wr+PZbrf37L+nqXrl8uVaND9TU1FxcXNauXXv//v3IyMjly5dfuHBBqd0NdHR0nJ2dpVJpYmKiErdNBHr37g3qhkUIIdwRCoX+/v4AJk6cqOpcGhYqsBqLzEz07YsHD2BriytX4O2NoCAYGmoePNi7Hlv7OTs7b968mfPNAV9VvR+zMjqCnjhxYv/+/fir3ei5c+c4DE4IIR+ygICA8vLynj17dujQQdW5NCxUYDUWc+ciJQUuLggMxIwZCA6GqSlu3YKrq6ozeyvVdVV1pcVV5P3790+dOnX+/PkxMTHp6ekA7t69y1VwQgj5wB0/fhzA5MmTVZ1Ig0NrsBqLJ0+wahXWrsW4cYiJQdu2uHoV1taqTuttKRqBamlpxcXFtW/fnqttE3ft2rV48WLG2MqVK/v37z927FiRSDR8+PALFy5wkjYhhHzIioqKzMzMpFLpkydPTE1NVZ1Ow0IjWO+5U6ewciUOHoSpKY4exdy5iImBrS1u336PqisAJiYmNjY2IpHo2bNnbdu25WTbxE2bNi1atAjA9u3b3dzcvLy8RCLRnDlzFM8qEkIIqadTp05VVlYOHjyYqqtXUYH1Ptu4Eenp+PJLaGhg0SIA2LULQ4bg1i20aqXq5Gqtepaw/suwGGPLli1btWqVurr6/v37TUxMxo0bV1lZuXjx4n379r391kCEEEJeg+YHX4MKrPfZxYtYvhwtWuCTTxAfD8Zgb48rV9C8uaozqwuulmHJZLJ58+Zt3bpVU1PTz89PLBbPmDFDKpWuXLny559/5nG0ww8hhHzgsrOzQ0NDtbS0vLy8VJ1LQ0QF1nuuulzQ0IBUqtJU6qu6rlI0UwgJCalDEKlUOnv27P379+vo6AQEBKSmpv7f//0fY2zbtm2K/YIIIYRwwtfXVyaTeXh4KGP32EaACqz3mbk5kpMBoLAQamp4ZROo90u7du0sLCwKCwt5PN7p06cjIiJqG6GysnL8+PGHDx9u1qzZpUuXrv0/e3ceV1W1/3/8c5hBQAREyAFNc4BUiMoBnElNQc2kHFKzUn9al6x708rMhlvZ18yhtEt5+6Y54qw44pBzKSgooII4CzgBMo9n//7YRXwdGfbxMLyej/u4j8Nhn7U+mB7eZ62119q1S50l/Omnn9555x1D1AwAtRbzgw/GXYTV2eXLMnmyWFtLZqZ8/LG0bWvsgiorICBg8+bNzz333MaNG62srMr12uzs7EGDBu3cudPR0XHz5s3Lly+fN2+ehYXFkiVLgoKCDFQwANROp0+fbtOmjb29fUpKirW1tbHLqYpY7VudNW4sy5cbuwgtNW/eXETCw8MdHR19fX0DAgJefPHFRo0aPfSFaWlp/fv3P3z4sKur67Zt22bPnr1o0SJLS8uVK1cOHDjQ8IUDQO2iDl8NGTKEdHU/jGChClEUZdSoUUePHo2Pj1f/Zup0Oh8fn8DAwICAAG9v73suUb927VqfPn2io6ObNm26efPmadOmrV271tbWdv369b169XrkPwQA1HytWrWKj48PDw/39/c3di1VFAELVdGNGze2bt0aFha2bdu2zMxM9UkXF5c+ffoEBgb27dvXzs6u5OJLly517drV2tp6w4YNb731Vnh4eL169bZs2dKxY0cjlQ8ANdmRI0c6dOjg6up65coVU1NTY5dTRRGwUKXl5eUdOHBg06ZN69evv3TpkvqklZWVn59fQEDA4MGDGzduLCLx8fGmpqajRo06dOiQq6vr9u3b27VrZ9TCAaDGeuedd+bMmTNp0qTZs2cbu5aqi4CFaiM2NjYsLGzTpk2HDx/W6/Xqkx4eHoGBge7u7gsWLIiJiXF3dw8PD+fMUQDQ3O3bt0+cOLFnz57PP/+8qKioZFcd3BMBC9XPzZs39+zZs2nTpg0bNmRkZJQ837Jly127dpVlUTwA4KGSkpLi4uJiY2MjIyMjIyNPnz5d8uHW1dU1OTnZuOVVcQQsVGP5+fm//fZbaGjoypUrmzZtunr16tatWxu7KAColgoLC0+fPh0VFRUVFRUdHX38+PHU1NTSF1hZWT355JNeXl45OTlz5851dnY2VqnVAgELAIDaKCMjY/369bdv346Ojo6KioqJicnPzy99gbOzs5eXl5eXV/v27b28vFq3bs1ZrmVHwAIAoNYpKCjw9PQ8e/Zs6Sfd3Nx8fHx8fHw8PT09PDw8PDw4v7XCiKIAANQ669evP3v2rImJyciRI59++mkvL6927drZ29sbu66ag4AFAECts23bNhGZOnXqZ599ZuxaaiamCAEAqF3y8vLc3NzS09PPnDnTsmVLY5dTM5kYuwAAAPBIbd68OT09/ZlnniFdGQ4BCwCA2kU9qnn48OHGLqQmY4oQAIBaJCMjw9XVNT8//9KlSw0bNjR2OTUWI1gAANQia9asyc3N7dmzJ+nKoAhYAADUIsuWLRORYcOGGbuQGo4pQgAAaouUlJRGjRqZmZmlpKQ4ODgYu5yajBEsAABqixUrVhQXF/fv3590ZWgELAAAagv1/kHmBx8BpggBAKgVEhMTn3jiCTs7u5SUFGtra2OXU8MxggUAQK2wdOlSRVEGDx5MunoECFgAANQKK1euFOYHHxWmCAEAqPmOHTvm4+Pj4uJy9epVMzMzY5dT8zGCBQBAzacubx86dCjp6tFgBAsAgBquqKioSZMmycnJhw8f7tixo7HLqRUIWAAA1EBpaWmxsbGRkZGRkZHh4eEpKSl2dna3b9/W6XTGLq1WYJwQAIBqr7i4OCEhIaqUa9eulb7AxMTkq6++Il09MgQsAACqn4KCgoSEhMi/REVFZWdnl77A3t6+bdu2np6eHh4eXl5eXl5edevWNVa1tRABCwCAamPmzJmrVq3KyMg4e/ZscXFx6W+5u7t7eXm1b99ejVPNmjUzVpEQ1mABAFBdfPfdd8HBwepjMzOzli1bqgNUPj4+HTp0cHFxMW55KI0RLAAAqocjR46ISJs2bZYsWfLkk09aWFgYuyLcFyNYAABUAwUFBW5ubqmpqTExMZ6ensYuBw/BRqMAAFQDmzdvTk1N9fb2Jl1VCwQsAACqAXUrdk4SrC6YIgQAoKrLzMxs0KBBXl7e+fPn3d3djV0OHo4RLAAAqrq1a9fm5uZ27dqVdFVdELAAAKjqmB+sdpgiBACgSrtx48Zjjz2m0+mSk5OdnJyMXQ7KhBEsAACqtBUrVhQVFfXt25d0VY0QsAAAqNKYH6yOmCIEAKDqunjxYrNmzWxsbFJSUmxtbY1dDsqKESwAAKquJUuWKIoyaNAg0lX1QsACAKDqWrFihYgMHz7c2IWgfJgiBACgioqOjvby8nJ2dk5KSjI3Nzd2OSgHRrAAAKii1OXtL730Eumq2iFgAQBQFSmKsnLlSuH+weqJgAUAQJVz69atN99888KFC40aNfL19TV2OSg3M2MXAAAAJCkpKTIyMjIyMi4uLjY29tSpU+oi6ebNm+t0OmNXh3IjYAEA8Kjl5+fHxMRERUVFRUVFR0dHR0dnZGSUvsDW1rZJkyZNmzZdvXq1sYpEZRCwAAAwuPT09JiYmJIBqoiIiPz8/NIX1KtXz8PDw+cvbdq0MTFhGU81xjYNAAAYUFRUVN++fa9du1b6SVNT05YtW3qV4uLiYqwKYQgELAAADMjX1/fQoUM6na5NmzYlA1Te3t516tQxdmkwIKYIAQAwlMLCwvj4eBHZtWtXjx49jF0OHh3mdwEAMJTt27ffvHmzffv2pKvahoAFAIChqFuxs1NoLcQaLAAADCI7O9vV1TU7O/vcuXNNmzY1djl4pBjBAgDAINavX5+VleXn50e6qoUIWAAAGATzg7UZU4QAAGgvNTXVzc1Nr9dfvXqVPa5qIUawAADQ3sqVKwsKCvr06UO6qp0IWAAAaI/5wVqOKUIAADR2+fLlpk2bWllZXbt2zdbW1tjlwAgYwQIAQGPLli3T6/UDBw4kXdVaBCwAADTG/CCYIgQAQEunTp3y8PCoV69eSkqKhYWFscuBcTCCBQCAlpYuXSoiL730EumqNiNgAQCgpZUrV4rI8OHDjV0IjIkpQgAANHP48OHOnTs3btz4woULJiaMYtReZsYuAACAau/SpUtRUVFRUVH/8z//IyLdu3cnXdVyBCwAAMqnqKjozJkzcXFxsbGxkZGRR44cuX79esl3LS0tR4wYYcTyUBUQsAAAeIjbt29HR0dHRUWp/x8TE1NQUFD6AmdnZy8vL29vbycnp969e3t7exurVFQRrMECAOBOiqL8z//8T3p6enx8fFRU1Pnz50v/utTpdM2bN/cqpWHDhkasFlUQAQsAgDsNHjx43bp1JV+am5s/8cQTPj4+Pj4+np6e6kiVEctD1UfAAgDg/ygsLHRycsrMzOzZs+drr73m5eXVqlUrMzMW1aAc+OsCAMD/ER4enpmZ2aZNm127dhm7FlRX3EQKAMD/oZ4kyJ2AqAymCAEA+FtOTk6DBg2ysrISEhJatGhh7HJQXTGCBQDA3zZu3JiVldWpUyfSFSqDgAUAwN/U+cFhw4YZuxBUb0wRAgDwp7S0NDc3t6KioqtXrzZo0MDY5aAaYwQLAIA/rVq1Kj8/39/fn3SFSiJgAQDwJ+YHoRWmCAEAEBFJSkpq0qSJubl5SkpK3bp1jV0OqjdGsAAAEBFZtmxZcXFxYGAg6QqVR8ACAECE+UFoiilCAADk9OnTbdq0sbe3v3btmpWVlbHLQbXHCBYAALJs2TIRCQoKIl1BEwQsAABkxYoVwvwgtMMUIQCgtvvjjz86duzo5uZ2+fJlU1NTY5eDmoARLABAbTdjxgwRGTp0KOkKWjEzdgEAADxqSUlJkX+JiIhISUkRET8/P2PXhZqDgAUAqOGys7NPnDgRHR19/Pjx6OjokydP5uTklL7AzMxs9OjRgwcPNlaFqHkIWACAmiYtLS02NrZkjOrMmTPFxcWlL3Bzc/Px8fH09PTw8PDx8fHw8NDpdMaqFjUSi9wBADXE4cOHX3jhBUVRrl+/Xvp5c3NzDw8PLy8vLy+v9u3be3l51atXz1hFopYgYAEAaoLCwsI6deoUFhaKiL29fdu2bUsGqHx8fKytrY1dIGoXpggBADXBnj17CgsLHRwc9u7d265dO2OXg9qObRoAADWBepLgpEmTSFeoCpgiBABUe3l5ea6urrdv3z5z5kzLli2NXQ7ACBYAoPoLCwu7ffv2M888Q7pCFUHAAgBUe+r8ICcJoupgihAAUL1lZGS4urrm5+dfunSpYcOGxi4HEGEECwBQ3a1evTo3N7dHjx6kK1QdBCwAQPW2bNkyYX4QVQxThACAaiw5Oblx48ampqbJycmOjo7GLgf4EyNYAIBqbMWKFcXFxf379yddoUohYAEAqjHuH0TVxBQhAKC6SkxMfOKJJ2xtba9du8Zpg6hSGMECAFRXS5YsURRl8ODBpCtUNQQsAEB1FRoaKswPokpiihAAUC1FRkY+/fTT9evXT0pKMjMzM3Y5wP/BCBYAoFpSl7cPHTqUdIUqiBEsAED1o9fr3d3dr1y5cujQoU6dOhm7HOBOpH4AQPWjKMrcuXO3b9/esWNHY9cC3AMjWAAAABpjDRYAAIDGCFgAAAAaI2ABAABojIAFAACgMQIWAACAxghYAAAAGiNgAQAAaIyABQAAoDECFgAAgMYIWAAAABojYAEAAGiMgAUAAKAxAhYAAIDGCFgAAAAaI2ABAABojIAFAACgMQIWAACAxghYAAAAGiNgAQAAaIyABQAAoDECFgAAgMYIWAAAABojYAEAAGiMgAUAAKAxAhYAAIDGCFgAAAAaI2ABAABojIAFAACgMQIWAACAxghYAAAAGiNgAQAAaIyABQAAoDECFgAAgMYIWAAAABojYAEAAGiMgAUAAKAxAhYAAIDGCFgAAAAaI2ABAABojIAFAACgMQIWAACAxghYAAAAGiNgAQAAaIyABQAAoDECFgAAgMYIWAAAABojYAEAAGiMgAUAAKAxAhYAAIDGCFgAAAAaI2ABAABojIAFAACgMQIWAACAxghYAAAAGiNgAQAAaIyABQAAoDECFgAAgMYIWAAAABojYAEAAGiMgAUAAKAxAhbK5Nq1a6GhoWlpacYuBAAeLjY2ds2aNcauArWaTlEUY9eAquXMmTOrV68+d+6cqampt7f3iBEj7O3td+zY0adPn4iICB8fH8N1XVRUtHz58oMHD+r1+g4dOowcOdLCwsJw3QGoAQ4ePLh58+bk5OQ6dep06dLlxRdfNDMzmz59+tdff52Xl2fQrgsLC1evXn369OlJkybVq1fPoH2h2mEEC//Hl19+6enpOXv27JSUlEuXLk2ePNnDwyMuLu4RdF1YWNivX79XX3313LlzV65cmTBhQvfu3XNzcx9B1wCqo4KCguHDh/v5+S1fvjwtLe3EiROvvPKKn59fenq6obvOzMycO3duixYthg8f/tlnnyUnJxu6R1Q7BCz8bcOGDVOnTn3xxRcvXry4efPmbdu2JSYm+vv7W1tbP4Lef/zxx/Dw8O+//37Hjh1btmxZs2bN4cOHZ8+e/Qi6BlAdffrpp8uXL//8888TExPXr1+/b9++yMhIT09PU1NTQ3d94sSJsLCwyZMnz5o1y9B9oZpiihB/69y589mzZ8+fP1+nTp07vnXHFGFMTMzu3buTk5NdXV0DAgKaN2+uXqYoSlhYWGRkpKmp6bPPPtuzZ09zc3MR+f3333ft2lVQUODp6fn888/b2dnd3XuHDh1SUlIuXLig0+nUZ9q3b19QUHDq1CkD/swAqqecnBxXV1cfH589e/bc/d3SU4R6vX7Pnj2RkZEZGRlNmjR5+eWX69atW9LI8uXLz5075+jo2LNnT29vbxEpLi5es2ZNTEyMlZVV586du3Tp8oDEtnLlyqFDh8bGxnp4eBjmB0V1xQgW/pSTk3P06FF/f/+709Ud9u7d6+Pjs379+vPnz//0009t2rTZtWuX+q3XX3/9hRde2Ldv3/bt2wcPHnzr1i0RmT9/fqdOndatW3fgwIHx48cfPHjwns2ePn26R48eJelKRHr27JmQkFBUVKTRjwig5oiMjMzMzBw4cOBDr/z888+DgoL27dsXHx8/ffr01q1bX79+XUSysrKefvrpf/3rX5GRkYsXL3799ddFRFGUAQMGjBw58vDhwxs3bnzhhRcKCgoM/sOgJjIzdgGoKpKSkoqKipo2bfrQK7t06ZKSkqKu6CwuLm7btu2sWbN69eqVnZ29aNGiqVOnfvbZZyKSk5NjY2MjIj/88EO/fv02b94sIvn5+WZm9/hbl5mZmZGR0aBBg9JPuri4FBcXp6SkNGrUSIsfEUDNcfnyZRFxd3d/6JXvvvvuBx98oN4xc+XKlaZNm/7yyy+TJ0/evXv3qVOn9u/f7+fnJyI5OTkicvHixS1btsyfP3/ixInqk49mjQRqHkaw8Kfi4mIRKctdeyYmJvXq1SsuLk5KSjpx4kSTJk0SExPV19ra2m7fvv3o0aMioqYrEalXr566XkGv11taWt5zsF39jHhH9lKnF/n4COBuer1eRCwtLR96pZ2dnYWFRX5+/oULF65du+bg4HDu3DkRcXR0FJH//d//vXLlivz1lmVnZ2dubr5+/fqYmBgp9T4GlBcBC3+qX7++/PWh8MFyc3MnTpxYt27dhg0b9uzZc8+ePYWFhSJibm7+888/X7hw4dlnn/Xy8lq7dq16/dy5c21tbQMDA5s2bfrtt9/ec9mfk5OTtbX1jRs3Sj95/fp1nU7XsGFDDX48ADVL2d+yEhMTAwMDbWxsWrRo8dxzz6WlpalvWb6+vpMnT166dGnTpk0DAwPVROXk5DR//vyjR4+2bdu2c+fOO3fuNPQPgpqKgIU/OTo6tmjR4vfff3/ofQ/vvPPO8uXLV61aVVBQkJaWNnTo0JJvvfjii1euXNm8ebODg0NQUJC63Oqpp56Ki4s7fPhwt27d/vnPf37//ff3bNbd3T0qKqr0M1FRUW5ubmX5hAqgtvHx8TE1NT18+PBDrwwICLh69erx48cLCwtTU1NLPrPpdLqvv/46JSUlJCTkxIkTPXv2VGcJx44dm5ycvGbNmoKCgn79+p05c8awPwlqKAIW/jZ27Ni4uLgffvih9JPqOHxpe/fu7dOnz/PPP69O4WVkZJT+rrm5eb9+/RYtWqTX60+cOKE+qdPpOnbsuHjxYmdn5+jo6Hv2PnDgwKNHj6rTiyJy7ty5PXv2DBo0SJMfDUAN4+zsPGjQoGXLlh06dKj083e8ZaWkpJw+fXrcuHHt2rXT6XQFBQX5+fmlL3BwcHj99dc/+uijGzduJCUlqU9aWVkNHjx4/vz5hYWFj2YjQNQ8LHLH3955551t27a99dZbe/bs6d27t5mZ2YkTJ1atWhUZGVn6sjZt2vz2229hYWFmZmbLly/fvHmzugj95s2bI0aMCAgIcHNzW716tampaadOnRRFGTx48LPPPtu8efPjx4/funWrS5cu9+z9n//859KlS/v37//BBx+YmZnNnj3b0dHxww8/fBQ/OYBqaO7cuceOHfP393/11Vc7duyYk5Pz+++/Hz9+vPRYuLOzc/369ZcsWeLp6ZmcnDxnzpySI782bdoUGhras2dPCwuL+fPnN2rUqFmzZvHx8e+++27//v2dnJx++eUXa2vr+x1f8fPPP9+4cUP9GPnf//7XxcXl+eefb9eu3SP4wVEtELDwN3Nz823btv3www8rV6786KOPLC0tmzVr9u6779rY2Njb23t5eanrPb/77rvx48cPGzbM1tb2tddeW7p06a+//ioiWVlZrq6u8+fPv3XrVvPmzVetWuXl5ZWTk9O0adPly5cnJSW5ubl98803o0ePvmfv9evXP3DgwEcffTR79my9Xu/r6/vFF1+wAAvA/TRs2PDo0aOzZs3avHnzypUr1XUO7733nl6vd3Nz8/LyEhEzM7O1a9e+/fbbvXv3btKkyccff3zmzBn1fhobG5vU1NRPPvmksLDw6aefXrp0qampaWFhoa2t7bfffpuRkdGqVatNmzY1adLknr2Hh4cnJCSIiI+Pz969e0WkdevWBCyUYKNRAAAAjbEGCwAAQGMELAAAAI0RsAAAADRGwAIAANAYAQsAAEBjBCwAAACNEbAAAAA0RsACAADQGAELAABAYwQsAAAAjRGwAAAANEbAAgAA0BgBCwAAQGMELAAAAI0RsAAAADRGwAIAANAYAQsAAEBjBCwAAACNEbAAAAA0RsACAADQGAELAABAYwQsAAAAjRGwAAAANEbAAgAA0BgBCwAAQGMELAAAAI0RsAAAADRGwAIAANAYAQsAAEBjBCwAAACNEbAAAAA0RsACAADQGAELAABAYwQsAAAAjRGwAAAANEbAAgAA0BgBCwAAQGMELAAAAI0RsAAAADRGwAIAANAYAQsAAEBjBCwAAACNEbAAAAA0RsACAADQGAELAABAYwQsAAAAjRGwAAAANEbAAgAA0BgBCwAAQGMELAAAAI0RsAAAADRGwAIAANAYAQsAAEBjBCwAAACNEbAAAAA0RsACAADQGAELAABAYwQsAAAAjRGwAAAANEbAAgAA0BgBCwAAQGMELAAAAI0RsAAAADRGwAIAANAYAQsAAEBjBCwAAACNEbAAAAA0RsACAADQGAELAABAYwQsAAAAjRGwAAAANEbAAgAA0BgBCwAAQGMELAAAAI0RsAAAADRGwAIAANAYAQsAAEBjBCwAAACNEbAAAAA0RsACAADQGAELAABAYwQsAAAAjRGwAAAANEbAAgAA0BgBCwAAQGMELAAAAI0RsAAAADRGwAIAANAYAQsAAEBjBCwAAACNEbAAAAA0RsACAADQGAELAABAYwQsAAAAjRGwAAAANEbAAgAA0BgBCwAAQGMELAAAAI0RsAAAADRGwAIAANAYAQsAAEA1s9+0AAAgAElEQVRjBCwAAACNEbAAAAA0RsACAADQGAELAABAYwQsAAAAjRGwAAAANEbAAgAA0BgBCwAAQGMELAAAAI0RsAAAADRGwAIAANAYAQsAAEBjBCwAAACNEbAAAAA0RsACAADQGAELAABAYwQsAAAAjRGwAAAANEbAAgAA0BgBCwAAQGMELAAAAI0RsAAAADRGwAIAANAYAQsAAEBjBCwAAACNEbAAAAA0RsACAADQGAELAABAYwQsAAAAjRGwAAAANEbAAgAA0BgBCwAAQGMELAAAAI0RsAAAADRGwAIAANAYAQsAAEBjBCwAAACNEbAAAAA0RsACAADQGAELAABAYwQsAAAAjRGwAAAANEbAAgAA0JiZsQuAQSiKcvz48bCwsEuXLi1cuNDY5QAAULvoFEUxdg3QTF5e3oEDBzZt2rRu3brLly+LiImJydWrV11dXY1dGgAAtQgjWDVCcrKEhQX/9tt/16/PyclRn2vUqFFAQEBgYKCjo6NxqwMAoLYhYFUfN2+Ko6OYlFo2FxsrYWGyaZMcPix6fTs/v5ycHA8Pj8DAwICAAF9fX51OZ7xyAQCovZgirA7i4uS998TTU+Li5M03xdVVQkJk82a5cuXPC2xsxN8/5aWXlJ493dzcjForAAAgYFULgwfLvHnSqJEUFkr37jJpkrz0koiIi4v06SOBgfL882Jra+wqAQDAn5girA5u3pRGjUREzM3FwUF8feXTTyUgQLy9hUlAAACqHgJWdWBuLnl5YmUlInL7tri5yccfG7smAABwX2w0Wh2MHy9vvy1HjshXX0mPHoxaAUDlrV27Vn0QHx8fExNj3GJQ87AGqzrIz5cTJyQyUlq2lJ49jV0NANQE/v7+O3fuFJGVK1dmZGSMHTvW2BWhRmEEqzpYt066d5eLF0lXAKCV4uLic+fOnTt37vr168auBTUQa7CqgwMHJCdH7O0N2MWlSxIWJubmEhQkDg4G7AgAtLB79+6tW7cOHz7c29u7Yi1kZ2cvX75cRE6ePNmrV69yvfbgwYOTJ082Nzdv1apV3bp17ezs7OzsbG1t69atq35pa2trZ2enfmliwlhGbcQUYXXg5SXR0bJ/v/j5GaT9y5dlzBj56ivJyJB//1u2bv1zQT0AVDG5ublhYWE//vjjrl27FEUxNTWNjIxs3759BZqq8BRhdna2i4tLybEZD1WnTp2SvKXX601MTJYsWdK6desK1IxqhBGsKu/2bYmJEUtLefppQ3WxdKm8/bY884yIyNGjsnOnBAQYqi8AKD9FUQ4cOPDzzz+vWrUqOztbROzt7RVFyczMfPnll//444+6deuWt01TU1P1gYmJSbkGmaZOnZqTk+Pi4jJ16lQrK6u0tLTMzMysrKzMzMzMzMy7v8zOzs7Ozr527VpJC35+fjdv3ixvwaheCFhV3sGDUlwsnToZcFQpPV2cnP587OwsqamG6ggAyik5OTk0NHThwoUlN/r5+PiMGzdu+PDhpqamXbp0iYyMfOmll7Zs2VISmMpo+/bt6oOgoKDTp09PmjRpzpw5D33VH3/88f3335uZmW3ZssXHx6csHZWErczMzOjo6ODg4Fu3bm3duvX5558vV8GoZhRUcR98oIgo779vwC6WL1dmzfrz8WuvKSdOGLAvACiD/Pz8jRs3BgUFmZn9ORDw2GOPTZkyJSEhofRlFy5cqF+/voh88MEHFesoMzNz0KBBrq6udevW/f333x98cV5enqenp4h8+OGHFetOUZRvvvlGRHx8fPR6fYUbQdXHGqwqr2tX2b9fwsKkf39DdVFcLOPHi4mJZGdL69YybZqhOgKAhzl16tSiRYv+93//V725z8LConfv3qNGjXrhhRdKwlZpBw4c6NWrV2Fh4bJly4YOHVre7nJycjp27Hjy5EkRGTJkyKpVqx5w8UcfffTFF1+0atUqKirKqqKzCnl5eS1atLh69erGjRsDAwMr1giqAWMnPDxIXl5eRK9e2W3aKKmphupjwwbl5ZeVsDDl2jUlP99QvQDAA6Wnp4eEhPj6+pb8evLw8JgxY8b169cf+tp58+aJiLW1dURERAW63rRpk6Ojo4g88cQT2dnZ97ssOjra3NzcxMRk//79FeiltLlz54qIt7c3g1g1GAGrStu/f7+ItGvXzoB9/L//p4goX3+tjByp2NsrGzcasC8AuJdhw4aVjE7Vq1fvzTffLG9UeuONN0TE3d29LIHsbgMHDhQRExOTb7/99p4XFBYWqiuugoODK9D+HfLy8ho1aiQia9eurXxrqJrYnKNKO3DggIj4GWh3hr/6EBHx85P9+yUjQ9zdDdiXiERF/bmtFwCIiMjJkyeXL19eVFTUuXPnkJCQK1eufP/992VcP15iwYIFXbp0uXjx4uDBgwsKCspbw88//9yqVSu9Xl9yfs4dvvnmm8jISHd393//+9/lbfxulpaWH3zwgYhMmzZNr9dXvkFUQQSsKs3gASstTeLixNpa3NzkwgWpW1c8PQ3Vl4i89pps3izx8TJwoCQnl/11o0eLui5i61YJDTVUdQCMol69eiJSt27dgwcPjhs3zsbGpgKNmJubh4aGNmzY8MCBA++99155X+7o6BgcHGxraxsXF3f3uYTx8fGfffaZiISEhNjZ2VWgvLuNHTu2WbNmsbGxq1ev1qRBVDVs01B1KYpy+PBhMWjAOnBA9Hp59ln54w8REV9fKed9zuVw4oSYm8vUqSIijz0mISHStq2cPSvm5mJrKyJiYaHUsV0tQywtRX2DVR/Uqye3bsnixdK7t2RlSUaGoQoEYBROTk4ikpeXV8l2XF1dV69e3b1793nz5rVt21adNCy7iRMnrl27dteuXTNnzly0aFHJ83q9/o033sjNzR0zZkyfPn0qWWQJc3Pz999/f/z48Z9++umQIUPY7b3mIWBVXTExMampqe7u7o0bNzZUHwcPioj4+f09UWg4ly/L44//+bhFCwkNlaNHZcuW0pforK1fyh1yx+tGjBCdTj74QD76SLp2NWCBAIzC2tra3Nw8Pz+/oKDAwsKiMk117Njxxx9/HD169FtvvdW2bdsOHTqU6+ULFy7s0aPH0aNH8/PzLS0t1ScXLFiwf/9+V1fXWbNmVaa2u40ZM+brr7+Oi4tbsWLF8OHDtW0cRkdkrrrU+cEuXboYsI/9+0X+WoAlIgbtq1kzOXPmz8enT0vz5jJ4sEyZIu+8I+PGybhxMnp08eCgoCAJDBR/f/H3Fz8/8fGRFi1ERDp3lrw8iYoyYIEAjMXW1lZEsrKyKt/UqFGj3nrrrfz8/EGDBl29erVcr23atOnIkSPPnz+/dOlS9ZlLly59+OGHIjJ//nx1KlND5ubmU6dOFZFPPvmkqKhI28ZhfMZeZY97KCws3LNnj4eHh4jc75YWDeTlKZaWiomJcumSYmqqWFoqubmG6ks1caIydaqyYIHSu7dy40bZXxcQoCiKcv260rCh8tNPhqquvAoKCoxdAlBDNGnSRETOnz+vSWuFhYU9evQQkY4dO+bl5ZXrtcXFxR06dOjevbv6Zd++fUUkKChIk8LuVlRU1KpVKxFZtGiRgbqAsTCCVYVkZ2dv2rRp/PjxjRo16tGjR1xcXN26dX/++ecbN24YorujR49+5eV1/OWXs0+dEhMTeeYZw57xnJ8vQUEyYoT4+MjGjeLsXPaXqsse6teX776Tli0NVeBDZWZmHjhw4Mcff3z77bf9/PwcHBw0+cANwN7eXkQyMzM1ac3MzGzVqlWPP/7477//Pm7cuHK91sTEZMGCBceOHbtw4cIvv/yybds2R0fH7777TpPC7mZqaqoOYn322WeFhYUG6gVGwRos40tISNi0aVNYWNj+/ftLRonbtGnTrVu3bdu2xcTEdO3aNTw8XN00RUM79u796I8/kp991m7v3h/Nzec9//wwbTu4w5YtMniw9O0rW7eW96UTJkhKihw4IJ98IqNGPbqVWFeuXIn6y/Hjx9WP1yXfNTExOXPmTHlvJgdwN/XWPK0Clog4OTmtXr3az89v8eLFly5dateuna2trb29vYODg52dna2trZ2dXekvS9+6+NRTT73wwgtTp07dtm2biMyZM6dBgwZaFXa34cOHf/XVV6dOnVq8ePHrr79uuI7wiBGwjKO4uDgqKkrNVZGRkeqTpqamvr6+gYGBAwYMaNOmjaIoFy9eHDRoUHR0tJ+f386dO1uoy5E0cvDgQRHx8/P7/vvvb+bk2Ldvr2Hj97BsmYhIr17lfV1EhPTrJ61by6RJEhsrmzbJ5MnaVycixcXFFy9ejI2NjYyMjIyMjIiISElJKX2Bubn5E0884fMXLy8vdeEIgErSPGCJiLe3d0BAwLZt23777bfffvvtwRebmpqqeUvNXnXq1Nm7d29BQUHfvn1HjhypYVX37HratGnDhw///PPPR44cWcll/qg6OIvwkcrOzt69e3dYWNiGDRuuXbumPuno6NirV6+AgIABAwY4ODiUXDx58uTdu3evXLly1KhRhw4dcnV13b59e7t27TSpRK/XOzk5paenJyYmenp6FhQU3LhxQz0swiAyM6VBA8nLk/Pny7uXaVaWODtLUZEkJkrr1lJYKCkp5ZpgfIgrV64MHDjQxMQkLi4u5//ugFqvXj1vb28vLy8vLy9vb+/WrVvf8yg0AJU0ZMiQNWvWhIaGBgUFadXmmTNnvLy88vPz33nnnSZNmmRmZmZmZqanp2dkZGRlZZV8qT64e5MICwsLMzOzTZs29ezZU6uS7kev13t7e584ceI///nP+PHjDd0dHg1+WzwKkZGRy5Yti4qK2rdvX8kkYOvWrQMDAwMCAnx9fU3v2n0qLS1t3bp1Z8+eHThw4IYNGyZMmBAeHt69e/ctW7Z07Nix8iWdOHEiPT398ccfT0pKysvLa9eunQHTlYisWye5udKtWwV2ire1lW7dZMcO2b9funWT7dtl61bR8COlt7f3zZs31cdubm4+Pj6enp4eHh4+Pj4eHh46nU6zngDch+YjWOrmVXl5eWPHji3L9gqFhYWl81ZmZub333+/ZcuWn3766REELBMTk2nTpgUFBX3wwQdnz551dHRUB9Ls7Ozq1q1bt27d0l8auhhoxrhr7GuD2NjYkokkdRJwxowZcXFxD31hSkpK+/btRaRp06axsbGDBw8WEVtb2507d1a+KnXN5ujRo7/66isRmThxYuXbfJC+fRUR5T//qdirv/tOEVFeekn5/ntFRNHwhp6EhAQRMTc3X7RoUarhTtQG8EDBwcEiMmfOHK0anD17toi4ubmlpqbGxsaGhoaWt4WkpCRra2sTE5OoqCitqnqAlJQUW1tbNze3h/7Wtre3b9iwYevWrZ955hl/f//Bgwf36NHj1VdfzcnJeQR1ouwYwTK4TZs2ZWVlWVlZ/fLLL3369Ck9CfhgDRo02LNnT//+/Q8fPtyrV69t27bZ2dktWrSof//+K1asGDRoUGWqUjfZ6tSp06ZNm8TQxx3euCE7d4q5ubz4YsUaGDBA/vEP2bZNvvxSdDrZulXy8+WvXQArZcmSJSLyyiuvjBo1SoPmAFSItiNYFy5cmDZtmogsWLCgXr16VlZWFTid0M3Nbdy4cXPnzv38888fwWk2wcHBWVlZTZs2DQ4OTk9PL5nEvGNcLTMzMyMjI+NeJ1qcPn1aPfwDVQQBy+DOnz8vIp999lm/fv3Ke4hVvXr1wsPDX3jhhfDw8J49e27evLlu3brz5s17+eWXf/3115deeqkC9ej1+uPHj2/dulVE3nrrLXV20qABq3jNGtOiIunXr8Irp5o0kSeflJgYuXBB2raVEydk/37x99egthUrVojIsGGGvYESwINpGLAURRk/fnxWVtawYcPUD6LW1tZeXl4VaOr999//6aef1q5dGxUVVbEWyigsLCw0NNTGxmbDhg06nW7GjBl169Z1cXEpmRa0t7dXH9va2qrrFnJycrKysjIyMtLT0zdu3LhkyZKoqKirV682bNjQcHWifIw9hFbzqfuFHj58uGnTps2bN7969Wp5W8jLy3vhhRfkr/nByZMni4ipqelP5dlzMzMzc/Xq1a+++mr9+vVL/uurp1/Z2dkVFxeXt6qy69616z+9va+sWlWZRj7/PKNbt+PTpy+fNk3fvn3aZ58dqHxhERERIuLi4lJYWFj51gBU2Pz580VkwoQJlW9q4cKFIuLk5HTt2rWSJ/V6/b59+/Lz88vb2j//+U8RGThwYOULu5/09HQ1Fc2bN09RlD179pTld7e1tbWLi0vz5s0//fRTRVGGDBkiIsHBwYarE+VFwDKsW7dumZiYWFtbnzt3TkTq1atXsShTVFQ0evRoEbGxsdm6deuMGTNERKfTffPNNw9+4YULF0JCQgICAixLzag1a9Zs3Lhx69atW7NmjbW1tYgMHz7cQPuSX7x4UafT2djYZGZmVqadQ4cOiYi6c6CIuLu7V7429a2TtyTA6BYvXiwiI0aMqGQ7SUlJ6oE2S5cuLf380aNHPTw8EhISytvgjRs31NG1P/74o5K13c9rr70mIh07diwqKlIU5fLlyyEhITNmzPjoo4/efvvt1157LSgo6LnnnuvYseOTTz7p7u5er1690jffqO9gMTExJiYmlpaWly9fNlCdKC8ClmFt2LBBRLp3766ebBWgnvlSIXq9Xl0HamFhERoaumDBAnX8acqUKXdcWVxcHBERMX36dB8fn5J/hyYmJj4+PtOnT4+IiCh98d69e9U9lAMCAnINcFSOuoh+6NChlWynuLhY3evv5MmTrq6uIhITE1PJBtW9Ww8fPlzJ2gBU0rp160RkwIABlWxHHezv16+fJlWppkyZIiL9+/fXsM0Su3fv1ul0lpaWsbGx5XphVlZWcnJyfHz8lStX1GeGDh2q1SggNEHAMqz33ntPRKZNmzZx4kQRmTFjRmVa0+v1aoOmpqYLFy5cunSpui3Tm2++WVxcnJ2dvXHjxnHjxj322GMlH25sbGwCAgJCQkKSk5Pv12xERISzs7MaBDMyMipT4d3Ujbs2bNhQ+aZeffVV9c9Q/cD31VdfVaY1dRze3d1dr9dXvjYAlbFr1y4R6dGjR2UaUZdU2tvbX7p06X7XVGAO4ebNm+ogluYfxrKzs5s3by4iX375ZeVbi4+PNzMzMzc3P3fuXOVbQ+URsAyrU6dOIrJt27a2bduKyIEDGqwcKpkfnDVr1po1a9S5v2bNmpWeBHz88ceDg4PDw8PLuObg5MmT6u3BL730VVpa5Wv8U1xcnDoxWt7zVu9pzZo1IuLr67t27VoR6dy5c2VaU08o+/DDDytfGIBKUg+lcXBwOHXqVMVauHnzpjrIHRIScs8LLly4MGrUqGeeeaYCjavHBfbu3btitd3P22+/LSLt27fXaoWGuun82LFjNWkNlUTAMqCcnBwLCwtTU9OLFy+qs+NazcHNmzdPnfv75Zdfdu/ebWtr6+TkdL9JwDJKSEjo0eNtBwe9l5dSam1opajvSuq/9rS0tEquJc/MzLSyslL/PK2srExMTK5VtNCCggInJyd1wrEyJQHQxP79+0vWM7i6ugYFBYWEhJRMfpXFiBEj1GH4+41Jp6SkfPvtt9evX69AeWlpaerSrr1791bg5ff0+++/m5qampmZVewd+54SEhLUQazExESt2kSFEbAMSJ2Eeuqpp8LCwkSkS5cuGja+ZMkSHx+f1NRUdfm8g4NDxd44SktKUtq2VUSUVq2U+w+xl9WVK1caN24sIrt37y4uLu7du3eXLl0qcBNlaX369DE1Nd2yZUvfvn1FZNGiRRVrZ+PGjSLStm3byhQDQBMrV650dnYODg729fUtfayyTqfz8vJ67733duzY8eBdNLds2aKuiKjAMvYymj59uoj07NlTk9by8vI8PT0NMYg+ZswYERkzZoy2zaICCFgG9Pnnn6u3eLz//vuG+Iek3nKi3n0zaNAgTdq8dUvp0EERUZo0Uc6cqUgLMTExM2bM8PX11el0Li4uZmZmH3/88dmzZ9X7kF1cXMLDwytcXnx8/K1btxRF+fe//y0iLVu2/O233yqwqELd+EqTdQ93uHLliiHuFQBqpNzc3H79+tna2h4/frzkycTExJCQkKCgIPX+G5WZmVnJCP0d/+Rv376tfpabNWvWQ3tMT0//z3/+s3HjxvKWmp6erp4ntmfPnvK+9m7q6H6rVq00f7u4cOGCOnNy+vRpbVtGeRGwDKhPnz4iEhoaqm7juWXLFkP0oq4lmjlzplYNZmYqPXsqIkqDBkqpN70Hyc7OvXt9fZ06ddq1a6cO+w8aNOjs2bPqsJNOp5syZYqaDismNDTUwcHByspK7ahhw4bBwcH79+8v43L17OxsdbM+zZeCRkdHN27cOCgoyKD7igE1w9GjRx0cHOzs7M6fP3/PCwoLCyMiImbMmOHv71/6nHVnZ2d1DlF9oXo68rPPPvvQd5Vjx445ODgMGTLk0KFDFShY/czs6+tbgdeWFh0dbW5ubmJisn///ko2dU/qL4VXXnnFEI2j7AhYhlJUVKSeynn+/Hl1wVCahqvHS2nTpo2I/P777xq2mZ395+GB9eopJ07c97Lr15VFi5SgIKVly7+PoWjQoMHIkSNDQ0OzsrIURdm4caO6dqFJkyaHDx+eMWOGund8jx49HnBj4/3cunWrZP/65557btKkSc2aNSvpulWrVp988smZh428LVu2rPJr5O+2ceNG9dDJHj16qD87UGNER0cvXry4Aht13lNhYeHbb79tZmbm5ORUxrUNN2/eDA0NHTt2bOl/8iLSuHFjnU5nYWFRlvWUhYWF27dvL/lktXz58nKVnZmZqW7UXJlh+MLCwqefflpE/vGPf1S4kQe7ePGipaWlqalpWQ69heEQsAzl2LFjItK8efN9+/ap94kYopcbN27odDpra2ut3vhK5OcrQUFKp07K998r69YpiqKcO6csXaro9UpEhPLJJ4qPj6LTKSKKiGJiogwY8M/PP//8+L2GvC5evNixY0cRsbS0nDNnzu7du9WNrBo2bFiu2yp37Nih7lxlZ2dX+kahmJiYKVOmlD4k1cPDY/r06fcboAoMDBSR7777rnx/Ig8UEhKifsJ+9dVXNf9vARhXSEiIeoiqi4vLlClT4uPjK9NaQkKCp6enubl548aN1Rn/8iqZQ1Tn7Jydnbt3717G186cOXPr1q3q4169epW3a3Vjv06dOpX3hXe04O7urvmeOKWpGwNVfgNCVAYBy1Dmzp2r/rr98ssvReTNN980RC/r16+XSm8ecz9FRUpmpjJhgtKpk3LrlnLsmPLee0qTJn+GKhGlTh1l0CBl4ULloUNReXl56i6pIjJixIgzZ86o06ZmZmbTp09/6NReTk7OlClT1I1VO3XqdM91rMXFxfv37w8ODnb+68RDExMTX1/fOXPmlL7ZMDU1VV2gkJKSUv4/knsoKipS9yHU6XRl+VmAaiQ3N1c9Q0I9j6Fk7XnXrl0XLVqUnZ1d3gbnzJnj6OhoZWXl5eVVydMdFEVJTEx0d3fX6XR16tQp4z3FM2fO/PHHH+Pi4uLi4irwzpmVlaUuwx8+fPjMmTNDQkJWrly5efPmffv2HT9+PDEx8ebNmw/4iHXmzBn18Ixt27aVt+tySUpKsra2NjExiY6ONmhHeAAClqGoM1kLFy7s16+fiJR3LLqM/vWvf4nIxx9/bIjGVRMmKGvWKOPHK8eOKe+/r3Tpori4KCNHKqGhSnnfHtesWaNOm7Zq1er48ePTp09XM9OAAQNSU1Pv96ojR460atVKRMzNzadPn/7QZRZ5eXkbN24cOXJknTp11N8Hpqam/v7+ixYtysjICAkJEe32s8nKyhowYIA6OPfrr79q0iZQRVy9erVDhw4iYmtru2rVKkVRIiIixo0bp06Fi4i9vf3IkSPLOF+WnJzcq1cvGxsbKyurHj16VH5x99WrV+vXrx8eHh4QECAikydPLsurZs6c+cYbb8ycOXPmzJkVu7O7W7dupReb3pOlpaWzs/Pjjz/u7e3dtWvX/v37v/zyy+PGjXv88cfVD94PaD8vLy81NTU1NTUlJSUxMTExMfH06dMRERHl3StL/Uw7ZMiQCvyM0IROUZQH/0VBxTRs2DApKSkuLs7Pzy81NfXSpUvqfS7a6tix4x9//LFjx47nnntO88ZVEyfK++/LjBnStq1cuiT/+pc4OVW8tTNnzgQFBZ08edLa2vq7775zcXEZPXp0WlpakyZNQkND1XfzEkVFRbNmzZo2bVphYaGnp+evv/7q7e1d9r4yMjLWr1+/fPnynTt3FhUViYiNjY2tre3169d/+umnN954o+I/hoiIJCcnDxgwICIiwtHRce3atd26datkg0DVcejQoSFDhiQnJzdu3HjdunU+Pj4l38rNzQ0LC/vxxx937dql/gZp3br1q6++OmbMGBcXl3u29t///nfGjBnXr18vKirq3bv3qlWrSi9ar4D09HQfH58uXbr88ssvx44de/rpp21sbBITE0vv8nBP33zzzZNPPqnecOPv779z585y9Xv48GE/Pz+dTvfGG2/UqVMnKysrLS0t8y8lX6pvOHdzdna+fft2q1atbty4UVxcXLduXTMzM51OZ2pqmpubq9frTUxM8vPzRcTExCQ3N1d9oI4Ubt26tWvXrmUvNSUlpXnz5jk5OU5OTg4ODg4ODvb29nZ2dra2tnZ2dh0aNRpjYiJ2dmJrK3Z24uAg9vZ/funmJmZmcu2apKZKixZibl6uPyL8zcgBr4Y6e/asiDg7Ox8/flxEmjVrZoheSjYyNehc/oQJysWLyq1biqen8v77GjSYm5tbEm5GjhwZGxurvndbWVktXry45LLExERfX18R0el0wcHBldkL/tatW4sWLfL399fpdGZmZiYmJnXr1h05cuTGjYow0Y0AAB8cSURBVBsrvPfpyZMn3d3dRaR58+bcDo0aJurXXy0sLETE39//5s2b97vs9OnTU6ZMKck06lBxaGho6X9W6enpQ4YMsbW1tbW1tba2HjFiROXvsc3IyPD29m7Xrl3JZNygQYNE5N13333oa+fMmbNjxw71cXmPF8zLy1NvKnropEFOTs7169cTExMjIiL27NmzcePGZcuWhYSEqCNYs2fPTk1NjYmJWbdu3YcffjhixIjAwMBu3bo9+eSTjRs3Ln0mR4k6dercc4Xrg6nn2d9TcPv2f6/2uON/R44on36qjB+vzJyp9O6tlGe7V5RGwDII9cTALl26XLly5Ysvvvjmm28M0cvu3btFxMfHxxCNl/jqqz+XWC1dqmi4LnzRokXqkg5vb+/Y2Njg4GBTU1P1jU+v14eEhKgTfO7u7prsOqP66KOPRESdplQ99thj77zzzpEjR8rVzo4dO9RGOnXqVPn9XYEqpLBQmTJFMTGZ9vTT48aNK8u0VFFRUXh4eFBQkPlfQx1ubm5TpkxJSEjYsGFDu3btTExMbG1t69SpM27cuMoXmJOT07Vr1wYNGkRGRpY8efLkSRMTEysrq3Jt/l5e6mrL1q1b5+bmpqamTps2rbwtbNq0SURcXV3vuXxNr9dfvXp13759c+fOHTt27KBBg7p3796+fftmzZo1aNCgApuzq8eLWVhYxMfHR0RE7Ny5c926db/++uuCBQs2f/ed8v77yptvKqNHK4MHK/7+ytNPK61aKQ0bKgcOKCUbK+7dq/zrX+XtFyoClkFMnjxZRGxtbQ36r/3TTz8VkUmTJhmuC0VRZs1Sbt9WFEVJTlZ++EHLlo8fP96iRQsRsbe3Dw0NVQ+TT05O7t+/v/o2HRQU9IC1WRWg3h29evXq2NjY6dOnP/HEEyVJy93dfcqUKWU5B23hwoXqL5KgoKAH7y4NVDPXrilduigiipVV0ZIl5X11UlLSjBkzWrZsWfLPyszMzMLCwtzc3M7O7n0tBsALCgqee+45CwuLqVOn3vGtIUOGiCH3PoiKilI3ryq597liu8art1SXa+fCgoKCixcvlrcjvV7fvXt39T+Eubm5o6Pj448/7uXl5efn9/zzz6+eNEkZN07517+UTz5RZs1SfvxRCQ1Vtm1TDhxQ9u1Tpkz5s5WbNxWNdrGuhQhYBhEfH6/eP9y8efP77aFXeb1791bjgoHaVw0dqqhjNAkJyvjxGjeekZFRsq/Va6+9tnDhQvWIwPr1669du1bbvhISEtQwVzoV3W+Lh3t+WNTr9epxGSISHBzMbqKoUY4fV5o2VUSUhg2VP/6oTEsRERFeXl7qpKG61mrw4MGVL7CoqGjAgAGmpqbdunW7+19fbGyseuTrpcqf83WXwsLCp556SkTeeeedSjalHmvt7Oxs0KUdiqL88MMPJRn37inCpWqSvuf/YmOVkv0djh5VDJZZazwClqGkpqZ26tRJHS03xInCRUVFdnZ2IpKUlKR546UNHarMnav8/LMyY4b2AUtRFL1eP3v2bPNS6ygDAwO12kOhtE8++UTuc/9OWbZ4yMvLGzp0qPqG9Z///Efz8gBjWr5csbFRRJTOnR++7UoZ/PzzzyLi5+enrgSo/EC7Xq8fNmyYhYVFs2bN7vepVT0Ca8KECZXs627qHu5Nmza9Y2uJsLCwBQsWlLc1da26IY7qKnH16lV167LQ0FBFUfLy8m7cuJGYmBgZGbl3796wsLBT69YpISHK118r06YpkyYpr7+uBAUpzz2ndO6s6PXKuHHK118r69YpfftW8NA0ELAMKisry9/fX0QcHR3/qNwnwrtFRESIyBNPPKFts3cbOlTZtEnZv19ZscIgAUu1detWW1tbCwuLCixrKCMPDw8R2b59+wOuycvLW7t2bVBQkLpXjTq03r9//6lTp6qfyOvVq6feOQVUJyVLqfR6pWQFelGRou6VkJCgmJkpIsq4cYpG2+QePnxYXWH59ddfi0jfvn0r2eAbb7xhbW1dp06dB2wRHB8fb2ZmZm5uru0pWKdPn7aystLpdCWr40vMnj27AmegqbcuOjk53VaXXxjAwIED1Q+rFW/i0CFl40blxg3tiqp1CFiGlZeX98ILL6gLqzU5dio3N1cdG58zZ446rVb5Nh/MoFOEj0xkZKQ681jG2wZzcnJCQ0MDAgJKD601adKEoydQLfXuragbyP3xh/LBB4qiKF9+qQwbpkyYoAwbpuTmKvPmKeUfiXmAtLQ0EbGxsTl16pQ69lOZ1iZOnKiOhD00qI0cOVJExo4dW5nuSisuLlZ3RdawTUVR1NVRn332mYZtlvj111/VXzoGXQSMhyJgGVxhYaG6FbKNjU3JEQ3ldePGjdDQ0JEjR9rb26tLLNUVnf/97381LfYe/v1vJT1dURTl6lVl9mxD92Yo6o6sb731VnlfeP369W+++cbV1bVTp06GmOoFHoU7Atbp00rJScA//aTx3St/UU/EOnv2rKWlpYmJSYUP6Jw2bZq9vb2ItGzZ8gF7RqgSEhLUQawK3HN3T+pHWTc3twfccHP06NHyrhndv3+/moG0vY9HUZQbN26ou5H9/PPP2raM8iJgPQrFxcVjx44VEQsLC3VD5DKKjo7+4osvOnTooO54LiI6ne7bb79VFEVdl13JQ8FqieLiYvUQw4MHDxq7FsAYevdWxoxRXntNGTBA+eADZc2avz8tnTihTJxoiD579OghItu2bVNn548dO1aBRmbOnKmeFu/o6LhixYqyvGTMmDEiMmbMmAp0d4cLFy6o29avUw9kvZc1a9Y0bty49B5+ZdSrVy8RmT59eqVKvMvLL78sIj179uTYLqMjYD0ier1e3RzL1NT0wcNOhYWF+/fvnzJlSum7na2srPz9/efMmZOQkLB169ZRo0aZmJjY29tzI1tZ/PbbbyLi7u7OOw5qqTtGsPbu/XOiUFGUHTsUrX/HqyZMmCAis2fPHjx4sIgsW7asvC38+OOP6n0nOp1u2LBhZXzVhQsX1B2YK7kDsF6vV+/UfvCRyXl5eRU79ufgwYPqfc0VO/H6ntR9tmxsbM6ePatVm6gwAtYjNWPGjNKjUKWVngQsyVX169cfOXJkaGjo+fPn7/iu+rlq9OjRDz2bD+PHjxeRD0p+owC1zR0Bq6hIee45JSxMOXJEee45RdMl4SXmzZsnIsETJiz56qv/+PqeuOtN78H0en3Jh8x27dqV62DpcePGicgrJdOgFbJw4UJ1KXoZj5G+ePFieRfaqif2fPjhhxUq8E7p6enqUP3cuXM1aRCVRMB61ObPn6/O9035aye3nJycTp06lUwCqrfeTJs27ciRI1FRUXdPET711FMff/xxSEiIGrYCAwMrf2xqDVZQUKDurXXixAlj1wIYyZYtijp8e/26op5bkJWl/PKLMn++cuGCgfq8vWtX0WOPKd26KYsXKyLKSy+Vt4WrV6926tTJycnpt99+K9cLL168aGlpaWpqWuG7UpKSktSpyaVLlz704uzs7DfffNPJyWnOnDnl6iUiIkKn09WpU6eMGe7BXn/9dRHp2LEjn7qrCAKWESxZskTdfO8f//iHOmnl5eVVMgl47ty5B0wRlt5D7+jRo+r4eY8ePe7YnQUl1DHzNm3aGLsQoJa5eFERURo0UI4eVUSUdu0q0EZeXl7F7g2aOHGiiDg7O8+dO3fRokVr164NDw8/evTo6dOnr169+tBNPtW7v/v161eWvvR6/cyZM0sWmWVmZt4o8+4GAQEBIjJ58uQyXn8/u3fv1ul0lpaW6pEYqAoIWMaxYcMGKysrERk3blxxcfHp06cvX76sTgKWPimvZIrwfm8HsbGxjz32mIg8++yzGk7k1yTDhw8XkS+++MLYhQC1jF6v2NoqIsqlS4pOp1hZKY9wZOX48eOlpwXuycHBoXHjxh4eHs8++6y/v/+QIUPGjBkTHBzctm1bdXVUuTaF79mzp/pg+/btM2bMKOOrIiMj1UGsyuyunJ2d3bx5c97oqhoCltFs27ZN3dnF2dn5mWeeuecUYVkWZcfHx7u7u4vIV4MHK1qMM9ck2dnZ6mK1ip0aBqBSfHwUEeXQIaVRI0VE0WjrhDKKjIzs3LnzhAkTXnnllYEDB/bq1cvHx+eJJ55wdXVV3xYerLxHU1csYCmKMmjQIBF59913y9VdaW+//baItG/fviyHc+OR0SmK8tC/ZzCQI0eO+Pn5FRYWioiVlZWfn9//b+/eg2O89weOfzabJpogEoQgoSkVKU0QWyqpS8+0NOlRbSkiRnJOCZmOcTgkSDiHVKOo1hijmp5e3JIqdZ02OHS0JigiEhJtERGiSMJm5SLZ/f2xGjmu0d9XHrt5v/56Nrt5ns/zz3feu/vsblhY2BtvvOHt7f1Q+8nPz1/6978n7d+v8/KSHTukXbtHM6/tWbdu3ciRI/v06bNv3z6tZwEantGjZfVqSU6WtWtl507ZulX++Cl3zVkslpKSkmvXrpWWlhqNRqPRWHNz9+7dOTk5qampzz33XN13GBwc3LlzZxEpKCgYMGDA9OnT6/iPWVlZAQEBOp0uJiYmODjYzc2tSZMmjRs3btKkiZubm5ub2/1fitu/f3/fvn11Ol16enrPnj3rPjAeNUetB2jQDAbDd999l5qa2rFjxwkTJri6uv65/Xh7ey/46it55RXJyJDgYNmxQzp1UjuqjVq7dq2IWH+hDEB98/MTEcnNFT8/2blTcnIen8DS6XTu7u7WK9lvM2nSpHXr1g0bNiwnJ0en09Vxh87OzsnJySKSlpZ25MiRuk/StWvXDh06nDp16uOPP7Z+9PI2rq6utXvLum29WVlZmZycXF1dHRcXR109bggsjQ0cOHDgwIEKduTpKbt3S2io7NsnISGSliYP89zLLhUXF3///fd6vX748OFazwI0SNbAysmRl1++uWEj3nrrralTp37wwQfTpk2rh8MdPnw4KiqqvLzc1dW1uLjYaDTWvK5WXFxsMplMJtPFixfv9e+urq4JCQn1MCceCoFlR5o1k7Q0eeMNSUuT/v1l2zbp00frmbRkMplGjRplNBpbtWql9SxAg2QNrBMnZPJkeeopadZM64HqytHRcdCgQUuXLg0PD2/btm1d/mXRokXWjaCgID/rideZm5vbN998c697a2LL2lu1b+bk5JSUlCxcuND6qSk8VrgGy+5UVMjbb8umTdKsmfz2m3h4aD0QgIaqslI2bBBfX7l+XRo1kl69RK/Xeqa6OnXqVO/evQ0Gw9atW7WeBTbpAZ9ihe1xdpb16yUiQhYtEg8POXBAkpLkyy/lxg2tJwPQwDg5yeDBMmuWnD4t+/fLsGFiNms9U135+vr6+/tbfvjhxKxZWs8Cm8QrWHZt2zZZv16mT5fMTFm/XlJTtR4IQAPz8cfSsqVYP2gyc6YMHCgvvaT1THWVPn9+97lznXU6uXBBav2IGVAXvIJl1z79VJKSxM9Phg+X6mopLNR6IAANzLlz8tRTN7d9fSU/X9NpHk7vKVOc27cXvV6io7WeBbaHwLJrV69KzYeQPTykpETTaQA0PE8/LSdO3Nw+ftzGvkHGyUkCA8VikbQ02blT62lgY/gUoV3r3l327ZN+/aS6WnJzbz2PBID6EREhw4ZJSYlcvSpXrkjfvloP9JDi4uTbb6W0VP75T0lPF2dnrQeCzeAaLLt26ZLExIiHhxQWSlSU/PWvWg8EoOGprpZjx+TJJ6VzZ61H+VPatpXLl6WqSmJi5G5fBArcFYFl1y5flo0b5YUX5NlntR4FAGzTv/8tCxeK0SheXvLf/8pDfscVGiyuwbJru3fLuHEyZYrWcwCAzfrHP8TBQXx8ZOBA8fLSehrYDALLrv34o4hIcLDWcwCAzWrcWP71L9m/X1atErNZyspu/t1ovLlRVSXl5VpNh8cWbxHatZ495fBh2b1b+vfXehQAsGXl5RIRId7ecuWKtGsniYnyl7/c/Gjhzp3y888SG6v1iHi88ClC+1VaKpmZ8sQTYjBoPQoA2Lj//EdefVUiI0VEoqIkK0vrgfC4I7Ds1759UlUlffqIi4vWowCAjTtxQqKibm736CHHj0tlpfztbyIi589Lv34ajobHE4Flv7gACwBU8fSUCxckMFBEpKBAnntOnJwkOVnkj7cIgf9FYNmvvXtFCCwAUGHsWBk7Vho1ksuXJTNTEhO1HgiPOy5yt0+VlZVvBQS82bJlxMaNDs2baz0OANi+wkJJSxMXFwkLk0aNZNeumz9cXVgoV67wdYO4DYFln9LT0/v06ePv75+dna31LAAANDh8D5Z92rt3r4iEhIRoPQgAAA0RgWWffvrpJxEJ5gIsAAC0wFuEdshisbRq1erSpUunT5/u0KGD1uMAANDg8AqWHTpx4sSlS5fatm1LXQEAoAkCyw79+OOPwgVYAABoh8CyQyaTyd3dnQuwAADQCtdg2Sez2Xzjxg1nZ2etBwEAoCEisAAAABTjLUIAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCwAAADFCCzU1aZNm44ePar1FADwYJs3b2a9grZ0FotF6xnweCktLU1NTf3555/Lysq8vb1HjBjh7+8vIs2bN4+MjFy4cOGjO7TJZFqzZs2RI0f0en2vXr3Cw8P1ev2jOxwAW2cymVJSUg4dOnT9+nVvb++333772WefFZGWLVtGREQsXrz40R26vLx8zZo1Bw8edHR0DAwMHD16tLOz86M7HGwOr2Dhfxw8ePCZZ54ZP358ZmZmSUnJqlWrAgICli5dWg+HPnPmTGBg4NSpU8+fP5+bmxsZGRkSElJWVlYPhwZgiw4dOtSpU6fx48cfPXq0pKRk9erVgYGBH330UT0curCw0GAwxMbGXrx48ddff50wYUKvXr2MRmM9HBq2wlHrAfAYuXr16uuvv+7g4JCRkWF9Fmg2m+fNm+fp6VkPR09OTtbpdLm5ua1btxaRTz/99J133lm3bl1kZGQ9HB2Abbl27dqQIUN0Ot2RI0e6du0qImazOTExsX7Wq5SUFEdHx19++cXNzU1Etm/fHhoa+tVXX02cOLEejg6bQGDhllWrVp0/f37Dhg3WuhIRBweHhISEOx9ZVFS0efPm06dPOzs7BwUFvfzyyzV3ZWdnb9u2zWg0duzYMSwsrHnz5iJy4cKF1NTUwsJCHx+fwYMHd+jQ4c59zp07d/r06Y0bN7beHDVq1Lhx4zIyMpSfJgA7sHr16oKCgvXr11vrSkQcHBzi4+PvfGRRUdGWLVtOnTrl5OQUFBT0yiuv1Nx1/PjxrVu3Wter0NDQFi1aiEhhYWFqauqFCxfus15NmjQpOjq65j3BoKAgESkoKFB9lrBhBBZu2bNnj6OjY1hY2P0fVlVV1a1bt+bNm/v5+ZWUlMTHx0+cONH6NuKWLVuGDh3q5+fXpk2blStXlpWVRUdH5+bmGgyGZs2adenSJSUlJSMjY8WKFXfdc01diciNGzcsFgvXYAG4qz179uj1+tdee+3+D6uurg4ICLCuP1evXk1ISIiOjl62bJmIbNu2bciQIZ07d27btu3KlStLS0tjYmJOnjxpMBiaNm3q7++fkpJy+PDhlStX3nXPta+4WrFihYODw6uvvqrwBGHrCCzckp+f36ZNmyeeeOL+D3N0dMzMzLS+NCUi8fHx7733XmJiYtOmTT/55BM/P7/MzEwHB4fq6uqqqioRWbVqVUVFRVZWVpMmTUTk+vXrdRlm8+bNIlL7uSYA1MjPz/fy8nJycrr/w/R6fUZGRs16NXv27Llz5yYmJjZr1mzFihWdO3c+duxY7fVq9erVZWVlZ8+ebdq0qTxovTp8+PC8efNycnIKCwu//vrrvn37Kjo52AMucsct1dXVD1ytrKyrVXFxcXZ2tpubm9lsPn36tIi4u7vn5+evXbu2srJSr9dbn+G5u7tXVlYuX7782rVrIuLi4vLA/RcXF8fHx7/00ksEFoC7+tPrlcVisa5XHh4e+fn5a9as+dPrlZubW0BAwAsvvGA2m5ctW1ZUVKTgxGA3LMAfBg8e3KhRI7PZfNd7PTw8pkyZYt3+/PPPfX19RcTFxcX6vt6BAwcsFsuZM2cMBoOItGjRYsaMGRUVFRaLxWg0Dh06VKfTubi4REVFXbp06f5jlJSU9O7d28fHJy8vT+n5AbAfoaGhzs7O91qvWrRoMXnyZOv2F198cdt6lZ6ebrFY8vLynn/+eet6FRcXZ12vSktL33zzTZ1O9+STT0ZFRf3+++91GebkyZNOTk6TJk1SdHKwB7yChVsMBkN5efkDryvftWtXZGRkeHh4UVGRyWRau3ZtzV3t27ffv39/ZmZmeHj4+++/HxsbKyKNGzfesGFDXl7erFmzUlJShg8ffp+d//bbb/369Tt37tyuXbt8fHyUnBcA+2MwGCoqKg4dOnT/h+3Zs2fs2LEjR468cuWK9Uuzau7y8fFJT08/duzY6NGjk5KSpk2bJiKurq7r16/Py8tLSEhITU0dNmxYXYbp1KnT008/ffDgwf/PGcHOEFi4ZcyYMU5OTlOmTKmoqKj9d7PZXPvmDz/8oNfrZ8+e7e7uLiJ3fvVLt27dlixZ0qNHj9rfpOzt7R0XFzdq1Kj7BNz27dt79erl6up64MCBjh07KjglAHZqzJgxzs7OU6dOLS8vr/33O9crBweHOXPmeHh4yN3Wq65du3744YdBQUG3rVexsbHh4eH3Wq9yc3Nrt1pxcfG5c+esXzEDWHGRO27x9fVdsmRJTExMz549x4wZ065du7y8vI0bN0ZERLz77rs1D+vSpUtVVdWCBQtefPHFffv2zZ8/v+aucePGtW7d2t/f/+zZs0ePHp0xY4aIJCUlnT9/3mAwmEymTZs2hYSE3PXo8+fPnzlzpru7+6BBg7788kvrH1u2bBkVFfUoTxqATerQocOSJUsmTpxoXa+8vb2t61V4ePikSZNqHtalS5fq6uqkpKT+/fvftl5FR0d7enr6+/vn5+dnZGRMnz5dRBYsWFBQUGAwGK5fv/7tt9/ea71KSUmZM2fOjh07BgwYYDKZli9fXl5ePnny5Ed91rAlWr9HicfO7t27hw4d6u3t7enp2b179wkTJmRnZ1sslv79+y9evNhisZjN5pkzZ7Zu3drFxSUsLCwrKysoKCg7O9tsNickJPTo0cPT07NTp05xcXGVlZUWiyU5OTk4ONjLy6t9+/aRkZH3uqZh5MiRPe8wYsSI+jx3ALZlz549tder6OjorKwsi8UyYMCARYsWWSwWs9kcHx/v5eXl4uISGhpqXa+OHTtmsVhmz55ds17FxsZar8H67LPPQkJCatarixcv3uvQa9asCQ4ObtGiRatWrQYNGrR37976OmnYBn6LEAAAQDGuwQIAAFCMwAIAAFCMwAIAAFCMwAIAAFCMwAIAAFCMwAIAAFCMwAIAAFCMwAIAAFCMwAIAAFDs/wD2tegxnY+V7gAAAQV6VFh0cmRraXRQS0wgcmRraXQgMjAyMi4wOS4zAAB4nHu/b+09BiDgZYAARiDmgeIGRjYFAyDNzMKWYAGiGfEywGqZgAIaUD1QWgFCc0BoJg4FiAYmmAA3AxsDI1MGEyNzAhNLAjNbBhMLewYTKwcDK1CGPYGdW4GDU4OJg0tBhJGNkZmNnYVJfBbUpWDAI/Zos/0FWUUHEGeXbZLDtssh+0FsgTwZB37Td2A2r4iPw/4zCvYgdunLBntOg+1g8Ue/3+3/5S0EZuebPrBPy24Hq7HU0bQP43lhA2K7lwcf2MYuuA/Erljcc0D7zVSw+s8LMg+4rF8BVi+3023/vSmv7EBsMQDrxztCq43TNgAAAWB6VFh0TU9MIHJka2l0IDIwMjIuMDkuMwAAeJx9k11uwyAMx99zCl+gyF9geGybapqmJtLW7Q573/01O1NHqqEBkcD8MP7bZIJor/PL5xf8Np6nCQD/Ga01+BBEnK4QEzhdnp4XON+Op7vlvL4vtzcgjoHRH9njbb3eLQRnoKSYRQw4ZTLVDJhwa/0kOycpS0YyOGCqQpJHoDjISVWZKhwo1eIh6wDUzSPVahzbhSvxiMtbhIhGnMOhClGWAVgc3C40LBwxZiM1HpC2ubRMRSh8Z2tlpKU655EVdLWxzVW4DLgWN0sSVPKc+M2km+u/JCGscNAkTVve5JDrMhyhFKikklG1eZhCVn0yIDlITGaFS+jVXKnYgLws80P1f97DaV3m/h6iWy+7+ie9uLHUXkJ1U+6VCoP1eqibak86uan13MaSuOfQj3aaIpS62/d0sEO0V01hoL24vZRY338Ln0/fsE6kZZOaXFUAAAC2elRYdFNNSUxFUyByZGtpdCAyMDIyLjA5LjMAAHicHY7JDcMwDARbydMBaILLU4KQlwtwEWkjxYeyPhQGy1leX3z3w31dx+d+36/fAXYJc1IOlDstcAXSCCxRs2gZY4xSEk4dUN8kLETpFB4Gi6Cl7O7aCDxS5twekcJD3IDOtCClF9okOkxTabWiKvdX2GMgu/BxlOT2R8Fr54xNHA9Dz7as09mmz9gV6Kp6Yhni0dcbagS9f3/TDTIqcc+OBwAAA5R6VFh0cmRraXRQS0wxIHJka2l0IDIwMjIuMDkuMwAAeJy1kltME1kYx09PYVpaegEKvdFyaEtpy0VsERp0mTMq64PrJV6jBj1eoqPG3bhGH3Q3u+vDLuIad3UxG4OGNT5ANt4wPjTRdkYwVQTviTFRNKJBfcGNWTWaoDNfXdYH45Oe5Mv/d/7z/85lZkaSRwaRMkwoMzRKNSg1SakfNRypUVSblVH86ZTF1XU1nwE+skMoc5fPrHmEqO9RR2Cq1ZHM/lode2eM6X8PxpIfVj2JKPpGq9FnDKwnPtV4b67eWYP/n2fUCifh3omRGNSUZkyVb63BCGuVM6OsbJTNIU6HdHqkz0E5BmQoREaTiI1OlmtmuU4Rm1zM7BKxJV8pN7MWMKtbxHk2pYpZvocVeERs87LCICpysKJiEdsdzF4iYodXxM4K4qoi7kpSXE48dchbykoIK6lHpFTEpJqUjiO+MuQLidgXZv5gCPtDzB9hgXISCIs4EGEVlSFcVR3CNXV6PL4ORRWJ1aPaej2eoJQtmzM6c80uE2dxWws8+VxecZHDa+PsJaTU6+B84UDEH7KfxZmfG0bD3llxyfYrlWG2xSHlPwoD6zaIqWXbyoA3m64lm2+agb3RFr5rnQG46WGan7VrWFKZzZhMh08OAj8LrqAP1p8AvkU76Pd7OoEPVR2nz/7YAqxZcpcG7q8Cfn3nT+nxTzlU5XGtO6S/Fl9OqhxfPldK1LrB70jUSl+1aMHfGHbLq6/2nlF5wXWf3P2lBzJrT0r06NMeXmUiReUbfUnIc+sa5KG9RsgYf/6dWnZ2QObitBHqnWOAMxxcdoL2dW+HzNyhJjo67SAwH91Oz3VvAu7t65R2pidCr+meTdIeOwycGyuQn1/rBI51XKHNLZMgv55Nlr+1TAX/SesqmvI5wY/kXeb3fd0GnLV0Nx+cMRu4qoajI9/ogM3JOsG9ph16X9XYBWHrU7iL7ReL8G9zNmTOzJspJPpTkGlrsAgHGv9Jqbxn4A2tnDgTMl3pamF3ugl6ezzlQq/VDv6x33TC6foK6PW/vCm1v3zcqHIi/kJqi/eD/0Xh4tQh23nge82nkgv3N0Jv7Eg/f/iHGPh9uzbKt4cWQe+llUvlfQtfg7+6db7cE/wOzpN16e/kwPRB6J1yYYhPe24Brzk6mjzQvh/Y9WKRvLblFazT5Qnw0TsJ8NUxMH10jIfLLIKqRW8BAbYXLLCxjQIAAAUAelRYdE1PTDEgcmRraXQgMjAyMi4wOS4zAAB4nI1Xy24kNwy8+yv6B0YQX6J42IMfGydIdgxkvXvPMUCO+X+kqB632rHymHEPPHSJKpJFSr7b8vXr08+//7kdL366u9u2+i8/EbF9l1rr3Zctf9kePj//dN0eX+8f3iyPL9+ur18361ur23i/x96/vnx5s9D2uF24dI9uvl2ISxUl7FFLHa+5mHeodObKgNbSKAi7fIRKQmuJ6kE6oKIM9AKqO1SpssV26SXYzVdIA5JKbVrxBcBmVLUugG0ArVHr2NwLSxt//wB0AAUBW7hsl1bCQhstgH0ATaQxkmTFVJVXHgNAgxVxtwRy8955AaQ6kFbNHNFI6cZdV3tTlgjcskKRSPMmVVbIUSEt7l7DNy6k3UxXSNmRHJ2oj/xXjb4qJY0CSZHKvQacKluN5fZ20xJLzwrVQgjJVmmiLNElSgtv5Amt0WgdVBYpFUTeLFoSMNdl3amPTFWmqJQKkOrr5MfwSfAJaMv9xbkt08/1hm1We7fMKvJQl9CslEIcCIqxP5uyrtLPWSgv6m7ZHnCJBW3FlGWXiXJgkZbaVdhWQN21HJxmLRAyL+vJNkjW1psIVvTq3tsKOGoECbu6JTcXSboLpN8mA1rcLQPvKNUyQ32vOwZMtEyRUA9Z0oxRS6Mwy6KHGnS1GjV7fXaxS84N6KQvu1hob+PsjlSyYNToKnThMUEQjaP7tDToVFcjSWQACUnH9JSsOJyvgFkeTpW3qKkhalx9BRxTjtBlpLAjl4wULUlmfaKoIjWjhbRF68sUZX0wWL2q92TRpbdVA6ESj39gjJQe1qAe0AgIbqU3ZPqaPg3dkIdB6V19WSC06hViD9QZzYAcMebxSutovyvmIg4AcbUxP0Jo2UDKOxRj2FvKAxNeYqUjlcET3Hb5NMS1PocUQJwBKPR+qqih6qvQwe2ax4qzNdecM4Gyr4oJcV0zjo4sdR9nkpCsMq++IwWdDvVB797Jl8i+vYw9o0rKwiu0dNbH9vjj86cLbd/vf/lEx6rAqgvhaApIOuFM7Eu1YGAnFJMBJYNnKtEEw/m/tjC6rZMcPTHO/67RVtrFPHkZ4Yple7ccV25LNjLCdY+8FKA8XXMKL4C6u1S0Koahli6YqitJmG1fB9HGEEUiFEOIz5IckbVjQcMCSAd3FPSPYWR2NvpnOGr52/yrfwxu5G9P32Xmr79b1v/nss/Xp3cXuv2K9/ByfZpXvHzzvMbhyybzqkZ4dF7HMPA2m3cuwnOEBjXg8Xl/Ijx93pIIT8y7EOVzvvLQ+Di406AGOgc5nJuaH3QQwlVlWPgggTNI00wHS9w8huWEaWlRHE2ne4Qm8GTpaUFIB2MMhmHhIyQeGcFd6nzI75aJGZwxWI+4WG6WwzMPzoHT6nQOa7qX84Gr6V6mn0ww3Mv0k5zhno/YOW6WAzOqiA0nRmi3yJFnSc6gMPeSFEJSODIvqQVQ0COrknJICtNzKiIpnA8b2kaXnU4VTQoyPSdnUJBDhZragMWOvTQ55w1lSjOVC4seFdQhXqT2qIUmZ9CUack8w6JzFrab5cgGpi9nKOD1+MPzp2kfzNt5bdwsB3MbzP2UARvM/eTf+GaZq1CwJAt273bEFONB0P9mt7THKauWmbdzni2jwOYnS3aknbOK/yA4N5+WlhMB205LTpTz/Mjvb/9e4ve7vwBQ7b00tYr2zwAAAnN6VFh0U01JTEVTMSByZGtpdCAyMDIyLjA5LjMAAHicRVO7btxADPyVlCdEWizfJA6urkl1LlIaLgK1gb/AH+/hKo8DTloN+JgZch+P/7/ny0kf5+3xe8PzefJ5ynk7T97O29vr8Y7X82XB10H78PP28rr1/4o4dbsS/uGv2ynb28ePdxpvz1/f36/nt8/bwSOj0veDeExR3u+AJJmBzOFUjcxRM4p0YQjyhSlNttqPHMVhud9pTNcpjbjR1EbMyXM/YrAgS9DDKvbDR1npQkzEkWPDVLu/jYlm3Ah7ZDZi0wxZMtI4URfpF2ukB7LvMTTCaAd5cmqCYGWEzjQyNVC3hmq3bOZensiCmmKJhqiEtBnTUIZSGsxU+IZBhd6AK1cA0lVzh0veEtEn5vqeKaAEKlUCkoIKS7QPozJHRKnlUmjKUKhIUQGAgydkQN+MqOVKzFpN2tuOMA2npoXc5cBsfjBYZsAjtC/3QgaRMy3rq0BwjpiAvBHiOb2JoRitGQqqgQGoRVIsKGFbtmBzIbn2gZ0a4XQMvJFkgYHtG+YBfocOriRe7k5YBUo9wFCwBwURg6l3zD30YqXm1cqwGsHmq2GZdl5hGlUORCir02A6hbeFaqELIezYXHpzNicMijRXM7f0lkcynDm7WZZwbzJhuwra52Di6B3oKFFfYjDhaqcay6regnK5asG9gOHtWbArLZ6Q4EszzO/bsIyIQIOLTQMoPzkbUW7GmAPcRIgOvyzAPcNdwhQN88+uQihSuFKwK8H9um4VPXkdKZjwNT0xw2LhNqh3IVyvtVb45OrVxOJj4VDfM3ub5x5/Y+eef47b5xe2lO6EbAoorgAAAbZ6VFh0cmRraXRQS0wyIHJka2l0IDIwMjIuMDkuMwAAeJx7v2/tPQYg4GWAAEYglgBiSSBuYGRTMADSzCzE0UwIOsECJM6In6EB0UuIVoDRCkCahV0Bop+ZHSLPzAGRZ8KgIfJM3AysDIxsDEyCDMyiDCxiDKyCDGyCDOwcGUzsnAkc3AmcPBlMXLwJXHwZTNz8QCyqwMOfwCOmwCvIwCucwcQnpMAnnsAvoCAgpCAgosEkLJ4gwsTGzsnDz83BysUrLM4nrsUICTcwkJjlcsnhM+8EexBn/ccnDiGdG/aC2B4ZzQ5C8v/2g9jH+RUP/NBycQCxLZOMD2xKKD4AYnNJL3b4sS4CrLd6wgGHAM8OsPr0tkMH0vaYg9kr6rcf2PPPFqxm8ZT5B5zr74PFP/36ab93Uy6YrdreeeC+9TSwGieL5AOHnFaAxdc99XZIfDId7B6LbCd7hoDFe0Dsw1q+B0qvidiB2DXFj/bPXycM1rvScbLDtOOCYL13I3T3M6s/3wdi57kbOBxJXgdW0xCxbX9BFBPYL2cYag/s6NEAs3eFyB54+VEU7C/F2Qvs2ddtAqsXAwCE9nfK0QgpJwAAAkp6VFh0TU9MMiByZGtpdCAyMDIyLjA5LjMAAHicfZVdbtswDMfffQpdIAK/KT02SVEMQx1gy3aHve/+GOkglYoKsyNApn8SSfFPZyt5/bh+//O3fFx03bZS4D+/3nv5zQCwvZeclPPr27e9XO4v56flcvu1338WkkIaa+L+zL7cb+9PC5ZLsaoOzaVgRVIhK1DhuMZKCs4rqihQOcX7ZhiRfAU5QKkIJt7LCWtvysQLUAI8UVU0ba1wBVNcgvoAG1BzKCfOmbsvSAtSK3QHxXjdxIRgwfmRNKAbe8aYwfJqw5aug/TWwTJtR3dsC7InqdVZmDMJF0JbgQhJSpyLtS7p3cXAcYVmceIElXq8D++dmsLq0JEemwbo4lnHyCcKtSCzPnGGqsBwFIhRdJk8ZoW4YtMj0ABc0FbiwCxR5KxdpB9kaIOXpD3cE6hziLOmc1mmlEXK07GOB6Bura30ge2QnGU9Nb2rddFl8r3sCVgUMSsPVRTFVxIJ3eyFIiVhi4WVjdZaIiy3jFNIIsJYAhzbL0lKkqOejNFsVI05jnZFcpIU0TXqljMWCgmuUAkUa7RtSC/j7Lo++df9+qnxH5+C822/jk9B3jY6HmP46GvM0Ub7Ygyi0aUYg3j0IuZoo+cwRxutJTH66J98xLlNJIxIUzNIWpEn0UuaUSZxPyw6aVgSRJu0imkZkYcmJZdOTAYblpFNaCwdTfFjRhwWmiWDx/Z90oakhWTSAKZD9KnWeDjsU0kpLYQfFs2jhmmfrOZcu3x+/gXEfPsHvUgt9K4N82MAAAEzelRYdFNNSUxFUzIgcmRraXQgMjAyMi4wOS4zAAB4nCWRO27EMAxEr5LSBmSCFP8wUrnPHsJ9coE9fEZeNyKehsMRfV3Xdu3bde23/P7d28+1fb/2e97bCwjfXKd8vbcgT64cQjLddJxO3Mk+mMrC5jiNgiVzHEwebf4g4bAah1CXK0gQNGGL4CZtnEni5quLK6QbSEnKqx+WJhEyzkmJsYH5GnONE0KO1AXaVxdD0WafNhipxzhRR6boE8tcLMGEMlpWdM+o0gfZNK8xiRUNIEqTHQGZxFxhex5GszN97SD1o2lXSXSFqi/JJJdApXieC2IeTqmmCp+0KVFAWEJWy4qU2JjU490V680IZ8Efd3dWWUiRwR57hNSBU23WZ2DxxH+BGkXWWkw7ci73nuXcY3//A7v9Y9ChNtD0AAACCXpUWHRyZGtpdFBLTDMgcmRraXQgMjAyMi4wOS4zAAB4nHu/b+09BiDgZYAARiCWAWJ5IG5gZFMwANLMLKg0Ewm0BUgfIxYJDaiBMFoFZDkSbQJSB2MwMqKpZMKgOcAmMzJxQNQxofMZGTTA/kOnuYUZWBhFGFkYmZgZmLgZmHkZWFgZWPgYWPkZ2NgZ2HgY2IUZOLg1mDh4FDgFGDhFGLgEGbhEGYDaeMQ0mHj5GHiFGPhEGPgFWRj5RRgEhBgExFkYBSU4mISEGXglWRj5pFiYhKRZmERY2Ji4hYV4mVlZWPlF+NjYeDi4hdnZOEX4eIUExKMYIUEPBjKn11Q4XDg1dx+I0+HkfMB36+T9IPbS5YoO+TniDiD23SnN9tPbZcBsr+N8ByIvS4PZFXkZB+L/f7IHsdeLT3KonXEJrFcjyMVBJ+kEmL29eZpDx88isJrvXdv2W+1fCRa/ee/wgRrO6t0gtoWWr4Po5mawGkbXNQ7CS46B3bPlT5jdNvkZYPFrt5bsZw9bBGab1SYfsGA6awdiJ36fZNv9dTPYzGNC0w/EPeMCsytPJttPMZAAmzP1vISD1ONMMJvvBNuBQndjGxCb2fjlgeakIrD6OcZ3HMJq34PVWGQ62K/q1T8AYt+b1X/Au48RzLaf9mHfgUWKYL+zpTvs33SIHaz+8csT9re194HNEQMA93CCs13U6WUAAAKrelRYdE1PTDMgcmRraXQgMjAyMi4wOS4zAAB4nH1VQW4bMQy8+xX6gAWSIiXx0EMSp0lRxAbatH/ovf9Hh1o7K7dCNwmwS4xGQ3LIHFI8305ff/1OH4+cDoeU6D+/7p5+FiI6vKV4SY/PL1/O6en94fEWebr8OL9/T9JTYZzBzz324f3ydotwekol926mNR0pF+rce6JM49mPCoDHksnIC5Cc2Yo3WiALkJJNrFvDS6nmXhY4BY4zSfMO+qxqrdUFzuJmyVLIWQNYtDVbAOsmsRZuWkDdvSuvcmkAaraKDDhSqWpQsQD2UR2qzXAzgDiivtLog7FRscHj6iyr2jCFRs4qlXmUseBNVyI5WnOsGURuJXpDVHp09F+oDJ1C1khGTbvTquQcvbEMGpVBWXrztqSM7hAo3aEO3e5d61KmbRkJmCSQUrvYMvdrf2A14waAEiktOdu4nBq3OhqkZL7OPDp0ROWFSSUyMhVrS1IfpL1785E7yl5lVSWh4WDUpsLgQIp0KFghefMmQ18dOTM5dCyQki7p2KJMcG+QOurJKy9B0yVVCGWMeSC1wu9LoQokZbizUg0d8D3Jqk5icb1mRU5mASXRwqs2SU2v263e4fUxyWbLldA2JO63NorPRWw5SHDGa4r58Vr66CiWA69yej6f7hbUtrIeL+fTvrI4WoTSf375xPt+4miH3EexBvCn+8qJT5Z9tXDEdN8gjFjd90R8su3rgANS96lnYPo03PHNZRphxiGZB1XilEwDyREo09zxIGrTgI2I8DRIPLj7NDAjIjINBo/rZv9L3Cdl8jmPC23y8xbxybccEvbbJSSHhP5XA3SLT8ihvM1sdYsAe3+2hTZUyibD8JC8W8g3beC4bzFdFbYR/8iu8JWh38fDYLOd4vv23xPvhz+k7GkCtV2YlAAAAY56VFh0U01JTEVTMyByZGtpdCAyMDIyLjA5LjMAAHicLVG7bsQwDPuVjjnAMSRZLzcocEA63Nap0yHf0aUfX8q9KY5ISqT0fFzP836/WM7zHB/nuX183c4TtWts5+0f256Paz0f1wa0QH6BqPxLXqr7JQz22++2U1efOb1JNzHzdlAXmlOzcedMjXZwJ4mZoKhaZDsWN0sz3OZsx4DGohUx8as9aFg26lMnSzusjxwqDeNGxgxuh/dMHm0ZiLBRKnMbs+3cXU2y2pKHcVUAWQ2G3KNUIqlkxck0YNWaEo4rQeaMuZqzpsuoDObTtVppWhmgTsHhtAaiFfioYZyTt1166CBYL1AcIfAYeGAkQAbfkY+Yplb/HV4N76IxUsQqmSEIaEqkBGc7NiNMWs5MZS0TNUUoq5kkOmBt9844wgpFhNWRlZPokoHD7LVXT/Y1wweHYvU5U2WZk0GT61pDI1YC6BAPX0+pACunxToID/iY7dZ+vt9xwMYocWPt6M/ReTaeXfjn852RW5s4Fv37BzzsiL8oLqBtAAAAAElFTkSuQmCC",
- "text/plain": [
- ""
- ]
- },
- "execution_count": 52,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# cluster - using whole features\n",
- "kmeans = sklearn.cluster.KMeans(n_clusters=4, random_state=0)\n",
- "kmeans.fit(std_features)\n",
- "\n",
- "cluster_center_idx = []\n",
- "for c in kmeans.cluster_centers_:\n",
- " # find point closest\n",
- " i = np.argmin(np.sum((std_features - c) ** 2, axis=1))\n",
- " cluster_center_idx.append(i)\n",
- "cluster_centers = soldata.iloc[cluster_center_idx, :]\n",
- "\n",
- "legend_text = [f\"Class {i}\" for i in range(4)]\n",
- "\n",
- "# now plot them on a grid\n",
- "cluster_mols = [rdkit.Chem.MolFromInchi(inchi) for inchi in cluster_centers.InChI]\n",
- "rdkit.Chem.Draw.MolsToGridImage(\n",
- " cluster_mols, molsPerRow=2, subImgSize=(400, 400), legends=legend_text\n",
- ")"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "So what exactly are these classes? Unclear. We intentionally did not reveal solubility (unsupervised learning) so there is not necessarily any connection with solubility. These classes are more a result of which features were chosen for the dataset. You could make a hypothesis, like class 1 is all negatively charged or class 0 is aliphatic, and investigate. Ultimately though there is no *best* clustering and often unsupervised learning is more about finding insight or patterns and not about producing a highly-accurate model.\n",
- "\n",
- "The elbow plot method is one of many approaches to selecting cluster number {cite}`pham2005selection`. I prefer it because it's quite clear that you are using intuition. More sophisticated methods sort-of conceal the fact that there is no right or wrong answer in clustering. \n",
- "\n",
- "\n",
- "\n",
- "```{note}\n",
- "This process does not result in a function that predicts solubility. We might try to gain insight about predicting solubility with our predicted classes, but that is not the goal of clustering.\n",
- "```"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Chapter Summary\n",
- "\n",
- "* Supervised machine learning is building models that can predict labels $y$ from input features $\\vec{x}$.\n",
- "* Data can be labeled or unlabeled. \n",
- "* Models are trained by minimizing loss with stochastic gradient descent.\n",
- "* Unsupervised learning is building models that can find patterns in data.\n",
- "* Clustering is unsupervised learning where the model groups the data points into clusters"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Cited References\n",
- "\n",
- "```{bibliography}\n",
- ":style: unsrtalpha\n",
- ":filter: docname in docnames\n",
- "```"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "py37tf",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.7.12 | packaged by conda-forge | (default, Oct 26 2021, 05:35:01) [MSC v.1916 64 bit (AMD64)]"
- },
- "orig_nbformat": 4,
- "vscode": {
- "interpreter": {
- "hash": "4a36ad010f38edd30ea8b91925b3d07c05fc561bbd94613d09664141d5a43ea2"
- }
- }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
diff --git a/notebook/0_basic_MLDL/1_2_regression.ipynb b/notebook/0_basic_MLDL/1_2_regression.ipynb
deleted file mode 100644
index 141cb78..0000000
--- a/notebook/0_basic_MLDL/1_2_regression.ipynb
+++ /dev/null
@@ -1,1778 +0,0 @@
-{
- "cells": [
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# Regression & Model Assessment\n",
- "\n",
- "Regression is supervised learning with continuous (or sometimes discrete) labels. You are given labeled data consisting of features and labels $\\{\\vec{x}_i, y_i\\}$. The goal is to find a function that describes their relationship, $\\hat{f}(\\vec{x}) = \\hat{y}$. A more formal discussion of the concepts discussed here can be found in Chapter 3 of Bishop's Pattern Recognition and Machine Learning{cite}`bishop2006pattern`.\n",
- "\n",
- "```{admonition} Objectives\n",
- "This lecture introduces some probability theory, especially expectations. You can get a refresher of [probability of random variables](https://whitead.github.io/numerical_stats/) and/or [expectations](https://whitead.github.io/numerical_stats/unit_4/lectures/lecture_2.pdf). Recall an expectation is $E[x] = \\sum P(x)x$ and variance is $E[\\left(x - E[x]\\right)^2]$. We also use and discuss [linear regression techniques](https://nbviewer.jupyter.org/github/whitead/numerical_stats/blob/master/unit_12/lectures/lecture_1.ipynb#Extending-Least-Squares-to-Multiple-Dimensions-in-Domain---OLS-ND). After completing this chapter, you should be able to:\n",
- "\n",
- " * Perform multi-dimensional regression with a loss function \n",
- " * Understand how to and why we batch\n",
- " * Understand splitting of data\n",
- " * Reason about model bias and model variance\n",
- " * Assess model fit and generalization error\n",
- "```"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "outputs": [],
- "source": [
- "import pandas as pd\n",
- "import matplotlib.pyplot as plt\n",
- "import numpy as np\n",
- "import jax.numpy as jnp\n",
- "from jax.example_libraries import optimizers\n",
- "import jax\n",
- "# import dmol\n",
- "\n",
- "import warnings\n",
- "warnings.filterwarnings(\"ignore\")\n",
- "import matplotlib as mpl\n",
- "mpl.rcParams.update( {\n",
- " \"axes.grid\": False,\n",
- " \"font.size\": 13,\n",
- " \"figure.figsize\": (4., 4./1.3),\n",
- " \"figure.dpi\": 130,\n",
- " \"ytick.left\": True,\n",
- " \"xtick.bottom\": True,\n",
- " \"image.cmap\": \"gist_yarg\",\n",
- " \"lines.markersize\": 6, \n",
- " } )"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "We'll be working again with the AqSolDB{cite}`Sorkun2019` dataset. It has about 10,000 unique compounds with measured solubility in water (label) and 17 molecular descriptors (features)."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {},
- "outputs": [],
- "source": [
- "# soldata = pd.read_csv('https://dataverse.harvard.edu/api/access/datafile/3407241?format=original&gbrecs=true')\n",
- "soldata = pd.read_csv( \"https://github.com/whitead/dmol-book/raw/main/data/curated-solubility-dataset.csv\")\n",
- "features_start_at = list(soldata.columns).index(\"MolWt\")\n",
- "feature_names = soldata.columns[features_start_at:]"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Overfitting\n",
- "\n",
- "We need to create a *better assessment* of our supervised ML models. The goal of our ML model is to predict solubility of *new unseen* molecules. Therefore, to assess we should test on unseen molecules. We will split our data into two subsets: **training data** and **testing data**. Typically this is done with an 80%/20%, so that you train on 80% of your data and test on the remaining 20%. In our case, we'll just do 50%/50% because we have plenty of data and thus do not need to take 80% for training. We'll be using a subset, 50 molecules chosen randomly, rather than the whole dataset. So we'll have 25 training molecules and 25 testing molecules.\n",
- "\n",
- "Let's begin by seeing what effect the split of train/test has on our linear model introduced in the previous chapter. "
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {},
- "outputs": [],
- "source": [
- "# Get 50 points and split into train/test\n",
- "sample = soldata.sample(50, replace=False)\n",
- "train = sample[:25]\n",
- "test = sample[25:]\n",
- "\n",
- "# standardize the features using only train\n",
- "test[feature_names] -= train[feature_names].mean()\n",
- "test[feature_names] /= train[feature_names].std()\n",
- "train[feature_names] -= train[feature_names].mean()\n",
- "train[feature_names] /= train[feature_names].std()\n",
- "\n",
- "# convert from pandas dataframe to numpy arrays\n",
- "x = train[feature_names].values\n",
- "y = train[\"Solubility\"].values\n",
- "test_x = test[feature_names].values\n",
- "test_y = test[\"Solubility\"].values"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "We will again use a linear model, $ \\hat{y} = \\vec{w}\\vec{x} + b $. One change we'll make is using the [@jit](https://jax.readthedocs.io/en/latest/jax.html#jax.jit) decorator from `jax`. This decorator will tell `jax` to inspect our function, simplify it, and compile it to run quickly on a GPU (if available) or CPU. The rest of our work is the same as the previous chapter. We begin with defining our loss, which is mean squared error (MSE) again.\n",
- "\n",
- "```{margin}\n",
- "A decorator is a Python-specific syntax that modifies how a function behaves. It is\n",
- "indicated with the `@` symbol. Examples include caching results, compiling the function, running \n",
- "it in parallel, and timing its execution.\n",
- "```"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "(DeviceArray([10.141863 , -4.9939833 , 9.95828 , 10.228883 ,\n",
- " 7.601961 , 2.9322498 , 8.171559 , 5.15272 ,\n",
- " 9.97174 , 6.3993273 , -1.2473229 , 0.06772845,\n",
- " 2.7432702 , 7.425468 , 10.416208 , -6.9850674 ,\n",
- " 9.546438 ], dtype=float32),\n",
- " DeviceArray(7.447078, dtype=float32, weak_type=True))"
- ]
- },
- "execution_count": 9,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# define our loss function\n",
- "@jax.jit\n",
- "def loss(w, b, x, y):\n",
- " return jnp.mean((y - jnp.dot(x, w) - b) ** 2)\n",
- "\n",
- "loss_grad = jax.grad(loss, (0, 1))\n",
- "\n",
- "# initiate parameters\n",
- "w = np.random.normal(size=x.shape[1])\n",
- "b = 0.0\n",
- "loss_grad(w, b, x, y)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Now we will train our model, again using gradient descent. This time we will not batch, since our training data only has 25 points. Can you see what the learning rate is? Why is it so different from the last chapter when we used the whole dataset?"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgwAAAGPCAYAAAAwSojkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAABP+AAAT/gEHlDmEAABZv0lEQVR4nO3dd3gU1cIG8He2byophCQYWoCAFCNNSEREEFCwoqAigsAV/RQ7INyrgCh67e16RS8CF7xIsVFEQBQEQhcwgSQQWkIPISE92+b7Y7KbXbLpu5lk8v6eZ5/MTj07bJg355w5I4iiKIKIiIioEiq5C0BEREQNHwMDERERVYmBgYiIiKrEwEBERERVYmAgIiKiKjEwEBERUZUYGIiIiKhKDAxERERUJQYGIiIiqhIDAxEREVVJI3cBmrpz585h7dq1aNeuHXx9feUuDhERNUIFBQU4ceIERowYgcjISK8cg4FBZmvXrsXkyZPlLgYRESnA/Pnz8cQTT3hl3wwMMmvXrh0A6R+5W7duMpeGiIgao8TEREyePNlxTfEGBgaZ2ZshunXrhn79+slcGiIiasy82bTNwCADk8kEs9kMACgqKpK5NERERFXjXRIymDdvHvz8/ODn54dBgwbJXRwiIqIqMTDIYObMmcjPz0d+fj42b94sd3GIiIiqxCYJGeh0Ouh0OgCA0WiUuTRERERVYw0DERERVYmBgYiIiKrEwEBERERVYmAgIiKiKrHTI1ETYzabkZeXh7y8PJjNZoiiKHeRiAiAIAjQarXw9/eHv78/tFqt3EVywcCgFJfTgOIcwGYFWt0kd2mogSouLkZ6ejqsVisAQKVSQaViRSNRQ2C1WmE2m1FYWIjLly+jVatWMBgMchfLgYFBKdZPA45vBiAAs3PkLg01QGaz2REWQkJC0KxZM8ftvUTUMJhMJuTk5CArKwvp6elo164dNJqGcanmnxZKobJ/oUTAZpO1KNQw5eXlOcJCWFgYwwJRA6TT6RAWFoaQkBBYrVbk5ubKXSQHBgalUDu1ddks8pWDGqy8vDwAQLNmzeQtCBFVyf57av+9bQgYGJRCpS6bZmAgN8xmM1QqFWsWiBoBnU4HlUrleFBhQ8DAoBQqpzYuBgZyQxRFdnAkakQEQWhQdzHxfw+lYGAgIlIUQRDkLoILBgalYGAgIiIvYmBQCgYGIiLyIgYGpWBgICIiL2JgUIj9Z5xuvWFgIFKk8ePHQxAEzJ4922P7PHXqFARBaHDt5dTwMDAoxOUCq2NatDIwENWV/SJa05cnL+ZU3pYtWxzn+tSpU3IXp0lpGONNUp2JTuMwWC0m/sMS1VF8fLzb+Tt27AAAdOjQAWFhYeWWt2rVymtlioiIQExMDEJDQz22T61Wi5iYGI/tj5SL1xWFsAllgcHGGgaiOtu+fbvb+faq+5kzZ2L8+PH1WCLgrbfewltvveXRfbZs2RIpKSke3ScpE5skFEIUyoaGZmAgIiJPY2BQCJvKuYah4QwlStSUtGnTBoIgYMuWLUhOTsZjjz2G6667Dlqt1qU2Yvv27Zg+fTpuuukmREZGQqfTITQ0FLfffjuWLVtW4f4r6vR4bcfF7du3Y/jw4QgJCYHRaET37t3x2WefuR01sLJOj87HKyoqwqxZsxATEwODwYDmzZtj9OjROHbsWIXlzc/Px9///nd06NABBoMBEREReOSRR5CSkuLoi9CmTZvKT6qHWCwWzJ8/H/3790dQUBAMBgPatm2LiRMnVlrD8tNPP+HOO+9EixYtoNVqERwcjE6dOuGRRx7BqlWryq1/6NAhjB07Fm3atIFer4e/vz+io6Nxxx134L333nM8Wr4xYmBQCqGsdYk1DETy2rFjB3r27IkVK1YgLCwMMTExLsNy33vvvXjnnXdw7NgxNGvWDN27d4dOp8Ovv/6KRx55BI8//nitj71o0SIMGDAAu3btQrt27eDn54fExERMmTIFU6dOrdU+c3NzERcXh7lz50KtVqN9+/bIycnBihUr0K9fP5w+fbrcNleuXEFcXBzmzZuHtLQ0tG7dGpGRkfjhhx/Qq1cv7N27t9afsaby8/Nx++2348knn8T27dsRHByMrl274tKlS/j6668RGxuL7777rtx2s2fPxr333ov169cDALp3746IiAhcuHABy5Ytw9tvv+2y/saNG9GnTx8sXboUWVlZiImJQYcOHZCXl4cNGzZg6tSpKCoqqpfP7BUiySohIUEEICYkJNRpPz/9a5oozgoQxVkBYu6RzR4qHSnJ0aNHxaNHj8pdjEYPgAhAXLhwYbllrVu3FgGIarVafOSRR8Ts7GzHssLCQsf0V199JaalpZXbfteuXWL79u1FAOLKlSvLLR83bpwIQJw1a5bL/JMnTzrKpdfrxQ8//FC0WCyO5W+88YYIQBQEodxxnbet6HharVbs0aOHeOzYMcey48ePix06dBABiI899li5bR9++GERgBgVFSXu37/fMT87O1scOXKkqNPpRABi69aty21bmd9//91R3pMnT1Zrm4kTJ4oAxNDQUHHLli2O+Xl5eeJjjz0mAhCNRqOYmprqWJaZmSlqNBpRo9GI33//vWiz2Vz2eeDAAXH+/Pku82JjY0UA4owZM8Ti4mKXZWfOnBHfe++9cvMrU5PfWU9dSyrDTo8KIbrUMLBJgmpvzH924Wx2I/4rCEDLICO+mdRXtuPHxMRg8eLF0GjKfi+NRqNjetKkSW63u+mmm/D5559jyJAhWLhwIR544IEaH/vRRx/F888/7zJv5syZ+Pbbb5GUlIR169bh2WefrdE+VSoVVqxYgejoaMe8du3aYd68eXjwwQexZs0al/VPnTqFb7/9FgDwzTffoEePHo5lzZo1wzfffIPOnTvj5MmTNfx0NXf69GksWrQIAPDpp59iwIABjmV+fn5YuHAhdu/ejdTUVLz77rv46quvAABpaWmwWCyIjY3FfffdV26/sbGxiI2NdZmXnJwMAJg+fTr0er3LspYtW+Kll17y4CerfwwMCuF8WyXHYaC6OJtdhFNZhXIXo1EbN26cS1hwJzU1FStXrsShQ4eQlZUFk8kEACgpKQEA7N+/v1bHfvrpp8vNEwQBcXFxSEpKQlpaWo33OXToUJewYGe/9TQ7OxtXrlxBcHAwAOCXX36BKIqIiYlB//79y22n1+sxduxYvP766zUuS0398ssvsFqtiIqKwqhRo8otV6lUePHFFzF58mSsW7fOMd9+e+zRo0exa9cu9O1bdQBt1aoVjh07hv/+97945plnFDcYFgODQogq9mEgz2gZZKx6pQZO7s/QpUuXSpe/9tprePPNN2Gz2SpcJysrq1bH7tixo9v5LVq0ACC153t6n/b92gNDamoqAOCGG26ocJ/X/nXuLfaydOnSpcLHu3fr1g0AcP78eeTm5iIgIACRkZEYM2YMvvnmG/Tr1w89e/bEbbfdhj59+uDWW291OxbGtGnT8Le//Q3PPvssPvjgAwwZMgQ33XQTbrnlFrRv3957H7KeMDAoBZskyEPkrMpXCl9f3wqXrVy5EnPnzoUgCHj11Vdx//33OzonqlQqnDhxAtHR0bBYahf8Kzq2/WJZWUip7T6v3W9enjRUfUBAQIX79Pf3r3E5aiM3NxcAEB4eXuE6ERERjum8vDxHub/++mt0794d//nPf7B//35HrY9arcbw4cPx/vvvuwSBSZMmISgoCB988AF27dqFL7/8El9++SUAoGfPnnjrrbdw++23e/wz1hfeJaEQrk0Sjfe2HSKlW7hwIQDgxRdfxOuvv47Y2FgEBAQ4Lr61rVloSOxhwH6xdsceKrzNfvG/cOFCheucP3/eMe0cZHQ6HaZNm4ajR4/izJkz+Pbbb/G3v/0N/v7+WL16NQYNGoScnByXfY0cORI7duzAlStXsH79erzyyito164d9u/fjzvvvBO7d+/27AesRwwMSuFUwyBaTTIWhIgqc/z4cQBw6XznzD70dGNmH2r60KFDFa5z8ODBeilLp06dAABHjhypsHYlKSkJABAZGVlhrUjLli0xevRofPnll0hOTkZwcDDS09Oxdu1at+sHBgZi2LBheOutt5Camor+/fvDYrE4OlU2RgwMSqF2Dgzsw0DUUPn4+AAAzp49W25ZYWEhPv300/oukscNHToUgiAgNTUV27ZtK7e8pKQES5YsqZeyDBs2DGq1Gunp6W7HWrDZbPjwww8BAMOHD6/WPsPDw9GhQwcAwLlz56pcX6PRIC4urtrrN1QMDArh3OlR5OOtiRqsW2+9FQDw5ptv4siRI475586dwz333NOoLyh2bdu2xUMPPQQAGDNmDP7880/HspycHIwZM8ZtYPKGVq1aOUbZfOaZZ1yeEZKfn49JkyYhOTkZRqPRZWCrX3/9Fc8//zz+/PNPlxEyRVHEypUrHZ+pd+/eAKTmlwcffBAbNmxw3PFid+jQIXzzzTcu6zdG7PSoFAJrGIgag2nTpmH58uU4c+YMunfvjo4dO0Kn0yEpKQlarRb/+te/MHHiRLmLWWeffvopEhMTkZSUhJ49eyImJgZ+fn44fPgwVCoV3njjDUybNg1qtbrqnVWgR48eFd75AACfffYZHnroIXz00UdIS0vD1q1b0b9/f0RHRyMoKAjJyckoKCiAXq/HkiVLHLUGgBQmPv74Y3z88ccICAhAu3btoNFokJ6ejkuXLgEA/va3v2HgwIEApJqKVatWYdWqVdDpdGjfvj38/f1x6dIlx3gTPXr0wMsvv1zrzys31jAohdMvHWsYiBquiIgI7N69G+PGjUNoaCjS0tJw6dIlPPjgg9izZw9uu+02uYvoESEhIUhISMCMGTMQHR2NkydPIiMjA3fffTf27t2Lzp07A6j8ToqqZGdnIysrq8JXcXExAGmApk2bNuHf//434uPjkZmZib/++gshISGYMGECDh48iJEjR7rsu3///vjXv/6F+++/Hy1atMCJEydw8OBBqFQqDB8+HN9//73jDghA6iz5zTffYOLEiejYsSMuXryIffv2ITs7G/Hx8fjoo4+QkJBQb3eHeIMgim6eRkL1ZufOnYiLi0NCQgL69etX6/18t3wRRiY/BwA423cWWg570VNFJIWwPyTI+a8oIrm8++67mDZtGu6//363fQuoZr+znrqWVIY1DErh1OkRbJIgogbMbDY7bi+t6G4RangYGJRCYKdHImo4ioqK8OqrryI9Pd1l/rlz5zB69GgkJycjKCgIjz76qEwlpJpip0elUGsdkwwMRCQ3q9WKN954A2+88QaaN2+O1q1bo6CgAKmpqbDZbDAajViyZIljOGlq+BgYFEJgkwQRNSBGoxFvv/02Nm7ciNTUVMfgSO3atcNtt92GF1980THAEzUODAxK4TQOA1jDQEQyU6vVmD59OqZPny53UchD2IdBKVwGbuLDp4iIyLMYGBRCcHr4FGx8+BQREXkWA4NCCE6dHtmHgYiIPI2BQSnU7MNARETew8BQQ2fOnMFzzz2H/v37w8/PD4IgYMuWLXIXCyqVUw2DyMBARESexcBQQ2lpaVi2bBl8fHxw++23y12cMi63VbIPAxEReRZvq6yhW265xfGksrVr1+LHH3+Ut0ClBKe7JATeJUFERB7GGoYaquxRqnJSOdcwsEmCiIg8rGFe/arpwoULWLp0KZ577jnEx8fDx8cHgiCgU6dO1dp+7969GDVqFCIiIqDX6xEVFYUJEyY4nhDWqGic+jDwtkoiIvKwRt0k8e233+KFF16o1baLFy/GxIkTYbVaERoaim7duuHYsWNYuHAhli9fjjVr1jSq59I7d3oUeJcEERF5WKOuYQgICMDgwYPxyiuvYNWqVZg3b161tjt8+DAmTZoEq9WK6dOn49y5c9i3bx/Onz+PMWPGoLCwEA888ACysrK8/Ak8R6V2HriJgYGIiDyrUQeGCRMmYNOmTXjrrbcwcuRIREREVGu7OXPmwGKxIC4uDm+//Ta0Wumvcx8fHyxYsABt27ZFdnY23n//fW8W36NcOj2yDwNRkzd79mwIgoDx48fLXRRSiEYdGGqjsLAQa9euBQA89dRT5Zbr9XrHL9iyZcvqs2h1olarYBGlf042SRDVnSAItXrNnj3b62VbtGgRZs+ejYMHD3r9WPVl/PjxEAQBt956q9xFoQo06j4MtXHgwAEUFRUBkG6RdGfAgAEAgFOnTuH8+fPVrrmoSkZGBs6cOeMyLzEx0SP7VqkEWKCGBjYI7PRIVGfx8fFu5+/YsQMA0KFDB4SFhZVb3qpVK6+WC5ACw9atW9GmTRvExsa6XSc0NBQxMTEe+/+LqMkFhtTUVACATqdDVFSU23Wio6Md0ykpKeV+4VatWgUA2L9/PwBg69atuHz5Mnx9fXHHHXdUeOwFCxZgzpw5dSp/RdSCFBgAMwSRgYGorrZv3+52viAIAICZM2c26Or+Z555Bs8884zcxSAFaXKB4cqVKwCAoKAgxy/+tYKDgx3T2dnZ5ZY/+OCDLu/tVZCtW7fGqVOnKjz2xIkTMXToUJd5iYmJmDx5cnWKXim1SoAVbJIgIiLvaHJ9GOzNETqdrsJ1DAaDY7qwsLDcclEU3b4qCwsAEBUVhX79+rm8unXrVrsPcg2Vo4YBrGEgktH58+cxbdo0dO3aFX5+fvD19UX37t0xe/Zs5Obmut3m0qVLmDp1Krp06QJfX18YDAZERUUhPj4ef//733Hu3DkAwJYtWyAIArZu3QoAePzxx136Tzi3/1fW6dG+/qlTp5CYmIjRo0ejRYsW0Ov1iImJweuvvw6TyVThZzx06BBGjhyJ5s2bw2g0onPnzpg7dy5KSkocfRHqoy8HUPZ8n44dO8JoNCIgIAC9e/fGO++84/b/bwDIy8vD3Llz0aNHD/j7+0On0yEyMhJ9+vTBSy+95KiJtrPZbFi8eDEGDhyIkJAQaLVaNG/eHF27dsWECRPw66+/1sdHlV2Tq2EwGo0AUOkvQ3FxsWPax8fH62XyBKmGwR4YWMNAJIfNmzdj5MiRuHr1KnQ6Hdq2bQsAOHLkCBITE7Fs2TJs3rwZ1113nWObs2fP4qabbsLZs2eh0WjQvn17+Pv74/z589izZw8SEhLQr18/REZGIjAwEPHx8UhMTERubm65fhQ1/QNk48aNeO6556DRaBATEwONRoOjR49i1qxZ+OuvvxzNr87WrVuH+++/HyaTCUajEV26dEFubi5ee+01bNy4sV76cNht374dd911F3JycqDT6dClSxcUFhZi37592LdvH5YsWYJNmzYhPDzcsU1+fj7i4uKQlJQEQRDQvn17NGvWDJmZmTh06BD27t2Ltm3bIiYmxrHNhAkTsHjxYgBAy5Yt0a5dO+Tl5eH06dM4fPgwcnNzMXjw4Hr73HJpcjUMQUFBAKSmBlEU3a5jb7ZwXr+hU6sAC5skiGSTlpaG++67D1evXsVLL72EzMxMpKSkICUlBRkZGRgyZAiOHj2KRx991GW79957D2fPnsXtt9+OCxcuIDk5GXv27EFGRgays7Px3//+F23atAEA3Hjjjdi+fTtuvPFGAFI/iu3btzten376aY3K/Mwzz+DZZ59FZmYm9u3bh7Nnz+K///0vBEHAd999h99//91l/YsXL+LRRx+FyWTCww8/jAsXLmDfvn04evQodu/ejePHj7sNGd6QlZWFkSNHIicnB3feeSfOnDmDP//8EykpKTh48CDatm2LpKSkcud7wYIFSEpKwg033IDTp0/j6NGj2LNnD06ePInc3Fx89913uOGGGxzrHzp0CIsXL0ZgYCD++OMPnDlzBnv37kVKSgpyc3Oxfft23H///fXymeXW5GoY7MNGm0wmpKeno3Xr1uXWOX78eLn1GzqVIMAiqgGBTRJUR4vvBq5myF2KugmMAsatrtdDzp49G3l5eZgwYQLee+89l2URERFYuXIlOnfujK1bt2LXrl3o27cvACA5ORkA8PTTTyMkJMRlOz8/P4wdO9ZrZb7lllvwz3/+02Xe2LFjsXz5cqxbtw5r1qzBwIEDHcu++OIL5OTkICYmBosXL3aMYQMAffr0waJFi8r10/KWL774ApcuXUJISAiWL18OPz8/x7IbbrgBS5Yswc0334zNmzdjx44djrte7Of78ccfL9fxXa/Xl7v429cfOHAg+vfv77JMEATEx8dXeEeN0jS5wBAbGwuj0YiioiL88ccfbn8Z7e2Dbdq0aTS3JKlVZX0YVAwMVBdXM4ArJ+QuRaNiNpvxww8/AHA/vgsgjUx7++23Y/Hixfjtt98cgcFehb9ixQoMHTrUpQ+Vtz399NNu58fHx2PdunVIS0tzmb9+/XoA0pgJzmHBbsiQIWjdujVOnz7t+cJewz6ezpNPPukSFuzi4+PRr18/7Ny5E+vWrXNc1O3n+8cff8T48eMRGBhY6XHs6+/cuRPHjh1Dhw4dPPkxGpUmFxh8fX0xfPhwrFq1CvPnzy8XGEpKSrBo0SIAwOjRo2UoYe2oBPZhIA8JdH+7caNSz5/h2LFjjg52zz77bIVPtbVfSJ3HY3n22Wfx3//+F//73//w888/Y+jQoejXrx/i4uLQs2dPrz4ht2PHjm7nt2jRAoDU3u/M3hnQucr+Wvaqfm+zl6WyfhvdunXDzp07kZKS4pg3YcIEfPDBB9iyZQsiIyMxePBgR7jo27dvuSDUt29f9O/fH9u2bUOnTp0QHx+PAQMG4KabbsItt9yCgIAA73zABqjJBQYAmDVrFn788Ufs2LEDr7zyCubOnQutVovCwkJMnjwZJ0+eRGBgIF5++WWvHN9kMsFsNgMou2ujrqQaBuk/FhX7MFBd1HNVvhI43369c+fOKtd37r3ftWtX7Ny5E3PnzsUvv/yC5cuXY/ny5QCkDnavvPIKnn766QpvA68LX19ft/PtIcVms7nMz8vLA4BKL5L+/v4eKl3l7HecOHdovJa9hthebvv6u3fvxuuvv44ff/wRq1evxurV0nc+JCQEU6ZMwcyZMx3BQaVSYd26dXjrrbewZMkSbNu2Ddu2bQMgNWGMGjUK7777riNkKVmj7vSYkZGB0NBQx2vKlCkApM5HzvPvuecel+26du2K+fPnQ61W45///CciIyPRq1cvREREYOnSpTAajVi5ciVCQ0O9Uu558+bBz88Pfn5+GDRokEf26XyXBJskiOqXvUpcpVKhpKSkwluv7S97LabdjTfeiO+//x45OTlISEjAP//5T8TFxeHs2bOYMmUKPvzwQxk+VXn2MFDR7aGA68XZm+yh5cKFCxWuc/78eQDlQ0x0dDQWL16MK1euYP/+/fjoo48wZMgQXLlyBbNnz8ZLL73ksr6/vz/mzZuHjIwMpKWlYdGiRRgzZgxUKhWWLFmC4cOHO/4IVLJGHRisViuysrIcL3v12bXzr169Wm7bCRMmICEhASNHjoRarUZiYiL8/f0xbtw4HDx4ELfffrvXyj1z5kzk5+cjPz8fmzdv9sg+pXEYSmsYGBiI6lXHjh2h1+ths9mwa9euWu9Hp9OhX79+mDZtGnbs2IEZM2YAAD7//HOX9bxR21Ad9lsNDx06VOE6lS3zJHuH9KSkpArXsS/r3Lmz2+VqtRo9evTAc889hw0bNuCLL74AAHz55ZewWNzX1EZHR2PcuHFYunQp9u3bB41Gg/3792P37t11+TiNQqMODG3atKkyyYuiiC1btrjdvk+fPli1ahUuXLiAkpISnDlzBosWLaqwXc9TdDodfH194evr6xgXoq6kJgmphUkFBgai+mQ0GjFixAgAwJtvvlnhLds1ZX/ejX3gJjv7+DCeatKsLvvQ94sWLXL7F/XGjRvrpf8CAAwfPhwAMH/+fLcDNO3atQsJCQku61bFfr5LSkpcbq+vyPXXX++4s+XafyMlatSBgcqoBaehoVnDQFTv3nzzTfj7+2Pjxo0YPXo00tPTXZZbrVZs27YNEydOxNmzZx3zn3jiCSxZsgQ5OTku61+6dAnvv/8+AKB3794uy9q3bw9AGvnRU+GkOp588kk0a9YMqampGDdunEvTxJ49ezB+/PhKR9H1dFnCwsKQmZmJhx56CFlZWY5liYmJjvEXBg8ejLi4OMeyGTNm4N///jcuXrzosr/c3Fy8+eabAKQ/Rps3bw4AWLp0KV577TWXjpMAYLFY8Omnn+LixYtQqVTo2bOnVz5nQ9IkOz0qkUoFaRwGsEmCSA4xMTFYvXo1HnzwQaxcuRKrVq1C+/btERISgvz8fKSlpTlGkX311Vcd2+3ZswdfffUVBEFAu3btEBoaitzcXBw7dgwWiwUhISHlBmQaM2YMPvvsM6xYsQIJCQlo06YN1Go1YmNj8dFHH3ntM7Zo0QJLlizByJEjsWzZMvz000+4/vrrkZubi6NHjyI+Ph633norli1bBrVaXatj7Nixo8r+Y5cvX0ZISAi+++47jBgxAmvWrEHLli3RpUsXFBUVOcZO6Nq1K5YsWeKybXJyMt5++2383//9H1q1aoXw8HAUFhY6/n2MRqPj38N+rLlz52Lu3LkICQlxjN1z8uRJR2fXuXPnujy0UKkYGBTC+eFTat5WSSSLW2+9FSkpKfj888+xbt06pKSk4PTp0wgLC0NsbCz69++Pe++912XAuI8++ghr167Ftm3bkJGRgT///BM6nQ6dO3fGsGHD8OKLL5a7E6BPnz748ccf8cEHH+DgwYNISEgod0eDt4wYMcJxl8HWrVuRmJiINm3aYNasWZgxYwbGjBkDoPI7KSpjsVhcagsqc/PNNyMpKQnvvPMO1q9fj8OHD0Or1aJHjx4YNWoUpkyZUm54/1dffRXdunXDli1bcOrUKRw6dAgqlQqtWrXC4MGD8eKLL7pc/EeOHAmr1Yrff/8dR44cQWpqKkwmE1q0aIHBgwfj//7v/1ye4aFkglif9VlUzs6dOxEXF+cYL762LuUWI+ndobhNfVCa8Vq2VO1AVOrYsWMA0KQHniHv69KlC44cOYLVq1fjrrvukrs4jVpNfmc9dS2pDK8oCqFyGukRAMBmCSKqZzt27MCRI0eg1Wq9dtEi+TAwKIRauCYwcPAmIvKC9evXY9myZeXu0Ni8eTNGjRoFAHjkkUe8No4NyYd9GGTgjZEeVU59GAAwMBCRVxw/fhxTpkyBRqNBq1atEBoaivT0dMcASrGxsfjggw9kLiV5A2sYZOCtkR5dahisyh91jIjq3+DBg/Hss8867o74888/UVxcjL59++K9997Djh07EBwcLHcxyQtYwyCDmTNnYurUqQCA3bt3eyQ0qJ0ePgUAsLEPAxF5XqdOnfDxxx/LXQySAQODDHQ6nWNwE0+N9CiNw8AmCSIi8g42SSgEOz0SEZE3MTAoRLk+DAwMRESNWkMbJomBQSEE9mGgKgiCAJvN1uD+EyKi8uwPT5TryaTuMDAoiE1wDgy8S4JcGQwG2Gw2x2Pgiajhys/Ph81mg8FgkLsoDgwMCuIaGNgkQa6CgoIASI/hzcnJgcXC7whRQ2OxWJCTk+N4XLb997Yh4F0SCmITnP45GRjoGj4+PmjRogUuXryI8+fPAwBUKhUEQWhQ1Z5ETZG9CcL5IWItWrQo9/AsOTEwKIhrDQP7MJArQRAQHBwMHx8f5ObmorCwEBaLhX0aiBoAQRCgUqmg1+vh4+ODgICABtUcATAwyMIbQ0MDpYHB/n8/axioAgaDocH9R0REDR/7MMjAG0NDA4DIJgkiIvISBgYZzJw5E/n5+cjPz8fmzZs9tl9R4LMkiIjIO9gkIQNvDA0NsA8DERF5D2sYFERUsUmCiIi8g4FBQdiHgYiIvIWBQUFEFQduIiIi72BgUBCRIz0SEZGXMDAoCPswEBGRtzAwKIio0pa9YWAgIiIPYmBQEjZJEBGRlzAwKAibJIiIyFs4cJMMvPUsCag4cBMREXkHaxhk4K1nScC5hoFDQxMRkQcxMMjAW8+ScA4MIgMDERF5EJskZOCtZ0k43yVhs5qhrmRdIiKimmANg4LY1DrHtGgulrEkRESkNAwMSqIqCww2i0nGghARkdIwMCiISw2DpUTGkhARkdIwMCiJS2BgDQMREXkOA4OCiCrnwMA+DERE5DkMDAoiavRlb6ysYSAiIs9hYFAQkX0YiIjISxgYlMQpMICBgYiIPIiBQUFUai0sYuk/KZskiIjIgxgYFESjFmC2D97JGgYiIvIgBgYFUasEmOyBgTUMRETkQXyWhAy89XhrjUqACdLzJAQGBiIi8iDWMMjAW4+3VqsElJQGBtYwEBGRJzEwyMBbj7fWqASYRKnSiDUMRETkSWySkIG3Hm+tYpMEERF5CWsYFETj1OlRZeVdEkRE5DkMDAqiVqnKahhsrGEgIiLPYWBQEI1KgJl9GIiIyAsYGBTEeRwGtc0EiKLMJSIiIqVgYFAQ53EYAABWs3yFISIiRWFgUBBpHAanG1/Y8ZGIiDyEgUFBNGrWMBARkXcwMCiISigbuAkAH0BFREQew8CgIBqn2yoBsEmCiIg8hoFBQVyeVgkAFt5aSUREnsHAoCDl75JgDQMREXkGA4OCqNXX1jAwMBARkWcwMCiIRiWgUNSXzTAXylcYIiJSFAYGBVGrBBTBOTAUyVcYIiJSlHp9vPW5c+dw7tw5dO7cGb6+vvV56AbFZDLBbJbGSCgq8txFXS0IKIaubAZrGIiIyEM8WsOwb98+TJs2DT///LPL/Pz8fNx7772IiorCTTfdhIiICPzvf//z5KEblXnz5sHPzw9+fn4YNGiQx/arUQsoElnDQEREnufRwLBo0SK8//770Gq1LvP/8Y9/YPXq1RBLH4aUn5+P8ePH49ChQ548fKMxc+ZM5OfnIz8/H5s3b/bYftUqFYpYw0BERF7g0cCQkJAAg8GAwYMHO+YVFxfj66+/hlarxcaNG1FQUICpU6fCYrHgk08+8eThGw2dTgdfX1/4+vrCaDR6bL8a9mEgIiIv8WhgOH/+PFq2bAlBEBzztm/fjvz8fNx1110YPHgwDAYDXn/9dfj5+WHr1q2ePHyTp1YJKBadaxgYGIiIyDM8GhiuXLmC4OBgl3m7d++GIAgYNmyYY55er0d0dDTOnj3rycM3eRqVgEIYymawSYKIiDzEo4HBx8cHmZmZLvP++OMPAMDNN9/sMl+r1UKtVnvy8E2edFslaxiIiMjzPBoYOnXqhFOnTiElJQUAcPHiRWzduhWhoaHo1KmTy7pnz55FWFiYJw/f5GlUqmvukmANAxEReYZHA8PDDz8MURQxbNgwvPTSSxg8eDDMZjNGjx7tsl56ejrOnz+P9u3be/LwTZ5KBddxGEwMDERE5BkeDQxPPfUUBg4ciPT0dHz44Yc4fPgw2rdvj1dffdVlveXLlwMABg4c6MnDN3kalYp3SRARkVd4dKRHrVaLTZs2Ye3atUhOTkarVq1w7733lrt1UKPR4LnnnsMDDzzgycM3eWqVADPUsIgqaAQbmySIiMhjPD40tEqlwt1334277767wnVeeOEFTx+WIN0lAUh3SgSgEDDly10kIiJSCD58SkHUamn8izyU1uiU5MlYGiIiUhKPBoYLFy7g559/xpEjR8ot++ijj9CxY0f4+fnhtttuQ1JSkicPTQC0KumfM0/0kWYwMBARkYd4NDB89tlnuOuuu3DgwAGX+f/617/w0ksvIS0tDYWFhdiyZQsGDRqES5cuefLwTZ62tIYh317DUJwrY2mIiEhJPBoYtmzZAo1Gg/vuu88xTxRFvP322wCAGTNmYP369Rg0aBAuX76MDz/80JOHb/LUqtLAIJYGBlMeYLPJWCIiIlIKjwaG9PR0hIeHw8fHxzFv//79OHv2LOLi4vDmm29i6NCh+Oabb6BWq7F+/XpPHr7JEwQBOrWqrA8DIIUGIiKiOvJoYMjMzERERITLvISEBADAPffc45gXFhaGDh064MSJE548PAHQqAXkiU6Bgf0YiIjIAzwaGNRqNfLyXC9QO3fuhCAI6N+/v8v8gIAAmEwmTx6eAGjVKuShrIaH/RiIiMgTPBoY2rRpg7S0NOTk5AAASkpKsGHDBhiNRvTs2dNl3cuXLyM0NNSThydIgSGfNQxERORhHg0Md9xxB8xmMx5++GGsWbMGkyZNQk5ODoYNGwaNpmyMqKtXr+LEiROIiory5OEJ0p0SLjUMJaxhICKiuvPoSI/Tpk3DsmXLsGHDBmzcuBGiKEKv15d7lsSaNWsgimK5ZgqqO61ahRzRr2xG4RX5CkNERIrh0cDQvHlz7NmzB++++y5SUlLQqlUrPPvss+jSpYvLetu2bcMNN9yAESNGePLwBKnTYzb8y2YUXpavMEREpBgef5ZEZGRkleMrzJ8/39OHbVRMJhPMZjMAoKjIs0+U1KlVyBKdAkMBAwMREdUdnyUhg3nz5sHPzw9+fn4YNGiQR/etUQu4IgaUzSjM8uj+iYioafJ4DYNdRkYGNmzYgJSUFOTl5cHf3x+dO3fG0KFDcd1113nrsI3CzJkzMXXqVADA7t27PRoatGoVrrg0STAwEBFR3Xk8MBQWFuL555/HokWLYLVaAUjDQwuCNGyxWq3GhAkT8MEHH7iMCNmU6HQ66HQ6AIDRaKxi7ZrRqlUohh6Foh4+QgmbJIiIyCM8GhisVitGjBiBrVu3QhRFXHfddbj++usRERGB8+fPIzk5GRkZGfjqq69w7NgxbNy4EWq12pNFaPLsD6C6An/4oAQoyJS5REREpAQe7cOwYMECbNmyBUFBQVi6dClOnTqFX375BQsXLsQvv/yCU6dO4ZtvvkFISAi2bNmCr7/+2pOHJ0g1DABwXgyWZuSeA0RRxhIREZESeDQwLF26FIIg4LvvvsMjjzwClcp194Ig4OGHH8bKlSshiiKWLFniycMTAE3pOT8nlo6iaSliPwYiIqozjwaGpKQktG3bFgMGDKh0vQEDBiA6OhqJiYmePDwB0GmkJomzotOw2znpMpWGiIiUwqOBoaioCMHBwdVaNygoCMXFxZ48PMG5hiGkbObVMzKVhoiIlMKjgSEiIgIpKSkoLCysdL3CwkIkJycjPDzck4cnlPVhOONcw8DAQEREdeTRuyQGDhyIRYsW4bnnnsNXX31V4XovvPACCgsLMXjwYE8enlDWJHHOpUnitEylISJqxGxWwFwEWIpLf5ZI/cLMxdK8yuZbikvn23+WuJnn9HPYW0DMHXJ/4kp5/OFT//vf//D1119j165deOGFF9CtWzeEh4fjwoULSEpKwkcffYSkpCTo9XrH4EXkOfYmidNiC4iCCoJoAzJTZC4VEVEdiGLZRdlSUnYRtxSXXqQ9Nf+adWyW+vuMRTn1d6xa8mhgiImJwdKlS/HYY4/h8OHD+Nvf/lZuHVEUYTQasWTJEnTs2NGThyeUNUmUQAdzYFvoco4DF4/IXCoiUiRRBKwmwFwoXXzNRU7ThdKF1+W9u3WqMc/i2WfuyE6lBTQGQKMv+6k1yF2qKnl8pMeRI0eie/fueOedd/Dzzz/j/PnzjmUREREYPnw4pk6dig4dOnj60ISygZsAoDi4sxQYCi4B+ZmAX3MZS0ZE9c5qBkz5gKlQuvi6TBeUXZQtxbW/oIs2uT9l7alLL9haQ+mF2z5tLL2IG+s4/5pQoDFIx1Q1zsc4eeVZEh06dHD0YcjLy0Nubi4CAgLg71/2jIOePXsiJycHx48f90YRmix7DQMAFAXFIABrpTcXEwG/22QqFRFVyGaT/oI2FZS97Bf0Wk+XBgObWe5PV32CCtD6ShddrRHQ+jhNu7sQG0rn66ULdqXz3VzQNYZGe+GWi9cePmXn7+/vEhTs0tPTceXKFW8fvsnRONUw5Ad3RQv7m/TdQDQDA1GdWC2AKQ8oyS+9QOcDJXmlF+gC1+nqXuTNld9V1iA4Lt4+bi7oFcyzX7jLrVfB+motIAhVl4Vk4/XAQPXLuYYhO7SnlNpFG3Bqu4ylIpKJywU+v+xnRdMl+dL6pgKneXll4cDSQMeO0RgBnQ+g85X+Stf5Su8rm9YaS9evKAD4lP1Fzgs5gYFBcXROgcGk9gXCuwPnDwJn9kr/6el85SscUXU4LvKlr+Lc0ulrf+aVXeAdF3+nv/JL8gFridyfpoxKc81F2wfQ+ZWfdlz0qzmt9QFUfIgfeR8Dg8I4N0mYrDYgeqAUGKwlwLFNQJd7ZSsbKZzzhb7Y+aLu7kJf+r7YzbyGUkWv85Neer/Si7x/6XTpe71/5cuvDQMandyfiKhOGBgUxrlJwmwVgevvAbZ/KM048iMDA7lns0kX++KrFbxynaZzrrnIN4QLvXDNxduv7IKu8y27kOv9yy93d8HX+rBDHNE1GBgUxvm2SovVBkTEAs1aS6M9pv4CFF4BfKr3vA9qRGzW0r/YK7vQV/AqKV0PMjwGXaUB9AHSxdvx0x8wOE3r/QF94DXvndbX+fICT1QPGBgUxrmGwWS1SZ2VYscAW+ZJt279uRi4+QUZS0iVspQARdk1fOVIYaE+1eVCb3Caxw51RI1GnQLDhAkTar1tfn5+XQ5NFdA4BQaLtfQvxl4TgG3vSSOy7f4SuOmpRjGqWKMmilLHu4LLQGGW9Cq4DBSWvne+2Dtf/OurWl9jkC7cFb30AU7vm12zzF/qPc8LPVGTUqfAsGjRIgi1/E9DFMVab0sV011bwwBIIzx2HwUcWArknQN2fwHc/Lw8BWzMTIVA/gUg/xJQkOkUApzCgPN7b/bQV2kAY5D0MjQDjM1qcNEPkAaxISKqgToFhltuuYUX/QZGr3UKDBanIVsHTAf+WildxLa9D3R7EAhsKUMJGxhRlP6yz7sA5F+UXi7TF8tCgjeq/dV6qU+J/eJvDJIu/i7v3bx0fvwLn4jqVZ0Cw5YtWzxUDPIUvaYsMBSbrWULmrUC+j0NbP9AuvD9+BQw9kfldxQryQOungVyzwBXz0jTV88AVzOA3LPSe0/VBAgqwBgM+IYCPqGAb4j00yekdF5I2TJ7SNAaPXNsIiIvY6dHhdFrygZwKbFc81CYW6YCKeuAy6nAya1SR8jb/lHPJfQwiwnISQeyTwLZp4ArJ6XpnHQpFBRfrdv+1TrALxzwCwP8wwG/FqWv5lIA8AktCwHGZhxAh4gUi4FBYQxOTRIlFqvrQp0PMPIr4D+DpQ6Qf7wrXfz6lH8MeYNiNQNXTgCZqcCV42Wh4MopqeagNk/LU2kA/0gg8DogIEIKBf4tyocDYxCr/omIwMCgOC41DGY3F9KIG4B7/w18N1F6//PLUie9W6bJ3zxhKgAuHwMuH5XCweVUIPOoFBJslprty7d5aRhoCQRGSf01Aq8DAq6Tpv1asDaAiKgGGBgUxqUPw7U1DHbdHpB68f8yXXq/5S0gfRdw18dAUGvvF7IoRwoEmSml4SBFCgZX06u/D0ENNIsCgtoCwW1dfwa1kUbsIyIij2FgUBjnuyTc1jDY9X1SanP/6RnAZgZO/A581ksas6H3JCC0Q90LU3ilNAykSAHhUrL0M/9C9ffh2xwIjQGad5R+hnaQgkFglPQ4XCIiqhcMDApj0FbS6fFaNzwENO8EfDcJyDpWOrDTF9IrvBsQfZvUhBHaEfANK+3UpwVEq7RuUXbZmAO556ROh47XSWlZdTVrVRoMYqTj2X9yGGsiogaBgUFhnJskynV6dCcyFnhqB7DnK2k0yKJsaf6FROnlSYIKCG4nhZTmMWU/QzpIHTKJiKjBYmBQGOeRHqusYbDT6IG4Z6TmiCM/An8tB07vrP34BFpfqR9BSDugeWcpFIR1BoKjOSQ1EVEjxcAgA5PJBLPZDAAoKiry6L4FQYBeo0KJxeY6cFN16HyA2Eekl6kQOH9Q6n+QdbzsuQc2i3R3gUot3XJoH4vAP1wKCUFtpHm8FZGISFEYGGQwb948zJkzx2v7N2jVKLHYql/D4I7OB2gdJ72IiKjJU/i4wA3TzJkzkZ+fj/z8fGzevNnj+7f3Y6j0LgkiIqIaYA2DDHQ6HXQ6HQDAaPT8swTst1ZWq9MjERFRNbCGQYHsoz0Ws4aBiIg8hIFBgQyOGgYGBiIi8gwGBgUqq2FgkwQREXkGA4MC+eikwFBoskAURZlLQ0RESsDAoEC+Oqkvq01kswQREXkGA4MC+ejLnidRUFLDx0ITERG5wcCgQH76srtlC03sx0BERHXHwKBAPrqywFBgYg0DERHVHQODAvnq2CRBRESexcCgQD5OTRIFJWySICKiumNgUCDnGoZCNkkQEZEHMDAoEGsYiIjI0xgYFIg1DERE5GkMDArkfJdEPmsYiIjIAxgYFMjfUBYY8orNMpaEiIiUgoFBgZr5aB3TOUUMDEREVHcMDArUzEfnmL5ayMBARER1x8CgQL46NTQqAQCQU2SSuTRERKQEDAwKJAgCAo1Ss0QOaxiIiMgDGBgUKrC0H8NV9mEgIiIPYGBQqGalNQzsw0BERJ7AwKBQ9o6PeSUWmK02mUtDRESNHQODQoX4lt0pkZlXImNJiIhICRgYFCo80OCYvpBbLGNJiIhICRgYFKpFQFlguHiVgYGIiOqGgUGhwgNYw0BERJ7DwKBQbJIgIiJPYmBQKOfAwCYJIiKqKwYGhQr20UGrloaHPs/AQEREdcTAoFAqlYCoIB8AwKmsAplLQ0REjR0Dg4K1a+4HALiYW4K8Yo74SEREtcfAoGDRYb6O6ZOXWctARES1x8CgYNGlNQwAcDwzX8aSEBFRY8fAoGDOgSH1AgMDERHVHgODgnWO8IdKulECiWdzZC0LERE1bgwMCuaj06BDmD8A4K+Mq7DZRJlLREREjRUDg8J1vy4QgPSY65O8vZKIiGqJgUHhukc1c0wfysiRrRxERNS4MTAoXM9WQY7p3SeuyFgSIiJqzBgYFK5TuD+CfLQAgB3HL8tcGiIiaqwYGBROpRLQLzoEAHAmuwgZVwplLhERETVGDAxNQL/oUMf0jjTWMhARUc0xMNRQbm4unn76aYSHh8NoNKJPnz745Zdf5C5WpeJKaxgAYDsDAxER1QIDQw2Iooh7770Xy5cvx7x587B27Vq0bdsWI0aMwG+//SZ38SrULtQXLZsZAQBbj2bCbLXJXCIiImpsGBhqYN26dfj999/x1VdfYcKECRg0aBCWLVuGbt26Yfr06XIXr0KCIGBw5zAAQF6xBXtO8m4JIiKqGQaGGvjxxx8RGBiIe+65xzFPpVLhsccew759+3DmzBkZS1e5wde3cExvOnJRxpIQEVFj1GgDw4ULF7B06VI899xziI+Ph4+PDwRBQKdOnaq1/d69ezFq1ChERERAr9cjKioKEyZMwLFjxyrc5vDhw7j++uuhUrmetu7duzuWN1Q3tQ2Bv14DAPg1+SJEkcNEExFR9TXawPDtt99i7Nix+OSTT5CQkICioqJqb7t48WL069cPK1euhMViQbdu3ZCbm4uFCxciNja2wv4IWVlZCA4OLjffPu/KlYZb1a/TqDAgpjkA6fbKlAt5MpeIiIgak0YbGAICAjB48GC88sorWLVqFebNm1et7Q4fPoxJkybBarVi+vTpOHfuHPbt24fz589jzJgxKCwsxAMPPICsrCy32wuC4MmPUa9ud2qW+DnxvIwlISKixqbRBoYJEyZg06ZNeOuttzBy5EhERERUa7s5c+bAYrEgLi4Ob7/9NrRaaRREHx8fLFiwAG3btkV2djbef//9ctuGhIS4DRL2mgV3tQ8NyaDOLWDQSv/kPx08x2YJIiKqtkYbGGqjsLAQa9euBQA89dRT5Zbr9XqMHz8eALBs2bJyy7t06YLk5GTYbK63JSYmJgIAunbt6uESe5afXoNBnaVahvQrhTh05qrMJSIiosaiSQWGAwcOOPo63HLLLW7XGTBgAADg1KlTOH/etdr+vvvuQ05ODtasWeOYZ7PZsGTJEvTq1QstW7b0Usk9554bIh3TPx08K2NJiIioMdHIXYD6lJqaCgDQ6XSIiopyu050dLRjOiUlxaWp484778TAgQMxadIkZGdno1WrVvjqq69w6NAhbNy4scrjZ2RklLv10l47UV8GxDRHgEGD3GIL1v51Hv8Yfj3UqsbbL4OIiOpHkwoM9r4GQUFBFXZedO6HkJ2d7bJMEAT8+OOPeOWVVzBt2jTk5uaiW7duWLNmDW677bYqj79gwQLMmTOnDp+g7vQaNe7oGoHl+zKQmVeCP45mYmCnMFnLREREDV+TCgz25gidTlfhOgaDwTFdWFj+yY4BAQH4/PPP8fnnn9f4+BMnTsTQoUNd5iUmJmLy5Mk13lddPNDrOizflwEAWLYnnYGBiIiq1KQCg9EoPU/BZDJVuE5xcbFj2sfHx6PHj4qKqrAppD71ah2EDmF+OHYpH5tTLuFibjFaBBiq3pCIiJqsJtXpMSgoCIDU1FDRLYXOgy/Z11caQRDwcJ9WAACrTcTK0toGIiKiijSpwGAfNtpkMiE9Pd3tOsePHy+3vhLd36MldBrpn3/ZngxY+ARLIiKqRJMKDLGxsY5miT/++MPtOlu3bgUAtGnTptqDQTVGzXx0GNFd+nxnc4rwy+ELMpeIiIgasiYVGHx9fTF8+HAAwPz588stLykpwaJFiwAAo0ePrs+iyWLizW0d01/+cYIjPxIRUYWaVGAAgFmzZkGj0WDHjh145ZVXYDabAUh3REyaNAknT55EYGAgXn75Za+VwWQyoaCgAAUFBTV6aJandYkMxM3tQwEAf525it0nG+7Ds4iISF6NNjBkZGQgNDTU8ZoyZQoAIC0tzWX+Pffc47Jd165dMX/+fKjVavzzn/9EZGQkevXqhYiICCxduhRGoxErV65EaGio18o+b948+Pn5wc/PD4MGDfLacarjiVvaOaa/2Hq8kjWJiKgpa7SBwWq1Iisry/HKz893O//q1fLPS5gwYQISEhIwcuRIqNVqJCYmwt/fH+PGjcPBgwdx++23e7XsM2fORH5+PvLz87F582avHqsq/TuEonNEAABgS2om9p9mLQMREZXXaMdhaNOmTZ3a3Pv06YNVq1Z5sETVp9PpHINH2TthykUQBLwwuAOeWLIfAPDOL6n49om+jfox3kRE5HmNtoaBPOf261vghqhmAIDdJ69g27HL8haIiIgaHAYGgiAImDokxvH+zXXJMHNcBiIicsLAQACA+PYh6N9B6uiZejEP/915WuYSERFRQ8LAQACkWoY5d3eBVi31Xfhw01Fcyi2uYisiImoqGBjIoV1zP8dtlvklFsz8IZGDOREREQAGBrrG0wPbo1Ww9JTOX5MvYQUfTEVERGBgkEVDGenRHR+dBh+MugGq0rsqX19zBCcy8+UtFBERyY6BQQYNaaRHd3q1CcaTA6IBAAUmK55Ysh/5JRaZS0VERHJiYJBBQxrpsSLPD+6IXq2DAABpl/LxwvKDsNrYn4GIqKliYJCBTqeDr68vfH19ZR/psSI6jQqfP9oDLQL0AIBNRy7i1Z+S2AmSiKiJYmCgCoX5GzB/bC8YtWoAwP92p+Ofv6QyNBARNUEMDFSp2Khm+GJsT8f4DF9sPY7Zqw/DxuYJIqImhYGBqjSgY3N88tCNUJfeOrF452lM+fYAikxWmUtGRET1hYGBquWObhH4z2O9YNBKX5l1f53Hvf/awVsuiYiaCAYGqraBncLwzaS+CPGVHs2dejEPd326HUt3nWYTBRGRwjEwUI30bB2Edc/2R8/SWy4LTFb848ckPPTlLhw5lytz6YiIyFsYGKjGwgMN+PaJvvi/W6Md/Rr2nLqC4Z9uwwvLD+J0VoHMJSQiIk9jYJBBQx4aurq0ahWmDeuEn56OR5fIAACAKAI/HDiLW9/bgslL9mHPySu8BZOISCEYGGTQ0IeGromuLQOx+pmb8cGoG9CymTQIlSgCGw5fxKj5OzHo/a34ZPMxpGcVylxSIiKqC0Hkn4D1zmQywWw2AwB2796NQYMGISEhAf369ZO5ZHVTbLbi+z/PYsH2EzieWb5ZIqaFP26NaY5bY8LQo3Uz6DVqGUpJRKQ8O3fuRFxcnFevJRqv7JUqpdPpoNNJdxo01KGha8OgVeORm1rhod5R2HosE8v3ZOC3lEswWW0ApLsqUi/mYf4fJ6BTq9DtukD0bB2EHq2aoUtkIFo2M0Jlf0wmERE1KAwM5HEqlYCBMWEYGBOGq4Vm/Jx0HhsPX0DC8SyUWKTwYLLasP90NvafznZs56tTo2O4PzqF+6N9mD9aB/ugdYgPooJ9YNCyNoKISE4MDORVgT5aPNynFR7u0wrFZit2ncjCtmOXsf90Ng6fuwqztaxFrMBkxYH0HBxIzym3nzB/PVqH+CAi0IjwQAPC/PUIDzSgRYAB4QEGNPfXM1QQEXkRAwPVG4NWjVtjwnBrTBgAqc9D4tmrOJSRg5QLeUi9kIejF/MctRDOLuWV4FJeCYDscsvsAo1aBPvqEOyrQ5CPDsG+WgT76l1+SvN1CDRq4W/QOm4LJSKiyjEwkGwMWjV6twlG7zbBjnlWm4hTWQU4dbkAp7MKkX5Fep3OKkBGdhFMbsKE3dUiM64WmXHycvXHgfDXaxBg1MLfoEGgUYsAoxYBBm3ptAYBBmleoFGLAIO0rp9eA3+DBr56DbRq3mhERE0DAwM1KGqVgOjmfohu7ldumSiKyC4048LVYlzMK8al3GJcuFqCi3nFuHi1GJcLTLhSUILsAjPySyzVOl5eiQV51VzXHYNWBT+9RnoZNPDVSWHCTy8FCj+DBv72ab19mRa+erXLtK9Oww6fRNSgMTBQoyEIgqPJ4XoEVLpuicWK7AIzrhSYpFehCdkFJmQVSD9zi83ILTIjt9iCq0XS9NUis9vmkMoUm20oNptwOd9Ul48GQOr06aPXwFenhlGnuea9FCp89Gr4aDXw1avho9PAR6eGj04NX719WuPyXq9RQRAYRIio7hgYSJH0GjXCA9UIDzTUaLtisxV59hBRbHaECedwkV9iQX6xBQWltRP5xRYUmKSfeSWWSptNKlNgsqLAZEVmrbZ2TyUAvjqNFDhKQ0TZezWMWmmeUaeGQauGUauGUatyfa9z/9OgZSAhakoYGIicGEovhM399bXeh8liQ0GJRQoW9ldxJdOmsnmFJisKTaU/SywoNFtRl6HVbKJTs0teSe13VAFBQGnIKA0Y9lChVcOgKw0f2msDibp8INGpYdCoodeqYNCoYdCqoNeqYdCU/dSwvwiRrBgYiDxMp1FBp9EhqPQx4HUhiiKKzTYUmCwoLLGi0GxBQYkUKgpKrChyei+FDSsKSiwoMlmlbZzmuYQRk9UDn1QaBtyT+6uMRiVAr1E5Qp2+NExI81SOeQatU/hwmqd3Ch/XznfepzStgl4jvWffEiIJA4MMnIeGbqwPn6L6IQiC4y9wlO8HWms2m4gisxQqSsw2FJmtKDJZpZ9mK4pLpwtNVhRfu8zlvc2xrn0fxeay954ceN5iE2EpbbapTzq1qjRsqKRprRo6tQo6jTTf+aeuNGToNPZ1VdBXuI26dBvX/eg1KujUaqfjST9Zw0JyY2CQwbx58zBnzhy5i0FNmEolwLf07g1vEUURJRZbWYAwOQcOW2kgsaC4NJjY17X/LDbbUGKxosTsOt+x/JplNe2wWl0mqw0mq80bLTo1ohLgCBllAaUseOjVqnIhQ1saUsp+CtCp1dBqBEeA0artL6kGp+x9WfCxr+9uf1oVa2GaCgYGGcycORNTp04FUPbwKSKlEQTBUdXfrB6OZ7OJMFltUoiwWN2HjNIQUuwmhJSYrRWuW2KxSsGhNJg4/zRZbI7npXj184lw1Nw0NBqV4BI+9PYw4SZ4aNX2aenntfMrDTEaFbQqaV2NWnDUvJRNC9CoVI5p+z40aoYbT2BgkIFSHz5FJCeVSoBBJQWUQGjr9diOsOIUIErM7kKG1fHeXfBwXu7YT4XbWB0Byfmn1Vb/DyC2NxcBDS/MXEslwCWQaNSlIUSjgkZVFnJcAodK5TZ8aDX2ZfYQ47ovnUYFjcpNoNGU32erYB8Ee6DfkzcxMBAR1ZFzWJGbpbQJxR44zFYRJosNZud5Fmm+uTTkmK1ly81WG0yly8rel02bLaXbOfZj36foul7psa/dv0WGQOPMJsKrTVi19c4D3TGqV5TcxagUAwMRkYJoSv/S9Wmgf6zabCLMtgqCTAXBwzn8WJzCiMVWFnwspT8d790ukwKL2WVfomO+FGik9U2l29n3421adcNvKmFgICKieqNSCdCr1NBrANR+uJN6JYqi1OziCBKuQcMRRpxCixQ07MGkbJ3yQUea7hRe+ei1DQEDAxERUSUEQSjtpwAYIX+zk1x4Yy8RERFViYGBiIiIqsTAQERERFViYCAiIqIqMTAQERFRlRgYiIiIqEq8rVIGfFolERE1NqxhkMG8efPg5+cHPz8/PniKiIgaBQYGGcycORP5+fnIz8/H5s2b5S4OERFRldgkIQM+rZKIiBobBgaZFRQUAAASExNlLgkRETVW9muI/ZriDQwMMjtx4gQAYPLkyTKXhIiIGjv7NcUbBFEU5X04eRN37tw5rF27Fu3atYOvr2+d9pWYmIjJkydj/vz56Natm4dKSO7wXNcvnu/6xfNdfzx1rgsKCnDixAmMGDECkZGRHixhGdYwyCwyMhJPPPGER/fZrVs39OvXz6P7JPd4rusXz3f94vmuP43hXPMuCSIiIqoSAwMRERFViYGBiIiIqsTAoCDXXXcdZs2aheuuu07uoigez3X94vmuXzzf9acxnWveJUFERERVYg0DERERVYmBgYiIiKrEwEBERERVYmAgIiKiKjEwEBERUZUYGIiIiKhKDAxERERUJQYGBdi7dy9GjRqFiIgI6PV6REVFYcKECTh27JjcRWtwZs+eDUEQKn0988wzFW6/adMmDB8+HGFhYTAYDIiOjsazzz6LCxcuVHns5cuXY+DAgQgODoaPjw86d+6Mv//978jNzfXkR6xXFy5cwNKlS/Hcc88hPj4ePj4+EAQBnTp1qtb2cpxPm82G+fPno2/fvggMDISfnx9iY2PxzjvvwGQyVavccqjtuR4/fnyV3/n33nuv0n00tXMNSE+RfOONNzBkyBBERERAp9MhMDAQvXv3xuuvv47s7OxKt1fkd1ukRm3RokWiWq0WAYihoaFiz549xYCAABGA6OPjI27evFnuIjYos2bNEgGIYWFhYnx8vNvXBx984HbbuXPnigBEAGJkZKTYo0cP0Wg0igDEkJAQMTExscLjTpo0ybFtmzZtxNjYWFGr1YoAxHbt2olnz5711kf2qg8//NDxuZxfMTExVW4rx/k0mUziHXfc4VLObt26iYIgiADEXr16ibm5ubU+H95U23M9btw4EYAYFRVV4Xd+2bJlFW7fFM91WlqayzmOjIwUe/XqJbZs2dIxLyIiQvzrr7/cbq/U7zYDQyOWlJQkajQaEYA4ffp00WQyiaIoigUFBeKYMWNEAGJQUJB4+fJlmUvacNgDw7hx42q03S+//OL4Rfz0009Fm80miqIoZmVliYMGDRIBiNHR0WJJSUm5befPny8CEHU6nbhq1SrH/PT0dLF79+4iALF///51+lxyWbBggTh48GDxlVdeEVetWiXOmzevWhcxuc7njBkzRABis2bNxK1btzrmJyYmilFRUSIAcezYsbU5FV5X23NtDwyzZs2q8TGb6rk+duyYGBYWJr7++uvi8ePHXZZt375dbN26teMCXlxc7LJcyd9tBoZG7MEHHxQBiHFxceWWFRcXi23bthUBiDNmzJChdA1TbQND7969RQDiI488Um5ZZmam6O/vLwIQ58+f77LMYrGIERERIgBx5syZ5bZNTk4WVSqVCEDcsGFDjcrUEC1cuLBaFzE5zufly5dFg8EgAhC//PLLcttu2LBBBCAKgiAmJydX5+PKqrrnuraBoSmf66KiIjE/P7/C5Tt27HCEgp9++sllmZK/2+zD0EgVFhZi7dq1AICnnnqq3HK9Xo/x48cDAJYtW1afRVOckydPYu/evQDcn+vQ0FA88MADAMqf6z/++APnz58HADz55JPltu3UqRMGDBjgdlulkut8rl69GsXFxfD19cXYsWPLbTtkyBC0a9cOoihi+fLltfhkytKUz7XBYICvr2+Fy+Pi4hAYGAgASE5OdsxX+nebgaGROnDgAIqKigAAt9xyi9t17F+uU6dOOb6IJDl06BDGjBmD2267DXfddRemTZuGhIQEt+va5+t0Otx0001u17Gf6927d8Nms5Xbtm3btoiKiqp024qOrzRynU/7+z59+sBgMLjd1v67pMR/i99//x2jRo3CbbfdhnvvvRevvfYaEhMTK1yf57piVqsVZrMZAFyChdK/25pab0mySk1NBSB9MSv6ckVHRzumU1JSEBERUS9lawwOHjyIgwcPOt6vXbsW7777Lu677z4sWrQIAQEBjmX2c926dWtotVq3+7Of66KiIpw+fRpt27Z12bZ9+/YVlsW+7fHjx2GxWKDRKPvXUq7zWZNtU1JSqv15Gos//vjD5f1PP/2EN954A0888QQ++eQT6HQ6l+U81xX74YcfUFhYCKDsIg4o/7vNGoZG6sqVKwCAoKAgCILgdp3g4GDHdFW3ADUV4eHhePnll5GQkICLFy+iuLgYycnJmD59OtRqNX744Qfcd999EJ2e+m4/187n81oVneuabGu1Whv1LZbVJdf5rMm2Svp9adeuHWbPno39+/cjKysLRUVFOHDgACZNmgRRFDF//nxMnjy53HY81+5lZ2fjpZdeAgDcdddd6Natm2OZ0r/byv5TRsHszRHX/lXgzLlqyp6Gm7qK2gbffvttxMbG4uGHH8Zvv/2GFStWYPTo0QDqdq5rs21lv/RKINf5rMm2Svp9ee2118rNi42NxVdffYXo6GjMmDEDixYtwpNPPulSjc5zXZ7ZbMbo0aORnp6O5s2b44svvnBZrvTvNmsYGimj0QgAlQ7GUVxc7Jj28fHxepkau4ceegh9+vQBAKxcudIxvy7nmv9O5cl1PmuybVP4dwCAl19+GZGRkQBcv/MAz/W1bDYbxo4di02bNsHf3x9r1qxxnDs7pX+3GRgaqaCgIABS9ZJz9bkzezWV8/pUufj4eADA0aNHHfPs5y4rK6vC7So61zXZVq1Wu/SdUCq5zmdNtm0qvy8ajcZRq+D8nQd4rp3ZbDZMmDABy5cvh6+vL9atW+e2U6PSv9sMDI2UfThYk8mE9PR0t+scP3683PpUOXuVnr0HNFB27tLT013mO7Ofa4PBgNatW5fbNi0trcJj2reNjo5WfIdHQL7zWZNtm9Lvi7vvPMBzbSeKIiZPnozFixfDx8cHa9euRf/+/d2uq/TvNgNDIxUbG+uohrq297Pd1q1bAQBt2rThHRLVZL/NzPnOk379+gGQwtmuXbvcbmc/13379oVKVfZrFRcXB0C6tTUjI6PSbe3rKp1c59P+fu/evS5Vu87sv0tN5d8CcP+dB3iu7Z5++mn85z//gdFoxOrVq3HrrbdWuK7iv9u1HvKJZPfAAw+IAMT4+Phyy5xHepw+fboMpWt8Dhw44Hgux7XPk+jVq1e1Rm/797//7bLMYrGI4eHh1Rq9bf369Z79QDKo7uiDcpzPmoyGd+TIkep8XFlV91xXZvXq1Y4RC7///nuXZTzXojhlyhQRgGgwGMSNGzdWaxslf7cZGBqxxMTECp8l8eijj4oAxMDAQDEzM1PmkjYMO3fuFJ955plyD4yx2WzimjVrHL+srVq1Kjcs7Pr166scH97duPKiKIr//ve/qxwf3l3oa4yqexGT63xOnz69yvH2x4wZU5uPXu+qc66/++478e9//7uYlpbmMt9isYiLFy92XLx69+4tWq3Wcts35XM9depUR1ioybDtSv5uMzA0cgsWLKjwaZVGo7Haqbgp+P333x2/yMHBweKNN94o9unTRwwNDXXMj46OrjCBz54927HetU+gCw4OFg8dOlThsR9//HHHtm3btnV5Al2bNm3EjIwMb31sr0pPTxdDQkIcLz8/PxGAqFarXebffffd5baV43yWlJSIQ4YMcWxrf6Kf/S+3Hj16iFevXvXY+fGk2pxre6gAILZo0ULs2bOn2KtXLzEwMNAxv2fPnuK5c+cqPG5TPNcJCQmOclf2ZNv4+HjxzTffLLe9Ur/bDAwKsHv3bnHkyJFiixYtRJ1OJ7Zs2VIcN26cmJqaKnfRGpSLFy+Kc+bMEe+8804xOjpaDAgIEDUajRgaGioOHDhQ/OSTTyp94IwoSk+iu+OOO8SQkBBRp9OJbdu2FZ9++ulK/8O1W7ZsmThgwACxWbNmosFgEGNiYsQZM2aIOTk5nvqI9e7kyZOO/6Aqew0YMMDt9nKcT6vVKn7++edinz59RH9/f9HHx0fs3r27+NZbb7n9q6+hqM25TktLE2fOnCkOGjRIbN26tejn5ydqtVoxPDxcvOOOO8SFCxc6aiYr09TOtfMfF1W9KnqQnRK/24IoVnBPHhEREVEp3iVBREREVWJgICIioioxMBAREVGVGBiIiIioSgwMREREVCUGBiIiIqoSAwMRERFViYGBiIiIqsTAQERERFViYCAiIqIqMTAQERFRlRgYiIiIqEoauQtARMqRlZWFf/3rX/j555+RmpqK/Px8BAUFISwsDF26dMEtt9yCu+66C61atQIA5OTk4KOPPgIAzJ49W76CE1GV+LRKIvKIvXv3Yvjw4cjMzAQAhIeHIzIyElarFWlpaSgoKAAAzJ07F//4xz8AAKdOnULbtm0BAPyviKhhYw0DEdVZQUEB7r33XmRmZuKmm27Cp59+it69ezuW22w27Nu3D99++y2CgoJkLCkR1RZrGIiozlasWIHRo0dDrVYjIyMDERER1dqONQxEjQc7PRJRnR0/fhwAEBoaWu2wMH78eEdYAABBEFxeixYtclnfarVi4cKFGDRoEEJDQ6HT6dCyZUs88sgjOHjwYIXHEAQBs2fPRk5ODl544QW0a9cOBoMBkZGRmDhxIjIyMmr1mYmaGgYGIqqzgIAAAMDFixdx7Nixam3TsWNH9OrVy/E+Pj7e5dWiRQvHsuzsbAwcOBATJkzAb7/9Bp1Oh65duyIvLw/Lli1Dnz598M0331R4rOzsbPTp0wcff/wxDAYDOnfujMzMTHz99de48cYbkZiYWMtPTtSEiEREdXT8+HFRrVaLAMQ2bdqIX3zxhZienl7ldidPnhQBiFX9V3THHXeIAMQ+ffqIBw4ccMy3Wq3i+++/L6pUKlGv14spKSku240bN04EIGq1WrF9+/ZiUlKSY9mZM2fE+Ph4EYDYqVMnsaSkpGYfmqiJYQ0DEdVZu3bt8OGHH0KlUuHUqVN48skn0apVK4SHh+POO+/E22+/7Wi2qKlff/0V69evR4sWLbB27VrExsY6lqlUKrz44ot46qmnUFJSgg8//NDtPsxmMxYvXowuXbo45rVs2RIrVqyAXq9HSkoKVq1aVavyETUVDAxE5BFTpkzB7t278dBDD8Hf3x+A1ESxfv16zJgxAx06dMCECRMct1dW1/LlywEADzzwAJo3b+52nQceeAAA8Ntvv7ld3rt3b8TFxZWbHxkZiVGjRgEA1q1bV6NyETU1vK2SiDymV69eWLZsGaxWK5KSkvDnn3/i999/x7p163DlyhUsXLgQly5dwtq1a6u9z0OHDgEA1q9fj5tvvtntOsXFxQCAM2fOuF3etWvXCvdvr3VITk6udpmImiIGBiLyOLVajRtuuAE33HADHn/8cVy9ehWPP/44fvjhB6xbtw67du1C3759q7Wv7OxsAMCJEydw4sSJStctKipyO9+5A2VFy/Ly8qpVHqKmik0SROR1gYGBWLhwIVQq6b+cXbt2VXtbPz8/AMB//vMfiKJY5cudixcvVrh/+zJ7MwoRucfAQET1IjAw0NEHwWQyAZDGXqhKt27dAAA7duyo9bEPHz5c5bLOnTvXev9ETQEDAxHV2eXLl2Gz2SpdJzU1FZcuXQIgjcEAAD4+Po7lFTUn2DslLlu2DGlpabUq3549e7Bz585y8y9cuIAVK1YAAIYPH16rfRM1FQwMRFRn3377Lbp06YKPP/64XMdDURSxYcMG3HPPPRBFEVFRURg6dCgAaWTIwMBAABXf4TBixAgMGTIExcXFGDx4MDZs2FBunVOnTuHdd9/FggUL3O5Dq9Vi/PjxLh0bz507h1GjRqGkpAQdO3Z03GlBRO6x0yMR1ZkgCEhJScHzzz+P559/HhEREYiMjITZbEZGRoaj42KLFi3www8/wGg0OrYbO3YsPvvsM9x9993o2rWr4+FUr7zyCoYNGwZAurXywQcfxK+//ophw4YhNDQUbdu2hc1mQ0ZGhqPmYtasWW7L99RTT+Hnn39Gly5dcP3110Or1SIpKQkWiwXBwcFYsWIFdDqdt08TUaPGwEBEdTZ58mR0794dmzZtwrZt25CRkYGUlBSYzWYEBQVh4MCBGD58OCZNmuSoUbB79913ERgYiO+++w5Hjx513CI5fvx4xzrNmjXDhg0b8P3332Pp0qXYs2cPDh06BD8/P7Rs2RKDBg3C3XffjTvvvNNt+YKCgrBnzx7MmTMHP/30E86dO4fQ0FAMGzYMc+bMQatWrbx2boiUgk+rJCLFGj9+PBYvXoxZs2Zh9uzZcheHqFFjHwYiIiKqEgMDERERVYmBgYiIiKrEwEBERERVYqdHIiIiqhJrGIiIiKhKDAxERERUJQYGIiIiqhIDAxEREVWJgYGIiIiqxMBAREREVWJgICIioioxMBAREVGVGBiIiIioSgwMREREVCUGBiIiIqrS/wMJ+vXnnzNZGQAAAABJRU5ErkJggg==",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "## training\n",
- "loss_progress = []\n",
- "test_loss_progress = []\n",
- "eta = 0.05\n",
- "for i in range(2000):\n",
- " grad = loss_grad(w, b, x, y)\n",
- " w -= eta * grad[0]\n",
- " b -= eta * grad[1]\n",
- " loss_progress.append(loss(w, b, x, y))\n",
- " test_loss_progress.append(loss(w, b, test_x, test_y))\n",
- "\n",
- "plt.plot(loss_progress, label=\"Training Loss\")\n",
- "plt.plot(test_loss_progress, label=\"Testing Loss\")\n",
- "plt.xlabel(\"Step\")\n",
- "plt.ylabel(\"Loss\")\n",
- "plt.yscale(\"log\")\n",
- "plt.legend()\n",
- "plt.show()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "tags": [
- "hide-input"
- ]
- },
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdwAAAGSCAYAAABJ8XDpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAABP+AAAT/gEHlDmEAABbQElEQVR4nO3dd1gU1xoG8HfpRUVUVFAUxQIqdqOUCGKsxBK7JsbeUq4pttjQRKPReM1VE2OUoDHRWGND7CUqdsRgAUSBoKAiXXqZ+8dmNyIL7ML2fX/Ps0/IzpmZb3eRb8+ZOd8RCYIggIiIiFTKSNMBEBERGQImXCIiIjVgwiUiIlIDJlwiIiI1YMIlIiJSAyZcIiIiNWDCJSIiUgMmXCIiIjVgwiUiIlIDJlwiIiI1YMIlIiJSAyZcIiIiNWDCJVKiJUuWQCQSQSQSqfQ8knMsWbJEpechIuVhwiWtFhsbK00uVXmcO3dO0y+FyjF+/HiZn5u5uTnq1q2L5s2bo3///li8eDHOnj0LLnJGuogJl4i0Vn5+PpKSkhAdHY3g4GB89dVX8PX1RYsWLbBt2za1xODk5ASRSITx48er5Xykv0w0HQBReRo0aIDw8PAyt/fp0wcJCQlwcHDA8ePHy2zXpEkTVYRXypIlS9QyzKvPPbzjx4/DwcEBAFBcXIz09HS8ePECN27cQHBwMG7duoXo6GiMHz8ehw8fxo4dO2BmZqbhqIkqxoRLWs3U1BRt2rQpd7s87Uh3tGjRAk5OTqWef+edd7B8+XKcPn0a48ePx+PHj7Fv3z5MmTJFbb1doqrgkDIR6ZSePXvi+vXrsLe3BwD88ssvCAoK0nBURBVjwiW99fodw5mZmVixYgW6dOmC2rVrl7rLVxAEXLt2DYsWLYKXlxfs7OxgamoKGxsbtGnTBh999BEiIyMVOufrXr8eGBUVhenTp6NJkyawsLCAnZ0d/Pz8cPr06XLPU95dylu3bpVuj42NRXFxMQICAuDl5YXatWvDysoKrVq1woIFC5Cenl7ueQDg8ePH+Oijj+Ds7AwLCwvUq1cPvXv3xr59+2SeTx3q16+PTZs2Sf9/+fLlMtu9fPkS+/btw/jx49G6dWtUr14dpqamqFu3Lnr06IHvvvsO2dnZMvf18fGBSCRCXFwcAGDbtm2lbup6vSdeWFiI8+fP4/PPP8cbb7yBWrVqwdTUFLa2tujUqRPmzp2LJ0+eKOdNIN0jEOmwxo0bCwCExo0bl9rm7+8vABAACNHR0YKzs7P0/yUPf39/me3LepiYmAibNm0qM55Xj1FevOPGjRP++OMPwdrausxzrVu3rszzyIpfIjAwULr97t27Qq9evco8h6urq/D8+fMyz3PmzBmhevXqZe4/adKkEueLiYkp81jlGTdunMLHKC4uFpo3by7dLzExsVQbyftd3qNZs2ZCZGRkqX29vb0r3Pf137tXX0dZD2tra+HQoUOVeZtIx/EaLhmEIUOGIC4uDtOnT8fgwYNhZ2eHuLg4WFhYSNsUFhbC3t4egwcPhru7O5o2bQpLS0skJibixo0b+P7775GUlIQZM2agRYsW8PHxqXQ84eHh2L17N+rVq4evv/4aXbp0gbGxMc6fP4/ly5cjPT0dn3/+OXr16gUXF5dKn2fKlCm4fPkyxo4dixEjRqBBgwZISEjA+vXrcfz4cdy/fx+fffYZtm/fXmrfmJgYDBgwAFlZWTAyMsLEiRMxYsQI1KpVC1FRUVi3bh0CAgJw586dSsdXFSKRCL169cKDBw8AAH/++SdGjBhRok1RURG6du0KPz8/tG/fHvXr10dRURHi4uLwxx9/YM+ePYiOjsbgwYMRGhpa4vchMDAQWVlZ0hvzBg0ahGXLlpU4/us3axUWFqJp06YYPHgwunTpAicnJ5iamuLx48e4ePEiNm3ahMzMTIwcORKhoaFV+mxJB2k64xNVhbw9XCMjIyEoKKjcY8XExAj5+fllbk9LSxPatWsnABDefPNNmW3k7eECEDp27CikpaWVanPu3Dlpm5kzZ8o8jmR7RT1cAMIvv/xSqk1RUZHQs2dPaa9dVi938ODB0mMEBgaW2l5YWCgMHDiwxLnU2cMVBEHYsmWLdL+vvvqq1PaoqKhy9z916pRgbGwsABACAgJktnl1VKIi0dHRQnFxcZnb4+PjhQYNGggAhLFjx1Z4PNIvvIZLBuH9999H//79y20j6Y2UxcbGBl9++SUA4MKFC0hOTq5STIGBgbCxsSn1vLe3N7p27QpA3GuriiFDhmDs2LGlnjcyMsKsWbMAiHtlly9fLrE9ISEBhw8fBgD06tVL5hxUY2Nj/PTTTyV6hepWu3Zt6c8pKSmltjdv3rzc/Xv27ImBAwcCAA4cOFDleJydncutMtawYUPMmTMHAHDo0CG9nt5FpXFImQzCe++9p/A+L1++xIsXL5CVlSX9w2hi8u8/mdu3b8PX17dS8bi5uaFt27Zlbu/cuTOuXr2KR48eVer4Eu+++26555B4/Txnz55FUVERAPGXlbLUq1cPffr0wcGDB6sUZ2VVq1ZN+nNmZmaF7Z8/f4709HTk5eVJn6tTpw4AICwsTOnxpaWlISUlBTk5OdLfIUtLSwBAeno6YmJi0LRpU6Wfl7QTEy4ZhHbt2snVLj4+HmvWrMGhQ4cQExNTbtsXL15UOp6Krt3VqlULgHxJpLLnkZxD1nlevS77amKWpXPnzhpLuK/GXaNGDZltjh07ho0bN+L8+fPl3pVdlc/zVffu3cPatWtx9OhRJCQklNv2xYsXTLgGhAmXDIKtrW2FbY4fP46hQ4ciKytLrmPm5ORUOh4rK6tytxsZia/2FBcXV/ocFZ1Hcg4A0t6sRGpqqvTnunXrlnsOOzu7SkZXda8myVe/QADiaV7Tpk3D5s2b5TpWVT5Pia1bt2LKlCkoLCxU2zlJd/AaLhkEY2PjcrcnJydj9OjRyMrKgrW1NRYtWoRLly7h2bNnyM3NhSAIEAQBDx8+lO6jz9ffdOW1hYaGSn9u2bJliW2BgYHSZNu2bVv8/PPPuHfvHtLT01FYWCj9TBctWqSUWCIjIzF16lQUFhbCzs4O33zzDa5fv44XL14gLy9Per5X51jryvtMysEeLhGAPXv2SHt1+/fvR+/evWW2e7Xnp89e7S0+f/68VO/xVUlJSeoIqRRBEHDy5Enp/3fv3r3E9p9++gmA+EamK1euSK+dvk5Zn2lgYCAKCgqk07tcXV1Vej7SPezhEgG4e/cuAPHQc1nJFgBu3LihrpA06tW61Ddv3iy3bUXbVeXQoUPSEQcvL69SQ9+Sz3TgwIFlJlug4s9U3rWNJedr27ZtmclWnvOR/mLCJQKk19zy8vLKvG5aXFxcopygPuvRo4d0GF5WUQyJ58+f49ixY+oKS+rp06eYMWOG9P8XLFhQqo3kMy3vOmloaCiuXLlS7rkk055evbNZFnnOl5WVxYUWDBgTLhHEK9QAQHZ2Nnbv3i2zzezZs3Hr1i11hqUxDg4OGDBgAADxzWS//vprqTbFxcWYPn06cnNz1Rrb6dOn0aVLFyQmJgIAJkyYgL59+5ZqJ/lMDx06JHPO9LNnz+SaLiZZJCE6OrrcdpLzRUVFISQkpNT2wsJCTJw4URo3GR5ewyUCMGLECMyfPx+5ubmYOHEiwsLC8NZbb8HW1haRkZHYtGkT/vzzT3h5eeHixYuaDlct1qxZg5MnTyIrKwvjxo3DhQsXMHz48BKlHS9fvoyuXbvi6tWrAOQffi1PVFQUXr58CUCc1DMyMpCUlISbN2/i6NGjJb70jBgxosxRh/fffx+zZs1CQkICPDw8MGfOHLRp0waFhYW4cOEC1q5di6SkJLi7u5cq/PEqLy8vnD17Fjdu3MCSJUvg5+eH6tWrAxAvC+ns7AwAGDt2LNatW4fi4mL4+flh1qxZ8PLygpWVFf766y+sX78et2/fNqjfIXqNJspbESmLvKUd5bFt2zZpmT9Zj549ewp37twpt9yhIosXlKei40i2VVTasaIyieUdRxAE4fTp0+UuXjBlyhQhICBA+v9Pnz4t93xlkafo/6uP5s2byyxZ+aqCggKhX79+ZR7DxMREWL9+fYXv9ZMnT4TatWvLtXjBsmXLyo373XffFU6dOiX9/7Nnz1bq/SLdxCFlon+8//77uHTpEoYNG4Z69erB1NQU9erVQ48ePRAQEIATJ07A2tpa02Gqla+vL+7du4cPP/wQTZo0gbm5Oezs7PDWW29h7969+Omnn5CRkSFtL6tUZVWYmpqidu3acHZ2Rt++fbFw4UKcPXsWkZGRMktWvsrExASHDx/G999/j65du6JatWqwsLBAkyZNMH78eFy5cgUfffRRhTE4ODjgxo0bmDZtGlq0aFHuDVgLFizAsWPH0K9fP+nSfA4ODvDz88O+ffvw66+/VjhFjfSXSBA4EYyIKm/y5MkICAhAw4YNER8fr+lwiLQWe7hEVGnZ2dnSov/dunXTbDBEWo4Jl4jKJFlrVpbCwkJMmzZNegfwuHHj1BUWkU7ikDIRlemtt95CcnIyhg8fji5dusDOzg5ZWVkICwvD5s2bcfv2bQDiZe5OnjyplLuUifQVpwURUbnCwsLKXbrOy8sLu3fvZrIlqgB7uERUprCwMPzxxx84c+YM4uPjkZSUhKKiItSpUwddunTBqFGjMHz48BIrDxGRbEy4REREasCvpURERGrAhEtERKQGBnXTVEJCAo4cOYKmTZsaXMUgIiJSjqysLDx69Ahvv/02HBwc5N7PoBLukSNHMG3aNE2HQUREemDTpk2YOnWq3O0NKuE2bdoUgPhNcnNz03A0RESkS/IKinDnSTpyk2Ixe+ZH0pwiL4NKuJJhZDc3N7i7u2s4GiIi0hUvXubhUvQLTHavj1s3rgGAwpcmDSrhEhERKepmXAryCosxqH2DKh1HK+9Svn79OkaMGAF7e3uYm5vD0dEREydOLLeuKxERkTLlFRYhODwRTrWt4eFcp8rH07qEu23bNri7u2PPnj0oLCyEm5sbMjIyEBgYiPbt2+PMmTOaDpGIiPRcdn4hTt17Do9mdVC7mrlSjqlVCffu3buYPHkyioqKMHfuXCQkJODGjRtITEzEu+++i+zsbAwbNky6OgkREZGy3YhNQVh8Gvza2sPG0lRpx9WqhLt06VIUFhbCw8MDK1euhKmp+IVaWVkhICAATZo0QWpqKtasWaPhSImISN8UFQs4de8ZalmbKWUI+XVak3Czs7Nx5MgRAMCMGTNKbTc3N8f48eMBADt37lRnaEREpOdSs/JxMfoFOjvZoqldNZWcQ2sS7q1bt5CTkwMA6N69u8w23t7eAIDY2FgkJiaqLTYiItJf0c8zcSs+FW82q4OaVmYqO4/WJNzIyEgAgJmZGRwdHWW2cXZ2lv4cERGhlriIiEh/hUS/QHpOIXxd6sHISLVrOmvNPNyUlBQAgK2tbZkLWdeqVUv6c2pqarnHi4+Px+PHj0s8Fx4eXsUoiYhIH6Rl5+NSdDJ6utaFhamxWs6pNQlXMpxsZlZ2d97CwkL6c3Z2drnHCwgIwNKlS5UTHBER6Y0XL/NwIzYFvVrVg5mJ+gZ6tSbhWlpaAgDy8/PLbJObmyv92crKqtzjTZo0CX369CnxXHh4OBcvICIyUIIg4PLDZJibGqNvG3u1n19rEq6trS0A8VCxIAgyh5Ulw86vti+Lo6NjmdeCiYjIsOQWFOHYnafo3sIOtaxVd2NUebTmpikXFxcA4h7u33//LbPNw4cPS7UnIiIqz7OMXFx+mIy+beprLNkCWpRw27dvLx1W/vPPP2W2OX/+PADAyckJ9vbqHw4gIiLdciM2BU/SctDDRX03R5VFaxKutbU1/Pz8AIjXq31dXl4etm7dCgAYOXKkOkMjIiIdIwgCjt1JRE0rU3RsVP4lSHXRmoQLAP7+/jAxMcGlS5cwb948FBQUABDfkTx58mTExMTAxsYGs2bN0nCkRESkreJTsnEm4jl8XeqhWd3qmg5HSqsSbps2bbBp0yYYGxvjm2++gYODAzp37gx7e3v8+uuvsLS0xJ49e1CnjvJrXBIRke6Lfp6J+JRs+LrUVeuUH3loVzQAJk6ciJCQEAwdOhTGxsYIDw9H9erVMW7cOISFhaFXr16aDpGIiLRMcbGACw+SkJNfDI9mdcosoKRJWjMt6FVvvPEG9u7dq+kwiIhIByRl5uHPqCS83c4e5iaavTGqPFqZcImIiOQRl5yFRy+y8E6HBiqvhVxVWjekTEREVBFBEHA+KgkFRcXo0bKu1idbgD1cIiLSMbkFRQj6KxHdW9jBrrq5psORGxMuERHpjIinGXiRmY9B7R1gYqxbg7S6FS0RERkkQRBw9VEyAMCreR2dS7YAEy4REWm5omIBJ+89Q90aFnCpX0PT4VQah5SJiEhrnY9Kwpn7z7BkYGutnFurCCZcIiLSjJxUIGwHEBkM5KYDFjZAy/5A+9GApS22X45FRm4hlg5qo+lIlYIJl4iI1C90O3B0FlCYW/L52AsQTi/FH/U/gctb09DFqZZm4lMBXsMlIiL1Ct0OHPqodLKVKMzFkMcr0SUlSL1xqRgTLhERqU9OqrhnWw7pldrg2eL2eoIJl4iI1CdsZ9k929cV5AC3f1dtPGrEhEtEROoTeVSx9hH6M6zMhEtEROqTm67a9lqMCZeIiNTHwka17bUYEy4REalNeuNeiu3g4qeaQDSACZeIiNTivyciMfJKEwgmFvLtYGoJtBut2qDUiAmXiIhUShAEjA24iqcZuTj2xUCI+n8r3479VgOWNVUamzqx0hQREanM84xc9PnuT3w3qgO8W9iJn+w4VvxfWZWmAHHPtt/qf9vpCSZcIiJSiaPhifjgt1DcWdoH1cxfSzcdxwKub4vn5UYe/beWsosf0G4UYGmrmaBViAmXiIiUbuovN5BfVIzYleXc9GRpC7h/IH4YACZcIiJSmqTMPPRccw7rRneAT8u6mg5HqzDhEhGRUoQ/Tseg7y/izOc+cKpjrelwtA4TLhERVdnHO2/hWUYuHn7dX+cXilcVTgsiIqJKyy8shpv/cXg618buae5MtuVgD5eIiCol/HE6xv58Ffs+8ECLetU1HY7WY8IlIiKFfX30Pv6MSkLowl4wMmKvVh4cUiYiIrkVFwvo978LyM4vxLFPujPZKoA9XCIikktYfBrGbL6Cwx97wdmumqbD0TlMuEREVKGDYU+w5NBd3FzYC5ZmxpoORycx4RIRUZkEQcDQjSFwqmONW4t7azocncaES0REMsWnZOPNVWdx4ENPtHesqelwdB4TLhERlRIcnoivjtzDjYVvoU41c02HoxeYcImIqIQJgddQw9IUIV/01HQoeoXTgoiICACQnV+I5guOok/r+vjfqA6aDkfvsIdLREQ4dDsB/gfv4PqCt1DTykzT4eglJlwiIgPnf/AOHr3IQuiiXqyFrEIcUiadMn78eIhEIixZskSt512yZAlEIhHGjx+v1vMSqVJeYRF8vz2HGpam2D6pK5OtijHhksHbunUrlixZgrCwME2HotN27dqFHj16oFatWrCysoKrqysWLFiAjIyMSh8zLy8P69atg7u7O2xsbGBpaYnmzZvj008/xbNnz8rcb9++fZgxYwa6du2Khg0bwsLCAtbW1nB1dcWHH36IqKgoheI4cOAARCIRRCIRnJycKv16tMnZiOdoufAYdkzphs97t9R0OAaBCZcM3tatW7F06dJyE26dOnXQsmVL2Nvbqy8wHTJlyhSMGjUK586dg42NDVq2bImHDx/i66+/RocOHZCQkKDwMVNSUuDl5YWZM2fiypUrqFevHtq0aYOEhAR89913aN26Nf766y+Z+65YsQI//vgjbt26BWNjY7i5uaF+/fqIjo7GDz/8ADc3N/z+++9yxzFjxgyF49dmm84/xIrg+3j4dX/Ut7HQdDgGgwmXSA4fffQRIiIisGLFCk2HonV++uknbNmyBWZmZti7dy9iYmJw69YtPHz4EG3btsWjR48watQohY87YcIE3LhxA3Xr1sXly5cRFRWF69ev4+nTpxg1ahSSk5MxYMAA5OTklNp3+vTpOHPmDDIzMxEXF4fr16/j4cOHiI2NxTvvvIP8/HxMnDgRjx8/rjCO//znP3j69CmGDBmi8GvQNoVFxej73Z/Izi/CiU+9YcyFB9SKCZeIKq2oqEh6PX3WrFkYOnSodJujoyN27doFIyMjXLhwASdOnJD7uPfu3cOhQ4cAAP/973/RrVs36bbq1asjICAADRs2xN9//42NGzeW2n/y5Mno0aMHzM1LFmxo0KABdu7ciZo1ayInJwdHjhwpN47Dhw/jt99+w8iRIzFgwAC549dG8SnZaLYgGGtGtMOnvVpoOhyDxISrBwRBwIEDBzBo0CA4ODjA3Nwc9erVQ7du3fDVV18hMTGx1D6pqalYuHAh3NzcUK1aNVhbW8PNzQ0LFy5EamqqzPP4+PhAJBJh69atePLkCWbMmIEmTZrA3NwcPj4+AMTDsyKRCD4+PiguLsaGDRvQpUsX2NjYQCQSITY2Vnq83NxcfPfdd/D09IStrS3Mzc3RpEkTTJ06FQ8fPlT4fbh48SLmzp2Lrl27wsHBAWZmZqhTpw569eqFnTt3lmp/7tw5iEQinD9/HoC4RyW5Tid5DRIV3TRV1fczJSUFn3zyCZycnGBubo4GDRpgypQpePr0qcLvgzr9+eef0t+v6dOnl9ru4uICb29vAJD5GZR3XAAwMjLCsGHDSm23srKSJsAdO3YoFLO5uTmaNm0KAMjKyiqzXVpaGqZNm4ZatWph3bp1Cp1D26w//QDjAq/hwfJ+aO1go+lwDBanBem4nJwcjB49GgcPHgQA1K5dG23btkVqaipCQ0Nx9epVODo6lkgUERER6NWrFx4/fgwjIyO0bt0aAHD37l3cuXMH27Ztw8mTJ+Hi4iLznA8ePMCsWbOQlpaGVq1aoVWrVjAzKzlvTxAEDB06FAcOHICjoyNatmyJmJgY6fa///4b/fr1w7179yASieDo6IjGjRsjKioKmzdvxs6dO3HgwAH07Cl/pZvBgwcjOTkZtra2qF+/PhwcHJCQkIBTp07h1KlTOHHiBAIDA6XtbWxs4OnpifDwcGRkZKB58+aoW7eudLubm5tc563q+/n48WO0b98eiYmJcHV1hbm5OaKjo7FlyxacOXMGoaGhsLHRzj+SISEhAIAmTZrA0dFRZhtvb2+cPXtW2lYeycnJAMTXzl/vpUpIznfr1i1kZ2fDyspKrmM/f/4c9+/fBwB06dKlzHYzZ85EYmIitm3bVuL3QpcIgoB3fgjBm83r4MznPpoOhwQDEhISIgAQQkJCNB2K0owbN04AINSsWVPYs2ePUFRUJN2WnZ0t/PLLL8KFCxekz+Xn5wuurq4CAKFLly5CTEyMdNujR4+ETp06CQAEV1dXIT8/v8S5vL29BQCCsbGx8NZbbwkJCQklziUIghAYGChtY2trKxw/flzapqCgQCgoKBDy8vKEdu3aCQCEvn37CtHR0dI2ubm5wqxZswQAQu3atYUXL17IfL3+/v6l3ovNmzeXOJbElStXhGbNmgkAhD179pTaLnldgYGBpbZJ+Pv7CwCEcePGlXheGe+nqamp0Lt37xLv582bN4W6desKAITFixeXGVdZPD09K/X46KOPFDrP2LFjBQBCr169ymyzfft26e9EQUGBXMfdsGGDAEAwMjIScnNzZbaZMWOGAEAAIISGhlZ4zOfPnwtHjhyR/u6NGTOmzLZBQUECAKF3797S5yS/240bN5brNWha3IssoeXCo8KBW481HYreqWwuYcLVYX/99Zf0D87p06fl2ufXX3+V/pGPi4srtT0mJkYwNTUVAAi//vpriW2SBGFnZyekpaXJPL7kjxIA4bfffpPZZvPmzQIAoXXr1tJE/bq3335bACCsWLGixPPlJdzynDhxQgAg9O/fv9S2qiRcZbyfderUEVJSUkrtu3r1agGA0KFDB/le5Cskn4GiD29vb4XO4+fnJwAQRo4cWWYbSfICICQnJ8t13Bs3bkj32bFjR6nt2dnZgqOjY4W//5Jk/+rD2dlZ2LRpk1BcXCxzn7S0NKFBgwaCtbV1iS9QupRwVx27LzSee0TIzJXvCw4pprK5hNdwddi+ffsAAO7u7vD19ZVrH8lNIiNGjECjRo1KbXdycpJeMwsKCpJ5jGHDhlU4xFm9enWMGDFC5rZdu3YBEBexsLS0lNlGcvPNmTNnyj3P6yIjI7Fs2TIMHz4cvr6+8PLygpeXF+bPnw8AuHnzpkLHq4gy3s8xY8bA1ta21POenp4AgOjoaIXjEsRfphV+nDt3TqHzSO4Qfv2SwqssLP6ddpKdnS3XcTt16iR9/Z9++inOnj0r3ZaWlob33nsP8fHxFR63bt268PT0hLu7Oxo1agRjY2M8evQIO3fuRGRkpMx9PvvsMzx58gTLly8ve85tTipw+Xtg69vAj2+K/3v5B/HzGtZ52Snsu/kEsSv9UM2cVw21CT8NHRYeHg4A8PDwkHsfyR+Z8q5Purm5YefOnYiIiJC5XXKNsjwtW7aEiYnsX6/bt28DAAIDA3HgwAGZbdLS0gBArmkbEosXL8by5ctRXFxcZhvJtUFlUcb72aKF7DtG69WrBwB4+fJlFaNUHckXpvz8/DLb5ObmSn+W9zorAPz222/o0aMHYmJi4OvrCwcHB9SqVQtRUVHIz8/HpEmTEBAQAACoUaOGzGP07t0bvXv/u2j6kydPsHDhQmzduhVdu3bFX3/9hcaNG0u3Hz9+HD///DO6du2Kjz/+WHZg+VnAGhegMLfk87EXgNNLgf7fAh3Hyv06leXFyzx0XnYKi99uhYleTdR+fqoYE64Ok1TwqVmzpsL71K9fv8w2kuIOmZmZMrdbW1tXeJ7y2kju2r13716Fx5G3R7Rnzx589dVXEIlEWLRoEYYMGYKmTZuiWrVqMDIywqNHj+Ds7IzCwkK5jicvVb6fRkbiAShBEKoSokpJeublfZFJSUkBABgbG5eZGGVp3LgxQkNDsXbtWvzxxx+Ijo5GRkYGunTpgpkzZ6JFixbShCtvQZIGDRogMDAQT548wcmTJ7F8+XL89NNPAMS/a1OmTIGZmRkCAgKk738p2clAYXXZ2wpzgUMfiX9WY9LdfSMec/b+hZB5vnCoKXvUiDSPCVeHSf54SXqDiuxT3nQTyTSP6tXL+KNSRdWqVUNaWhpOnTql0F3I5ZHcffzZZ5/hyy+/LLVd2T1bCW14P2Xx8vKq1H4dOnTA+vXr5W4vufO6vGFvyRQvZ2fnMkc9ylKzZk0sXboUS5cuLbVty5Yt0jbNmjVT6LgDBw7EyZMncePGDelzz58/R3x8PExMTGT+XubkiL/8xWcIqP+t+MvT//paYGQb09InCJ4NuL4NWJa+VKBsb/33POKSsxCzoj9rIWs5Jlwd1rZtW+zfv1+h6RYuLi64desW7ty5U2YbyTZXV9cqxyiLm5sbLly4gEuXLikt4Ur+qEvmfL7u0qVLZe5blT9S2vB+ylLe6y2PoglRcjkjNjYW8fHxMqcGSeY5K3LpQx6SewEGDx6s8GcoGekoKiqSua28Os3FAvAsSzzqkFNYxuhDQQ5w+3egm+pKQmbmFsBtyQlM93bGvH6yp5yRduFNUzps6NChEIlEuHz5stw3u/j5+QEAdu/eLfP66N9//409e/aUaKtskpupNm7cqLSep+Ta4JMnT0pty87OLrfXJtlXVonAimjD+ymLum6a6t69u3Q4/ccffyy1PSIiQppwR44cWeXXJXHs2DGcOnUKxsbG+OSTTxTaVxAE7N27FwDQsWNH6fNOTk7lvjeBk9oCABrbiCD414DgXwPj25ezbmyE7JvklOF8VBLclpzAkY+9mGx1CBOuDmvTpo20oMXQoUPxxx9/lLjel5ubi19//RUXL16UPjdixAi4uroiPz8fw4cPx99//y3dFhsbi2HDhqGgoACtWrXC8OHDVRL35MmT4ebmhqdPn8LX1xdXr14t1eb+/ftYvHgxDh8+LNcxJVWhli9fXuLacEJCAgYNGlRu8XzJcOS5c+cUvl6qDe+nJhkbG8Pf3x8A8O2330rvnAeA+Ph4jBw5EsXFxfD09ETfvn1L7e/l5QUnJyd89913pbZdv34dhw8fRkFBgfS5wsJC/PLLL9L3cv78+WjXrl2J/c6dO4cvv/xS5jB3XFwcRo0ahUuXLsHExAQzZ86U/8UWKPiFLDddsfZyGrP5Csb9fA2Pvu6PNg20syAKycYhZR33/fffIzk5GYcOHcKQIUNQu3ZtNG3aFKmpqYiLi0NBQQECAwOl1/RMTU2xf/9+9OrVC1euXEHTpk1LVEYqKipCw4YNsW/fPpiayrg2pQQWFhYICgrCoEGDcOvWLXTr1g329vZwdHREQUEBYmNjpTdWvVoZqjxz5szBrl278PjxY7Rt2xYtWrSAmZkZ7ty5A1NTU3z//feYNGmSzH3fffddbNiwAbt370ZISAicnJxgbGyM9u3by0wEr9KG91PTpk+fjmvXriEwMBDDhg1DkyZNYGNjg7t376KgoABOTk5lrszz+PFjxMXFybwP4e7du5gwYQIsLS3RuHFjWFtbIzo6Gunp6RCJRJg1a5bM6/VpaWnw9/eHv78/6tSpg0aNGsHU1BTPnz9HbGwsBEFAtWrV8PPPP6N9+/byv1BTBW9GslBuMiwoKkbzBcEY0M4BsSvVN1pCysMero6ztLTEgQMHsHv3bvTr1w/GxsYICwtDZmYmOnXqhGXLlpXqWbi4uOD27duYP38+XFxc8ODBAzx48AAuLi6YP38+bt++XWYZQmVxdHTElStXEBAQgN69e6OwsBC3bt3C48eP0bhxY0ycOBEHDx6Ue5UZe3t7XL16FePGjUOdOnUQHR2N58+fY/jw4bh27Vq585TfeOMNHDhwAD4+Pnj58iVCQkJw/vx5udfH1Yb3U9N+/vln7Ny5E97e3khNTUVERASaNm2KL774AmFhYWjYsKHCx+zWrRumTp2Kpk2bIjExEXfu3IGNjQ3ef/99hISEYPXq1TL38/T0xNq1azFo0CDY2tri4cOHuHnzJtLT09GtWzcsXrwYERERio841G+rWHsX5SXFG7EpaL4gGDsmd8X60R2UdlxSL5GgzXMOlOzy5cvw8PBASEgI3N3dNR0OEemSnFTZ829lMbUEPosALGtW+bSz99zGnpuPEfFVX1iYGlf5eFR1lc0l7OESEcnD0lZc1EIe/VZXOdkWFwtwmheE0L9TEbvSj8lWD/AaLhGRvCTFLI7Okt3TNbUUJ9sqFr2IeJqBvt9dwBf9XDDN27lKx9JpOalA2A4gMlh8E5qFDdCyP9B+tFrmOCub1iTcvLw8nDhxAseOHcOVK1cQHR2NnJwc1KpVC507d8aECRNKLG5NRKQRHceKi1qE7QQij/6bCFz8gHajqpwIZvx6E8F3niJscS/UtCpn2pG+C90u+4uNhktoVoXWJNxly5Zh2bJlAMST75s1awZLS0tER0cjKCgIQUFBGDJkCHbu3FluoXQiIpWztAXcPxA/lMhpnnjursHfhRy6/d8SmbJoqIRmVWnNNVxBEODp6YkdO3YgNTUV9+/fR2hoKJKTk7Fy5UoAwP79+2WWeCMi0mXxKdlwmheECZ5OTLY5qeKerTyCZ2vFCk3y0pqE++mnn+LixYsYPXo0qlWrJn3e1NQUc+fOxZQpUwAAmzZtKnc1GCIiXbLqWATeXHUWZ2f5wH9AxStxVUiLlw6US9hO+e4EB/4toakjtGZIuXbt2uVu79evHzZv3ozk5GQkJSVJly4jItJVSh9C1ofrnpFHFWsfEaTSmtXKpDU93IpUdk1NIiJtk5qVD6d5QRjUXolVoyTXPcvqHUque4ZuV875VEXRkpgqKqGpClrTw63Ib7/9BkBcbFydy5wRESnTwbAnmPl7GPbN8ECnxkqa2qLodU81LR1YKYqWxFRyCU1V0omEu3//fgQFiYdeFixYINc+8fHxpVZvCQ8PV3psRETyar34GLLyi/Do6/4wMlLi2rWVue6prcOwLfuLh8DlpcQSmqqm9Qk3PDxcuiLOu+++iyFDhsi1X0BAAO9oJiKtkFtQBJdFx9DOsSYOfuip/BPo03XP9qPF15vlLaHZbrTqY1KSKl/DXbJkCUQiUaUeFRWHj46ORp8+fZCZmQlvb29s3rxZ7rgmTZqEkJCQEo9NmzZV8dUSESnmbORzuCw6hu/HdFRNsgX067qnmktoqlOVe7gWFhawsancGLqxcdm1QWNjY+Hr64vExER4eHjgyJEjsLSUf3ksR0dHODo6ViouIiJlGLD+IsKfpCNyWV+Ym6iwFrK+XfdUUwlNdatywp03bx7mzZunjFik4uPj0aNHD8THx6Nr164IDg4uMTeXiEibFRcLaDr/KCxMjdRTyEIfr3uquISmJmjdNdwnT56gR48eiI2NRZcuXXD8+HHUqFFD02EREcnldnwaBn1/CauGtsWILmoaZdPX654qKqGpKVqVcJ8+fQpfX188fPgQnTp1wokTJyo9XE1EpDJlrGKzMLYtfr2drv6FByTXPcurPyyhY9c99YnWJNykpCT07NkTUVFR6NixI06ePImaNWtqOiwi0hbaslRbOdWcFgimWDZiLaCJVX709LqnPtGahLtw4ULcu3cPAJCfn48BAwaU2Xb9+vXo0KGDukIjIk3TlpKFFaxiYykq0OwqNnp43VOfaE3CzcvLk/58586dctump2vxLe1q5uPjg/PnzyMwMFA6X5lIr2jLUm26Us1Jz6576hOtqaW8detWCIIg18PHx0fT4ZKeefDgASZOnAhHR0eYm5vD3t4eI0eOxI0bNyp1PB8fH7nno58/f77EvufOnatwnzZt2sg87/Xr1zFnzhz4+vqiSZMmqFatGiwsLNCoUSOMGDECp0+frtTr0RhtWqpNj1exIfXQmh4ukaacPHkSgwYNQk5ODmxsbODm5oa4uDjs3r0b+/fvR2BgIN577z2Fjunm5obCwsIytz969AiJiYmwsrIq8/KIubk5OnfuLHNb06ZNZT6/a9curFmzBiKRCHXr1kWLFi2Qm5uLuLg47NmzB3v27MHHH3+MdevWKfR6NEabShbqUzUn0ggmXDJoSUlJGD58OHJycvDee+9h06ZNsLKyQkFBARYuXIhVq1Zh4sSJ6NKlC1q2bCn3cdevX1/u9vbt2yMxMRHDhg0rc9pb/fr1cfHiRYVeT8+ePeHh4YEePXrA1vbf4cysrCysWbMG/v7+WL9+Pby9vTF06FCFjq0R2pTk9KmaE2mE1gwpE2nC6tWrkZ6ejiZNmmDLli3SpR9NTU2xcuVKeHh4oKCgQKl1uW/evInbt28DEJcgVaZ+/fphyJAhJZItAFhbW2Px4sXo27cvAGDPnj1KPa/KaFGSu/1CUGwHba/mRGrHhKvnIiIiMGnSJDRp0gQWFhawtbXFm2++iU2bNpU55Pn8+XPMnj0brVu3hrW1NSwsLODo6AhPT08sWLAACQkJJdrn5+dj3bp1cHd3R82aNWFmZob69eujQ4cO+PDDD3H9+nV1vNRK2bVrFwBg4sSJMDc3L7FNJBJh2rRpAICDBw8iOztbKef8+eefAQDNmjVD9+7dlXJMebVq1QqAuMerE7SgZGFeYRGc5gXhlqWHYjvqQjUnUisOKeuxffv24d1330VeXh6sra3Rpk0bpKSk4OLFi7h48SJ+//13HD58uETZzCdPnqBr16548uQJTExM0KxZM1SvXh2JiYm4du0aQkJC4O7uDgcHBwBAUVER+vXrhzNnzgAAnJyc0KJFC6SkpCAiIgJhYWGwtLREly5dNPIelOfJkyf4+++/AaDMxOft7Q0AyM7Oxu3bt+Hu7l6lc+bm5mLnzp0AxEm+PBkZGZg+fToePnwIExMTNG7cGL169cLgwYPLrUNeluLiYukQtTZ+HjJpuGTh2YjnmLD1unjt2roewJpt+lfNidSGCVdPRUVFYezYscjLy8OECROwbt06aWI9e/Yshg0bhnPnzuGTTz7Bli1bpPt9++23ePLkCXr16oWdO3eidu3a0m0vX77EH3/8AScnJ+lzR44cwZkzZ+Do6Ijg4GC0bt1auq2oqAinTp1CQUGBQrF//fXXOHpUwWt3/9i7dy/q168vV9vIyEjpz82aNZPZxtHREWZmZsjPz0dERESVE+4ff/yB1NRUGBsbY9y4ceW2TU1NLbXC1aZNm9C6dWvs2bMHrq6ucp0zIyMDERERWLlyJa5duwYXFxd88sknlX0J6qXBkoXDfwzB9dhURHzVFxam/3zBYTUnqgImXD21evVq5OTkwNXVFVu2bIGR0b9XD3r06IF169bhvffew9atW7Fo0SI0btwYAHD//n0AwIcfflgi2QJAtWrVMHZsyXmOkvZDhw4tkWwB8WpQffr0UTj2qKgoXLp0SeH9AHEPUl4pKSnSn2vVqiWzjZGREWxsbJCUlITU1KpPOQkICAAA9O3bVzpK8DpLS0uMHTsWY8aMQatWrVC/fn0kJSXh8OHDWLhwIe7evYuePXvi5s2bsLe3l3mMx48fl1otq3r16li4cCFmz56tO/XJNVCysPBlClasWIRZJqHo6mQC/Lbx34pWrOZEVcBruHoqKCgIAPDZZ5+VSLYSo0aNQsOGDVFUVITjx49Ln2/UqBEAYPfu3XIlL0n7EydO4OnTp8oIXaE52a8/Xu19VyQnJ0f6s5lZ2aX4LCwsAKDK13Dj4uKkQ+/l3SzVtWtX/PLLL+jbty8aNWoEMzMzNGjQANOnT0dISIh0iP/LL78s8xjm5ubw9PSEp6cnWrRoAQsLC2RmZmLv3r04d+5clV6H2nUcCwzcAJhYyN5uaineroQkF396EwpWt8Ai01/RVXQPePqXeEj7+BfAGhdxEY6OY4HPI4A+KwCnN4H6bcX/7bsS+Ow+ky2ViQlXD2VkZCAxMRGAeD6oLMbGxtIbaCIiIqTP/+c//4G5uTl27NgBe3t7jBo1Cv/73/9w/fp1FBcXlzrO4MGD0bx5c9y7dw+NGzdG7969sWzZMpw8ebJEQtNGr66vnJ+fX2Y7yRcPyR3MlRUYGAhBEFC3bl28/fbblTpGixYtMGOGeNrL3r17IQiy75y1s7OTXquPjIxEcnIyvvnmGzx8+BCDBw/G/v37K/06NEINSe5/qxfB8cIcWIjKuAQiqWgVuv3fak7jjwDTL4j/220GSydSuZhw9VBGRob05/KuZ0qGIzMzM6XPtWnTBpcvX8Y777yDvLw87Nq1C5988gneeOMNNGrUCBs2bCjxR97KygoXLlzAhx9+iBo1auDkyZNYtGgRevfujbp162LmzJkljq9NXp06k5ycLLNNcXGxtJTo61NtFCEIArZu3QoAGDt2LExNTSt9LE9PTwDAixcv5B7mtrKywpw5c7BkyRIIgqD0NazVQkVJThAEtJ23C1NfbgQAiCraQdUVrUhv8RquHnr1+tzTp0+l12dfJ+kFV69evcTzHTp0wP79+5Gfn4+bN2/iwoULOHjwIEJCQvDxxx8jPz8fn332mbR9vXr1sGHDBqxfvx7379/HxYsXcezYMRw+fBjr1q1DTEwMDh06JHf86rppysXFRfpzdHQ0GjRoUKpNfHy8tPf7antFnT59GnFxcQAqvju5Iq8Ofyt6Q9rAgQOxYMECPHjwABkZGbpzLVdF4pKz4L36HDY0CYdlopzvpaorWpHeYsLVQzVq1IC9vT0SExNx584ddO3atVSb4uJi6Q1PZd3tamZmBnd3d7i7u2POnDmYP38+VqxYgR9++KFEwpUQiURo1aoVWrVqhalTp+LEiRPo06cPDh8+jMePH6Nhw4Zyxa+um6YaNGiARo0a4e+//8aff/4pnQL0KkmdYysrK7Rr165SMQH/3izVrVs36VB+ZYWHhwMQD4nXqVNHoX1fnXtdVFRUpTh03aw9t7H35mNcmueLBgc2KrYzyzZSJXBIWU/5+YnnI3733Xcyr/Pt2rUL8fHxCt1JLJmr+nrhi7K8+eabEIlECu0DqO+mKQAYMWIEAPH11VdXrALEQ42SaTkDBgyo9DXctLQ0HDhwAEDVK0tlZGTghx9+AAD06tVL4fm4kgpTTk5OVRoi13VO84Kw9+ZjxK70Q4OallpV0Yr0FxOunpo9ezYsLS1x584dTJs2rURlofPnz+M///kPAGDChAnSO40BYOrUqdi+fTvS0tJKHO/58+dYs2YNgJJFE/773/9i1apV0uFSidzcXOn1Qmtra7nnjKqbZIpMTEwMJk+eLL0TuaCgAPPmzUNISAhMTEzg7+9fat/vvvsOTk5O8PLyKvccv/32G3Jzc2FtbY2RI0dWGNOAAQNw+vTpUj3Q8PBw9O7dG7GxsTAzMysVU2ZmJqZMmYKrV6+WusEtIyMDy5Ytw8qVKwEAn3/+eYVx6KOn6blwmheEvq3rI3blK0UytKCiFRkAwYCEhIQIAISQkBBNh6I03t7eAgAhMDCw1La9e/cK5ubmAgDB2tpa6Ny5s+Ds7CwAEAAI3t7eQmZmZol92rVrJwAQRCKR4OzsLHTt2lVwdXUVTExMBABC7dq1hdu3b0vbz5w5U3o8e3t7oXPnzkK7du2EatWqCQAEY2Nj4ZdfflH121Alx44dEywsLAQAgo2NjdCpUyehTp060vi3bt0qcz9/f38BgNC4ceNyj9+xY0cBgDB+/Hi54pG8n5aWlkKbNm2Ebt26CU5OTtLnq1WrJuzbt6/UfqmpqdI21tbWgpubm9CtWzfB1dVVMDU1lX6us2fPlisOfRN48ZHQeO4R4XpMcumNId8Lgn8N+R+Xf1D/CyCtUdlcwmu4ekxSjGL16tU4deoU/vrrL1hYWMDT0xPvvfceJk2aVOpu2e+++w5HjhzBhQsXEB8fj9DQUJiZmcHV1RV9+/bFZ599VuKmpBkzZsDOzg5nz55FdHQ07t69i6KiIjRo0ABDhw7FzJkzy1x+Tlv06dMHYWFhWLFiBU6dOoXw8HDY2tpi2LBhmDNnTpXKIP71118IDQ0FIP/NUmvXrsXVq1dx+/ZtJCYmIj09HVZWVujUqRN69+6NDz74QOb18OrVqyMwMBDnzp3DzZs3kZiYiLS0NFhZWcHFxQVeXl6YPHkyOnbsWOnXU66cVCBsBxAZLB5ytbD5t2CEhqfLOM0Tz0uPWdFfepmjBA1WtCLDIRKEMiby6aHLly/Dw8NDWg+YiJQkdHvZ1ZdMLMTVojRQECI7vxCtFh9H24Y2OPRR+UP/CN0uX0UrJRXZIN1V2VzCHi4RVU1FiUpSMAJQa6I6cfcppm6/ifWjO2BAO9llNEtg2UZSMSZcIqq8nFRxgpJH8GzA9W21DC+3XnwMWflFiFrWD2YmCtwb2nGsOMawnUDk0X+Hxl38gHajND40TrqNCZeIKi9sp3zXPQG1FIwoKhbgPF9cNKXEXciKkFS0cv9AiZERcVoQEVVFpIIVwSKCVBMHgIsPXsB5/lF8NbhN5ZMtkQqxh0tElaclBSPGBlzFhQcvcHtxb9hYVb5ONZEqMeESUeVpuGCEIAho8kUVh5CJ1IRDykRUeS37K9beRXlJ8V5CBpp8cRSfvtWCyZZ0Anu4RFR5GioYseTQXWwNicWZz73R1K6aUo5JpGpMuERUeZa24qIW8hSM6LcasKxZ5VNKqkaxV0u6hkPKRFQ1HceKqy+ZWMjebmqplOpMSZl5cJoXhD6t6zHZkk5iD5eIqk7FBSPWn36ANSejcPgjL7g15Eo9pJuYcIlIOVRRMCInFV8tW4i3jEIR42QC0SntWRCBSFFMuESklfKub0Pxkc+xyLRA/MTTfzbEXhDfqKWhBRHUQotXXqLKY8IlIq0TsmctPO4ugSBjJT0AGlsQQS3KWnnJEL5o6DkmXCL6lxb0rPp/cxj7spdDEAFl5VspNS6IoBZauvISKQfvUiYisdDtwBoX4Ph8cW/q6V/i/x7/Qvx86HaVnr6wqBhO84LQLeM4LEUFFSdb4N8FEfSBoisv5aSqNh5SOiZcIvq3Z1VWAQtJz0pFSTck+gWaLQjGmuHtsLh5rGI7q3BBBLWqzMpLpFOYcIkMnYZ7ViN+vIwxW67itn9vDO3UUGsWRFA7LVp5iVSDCZfI0GmoZyUIApzmBeFabApiV/rBxvKfVX40vCCCxhjqFw0DwoRLZOg00LOKfv4STb44ivEeTqWrRmlwQQSNMtQvGgaEdykTGTo196ym/HIDJ+89w+UvfGFvY1m6gYYWRNC4lv3FN6nJS1++aBgQJlzSPVowdUWvqLFnJdfCAxpYEEErGOoXDQPCIWXSLRqeuqKX1DCEK1l4oHsLO/kWHlDTgghaRfJFQx769EXDgLCHS7qDRQFUQ8U9q5XBEfjx/EOc/LQ7mterLv+OKl4QQStJfm9lVZoCxO9/v9X8/dZRTLikGxSduqJP1YdUTYVDuJIh5JgV/SESyVXKonRsyl4QQdsZ4hcNA8GES7qhMlNXus1QbUz6RMk9q8zcArgtOYE2DWrgyMdvKjFQA2GIXzQMABMu6YbKTF1hwlWMknpWB8OeYObvYQic0AU9WtZVcdBEuoMJl3QDiwKoRxV7Vi0XBiOvsBgPlveDqTHvySR6Ff9FkG5gUQCtVvDPwgM2lqaIXenHZEskA3u4pBtYFEA1lDCn+VpMCkZsuozFb7fCRK8mKg6YSHcx4ZJuYFEA5VPCQuc+q88iNjkbd5b2QTVz/jkhKg/HfUg3sCiAclVxOT7JwgOxydmIXenHZEskByZc0h2GWH1IFaq4HN/dhHQ0+eIoPuzhLF/VKCICwCFl0jUsClB1VZjT/Mnvt3AgLAFX5/dEvRplfPEhIpmYcEn3sChA1VRyTrNcCw8QUZk4pExkaBSco5yflQqneUEY/UYjJluiKmAPl8jQKDhH+cbTYhz40BPtHWuqJh4iA8EeLpGhUXA5Pvf+Y5lsiZSACZfI0LQfXfad3q8QAMDUEqL2Y1QeEpEhYMIlMjRyzGkWAIgAzmkmUiImXCJDVMGcZhHnNBMpndYn3LVr10IkEkEkEsHHx0fT4RDpj45jgc8jUNjra4QUtcJdwQlwehPouxL47D6TLZGSafVdytHR0Vi4cKGmwyDSW8HRuZhx2An/G7UXHu0baDocIr2mtQlXEARMnDgR+fn5GDhwIA4dOqTpkIj0yogfL+NabArCl/RGdQtTTYdDpPe0NuGuX78eFy5cwNy5c2FhYcGES6QkgiCgyRfialMsZEGkPlp5DffRo0eYP38+mjdvjiVLlmg6HCL55aQCl78Htr4N/Pim+L+Xfyi1AICmhD8WLzyw0M+VyZZIzbSuhysIAiZNmoTs7Gz89NNPsLBggXTSEUpYX1aVPt0Vhj9uPcHlL3xhb2OpsTiIDJXWJdyNGzfi3LlzmDp1apXuSo6Pj8fjx49LPBceHl7F6IjKIFlftiyS9WUBjSRdLjxApHlalXBjY2Mxd+5cODg4YNWqVVU6VkBAAJYuXaqkyIjKoej6sq5vq20ZwcT0HLivOAO/tvb4fkxHtZyTiGTTqoQ7efJkvHz5Er/++itsbBQrsP66SZMmoU+fPiWeCw8Px7Rp06p0XKJSqrC+rCotOXQXW0Niceqz7mhWt7rKz0dE5atywl2yZEmle5K3bt1C+/btAQCbNm3C6dOnMXz4cAwaNKiqYcHR0RGOjo5VPg5RhSq5vqwqSYaQY1b0h0gkUum5iEg+VU64FhYWle6NGhsbAwASEhIwe/Zs2NraYv369VUNiUi9FFxfVuH2CniZV4g2/sfRvG41nPzMW2XnISLFVTnhzps3D/PmzavSMaKiopCZmQlzc3O0a9eu1PaXL18CAEJCQlC/fn0AwP79++Hh4VGl8xIphYLryyrcXk6b/3yE5UfvY/8HHujYSD3XiIlIflp1DTcvLw/Pnj0rc3tBQYF0e35+vrrCIipfy/7iqT/yclH+ncJtlxxHRm4hopf3g4mxVk6vJzJ4WvEv08fHB4IglPnw9/cHAHh7e0uf40IGpDXkXF8WAGBqCbQbrbRT5xcWw2leEIyNRIhd6cdkS6TF+K+TqKrkWF9WSonry56NfI4WC4Pxv1HtcWtxb6Uck4hUR6uGlIl0lqSYhaxKU4C4Z9tvtdKKXviuOYdHSVm492UfWJnxnzGRLuC/VCJl6ThWXNQibKd4qlBuuvgGKRc/oN2oqhW7yEkFwnZAiDiKuzGPsVywgvugsUBRJgDeIEWkC0SCIAiaDkJdLl++DA8PD4SEhMDd3V3T4RDJp6wazYD42rGGazQTGZrK5hL2cIm02T81mgUAMstXaLhGMxHJjzdNEWmrf2o0C0IZyfZVwbO1ZglAIpKNCZdIS6Vd3gYU5kKuyoySGs1EpLWYcIm00JeH7+H+2V2K7RQRpJpgiEgpeA2XSMtIFh5Y5GQCPFVgRxXWaCaiqmMPl0hLJGXmwWleEHxa2iF2pR9EWlKjmYiUgz1cIi2w+3o85uz7C9smvgHvFnbiJ7WgRjMRKQ8TLpGGDVh/EeFP0vHw6/4wNnrlDqn2o4HTS+Vb3F7JNZqJSPmYcIk0JK+wCC0XHoN3C/EQcimSGs2SebblUWKN5lL+qXKFyOB/q2e17C/+QlCV6llEBoYJl0jVZCSs+Lo+8PvTEYETeqBHy7pl76vmGs2llFXlKvaCuPfNKldEcmPCJVKlMhKWY+wF3K5mAVHWtwAqSFiqrNFcUezl9a5Z5YpIIUy4RKpSQcISKZKwLG0B9w/ED3X4p8qVXIJni78QcHiZqFycFkSkCoomLG0ryxi2U76btQBWuSKSExMukSroesKKPKpYe1a5IqoQEy6RKuh6wlK0ahWrXBFViAmXSAUKstMU20HbEharXBEpHRMukZKtPRmFG4lFiu2kbQmrZX/F2rPKFVGFmHCJlKjDlyfwv9MP4N5fwWky2paw2o8GTCzka8sqV0RyYcIlUoKM3AI4zQtCr1b1xFWjdD1hSapcyUOVVa6I9Ajn4RJV0cGwJ5j5exiOf9IdLetXFz+pLWUZZZG3VKOmq1wR6RkmXKIq6L32PKKevcSjr/vD6NWFBwDtTFiKlmrUVJUrIj3EhEtUCbkFRXBZdAxvudbFiU+9y26oTQmrsqUa1V3likhPMeESKSgk+gXGbLmKgHGd0dO1XsU7aEPCYqlGIo1jwiVSwJjNVxDyMBkRX/WFhamxpsORX2UqX3WbodqYiAwM71ImkkNxsQCneUFIysxD7Eo/3Uq2gO5XviLSA+zhElUg6lkmeq/9E/8d0Q5DOjbUdDiVw1KNRBrHhEtUjnn7/sLv1+MRvqQ3qluYajqcymOpRiKNY8IlKoPTvCBYmxmLC1noupb9xVN/5KVtla+I9ACv4RK9JvZFFpzmBWFO35a4+2VfTYejHLpe+YpID7CHS/SKH88/xMrgCFyY0wOOtaxUezJ5Kz4pgzZXviIyEEy4RP9wWRSM3IJi9QwhK1rxSRm0sfIVkQFhwiWDl55dgHZfnsAETyf4D2it+hNWtuKTMmhT5SsiA8OESwbtj1uP8emu2wj6jxdaO6jhzlxtqPikDZWviAwQEy4ZrDdXnUF8So7shQdUhRWfiAwW71Img5NbUASneUFoWqcaYlf6qS/ZAqz4RGTA2MMlg3I24jkmbL2OnVO6wd25tvoDYMUnIoPFhEsGY3zgNZyLTELksr4wN9FQLWRWfCIyWBxSJr0nWXjgSWoOYlf6aS7ZAuJ5topgxScivcGES3rtdnwams4/iu/HdMTJz8pZKF5dWPGJyGBxSJm0ixKrL32xPxw7r/2NsMW9UNPKTEUBK4gVn4gMFhMuaQ8lVV8SBAFNvjiKauYm2rnwACs+ERkkJlzSDkqqvvQ4NRte35zFF/1cMM3bWclBKhErPhEZHCZc0jwlVV/636kHWHsqCtfm90TdGnJeJ9UkVnwiMihMuKR5Sqi+1Gz+URQWC9o5hExEBN6lTNqgCtWXUrLy4TQvCCO6ODLZEpFWYw+XNK+S1Ze2X4nDogN3cPyT7mhZv7oKAiMiUh4mXNK8SlRf+nBHKI7dearehQeIiKqAQ8qkeQpWX1r6wAnOdtXwkMmWiHQIEy5pnpzVlwQAOYIZhkyYjc96tVB9XERESsSES5onqb5UDgGACID5wDVwa9ZYLWERESkTEy5ph45jgYEbyuzpFojMgYEbYNTpfTUHRkSkHLxpirTHa9WXcl+mIvRZMew6v4Pmvaew+hIR6TQmXNIu/1Rf+u/Lt7Du9APc/7IvLM00uJweEZGSMOGSVhEEAT3XnId9TQsWsiAivcKES1ojIS0HHivP4Mf3OqFvm/qaDoeISKmYcKlylLhuLQDsvfkYs/bcxo2Fb6FONXMVBExEpFlMuKQ4Ja1bKzHo+0vILyzmEDIR6TVOCyLFSNatLWt1H8m6taHbKzxU6j8LDwzv1BDBM99UcqBERNpFKxNuQUEBNm7ciB49esDOzg7m5uZwcHCAj48PvvzyS02HZ7gUXbc2J7XMzecin6PDVydxbpYP3uvGQhZEpP+0bkg5Li4O/fv3x7179yASieDs7IwmTZrg2bNnuHTpEi5evIjFixdrOkzDpIR1awFg4tbruJeQgZgV/SESsRYyERkGrerhpqWlwcfHB/fu3cOoUaMQFxeHBw8e4Nq1a4iLi0NycjJ2796t6TANVxXWrQWA3IIiOM0LQot61XFlfk8mWyIyKFrVw50zZw5iY2MxZMgQ7Ny5s9T2GjVqYMiQIRqIjABUet1aALj8MBmjN1/B0f+8iVYONZQcGBGR9tOahJuUlIRt27ZBJBLhm2++0XQ4JEsl1q0FgMUH72Dntb8RvbwfTIy1alCFiEhttCbhBgUFIT8/H25ubnB2dsbevXtx8OBBJCQkoGbNmujWrRsmTJiAOnXqaDpUw9Wyv3jqj5yKW/ZHuyXH4dOyLh4sV2zNWyIifaM1CffatWsAgBYtWsDPzw/BwcEltu/fvx/Lli3Djh074OdX8XzN+Ph4PH78uMRz4eHhygvYELUfLZ5nK8eNU8UmFmh/sA62ffAGOjbiogNERFozvpeQkAAAOHToEIKDgzFjxgzExMQgLy8P169fh4eHBzIyMjB8+HDcu3evwuMFBATAw8OjxGPatGmqfhn6TY51ayXm5ryPK18OYbIlIvqH1vRwX758CUA8B3fQoEH44YcfpNs6d+6MY8eOwdnZGUlJSfjqq69k3lT1qkmTJqFPnz4lngsPD2fSrSpJBSlZlaYA5MIMO2t/jNUfc+oWEdGrqpxwlyxZgqVLl1Zq31u3bqF9+/YAAEtLS+nzc+bMKdW2evXq+OCDD7B06VIEBwejuLgYRkZld9AdHR3h6OhYqbioAq+tW4vcdOSZVMfKmKZwH/IRJnRy0XSERERap8oJ18LCAjY2Ct69+g9j43/XOa1Vq5b051atWsls37p1awBAeno6UlJSeAOVJv2zbi3cP8Avl2Ox+OBd3Fz4Fmpz4QEiIpmqnHDnzZuHefPmVTkQV1dX6c9mZmYy25ib//vHvKioqMrnpKpbduQenmbkcuEBIqIKaM1NU15eXtKfHz16JLPNw4cPAYh71bVr11ZLXCRbXmER3vnhEtwa2mDDmI6aDoeISOtpTcL19PRE48biIvZbtmwptb24uBgBAQEAAF9fX5iYaM39XgbnXORzvPN9CLZNfAOD2jfQdDhERDpBaxKuSCTC119/DQDYuHFjibuQ8/LyMHPmTNy9exdGRkaYP3++psI0eD+ef4hDtxMQ9B8v1LAw1XQ4REQ6Q2sSLgCMGTMGs2fPRn5+PsaMGYNGjRqha9euqFevHjZs2ABjY2Ns2LABnp6emg7V4OQVFmHi1uuoaWmK/45oz4UHiIgUpFUJFwBWrVqF4OBg+Pn5IScnB7du3YKVlRVGjRqFK1euYMaM0su9kWpFPM2A77fnsfydNhj1RiNNh0NEpJO08kJo37590bdvX02HQQB+uRyLCw9e4M85PWBsxF4tEVFlaV0Pl7RDUbGASVuvw9zECJvf78xkS0RURVrZwyXNep6Zi9E/XcGaEe3R3rGmpsMhItILTLhUwraQWJyLfI7gmd1hZsIBECIiZeFfVAIACIKAWXtu42VeIQInvMFkS0SkZOzhEtKy8zFx63V83rslPJuxPjURkSow4Rq44PBErDsTjT8+8ICFqXHFOxARUaUw4Rqwr47cQ1GxgOCZb2o6FCIivceEa4DSsvMxdftNfOzbDG82t9N0OEREBoEJVxvkpAJhO4DIYCA3HbCwAVr2B9qPFq87q0S349Mwa89t/Dq5K+rVsFDqsYmIqGxMuJoWuh04OgsozC35fOwF4PRSoP+3QMexSjnVqmMReJqeixOfdmctZCIiNePcD00K3Q4c+qh0spUozBVvD91epdPkFhRh6MYQtHOsif+O5MIDRESawISrKTmp4p6tPIJni9tXQuyLLAz+/hLWDG+HPq3rV+oYRERUdRxS1pSwnWX3bF9XkAPc/h3opthKSRvOPMDdhAwEz3yTvVoiIg1jD1dTIo8q1j4iSO6mRcUCJm+7DiszE2x8rxOTLRGRFmAPV1Ny01XSPvr5S8zd9xdWDHFDi3rVKxEYERGpAhOupljYKL39wbAn+O3K39g5pRtrIRMRaRn+VdaUlv0Va+/iV+YmQRDw2a4wRDzNxO7p7ky2RERaiH+ZNaX9aMBEzsITppZAu9EyNz1Nz8Vb/z2Pad7OmNvXRYkBEhGRMjHhaoqlrbiohTz6rQYsa5Z6OiT6Bab/ehN/fOiJlvV5vZaISJvxGq4mSSpIyao0BYh7tv1Wy6w09cX+v2BtZoIDH3qqOEgiIlIGJlxN6zgWcH1bPC838ui/tZRd/IB2o0rVUs7ILcCoTVcwt58LvFtw4QEiIl3BhKsNLG0B9w/Ej3JceZSMb49HYvukN1C7mrmagiMiImVgwtURa05EIikzD3umu7OQBRGRDuJNU1quoKgYo366jAY1LbFyaFsmWyIiHcUerha7HpuCpYfv4ufxXVC3OteuJSLSZUy4Wuq3q3G4EPUCBz/0grERe7VERLqOQ8papqhYwNRfbiA7rwg/ju3EZEtEpCfYw9Uiadn5GLP5KjaN7QTHWlaaDoeIiJSICVdLXItJwf3EDBz+mEPIRET6iEPKGiYIAn67GgcAGOfhxGRLRKSn2MPVoNyCImy58Ag9XevB1b6GpsMhIiIVYsJ9VU4qELYDiAz+t8Riy/7ilX1eK7FYVSHRLxDxNBPTvJ1hasyBBiIifceEKxG6XfYiArEXgNNLxSv7yFhEoDKCwxMBABO9mijleEREpP2YcAFxsj30UdnbC3P/3V6FpJtbUITfrv6Nrk1qoU0Dm0ofh4iIdA/HMnNSxT1beQTPFrevhOjnL7H2ZBTGdmvMZEtEZICYcMN2yl6LVpaCHOD27wqf4sTdpwiLT8MX/V1hZsK3nIjIEPGvf+RRxdpHBMndNLegCJv/fISmdtYY1qmhgoEREZE+4TXc3HSVtE9+mYdtl+PwbtdGqFeDCw8QERk6w0y4QbMAvCue7mOh4PVUOdofv/sUKVn5+PSt5lxOj4iIABjqkHJiGHD8C2CNC2BdV7F9XfzK3FRcLGDLhUeoX8MCo99oxGRLRERShtnDlSjMBe7uA4xMgOLCitubWgLtRsvclJlbgF8ux+GdDg3gUNNSyYESEZGuM+yEKyFvT7TfasCyZqmnLzxIQtSzl/jAx5m9WiIikskwh5RfV1QAtBkKmJRxc5OpJTBwQ6miF4IgYNf1v5FbUIxJXk2YbImIqEzs4Uq8fA58HiGelxt59N9ayi5+QLtRpWopP8/MxZHbiejbpj6HkImIqEJMuBK56eKk6v6B+FGOh0kvEfRXIqZ2bwoLU2M1BUhERLqMCVdCzulB+0Mfw9hIhP/0bK7igIiISJ8w4UqUM90HALLyCvHDuWi87+7EQhZERKQwJlyg3Ok+AJCQloMDYU8wzdsZNSxM1RgYERHpCyZcoMzpPgBwMOwJAOADn2ZqDIiIiPSNYSdcU0txspWxxm1BUTE2X3gE96a10aGRrYydiYiI5GeYCde+PdD3PZnTfQDxwgP7Q5/gvW6NOYRMRERKYZgJ1+9boJu7zE33EjKQnJWHyW+ykAURESkPK039o7hYwJmIZzAzEeHN5nZMtkREpFSG2cN9TXp2AS49fIE3m9dBdQ4hExGRChh8wo1+/hLxqdno27o+jIzYqyUiItUw2CFlQRBwKfoFcvKL0KNlXSZbIiJSKYPs4ebkFyIoPBFezeqgppWZpsMhIiIDYFAJNysrCwBw8OxVDHvLCPdvx2k4IiIi0jXh4eEA/s0p8jKohPvo0SMAwLqls7FuqYaDISIinSbJKfISCYIgqCgWrZOQkIAjR46gadOmsLa21nQ4ei08PBzTpk3Dpk2b4ObmpulwDBo/C+3Bz0J7VOWzyMrKwqNHj/D222/DwcFB7v0Mqofr4OCAqVOnajoMg+Lm5gZ3d9lFRki9+FloD34W2kOdn4XB3qVMRESkTky4REREasCES0REpAZMuKQSDRs2hL+/Pxo2bKjpUAwePwvtwc9Ce2jiszCou5SJiIg0hT1cIiIiNWDCJSIiUgMmXCIiIjVgwiUiIlIDJlwiIiI1YMIlIiJSAyZcUruCggJs3LgRPXr0gJ2dHczNzeHg4AAfHx98+eWXmg7PYK1duxYikQgikQg+Pj6aDscg5OXl4fDhw/jwww/RqVMn2NjYwMzMDPXr18fbb7+Nffv2aTpEvXP9+nWMGDEC9vb2MDc3h6OjIyZOnIgHDx6o/Nych0tqFRcXh/79++PevXsQiURwdnaGra0tnj17hoSEBAiCgMLCQk2HaXCio6PRrl07ZGdnAwC8vb1x7tw5zQZlABYtWoRly5YBAExMTNCsWTNYWloiOjoamZmZAIAhQ4Zg586dMDMz02SoemHbtm2YNGkSioqKUKdOHTRu3BgPHjxARkYGrKyscPjwYfj6+qrs/OzhktqkpaXBx8cH9+7dw6hRoxAXF4cHDx7g2rVriIuLQ3JyMnbv3q3pMA2OIAiYOHEi8vPzMXDgQE2HY1AEQYCnpyd27NiB1NRU3L9/H6GhoUhOTsbKlSsBAPv378fSpVzAu6ru3r2LyZMno6ioCHPnzkVCQgJu3LiBxMREvPvuu8jOzsawYcOQnJysuiAEIjWZMmWKAEAYMmSIpkOhV/zvf/8TAAhz584V/P39BQCCt7e3psMyCC9evCh3u+TfTO3atYWioiI1RaWfhg8fLgAQPDw8Sm3Lzc0VmjRpIgAQvvjiC5XFwB4uqUVSUhK2bdsGkUiEb775RtPh0D8ePXqE+fPno3nz5liyZImmwzE4tWvXLnd7v379AADJyclISkpSR0h6KTs7G0eOHAEAzJgxo9R2c3NzjB8/HgCwc+dOlcVhUAvQk+YEBQUhPz8fbm5ucHZ2xt69e3Hw4EEkJCSgZs2a6NatGyZMmIA6depoOlSDIQgCJk2ahOzsbPz000+wsLDQdEj0mtzcXOnPVlZWGoxEt926dQs5OTkAgO7du8ts4+3tDQCIjY1FYmIi7O3tlR4HEy6pxbVr1wAALVq0gJ+fH4KDg0ts379/P5YtW4YdO3bAz89PEyEanI0bN+LcuXOYOnUq70rWUr/99hsAoGPHjqhevbqGo9FdkZGRAAAzMzM4OjrKbOPs7Cz9OSIiQiUJl0PKpBYJCQkAgEOHDiE4OBgzZsxATEwM8vLycP36dXh4eCAjIwPDhw/HvXv3NByt/ouNjcXcuXPh4OCAVatWaTockmH//v0ICgoCACxYsEDD0ei2lJQUAICtrS1EIpHMNrVq1ZL+nJqaqpI4mHBJLV6+fAlAPAd30KBB+OGHH+Dk5AQzMzN07twZx44dg52dHXJycvDVV19pOFr9N3nyZLx8+RI//PADbGxsNB0OvSY8PFx6TfHdd9/FkCFDNBuQjpMMJ5c3terVSyqS6XHKxoRL5VqyZIm0GIKij7CwMOlxLC0tpT/PmTOn1HmqV6+ODz74AAAQHByM4uJilb82XaOsz2LTpk04ffo0hg8fjkGDBmnuBekwZX0WskRHR6NPnz7IzMyEt7c3Nm/erJ4Xpcckf3/y8/PLbKOO6+W8hkvlsrCwqHQPyNjYWPrzq8M1rVq1ktm+devWAID09HSkpKTwBqrXKOOzSEhIwOzZs2Fra4v169crMzyDoqx/F6+LjY2Fr68vEhMT4eHhgSNHjpT4skqVY2trC0A8VCwIgsxhZcmw86vtlY2VpkgtVq5ciS+++AIAkJWVJfMb5KFDh6Q9rqdPn6JevXpqjdEQnDt3Dj169IC5uTlq1qxZavvLly+RlZUFU1NT6Zek/fv3w8PDQ82RGp74+Hh0794dsbGx6Nq1K06cOIEaNWpoOiy9cOnSJXh5eQEQf6lp3LhxqTbnz5+X3jyYkJDAm6ZId0l+2QHx3E9ZHj58CEDce6hofiJVTV5eHp49e1bqkZWVBUB8rV3yXHnDcKQcT548QY8ePRAbG4suXbrg+PHjTLZK1L59e+lIwZ9//imzzfnz5wEATk5OKkm2ABMuqYmnp6f0W+WWLVtKbS8uLkZAQAAAwNfXFyYmvNqhCj4+PhAEocyHv78/APGcRMlznDKkWk+fPoWvry8ePnyITp064cSJE7yRTcmsra2l0w03bdpUanteXh62bt0KABg5cqTK4mDCJbUQiUT4+uuvAYjnf75azSUvLw8zZ87E3bt3YWRkhPnz52sqTCK1SkpKQs+ePREVFYWOHTvi5MmTMof6qer8/f1hYmKCS5cuYd68eSgoKAAgviN58uTJiImJgY2NDWbNmqWyGNiNILUZM2YMwsLCsHr1aowZMwZz586Fvb09IiMjkZ6eDmNjY6xfvx6enp6aDpVILRYuXCidd56fn48BAwaU2Xb9+vXo0KGDukLTO23atMGmTZswdepUfPPNNwgICCixWpClpSX27Nmj0ps1mXBJrVatWgVfX19s2LABV69exa1bt1CnTh3069cPn3/+OTp37qzpEInUJi8vT/rznTt3ym2bnp6u6nD03sSJE9GmTRusWrUKFy9eRHh4OOzs7PDOO+9g/vz5aNGihUrPz7uUiYiI1IDXcImIiNSACZeIiEgNmHCJiIjUgAmXiIhIDZhwiYiI1IAJl4iISA2YcImIiNSACZeIiEgNmHCJiIjUgAmXiIhIDZhwiYiI1IAJl4iISA2YcImIiNSACZeIiEgNmHCJiIjUgAmXiIhIDZhwiYiI1OD/0ai76tvIpgIAAAAASUVORK5CYII=",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "yhat = x @ w + b\n",
- "plt.plot(y, y, \":\", linewidth=0.2)\n",
- "plt.plot(y, x @ w + b, \"o\")\n",
- "plt.xlim(min(y), max(y))\n",
- "plt.ylim(min(y), max(y))\n",
- "plt.text(min(y) + 1, max(y) - 2, f\"correlation = {np.corrcoef(y, yhat)[0,1]:.3f}\")\n",
- "plt.text(min(y) + 1, max(y) - 3, f\"loss = {np.sqrt(np.mean((y - yhat)**2)):.3f}\")\n",
- "plt.title(\"Training Data\")\n",
- "plt.show()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {
- "scrolled": true,
- "tags": [
- "hide-input"
- ]
- },
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdwAAAGSCAYAAABJ8XDpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAABP+AAAT/gEHlDmEAABfRElEQVR4nO3dd1hTZ/sH8G/YARQQUEFR3KCi4Khb1NaJr1q3Veuq+jq6HThatdpqtcM666Dqq5Wq1boobrG4cACKAxERFXEyZYV1fn/klxQkQAIhi+/nunIZc55zzp0D5M4zzvOIBEEQQERERBXKSNsBEBERVQZMuERERBrAhEtERKQBTLhEREQawIRLRESkAUy4REREGsCES0REpAFMuERERBrAhEtERKQBTLhEREQawIRLRESkAUy4REREGsCES6SjYmNjIRKJIBKJsH37dm2HQ0TlxIRLeqlgMirPIygoSNtvpVLp1q2bwp+DWCxGzZo14ebmhvfffx/Lli3DlStXtB0ukVox4RJpEGutimVlZeHFixe4d+8eDh48iK+++grt2rWDl5cXAgICNBKD7OeyePFijZyPKh8TbQdAVBa1atVCREREsdt79+6N+Ph4ODs74/jx48WWq1evXkWEpxaurq4w5OWqC/788vLykJycjBcvXuDKlSs4cuQIoqKiEB4ejv79++Pjjz/GL7/8ApFIpMWIicqHCZf0kqmpKZo3b17idmXKkfYU93MZPnw4Vq1ahX379mHq1KlITk7G2rVrYWtri2+++UbDURKpD5uUiUjniEQiDB8+HBcuXICVlRUAYNmyZSW2ahDpOiZcqrQSEhKwdOlSdOjQAQ4ODjAzM0PNmjXh4+ODXbt2IT8/v8T9g4KCMHr0aDRo0ACWlpawsLCAi4sL2rRpg+nTp+PgwYPIy8uTlxeJRIWasCdMmFBk8ND48ePl20vr7128eLF8OwBIJBL89NNPaNOmDWxsbGBtbQ0vLy+sXLkSWVlZpV6Pu3fvYsKECXBxcYGFhQVq1aqF999/H2fOnFF4Pk1o2rQpli9fDgAQBEH+/G0JCQnYtWsXRo4cicaNG8PKygrm5uZwcnJC37598dtvvyEnJ0fhvq6uroXe05IlS4r8XLp161ZoH4lEgsDAQEyfPh1eXl6wsbGBqakpHBwc0LFjRyxduhSJiYnquQhkOAQiA1S3bl0BgFC3bl2F2w8cOCBUrVpVAFDso3PnzsKrV68U7v/pp5+WuK/sUXB/ZcqPGzdOXv7hw4fy17dt21YkhkWLFsm3P3/+XPDy8irxvWRmZhZ7vX7//XfBzMxM4b4ikUj45ptvCp2vrLy9vVU+RlpamvxnZW1tLeTk5BTanpubKxgbG5d6bdu2bSs8f/68yPFlvyslPby9vYt9H8U9qlevLly6dKlM14kME/twqdL566+/MHToUOTn56N69er4+OOP0bJlS9SqVQsvXrzAoUOHsHXrVpw/fx7vv/8+zp49CxOTf/9Ujhw5gl9++QWAtHY0c+ZMeHp6wt7eHmlpaYiMjERQUBAOHTpU6LwRERGIj49H7969AUibSAcOHFiojJ2dXZne0+DBg3H79m3MmDEDAwYMgKOjI2JiYrBy5UpcuXIF58+fx7fffoulS5cW2ffSpUv48MMPkZeXBzMzM3zyySfw8fGBtbU1bt68iVWrVuHrr7/GO++8U6bYysvKygqdO3fG33//jbS0NISGhhaKRRAECIKAHj16oE+fPvDw8ICjoyMyMzMRGxuLXbt24fjx47h69SpGjRolr7HLnDhxAtnZ2fDw8AAATJs2DdOnTy8SQ0G5ublo3rw5BgwYgNatW6NWrVowMjLC48ePceLECWzfvh0vX77EwIEDcevWLTg6OlbQ1SG9ou2MT1QRiqvhvn79WrC1tRUACH379hXS09MV7n/06FHByMhIYe1yzJgxAgDByspKePbsWbExpKSkFKmNlVZrVaVswRqnqampcPr06SJlMjIyhKZNmwoABAcHhyLxCIIgeHp6CgAEY2Nj4dSpU0W2p6enC++8806h2ltZlaWGKwiCsHDhQvl+O3fuLLQtPz9fuH//fon7b9u2Tb6/ouskCP+2QCxatKjUeKKiokrcHhERIVhbWwsAhK+++qrU41HlwD5cqlR+/fVXJCcnw9LSEjt37oSlpaXCcj4+PhgyZAgAwM/Pr9C258+fAwAaN26MmjVrFnuuqlWrFqoZV6SPP/4YPXr0KPK6WCzGxx9/DAB4/fo17ty5U2h7SEgIwsPDAQATJ07Eu+++W+QYlpaW2Lx5s/qDVoG9vb38+dt9oyKRCA0bNixx//Hjx8PLywsAcPDgwXLH06hRoxK3N2/eHJMnT1bb+cgwsEmZKhXZh1/37t0LfYgr0rVrV+zbtw9XrlxBXl4ejI2NAUjvAQaAO3fu4MqVK1prai1o9OjRxW5r06aN/HlMTAxatGgh//+pU6fkzz/88MNij9GyZUu0bNkSN27cKGekZWNtbS1//ubNmxLLCoKA58+fIzU1tdBAKWdnZ4SFhcm/YKhTQkICkpKSIJFI5PdO29jYAABu376NnJwc+a1qVHkx4VKlkZeXh7CwMABAQECA0qNts7OzkZiYKO+HGzduHHbs2AGJRIJOnTrBx8cHPj4+6NSpE9zd3bUyOYObm1ux26pVqyZ//nayunXrFgBpLbF169YlnqNNmzZaS7gF465atWqR7YIgYM+ePdi6dSsuX76M9PT0Yo/1+vVrtcR06dIlrF27FidPnizxmPn5+UhKSkL16tXVcl7SX0y4VGkkJiYWuk1HFRkZGfLn3bt3x6+//oovv/wS6enpOHTokHyAlL29PXr37o2PPvoI3bt3V0vcyiiuaRwAjIz+7Tl6+/0nJSUBkNYgxWJxiefQ5sCfggmt4BcIQHqLzpAhQ5SeAjIzM7Pc8SxduhSLFi1SeiYwdZyT9B/7cKnSKJhsRo8ejYiICKUfzs7OhY41depUxMbGYu3atRgwYIA8CSQkJGD37t3o0aMHPvjgA+Tm5mr0PapK2YShbaGhofLnTZo0KbTt22+/lSfbLl26wN/fH1FRUXjz5g3y8vLko5jHjh0LoPzv+cyZM/j6668hCALq1auHdevWITw8HElJScjOzpafr2Dfv75cZ6pYrOFSpWFvbw+RSARBEJCSklLuKR8dHBwwc+ZMzJw5E4Ig4Pbt2zh8+DDWr1+P+Ph4+Pv7o3nz5pg/f76a3oH6yb4opKWlITMzs8Ra7qtXrzQVViFpaWm4cOECAKBKlSrywU+ANJFt2bIFANCpUycEBQUVqtEXJKvNl5dsAJmtrS0uXbqEGjVqVOj5yHCwhkuVhqmpKZo1awYA+Oeff5SafUlZIpFInlwvX74sv29z7969RcrpEtmXDkEQCtUiFbl+/bomQirCz89P3oc7cOBA+eA1QNpNIBs1Pnz48GKTrSAIaov/9u3bAKRdC8UlWwC4du2aWs5HhoMJlyqVQYMGAQBSU1Oxfv36CjmHi4sLGjduDKDoAB0LCwv5c4lEUiHnV8V7770nf75z585iy0VERFTI6N7S3LlzBwsWLAAg/bIyb968QtsLNtmX1E968OBBPHv2rMRzyX42pf1cZOcs6Xzx8fG8HYiKYMKlSuXTTz+V366xYMECBAYGllj+5s2bOHLkSKHX/vjjj0KDqN725MkTREZGAii6/J+9vT3MzMwAANHR0SrHr27t2rWDp6cnAGlNMigoqEiZzMxMTJkyRaNxCYKAffv2oXPnzvIRx4sXL0bTpk0LlXN0dIStrS0AwN/fX2GyjIqKKjJzlCJOTk4ASv+5yL5MBQcHKyyblpaGkSNHqrUFhQwD+3CpUnFwcMCuXbswaNAgSCQS+Pj4YPDgwRg6dCgaNGgAIyMjvHz5EqGhoThy5AhCQkLw5Zdf4j//+Y/8GL6+vvjvf/+L//znP+jatSuaNGmCqlWrIjExEdevX8fatWvltZ+3P+hNTEzQrl07BAcHY+vWrWjWrBlatWolT8I2NjbyD35N2bBhA7p06YLc3Fz06dNHPrWjlZUVIiIi8MMPP+DOnTt45513cOXKFbWdV3ZLEiAd0JaSkiJfD/fw4cOIioqSb//ss8/w9ddfFzmGkZERxowZg3Xr1uHGjRvo3LkzPv/8czRq1Ajp6ek4efIk1q5di5ycHLRq1arEZvPOnTvj4cOHOHz4MNasWYMuXbrI+7QtLS1Rp04dANL7lQ8fPoz09HR4e3tj7ty5aN26NYyNjXH16lWsXr0aMTEx6Ny5M86fP6+uy0WGQNNTWxFpQmmLF5w4cUKoXr26UgsKLFmyROGxS3oYGRkVO0VgYGCgfNrItx9lXbygJMpMJ1na4gVLly4VvvrqKwGAYGFhUeL5SqLMpP8FH15eXkJgYGCJx0xJSRFatWpV7DGsrKyE/fv3C+PGjSvxd+LGjRuChYWFUosXTJ48ucS4586dW2g6yYcPH5b5mpHhYJMyVUo9e/bEw4cPsW7dOvTt2xfOzs4wMzODubk5atWqhR49emDRokUIDQ0tUrMKDg6Gn58fPvjgA7Ro0QI1atSAiYkJrK2t0bx5c0yfPh2hoaFYvHixwnP36dMHZ8+exeDBg1G7dm157VabPvjgA4SHh2PcuHHymJycnDBw4ECcOnUKCxcuRGpqKoB/Z1BSJ3Nzczg6OqJRo0YYOHAgvvnmG1y9ehWhoaHo06dPiftWrVoV58+fx3fffYeWLVtCLBbD0tISjRo1wowZMxAWFobBgweXGkOLFi0QEhKCMWPGwNXVtVB/+9s2b94Mf39/eHt7w8bGBmZmZnBxccGwYcNw+vRprFixQuVrQIZPJAi8QYyISvfee+/h9OnT6Ny5M4KDg7UdDpHeYQ2XiEoVFxeHc+fOAQDat2+v5WiI9BMTLhHh/v37xW7LyMjA+PHj5bfDlLTIAREVj6OUiQj9+vVDzZo1MXjwYHh5ecHW1hapqam4cuUKNm7ciJiYGADApEmT5Au1E5Fq2IdLRGjYsCEePHhQYpnBgwdj165dpS5yQESKMeESEYKDg3HkyBGcO3cOz549w6tXryASiVCjRg20b98e48aNK3W0MBGVjAmXiIhIAzhoioiISAOYcImIiDSgUo1Sjo+Px9GjR1G/fn358mlERESqSE9PR0xMDPr37w9nZ2el96tUCffo0aOYOnWqtsMgIiIDsGnTJpVW0qpUCbd+/foApBeJ9xISEZEqJLl5CHuUjLyER5j92Ux5TlFWpUq4smZkDw8PdOjQQcvREBGRvohPzsStpymY1t4RYdeky1Sq2jVZqRIuERGRqsIeJyE7Nx+9mtUs13GYcImIiBTIyxdw6u4LNHWqCpdqluU+HhMuERHRW5LSs/HP/Vfo3awmLEyN1XJMJlwiIqICbj1NQWpmDgZ61lLrcTnxBREREaRNyGcjX8LC1BgdGzqo/fis4RIRUaWXnJGNkIeJaF/PHjaWphVyDiZcIiKq1O6/eIOnyZno6V4DRkaiCjsPm5SJiKjSOn//NbLz8tGtSfUKTbYAa7hERFQJZWbn4cSd5+jWuHqFNSG/jQmXiIgqlUcJ6Yh6kYb+LZxhXMG12oKYcImIqFIQBAEhDxMhNjVGz6Y1NH5+JlwiIjJ4mdl5+Of+K7SsbYuaNhZaiYEJl4iIDNqzlEzcjEtBtyaOMDdRz6xRZcGES0REBivscRJy8gT0LufCA+rAhEtERAYnNy8fp+6+QDNnG7UsPKAOTLhERGRQXr2R4FpsIro1qQ6xmfaakN/GhEtERAbj1tMUpGbloE/zmhCJNHfLjzJ0cqapq1evYvjw4XBycoK5uTlcXFwwceJE3L9/X9uhERGRDsrNy8fyv+/C3MQIHRs46FyyBXQw4e7YsQMdOnTAvn37kJubCw8PD6SmpmLbtm3w9PTEmTNntB0iERHpkOiXafjof9fwX+8GaFSjirbDKZZOJdzbt2/jo48+Ql5eHubOnYv4+Hhcu3YNz549w+jRo5GRkYGhQ4ciISFB26ESEZEOOBP5ArsuP4LfuLawszLTdjgl0qmEu2TJEuTm5qJjx45YsWIFTE2l81taWlrCz88P9erVQ1JSEn788UctR0pERNqUny9g2dE7yM7Nx+IBzTQ6RWNZ6UzCzcjIwNGjRwEA06ZNK7Ld3Nwc48ePBwD4+/trMjQiItIhyRnZmPy/axjapjb6NHfSdjhK05lRymFhYcjMzAQAdO3aVWEZb29vAEBsbCyePXsGJyf9udBERFR+R2/GI/xxMjaMaaXVWaPKQmdquPfu3QMAmJmZwcXFRWGZBg0ayJ9HRkZqJC4iItI+QRCw9vR9ZGTnYWH/pnqXbAEdquEmJiYCAOzs7Iodzl2tWjX586SkpBKP9+TJE8TFxRV6LSIiopxREhGRpmXl5GH+XxEY1toFHRrYazucMtOZhCtrTjYzK36UmYXFvys8ZGRklHg8Pz8/LFmyRD3BERGRVpyLeoU/r8fh5+EtYWKsM42yZaIzCVcsFgMAsrOziy2TlZUlf25pWfLcmJMmTULv3r0LvRYREYGpU6eWI0oiItKU/12KRUZ2HtaO8tJ2KGqhMwnXzs4OgLSpWBAEhc3KsmbnguWL4+LiUmxfMBER6a40SS5WHYtEXw8ntK+vv03Ib9OZ+rmbmxsAaQ338ePHCss8ePCgSHkiIjIcUS/e4PM94fjk3UYGlWwBHUq4np6e8mblf/75R2GZc+fOAQBcXV15SxARkYHZHfIYB8OeYvPY1rC3Ntd2OGqnMwnXysoKPj4+AIBNmzYV2S6RSLB9+3YAwIgRIzQZGhERVaDs3Hz47r+JRjWsMaePm04uPKAOOpNwAWDRokUwMTHBhQsX4Ovri5ycHADSEckfffQRHj58CBsbG8yaNUvLkRIRkTokpmdjxu5QTO/WEG1dq5W+gx7TqYTbvHlzbNq0CcbGxvj+++/h7OyMNm3awMnJCbt27YJYLMa+ffvg4OCg7VCJiKicfg95hE3nHmDz2NaoY1/ynSeGQKcSLgBMnDgRFy9exJAhQ2BsbIyIiAhUqVIF48aNQ3h4OHr27KntEImIqBxkCw/Yis0wr5+7wTYhv01nbgsq6J133sGff/6p7TCIiEjNnqVkYv3ZaIxt74omNXV37dqKoJMJl4iIDM/ZyJcIvPUMywZ5wMxE5xpYKxwTLhERVbg1p+/D0swYK4e21HYoWsOES0REFeZ1mgRLjtzB7F5NKsXAqJIw4RIRUYW4E5+KX889wHfvN0cVC1Nth6N1TLhERKR2689Gw0gkwhoDWXhAHZhwiYhIbdIkuZh3IAKTu9RDi9q22g5HpzDhEhGRWkS/TMOv5x5g0X+awsEA50IuLyZcIiIqtx0XY5GUkY1VQ1tUmoksVFX5boQiIiK1yc2TLjxQo6oFPnuvMZNtCVjDJSKiMrn7LBU7Lsbiy15N4FiFTcilYcIlIiKVnbj9HJdjEvHt+x4wNmKtVhlsUiYiIqUJgoDvj0Xi5RsJvv5PUyZbFbCGS0RESnmSmIGvDt3CD8NachRyGTDhEhFRqa48TMRfYU+xeWybSrnwgDrwqpFOGz9+PEQiERYvXqzR8y5evBgikQjjx4/X6HmJdI2sCflRQjqWD66cq/yoC68cVTrbt2/H4sWLER4eru1Q9NqePXvQvXt3VKtWDZaWlnB3d8eCBQuQmpqq8rFiY2MhEomUetSrV0+pY167dg0mJiby/Yrj5+eHiRMnolWrVnBycoKZmRmqVKmCli1bYs6cOYiPj1f5/RiKlIwcTN15HT4eThjWxkXb4eg9NilTpbN9+3acO3cOrq6u8PT0VFjGwcEBTZo0gZOTk2aD0xOTJ0/G1q1bAQCurq6oW7cubt++je+++w5//PEHgoOD4ezsrPTxLCws0KlTpxLLXLp0Cfn5+ejcuXOpx8vOzsaECROQl5dXatm5c+ciISEBFhYWcHJyQsuWLfHq1StERETg5s2b2LRpEw4dOoRu3bop+3YMwrmoVwi69xI/j/CElTlThTrwKhIpMHPmTMycOVPbYeikzZs3Y+vWrTAzM8Pu3bsxZMgQAMCTJ0/Qv39/3Lx5EyNHjsQ///yj9DFr1qyJ8+fPF7s9PDwcXl7SSfAnTpxY6vG++eYb3Lp1C4MHD8aBAwdKLLtw4UK0a9cObdu2hYnJvx+JUVFRmDRpEs6fP48RI0bg4cOHsLSsHMvLbQ2OgYmRCIv+00zboRgUNikTkdLy8vLk/emzZs2SJ1sAcHFxwZ49e2BkZITg4GCcOHFCbef18/MDANSvX7/UmmZoaCi+//57dOjQATNmzCj12J999hk6dOhQKNkCQOPGjbFv3z4AwMuXL1X6AqGvcvPy8cXecDRwtMb4Tso13ZPymHD1kCAIOHjwIAYOHAhnZ2eYm5ujRo0aaN++PZYuXYpnz54V2ScpKQkLFy6Eh4cHrK2tYWVlBQ8PDyxcuBBJSUkKz9OtWzeIRCJs374dT58+xbRp01CvXj2Ym5vLP/S2b98OkUiEbt26IT8/H+vWrUPbtm1hY2MDkUiE2NhY+fGysrKwevVqdOrUCXZ2djA3N0e9evUwZcoUPHjwQOXrcP78ecydOxft2rWDs7MzzMzM4ODggJ49e8Lf379I+aCgIIhEIpw7dw4AMGHChEJ9gwU/yEsbNFXe65mYmIjPPvsMrq6uMDc3R61atTB58mQ8f/5c5eugSf/884/89+u///1vke1ubm7w9vYGAIU/g7KQSCTYvXs3AGnttqT+2JycHEyYMAFGRkbYunUrjIzK9xFXs2ZNVKtWDQCQnp5ermPpupCYBHy6JxwrBrdAd7fq2g7HILFJWc9kZmZi1KhROHToEADA3t4eLVq0QFJSEkJDQxESEgIXF5dCiSIyMhI9e/ZEXFwcjIyM0KyZtJno9u3buHXrFnbs2IGTJ0/Czc1N4Tnv37+PWbNmITk5GU2bNkXTpk1hZmZWqIwgCBgyZAgOHjwIFxcXNGnSBA8fPpRvf/z4Mfr27Ys7d+5AJBLBxcUFdevWRVRUFLZs2QJ/f38cPHgQ7777rtLXYtCgQUhISICdnR1q1qwJZ2dnxMfH49SpUzh16hROnDiBbdu2ycvb2NigU6dOiIiIQGpqKho1aoTq1f/9YPHw8FDqvOW9nnFxcfD09MSzZ8/g7u4Oc3NzREdHY+vWrThz5gxCQ0NhY2Oj9HXQpIsXLwIA6tWrBxcXxYNovL29cfbsWXnZ8jp48CASExNhZGSEcePGlVh22bJluHnzJpYsWYKmTZvi5cuX5Tr3rVu3kJiYCGNjY7Rq1apcx9Jlf16PQ1xSBtaN8uJcyBVJqEQuXrwoABAuXryo7VDKbNy4cQIAwdbWVti3b5+Ql5cn35aRkSH873//E4KDg+WvZWdnC+7u7gIAoW3btsLDhw/l22JiYoTWrVsLAAR3d3chOzu70Lm8vb0FAIKxsbHw3nvvCfHx8YXOJQiCsG3bNnkZOzs74fjx4/IyOTk5Qk5OjiCRSISWLVsKAIQ+ffoI0dHR8jJZWVnCrFmzBACCvb298Pr1a4Xvd9GiRUWuxZYtWwodS+by5ctCw4YNBQDCvn37imyXva9t27YV2SazaNEiAYAwbty4Qq+r43qampoKvXr1KnQ9r1+/LlSvXl0AIHz99dfFxlWcTp06lekxc+ZMlc4zduxYAYDQs2fPYsvs3LlT/juRk5Oj8nt5W69evQQAQt++fUssFx4eLpiamgrNmzeXX/uzZ88KAARVPury8vKE+Ph4wd/fX3B1dRUACPPnzy/Xe9BVmdm5wpLDt4UTt59rOxS9UtZcwoSrR27evCn/8Dh9+rRS++zatUv+If/o0aMi2x8+fCiYmpoKAIRdu3YV2iZLEI6OjkJycrLC48sSLgDh999/V1hmy5YtAgChWbNm8kT9tv79+wsAhOXLlxd6vaSEW5ITJ04IAIR+/foV2VaehKuO6+ng4CAkJiYW2XfVqlUCAMHLy0u5N1mA7Geg6sPb21ul8/j4+AgAhBEjRhRbJiAgQH78hIQEld9LQY8fPxaMjIyK/fIkk5OTI3h5eQlGRkbC5cuX5a+rknCXLl1a5Pp4enqWeF59Fv3yjTBh2xXhZWqWtkPRO2XNJezD1SP79+8HAHTo0AE9evRQap+jR48CAIYPH446deoU2e7q6oqhQ4cCAAICAhQeY+jQoaU2cVapUgXDhw9XuG3Pnj0ApJNYiMVihWVkg2/OnDlT4nnedu/ePSxbtgzDhg1Djx490LlzZ3Tu3Bnz588HAFy/fl2l45VGHdfzgw8+gJ2dXZHXZbfFREdHqxyXIP3yrPIjKChIpfNkZmYCQJEuhYIsLCzkzzMyMlR+LwVt27YN+fn5cHBwwIABA4ott3z5coSFheGTTz5Bu3btynSuOnXqoFOnTvIxASKRCLdu3cKuXbsUjovQZ98G3MHCv25h64dtuMqPKjKTgEvrgYBZZdqdfbh6JCIiAgDQsWNHpfe5d+8egJL7Jz08PODv74/IyEiF22V9lCVp0qRJkVGeMjdu3AAg/fA8ePCgwjLJyckApP2byvr666/x7bffIj8/v9gyCQkJSh9PGeq4no0bN1b4eo0aNQAAaWlp5Yyy4si+MGVnZxdbJisrS/68PLfRCIKA7du3AwDGjBlTbJKPiIjAsmXL4OrqimXLlpX5fB9++CE+/PBD+f+joqLwxRdf4NChQwgNDcXt27dRpUqVMh9fF2Tn5uO9n87h856NsMCnqbbD0S+hO4G/ZwG5WcCz3DIdgglXj8hm8LG1tVV5n5o1axZbRja5w5s3bxRut7KyKvU8JZWRjdq9c+dOqcdRtka0b98+LF26FCKRCF999RUGDx6M+vXrw9raGkZGRoiJiUGDBg2Qm1u2P4ziVOT1lI2oFQShPCFWKFnNvKQvMomJiQAAY2NjVK1atcznOnv2rHzg3aRJk4otN2HCBGRnZ2PTpk1K/a4qq3Hjxjh48CBatGiBu3fvYu3atfKWE32UmpWDFotPYNPY1ujdrPjfX1IgdCdwuPz35TPh6hHZh5esNqjKPiXdbiJrLquob+/W1tZITk7GqVOnVBqFXBLZ6OMvvvgC33zzTZHt6q7ZyujC9VREmdmXFPHy8sLatWuVLi8beV1Ss7fsFq8GDRoU2+qhjN9++w0A8M4776B58+bFlrt+/TpEIlGh2qlMwZq47EvSrFmzMGuWck2CJiYm6NevH+7evYtr166pEr5Omb3vBiKepuDBd/24nJ6qMpOkNVs1YMLVIy1atMCBAwdUut3Czc0NYWFhuHXrVrFlZNvc3d3LHaMiHh4eCA4OxoULF9SWcGUf6rJ7Pt924cKFYvctz20PunA9FSnp/ZZE1YQo686IjY3FkydPFN4aJLvPWZWuj7elpKTIZ4hSZmYpQRDw4sWLEsvItqvaZC9rJVFmmkhdIwgCRm25jJYutjj2WVdth6Ofwv2lzchqwEFTemTIkCEQiUS4dOmS0oNdfHx8AAB79+5V2D/6+PFj+Ww6srLqJhtMtXHjRrXVPGV9g0+fPi2yLSMjo8Ram2xf2QAgVejC9VREU4OmunbtKq8p/vrrr0W2R0ZGyhPuiBEjyvx+du/ejczMTFhaWmLUqFElli3p/Z09e7ZIOVVWnpJIJDhy5AgA6N19uC/fZKHHj+cwtr0r5vXV3Jc/g3Pvb7UdiglXjzRv3lw+ocWQIUPw119/Fervy8rKwq5duwrNSTt8+HC4u7sjOzsbw4YNw+PHj+XbYmNjMXToUOTk5KBp06YYNmxYhcT90UcfwcPDA8+fP0ePHj0QEhJSpMzdu3fx9ddfyz/cSiObFerbb78t1DccHx+PgQMHlrjCS8OGDQFIZ55Stb9UF66nNhkbG2PRokUAgB9++EE+ch6QzqU8YsQI5Ofno1OnTujTp0+R/Tt37gxXV1esXr26xPPImpOHDBlSrn7g0uzduxc///yzwi9ud+7cQb9+/RATE4OqVati8uTJFRaHuu26/AjvfHsaxz7rAp8WXICjXLJS1HYoNinrmfXr1yMhIQGHDx/G4MGDYW9vj/r16yMpKQmPHj1CTk4Otm3bJu/TMzU1xYEDB9CzZ09cvnwZ9evXLzQzUl5eHmrXro39+/fD1NS0QmK2sLBAQEAABg4ciLCwMLRv3x5OTk5wcXFBTk4OYmNj5QOrCs4MVZI5c+Zgz549iIuLQ4sWLdC4cWOYmZnh1q1bMDU1xfr164sdaDN69GisW7cOe/fuxcWLF+Hq6gpjY2N4enqWmgh04Xpq23//+19cuXIF27Ztw9ChQ1GvXj3Y2Njg9u3byMnJgaurK/744w+F+8bFxeHRo0cljkO4deuWvL+0pMFS6hAfH48vvvgCX3zxBZydneHs7AwjIyM8ffpUnoQdHR3x559/qrT6kTbN+D0UqVk5iF2huRYWg2ahvlnfWMPVM2KxGAcPHsTevXvRt29fGBsbIzw8HG/evEHr1q2xbNmyIjULNzc33LhxA/Pnz4ebmxvu37+P+/fvw83NDfPnz8eNGzeKnYZQXVxcXHD58mX4+fmhV69eyM3NRVhYGOLi4lC3bl1MnDgRhw4dwsiRI5U6npOTE0JCQjBu3Dg4ODggOjoaL1++xLBhw3DlypUS71N+5513cPDgQXTr1g1paWm4ePEizp07p/T6uLpwPbXtt99+g7+/P7y9vZGUlITIyEjUr18f8+bNQ3h4OGrXrl3mY8sWKmjQoAG6dq3YfsdBgwZh+fLl6NOnD8zNzREZGYmwsDBkZ2fD29sb33//Pe7du1fhcajD0+RMtFl2ChM7u2LnpLLdi0wKNOmntkOJBF2+B0HNLl26hI4dO+LixYvo0KGDtsMhIlKLqBdv0OvnfxA0qxtcHdR3axRBOkr5R7dCA6cuPclFx98yVM4lbFImItJjk7ZfxZusXDxc3o8LD1QEsR3Q7wfeh0tEVFmlSXLh9c0JbB7bhsvpVbRWY6X/ymaaKiP24RIR6ZmHr9PhvfIs9k/ryGSrKa3GAl9GAr2XA06eZToEa7hERHrki73hiH6ZhmsL32MTsqaJ7YAO0wF4Ad+qPrELa7hERHogL19Ajx+CYCs2w+GZnZls9RBruEREOu5yTALm7r8Jv3Ft0bC6tbbDoTJiwiUi0mEHQuPwzdE7uDzvXViYGms7HCoHJlwiIh0kCAKGb7oEW0szhH/dS9vhkBow4RIRqSozCQjfDdwLlM61a2EjnZHIc5R0YE05RT5PRZ/Vwbjo2wPOtmI1BEy6gAmXiEgVoTsV348ZGwycXiKdJEF232YZXHqQgBm7Q3F94XuwtzYvZ7CkS5hwiYiUFbqz5BmHcrP+3V6GpDv810uoZSdG6Fc9yxgg6TLeFkREpIzMJGnNVhmBs6XllZSalQNX3wCM6+iKn0d4li0+0nms4RIRKSPcX/lp/XIygS09ADPrUvt3D4U/xZrT93Ft4XtwqOgm5Arue6aSMeESESnj3t+qlU+M+fd5Mf27c/+8iaSMbJz+spt6YixJBfc9U+nYpExEpIyslPLtL+vfDd2J/HwBHZefhrWFCTZ/2EY98ZVE1vdcXA29QGxUcVjDJSICSm9utbBRy2lyA2ah418WOLvwfViZa+AjWNW+Z/f+bF6uIKzh6plu3bpBJBJh+/bt2g6FyHCE7pQuMn58vrSJ9flN6b/H50lfD90pTb5qYJKXhcv9Xmkm2QKq9z3f+KNi46nEmHCpUklOTsbevXsxZ84cdO/eHTY2NhCJRLCwsFDbOV6/fo2vvvoKXl5esLGxgVgshqurK95//33s2bOnSPn4+Hhs2LABQ4cORYMGDWBhYQFLS0s0adIE06dPx71790o8X35+Pnbs2IEePXqgWrVqMDc3h6urKyZPnowHDx6o7X0ZLGWbW42MARP1/J4YqdofXB6qnisyoGLiIDYpU+USFBSEESNGVNjxT548iREjRiApKQlmZmZo3LgxzMzMEB8fj4MHD+LNmzdFzt+uXTvExcUBAGxtbdG0aVOkpaXhwYMHiIqKwm+//QY/Pz+MHj26yPkkEgnef/99BAYGAgDq1q2Lhg0bIioqClu3bsXu3btx8OBB9OzJ+zoVUqW59dQi4L1vgGNzyn/e8vYHV+S5NBlbJaMzNVyJRIIjR45gxowZaN26NWxsbGBmZoaaNWuif//+2L9/v7ZDJAMgFovRpUsXfP755/j999/x22+/qe3YISEh+M9//oPU1FQsW7YMCQkJiIiIwPXr1/Hs2TM8efIEvr6+RfYzNzfH1KlTERISgoSEBISGhiIqKgoxMTF49913IZFIMH78eNy5c6fIvnPmzEFgYCAsLS1x5MgRxMbG4sqVK3jx4gW++OILZGRkYMiQIXj27Jna3qdBUbW5FfnAgHXlr+mqqT+4Qs6lydgqGZ2p4S5btgzLli0DAJiYmKBhw4YQi8WIjo5GQEAAAgICMHjwYPj7+8PMzEzL0ZK+6t27N3r37i3/f1BQkFqOm5eXh/Hjx0MikWDNmjX4+OOPi5SpXbs2ateuXeT1kJAQ2NvbF3m9Tp06+PPPP9G4cWO8evUKW7duxU8//STfnpycjI0bNwIA5s+fj/79+8u3mZub44cffsC5c+dw/fp1LF++HGvWrFHHWzUsZWluHX9UOrAo3F+6f1YKkJ1W+Dag0rj5qHbe8mjST9ofrSxNxlbJ6EwNVxAEdOrUCbt370ZSUhLu3r2L0NBQJCQkYMWKFQCAAwcOYMmSJVqOVLdFRkZi0qRJqFevHiwsLGBnZ4cuXbpg06ZNyM3NVbjPy5cvMXv2bDRr1gxWVlawsLCAi4sLOnXqhAULFiA+Pr5Q+ezsbKxZswYdOnSAra2tvCXCy8sLM2bMwNWrVzXxVnXK0aNHERkZibp162L69Okq7aso2crY2tqiQ4cOAIC7d+8W2nb58mXk5OQAgMJmcpFIhOHDhwMA9uzZg7y8PJXiqhTK2twqtgM6TJcm3/8GA5PPKF/rNRUDLUepdt7y8Bylu7FVMjpTw/3888/lNdyCTE1NMXfuXDx48ABbtmzBpk2bsHTpUhgZ6cx3BZ2xf/9+jB49GhKJBFZWVmjevDkSExNx/vx5nD9/Hn/88QeOHDkCa+t/F7B++vQp2rVrh6dPn8pbFqpUqYJnz57hypUruHjxIjp06ABnZ2cA0ppc3759cebMGQCAq6srGjdujMTERERGRiI8PBxisRht27bVyjXQlr/++gsAMGDAAGRlZeG3337D2bNnkZKSAmdnZ7z77rv44IMPytQ6k5UlbfK0srIq9HpCQoL8ea1atRTu6+LiAkD6per+/ftwc3NT+fwGTV3NrWI76cQRh2dCACAq6Rh9VwFiW9XOWx4FYiuVpmOrZHQm4Zb0LR8A+vbtiy1btiAhIQGvXr1CjRo1NBSZfoiKisLYsWMhkUgwYcIErFmzRp5Yz549i6FDhyIoKAifffYZtm7dKt/vhx9+wNOnT9GzZ0/4+/sX+jmkpaXhr7/+gqurq/y1o0eP4syZM3BxcUFgYCCaNWsm35aXl4dTp07Ja13K+u677/D332Ubtfnnn3+iZs2aZdpXna5cuQIAsLa2RosWLRATU7h5cdeuXVixYgWOHj2Khg0bKn3c+Ph4ebO3t7d3oW22trby50+fPlV43CdPnsif3717lwn3bWpsbu10ohaGW32CTyWbFfcLm4qlCU0bsznJzqlopilAu7FVIjqTcEsj+5YPAJaWllqMRDetWrUKmZmZcHd3x9atWwu1AHTv3h1r1qzBmDFjsH37dnz11VeoW7cugH+bKWfMmFHkS4+1tTXGji38BygrP2TIkELJFgCMjY0L9Y8qKyoqChcuXFB5P6Dw74U2yZrdf/jhBxgZGWHt2rUYNWoUxGIxTp48Kb+9p3///ggPD1fqNiRBEDBt2jRkZ2fDyckJEydOLLS9bdu2MDIyQn5+Pvbt24d58+YV2f/PP/+U/z8pSfnJ9CsNz1HSaQ2VGThVTHNrUno2vJaexOQu9fCpz1Ig84vC/bsWNtJE3XJk2SeUUMccyK3GFu17VkdspDS9aZf9/fffAQCtWrVClSpVtByN7gkIkN4798UXXyhsbh85ciRq166NvLw8HD9+XP56nTp1AAB79+5VKnnJyp84cQLPnz9XR+jYvn07BEEo06Ng7Vub0tLSAAA5OTlYsWIFZs6cCXt7e1haWmLgwIHyUfb37t3Djh07lDrmkiVLcPjwYflEJ283KVevXh0jR44EAHz77bfYu3evfJtEIsHMmTML9adnZGSU6z0aJFlzqzIUNLd+4h8Gr6Unceeb3ljg0/TfYxbs3x1/FGg/rewJTZlJOZSl7thIJXqRcA8cOCBPKAsWLFBqnydPnuDSpUuFHhERERUZptakpqbKb/vw8PBQWMbY2BhNm0o/ECIjI+Wvf/LJJzA3N8fu3bvh5OSEkSNH4pdffsHVq1eRn59f5DiDBg1Co0aNcOfOHdStWxe9evXCsmXLcPLkSWRmZlbAu9MPYrEYgLRVYNq0aUW2t2/fXt4kLPtdLsn69evlAwTXrl2LXr16FVuuVatWSE9Px4gRI1C9enV4enrCzs4OGzZswPDhw+VdC1WrVi3TezN4rcaWfKuPqVi6/a3m1mZfH8PhG/GIXeEDS7MKaizkHMgGReeblCMiIjB+/HgAwOjRozF48GCl9vPz86s0I5pTU1Plz0vqz3RycgIAvHnzRv5a8+bNcenSJSxduhTHjh3Dnj175LMh1apVC76+vpgxYwZEIukwEEtLSwQHB2Pp0qXYs2cPTp48iZMnTwKQJpuJEydi2bJlla4Volq1akhLS0ODBg1gbq54ibVmzZrh3LlzRfp33+bn5ye/rejHH3/EjBkzii1ra2uLCxcuYP369fjjjz8QGRmJqKgouLu7Y8qUKRg+fDiqVasG4N+fv9bo8tJwKjS3PknMQJeVZzGjewPM7l2BfeKcA9nglDvhLl68uMyJLSwsDJ6ensVuj46ORu/evfHmzRt4e3tjy5YtSh970qRJRfoTIyIiMHXq1DLFqssK1lyeP38u7599m6wW/HYy9PLywoEDB5CdnY3r168jODgYhw4dwsWLF/Hxxx8jOzsbX3zxhbx8jRo1sG7dOqxduxZ3797F+fPncezYMRw5cgRr1qzBw4cPcfjwYaXjN4RBU+7u7nj8+HGxyRaAfFtJt+f873//w5QpUyAIAr7//vtC1704FhYW+PLLL/Hll18W2Xbq1CkA0luE2rTRwKo0xdHG0nCqJnhZc2uH4m/ruhabiKG/XsLOSe+gSyNH9cb7trLMgdy+aOsK6Y5yJ1wLCwvY2JRtZhJjY+Nit8XGxqJHjx549uwZOnbsiKNHj8qb7ZTh4uIivyXC0FWtWhVOTk549uwZbt26hXbt2hUpk5+fLx/w5O7urvA4ZmZm6NChAzp06IA5c+Zg/vz5WL58OTZs2KDwg18kEqFp06Zo2rQppkyZghMnTqB37944cuQI4uLiFE7yoIghDJrq3Lkzjh8/XuLcxbJtxV2X3bt3Y8KECcjPz8e3336LOXPKP4WgrLXC29sbdnZaqv3ImkWLI2sWBdSXdCsgwbv6SrsCYr7rByOjEm/8UY+yTMrBhKvTyt2H6+vri+Tk5DI9iutvfPLkCbp3744nT56gXbt2CAwMLHTvKBXl4yO9XWH16tUQBKHI9j179uDJkycqjSTu2rUrABSZ+KI4Xbp0kTc9K7sPYBiDpkaOHAkjIyMkJCTg4MGDRbY/fvxYPlhNUX/s3r178eGHHyI/Px9Lly7F/Pnzyx3TzZs35QO0Zs1SsmlS3VRtFs1Uw0hqNfd7vsnKgatvAGZ0b4DYFT6Kk21mEnBpPbC9P/BrF+m/lzaU7/1wDmSDo3ODpp4+fYru3bsjNjYWbdu2xfHjxznYQwmzZ8+GWCzGrVu3MHXqVKSnp8u3nTt3Dp988gkAYMKECfKRxgAwZcoU7Ny5E8nJyYWO9/LlS/z4448AUGgSi59++gkrV67Eo0ePCpXPysrC4sWLIQgCrKysiq1F67PVq1fD1dUVnTt3LrKtYcOGmDRpEgDg448/Rnh4uHzb8+fPMWbMGEgkEtSoUQOTJ08utO+hQ4cwevRo5OXlYcmSJVi4cKHSMd2/fx/+/v6FBqwJgoCjR4+id+/eyMnJwdixY+VfyDRO00vDqSvB/38CfbOpNx591wbna/yI2VXPKC6vzlHEBXEOZIOjU4Omnj9/jh49euDBgwdo3bo1Tpw4Uebm6sqmcePG2LlzJ0aPHo0tW7Zg9+7dcHd3R1JSkrwp09vbGz///HOh/a5cuYItW7ZAJBKhfv36cHBwQGpqKu7fv4/c3FzY29tj7dq18vKPHz/GL7/8grlz58LJyQm1atVCTk4OHjx4gLS0NBgbG2Pjxo06PWjKwcFB/lw2SYdEIin0ep06dRAaGlpov+Tk5CJfNAr65ZdfEBUVhXPnzsHLywtNmzaFhYUFIiIikJOTg2rVquHgwYOFJqwAgOHDhyM3Nxfm5uY4ceIETpw4ofD4Tk5O2LdvX6HXnj59Kp/Bqk6dOrCzs0NsbCxevXoFAPjggw/g5+dX+kWpKJpuFlVHv2eB5ugqAJobAUiJBY5fL9ocXZHN5ZwD2eDoTMJ99eoV3n33XURFRaFVq1Y4efJkkQ8mKplsMopVq1bh1KlTuHnzJiwsLNCpUyeMGTMGkyZNgqmpaaF9Vq9ejaNHjyI4OBhPnjxBaGgozMzM4O7ujj59+uCLL74oNChp2rRpcHR0xNmzZxEdHY3bt28jLy8PtWrVwpAhQ/Dpp5/Cy8tL029dJQWnRCzu9bJ0YYjFYpw+fRqbNm3C//73P9y9excSiQR169aFj48PZs+erXAKxuzsbADSpF9SX7aiwXCNGzfGJ598guDgYDx69AiPHj2Co6MjhgwZgsmTJ5dpIhK10nSzaHkT/P8nUEEARIq6aQsmUPf+FTuKWA2TcpBuEQmKOvy0YOrUqdi8eTMA6a0qJdVs165dW6YP9UuXLqFjx47y+YGJqIJt769aLc21i3QyhrL6tYu0SVdZNVtIJ4AAgMwk5K1qAqM8ieJkW5CpGOgyGzjzjfLn6rNC9dp7aTVoGQX3CVPFKWsu0ZkarkQikT+/detWiWVTUjg4gEgvaLpZtBz9nn/+tgpD8yWlrDzw/3IygfBdqp2rLM3lnAPZoOhMwt2+fTu2b9+u7TCISJ003SxaxgTv6hsAf9OzQPF3KhaV9kK12MraXM45kA2GziRcIjJAml4aTpUEb2SKELP2GOEbgLWjvNDhkgmgnunBFSvPKGIlJuUg3adztwURkYEp41zFZaLKYgT5OWhxqCdOdX+M/7R0Vj0hWqu4RChHEVd6rOESUcXTZLNoaf2eBYhFOWh4yRdwtFa9OdprDHBuJUcRk9KYcIlIMzTZLNpqLFCvC7C2NZCfW3r5wNnA9Muq9Te3mQRYVddccznpPTYpE5FhivxbuWQLSEcd3wtUfW1cTTaXk95jDZeIDFNZJsGQ3QOsym04HEVMSmLCJSLDVNZZrsqSQDmKmJTAhEtEBuleshGaqLJDwVHKTKBUAdiHS0QGp8ePQdjzRvHyn8XibTtUwVjDJfXLTALCd0sHocia45r0k05KwP4sqkC5eflouCAQAHBm0VLgx328bYd0BhMuqVeBpc0KiQ0uurQZkRoF3HyGGbtD8d37Hvig3f+v+azJWa6ISsGES+pTkWuDEpWg7ben8OqNBBd8e6CWrfjfDZz8n3QIEy6pR2ZSxa4NSqSAIAioN096+0/simL6YHnbDukIJlxSj3B/5frKAOkkAzf+UH2pMqICXr2RoO23p2BnaYqwr3uVXLiyjTrmOAqdxIRL6lGWSQaYcKmMGs7/G7n5Aq4vfA/21ubaDke3cByFzmLCJfUo6yQDRCrWxlx9AwCU0IRcmXEchU5jwiX1UHVps/KsDUrap64mSxVqY0np2fBaelK6mcm2KI6j0HlMuKQeqi5txkkG9Je6mixVqI1NuumG05EvETynO1yqWZYjeAPGcRQ6jzNNkXp4jip+xZS3cZIB/SVLksV9sMuSZOjOko+jQm0s89AXuBoZg5jv+jHZlqQs4yhIo5hwST3EdqovbUb6RdUmy8yk4rerUBsTi7Jxc1AijIxEyp27suI4Cp3HhEvqw7VBDVtZmiyLw9qY+nEchc5jHy6pFycZMFzqvPWLtTH14zgKnceES+pX2SYZqCzUmSRZG1M/z1HSQWtcrEFnsUmZiJSjziTZpJ9qx2JtrHQcR6HzmHCJSDnqTJIc1V4xOI5Cp7FJmYiUo84mS7EdhH6rIDr8MQQBEJU0AJm1MdVwHIXOYsIlIuXImizVsL5s5PNU9Nlrjx8b+mLI89VcOk/dOI5CJzHhEpHy1LC+7DdH7uC3Cw9xbeF7cLD2ATL/y9oYVQpMuESkmnI0WTZZGAhJbn7huZBZG6NKggmXiFSnYpJ8nJCBrqvOYtmg5hjTvm4FB0ekm5hwiahCXXqQgFFbLuOv6R3hVYdNxFR5MeESUYWRrV37cHk/iEocikxk+HgfLhGpXWpWDlx9AzCze0PErvBhsiUCa7hEpGbXYhMx9NdL2DC6Ffp5OGk7HCKdwYRLRGrT+fsziEvKxIPv+sGYy+kRFcImZSIqt7x8Aa6+ATASiRC7wofJlkgB1nCJqFxO332BSTuuYffkdujYwEHb4RDpLCZcIiqzoRsv4tqjJNxa0hvW5vw4ISoJ/0KISGWCIKDePOmC9IVmjSKiYjHhEpFKLsckYOTmy/hhWEsMbV1b2+EQ6Q0mXCJS2s8no/DL6fs486U36jtaazscIr3ChEtESpHNGsUmZKKy4W1BRFSip8mZcPUNwIcd6jLZEpUDa7hEVKw1p+/jp5NRODijEzxdbP/dkJkEhO8G7gX+uzxfk36A5yiuYUtUDCZcIlKo2IUHQncqXoA+Nhg4vQTo90OJC9ATVVZsUiaiQrJy8uDqGwAHa/OiCw+E7gQOzyyabGVys6TbQ3dqJlgiPcIaLhHJ/XTiHtacicaRmZ3hUdum8MbMJGnNVhmBswH3/mxeJiqACZdInfS4b/O9n84h+mUaopb1hZmJgsavcP/ia7Zvy8kEbvwBtJ+m3iCJ9BgTLpG66GnfZm5ePhouCARQyi0/9/5W7cCRAUy4RAUw4RKpg6xvsziyvk1Ap5Lu0ZvxmLk7DDsnvYMujRxLLpyVotrBVS1PZOCYcInKS0/7Nsf6hSD4/mvc+LoXbCxNS9/Bwqb0MuUpT2TgOEqZqLzK0repRYIgXbs2+P5rxK7wUS7ZAtK+aFW4cZIMooJ0PuH+/PPPEIlEEIlE6Natm7bDISqqLH2bWvLwdTrqzfsbkzrXU33WKM9RgImFcmVNxUDLUaoHSGTAdLpJOTo6GgsXLtR2GEQl05O+zUHrLyD8STKuLngPjlXMVT+A2E468KukvmqZvqsAsa3q5yAyYDpbwxUEARMnTkR2djYGDBig7XCIiqcHfZuuvgEIf5KM2BU+ZUu2Mq3GAgPWFV/TNRVLt+vQwDAiXaGzNdy1a9ciODgYc+fOhYWFBQ4fPqztkIgUa9JPeuuPsjTYt5mUng2vpSfR0sUWh2Z0Us9BW42VDvwK95c2p8vuN3bzAVqO1IkBYUS6SCcTbkxMDObPn49GjRph8eLFWLFihbZDIiqe5yjpfbbKDJzSYN/mzN2hOHrzGa7MfxfVqyrZ96ossR3QYbr0QURK0bmEKwgCJk2ahIyMDGzevBkWFmr+oCBSNx3s2yx24QEi0hqdS7gbN25EUFAQpkyZUq5RyU+ePEFcXFyh1yIiIsoZHVExZH2WimaaAqQ1276rKrxvMzE9G62WnkSrOrY4MF1NTchEpBY6lXBjY2Mxd+5cODs7Y+XKleU6lp+fH5YsWaKmyIiUoOW+zdN3X2DSjmvYPbkdOjZwqNBzEZHqdCrhfvTRR0hLS8OuXbtgY1O+kZyTJk1C7969C70WERGBqVOnluu4RCXSUt9mz5/O4f7LNDz4rh+MjdiETKSLyp1wFy9eXOaaZFhYGDw9PQEAmzZtwunTpzFs2DAMHDiwvGHBxcUFLi4u5T4OkS7LysmD21fHMLxNbZz8wlvb4RBRCcqdcC0sLMpcGzU2NgYAxMfHY/bs2bCzs8PatWvLGxJRpfAkMQNdVp7F8sEeGPVOHW2HQ0SlKHfC9fX1ha+vb7mOERUVhTdv3sDc3BwtW7Yssj0tLQ0AcPHiRdSsWRMAcODAAXTs2LFc5yXSV+/+GIQHr9IR/W1fmBjr7Pw1RFSATvXhSiQSvHjxotjtOTk58u3Z2dmaCotIZwiCgHrz/kaTGlVUnwuZiLRKJ74ad+vWDYIgFPtYtGgRAMDb21v+GhcyoAqXmQRcWg9s7w/82kX676UN0te1IPJ5KurN+xvz+rrh+OddtRIDEZWdTtVwiXRG6E7F99TGBktnler3g0bnC/7q4C3svPxI+bVriUjnMOESvS10Z8mzRuVm/btdA0lXNmsUm5CJ9JtONCkT6YzMJGnNVhmBsyu0efnh63S4+gbgh2EtmWyJDIBeJNzFixdDEAQEBQVpOxQydOH+yi1CAAA5mcCNPyokjOO3n6P7D0E49lkXDG1du0LOQUSaxSZlooLu/a1a+cgAoP00tYagVwsPZCYB4buBe4H/TmXZpJ90BSUu00dUCBMuUUFZKRVbvgSytWtndm+IWb2bKL+jtpKejg0sI9J1TLhEBVmoOGuaquWLcfbeS0zYdhW7JrVD50YqLDygraSnYwPLiPQBEy5RQU36SZOVstzKP5ip04ozeJqciZjv+sFIlYUHtJX0VB1Y5t5ffTVtNmGTHtOLQVNEGuM5CjCxUK6sqRhoOarMp8rNy4erbwBsLU0Ru8JHtWSrzdHU2hpYFroT+NENOD5f+qXo+U3pv8fnSV8P3ame8xBVECZcooLEdtJmWGX0XQWIbct0mqM349FwQSD+/G8HBHzSRfUDaHM0dVkGlpWXrDZf3HuW1eaZdEmHMeESva3VWGDAuuJruqZi6fYyNtPO/ysCM3eH4c43vdHGtVrZYtRG0pPR9MAyHbo3mqg82IdLpEirsdK+x3B/aXKT9Re6+QAtR5apv1C28ICZsVH5J7LQ4mhqjQ8sK0ttXs23ahGpAxMuUXHEdkCH6dJHOV2NTcSwXy/hjynt0b6+fflj09JoagCaH1imA/dGE6kDm5SJKtjW4BgM+/USrix4Vz3JFpAmPVWoYTS1nAYHlgHQbm2eSI2YcIkqkKtvANacvo/YFT6oXkXJJKUMTSe9gjQ0sExOm7V5IjViwiWqAK/TJHD1DcAnPRri5uLe6j+BppPe2yp4YFkh2qzNE6kR+3CJ1GzP1ceYuz8CF317wNlWXHEnkiUzRTNNAdKk13dVxc30VAEDyxTyHCWdNUuZgVPqrs0TqRETLpEajfULwas3Es0tp6eppFccNQ4sK/Ec/X4oeVYtmYqozROpCRMukRpk5+aj8cJATOpcDzsntdPsyTWR9LRN27V5IjVgwiUqpyM34vGxfxiuLngPjlXMtR2O4dJ2bZ6onJhwicrh60O3cDDsqeoLD1DZVIbaPBksjlImKoPs3Hy4fRWInLx83Fzcm8mWiErFGi6RimSzRgV80hnNnHnPJxEphwmXSAUrj0Xi13MPELm0DyxMjbUdDhHpETYpEykhP19AyyUnkJSRg5jlPky2RKQy1nCJSpGYno1WS09iw+hW6OfhpO1wiEhPMeESlWB3yGMcu/2cTchEVG5MuPogMwkI3w3cC/z33sMm/aRT3vHewwqz8GAEHK0t8L+J72g7FCIyAEy4ui50p+LZdWKDpfPL9vuBs+uoWZokFx/tuIqx7V3h04JNyESkHky4uix0Z8nzx+Zm/budSVctjt16htWn7uOv6Z0gNmMTMhGpD0cp66rMJGnNVhmBs6XlqVxWn4rCmciXOPZZVyZbIlI7JlxdFe6v3HJkAJCTCdz4o2LjMWDpklx8sOUymjvbYOXQltoOh4gMFBOurrr3t2rlIwMqJg4DF/XiDXr+dA4/Dm+J95rW0HY4RGTA2Ierq7JSKrY84aeTUXj4Oh0XfHtAJOJcyERUsVjD1VUWKs7Rq2r5SkySm4cPtlyGe80qWDvKi8mWiDSCCVdXNemnWnk3n4qJw8A8T8nCoPUXMb+fO/py1igi0iA2Kesqz1HS+2yVGThlKgZajqr4mPTchqBoXI9NQsDHnbmcHhFpHGu4ukpsJ53UQhl9VwFi2woNR5/l5wuY/vt1mBoZwW98WyZbItIK1nB1mWwyC0UzTQHSmm3fVZz0ogRxSRn4cu8NzO/njpYuttoOh4gqMSZcXddqLODeX3pf7r2//51L2c0HaDmScymXIODmM2wOjsGeKe258AARaR0Trj4Q2wEdpksfpJR5ByJgbmKEQzM6aTsUIiIATLhkYF6mZmH8tqtYNawFmjnzViki0h1MuGQwIuJSMPvPG9g9uT2qWZlpOxwiokKYcMkgfHXwFgQIOPZZV22HQkSkEBMu6bV0SS6G/noJc/s0Qbcm1bUdDhFRsZhwSW/djEvGtwF3seXD1qhtZ6ntcIiISsSES3rpl1P38fB1Gv6Y0p5zIRORXuBMU6RX8vIFjPULgZW5MVaP5MIDRKQ/WMMlvXHjSTIWHrwFv3FtUL2qhbbDISJSCRMu6YWDYU+xPzQOf03vCBNjNswQkf5hwiWdlp8v4OM/wtDQ0Ro7J7XTdjhERGXGhEs66+HrdHz4Wwh2TmwHVwcrbYdDRFQuTLikk07deYHfLjzE8c+6wtKMv6ZEpP/4SUY6RRAEfLn3BlwdrLB7cntth0NEpDYcfUI6I02Si+4/BGGQVy188m4jbYdDRKRWOplwc3JysHHjRnTv3h2Ojo4wNzeHs7MzunXrhm+++Ubb4VEFOHozHv/deR0Bn3RB18aO2g6HiEjtdK5J+dGjR+jXrx/u3LkDkUiEBg0aoF69enjx4gUuXLiA8+fP4+uvv9Z2mKRGKwIjkZefj10fcRQyERkunUq4ycnJ6NatG2JjYzFy5EisXLkSLi4u8u2pqak4deqUFiMkdZLk5mHCtqsY0NIZI9+po+1wiIgqlE4l3Dlz5iA2NhaDBw+Gv79/ke1Vq1bF4MGDtRAZqVvQvZf47u+7ODC9E6zNderXkIioQujMJ92rV6+wY8cOiEQifP/999oOhyrQtgsPEfo4Gcc/68q5kImo0tCZhBsQEIDs7Gx4eHigQYMG+PPPP3Ho0CHEx8fD1tYW7du3x4QJE+Dg4KDtUKmMJLl5mLrzOvq3cMbaUV7aDoeISKN0JuFeuXIFANC4cWP4+PggMDCw0PYDBw5g2bJl2L17N3x8fLQRIpXDg1dp+GDLZeyb2hF17Ll2LRFVPjqTcOPj4wEAhw8fRk5ODqZNm4Y5c+bA2dkZN2/exKeffoqLFy9i2LBhuHbtGpo2bVri8Z48eYK4uLhCr0VERFRY/FQ8v/MPceVhAi76vgtjIzYhE1HlpDMJNy0tDYD0HtyBAwdiw4YN8m1t2rTBsWPH0KBBA7x69QpLly5VOKiqID8/PyxZsqRCY6aS5eULmLrzOno1q4FNY9toOxwiIq0q98QXixcvhkgkKtMjPDxcfhyxWCx/PmfOnCLnqVKlCqZPnw4ACAwMRH5+folxTZo0CRcvXiz02LRpU3nfLikpKT0bfVb/gyld62N4G5fSdyAiMnDlruFaWFjAxsamTPsaGxvLn1erVk3+vLjm4mbNmgEAUlJSkJiYWOIAKhcXl0L38JLmbLvwEGciXyLw0y5cu5aI6P+VO+H6+vrC19e33IG4u7vLn5uZmSksY25uLn+el5dX7nOSegmCgLn7b8LFzpJr1xIRvUVnqh+dO3eWP4+JiVFY5sGDBwCktWp7e3uNxEXKSUiT4IMtIejfwhkfc+EBIqIidCbhdurUCXXr1gUAbN26tcj2/Px8+Pn5AQB69OgBExOdGe9V6Z24/Ryjt4Zg67g2XHiAiKgYOpNwRSIRvvvuOwDAxo0bC41Clkgk+PTTT3H79m0YGRlh/vz52gqT3rL877s4e+8ljn3WFVacopGIqFg6k3AB4IMPPsDs2bORnZ2NDz74AHXq1EG7du1Qo0YNrFu3DsbGxli3bh06deqk7VArvZSMHAzecAE93Kpj+eAW2g6HiEjn6VTCBYCVK1ciMDAQPj4+yMzMRFhYGCwtLTFy5EhcvnwZ06ZN03aIld79F28wYP15bBjdGu3qsy+diEgZOtkG2KdPH/Tp06fiThAwC8BowHMUILaruPMYoO/+vovXaRIEzerGhQeIiFSgczVcjXgWDhyfB/zoBoTu1HY0eiErJw9DN15E67p2+Gm4J5MtEZGKdLKGqzG5WcDhmdLnrcZqNxYd9vB1Ombtu4EVgz3QqEYVbYdDRKSXKnfClQmcDbj3Z/OyAhuDHiD0cRL2Te0AIy48QERUZpWzSfltOZnAjT+0HYVOyc8XMPl/1wAAWz5sw2RLRFROTLgykQHajkBnRL9Mw5BfL2JeXzdM69ZA2+EQERkENinLZKVoOwKdcOzWc2wJjoH/5PawMDUufQciIlIKE66MRdlWPDIUgiDgy303YG9lhv3TOmo7HCIig8OEK+Pmo+0ItOZpcibG+oXg1zGt0ZijkImIKgQTLgCYioGWo7QdRflkJgHhu4F7gdLmcQsboEm/Uif3uPIwESsC7+LAtI6wtVS8LCIREZUfEy4A9F0FiG21HUXZhe4E/p4lva+4oNhg4PQSoN8PCu8znncgAtbmxjgwnXNTExFVtMqdcE3F0mSrz5NehO78d/IORRRM7pGRnYtB6y9gTm83vNe0hgaCJCKiyplwnTyBPmOAliP1e7KLzCRpzVYZ/z+5x/m4PGwIiob/5Pawtzav2PiIiEiuciZcnx+A9h20HUX5hfsXbUYuTk4mzu1bi78tB+H3j9pxLmQiIg3jxBf67N7fKhVvlPQPvh/agsmWiEgLmHD1mYqTdTibSyooECIiKg0Trj5TdbKOSj65BxGRNjHh6rMm/VQrX4kn9yAi0jYmXH3mOQowsVCurCFM7kFEpMeYcPWZ2E46qYUy9H1yDyIiPceEq+9ajYUwYC1yjYq5p9ZUDAxYp9+TexARGYDKeR+uAUmX5GJLYnsMnhiGOk8OSW8Vks2l7Oaj/5N7EBEZCCZcPRYRl4KLD15jereGMDMxAmpPBzpM13ZYRESkABOunjp8Ix6mRiJM9W6g7VCIiEgJTLh6JisnDzsuxqJzIwc0c+Z9tURE+oIJV49Ev0zD3xHPMLlLfYjNjLUdDhERqYAJV0+8fJOFvHwBH/doyLmQiYj0EBOujsvNy0dcUiaqVzVH9SpKTnJBREQ6h/fh6jBBEHD32RvUqGoBSzN+NyIi0mf8FNdRcUkZyM8HPGpzYBQRkSFgwtUx+fkCYl6nw9mWtVoiIkPCJmUdkp8v4ElSBhyszZhsiYgMDD/VdUR8ciYkufmo52Cl7VCIiKgCsIarA+KSMgCAyZaIyICxhqtFWTl5eJkqQfWq5rAw5UQWRESGjDVcLcnKyUP0yzTUshMz2RIRVQKs4WrBk8QMCALQvBZv+SEiqiyYcDUoKycPjxIy0LC6NYyNOD0jEVFlwiZlDcnLFxCXlIk61SyZbImIKiHWcDXgcUIGjIyAhtWttR0KERFpCRNuBRIEAZHP38DZVgwbsam2wyEiIi1iwq0gGdm5eP0mGw0crWFmwpZ7IqLKjgm3Arx6I0Fmdh7q2FtqOxQiItIRTLhq9jghAyIRmGyJiKgQJlw1ScnIQUK6BPUcrCAScRQyEREVxs5FNcjKycOrtCzUtWeyJSIixVjDLafHCRkwMRahYfUq2g6FiIh0GBNuGWXn5uPOs1Q0d64KE2M2FBARUcmYcMvgTVYOktJzmGyJiEhpTLgqepKYAbGZMUchExGRSlg9U0HUizcwNzWCg7W5tkMhIiI9wxquEl6mZiErJx+NqltzFDIREZUJE24pEtIkyM0X2IRMRETlonNNytHR0ZgxYwbc3NxgaWkJMzMz1K5dG0OHDsXp06c1GsvjhAzk5AlwthVr9LxERGR4dCrh/v333/Dw8MCGDRsQExMDFxcXuLu7IyUlBfv378d7772HefPmVXgcyRnZuPU0BXXsLVHTxqLCz0dERIZPZxJuWloaxo4di6ysLPTu3RuxsbG4d+8ebty4gZcvX2Lu3LkAgBUrVuCff/6psDiSM7KRkpmDZs5VK+wcRERU+ehMwv3nn3+QmJgIkUiE33//Hc7OzvJtYrEYK1asQJs2bQAAhw8fVvv58/MF6cIDEHGKRiIiUjudSbgZGRkAgGrVqsHe3l5hmcaNGwMAcnJy1Hru/HwBN5+mwLGKOWwsuVA8ERGpn84kXE9PT4hEIiQkJODu3btFtkskEoSEhAAAOnTooLbzPk/JQlxSJjxdbCE2M1bbcYmIiArSmYTbsGFDTJs2DQAwcOBAHD58GAkJCUhLS0NISAgGDBiABw8eoFevXhg+fHipx3vy5AkuXbpU6BERESHfLggCYl+nw9rChLf8EBFRhdOp+3DXrVsHNzc3rF27FgMHDiy0zdHREatXr8aMGTNgZFT69wQ/Pz8sWbJE4TZBEBCbkIEqFiawNtepS0BERAZKp7JNZmYmHj16hKSkJBgbG8PV1RWWlpaIjo7Gq1evsGPHDrRv3x7t2rUr9ViTJk1C7969C7129epVfPrppwi6fB3dRSI8B3C/gt4LEREZJllraXp6umo7CuW0aNEiAUCZHmFhYfLjZGdnC23bthUACL169RIeP34s35aWliZ8/vnnAgBBLBYX2k8VmzZtKnOsfPDBBx988FHwsWnTJpVyULlruBYWFrCxsSnTvsbG/w5S2rx5M65evQp7e3vs2bMHtra28m1WVlb46aefcOPGDZw5cwYLFixAQECAyufr378/Nm3ahPr16yMmJgZTp07Fpk2b4OHhUab4STkRERG81hrCa605vNaao2vXOj09HTExMejfv79K+5U74fr6+sLX17e8h5FPZtGuXbtCybag3r1748yZM/LRyqpydnbGlClTAACXLl0CAHh4eKh11DMVj9dac3itNYfXWnP0/VrrzCjl1NTUUssIggAAyMrKquhwiIiI1EpnEm6TJk0AACEhIUhOTlZY5tixYwAAd3d3TYVFRESkFjqTcMeNGyef+GLkyJGIi4uTb0tPT5eOLg4KAgBMnDhRS1ESERGVjc7cFuTl5YUff/wRs2bNwvHjx+Hq6op69epBLBYjOjoamZmZAIAxY8Zg6tSp5T5f7dq1sWjRItSuXbvcx6KS8VprDq+15vBaa46hXGuRIOsY1RHXrl3D+vXrERwcjKdPnyIvLw+Ojo5o06YNJkyYgEGDBmk7RCIiIpXpXMIlIiIyRDrTh0tERGTImHCJiIg0gAmXiIhIA5hwiYiINIAJl4iISAOYcN8SHR2NGTNmwM3NDZaWljAzM0Pt2rUxdOhQnD59WtvhGZycnBxs3LgR3bt3h6OjI8zNzeHs7Ixu3brhm2++0XZ4Buvnn3+GSCSCSCRCt27dtB2OQZBIJDhy5AhmzJiB1q1bw8bGBmZmZqhZsyb69++P/fv3aztEvXP16lUMHz4cTk5OMDc3h4uLCyZOnIj79/V0YdUyrXNnoAICAgQLCwsBgGBqaio0btxYaNGihWBtbS1fjsnX11fbYRqM2NhYoWnTpgIAQSQSCQ0bNhTatm0r1KlTRzAxMRGMjY21HaJBun//vmBpaSn/nfb29tZ2SAZh4cKF8mtqYmIiuLm5CV5eXkKVKlXkrw8ePFiQSCTaDlUvbN++XTA2NhYACA4ODkLr1q2FqlWrCgAES0tL4fTp09oOUWVMuP/vzZs3QrVq1QQAQu/evYWnT5/Kt2VkZAhz586V/9GcO3dOi5EahqSkJMHV1VUAIIwcObLQ+seCIAgpKSnC/v37tRSd4crPzxe6dOkimJiYCAMGDGDCVaMFCxYInTp1Enbv3i28efNG/np2drawYsUK+efH/PnztRilfrh165ZgYmIiABDmzp0rZGdnC4IgCOnp6cLo0aMFAIKdnZ3w+vVrLUeqGibc/xcQECCvaRX3Q2zTpo0AQPjyyy81HJ3hmTx5svwbP2nOL7/8Iv8QW7RoEROuGpX24S/7nbe3txfy8vI0FJV+GjZsmABA6NixY5FtWVlZQr169QQAwrx587QQXdmxD/f/ZWRkAACqVasGe3t7hWUaN24MQNrvSGX36tUr7NixAyKRCN9//722w6k0YmJiMH/+fDRq1AiLFy/WdjgGp7jPDZm+ffsCABISEvDq1StNhKSXMjIycPToUQDAtGnTimw3NzfH+PHjAQD+/v6aDK3cdGbxAm3z9PSUr1Z09+7dIksASiQS+cL3+rwAsi4ICAhAdnY2PDw80KBBA/z55584dOgQ4uPjYWtri/bt22PChAlwcHDQdqgGQxAETJo0CRkZGdi8eTMsLCy0HVKlU3Adb0tLSy1GotvCwsLki9V07dpVYRlvb28AQGxsLJ49ewYnJyeNxVcerOH+v4YNG8q/TQ0cOBCHDx9GQkIC0tLSEBISggEDBuDBgwfo1asXhg8fruVo9duVK1cASFsMfHx8MGzYMOzatQtnzpzBgQMHMGfOHDRo0AABAQFajtRwbNy4EUFBQZg8eTJHJWvJ77//DgBo1aoVqlSpouVodNe9e/cAAGZmZnBxcVFYpkGDBvLnkZGRGolLHZhwC1i3bh3WrFkDQJp0HRwcUKVKFbRv3x5hYWFYvXo1AgICYGTEy1Ye8fHxAIDDhw8jMDAQ06ZNw8OHDyGRSHD16lV07NgRqampGDZsGO7cuaPlaPVfbGws5s6dC2dnZ6xcuVLb4VRKBw4ckH+BXLBggZaj0W2JiYkAADs7O4hEIoVlqlWrJn+elJSkkbjUgZmjgMzMTDx69AhJSUkwNjZGgwYN4OHhAbFYLO93vH79urbD1HtpaWkApH3hAwcOxIYNG+Dq6gozMzO0adMGx44dg6OjIzIzM7F06VItR6v/PvroI6SlpWHDhg2wsbHRdjiVTkREhLzPcfTo0Rg8eLB2A9JxsuZkMzOzYssU7BKRjb/RB3qfcBcvXiy/gV/VR3h4uPw4OTk56NatG3788Ue0atUKDx8+RHR0NG7evIlXr17h888/R1hYGLp3715ov8pEXddaLBbLn8+ZM6fIeapUqYLp06cDAAIDA5Gfn1/h703XqOtab9q0CadPn8awYcMwcOBA7b0hHaaua61IdHQ0evfujTdv3sDb2xtbtmzRzJvSY7LPh+zs7GLL6Gt/uN4PmrKwsCjzt3ZjY2P5882bN+Pq1auwt7fHnj17YGtrK99mZWWFn376CTdu3MCZM2ewYMGCStm/qK5rXbA5qGnTpgrLN2vWDACQkpKCxMTESjeASh3XOj4+HrNnz4adnR3Wrl2rzvAMirp+r98WGxuLHj164NmzZ+jYsSOOHj1a6MsmKWZnZwdA2lQsCILCZmVZs3PB8npB2/cl6Yrhw4cLAIR+/foVW+b777+X30dHZbd8+XL5JADp6ekKyxw6dEhe5vnz5xqO0DCcPXtWACCYm5sLNWrUKPKwsrKSz6ome+3ChQvaDtsgPH78WD6xS7t27YSUlBRth6Q3zp8/L//bj42NVVgmKChIXiY+Pl7DEZad3jcpq0tqamqpZQRBAFC4OYNU17lzZ/nzmJgYhWUePHgAQFr7KO3+RiqZRCLBixcvijzS09MBSLtTZK+V1IxHynn69Cm6d++O2NhYtG3bFsePH0fVqlW1HZbe8PT0lLcE/PPPPwrLnDt3DgDg6uqqN7cEAQbQh6suTZo0AQCEhIQgOTlZYZljx44BQJF7dEk1nTp1Qt26dQEAW7duLbI9Pz8ffn5+AIAePXrAxETvez60olu3bhCks8kpfCxatAiA9J5G2Wu8Zah8nj9/jh49euDBgwdo3bo1Tpw4wYFqKrKysoKPjw8A6RiEt0kkEmzfvh0AMGLECE2GVm5MuP9v3Lhx8okvRo4cibi4OPm29PR0fPrppwgKCgIATJw4UUtRGgaRSITvvvsOgPT+0IKzxUgkEnz66ae4ffs2jIyMMH/+fG2FSaSSV69e4d1330VUVBRatWqFkydPFhoLQspbtGgRTExMcOHCBfj6+spn98vIyMBHH32Ehw8fwsbGBrNmzdJypCrSVlu2Lvrpp58EIyMjAYBgbGwsNGzYUPDw8BDEYrG8v2DMmDGcB1VNZs+eLb+uLi4uwjvvvCPY2NjIr/+GDRu0HaJB41zK6jVlyhT573Pz5s2FTp06FfsIDQ3Vdrg6z8/Pr9jVgsRisXDixAlth6gyttUV8Pnnn6NLly5Yv349goODERcXh7y8PDg6OqJnz56YMGECBg0apO0wDcbKlSvRo0cPrFu3DiEhIQgLC4ODgwP69u2LL7/8Em3atNF2iERKk0gk8ue3bt0qsWxKSkpFh6P3Jk6ciObNm2PlypU4f/48IiIi4OjoiPfffx/z58+Xz22vT0SC8P8jgYiIiKjCsA+XiIhIA5hwiYiINIAJl4iISAOYcImIiDSACZeIiEgDmHCJiIg0gAmXiIhIA5hwiYiINIAJl4iISAOYcImIiDSACZeIiEgDmHCJiIg0gAmXiIhIA5hwiYiINIAJl4iISAOYcImIiDSACZeIiEgD/g8nzKSc+gsEpwAAAABJRU5ErkJggg==",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "yhat = test_x @ w + b\n",
- "plt.plot(test_y, test_y, \":\", linewidth=0.2)\n",
- "plt.plot(test_y, yhat, \"o\")\n",
- "plt.xlim(min(test_y), max(test_y))\n",
- "plt.ylim(min(test_y), max(test_y))\n",
- "plt.text(min(test_y) + 1, max(test_y) - 2, f\"correlation = {np.corrcoef(test_y, yhat)[0,1]:.3f}\",)\n",
- "plt.text(min(test_y) + 1, max(test_y) - 3, f\"loss = {np.sqrt(np.mean((test_y - yhat)**2)):.3f}\",)\n",
- "plt.title(\"Testing Data\")\n",
- "plt.show()"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "We've plotted above the loss on our training data and testing data. The loss on training goes down after each step, as we would expect for gradient descent. However, the testing loss goes down and then starts to go back up. This is called **overfitting**. This is one of the key challenges in ML and we'll often be discussing it.\n",
- "\n",
- "Overfitting is a result of training for too many steps or with too many parameters, resulting in our model learning the **noise** in the training data. The noise is specific for the training data and when computing loss on the test data there is poor performance. \n",
- "\n",
- "To understand this, let's first define noise. Assume that there is a \"perfect\" function $f(\\vec{x})$ that can compute labels from features. Our model is an estimate $\\hat{f}(\\vec{x})$ of that function. Even $f(\\vec{x})$ will not reproduce the data exactly because our features do not capture everything that goes into solubility and/or there is error in the solubility measurements themselves. Mathematically,\n",
- "\n",
- "\\begin{equation}\n",
- " y = f(\\vec{x}) + \\epsilon\n",
- "\\end{equation}\n",
- "\n",
- "where $\\epsilon$ is a random number with mean 0 and unknown standard deviation $\\sigma$. $\\epsilon$ is the noise. When fitting our function, $\\hat{f}(\\vec{x})$, the noise is fixed because our labels $y$ are fixed. That means we can accidentally learn to approximate the sum $(f(\\vec{x}) + {\\epsilon_i})$ instead of only capturing $f(\\vec{x})$. The noise is random and uncorrelated with solubility. When we move to our testing dataset, this noise changes because we have new data and our model's effort to reproduce noise is useless because the new data has new noise. This leads to worse performance. \n",
- "\n",
- "Overfitting arises when three things happen: \n",
- "- you have noise, \n",
- "- you have extra features or some part of your features are not correlated with the labels, \n",
- "- your training has converged (your model fit is at the global minimum). This last one is what we saw above. Our model wasn't overfit after about 100 steps (the training and testing loss were both decreasing), but then they starting going in opposite directions. \n",
- "\n",
- "Let's see how these things interplay to lead to overfitting in an example where we can exactly control the features and noise. "
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Overfitting with Synthetic Data\n",
- "\n",
- "We'll explore overfitting in a synthetic example. Our real function we're trying to learn will be:\n",
- "\n",
- "\\begin{equation}\n",
- " f(x) = x^3 - x^2 + x - 1\n",
- "\\end{equation}\n",
- "\n",
- "which we can rewrite as a linear model:\n",
- "\n",
- "\\begin{equation}\n",
- " f(\\vec{x}) = \\vec{w}\\cdot\\vec{x} = [1, -1, 1, -1]\\cdot[x^3, x^2, x, 1]\n",
- "\\end{equation}\n",
- "where our features are $[x^3, x^2, x, 1]$. To do our split, we'll take the positive points as training data and the negative as testing data. To avoid the issue of convergence, we will use least squares to fit these models instead of gradient descent. "
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Let's establish a benchmark. How well can a model do without noise? We'll use 10 training data points and 10 testing data points. We'll put our testing data in the center of the polynomial."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 23,
- "metadata": {},
- "outputs": [],
- "source": [
- "# generate data from polynomial\n",
- "N = 20\n",
- "syn_x = np.linspace(-3, 3, N)\n",
- "# create feature matrix\n",
- "syn_features = np.vstack([syn_x**3, syn_x**2, syn_x, np.ones_like(syn_x)]).T\n",
- "syn_labels = syn_x**3 - syn_x**2 + syn_x - 1"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 24,
- "metadata": {
- "tags": [
- "hide-input"
- ]
- },
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvwAAAGSCAYAAACfThU4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAABP+AAAT/gEHlDmEAACsMElEQVR4nOzdd1xV5R/A8c+97I0IMlyACio40tyaK3e5zZ17lGZWP7Ust2apDTMzS01TM1dmOXKlJk7c4MCJioqDISCbe35/0L2BXOCCbL/v1+u+vJzzPM/5nsPwe859hkpRFAUhhBBCCCFEiaQu7ACEEEIIIYQQ+UcSfiGEEEIIIUowSfiFEEIIIYQowSThF0IIIYQQogSThF8IIYQQQogSTBJ+IYQQQgghSjBJ+IUQQgghhCjBJOEXQgghhBCiBJOEXwghhBBCiBJMEn4hhBBCCCFKMEn4hRBCCCGEKMEk4RdCCCGEEKIEk4RflAjBwcGoVCpUKhUrV64s7HCEHocOHaJr1664uLhgbGys+35FRkYWdmhCCCFEiSYJfyE4cOCALtlRqVS0a9cu2zrffvutrvyBAwfyP8hMpE2sVSoV1atXJyUlJcs627Ztk2Q8j0yfPj3d9U/7sra2plKlSvTq1YvNmzej0WgKO1yd33//nRYtWrB161YePHiQ7c9MSfDs70p2r65duxZ2yEIIIUooSfiLgN27d/PPP/8Udhi5cunSJdauXVvYYQjg6dOn3Lhxg02bNtGzZ0+aNWvGo0ePCjssACZMmIBGo8HV1ZWff/6ZU6dOERAQQEBAALa2toUdHpD+Rrwwb6qLGu01mT59emGHIoQQIpeMCzsAkerjjz/m0KFDhR1GrkyfPp2+fftiYmJSaDG4u7ujKEqhHb8wrFixgnr16um+fvLkCceOHePLL7/k3r17HDlyhG7dunHo0CFUKlWhxXnr1i2uXbsGpP6cDxw4sNBiKSxdunRh9uzZWZYpKjc+QgghSh5J+AuZo6Mjjx8/xs/Pj7/++ov27dsXdkgG08Z+8+ZNli9fzujRows7pBeKh4cHvr6+6bY1adKEgQMHUr9+fW7dusXhw4fZsWMHnTp1KqQo4d69e7r3Xl5ehRZHYbK3t8/wvRJCCCEKinTpKWRjxozBxsYGgE8++aSQo8mZvn37UrFiRQBmz55NfHx8IUckAMqUKcPHH3+s+3rnzp2FGA0kJCTo3hfmp0BCCCHEi0oS/kLm6OjI+PHjATh16hRbtmx5rvaSk5NZvnw57dq1w8XFBVNTU5ycnGjevDkLFy7M06Tc1NSUqVOnAnD37l2WLFny3G1u2rSJrl27UrZsWczMzHBwcKBBgwbMnj2bJ0+eZFrPkFl67t+/z8cff0y9evWwt7fHxMQEJycnfHx86NatG9999x3379/P9BhJSUksW7aMjh074ubmhpmZGaVLl6Zx48Z89tlnREdHP+/p55lGjRrp3t+6dSvDfkVR2LBhAz169KBChQqYm5tjb29PnTp1+OSTT7Ls+5924DBAdHQ0c+fOpV69epQuXVrX37tFixaoVCpatmypq9uyZct0A1X1fa+ePn3KV199RcuWLXF2dtb9DLdq1Yrvvvsu3Q1EZhRFYcuWLfTt2xcPDw+srKyws7PDx8eHN954g/Xr1/P06VPgv5+drOIszD7su3btYsCAAXh4eGBpaYmNjQ2+vr6MHz+e4ODgLOuGhYWxZs0a+vTpg5eXF1ZWVpiZmeHq6kqHDh1YsWIFSUlJeuu6u7un6wo2Y8aMDNekRYsWuv05GQOhbXvw4MEZ9q1cuVLXTnBwMElJSXz77bc0bdqUMmXKoFar9da7ePEi48aNw9fXFzs7O8zNzXF3d2fAgAH4+fllGU9KSgqrVq2iQ4cOuLm5YWpqio2NDZUqVaJZs2Z8/PHHHD16NMs2hBCiSFNEgdu/f78CKICyaNEiJTIyUilVqpQCKD4+PkpKSkqGOosWLdLV2b9/v952Q0JClFq1aunK6Xt5eHgoly5dynXsN2/e1LX1wQcfKMnJyYqXl5cCKE5OTkp0dHSGOn/++aeuzk8//aS33cjISKV169ZZxu7o6KgcOnQo27j0HePgwYOKra1tlu0Dyvz58/W2f/HiRd15ZvYqW7ascurUKYOvZW5MmzYt258DRVGUS5cu6cq1b98+3b579+4pDRo0yPJc7OzslF27dmUbw7Vr15RKlSplqD9t2jSlefPm2V7vZ79Xfn5+iouLS5Z1qlevrty4cSPTc79z50625wcoX331laIo6X92snpNmzbNkG+RTtp2Bw0alKO6iqIoT548UTp16pRlTGZmZsqqVav01k9OTlaMjIyyPa969eopoaGhGepXrFgx27rNmzfXlU/7dy2rn820beu7Lj/99JOunZMnTyp16tTJcNy09TQajfLxxx9ne65jxoxRkpOTMxwvKipKadasWbbn6uPjk+U5CSFEUSZ9+IsAOzs7JkyYwOTJk7lw4QLr1q2jf//+OWojNjaW1q1bExQUBECbNm0YPXo07u7u3Lt3j1WrVrFp0yZu3rxJixYtOH/+PGXKlHnu2I2MjJg+fTr9+vXj0aNHLFy4MF13EkNoNBq6dOnCwYMHAahXrx7vvvsuVatWJTw8nI0bN7Js2TIeP35Mu3btOHnyJNWqVTO4/YSEBPr27UtUVBTGxsaMGDGCjh074uLigkajISQkhOPHj/P777/rrX/z5k2aNm1KeHg4ZmZmDBs2jBYtWuDu7k5cXBwHDhzg66+/5u7du7Rr144zZ85Qrly5HF2DvHbu3Dnd+7Jly+reR0ZG0rRpU27cuIGRkRF9+/alY8eOeHh4oNFoOHr0KF999RV3796lS5cuHD16lNq1a2d6nO7du3Pr1i1Gjx5N165dcXJy4tatW5ibmzNo0CCePn2Kv78/Q4cOBTIONE57nU6cOEHr1q1JSEjA1taWt956iwYNGlChQgUiIyPZtWsX3377LRcvXqR9+/acPHlS1x1O6/HjxzRp0oTbt28D0LBhQ4YNG4aPjw+mpqaEhITg5+fH+vXr012fgICALOME8uT3xVCJiYm0bduW48ePA9CpUyd69+6Nh4cHpqamnD59moULF3L58mUGDx6Mk5MTHTp0SNeGoigoikKrVq1o3749NWrUwMnJibi4OIKDg1mzZg27du3C39+fvn378vfff6erv3v3bhITE6lRowYAb731Fm+//Xa6MlZWVvl4FWDo0KEEBATQt29f+vbtS9myZQkNDU33adoHH3zAV199BUCNGjUYPXo0Xl5eODg4cP36dX788Uf27NnD4sWLsbGxYe7cuemOMX36dN2ECU2aNGH48OFUqlQJa2trwsPDOX/+PLt27SI0NDRfz1UIIfJVYd9xvIiefcKvKIoSExOjODs7K4BSuXJlJSkpKV2d7J7wf/TRR7r9Y8eO1XvcOXPm6MoMGDAgV7E/+4RfUVKfsNWoUUMBFHt7eyUiIiJdneye8C9dulS3v0uXLnqfwq1du1ZXpmnTplnG9ewx9u7dm+F666PRaJTw8PAM27VP/9zd3TN9snzjxg3d9y83T3MNZcgT/vj4+HRPRdeuXavbN3DgQAVQSpUqlemnEY8fP1aqVauW4QmuvhjUarWyffv2LGM25MlvYmKi4unpqQBKnTp1lEePHukt5+/vr1haWmb6xL1nz566Y3300UeZxpSUlKTcu3cvx3HmRNqfyS5duigBAQGZvq5du5au7pQpUxRAMTU1VXbu3Km3/djYWN2nKJ6enhl+bzQajXL16tUsY0z7NH3fvn16y2j3Z/cJR3484QeUJUuWZNpO2t/t6dOnKxqNRm+5iRMnKoBiZGSU4VqXK1dOAZQGDRpk+LubVlhYWJbnJIQQRZkk/IVAX8KvKIry9ddf67b/8MMP6epklfAnJCQoDg4OuqQ0ISFB73E1Go1Sr149BVBMTEyU+/fv5zh2fQm/oijK77//rts+efLkdHWyS/h9fHwUQLGxsVEeP36c6bHTJnMnT57MNK5nj7FmzRrdvnPnzuXofP38/HR1d+zYkWXZxYsX65K0p0+f5ug4hsoq4X/y5Imya9cupWHDhroylSpV0v08BAcH67o9fPfdd1keZ/v27bo2nk2Q0sYwePDgbGM2JBFM+z26cOFClu1NmDBBAZRy5cql2x4UFKSoVCoFUFq1apVtXLmJMycM7SoEKLVq1dLVi4mJUezt7RVAmThxYpbHuHDhgq6NvXv35irOl156SQGUd955R+/+wkz4W7RokWU7r776qgIo9evXz7JcYmKi4ubmpgDKJ598km6fsbGxAijvvfdelm0IIURxJoN2i5DRo0dTvnx5AGbNmmXQ4ERIHewbHh4OwJtvvompqaneciqVipEjRwKpA1C1XWjyQpcuXahfvz4A33zzjcELPt2/f58LFy4A0K1bN0qXLp1p2VGjRune79271+DY0nZpyelKv9puPjY2NtlOmfrKK68Aqd0xTp06laPj5MazA0vt7Oxo164dx44dA1LP+48//tD9PGzbtk23wm2vXr2ybFt7LgBHjhzJtNyAAQOe9zSA/66zj48P1atXNyi2kJAQ7ty5o9u+fft23VoM7733Xp7EVRgOHDhAZGQkkP33qXr16rrfmay+T5Daxef+/fsEBQURGBioe7m5uQFw9uzZ5449r2X18xUVFcX+/fuB7K+TiYmJbiD7s9dJ+/fhzz//5PHjx88TrhBCFFmS8BchZmZmuqk579y5w9KlSw2qFxAQoHvfsGHDLMumnb0lbb28MGvWLABiYmIy9JPNTE5iT7s/J7E3bdqUypUrA/DVV19Ro0YNZs6cycGDB3UztWTm5MmTQOpMNGq1OsMsJWlf2r7OQKH191WpVFStWpVp06YRGBiYLnnWnguAk5NTlueStm98VudSq1atPIlbG9uFCxeyjEulUvH666/rje306dO692lvWIqCQYMG6frU63ulTbbTfp/q1auX7fUICwsD9H+fFEXh119/5dVXX8XGxgY3NzeqVq1KjRo1dK/t27cDFMlkN6ufrzNnzuhuYCdMmJDtddq8eTOQ8TppZ/y5du0alStXZsSIEWzcuJGQkJD8OSkhhCgEkvAXMUOHDqVSpUoAfPrpp8TGxmZbR/t0H7IfWOji4qJ7r00U8krbtm11idaSJUu4e/dutnVyEru1tTXW1tZAzmI3Njbmzz//1C18FBgYyLRp02jRogWlSpWiWbNmLF68mLi4uAx1Hz58aPBx0jLk+/a8VqxYQUBAAAEBAQQGBnLjxg2ioqK4dOkS06dPx97ePl35/DiXUqVK5arNZ+VFbNqE1crKqlivWptX36eEhARef/11+vbty759+7K9udX381/Ysvr5yqvr9MknnzBy5EhUKhVPnjxh2bJlvPHGG5QvXx5PT0/ee+89rl69mqtjCSFEUSGz9BQxxsbGTJ8+nYEDB/LgwQO++eYbPvzwQ4Prp503Wx9tlwdDyubGnDlzaNasGfHx8cyaNYvvv//e4LqGxKONP6exV61alXPnzrFz5062bt3KoUOHuHz5MklJSfj5+eHn58eCBQvYtm0bPj4+unraJ4heXl66J4SGKIhZevSttJsV7blYW1vnaE7xrG7EjIyMDG4nK9rYWrZsyTfffGNwPQ8Pjwzb8uPnuiBprwXA4cOHDb55eTY5njNnju7pfbNmzXj77bepW7curq6uWFpaolanPu958803Wb16dbq/DUVFVj9faa/T119/TevWrQ1q89kuj8bGxixdupT333+fdevWsX//fk6cOEF8fDw3b97k66+/5ttvv2XBggW8++67uTsRIYQoZJLwF0H9+vXjs88+48KFC8yfP5+33nory/Jp+71n15XkwYMHuvcODg7PF6geTZs2pX379vz111+sWLGCiRMnZlk+J7HHxMTonlLmJna1Wk2nTp3o1KkTAI8ePWLPnj0sW7aM/fv3ExwcTM+ePblw4YIuGXJ0dCQoKIgHDx5QvXp13fbiyNHREUi9jq6urlmOlyhojo6O3L17l0ePHuXoJubZNiD1/KKioortU37teUBqN7/cXA9FUfjxxx+B1KkmDxw4kOnPbkRERO4CfUba5Fyj0WRZNrtPGwyR9jolJyfn+udGy9vbm+nTpzN9+nQSExM5fvw4Gzdu5McffyQ+Pp7x48dTr149Gjdu/LyhCyFEgSu+2UsJplarmTlzJpDa5eXLL7/MsnzavuPaAZuZSftkt2bNms8RZeZmz54NpA4MnjFjRpZlcxJ72v15EbuTkxP9+vXj77//pnPnzgBcvnyZ8+fP68q89NJLADx58iTb+Io67blA6uqtRYk2tgsXLuS673TdunV17//5558c1y8qnwzkxfcpPDxcdwP9xhtvZJrsK4qSZwPM0477yOom4vHjx3kyXqB27dq671le/zybmprSrFkzvvnmG3755Rfd9g0bNuTpcYQQoqBIwl9Ede/enTp16gCpA02z+g+yTp06uifeq1evJjExUW+5tE/9TExMaN68eR5Hnapu3bp069YNgDVr1nDp0qVMy7q4uOiezP3+++9Z9s3/4YcfdO/btGmTR9GmStsdIO217tq1q+69oQORi6rOnTvrEr8FCxaQnJxcyBH9R3udFUXh888/z1Ubr732mu78tAsx5YS5ubnuvaEzZOWHV199VTdWZfHixekWmTJU2u9tVn3zf//9d+7fv59lW9rrkt018fDw0CXg/v7+mZZbs2ZNlu0YytHRkSZNmgCps3alHeyclzL72yCEEMWJJPxFmPZJeXR0NN99912m5UxNTRk9ejQAwcHB/O9//9Nbbt68eZw4cQKAPn364OzsnMcR/2fWrFmo1Wo0Gg3z58/Psuy4ceOA1PMcPnx4ur65WuvXr2fjxo1Aan/ktE9Bs3Po0KEsB90pipJums+0/cJbt26t+wh/27ZtTJs2LctjPXjwgGXLlund5+7urpsxpDBUqVKFPn36AKkznIwaNSrLpD8qKopvv/22QGIbOHAg7u7uQGqSu3z58izL37x5k3Xr1qXbVrlyZXr27AnA33//neWKz8nJyRkSXVdXV937a9eu5ST8PGVnZ6f7nbh37x69e/fOsgtMfHw8ixcvJj4+XrfNyclJN2h73bp1epP1K1euZFg5Vx/tdcnumtjZ2elm1fnpp5/0Jsfnz5/P9ncoJ6ZOnQqk/g6/8cYb2ca4ffv2dJ/ghYeHs3Xr1izHL+zevVv3Xt+YESGEKBYKdtp/oSiZL7ylT5MmTTIs0qNvUZunT58q3t7eujJt27ZVfvvtN+XUqVPKtm3blDfeeEO3z9nZWXnw4EGuYs9s4S19+vfvnyF2fQtvpaSk6FYM5d9FdNauXaucPHlS2bNnjzJy5EhFrVYrgGJpaalcvHgxy7iePca0adMUlUqlNG3aVJk7d66yY8cO5eTJk8qRI0eUtWvXKm3atEl33Z4VHByslClTJl18S5YsUQ4fPqycPn1a2bdvn/LNN98onTt3VkxNTZW6devqvR7axYae59fOkJV2sxIREaF4eXnp2qhatary5ZdfKv/8849y5swZ5cCBA8r333+v9OnTR7GyslJKly6dZQyGMHRBppMnT+pW0QWUNm3aKD/99JNy9OhR5dSpU8ru3buV+fPnK61atVLUarXSo0ePDG08evRIqVChgq6NRo0aKcuWLdO18ccffyiTJk1SKlSooHz11VcZ6pcvX14BlAoVKigbNmxQAgIClEuXLimXLl3KdPXfzKT9mczp6ssJCQlK06ZNdfXLly+vzJ49W/n777+VM2fOKIcOHVJ++uknZejQoUqpUqUUQImOjk7XxtixY3X1X375ZWXt2rXKiRMnlP379yuTJ09WbGxsFHNzc92qzBUrVtQbi3Z1ZlNTU2XhwoXK6dOnddfk1q1b6couW7ZMd0xvb29lzZo1yunTp5X9+/crH374oWJtba1UqVJFcXJyMmjhrZs3b2Z7rbSr6AKKlZWVMm7cOGXbtm3K6dOnlWPHjikbN25UJkyYoFvJ+c8//9TV1X6PKlSooLz77rvKunXrlCNHjiinTp1Sdu7cqbz33nuKhYWFAigWFhYZFqETQojiQhL+QpCThP/AgQMGJfyKoighISFKrVq1slzR08PDQ2/CbKicJPxXr17VrWKZVcKvKIoSGRmptG7dOsvYHR0dlUOHDmUbl76EP6t2ta8GDRooDx8+1Nv+9evXlbp16xrUTsuWLfW2ob1pcHBwyPK6ZeV5E35FSU2K27Zta9C5eHh4ZBmDIXKyAuupU6eUSpUqGRTbkCFD9LZx+/Ztg75X+hL+pUuXZlo+u5Vmn/U8Cb+ipN7E67tp1veysrJSYmNj09V/8uSJLpnPrM7mzZuVQYMGZZnwnzt3TjE3N9fbRvPmzdOV1Wg06VbEfvbl7u6uXL582eCVdg1J+BVFUebNm6eYmZlle53UanW6n0FDV0O2tbVNd6MghBDFjXTpKeKaN29ucH/1smXLcvLkSZYtW0bbtm0pU6YMJiYmlC5dmmbNmvHVV19x8eJFqlWrls9Rp6pcuTJDhgwxqKydnR179uxh48aNdO7cGVdXV0xMTLC3t6devXrMnDmTq1ev0rRp0xzHMXHiRHbu3MkHH3xA48aNcXd3x8LCAjMzM8qXL0+XLl1Yu3YtR44cwcnJSW8bnp6e+Pv789tvv9G3b188PDywsrLCxMQER0dHGjRowLhx4/jrr7/Ys2dPhvo3btzQzRte2KvAOjo6smvXLvbt28eQIUPw8vLCxsYGIyMjSpUqRZ06dRgxYgSbN2/OcvxFfqhTpw6XLl1i1apVdOvWjQoVKmBhYYGpqSnOzs40a9aMiRMn8s8//7BixQq9bZQvX54TJ06wbt06unXrRrly5TAzM6NUqVL4+PjQp08fNm/erOsGl9bIkSPZunUrHTp0wNnZGRMTk/w+5UxZWlqyZs0a/P39efvtt/H19cXOzg4jIyPs7OyoUaMGAwcOZPXq1YSGhmJhYZGuvq2tLX5+fnz66afUqlULCwsLLC0tqVKlCmPGjOHMmTN079492zhq1qzJ8ePHGTBgAO7u7unGOjxLpVLx66+/snTpUho2bIiNjQ0WFhZUq1aNTz75hDNnzuDt7f3c1+ZZEyZM4Pr160yZMoVGjRrh6OiIsbExVlZWVK5cmS5duvD1119z69YtWrRooatXsWJFzp49y4IFC+jUqRNVq1alVKlSGBsbU6pUKRo1asS0adO4cuUKr732Wp7HLYQQBUWlKEVw8mUhSpgVK1YwbNgw7O3tuXXrVrGdMlIIIYQQxY884ReiABw8eBCAd999V5J9IYQQQhQoecIvRAFwd3cnIiKC4ODgDCuiCiGEEELkpyL/hP/27dvY2trqpjMMDg7OtOyePXvo1KkTZcqUwdzcnEqVKjFu3LhsV3AVIr8FBwfz5MkTSfaFEEIIUeCKfMI/YsQIgxaemT17Nm3btmXHjh2YmJjg4+PD/fv3WbRoEb6+vgQGBhZAtEIIIYQQQhQtRTrhX7ZsGbt37852Joldu3YxZcoUABYtWkRISAinTp0iJCSE1q1bExYWRteuXTNdgVYIIYQQQoiSqsj24Q8JCcHHx4fSpUuzbds2fHx8gNQVNrUrcmrVr18ff39/+vXrx9q1a9Pte/z4MZ6enkRHR7N06VJGjhxZUKcghBBCCCFEoSuyT/hHjhxJVFQUP/zwA5aWlpmWu3nzJv7+/gC89dZbGfY7OjrSs2dPIHWJeSGEEEIIIV4kRTLh/+mnn9i5cydDhgzh1VdfzbLskSNHADA1NaVBgwZ6yzRv3hyA48ePo9Fo8jZYIYQQQgghijDjwg7gWffu3eP999/H2dmZL774ItvyQUFBQOqKiZmtilmpUiUA4uLiuHXrFh4eHlm2eefOHUJCQtJte/ToERcvXuTll1/GysrKkFMRQggh0nn69Ck3btzgtddew83NrbDDEUK8IIpcwj9q1CgiIyPZuHGjQVMYhoeHA+Dg4JBpmbT7IiIisk34ly9fzowZMwyMWAghhMgZGVMmhChIRSrhX716Ndu2baNr1666fvfZiYuLA1K79GTG3Nxc9z42NjbbNocNG0a7du3SbfP39+fdd99l6dKl1KhRw6DYhBBCiLQCAgIYNWoUnp6ehR2KEOIFUmQS/tDQUN59913s7OxYvHixwfUsLCwAspxyMz4+Xvc+qwHAWuXLl6d8+fJ699WoUYNGjRoZHJ8QQgjxLOkaKoQoSEUm4R87diwRERH88MMPOerXqO32ExYWlmkZbbeftOWFEEIIIYR4ERSZWXpOnjwJwCeffIKLi0u6V7169XTl6tWrh4uLC++++y4AVatWBeD27dskJSXpbfv69etAateeihUr5udpCCGEEEIIUaQUmSf8Wg8fPsxy/+PHjwF48uQJgK57TWJiIseOHaNZs2YZ6hw8eBCAhg0bolYXmXscIYQQQggh8l2RyX6Dg4NRFEXv6+bNm7pyN2/eRFEUVq5cCYCnpycvv/wyAN9//32Gdh8/fsymTZsA6N27d/6fiBBCCCGEEEVIkUn4n8esWbMA+OWXX/j2229RFAVI7bvfp08foqOj8fT0ZMiQIYUZphBCCCGEEAWuRCT87du3Z/r06QC88847lCtXjrp161KuXDn27duHg4MDW7ZswczMrHADFUIIIYQQooCViIQfYNq0afz111906NCBhIQEAgMDcXFxYcyYMQQGBlKzZs3CDlEIIYQQQogCV+QG7erj7u6u66aTlXbt2mVYMEsIIYQQQogXWbFI+IUQQgiRuaSkJKKjo4mOjiYpKcmgh2RCiOJBpVJhYmKCjY0NNjY2mJiY5LgNSfiFEEKIYiw+Pp7bt2+TkpICgFqtlimohShBUlJSSEpKIjY2lsePH1OhQgXMzc1z1IYk/EIIIUQxlZSUpEv2S5cujb29PaampoUdlhAijyUmJhIZGUlYWBi3b9/G09MTY2PD03h5BCCEEEIUU9HR0bpkv0yZMpLsC1FCmZqaUqZMGUqXLk1KSgpRUVE5qi8JvxBCCFFMRUdHA2Bvb1+4gQghCoT2d137u28oSfiFEEKIYiopKQm1Wi1P9oV4QZiamqJWq0lKSspRPUn4hRBCiGJKURQZoCvEC0alUuV4Ji75KyGEEEIIIUQxoVKpclxHEn4hhBBCCCFKMEn4hRBCCCGEKMEk4RdCCCGEEKIEk4RfCCGEEKKQDB48GJVKxfTp0/OszeDgYFQqVa76eheGAwcOoFKpcHd3z7M2V65ciUqlokWLFnnWpiG01z04OLhAj5sdSfiFEEII8ULQJmM5feVlMi5EYTB8TV4hhBBCiGKsSZMmercfPnwYgCpVqlCmTJkM+ytUqJBvMbm6uuLt7Y2jo2OetWliYoK3t3eetSeKP0n4hRBCCJFjT2KT2HjqDnsvPSA6Phkbc2PaVHehZ51y2FmaFHZ4evn5+endru36MnnyZAYPHlyAEcHcuXOZO3dunrZZtmxZLl++nKdtiuJNEn4hhBBC5MgG/ztM3RpIfLIm3fZjN8KZ/9dlZnbx5Y165QspOiHEs6QPvxBCCCEMtsH/DhM3n8+Q7GvFJ2uYuPk8G/zvFHBk+cPd3R2VSsWBAwe4dOkSb775JuXKlcPExCTdpwF+fn5MmjSJBg0a4ObmhqmpKY6OjrRp04Z169Zl2n5mg3afHXjr5+dHp06dKF26NBYWFtSsWZNvv/1W74qrWQ3aTXu8uLg4pk2bhre3N+bm5jg5OdG7d2+uXr2aabwxMTF8/PHHVKlSBXNzc1xdXenXrx+XL1/Ol8G3ISEhLFq0iI4dO1K5cmUsLS2xsbGhZs2afPzxx4SFhWXbhkaj4euvv6ZWrVpYWVlRqlQpOnXqxJEjR7Ksd+3aNd5++228vLx0x61Xrx5ffvklCQkJOT6XrVu30rFjR5ydnTExMcHBwYGqVavSr18/Nm3alOP2ckISfiGEEEIY5ElsElO3BhpUduofgTyJTcrniArO4cOHqVu3Lhs2bKBMmTJ4e3ujVv+XRnXt2pV58+Zx9epV7O3tqVmzJqampuzdu5d+/foxZMiQXB975cqVNG/enGPHjuHp6Ym1tTUBAQG88847TJgwIVdtRkVF0bhxY2bNmoWRkRGVK1cmMjKSDRs20KhRI27dupWhTnh4OI0bN+bTTz/l2rVrVKxYETc3N7Zs2cLLL7+Mv79/rs8xM19//TXjxo1j//79pKSk4Ovri4uLC5cvX+bTTz+lTp063L59O8s2evfuzXvvvUdERATVq1cnJSWFHTt20KxZM9asWaO3ztq1a/H19WXJkiWEhIRQqVIlypQpw6lTp/jggw9o0aIFUVFRBp/H9OnT6dq1Kzt37gSgZs2auLq6Ehoayrp16/jss88Mvyi5IAm/EEIIIQyy6XRIpk/2nxWfpGHz6ZB8jqjgTJs2jW7duhEaGsrp06cJDAxk8eLFuv2fffYZ165dIzw8nIsXL3Ly5Enu3bvHsWPHqFy5MitXrsz1U9zRo0fzxRdf8PDhQ/z9/Xn06BGzZ88G4Msvv+T69es5bvPbb79FrVZz5coVLl68SGBgIEFBQVSpUoWwsDCmTp2aoc7YsWMJCAigfPnynDp1iqCgIE6dOsX9+/dp3749n3zySa7OLysdOnTg77//Jjo6mps3b3LixAmuXr1KSEgIQ4cO5fbt27z99tuZ1j9y5Ajbt29ny5Yt3L59G39/fx48eMBbb72FRqNhxIgRXLlyJV2dw4cPM3jwYJKTk/n888+JiIggICCA69evc/nyZerWrcuxY8cYN26cQefw+PFj5syZg7GxMb/99huhoaGcOnWKCxcuEBkZyZkzZxg5cuRzXafsSMIvhBBCCIPsuRiaw/IP8imSguft7c2qVauwt7fXbbOwsNC9Hz58OJUqVcpQr0GDBnz33XcA/PTTT7k69oABAxg/fjxGRka6bZMnT8bX1xdFUdi+fXuO21Sr1WzYsIHKlSvrtnl6evLpp58C8Oeff6YrHxwczK+//gqkPv2uU6eObp+9vT1r166lbNmyOY4jO61bt6Zly5YYG6cfdlqmTBmWLVtG2bJl2bFjBw8e6P9ZS0pK4pNPPqFr1666bRYWFixevJgaNWoQHx/PggUL0tWZNGkSycnJTJs2jYkTJ2JmZqbb5+XlxebNm7G0tGTNmjXcvXs323O4du0aycnJ+Pr60q1btwxdrWrXrp3vCb8M2hVCCCGEQaLjk3NUPiq+5HTpGTRoUIak81lBQUFs3LiRc+fOERYWRmJiIoCuv/epU6dydewxY8Zk2KZSqWjcuDGBgYFcu3Ytx222a9dO7w2KdurSiIgIwsPDcXBwAOCvv/5CURS8vb1p1qxZhnpmZmYMHDiQmTNn5jiW7MTExLBx40b8/Py4e/cuT58+1Y1diI6ORlEUzpw5Q/v27TPUNTExyfT6jR8/nmHDhqW7Ybp37x6HDx9GpVIxatQovfFUrFiRevXqcfDgQQ4ePEi/fv2yjF87reuVK1c4duwYDRs2NPjc84ok/EIIIYQwiI15ztIGW/OiOT1nbvj4+GS5f+rUqcyZMweNJvMuT4YMMNXHy8tL73ZnZ2cgNSHO6za17WoT/qCgIABq1aqVaZu1a9fOcRzZOXr0KD169OD+/ftZlsvs2pYrVw47Ozu9+7Tf03v37hEVFYWtrS1nz54FwMjIiO7du2d6PG03oJCQ7Lutubm50b9/f9auXUujRo2oW7curVq1on79+rRo0SJP12DIjCT8QgghhDBIm+ouHLsRnoPyztkXKiasrKwy3bdx40ZmzZqFSqViypQpdO/eXTe4Vq1Wc+PGDSpVqkRycs4+Icnu2NpBw1ndZOS2zWfbjY6OBsDW1jbTNm1sbHIcR1aio6Pp1q0bDx48oGXLlnz44YfUrFkTBwcHTE1NAXjllVc4dOgQSUn6P01KewOT1b7o6GhsbW2JiIgAIDk5WbcgW1ZiY2MNOpcVK1ZQs2ZNli1bxqlTp3Sf9hgZGdGpUye++OKLdN2r8pok/EIIIYQwSM865Zj/12WDBu6am6jpUbdcAURV+LR9899//329XVpy+2S/KNEm81nNTKO9KcgrO3fu5MGDB5QvX57t27enGzOhld21zaxv/7P7tOdnbW0NpH4ycOdO3k0ta2pqysSJE5k4cSJ3797Fz8+Pffv2sXHjRv744w/Onj3LuXPn0o0RyUsyaFcIIYQQBrGzNGFmF1+Dys7s7IudRcnp0pMV7Sw5zZs317vfkCfFRZ23tzcA586dy7SMtjtMXtFe13r16mWa7Gu7GmUmJCQk05uUCxcuAKldbrSfXNSoUUNXT9/UpHmhbNmy9O7dmx9++IFLly7h4ODA7du32bZtW74cDyThF0IIIUQOvFGvPPN61MTcWH8KYW6iZl6Pmi/USruWlpYAemdsiY2NZdGiRQUdUp5r164dKpWKoKAgDh06lGF/QkICq1evztNjZnVdARYsWEBKSkqWbSQlJelmSXrWN998A0CnTp102zw9Palbty6AburT/OTi4kKVKlWA1LEE+UUSfiGEEELkyBv1ynN88qtMea06jTxL4+NmSyPP0kx9rTrHP3r1hUr2AVq0aAHAnDlzuHjxom77vXv36NKlS74mcgXFw8ODPn36ANC/f39Onz6t2xcZGUn//v0NmqIyJ7TX9fjx4yxatEg3M09ycjJffPEFn3/+Oebm5lm2YWJiwqxZs/jjjz902+Lj43nnnXc4d+4cZmZmfPDBB+nqfPnllxgbG7Ns2TLGjh3L48eP0+1PTExk165d9OrVy6Dz2Lt3L+PHj+f06dPpVkZWFIWNGzfqrmW9evUMai83pA+/EEIIIXLMztKEYU09GNbUo7BDKXQTJ05k/fr1hISEULNmTby8vDA1NSUwMBATExMWL17MsGHDCjvM57Zo0SICAgIIDAykbt26eHt7Y21tzYULF1Cr1cyePZuJEyemWy/gedSqVYvBgwezcuVKxo0bx6effkq5cuW4ceMG4eHhukWzDh48mGkbjRs3xsnJiS5dulChQgXKlCnDlStXiIqKQq1Ws3TpUl13Ja1XXnmFtWvXMnToUBYvXsz333+Pl5cXdnZ2REZGcv369UwHCesTExPDwoULWbhwIba2tnh6emJsbMzt27d5+PAhACNGjKBly5a5u1AGkCf8QgghhBDPwdXVlePHjzNo0CAcHR25du0aDx8+pFevXpw4cYJWrVoVdoh5onTp0hw5coSPPvqISpUqcfPmTe7cuUPnzp3x9/enWrVqQNYz+eTU8uXL+eKLL6hevTrh4eFcvXqVqlWrsmLFCn744QeD2li/fj1ffvkl9vb2XLhwAZVKRfv27Tl48CCDBg3SW+eNN97g8uXLTJw4EV9fX0JCQjhz5gxxcXE0bNiQadOmcebMGYOO36xZMxYvXkz37t1xdnbmxo0bnD17FrVaTadOnfjtt98MPpfcUilpP1sQmTp69CiNGzfmyJEjNGrUqLDDEUIIUQzl9f8lV69eBdD1ARaiMM2fP5+JEyfSvXt3Nm/eXNjhlFi5+b2XJ/xCCCGEEOK5JCUl6aYnzWy2IlF4JOEXQgghhBDZiouLY8qUKdy+fTvd9nv37tG7d28uXbpEqVKlGDBgQCFFKDIjg3aFEEIIIUS2UlJSmD17NrNnz8bJyYmKFSvy9OlTgoKC0Gg0WFhYsHr1ahwcHAo7VPEMSfiFEEIIIUS2LCws+Oyzz9i9ezdBQUEEBgYCqXPXt2rVivfffz/DjDeiaJCEXwghhBBCZMvIyIhJkyYxadKkwg5F5JD04RdCCCGEEKIEk4RfCCGEEEKIEkwSfiGEEEIIIUowSfiFEEIIIYQowSThF0IIIYQQogSThF8IIYQQQogSTBJ+IYQQQgghSjBJ+IUQQgghhCjBJOEXQgghhBCiBJOEXwghhBBCiBJMEn4hhBBCCCFKMEn4hRBCCCGKgenTp6NSqRg8eHBhh2KQwYMHo1KpmD59ep612aJFC1QqFStXrsyzNrOzcuVKVCoVLVq0KLBj5jVJ+IUQQgjxQlCpVLl65WXCmpmVK1cyffp0zp49m+/HEi8e48IOQAghhBCiIDRp0kTv9sOHDwNQpUoVypQpk2F/hQoV8jUuSE34Dx48iLu7O7Vr19ZbxtHREW9vb1xdXfM9HlGySMIvhBBCiJyLi4Czv0DQToh/AuZ24N0RavcFi1KFHZ1efn5+ererVCoAJk+eXKS7y4wdO5axY8cWdhiiGJKEXwghhBA5c3o17PgfJMen3x58CPbNgI4LoM7AwolNCJGB9OEXQgghhOFOr4Y/xmZM9rWS41P3n15dsHHlo/v37zNx4kR8fX2xtrbGysqKmjVrMn36dKKiovTWefjwIRMmTMDHxwcrKyvMzc0pX748TZo04eOPP+bevXsAHDhwAJVKxcGDBwEYMmRIuvEDaQeKZjVoV1s+ODiYgIAAevfujbOzM2ZmZnh7ezNz5kwSExMzPcdz587Ro0cPnJycsLCwoFq1asyaNYuEhIR8GXzr5+fHpEmTaNCgAW5ubpiamuLo6EibNm1Yt26dQW2EhIQwfPhwypUrh5mZGe7u7rz33nuEh4dnWW/Lli289tprODs7Y2pqirOzM127duXAgQM5Po/o6GhmzZpFnTp1sLGxwdTUFDc3N+rXr88HH3xAUFBQjtvMD/KEXwghhBCGiYtIfbJviJ0ToNprRbZ7j6H27dtHjx49ePLkCaampnh4eABw8eJFAgICWLduHfv27aNcuXK6Onfv3qVBgwbcvXsXY2NjKleujI2NDffv3+fEiRMcOXKERo0a4ebmhp2dHU2aNCEgIICoqKgM4whq1KiRo3h3797Nu+++i7GxMd7e3hgbG3PlyhWmTZvG+fPn2bRpU4Y627dvp3v37iQmJmJhYYGPjw9RUVFMnTqV3bt358sYhq5duxIWFkapUqVwcXHBzc2Ne/fusXfvXvbu3cvu3bv56aefMq1/8+ZN6tSpQ3h4OL6+vtjb23Px4kW+/vpr/vjjDw4ePJjuewKQkJBA//792bx5M5A6JsLX15dbt26xdetWtm7dymeffcakSZMMOoeYmBgaN25MYGAgKpWKypUrY29vz6NHjzh37hz+/v54eHjg7e2d+wuVR+QJvxBCCCEMc3Zd5k/2n5UUB+d+zd948tm1a9fo1q0bT5484YMPPuDRo0dcvnyZy5cvc+fOHdq2bcuVK1cYMGBAunoLFizg7t27tGnThtDQUC5dusSJEye4c+cOERER/Pzzz7i7uwPw0ksv4efnx0svvQSkjiPw8/PTvRYtWpSjmMeOHcu4ceN49OgRJ0+e5O7du/z888+oVCo2b97M/v3705V/8OABAwYMIDExkb59+xIaGsrJkye5cuUKx48f5/r163pvEp7XZ599xrVr1wgPD+fixYucPHmSe/fucezYMSpXrszKlSuzPO7cuXPx8PDg5s2bnD17lsDAQC5evEjVqlW5ceMGgwYNylDnvffeY/PmzVSpUoX9+/fz6NEjTp8+TVhYGD///DOWlpZ89NFHGa5RZpYvX05gYCC1atXi1q1bXLlyhRMnTnDz5k2ioqLYvHkztWrVyvU1ykuS8AshhBDCMEE7clb+8vb8iaOATJ8+nejoaIYOHcqCBQuwtbXV7XN1dWXjxo24ublx8OBBjh07ptt36dIlAMaMGUPp0qXTtWltbc3AgQPx9fXNl5hfeeUVPv/8c8zNzXXbBg4cSMeOHQH4888/05X//vvviYyMxNvbm1WrVqU7x/r167Ny5cosuwLl1vDhw6lUqVKG7Q0aNOC7774DyPIJv6IobNiwgfLly+u2Va1alTVr1gDw999/c+TIEd2+K1eusHTpUiwsLNi2bVuGOfUHDhzIjBkzUBSFzz//3KBz0H6fhwwZki4OADMzM7p3706zZs0Maiu/ScIvhBBCCMPEP8nf8kVIUlISW7ZsAeCtt97SW8bW1pY2bdoAqQmmlrYLzIYNG4iPN/ATkTwyZswYvdu1U5Jeu3Yt3fadO3cCqYtkmZiYZKjXtm1bKlasmMdRpgoKCmL27Nn06tWLVq1a0bRpU5o2bcrkyZMBOHXqVKZ1u3XrpjeuunXr6pLs7dv/u+HcuHEjGo2GVq1a4eXlpbfNnj17AvDPP/+QkpKSbfza7/Pvv//OkydF+2dd+vALIYQQwjDmdvlbvgi5evUqsbGxAIwbNw61Wv8z0lu3bgGpA0i1xo0bx88//8wvv/zCjh07aNeuHY0aNaJx48bUrVs307byQmbJrLOzM5Da7zwt7aDSrLqeaLus5KWpU6cyZ84cNBpNpmXCwsIy3ZfVJyQ+Pj4cOnRI9wQeUgclA5w9e5amTZvqracoCgBxcXGEhYXpXZMhraFDh/Lll19y4MAB3NzcePXVV2nSpAmNGjWiYcOGem+gCosk/EIIIYQwjHfH1Kk3DVW1U/7Fks8iIiJ0748ePZptee3NAaQmo0ePHmXWrFn89ddfrF+/nvXr1wNQtmxZPvzwQ8aMGaOb/z8vWVlZ6d2uvcl4NsGOjo4GSNeV51k2NjZ5FF2qjRs3MmvWLFQqFVOmTKF79+54enpibW2NWq3mxo0bVKpUieTk5Ezb0N7AZLVPe27w3/fz7t273L17N9sY034/M+Pi4sLx48eZOXMmv//+O3/88Qd//PEHAKVLl+add95h8uTJRSLxl4RfCCGEEIap3Td1nn1DBu6aWECtvvkfUz6xtrYGUhPluLg4TE1Nc1T/pZde4rfffiMxMZFTp05x6NAhtm7dypEjR3jnnXdITEzk/fffz4/Qc8TGxobIyMhMpxeF9IlzXtD2zX///feZOXNmhv1ZPdnXevDgQbb70t6oaL+fn3zyCbNmzcpRvFmpVKkSq1atIiUlhXPnznHo0CF27NjBnj17mD59OmFhYXzzzTd5drzcKlJ9+AMCApg9ezZt27bF1dUVU1NT7OzsqFevHjNnzkx3t63Pnj176NSpE2XKlMHc3JxKlSoxbtw4QkNDC+gMhBBCiBLMolTqolqG6DAfLOzzNZz85OXlhZmZGRqNJt2A3JwyNTWlUaNGTJw4kcOHD/PRRx8B6AamauXH035DaKeM1HZ50Serfblx/fp1AJo3b653/+HDh7Nt48KFC9nuq1atmm6bdnpTQ9rODSMjI+rUqcO7777Lrl27+P777wH44YcfsvykoqAUmYT/+vXr1KxZkylTprBnzx7UajW1atXCxsaGkydPMm3aNHx8fAgICNBbX3ujsGPHDkxMTPDx8eH+/fssWrQIX19fAgMDC/iMhBBCFHdPYpNYdugGfX44SqdvDtHnh6Ms97vJk9ikwg6t8NQZCJ2/BWNz/ftNLFL3F/OVdi0sLHjttdcAmDNnjq5/9/N65ZVXAHQLb2lZWloCqf3HC1KHDh0AWLlyJUlJGX+ud+/enef997Xnqq9rTWxsrEFTkW7ZsoXbt29n2H7mzBkOHUrtdtap039dynr16oVKpeLAgQP4+fnlNnSDab/PCQkJ2S4EVhCKTMKvKAplypRh5syZXL9+nbt37+Lv709ISAh+fn5UrFiR+/fv07VrVxISEtLV3bVrF1OmTAFg0aJFhISEcOrUKUJCQmjdujVhYWF07do1X6aVEkIIUTJt8L9Dg0/3Mnv7JY7dCOfCvSiO3Qhn1raLNPh0Lxv87xR2iIWnzkD44DK0mwvuzcClZuq/7T+D9y8V+2Rfa86cOdjY2LB792569+6dIcFMSUnh0KFDDBs2LF3yOnLkSFavXk1kZGS68g8fPuSLL74AoF69eun2Va5cGUhdeTevbi4MMXr0aOzt7QkKCmLQoEHpuvacOHGCwYMH57g7U3a0U2LOmTOHixcv6rbfu3ePLl26ZLgZykyfPn3SDZZOuyZCixYtaNy4sW5fjRo1GD58OIqi0KVLF3799dcMM/GEhoayZMkSPvvsM4OO/9FHH7FkyZIM3YuioqKYM2cOAO7u7jg5ORnUXn4qMgl/uXLluHHjBlOmTMHT0zPdviZNmvDLL78AcOPGDXbt2pVuvzbZ79evH2PHjtV9LObg4MCvv/6KjY0N169fZ+XKlfl/IkIIIYq9Df53mLj5PPHJ+mcQiU/WMHHz+Rc76bcoBY3ehsHbYPSh1H8bvlXsV9ZNy9vbmz/++ANHR0c2btyIu7s7Xl5eNGrUiBo1amBtbc0rr7zCihUr0j0dP3HiBG+++SYODg5UrlyZhg0bUr16dcqWLcvevXspXbp0hqfY/fv3R61Ws2HDBipUqECzZs1o0aIF48ePz9dzdHZ2ZvXq1ZiamrJu3TpcXV2pV68e3t7eNGjQAE9PT3r06AGkdlvJCxMnTsTV1ZWQkBBq1qxJ9erVqV27NhUqVMDPz4/Fixdn28ZHH33EtWvX8PDwoHbt2tSoUYOqVaty8eJF3N3d+fnnnzPU+fbbb+nfvz/h4eH07dsXBwcHXn75ZerXr0/58uVxdXXl7bff5vLlywadx6VLl3j77bdxcXGhYsWKNGjQgBo1auDs7MyaNWuwsLDgxx9/LLTuWmkVmYTf3Nw805HlAI0bN8bOLnV6r7TTLN28eRN/f39A/zy5jo6OunlV161bl5chCyGEKIGexCYxdath3UCn/hH4YnfveQG0aNGCy5cvM3PmTOrXr8/Dhw85ffo0kZGR1K5dmwkTJnD48OF0c8J//fXXfPDBB9SrV4/Y2FhOnz7N7du3qVatGhMmTCAwMJCaNWumO079+vX5/fffadGiBTExMRw5coSDBw9y9uzZfD/H1157jePHj9OtWzfMzc0JCAhApVIxbdo09u3bp+shkdVMPjnh6urK8ePHGTRoEI6Ojly7do2HDx/Sq1cvTpw4QatWrbJtw8PDg9OnT/Pmm2/y6NEjgoKCKF++POPGjePkyZMZFsKC1PEUa9asYc+ePfTu3Rt7e3sCAwO5cuUKNjY2dOvWjeXLl7NggWHjVKZMmcInn3xC06ZN0Wg0nDt3juvXr1OhQgXefvttAgICePXVV3N8ffKDSinIz42eQ0pKCra2trq+XWPHjgVg7dq1DBgwAFNTU2JiYvROfbRq1SoGDx6MhYUFMTExuZr/9ujRozRu3JgjR47QqFGj5z4fIYQQRdNyv5vM2nYx3TYj68ukxHih7znZ1NeqM7Sph0Ft5/X/JVevXgWgSpUqz92WEJnx8fHh4sWL/PHHH7z++uuFHc4LLze/98VmWs4tW7bo5kRNO6pbu2BExYoVM53nVLt0c1xcHLdu3cLDI+s/zHfu3EnXJwzIdLCwEEKIkmXPxfQzu/nG7+ZulX3Ex3sRd7cvaCyfKf/A4IRfiOLm8OHDXLx4ERMTE3ngWYwVi4Q/IiKCDz74AIDXX39dN7USoBv57ODgkGn9tPsiIiKyTfiXL1/OjBkznidkIYQQxVR0/H9T6HnFnmLO37u5GQBfdL/CPctgUmKqpysfFS9dekTxtnPnTiIjI+natSsWFha67fv27ePNN98EUsdJOjo6FlaI4jkV+YQ/KSlJNzLeyclJN6+plnb6qqxGkJub/zd1mCErpw0bNox27dql2xYQEMCoUaNyEroQQohiyMY89b9GlVE0wy5vwjQZvO9C02MerCtbPUN5W/PCX0VTiOdx/fp13nnnHYyNjalQoQKOjo7cvn1bt45R7dq1+fLLLws5SvE8inTCr9FoGDhwIHv27MHGxoY///wTNze3dGW0d6JZTbkZH//fioDauV+zUr58eb2DPYQQQpR8baq7cOzGQ8zLreXLChre3aoiWWPNr27DMynvXMARCpG3Xn31VcaNG8eBAwe4d+8et2/fxtramoYNG9KzZ0/eeustg/InUXQV2YRfo9EwdOhQ1q9fj5WVFdu3b6dBgwYZypUqlTr9V1bLMKdd8EBbXgghhNCnZ51yfHF6DkaWwcSi4tPOziTdGImiyvhfprmJmh51yxVClELknapVq7Jw4cLCDkPkoyIzLWdaiqIwatQoVq1ahaWlJdu2baNZs2Z6y1atWhWA27dv610hDv5bwtnc3DzdtFlCCCHEs3YFb8LI7jgASoo5T+8NIkGtfzrCmZ19sbOQLj1CiKKtSCb8Y8aMYdmyZVhYWPDHH3/oVmTTRztiPDExkWPHjuktc/DgQQAaNmyYqyk5hRBCvBjO7F6L4/BZVHygACpSQvuhJGZcJdPcRM28HjV5o550/xRCFH1FrkvPuHHjWLJkCebm5mzdupXWrVtnWd7T05OXX36ZkydP8v3332f4JODx48ds2rQJgN69e+db3EIIIYq3e9fOkfjRHFyfKsxancKleW/SqddYNp0OYe/FB0TFJ2FrbkKb6s70qFMOO0t5si+EKB6KVMI/ceJEFi1apEv227RpY1C9WbNm0aFDB3755RcaNWrEmDFjUKlUhIeH06dPH6Kjo/H09GTIkCH5fAZCCCGKo6fR4VwaNRi3p6lrUd6r7Uafdv9DrVYzrKkHw2SefSFEMVZkEv6jR48yf/58IHXp5pkzZzJz5ky9ZTt27MjkyZN1X7dv357p06czffp03nnnHebOnYuLiwuXLl0iLi4OBwcHtmzZgpmZWYGcixBCiOJDo9Gwf8wbVLqbOqPbvbLmtPhuo3QBFUKUGEUm4U9ISNC9f/jwIQ8fPsy0bOXKlTNsmzZtGg0bNmThwoWcOHGCwMBAypYtS8eOHfn4449xdXXNl7iFEEIUb3vmjqHSibsARFuqqPr9CqxsMl/MUQghipsik/C3aNECRVGeq4127dplWDBLCCGEyMyJ35dSbs0BAJLVYPzpR5St8lLhBiWEEHlMPq8UQgjxQroZeAT19IWo/33WFDq8I3XaDyzUmIQQIj9Iwi+EEOKFE50QTdD7Y7CKT832r7/iSevx8ws5KiGEyB+S8AshhHihaBQNkw9P5sv2Sdx1gDvuVrRduEEG6QohSiz56yaEEOKFsuTcEg7cOcD90iq+esuF2svXYWphVdhhiSIqODgYlUqFSqUq7FAKVX5chwMHDqBSqXB3d8+zNoV+kvALIYR4Yey9tZfvz30PgKnalHkdvqVM2SqFHJUoaC1atNAlr1m9IiMjs2zn999/Z/r06Rw4cCDXsbi7u+uO17Jly2zLV65cWVe+RYsWuT6ueLEUmVl6hBBCiPwU5L+bRzPfx6Zj6vSb0xtPx8fRp7DDEoWoTJkyVKmS+Q2fsbExJiYmeHt7693/+++/s2rVKoA8Sb4PHjzIjRs38PT01Lv/n3/+4fr16899HPHikYRfCCFEiRceeotH4z6gdkQKc1fC+elv8Hql1ws7LFHIOnTowMqVK7MsY21tzeXLl/M9lmrVqnHp0iVWrVrFjBkz9Jb56aef0pUVwlDSpUcIIUSJ8SQ2iWWHbtDnh6N0+uYQfX44yo8Hgjg+ojelI5IBiHOxZ3Trjwo5UiHSGzRoECqVilWrVuldlygmJoZNmzZhY2NDjx49CiFCUZxJwi+EEKJE2OB/hwaf7mX29kscuxHOhXtRHLsRTtjisbhffQLAYwdjGvy4HhNT80KOVhQX+garardpu/PMmDEjXd//3AxCrVixIi1btuTWrVvs378/w/6NGzcSExPDG2+8gZVV1oPMY2NjmTdvHvXq1cPW1hYLCwu8vLx49913CQkJybRecnIyX331FTVq1MDCwgInJydee+01jhw5YtA57N+/n169elG2bFlMTU0pXbo0bdu2ZcuWLQbVF/lHEn4hhBDF3gb/O0zcfJ74ZE267W0eb6JLQGqCE28C18Z9TKkyFQojRFGCmJub06RJE8qUKQNA+fLladKkie5Vr169XLU7ZMgQ4L+uO2lpt2nLZCY0NJQGDRowadIkTp48SdmyZalWrRrBwcF888031KhRAz8/vwz1EhMTef3113n//fcJDAzE2dkZd3d3Dh48yCuvvJJl0q4oCuPGjaNVq1Zs2rSJ2NhYfH19MTExYc+ePXTv3p233347J5dC5DFJ+IUQQhRrT2KTmLo1MMP2qk/9GXv0mO7rLxq35PMLdjyJTSrI8EQJ5OLigp+fHx06dABg6NCh+Pn56V4bN27MVbs9evTA1taWzZs3ExUVpdt+7do1Dh06RJUqVWjSpEmWbQwYMIDAwEAqVarEuXPnuHTpEqdPn+bu3bu0a9eOyMhIevToQVhYWLp6c+bM4a+//sLa2ppt27YRHByMv78/Dx48YNCgQUyaNCnTY86fP59Fixbh7OzM5s2biYiI4PTp04SGhrJz506cnJxYsmRJtuMlRP6RhF8IIUSxtul0SIYn+w5Jd/nk6AZMU1K/XvdSJfxKdSI+ScPm05l3aRAvllWrVmU6JWdhJKcWFhb07t2buLg41q9fr9uujSW7p/uHDx9m3759AKxevZqaNWvq9jk5ObFx40YcHBx4+PAh33//vW7f06dP+frrr4HU7kmdOnXS7bO0tOTHH3/MdOagiIgIZs2aBaR2O+revXu6/e3bt+e7774D4LPPPssyfpF/ZJYeIYQQxdqei6HpN6hjmXR+CaVjUgc+HvO0ZXWFEWnKP2BoU4+CDLFQDd89nPsx9ws7jOfiau3KsrbL8rzdrKbldHZ2zvPjGWLo0KH8+OOPrFy5khEjRqDRaPj5558xMjLizTffzLLutm3bAGjSpAmNGjXKsN/GxoZRo0Yxd+5ctm/fzscffwyAn58fUVFRWFhYMGrUqAz11Go148aNY8yYMRn27dixg5iYGHx8fGjWrJneuLp06YKJiQlBQUHcu3cPNze3bK+DyFuS8AshhCjWouOTde9VRtFYVFjOBqskvH6Fh7bGzPMZj6L677+7qPgXq0vP/Zj73I6+XdhhFEmGTMtZ0Bo2bEjVqlU5cuQIQUFB3Lp1izt37tChQwfKli2bZd2goCAAatSokWkZ7b60U41q37u7u2c6INjHR/+aFefOnQNSxw40bdo00+NqBz2HhIRIwl8IJOEXQghRrNmYp/5XpjKOxLLCMtRmj7lSTsWcbg7cjulPnJFtuvK25iaFEWahcbV2LewQnltJOIecGDJkCJMmTWLlypUEBwfrtmVH2+/fxcUl0zKurqnXMjo6WrdN+z6rTzUy2xcREQFAWFgYhw8fzjbG2NjYbMuIvCcJvxBCiGKtTXUXbgSdJKHiejRmqdNvpsQ7cyplOIqpjZ7yhdNVo7DkR1cYkb8GDhzI5MmTWblyJZGRkTg4ONC5c+ds69napt7choaGZlrm/v3U7l02Nv/9bmjfP3jwINN6me2ztrYGUgcLr169OtsYReGQQbtCCCGKtZeNr/PVgSW8vzMcoxSFlLiyxN4eiZKSMdk3N1HTo265QohSlERp5+bPS66urrRv357Q0FDi4+Pp168fZmZm2darWrUqAIGBGWet0tLuq1atWoZ6wcHBPH36VG+9Cxcu6N2u7SJk6Fz9onBIwi+EEKLYunR0Owlvj8PhqUL9KwqvHbIj9vYISNHfD3lmZ1/sLF6sLj0i/1haWgIQFxeX522PGzeO1q1b07p1a0aMGJF9BdDNruPn58eJEycy7I+JiWHp0qXpygI0bdoUW1tb4uLi+PHHHzPUUxSFRYsW6T3ma6+9hoWFBTdu3GDt2rUGxSkKniT8QgghiqVzf28gdvQEbGJTZ+O5WsmGP13GgybjKrrmJmrm9ajJG/XKF3CUoiSrXLkykJpgJyXl7WDwtm3bsnfvXvbu3Ztues2sNGnShNatWwP/zcev9fjxY9544w3CwsJwdnZONxuPlZUV48aNA2Dq1Kns3LlTty82NpZRo0Zx/fp1vccsU6YMn3zyCQAjRozgu+++IyEhIV2ZiIgIVq9ezYQJEww6D5H3pA+/EEKIYufU9pWoP/wcy39zrJs1HWmzcjvNsWDT6RD2XnxAVHwStuYmtKnuTI865bCzlCf7Im/17NmTTz75hCNHjlCuXDkqV66MiYkJLi4u/Prrr4US05o1a2jTpg2BgYHUrFmTqlWrYmFhQWBgIImJidjb27Np0yZKly6drt6UKVM4fvw4e/bsoWPHjri7u+Po6Mjly5eJi4tj/vz5vP/++3qP+dFHHxEZGcn8+fMZM2YMEyZMwMvLC1NTUx49ekRwcDCKotC8efOCuARCD0n4hRBCFCvHNi3GYtq3ukW1brzsRpvlf2JqZokFMKypB8NeoHn2ReEpX748u3fvZs6cOfj7+3Ps2DE0Gg0VK1YstJhcXFw4fvw4ixYtYsOGDVy5coWkpCQqVKhAhw4dmDhxIuXKZRzHYmpqyvbt2/nmm2/46aefuHbtGtHR0TRv3pzJkyfj5uaWacKvUqmYN28evXr1YsmSJfzzzz9cvnwZY2Nj3NzcaN++PR07dqRr1675fPYiMypFUZTCDqI4OHr0KI0bN+bIkSN6F7MQQgiR/w6tnof93J8w/ndh3etN3Wm/ZCvGJqaFG5iB8vr/kqtXrwJkuniUEKLkyc3vvfThF0IIUSzsPLAMh0/TJPttqtJh6Z/FJtkXQojCIgm/EEKIIm/95fVMvLWQ9a+k/rd1o/NLdFy4GSMj6ZkqhBDZkb+UQgghirSVgSv54tQXAGxprMa3RQ/e6DuzkKMSQojiQxJ+IYQQRZJGo+GXTdP4Iu533bZJ9SbxRvUBhReUEEIUQ5LwCyGEKFRPYpPYeOoOey89IDo+GRtzY16tWganzZOou+sCrdur+fslI6Y1mkYPrx6FHa4QQhQ7kvALIYQoNBv87zB1ayDxyRrdNpWSTP2/JtPkYigAw3Zr6NBnMu0k2RdCiFyRhF8IIUSh2OB/h4mbz6fbptYk8r/LX9DyShgASUZwYnhfhjfsXxghCiFEiSCz9AghhChwT2KTmLo1MN02Y008nwR+rkv2E4xhZvOOLAivx5PYpMIIUwghSgRJ+IUQQhS4TadD0nXjsUl+xMyzc2l04wkAsaYwtXk3Ttq2Ij5Jw+bTIYUVqhBCFHuS8AshhChwe/7tnw9QJ2o/Sw7M46XbTwGIMYfJzXtz3qZJmvIPCjxGIYQoKaQPvxBCiAIXHZ8MqmTMnHZR//4BSscoADyyUTO98QBuWNRMVz4qXrr0CCFEbknCL4QQosCZWDzE0n0pRub3Wf+KmprBKdyxLcU33m/x1NghQ3lbc5NCiFIIIUoGSfiFEEIUGI1Gw/Yt8wk224CRkghAksqcSS07ER1fP9N6bao7F1SIQghR4kjCL4QQokA8vHuVU+8OoXJgGDXeUHO2kprk2IrE3+uNkpTxqb6WuYmaHnXLFWCkQghRssigXSGEEPnu2ObF3OzcBffA1Ck3R+3U0LJUX+Jujcwy2QeY2dkXOwvp0iOEELklT/iFEELkm9iYSP6eNJhK+4J02x47GGP/6TS+adGTpq4ZV9rVMjdRM7OzL2/UK1+QIQshRIkjCb8QQoh8cfn4X4ROmESlh4m6bdebuNP8i1XY2JcB4I165Wnn48Km0yHsvfiAqPgkbM1NaFPdmR51ymFnKU/2hShqVCoVADdv3sTd3b1wg8lHK1euZMiQITRv3pwDBw4UdjjPRRJ+IYQQOfYkNomNp+6w99IDouOTsTE3pk11F3rWKYe1mYq9897Fdc3fOKekln9qriLug8G8NnBihrbsLE0Y1tSDYU09CvgshIBHjx6xbNky9u3bx6VLlwgLC8PIyIjSpUtTo0YNWrZsSa9evahYsWJhh1osHThwgJYtW+aq7v79+2nRokXeBvSvAwcOcODAAWrXrk3Xrl3z5RhFiST8QgghcmSDv/5uOMduhDN/z3F6aX6m38abuu23q9hSY+Ey3DxrFHSoQmTpq6++4pNPPiE2NhYAJycnqlWrhlqtJjQ0lB07drBjxw4+/PBD3nvvPebPn1/IERc/dnZ2NGnSJMP2J0+eEBgYCMDLL7+MmZmZ3rr55cCBA8yYMYNBgwZJwi+EEEKktcH/DhM3n9e7z9gmEGOX39iqfkrNCiqqhijc7d+cNh9+i5GR/Hcjipb33nuPr7/+GoD+/fszadIkatRIf1MaHBzMunXrWLhwIfv37y+EKIu/l156CT8/vwzb0z7537hxY4nuGlQUyCw9QgghDPIkNompWwMzbDfRxGDmshmLcmtQGceiqFV8286JhMVzaf/x95LsiyJn48aNumR/wYIFrFmzJkOyD+Du7s5HH31EUFAQffv2LeAohcg7kvALIYQwyKbTIRm68Xg/9ef7f2bR6u5x3bbEiIbcejye8ya1CjpEIbKl0WiYMmUKAK+++ioffPBBtnXs7Oz0lmvRogUqlYqVK1dy9+5d3nrrLTw8PDAzM8vQ93z37t106dIFZ2dnTE1NcXZ2pkuXLuzevVvvMVeuXIlKpcqyD3va42dVd+XKlTRo0ABra2tsbW1p2bIle/bsybRdRVFYuXIl9evXx8rKilKlStGqVSu2bduWaZ28FBwcjEql0g0O3rlzJ+3bt8fJyQm1Wq073+nTp6NSqRg8eHCmbbm7u6NSqdINulWpVMyYMQOAVatW6Y6V9pj65PQ6FiWS8AshhDDInouhuvfOiTd47/I8vti7HrfIFIbv1lA6zILYO2+SENoVFFP2XHxQeMEKkYlTp04RFJQ6Tew777yTJ21evXqVWrVq8eOPP2JjY0P16tUxNTXV7Z8wYQLt2rXjjz/+QFEUatWqhaIo/PHHH7Rr144JEybkSRz6DBs2jCFDhnD//n28vLzQaDQcOHCA9u3bs3XrVr11hg8fzpAhQ/D398fOzo7KlStz9uxZXn/9dRYtWpRvserz5Zdf0rFjR06cOIGHh0eeDJ5u0qQJ5cunTvdbpkwZmjRpku6lT26uY1EiCb8QQgiDRMcnUybxFuOD5rPsr+9oe/khRkrqviBnK6LujiQlprqufFR8UiFFKkTmtP3JVSoVr7zySp60+fnnn/PSSy9x584dzp8/z5kzZ3RJ4Jo1a1iwYAFqtZpvv/2W0NBQ/P39CQ0N5ZtvvkGtVuu6FeW1I0eOsHXrVnbv3s3t27c5ffo0Dx48oEuXLmg0GsaPH4+iKOnq/PTTT6xYsQJjY2NWrFjB3bt38ff358GDB0yZMsWgT0Ty0ocffsiCBQt49OgRJ06c4ObNm/Tu3fu52vTz82Po0KEAdOjQAT8/v3SvZ+XmOhY10rFSCCFEtu7dCOC1IzNoev4uxml69YRZq/i1xktsL/MGiir9fym25jKHflER/vNqwtdmn1CW6tOX0kMG675ODLnL7WFDs61nUsaZiqt/Trct5J13iL9yJdu6Zb/4EgtfH93Xkb9t4fHS73VfO/QfgMObA7Ntx1AhISEA2NvbY29vnydtOjg4sGnTpnSzylhYWADouo6MGDGCMWPG6Par1Wreeecdzp8/z7Jly5g5cyYDBgzIk3i0kpKS+Prrr2nTpo1um5WVFUuWLGHHjh0EBwcTEBBAzZo1dfs//fRTAN566y2GDBmi225iYsLMmTM5duxYgXZjGTx4cIabDO21LSi5uY5FjST8QgghMvXg6QP2LZyI79oTtEj5b3uElYqNvjXY5tyTJLWl3rptqjsXUJQiOylPnpB063b25SIj029ITjKoHknJGTfdDzWorpKYkO5rTXRUunopT55kf/wciIqKAlITtsy0aNGCgwcPZth+9OhRGjZsmGF7z5499U4hGRQUxLVr1wD43//+p/dYEyZMYNmyZVy9epUrV67g5eVl0HkYws7Ojv79+2fY7urqioeHB1euXOHatWu6RDVtvOPHj9fb5vjx4ws04R8+fHiBHSszOb2ORZEk/EIIITJ4FPuI5YHL2Ri0EQ9NAi/9m+xHWqrY5OvDny5vkJhJog9gbqKmR91yBRStyI6RnR0mFStkX+7ZJ97GJgbVMymT8ebOxNWFlOiobOuqTNPPv662sU13TKM8novd1tYWgJiYmEzL1KhRg+Tk/25iDh8+nGWbPj4+erdrxwpYWFhQuXJlvWWqVKmCubk58fHxXL58OU8T/ipVqmQ6CNXZ2ZkrV66kuw6XL1/Wxevp6am3Xmbnml8K+nj65PQ6FkWS8AshxAsiq9Vx7SxTu988vBPE1gNLWar6h4SU1CevQeVVHK9phutLjQlr8jabd9zK9lgzO/tiZyFdeooKhzcH5qpbjGm5slTetStXxyyXy8Gd9t27Yd+9W67qGqJs2bJA6sJPERERlCpVKkOZZwemZjVzC2T+aYH20wRn58w/7VKpVDg7O3Pr1i2io6OzPE5OZfUphlqdOoxTo/mvj572+FnFm9W+/JDVORSFGPRdx6JIEn4hhHgBZLk67l+X+bipFaV2fUO5PReobg6at4zAWEUps1IM9h3MG/36YGmS+kTf2MJOb1uQ+mR/Zmdf3qhXvkDOS4icatasGZA69eTBgwfzdZVV7acJDx5kPmOVoii6/TY2Nrrt2puMrAaDPn36NC/C1NEe/+HDh5mWyepcClphXKPiShJ+IYQo4bJaHdcu+QG9b6zHd+ttzP+dVMcsBjoFmlFx6Fv0q9pPl+hrvVGvPO18XNh0OoS9Fx8QFZ+ErbkJbao70yPNpwVCFEV169bFy8uLK1eu8O233+Zrwl+1alUA4uLiuH79OpUqVcpQ5tq1a8THxwNQrVo13XbtU+WsEuyrV6/mZbi6eGNjY7l58yYeHh4Zyly4cCFPj/k8srtGERERPH78WO++7D61KWlkWk4hhCjBMlsd1y75IcNvLmLlrvl0O/9fsv/UXEVwnyZMnLqD4TWGZ0j2dfUtTRjW1IN1IxuyfVwz1o1syNCmHpLsiyJPrVYzc+ZMAPbt28cXX3yRb8fy8vKiSpUqQOp88vosWLAASO0nri2r/Rrg5s2behPatWvX8iSPBzR7eXnpbkoWLlyot0xm2wuD9hqdOXOGhISEDPu/++67TOtaWqb+bYuLi8uf4IoYSfiFEKIEe3Z1XLuUewwNXsxPu+bR49wtXaIfYwZr61bh9Gcr6TB9GTalZIYdUXL17t2bsWPHAqmz5wwcOJCAgIAM5R4/fsxXX331XMeaOnUqAEuXLmXp0qW67icajYbFixezbNkyAKZNm5auXo0aNXB3dycxMZGxY8emS0z37dvH+PHjMTHJ2xtslUrFRx99BMDixYtZtWqVLt7k5GRmzJjB/v378/SYz6NVq1ZYWVnx8OFDJk6cSErKf1OJrV+/nk8//TTTa6QdRH3ixIkXotuPJPxCCFGC7bkYiso4CpNSh7GsuAQ354X0OnsTC+0TfTP4pU5lBreZzJryo9h/u2gPPBMiryxatIh58+Zhbm7OmjVrqFmzJmXKlOGll16iYcOGeHl54erqyvvvv49arWbo0KHputwYasCAAXzwwQekpKQwevRoXF1dqV+/Pq6urowdOxaNRsMHH3yQYdpHtVrN119/jVqtZtOmTZQpU4a6detSsWJFXn31VTp37kzjxo3z6nLoDBs2jEGDBpGcnMzgwYMpV64c9evXx9nZmenTp+frJyI5ZWNjw9y5cwH45ptvcHR0pF69eri6utKnTx8+/PBD3Nzc9NZt27Ytzs7OBAcHU65cORo2bEiLFi1o0aJFAZ5BwZGEXwghiqq4CDi6GFa+Bt83S/336Hep27Px8E4Qu794j8pnPsSq8lzMXf7EyPIWIU4qbjtCrCmsf8mTwW0+YnWF0Tw1dgBkdVzxYpkwYQLBwcHMmTOHli1bYmRkxMWLFzl//jzx8fG0bduWzz//nODgYJYvX653rn1DLFiwgL/++ovXX38djUbDmTNnUBSF119/nb/++kvXredZXbp0YdeuXbok9PLlyzg5OfHjjz+yfPny3J52tn766SeWL1/Oyy+/TEREBFeuXKFmzZr8+eefvPPOO/l23Nx45513+PXXX6lfvz4JCQkEBQVRuXJlfvvtN6ZMmZJpPSsrK/bt20ePHj0wNzfn1KlTHDx4UO/6CyWBSinqawEXEUePHqVx48YcOXKERo0aFXY4QoiS7vRq2PE/SI7PuM/YHDougDrpp1l8dPcaZzd8j2bfIcpdi0INRFnAyHFGaNQqFEVFSqw77jfKcYcGxBg7Zmi6kWdp1o3MuLCQyBt5/X+JdtBm2r7fQoiSLTe/9zJLjxBCFDWnV8MfYzPfnxyv2x/m2pQzG78nee9Byl99QrlnHuHYxoH7TRcuWtUnOboGSrItl7L4yy+r4wohRMkjCb8QQhQlcRGpT/az8EStZp+lBUbT5lDpmoqyej6nDalohaZVIzxeH0rQL6EkRWTfN19WxxVCiJKpxCX8/v7+zJ8/n0OHDhEeHk6ZMmVo06YNH330kXzkKYTIf3ERcPYXCNoJ8U/A3A68O0LtvmCRcUXPDM6u09uNJyJFzUE7C/6ysuS4hTnJKhVjzFLwStMr824FS1JaNsCn5wjaVHlJt31ml8zn4U9LVscVQoiSqUQl/KtWrWLYsGGkpKTg6OhIjRo1uHr1Kj/99BPr16/nzz//pFWrVoUdphCipMqs333wIdg3Q2+/+wyCdqBR4E68GbeemBMVYYrpY2Nc76v4dqQRDyz/WyzmSDUVVR6rSHq1KdV7DufVqvX0Nqld9VZWxxVCiBdTiUn4L1y4wPDhw0lJSWHSpEnMmjULExMTYmNjGTlyJGvXrqVnz55cvXqV0qVLF3a4QoiSJgf97p9N+kNvX+L6kb+IPHsSo7M3KR3qhnU8OJH60mp0SeH3xiqqJiTS7mksbUxjqdinOoxemm14sjquEEK8uEpMwj9jxgySk5Np3Lgxn332mW67paUly5cv58iRI9y8eZMvvviCTz/9tBAjFUIUOc/bDceAfvdaEVsnccnWkcDYOwQ+DuTC4wt0+e0+bc4qOGRSJ1kND50U6qpiGXYnCvfk5P92mhs+TaB2ddxhTT0MriOEEKL4KxEJf2xsLNu2bQPgrbfeyrDfzMyMwYMHM23aNNatWycJvxDF3fMm6GnlRTecTPrdx6SouRptwcNIM5LDTLB9pMYxUsWnVhO45fxf15zrriranP139U3gsYNCtJMG09KJuNgnUNkqjhpG//bVT37mIFU75ex8hRBCvHBKRMJ/5swZ3ZLTr7zyit4yzZs3ByA4OJj79+/j6upaYPEJIci7JD0vEvS0beWyGw5AbFIsoU9DCQ3azH1rK5SbZpjfM8Y4Ro1ljIrSkSrMFajwTL3K9xVdwu9m5YZ9Yw9ulVZwqtOYKrUb4rPiFf3z7z/LxAJq9TXsXIUQQpQIiqKgUqmyL5hGiUj4g4KCADA1NaV8ef2DzipVqqR7f/ny5SwT/jt37hASEpJuW0BAQB5EKkQxU9SS9OdM0NPJphtOogYeJJrwOM6UJz9OI875b1IehqF+GIFFWDQ2EYm8/baaODMVqACn0gw7lUK7S5mvZRhlCeFlNDQ2N6d764X4lPahtIWeMUUdF2R9nlod5oOFffblRImlUqlISUkp7DCEEAVIURTUanWO6pSIhD88PByAUqVKZXrH4+DwX+/YiIisl6Vfvnw5M2bMyLsAhSiOilqSnoN+8uycANVeA4tSJCclEh35gJiIh8SEPyQ28jHxkY9JvHqEpJuWxJpYcs1HQ7RaTbRazQMjI4asNsL1MagB839fcCzDYUpHQUiaUbVhtipAIUUFT2wg2k5DimMydqUS8bCNw9ssCbUKcG8G5fR/GpnuOmS20q6JRWqyb+gnGaLEMjExISkpicTERExNTQs7HCFEPktMTESj0WBubp6jeiUi4dd258nqj13aCxMbG5tle8OGDaNdu3bptgUEBDBq1KjniFKIApIXT+ULMUlXzO2JT4knLjmO2KRYYh/cIyHkDgkX/yLpvimJKWYkJ6tISVGTkqxCk6xCSVITXFHhUmWIVquIVquxXtqO91ZEY5GY/jCW/75SmXO/FKxqnP5PYYJRMlk9O4myUhFjb0Zjx9oYV/XC9fFNXC7+iYtLCnbdNJQxScI4qwYM6XdfZ2DqTcvZdRC047/vZdVOUKtPzscqiBLJxsaG2NhYIiMjKVOmTGGHI4TIZ5GRkUDq735OlIiE38LCAki968lMfPx/T8ksLS0zLQdQvnz5TLsGCVGk5cVT+Vw+SddoNDyNekzU4/tEx0YQXcaK6IANRJkbEaW2wT7AFHWMESSqUCeqUCeDUbIK4yQwTgKTZBVmvzbmk0HG3E7z1LyHn4behzT//rGyzjSUQGsV/9Q00n3tFBubIdnXx+qZS2Wp0XDfTUFtrpBipUFtlYK5RQq2ZZwo3ecbnN2rY2ltD0BrbaW4CDizFVQJYJbNAXPS796iFDR6O/UlhB42NjY8fvyYsLAwAOzt7eVJvxAlUGJiIpGRkYSFhWFkZIStrW2O6peIhL9UqdQnXREREZkOZNB2+0lbXogSJa+eyv8740xCCtxXm3DfQs09Y2MijIxIjDWiwikTVIkqjBJVGCeoMN3eFIs4BYt4Be1EMiGl4f2R//55cUrto77gWjIVHmV/GmaJCqmd4lPFG5i7WP6buFtoNNhoNDiamXDH3ZwUSzNSrCzA2gKVtTVqG2uMbe0wveeHWVwIFiYpbAlJwubfehaKgspbzwHca4BvY/0Htygl/e5FoTAxMaFChQrcvn2bsLAwwsLCUKvVqFSqHA/qE0IUPYqioCgKGk3qoolGRkZUqFABY+OcpfAlIuGvWrUqkHr3c/v2bSpWrJihzPXr1zOUF6LEyMVT+afJCvdvBBB24xLRt6+TEBICoQ8xvReKdaQb9k9h3StqtjT5r2+KMwqLLj47QDDjyq3PPjUHiHmmu2GyGhJNUl9JJgrJxpBsqsbHpRYVK5TBwtgCSxNLXM2iuWkfijo8EKPEMIyNFEyMNZgYKZgaaTAz0mBlnMIA0xTeupmCbvko92bw17bMr8PR72DXR6nvk7K9atl3w5F+96KQmJub4+npSVRUFNHR0SQlJaEomQ8eF0IUHyqVCrVajbm5OTY2Ntja2uY42YcSkvDXrl0bCwsL4uLi+Oeffxg4MON/qAcPHgTA3d1dpuQUJY+eeeBjktXcizclPN6E224KIVbG3DU24p6JMb4ftKD736n9XWz/fenjFJU+aYhNk7SnqCDOHOLNIMHagmQrM1KszFFsrFBK2fJunVbYnlqN7aMr2Go02NQF85cUbIyTsTVKwdSIjNyb0Xbw2vTbGgJ9SJ+gGyK7BL1239RuTnk5/aX0uxeFxNjYGAcHh3QTVAghhFaJSPitrKzo1KkTmzZtYunSpRkS/oSEBFauXAlA7969CyFCIbKQB4Nsky5t43qMOSGRFsQ/NsHmgRFlIlI/zrcDtvRVE2j/35P60hbPrt70nwQTiLRViLNWcLRJ5r3wBNySUyidkoJNsgbbrmBjnIKVkea/GWcGZ/IkPSYRgv9N0g2ZUCCrJD2vE/T86oYj/e6FEEIUMSUi4QeYNm0av//+O4cPH+bDDz9k1qxZmJiYEBsby6hRo7h58yZ2dnb8738GdnsQoiDkcpBtWFwY5x+dJ3zdOqz9zlEmOArzJAfKZnIYpyf/vbfSaFCVVnOzhgOKc2mMy7phVd6DUu5euFSqSakb21Hv+fi/Ck+eaezZxL2gkvT8SNClG44QQogXQIlJ+H19fVm6dCkjR47k888/Z/ny5VSsWJGrV68SFRWFhYUFGzduxNHRsbBDFSKVgYNsExMTuZrsyN3j+/n7JRPORQQSEpO6MNzwsym0vZqxr+5Tc3jkrCHFLgUTqxR6mCXw9t1EXJOTsdUoqNybweRMnsrb94f9s4pmkp4fCbp0wxFCCFHClZiEH2Do0KH4+voyb948/Pz8CAgIwMnJiW7dujF58mS8vLwKO0QhUmUxyPZ+ggnXn1jwJMwMk0fGOG9agGkylAcuDDEixOW/mTeuuql49azCgzLGxDrGY1U6kQr2cXhZJGD07AQdaaeozOqpfFFP0vMjQZduOEIIIUqwEpXwA9SvX59NmzYVdhhCZC3NINsU4GykFfdvW+Fwx5hS0VCa1NezvO4qRLmXppZTLWo61aTWK1WpOLUqPqZG8EXVvOvfXtSTdEnQhRBCCIOVuIRfiOJACdrOJVMTdlhbsdPKkiH+Kupez9g1J1kND5wUEsqZY92qJ++2ep3y7jX1z6+dH/3bJUkXQgghij1J+IXIjVzOrHPr4nEu/LqUn53vcKHsf9PD+vloqHtdIcoSHrulYOyYhEupeKpYx1HDSAGXmjDsk6xjyo/+7ZKkCyGEEMWeJPxC5FQOZ9Z5dPcaZ9Z9i2qPH+VuPcUDcGun5kKd1GkyrTUaXFxjiWmbSF37GIzVZGRuZ1hsMgBVCCGEEM+QhF+InDBwZp3omGhOBT0kbsduyl+OoPwzvXWaXFLQeMfSKeYpzeLiMVcUyGq9nOwWkUpLnsoLIYQQIg1J+IUwVBYz6wAkAccSrIgKtKbspkU4P7O2lQYIqWKLSbtWtOoygB6rWuXtKq9CCCGEEHpIwi+EodLMrKOlAU6bm7HDypLdVpZYR6j56mpKujL3ypqT3LoRNfq8hY9njf925Mcqr0IIIYQQz5CEXwhDBe3QvU3WwKEH9vxtacHvHia67U8c4aYz2MYrRPlY4vXOl7R+qYX+9mSVVyGEEEIUAEn4hTBU/BM0Chx9bEviWStcwlS8ZgF/VVOIN1PhkJJCu5hYyjaPpYYqAbVrTXipRdZtyiBbIYQQQuQzSfiFMJB/qELkQVfKhf43B75tHAy8HM9LztE0jIvHBEA7y46hM+vIIFshhBBC5CNJ+IXIRsDB37j7xTwqXnmCNf8l+zc9NHj6RDLOOh7i9FTMycw6QgghhBD5RBJ+ITJx5ex+rs2djse5h1RMs/12WQXnmk/oaBebeWWZWUcIIYQQRYQk/EI84070HZacXcLN/X8w9dx/M+7cK2uOTY+GtHnwC2pVFg2AzKwjhBBCiCJDEn7x4oiLgLO/QNDO/wbHeneE2n3BohQPo0P54cIyNl/dTLImGSqqOOeuwuWpMUYjB9Cy//9Qq9VwurHMrCOEEEKIYkMSfvFiOL1af5IefIiIv2Zx5JEPZufvsXmImmTj1Mf3rlauWM4aSJNavTAxNf+vjsysI4QQQohiRBJ+UfKdXq13gauYZDWHbpWizHkzPBPuAtDmjMLxZqUZWXMkvbx6YWpkqr9NmVlHCCGEEMWEJPyiZIuLSH2yn0ZCChy864DdWXPc04y7jTWDZmUbM737QixNLAs4UCGEEEKI/CEJvyjZzq5L143nRJg1ScdtKR/1X5EEY7hbI5HGnhHUbVkHJNkXQgghRAkiCb8o2YJ2AJCogT1XHfE8818XnWQ13KqezMtVIqhtlpS68fJ2aPhWYUQqhBBCCJEv1NkXEaIYi3/CXWMjRpZxxuzWf8n+jcop2L7+mNd8H+KiTfb/LS+EEEIIUZLIE35Rou0xN2aamyvRRmoed1WYui6Fp/Vj6eQaqb+CuV2BxieEEEIIkd8k4RclUmxMJEt3z2GF6jEYpX6QZWGfhFOXx9QnOfOKVTsVUIRCCCGEEAVDuvSIEufamQMcf60FdT/bhlWcAkC/J9GsuR+KR1bJvokF1OpbQFEKIYQQQhQMSfhFiaHRaPj7u4+JefMtXEITcIqC4fuNWFixGx+FR2CmZNNAh/lgYV8QoQohhBBCFBjp0iNKhKjwUP4ZP4BKJ+7qtt3xsKbjp8txq1QTbKvoX2kXUp/sd5ifuoKuEEIIIUQJIwm/KPYu+G0lfOInVApP7a6jAYK71aXtjGWYmJqnFqozEKq9ljovf9CO1Nl4zO1S++zX6pO6cq4QQgghRAkkCb8otjQaDXvnv4vrqr04alK3PbFWYzzjf3TqNCRjBYtS0Ojt1JcQQgghxAtCEn5RZD2JTWLjqTvsvfSA6PhkbMyNaVPdhZ51yqFRx7BjQl/q7LmlKx9cvRQvL/oZp7KVCzFqIYQQQoiiRRJ+USRt8L/D1K2BxCdr0m0/diOcBQe3U8p9E5aej6lqCqbJcLd/C9p+uAgjI/mRFkIIIYRIS7IjUeRs8L/DxM3n9ezRYOq4DyPHv4lOVoh2ULGulxODmo2nfYvuBR6nEEIIIURxIAm/KFKexCYxdWtghu2OiXd4O2gZKzvEE6FSAaCJrsl74xZR1s6hoMMUQgghhCg2ZB5+UaRsOh2SoRvPy1F/s3j/NzS6/pSxf2pQJRsTf787T0P6sivgSSFFKoQQQghRPEjCL4qUPRdD033dNGIH0w7swPbfFXPtYowwuTyEpMj6gIo9Fx8UQpRCCCGEEMWHdOkRRUp0fLLu/SvhfzLB7yDG/z7w31vViW+rjCHByFpXJio+qaBDFEIIIYQoViThF0WKjXnqj2SLsK38z+8QRqkP9tlSswI/eIwFVfoPpWzNTQo6RCGEEEKIYkUSflGktKnugtWJZbx/+Ajqf5P9jbXdWVHx7QzJfmp55wKOUAghhBCieJGEXxQp5c6vSJfsr3/Jk5UVRutN9s1N1PSoW66AIxRCCCGEKF5k0K4oMrZc3cKGkC1oUmfd5Jc6lVmZyZN9gJmdfbGzkC49QgghhBBZkSf8okjYELSBWcdmgbeKhV3UNEmsw0aLfvDMFJ2Q+mR/Zmdf3qhXvhAiFUIIIYQoXiThF4Vu3aVf+PTEXN3XTfr/jyG+Q+gem8Sm0yHsvfiAqPgkbM1NaFPdmR51ymFnKU/2hRBCCCEMIQm/KFS7Px/H/fN7oY0aVComvDyBN33eBMDO0oRhTT0Y1tSjkKMUQgghhCi+JOEXhWbX3LepsGo/5QGNWoPb5E/oV61fYYclhBBCCFGiSMIvCsXOmSNw/8VP93Xtuh15VZJ9IYQQQog8Jwm/KHA7pw7FfcNRADRA6JguvPrOZ4UblBBCCCFECSUJvygwGo2Gv6YMwWPzidSvgQfv9qD1W7MLNzAhhBBCiBJMEn5RIDQaDTsnD8Tz99OpX6vg0fu9aTVieuEGJoQQQghRwknCL/LUk9gkNp66w95LD4iOT8bG3JhXq5bB6ffJeO04D6Qm+2ET+tNi6CeFHK0QQgghRMknCb/IMxv87zB1ayDx6RbLUjgTvYq37gfgBaSoIOKjQbzy5oeFFaYQQgghxAtFEn6RJzb432Hi5vPPbFUwc/4TU4cjrGinRlEp2NbpyTBJ9oUQQgghCowk/OK5PYlNYurWwGe2ajBz+QPTUsf+/cqYb6v3x+SJLz1jk2SlXCGEEEKIAqIu7ABE8bfpdEj6bjyKhrHXvqLxoyP/fmlM3J2BpMRUJz5Jw+bTIYUUqXhRDR48GJVKxfTp0/OszeDgYFQqFSqVKs/aFEIIIfKDJPziue25GJru6x73f6ZT4H3e36Lhpasq4kLeJOVp1TTlHxR0iKIAaZPgnL7yMhkXGR04cEB3rYODgws7nAIRFRXF5MmTqVatGhYWFjg4ONCqVSs2bNjwXO1qNBqWLl1Kw4YNsbOzw9ramtq1azNv3jwSExOzrKvdP2jQIKytrbGzs6NRo0YsXboUjUaTZV0hhMgt6dIjnlt0fLLufe3ofxji/1/3nqfhbUmx9UpXPio+qcBiEwWvSZMmercfPnwYgCpVqlCmTJkM+ytUqJBvMbm6uuLt7Y2jo2OetWliYoK3t3eetSfyVkhICM2aNSM4OBgTExN8fHyIjIxk//797N+/n7///pvvv/8+x+0mJSXRpUsXdu7cCYC3tzempqacP3+ec+fOsXHjRv7++29sbGwy1I2KimLUqFEAXL9+HR8fHxITEzl27BjHjh1j27ZtbNmyBWNj+a9ZCJG35K+KeG425qk/Ro6Jd/jw6J8YKanbl9erySnblhnK25pL//2SzM/PT+92bdeXyZMnM3jw4AKMCObOncvcuXPztM2yZcty+fLlPG1T5J3evXsTHBxMrVq1+PPPPylfvjwAmzZtol+/fixdupT69eszdOjQHLU7bdo0du7cib29PVu3buWVV14BIDAwkI4dO3Ly5EnGjBnDzz//nKHu6NGjCQoKAmDVqlUMGDAAgH/++YfOnTuzbds2Zs6cycyZM5/n1IUQIgPp0iOeW5vqLpho4ply6nvsYlOz/QNepfndZUAm5Z0LMjwhxAtmx44dHDlyBLVaza+//qpL9gF69uzJ//73PwCmTp2ao240YWFhfPXVVwDMmzdPl+wD+Pr6smzZMgDWrFmT4WbwwoUL/Prrr7qvK1WqpHv/yiuvMG/ePAC++OILIiMjDY5JCCEMIQm/eG4965Rj7LVFeD1IAOCmkwlfe78Dqow/XuYmanrULVfQIYoizt3dHZVKxYEDB7h06RJvvvkm5cqVw8TEJN2nAX5+fkyaNIkGDRrg5uaGqakpjo6OtGnThnXr1mXafmaDdp8deOvn50enTp0oXbo0FhYW1KxZk2+//RZFUTK0mdWg3bTHi4uLY9q0aXh7e2Nubo6TkxO9e/fm6tWrmcYbExPDxx9/TJUqVTA3N8fV1ZV+/fpx+fJlXV98d3f3rC9qHklOTmbp0qU0a9aMUqVKYW5ujoeHB8OGDcvyE46tW7fSsWNHnJ2dMTExwcHBgapVq9KvXz82bdqUofy5c+cYOHAg7u7umJmZYWNjQ6VKlejQoQMLFiwgJSXF4JjXr18PQMuWLalatWqG/aNHjwbg7t27HDp0yOB2//jjD+Lj47GysmLgwIEZ9rdt2xZPT08URdHFoLVhwwYURaFs2bJ6237zzTextLQkNjaWrVu3GhyTEEIYQhJ+8dxOrphK238H4saYw6yXh5FgZK237MzOvthZSJceod/hw4epW7cuGzZsoEyZMnh7e6NW//dnqmvXrsybN4+rV69ib29PzZo1MTU1Ze/evfTr148hQ4bk+tgrV66kefPmHDt2DE9PT6ytrQkICOCdd95hwoQJuWozKiqKxo0bM2vWLIyMjKhcuTKRkZFs2LCBRo0acevWrQx1wsPDady4MZ9++inXrl2jYsWKuLm5sWXLFl5++WX8/f1zfY45FRMTQ5s2bRg9ejR+fn44ODjg6+vLw4cPWbFiBbVr12bz5s0Z6k2fPp2uXbvq+rnXrFkTV1dXQkNDWbduHZ999lm68rt376Z+/fqsWbOGsLAwvL29qVKlCtHR0ezatYsJEyYQFxdncNxHjqTOEJb2CXxaFSpU0N0wacvmpN369etjbm6ut4z2mM+2q/26du3aeuuZm5tTv379HMckhBCGkIRfPJeAf7bgtOR3ADTAV006cN+scoZy5iZq5vWoyRv1ymfYJ4TWtGnT6NatG6GhoZw+fZrAwEAWL16s2//ZZ59x7do1wsPDuXjxIidPnuTevXscO3aMypUrs3LlSr1Pjw0xevRovvjiCx4+fIi/vz+PHj1i9uzZAHz55Zdcv349x21+++23qNVqrly5wsWLFwkMDCQoKIgqVaoQFhbG1KlTM9QZO3YsAQEBlC9fnlOnThEUFMSpU6e4f/8+7du355NPPsnV+eXG+PHjOXDgAI6Ojhw4cIDr169z8uRJHjx4wJtvvklCQgIDBw7kypUrujqPHz9mzpw5GBsb89tvvxEaGsqpU6e4cOECkZGRnDlzhpEjR6Y7zqRJk0hMTOSjjz7i8ePHnD9/ntOnT/Pw4UPu3LnDggULMDEx7EFBUlISN27cAKBy5Yx/i7S0XWpyMg5D2/8+N+1q65Yrl/knnLmJSQghDCEJv8i1sLgwZlxZSPC/E67c7t2YJfM/Z8pr1WnkWRofN1saeZZm6mvVOf7Rq5Lsi2x5e3uzatUq7O3tddssLCx074cPH56u77NWgwYN+O677wD46aefcnXsAQMGMH78eIyMjHTbJk+ejK+vL4qisH379hy3qVar2bBhQ7oE0dPTk08//RSAP//8M1354OBgXT/vtWvXUqdOHd0+e3t71q5dm2mXkLx269YtVq5cCcCiRYto3ry5bp+1tTU//fQT3t7exMXFMX/+fN2+a9eukZycjK+vL926dcvQ5al27doZEv5Lly4BqYm/mZlZun1ly5blgw8+yLA9M0+ePNH1y3dwcMi0nHZfRESEQe1C6qcvuW1XW9fW1jZPYxJCCEPILD0iV5I1yUz8ZyJBJmFMG2DE6NtVGD51KUZGxgxr6sGwph6FHaIohgYNGpTtlIRBQUFs3LiRc+fOERYWppvXPCEhdQzJqVOncnXsMWPGZNimUqlo3LgxgYGBXLt2LcdttmvXTu8Ninbq0oiICMLDw3WJ3l9//YWiKHh7e9OsWbMM9czMzBg4cGCBzOLy119/kZKSQvny5XnjjTcy7Fer1bz//vuMGjUq3c2QdnrVK1eucOzYMRo2bJjtsSpUqMDVq1f5+eefGTt27HMtZpa264+pqWmm5bRdcmJjY3Pcdm7a1dbN6pOK3MQkhBCGKDJP+BMSEvjzzz8ZM2YMdevWxc7ODlNTU1xcXHjttdf09hPV18bnn39O7dq1ZUGTfLbw9EJOhJ4AoJyDB/0+/hkjI7l/FM/Hx8cny/1Tp06levXqTJkyhU2bNrF//34OHz7M4cOHOXnyJJA6k0pueHl56d3u7Jw6q1RMTEyet/lsu9puH7Vq1cq0zcz6gOc1bSw+Pj7pxlGkVaNGDQDu379PVFQUAG5ubvTv35/Y2FgaNWrEyy+/zMSJE9m0aROPHz/W287EiRMBGDduHJ6enowaNYoVK1bk6iYr7SdCWS2CFR8fD4ClpWWO285Nu9q6SUmZr0OSm5iEEMIQRSbhnz17Np07d+a7777j/PnzuLm54evrS2xsLNu3b6dnz5706NEj0z+02sFxH374IQEBAXh6euLq6sqxY8cYPXo0Xbp0ITk5WW9dkTMHNn3FtiOp3SYsjC34uuXX2JhmXGRGiJyysrLKdN/GjRuZNWsWiqIwZcoUzpw5w5MnT0hJSUFRFF0f+9z+nmd2bG2ym5uHBtm1+Wy70dHRQNbdPvQt6JQftAm8i4tLpmVcXV1177WxA6xYsYLPP/+cKlWqcOrUKebPn0+vXr1wcXGhS5cuGRL54cOHs2nTJho3bszt27f54YcfGDZsGFWqVOHll19mz549BsdtZ2enu75Z3fxpu9iUKlXK4La1ZXPTrvbrJ0+e5GlMQghhiCKT8CuKQpMmTfjll1+IiIjg0qVLnD59mrCwMN2MDr/99hszZszQW3/06NGcPn2aChUqcO7cOc6fP8/ly5c5ePAgdnZ2ugVNxPO5cnIv9jN+4LOfUqhxU8PsJrOpZJ+xy4IQeU3bN//9999n5syZ1K5dG1tbW4OSu+JCm8xrk2190ibW+Ul70xEaGpppmfv37+vep70RMTU1ZeLEiVy5coWQkBB+/fVXRowYgY2NDX/88QetW7fOMNd8jx49OHz4MOHh4ezcuZMPP/wQT09PTp06RceOHTl+/LhBcZuYmODp6QmQ5ScE2htEfdN2ZkZbNjftar8OCQnJ05iEEMIQRSbhf++99/Dz86Nv375YW/83paOJiQmTJk1ixIgRAHq756Rd0GTZsmX4+vrq9smCJnkn8vFdQt99H7MksI2D/tG+tHVvW9hhiReENhlKO3g0rcOHDxdkOPnC29sbSJ2TPjNnz54tkFi0SefFixcz/XQjMDAQSO3Gk9mnEmXLlqV379788MMPXLp0CQcHB27fvs22bdv0lrezs6N9+/bMnTuXoKAgmjVrRnJyMj/++KPBsTdu3BhIXcFWn9u3bxMcHJyubE7a9ff313W/eZb2mM+2q/06s+9tfHw8J06cyHFMQghhiCKT8JcuXTrL/R06dABSn+I9evQo3T7tgiaVKlWiTZs2GerKgibPLyUlmSNv9cEpLLX/6S0vO9rOXVXIUYkXibZf8927dzPsi42NZdGiRQUdUp5r164dKpWKoKAgvQtCJSQksHr16gKJpX379hgZGXH79m29Y6g0Go1u1dlOnToZ1KaLiwtVqlQB4N69e9mWNzY21iW/hpTX0g4yPnDggN4pLr///nsg9UZF3+DozHTu3Blzc3OePn2q9/uwe/dubty4gUqlyjDQuVevXoD+n1+An3/+mdjYWCwsLOjcubPBMQkhhCGKTMKfnbRPU54d0JTdIiuyoMnz2zVjBB4BqQPuwu2MePn7tZiY6l94Roj80KJFCwDmzJnDxYsXddvv3btHly5dcpQQFlUeHh706dMHgP79+3P69GndvsjISPr3759pwpjXKlSooFvleOzYsfj5+en2xcTEMHz4cC5duoSFhUW6hcn27t3L+PHjOX36dLoVihVFYePGjbpzqlevHpDafalXr17s2rUrwxitc+fOsXbt2nTlDdGpUycaNmyIRqOhT58+3LlzR7dv06ZNLFiwAIAZM2ZkGJB87Ngx3N3dcXd3z9D9pnTp0rz77rtA6kDjtJ8gBAYGMnz4cAD69etHtWrV0tX19fWld+/euq/Truvwzz//6AYuv//++9KHXwiR54rNtCraP/p16tTJMGjN0MVQMnva86w7d+5k+EMfEBCQ05BLjGObF1NxwzEAEo3A/os5OLpJv31RsCZOnMj69esJCQmhZs2aeHl5YWpqSmBgICYmJixevJhhw4YVdpjPbdGiRQQEBBAYGEjdunXx9vbG2tqaCxcuoFarmT17NhMnTky3XkBO1alTJ9OZdyB1wbA+ffrw9ddfc+3aNQ4ePEizZs2oVKkSpUqV4tKlSzx9+hQzMzNWr16te2oPqTcDCxcuZOHChdja2uLp6YmxsTG3b9/m4cOHAIwYMYKWLVsCqZ8UbNq0iU2bNmFqakrlypWxsbHh4cOH3Lx5Uxfv//73vxyd4/r162nWrBnnzp2jUqVK+Pj4EBkZqevKM3z4cF2CnlZ8fLxuBWR9A8BnzpzJmTNn2L17N82bN8fb2xtTU1MuXLiARqOhTp06ujUhnrV06VJOnz7N1atXGTRoEPPmzSMxMVH3f1iHDh2YNm1ajs5TCCEMUSye8P/222+6eZ4//vjjDPufZzEUfZYvX07jxo3TvUaNGpWb0Iu9WxePYzxrse4HJWxMd3yadinUmMSLydXVlePHjzNo0CAcHR25du0aDx8+pFevXpw4cYJWrVoVdoh5onTp0hw5coSPPvqISpUqcfPmTe7cuUPnzp3x9/fXPTnOaiaf7ERERBAWFpbpS/uJqrW1NXv27GHJkiU0adKER48ecf78eUqXLs3QoUM5e/YsPXr0SNd2s2bNWLx4Md27d8fZ2ZkbN25w9uxZ1Go1nTp14rfffuOHH37QlbexsWHt2rUMGzYMLy8vHjx4wMmTJ4mIiKBJkyZ8/fXXHDlyJMezE1WoUIHz58/z4Ycf4uHhweXLl4mMjKR58+b8+uuvORoTkJapqSk7d+7ku+++o379+ty7d4/r16/j6+vL3LlzOXLkSKbfGzs7O925e3p6cv36de7du0f9+vVZsmQJ27ZtM3hFYSGEyAmVkvYz1yIoICCAJk2aEB0dTf/+/VmzZk2GMkZGRmg0GpYvX87QoUP1tjN16lRmzZpFpUqVsp3bObMn/KNGjeLIkSM0atQo9ydUjMREhXGiS2tc76cuaHS9RWVe+/7PbGoJIfLT/PnzmThxIt27dzdofRJRtBw9epTGjRu/UP+XCCEK33N36Zk+fXqmU2Vm58yZM1kuInPt2jXatWtHdHQ0zZs3z/SJjIWFBU+fPs2zRVbKly9P+fLlsy1XkimKwjc7ptA8OjXZD6lgSZuv1hVyVEK82JKSknTTk2Y2W5EQQgjxrOdO+M3NzbGzs8tV3az6oAYHB9OqVSvu379P48aN2bZtW7oVFNMqVaoUT58+zfNFVl4UT2KT2HjqDnsvPSA6Phkbc2Mc3U5wMOEQO4cY8dZeY1p8sRIzC+vsGxNCPJe4uDg+/fRTRowYQYUKFXTb7927x9ixY7l06RKlSpViwIABhRilEEKI4uS5E/4PP/yQDz/8MC9i0blz5w4tW7bkzp07NGjQgJ07d6abm/9ZVatWJSQkJM8XWXkRbPC/w9StgcQn/zfPtpHlDSxMV6BSwRNrI6os+RE3lxqFGKUQL46UlBRmz57N7NmzcXJyomLFijx9+pSgoCA0Gg0WFhasXr06yzFLQgghRFpFbtDu3bt3admyJcHBwdSrV49du3ZlOzhNO0+zvnmrQRY0ycwG/ztM3Hw+XbJvn3wP2zJrUalSt8WFduTmHZfCClGIF46FhQWfffYZrVq10s1CdPPmTTw9PRk5ciRnzpwxeN57IYQQAopYwh8aGkqrVq24fv06devWZffu3QZ1F9IuaHL9+nX+396dh1VZ5/8ffx72RTwiaGnikntiIo6oYKKl9qu0Ji1tHQsdbb6Oen2/LqktkpZttsz4/VU2Omo2mZaWCzWJTm6AW6iBigqKAqIyioAeWYT7+wdzThCLkMpheT2ui+s63Pfnvnkdjl68z+e8788dGRlZZr9uaFJWlqWAV9fFl9rmXJRL+L7/z/wvsrgt06AgqwcFmSG8uj6eLEuBnZKKNCyOjo68+OKLbNmyhdTUVK5evcrVq1c5fvw4ixYtst2NV0REpKpqTcGfkZHBfffdx7FjxwgMDCQyMpImTZpU6diSNzQZN26c7XbvoBuaVOTr2NRSM/sAf0r8XzqfzaPteXhhgyO56SMBE7kFRayJTS3/RCIiIiJSq9WaG2+9/PLLtrtn5ufnM3z48ArHLly4kJ49e5batmjRIo4ePcqBAwfo0aMH3bp10w1NKhF5+Gyp7wdeWM8D/9l22RXev/t5MFxKjD9HWP92NZpRRERERG5crSn48/LybI9LztCXJysrq8w2s9lMTEwMH3zwAV9++SWJiYk4OjoSFBTE888/z/jx4yu9s2RDk5P7yx0kG127wISffrn+YUG/oZxx7VhqfHauWnpERERE6qJaU/AvW7aMZcuW3dA53NzcmDVrFrNmzbo5oeoxL7dfXvo/Jv2dJpbi+6/90PU2djcZWmZ8Yzfd/VFERESkLtKUdwM15K7ilXfuzoli6JFzAGR6mFjcvvw7FQ+567YayyYiIiIiN48K/gbqscBWNHLI58/7N9i2fdqrP5edfMqMdXN2YGSvVjUZT0RERERuEhX8DZTZw5lplq/wu1jcyx/buhFbm5Z/ofTch/0xu6ulR0RERKQuUsHfQCVnJfOvpoc52wTynGCh/x/AVPqfg5uzA++MvJtRvf3sE1JEREREblituWhXao5hGMzbNY/9bQqJH+fINM/H+KPfMDYfPkd2bgGN3ZwZctdtjAxshdlDM/siIiIidZkK/gZoXdI69pzdA8Cdzbvw+LCXcHZwZqzW2RcRERGpd9TS08D8O+M0H8a8C4AJE3P6zcHZQbP4IiIiIvWVCv4GZtf0cbzy0UW6JRfxZJcn6d6su70jiYiIiMgtpJaeBmTvhsW035UCwOQI6D51gp0TiYiIiMitphn+BsJy+RK5b/7F9r3x32PxatTUjolEREREpCao4G8gfpw3Ed//rLl/skdzQp78HzsnEqmdwsPDMZlMPPfcc/aOIiIiclOo4G8Aju3bTOsNsQBcdYGAN//XzomkPjOZTL/pKzw8/JZnW7ZsGeHh4Rw4cOCW/6ya8txzz2EymRg4cKC9o9SYvXv3MmrUKFq0aIGrqyt+fn6EhYVx/PjxGzrv2bNnmTRpEnfeeSdubm40b96cYcOGsXnz5usee/z4ccLCwvDz88PV1ZUWLVowevRo9u3bd0OZRERuBvXw13OFhddIfnkmfkXF3//7D/cTeKcu1JVbJyQkpNztUVFRAHTs2JHmzZuX2d+6detbmguKC/5t27bRtm1bAgICyh3j6+tL586dadGixS3PI9W3fPlyxo4dS2FhIb6+vnTv3p3jx4+zdOlSVq1axYYNG7j33nurfd6ff/6ZQYMGcfHiRTw8POjWrRtnz54lIiKCiIgI5s+fz6xZs8o9NjIykkceeYSrV69iNpvp3r07p06dYvXq1axdu5alS5fyzDPP3OhTFxH57QypkujoaAMwoqOj7R2lWiI/mGYc7tzFONy5ixE5JNAoyM+zdyRpoAADMJYuXWq3DKGhoXbPcLONGTPGAIzQ0FB7R7nl4uPjDScnJwMwXnzxRSM/P98wDMO4cuWK8fTTTxuA4e3tbfz73/+u1nlzc3ONdu3aGYAxePBg48KFC4ZhGEZRUZHx17/+1fZvd/PmzWWOPX/+vGE2mw3AeOaZZ4wrV64YhmEY+fn5xowZMwzAcHZ2NhISEgzDqLt/S0SkblNLTz127tQRvJdGAFBoglbz3sDJ2cXOqUREfpvXXnuNa9euERwczFtvvYWzc/E9RDw8PFiyZAnt2rUjMzOT9957r1rnXbJkCSdPnsTLy4svv/ySpk2LFzQwmUxMmjSJJ598EoBXXnmlzLHvvvsuWVlZtGvXjsWLF+Ph4QGAs7Mzb731FsHBwRQUFPDaa6/dyFMXEbkhKvjrsUUxH3LW2wDg1IN306XP/7NzIpGKpaenM2PGDPz9/WnUqBGenp7cfffdhIeHk52dXe4x58+fZ/r06XTr1g1PT0/c3Nzw8/MjJCSEl156iTNnzgCwdetWTCYT27ZtA+D5558vdf1Ayf73yi7atY5PTk4mLi6O0aNHc9ttt+Hq6krnzp2ZO3cu+fn5FT7HgwcPMnLkSJo1a4a7uztdu3Zl3rx55OXl2Xrxa+JaBoDU1FSmTJlCp06dcHd3p3HjxvTu3Zt33nkHi8VS7jE5OTnMmzePwMBAvLy8cHFxoWXLlgQFBTF16lSOHj1aanxRURHLly9n0KBB+Pj44OzsTLNmzfD39ycsLKxKvfFWFouFjRs3AvCnP/2pzH5XV1fba7Zy5coqnxdg1apVAIwaNQofH58y+1944QUAYmJiSE5OLvfYsLAwXF1dS+0zmUxMmFC8/PG6desq/L2KiNxq6uGvp7anbuervGjWjHFk5BEz//PSR/aOJFKhLVu2MHLkSLKysnBxcaFdu3YAHD58mLi4OFauXMmWLVto1aqV7Zi0tDT69OlDWloaTk5OdOjQAS8vL9LT09mzZw/R0dH069ePli1bYjabCQkJIS4ujuzs7DLXEXTvXr3rWjZt2sSUKVNwcnKic+fOODk5cezYMebMmcPPP//M119/XeaYiIgIRowYQX5+Pu7u7nTr1o3s7GxeffVVNm3aVCPXMFjt3LmT4cOHc+nSJVxcXOjWrRsWi4V9+/axb98+VqxYQWRkJLfffrvtmMuXLxMcHEx8fDwmk4kOHTrQpEkTMjIyOHjwIHv37qVdu3Z07tzZdkxYWBjLly8H4I477uDOO+8kJyeHU6dOcejQIbKzsxk8eHCVMu/fv5+rV68CMGDAgHLHhIaGApCcnEx6enqVrsMoLCxkz549lZ63b9++uLi4kJ+fT0xMDG3btgWK/w2ePn26SpksFgsHDx68bh4RkVtBM/z1kKXAwuu7XgegyMHEvVPeppG57KyVSG2QmJjIo48+SlZWFlOnTiUjI4OEhAQSEhJISUlh6NChHDt2rMxFjwsWLCAtLY0hQ4Zw9uxZjhw5wp49e0hJSSEzM5PPPvvMVpj17NmTnTt30rNnTwBmz57Nzp07bV8LFy6sVuY///nPTJ48mYyMDPbt20daWhqfffYZJpOJNWvW8OOPP5Yaf+7cOZ555hny8/N58sknOXv2LPv27ePYsWPs3r2bpKSkct8k3AoXLlxg5MiRXLp0iQcffJDU1FRiY2NJSEjgwIEDtGvXjvj4+DK/7yVLlhAfH0+PHj04deoUx44dY8+ePZw8eZLs7GzWrFlDjx49bOMPHjzI8uXLMZvNbN++ndTUVPbu3UtCQgLZ2dns3LmTESNGVDm39dMDFxcX/Pz8yh3Tvn172+OEhIQqnffUqVPk5uYC0KFDh3LHlPyZJc9b8hONio718/PDxcWlWplERG42Ffz10Ef7FpJ+JR2AB9o+QP87+ts5kUjFwsPDycnJISwsjAULFtC4cWPbvhYtWvDVV1/RsmVLtm3bxq5du2z7jhw5AsDEiRPLtGE0atSIZ599Fn9//1uSecCAAbz99tu4ubnZtj377LM8+OCDAGzYsKHU+E8++YRLly7RuXNnli9fXuo5BgUFsWzZskpbgW6mTz75hPPnz+Pj48OqVato1qyZbV+PHj1YsWIFUPypi3VlJfjl9/3888+XKbhdXV0ZMWIE99xzT5nxgwYNKrUdiltdQkJCeOqpp6qc++LFiwB4e3tjMpnKHWPtvQfIzMys1nl/fXxF5y553qoc6+DggNlsrlYmEZGbTQV/PXMkJoI+U5bRJ6EIL+dGzAiaYe9IIhUqKCjgm2++AcrvywZo3LgxQ4YMAeBf//qXbbu1BWb16tW2GdqaMnHixHK3W5ckTUxMLLX9+++/B4rXzLdeaFrS0KFDadOmzU1OWT5rH/wLL7xAo0aNyuwPCQmhX79+QHEbkpX19/3tt9+SlZV13Z9jHR8TE3PD6+MDtnYe62x5eUq+Aatqv7z1vFU9d8nz3sixIiI1ST389ci1gnzSXnmFO7Jh6jdFJHcfhq+7r71jiVTo+PHjtiJo8uTJODiUPwdx6tQpoPhCU6vJkyfz2Wef8cUXX/Ddd99x//33069fP4KDg+nVq1eF57oZOnXqVO722267DSjudy/J2vpRsuXl16ytMreaNUtl1y10796dmJiYUi0oYWFhvP/++2zdupWWLVsyePBg25uDvn37lnkj07dvX+655x527NhBly5dCAkJITQ0lD59+jBgwIBSn3JUhbu7O0Cln4SUfONnXS2nquet6rlLnvfXx5Z8w3G9Y0VEapIK/nrkXx9Mwy+1eMYppV0jho5+0c6JRCpXssUhJibmuuNLzpD6+/sTExPDvHnz+Oc//8mqVatsK6bccccdzJw5k4kTJ1bY/nEjPD09y91ufZNRVFRUantOTg5ApUWul5fXTUpXOeuKRyUvyP0168Wu1tzW8bt372bu3Ll8++23rF+/nvXr1wPg4+PDpEmTmD17tq3wd3BwICIigjfffJMVK1awY8cOduzYARS3AI0aNYp3333X9ibpery9vYHifzOGYZT7upZssbGOr+p5ofj6hoqUbCmq6Ng77rijzHFFRUW2T0SqmklE5GZTS089cSbxIM1WRAJwzQHunP8Ojo56Pye1m7WlxMHBgby8PAzDqPRr2bJlpY7v2bMna9eu5dKlS0RHR/P2228THBxMWloakyZN4oMPPrDDsyrLWsxXtLwolC6ubyXrm46zZ89WOCY9vfgaoF+/CWnfvj3Lly/n4sWL/PTTT3z44YcMHTqUixcvEh4eztSpU0uN9/LyYv78+aSkpJCYmMiyZct4+umncXBwYMWKFTz00EMUFBRUKXeXLl2A4pl068o4v5aUlFRm/PW0bdvWNjP/61Ysq/z8fFJSUsqct+Tjio5NSUmxfXJQ1UwiIjebCv46KstSwOIdJ3ji0xge/Ms2tk2ZgNt//m6efqQXHXoOsm9AkSro1KkTrq6uFBUVlbogt7pcXFzo168fM2bMICoqilmzZgHw0Uell6O9FbP9VWFdqrKyZRlraslGa9EZHx9f4Rjrvq5du5a739HRkcDAQKZMmcIPP/zAJ598AsCnn37KtWvXyj2mffv2jBkzhs8//5x9+/bh5OTETz/9xO7du6uUOyAgwNZCs3379nLHWO+z0LZt2yotyWl9LkFBQZWed9euXbai3Xp9AxR/kmS9VuF6mTw8PCpt6RIRuZVU8NdBq/em0Gf+Zl6POMKuExfxPfQlAUnFHxmf8XYk+8GX7JxQpGrc3d0ZNmwYAG+88QaGYdyU81rXRLfeeMvK2kNd8mLLmvDAAw8AsGzZsnJntDdt2lQj/fsADz30EACLFi0q9yLSXbt2ER0dXWrs9Vh/33l5eaXaaipy11132VZW+vVrVBFPT89S2X8tLy/P9gnQ6NGjq3ROq1GjRgHw1VdfldvWY31D06dPH9tSr78+dunSpeTl5ZXaZxiGLevw4cPVwy8idqOCv45ZvTeFGWt+JvdacY+wR+ElJvy0zbZ/YeCDzIo4weq9KfaKKFItb7zxBl5eXmzatInRo0eXadcoLCxkx44djB07lrS0NNv28ePHs2LFCi5dulRq/Pnz53nvvfcA6N27d6l91rXSt27detPeXFTFCy+8QJMmTTh69Chjxowp1dqzZ88ennvuuUpXebnZWZo3b05GRgZPPPFEqQI3Li7Otv7+4MGDCQ4Otu2bNWsWH3/8MefOnSt1vuzsbN544w2geGbduszn559/zquvvlpm7flr166xcOFCzp07h4ODA7169apy9jlz5uDk5ERUVBQzZ860vXmyWCyMGzeOkydPYjabmTZtWpljp02bRtu2bXniiSfK7Bs7dixt2rQhJyeHJ554wvamxTAMFi5caLtz77x588ocO336dBo3bszJkycZN26c7U1UQUEBM2fOJDo6GicnJ+bMmVPl5ykictMZUiXR0dEGYERHR9stw6Ur+Ubnl74z2ry40fa14NFBxuHOXYzDnbsYCx/ub9ve+eXvjEtX8u2WVeTXAAMwli5dWmbfjz/+aPj6+hqAYTKZjI4dOxp9+/Y1/P39DTc3N9uxJ0+etB3To0cP2/j27dsbffr0Mbp27Wo4OTkZgOHj42McPHiw1M/ZvXu34eDgYABGq1atjP79+xuhoaHGlClTbGPmzJljAMaYMWMqfA4lc5S0dOlSAzBCQ0PL7NuwYYPh4uJiAIaHh4fxu9/9zujUqZMBGCEhIcaTTz5pAMbcuXOr8Nv8xZgxYwzAcHJyMnx8fCr9stqxY4dhNpsNwHB1dTUCAwONrl272p6fv7+/kZ6eXurnPPLII7b9rVu3NoKCgkq9Pu7u7kZkZKRt/AcffGAb7+PjYwQGBhqBgYGGt7e3bfsbb7xRredqGIaxZMkSw9HR0QAMX19fo1evXkbjxo1tGTZt2lTp76m818YwDGP//v22bB4eHkZgYKDRsmVLW9Z58+ZVmOmf//yn7fdgNpuNXr162f49Ozo6GsuWLbONrQ1/S0Sk4dEMfx3ydWyqbWYfwMklmTssxRfeZbmb+LTjWNu+3IIi1sSmljmHSG00cOBAEhISmDt3LkFBQZw/f57Y2FguXbpEQEAA06dPJyoqqtRa9R9++CFTp06ld+/eWCwWYmNjOX36NF27dmX69OnEx8dz9913l/o5QUFBfPvttwwcOJDLly8THR3Ntm3bOHDgwC1/jsOGDWP37t08+uijuLm5ERcXh8lkYs6cOWzZssXWI17d5Sqtrl27xoULFyr9surfvz/x8fFMmjQJPz8/Dh06REpKCoGBgbz11lvs3r27zCo+r7zyCi+//DL9+/enqKiIgwcPkpSUROvWrfmv//ov4uLiGDx4sG38yJEjWbBgAQ899BCNGzfm6NGjxMXF4enpyeOPP86PP/7I7Nmzq/08w8LCiI6OZuTIkTg6OhIXF4eXlxdjxozhwIEDtns2VFdAQADx8fFMnDiR5s2bEx8fT15eHg888ACbNm3i5ZdfrvDY+++/nwMHDjBmzBgaNWpEXFwcjo6OPPbYY8TExDBmzJjflElE5GYxGUYNfq5dh8XExBAcHEx0dHSpi7Zq0hOfxrDrhLU/1sCj7Uc4up1mQLzB5Zx+bPN+tNT4fnf6sHJ835oPKiLV1q1bNw4fPsz69esZPny4vePILVIb/paISMOjdRvrkJzcX1a/cGyUgKN7CmDiX+3bcfXU78uMz86t2nJ3ImJfUVFRHD58GGdnZxWBIiJy06mlpw7xcrO+PyvCtdkm2/b88/cDZZcbbOzmXGabiNjH999/z8qVK8usELRlyxbbSi9PPfUUvr66O7aIiNxcmuGvQ4bcdTu7Tlykd84mmh1PY2c3EwWWThRebVfB+KrdwVJEbr2kpCQmTZqEk5MTrVu3xtfXl9OnT9tugBUQEMD7779v55QiIlIfaYa/DnkssBUejkWMO7CVSRuLeG9xIQ5nBpY71s3ZgZG9WtVsQBGp0ODBg5k8eTJ33XUX2dnZxMbGkpubS9++fVmwYAFRUVE0bdrU3jFFRKQe0gx/HWL2cGZqoyhaXyju5U/38uJKYftyx8592B+zu1p6RGqLLl268Je//MXeMUREpAHSDH8dUpCfS8eN39m+/6zTw2XGuDk78M7IuxnV268mo4mIiIhILaUZ/jpkx9/foMWF4pV3kgJu48lRT7P58Dmycwto7ObMkLtuY2RgK8wemtkXERERkWIq+OuI/DwLLsu/BaAI6Dz9FYb1asfY/uVfsCsiIiIiAmrpqTO2L3oNn8zi3v2TQXfQsdd9dk4kIiIiInWBCv464KolG4/PIwAoMkHX6XPsnEhERERE6goV/HXAjo9exTu7EICT/drQvvs9dk4kIiIiInWFCv5a7uq1q2y4uptUH7jmAHfPmGfvSCIiIiJSh+ii3Vpu9dHVbG19mW3jHPmj8yAmdelt70giIiIiUodohr8WsxRYWBK3BAAnJxcef/QlOycSERERkbpGBX8t9o8j/yAzLxOAxzs9zu2et9s5kYiIiIjUNSr4a6msC+n4zvgrvY4X4ergwrju4+wdSURERETqIPXw11JR78+kS/I1uiTD4af8aebRzN6RRERERKQO0gx/LZR5/jS3bdwDQK4zhI571c6JRERERKSuUsFfC0UvmIlHXvHjMw/0xLdle/sGEhEREZE6SwV/LZORlsgd3+8HwOIKwdPesnMiEREREanLVPDXMrsXzMS1oPjxueF98G7e2r6BRERERKROU8Ffi5w9dRi/yEMAXHEzEfLfb9o5kYiIiIjUdSr4a5F9787G5Vrx44wRIZh9Wtg3kIiIiIjUeSr4a4m0xIO0/vEoANmeJu6Zotl9EREREblxKvhricVn1rBkqAMZjeHSY4NoZPa1dyQRERERqQd0461aICUnhW+TN3AtwIEjvZuz7vea3RcRERGRm0Mz/LXAJwc/4ZpR3Lz/XM8/4u7R2M6JRERERKS+UMFvZyfOHWFj0gYAbve8ncc6PWbnRCIiIiJSn6jgt7Mj0/5M+IoC7jpVxIS7J+Di6GLvSCIiIiJSj6iH346O7dtM271ncAAmfe9A0MyH7B1JREREROqZWj/D/8EHH2AymTCZTAwcOLDSsXl5ebz99tsEBATQqFEjzGYz/fr1Y9GiRRQVFdVM4GpIXPC67QUoeO5RXFzc7ZpHREREROqfWj3Dn5iYyMsvv1ylsdnZ2QwaNIjY2FgcHBzo1q0b+fn57Nq1i127drFx40a++eYbnJzs85SzLAV89VMKm4+cIyf3Gq2zf2LygXMAZPg60//52XbJJSIiIiL1W62d4TcMg7CwMPLz83n44YevO/6FF14gNjaW1q1bc/DgQX7++WcSEhLYtm0bZrOZjRs3Mnfu3BpIXtbqvSn0mb+Z1yOOsOvERQ6dyabfzi9s+48PewhnFze7ZBMRERGR+q3WFvwLFy5kx44dTJ06lZ49e1Y69tChQ3z55ZcALF68GH9/f9u+AQMG8M477wDw3nvvcenSpVuWuTyr96YwY83P5F77paWo6+Xd9E7OAeCUjxOvZ/Zl9d6UGs0lIiIiIg1DrSz4T5w4wezZs+nYsSPh4eHXHb969WoMw6B9+/YMGTKkzP4//OEPeHh4YLFYWLdu3S1IXL4sSwGvrosvm+fod7bH//C/B8PkxKvr48myFNRYNhERERFpGGpdwW8YBmPHjsVisfDpp5/i5nb9Vpfo6GigeDa/PG5ubgQFBZUaWxO+jk0tNbMPcHdOFAEpVwA40dyZHU0eACC3oIg1sak1lk1EREREGoZad9Huxx9/zNatWxk/fvx1V+WxOnr0KAAdOnSocEz79u3ZunUrCQkJ1z1fSkoKqamli++9e/cCEBcXV6VMACs3xJF3JrvUNv8T33Dg6lUAljT1J+/M0RLjz9DV0R8REamfrH9Drly5YuckItKQ1KqCPzk5mRdffJGWLVva+u6r4uLFiwA0bdq0wjHWfZmZmdc935IlS3jttdfK3TdhwoQq5yrPmyW/OX0K+Nr27Vlgc9WftoiI1FEnTpywdwQRaUBqVcE/btw4Ll++zOeff47ZbK7ycVf/M2Pu4lLxXWqtrUEWi+W65xs7diz3339/qW0ZGRkcPnyY3/3ud3h6elY5mxTPaE2YMIFFixbRvXt3e8eRW0ivdcOg1/m3u3LlCidOnGDYsGH2jiIiDcgNF/zh4eEVzoZfz/79+wkICABg0aJFbNmyhccff5xHHnmkWudxd3fnypUr5OfnVzgmNzcXAA8Pj+uez8/PDz8/vzLbq7I8qFSse/fu9OvXz94xpAbotW4Y9DqLiNQNN1zwu7m5VWs2viRHR0cAzpw5w/Tp0/H29mbhwoXVPo+3tzdXrlzhwoULFY6xtv14e3v/pqwiIiIiInXRDRf8M2fOZObMmTd0jmPHjpGTk4Orqys9evQos//y5ctA8Qo7t99+OwBr164lODgYgC5dupCamkpiYmKFPyMpKck2VkRERESkoahVPfx5eXmcO3euwv0FBQW2/SXbd4KDg9m8eTM7duwo97jc3Fz27NljGysiIiIi0lDUinX4Bw4ciGEYFX7NmTMHgNDQUNu2kkt2Pv7440DxLH5kZGSZ83/22WdYLBbc3d3Vh28HrVq1Ys6cObRq1creUeQW02vdMOh1FhGpW0yGYRj2DnE91guDQ0ND2bp1a7ljnnjiCVatWkXr1q2JiIjA3794Pfvt27fz8MMPk5WVxUsvvcTrr79eg8lFREREROyrVrX03IhFixZx9OhRDhw4QI8ePejWrRv5+fm2m3I98MADtk8KREREREQailrR0nMzmM1mYmJimD9/Pv7+/iQlJXHmzBmCgoL4+OOP2bhxI87OzvaOKSIiIiJSo+pES4+IiIiIiPw29WaGX0REREREylLBLyIiIiJSj6ngFxERERGpx1Twi13k5eWxYcMGJk6cSK9evTCbzbi4uHD77bczbNgw1qxZY++IUg179+5l1KhRtGjRAldXV/z8/AgLC+P48eP2jiY3QVxcHK+//jpDhw6lRYsWuLi4YDab6d27N3PnziUzM9PeEUVEpBK6aFfs4pVXXrHdE8HJyYkOHTrg7u5OYmIiOTk5AIwYMYKVK1fi4uJiz6hyHcuXL2fs2LEUFhbi6+tLmzZtOH78ONnZ2Xh4eLBhwwbuvfdee8eU3ygpKYkOHTrYvm/ZsiUtW7YkPT2dtLQ0AFq0aMEPP/xA9+7d7RVTREQqoRl+sQvDMAgJCeGLL74gMzOTI0eOEBsby4ULF3jrrbcAWLt2La+99pqdk0plDh06xLhx4ygsLOTFF1/kzJkz7Nu3j/T0dJ5++mksFguPPfYYFy5csHdU+Y0Mw6B58+bMnTuXpKQk0tLS2Lt3L6mpqezcuZM2bdqQnp7O73//e/Ly8uwdV0REyqEZfrGLCxcu4OPjU+H+8ePH87e//Q0fHx/Onz+Pg4Pem9ZGo0aN4quvviI4OJioqKhS+/Ly8ujatSsnT55k1qxZzJ8/304p5Ubk5uZSWFiIp6dnufujo6MJCQkBYN26dTz88MM1GU9ERKpAVZTYRWXFPhTfGRmK3xhkZGTURCSpJovFwsaNGwH405/+VGa/q6srzz33HAArV66syWhyE7m5uVVY7AMEBwdjNpsBOHLkSE3FEhGRalDBL7VSbm6u7bGHh4cdk0hF9u/fz9WrVwEYMGBAuWNCQ0MBSE5OJj09vcaySc0pLCykoKAAoNI3BiIiYj8q+KVW+sc//gFAYGAgXl5edk4j5Tl69CgALi4u+Pn5lTumffv2tscJCQk1kktq1jfffIPFYgF+eYMnIiK1iwp+qXXWrl1LREQEAC+99JKd00hFLl68CIC3tzcmk6ncMU2bNrU91tKN9U9mZiZTp04FYPjw4VqlR0SkllLBL7VKXFycre/76aefZsSIEfYNJBWytvNUtmyqm5ub7bF1Fljqh4KCAkaPHs3p06dp1qwZn3zyib0jiYhIBVTwS7WEh4djMpl+09eBAwcqPXdiYiL3338/OTk5hIaG8re//a1mnpT8Ju7u7gDk5+dXOEbXYtRPRUVFPPvss0RGRuLl5cWGDRto2bKlvWOJiEgFnOwdQOoWNzc324oc1eXo6FjhvuTkZO69917S09MJDg5m48aNtoJSaidvb2+guK3DMIxy23qsbT8lx0vdVlRURFhYGKtWrcLT05OIiAj69Olj71giIlIJrcMvdpeSksKAAQNITk6mT58+bNq0icaNG9s7llxHVFQU/fv3B4rfsLVp06bMmG3btjFw4EAAzpw5Q4sWLWoyotxkhmEwfvx4Fi9ejIeHBxEREbbXV0REai+19IhdpaWlMWjQIJKTk+nduzc//PCDiv06IiAgwPYpzPbt28sds23bNgDatm2rYr8emDhxIosXL8bd3Z3169er2BcRqSNU8IvdnD17lnvvvZekpCR69erFpk2bfnO7kNQ8T09PHnroIQAWLVpUZn9eXh7Lli0DYPTo0TUZTW6ByZMn8/HHH+Pm5sa6deu477777B1JRESqSAW/2EVGRgb33Xcfx44dIzAwkMjISJo0aWLvWFJNc+bMwcnJiaioKGbOnGm7AZPFYmHcuHGcPHkSs9nMtGnT7JxUbsSMGTNYuHChrdgfMmSIvSOJiEg1qIdf7GLChAl8+umnAPj7+1c6s79w4UJ69uxZU9Gkmv7+978zfvx4CgsL8fX1pU2bNhw/fpzs7Gzc3d1VINZxMTExBAcHA9C8eXM6duxY4dgHH3yQ2bNn11Q0ERGpIq3SI3aRl5dnexwfH1/p2KysrFsdR25AWFgY/v7+vPPOO+zcuZO4uDiaNWvGo48+yuzZs+nUqZO9I8oNKPl/9fz585w/f77CsR06dKiJSCIiUk2a4RcRERERqcfUwy8iIiIiUo+p4BcRERERqcdU8IuIiIiI1GMq+EVERERE6jEV/CIiIiIi9ZgKfhERERGRekwFv4iIiIhIPaaCX0RERESkHlPBLyIiIiJSj6ngFxERERGpx1Twi4iIiIjUYyr4RURERETqMRX8IiIiIiL1mAp+EREREZF6TAW/iIiIiEg9poJfRERERKQeU8EvIiIiIlKP/R8hqiCsQhwvRwAAAABJRU5ErkJggg==",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "# split data into train/test\n",
- "indices = list(range(0, N // 4)) + list(range(3 * N // 4, N))\n",
- "test_indices = list(range(N // 4, 3 * N // 4))\n",
- "train_x = syn_features[indices]\n",
- "train_y = syn_labels[indices]\n",
- "test_x = syn_features[test_indices]\n",
- "test_y = syn_labels[test_indices]\n",
- "\n",
- "# fit using numpy least squares method.\n",
- "w, *_ = np.linalg.lstsq(train_x, train_y)\n",
- "\n",
- "# plotting code\n",
- "plt.plot(syn_x[indices], train_y, \"o\", label=\"Training labels\")\n",
- "plt.plot(syn_x[test_indices], test_y, \"o\", label=\"Testing labels\")\n",
- "plt.ylim(-40, 40)\n",
- "plt.plot(syn_x, jnp.dot(syn_features, w), label=\"Fit Model\")\n",
- "plt.plot(syn_x, syn_labels, \"--\", label=\"Ground Truth\")\n",
- "plt.text(0, -20, f\"Training Loss {loss(w,0,train_x, train_y):.2f}\")\n",
- "plt.text(0, -30, f\"Testing Loss {loss(w,0, test_x, test_y):.2f}\")\n",
- "plt.legend(bbox_to_anchor=(1.02,1))\n",
- "plt.title(\"No Noise, Perfect Features\")\n",
- "plt.show()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "There is no overfitting and the regression is quite accurate without noise. Now we'll add noise to both the training labels. "
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 25,
- "metadata": {},
- "outputs": [],
- "source": [
- "train_y = train_y + np.random.normal(scale=5, size=train_y.shape)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 26,
- "metadata": {
- "tags": [
- "hide-input"
- ]
- },
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvwAAAGSCAYAAACfThU4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAABP+AAAT/gEHlDmEAACzbklEQVR4nOzdd1xV9f/A8de9cNlLQLaKoODAvVeuzFmuyjTNmVqmbU3LkVpZakutNE0szVw5cuX4qV9x4t7gABURUTayuef3B3EF4bJkie/n43EfXs75fD7nfQ4g7/O5n8/nqBRFURBCCCGEEEJUSOqyDkAIIYQQQghRciThF0IIIYQQogKThF8IIYQQQogKTBJ+IYQQQgghKjBJ+IUQQgghhKjAJOEXQgghhBCiApOEXwghhBBCiApMEn4hhBBCCCEqMEn4hRBCCCGEqMAk4RdCCCGEEKICk4RfCCGEEEKICkwSfiGEEEIIISowSfhFqdm/fz8qlQqVSsX+/fvLOhyRiy1bttC1a1fs7e0xMDBApVJhY2NT1mEJIYQQ4glIwl8BZU2sVSoVXbt2zbfOwoULJRkvJsOGDct2/TNfarUaKysrvL29GTJkCLt27SrrULNZsGABvXv3ZteuXURERKDVass6pBL3+O9Kfq/33nuvrEMWQgghCk0S/mfArl27+N///lfWYTzzFEUhLi6OwMBAVq5cSdeuXenduzeJiYllHRoJCQl89tlnANSqVYv169dz+vRpzp8/z5EjR8o4ukd8fX11yXdwcHBZh1MuBAcH666Jr69vWYcjhBCiHDIs6wBE6fj00085ePBgmcbQoUMHFEUp0xhK27///ouLiwuQkfBHRkayf/9+vv/+e6Kjo9myZQujRo1i1apVZRqnv78/sbGxAMybN4+ePXuWaTxl4a233uLtt9/Os4y9vX0pRSOEEEIUH0n4Kzh7e3sePHiAn58fO3fupFu3bmUd0jPFy8sLd3f3bNvat2/PwIEDadGiBdHR0fz5559MmTKFunXrlk2QQGhoqO69l5dXmcVRlhwcHPDx8SnrMIQQQohiJ0N6Krhx48ZhaWkJoBuyIcqel5dXtt7kHTt2lGE0kJycrHuv0WjKMBIhhBBCFDdJ+Cs4e3t73UTDkydPsnHjxidqLy0tjWXLltG1a1ecnJwwMjKicuXKtG/fnh9++IGkpCS9dQuySs/Vq1d57733aNCgAVZWVhgZGeHk5ES9evV47bXX+O2334iOjtZ7jIcPH/Ldd9/RsWNHHB0ddfF16tSJn376KVtiW9ZatWqle3/z5s0c+1NTU1m6dCk9evTAxcUFY2Nj7OzsaN26NXPmzCEuLk5v25kThzM/Xbh37x6ffvop9evXx8bGRjfe293dHZVKxfDhw3V1q1evnm2iam7fq4iICGbNmkWrVq2wt7fXfZ969uzJypUrCzThNy0tjRUrVtC3b1+qVKmCqakptra21K9fn6FDh7J161ZSUlKARz87ecVZVmPYFUVh7dq19O/fn6pVq2JiYoKNjQ2NGzfms88+4/79+3nWDw0NZcmSJfTp0wcPDw9MTU0xMTGhSpUq9O3blw0bNugdCqdSqahevbru6+HDh+e4JsOGDdPtL8wciMxyM2bMyLFvxowZuv0AcXFxfPXVVzRr1gw7Ozu99Y4ePcqbb76Jl5cXFhYWmJub4+XlxZtvvsn58+fzjCcpKYmFCxfSqVMnHBwcMDIywsbGhpo1a9K5c2dmz56dbxtCCPHMUkSFs2/fPgVQAGXBggVKdHS0UqlSJQVQ6tatq6Snp+eos2DBAl2dffv25dpuSEiI0qBBA1253F7Vq1dXLl++nG9cuR1jzZo1ipGRUZ7tA8q6detybd/Pz09xcnLKs26dOnWUGzduFPhaFsXQoUN1xwsKCtJbbseOHbpyY8eOzbbv0qVLipeXV57n4urqqpw8eTLPGKpVq6YcO3ZMcXBwyFF/+fLlSrVq1fK93o9/r/7++2/Fysoqzzpt27ZV7t+/r/fcL1y4kO/5AcrGjRsVRcn+s5PXa/ny5QX5FulkbXf69OmFqqsoihIaGqq0aNEiz5isra2Vf//9N9f6N27cUFQqVb7n1b17dyU+Pj5H/YJck6FDh+rKL1++vEA/m1nbzu26TJ8+Xbf/2rVriqenZ47jZq2XkpKijBgxIs841Wq18uWXX+q9zrVr1873XHv27JnnOQkhxLNKxvA/A6ytrfn444+ZMmUKFy9eZPXq1bz++uuFaiMhIYHOnTsTEBAAQJcuXRg7dizu7u6EhoayYsUK1q9fT1BQEB06dODcuXM4ODgUuP2wsDBGjBhBSkoKFhYWjB07ls6dO+Pg4EBqaipBQUEcPnxY7ycUx48fp3PnziQnJ2NlZcVbb71FixYtqFq1KtHR0fz7778sXLiQS5cu0a1bN06cOKEb6lRWzp49q3vv6uqqex8UFETbtm2JjIzE2NiYkSNH0qFDB9zd3UlMTNRN+r1z5w5du3bl9OnTuLm55XqM+Ph4+vXrR3x8PJMmTaJr165YWlpy9epV3N3d2bVrFykpKWzevFk35CvrRGMgWw/yxo0befnll9FqtTg4ODB+/HgaNGiAq6sr9+7dY/PmzSxduhQ/Pz/69u3Lvn37MDTM/t/M1atXadOmDTExMQB07dqVwYMH4+Xlpet53r9/P+vWrdPVadasGefPn88zTkDvdSgJ0dHRtG3blhs3bmBgYMDAgQPp0aMH1atXR6vVcuTIEb777jvu3LlD7969OXLkCA0bNszWRnp6OoaGhnTt2pXnn3+eunXrYmdnR0xMDDdu3ODXX3/l6NGj7Nixg/Hjx/Pbb79lq3/+/HlCQ0N1S+/Onj2b3r17ZytTqVKlEr0O/fr14+bNm4wdO5Y+ffpQuXJlbt68iYmJia7Ma6+9xt9//w1A27ZtGTZsGJ6enlhYWHDp0iUWLVrE8ePHmTJlCra2towZMybbMd555x0uX74MQI8ePRg8eDDVqlXDxMSE8PBwzpw5w7Zt23SfOAghhHhMWd9xiOL3eA+/oihKfHy84ujoqABKjRo1lNTU1Gx18uvhnzx5sm7/O++8k+txv/jiC12ZwYMH5xnX48dYunSpbt8///yj99zS0tKU6OjobNtSUlIUDw8PBVAaN26st2fZ399fMTMzK3JvbkEVpIc/MjJSqVKliq7coUOHdPvatWunAIq7u7veTyNu3Lih+35m7cHNLQYzMzO9nwRkKkjP74MHDxQbGxtdj/PDhw9zLbd161ZFrVbr7XFv1qyZ7li//PKL3pgSEhJyfC8L00NdEFl/Jt966y3l/Pnzel83b97MVnfIkCEKoFSqVEnv9X3w4IGuZ7p9+/Y59sfHxyuhoaF5xpjZm65SqZSrV6/m2B8UFFTgTzhKoodfrVYr27Zt09vOsmXLdGWXLVuWa5m0tDRl4MCBCqBYWVll+x1PTExUNBqNAij9+/fPM+aIiIg89wshxLNKEv4KKLeEX1EU5fvvv9dtX7JkSbY6eSX8ycnJiq2trS4JTU5OzvW4Wq1Wl8xpNBrl7t27euN6/BizZ8/W7YuJiSnU+a5cuVJX9+LFi3mW/fjjjxVAcXNzK9QxCiOvhD8iIkLZsGGDUqtWLV2Zdu3a6fb7+fnptm/fvj3P4yxatEgBFCMjoxzJd9YYZsyYkW/MBUkEM79HZmZmyoMHD/Js75VXXlEgY2hPVrt379YdZ/jw4fnGVZQ4C6OgQ4UApXfv3rp6wcHBioGBgQIoP/30U57H2LZtW7bhL4WVlpam2NvbK4Ayf/78HPvLOuEfNmyY3ja0Wq1Ss2ZNBVBeffXVPI8XGRmpGBsbK4CydOlS3faQkBDdsX744Yc82xBCCJE7mbT7DBk7dixVqlQBYNasWQWewHry5EkiIyMBeOONNzAyMsq1nEqlYvTo0UDGhNMDBw4UOLasQ1qWL19e4HoAmzZtAqBu3brUqVMnz7LPPfccACEhIdy+fbtQxymKxyeW2tnZ0b9/f65cuQJAnTp1WLNmja585rlYWlrmu4Rq5rmkpKRw8uRJveUGDx78hGeRPbaOHTtiZ2dXoNiOHz9Oenq6bvs///yje//BBx8US1xlYevWrbrzeuWVV/Ism3ktAA4fPpxn2bS0NO7cucOVK1e4cOECFy5c4PLly7qhSmfOnHmywEtAXj9fly5d4urVq0D+16lSpUq6ZVGzXid7e3uMjY0BWLNmDQkJCU8ashBCPHMk4X+GGBsb68Y/3759m8WLFxeoXtaVL1q2bJln2awrzxRmxYyXXnpJN9b4vffeo1WrVnzzzTccPXo03xuTEydOAHDx4sUcK5Q8/nrxxRd19cLCwgocX3EyMDCgYcOGzJs3j5MnT+Ls7Kzbl3kucXFxqNXqPM+lXr16unr6zsXc3BxPT88njjk9PZ3Tp08D6MZK5/UaP348kHEzknmzCHDq1CkAbG1ty92a99OnT0fJ+NQz11fmDQ88+j4BVK5cOc9rkXWuSG7fp7S0NH755RfatGmDhYUFbm5u1K5dm3r16ulemYn+gwcPSuz8i6pBgwZ692W9Tq+88kq+PzeZN65Zr5OxsTGvvfYakHEj4OHhwbvvvsuWLVvyXQFJCCFEBpm0+4wZMWIE33zzDdevX+fLL79k1KhRmJmZ5Vkna8KW30RcJycn3fuIiIgCx2Vra8vWrVsZOHAgt27d4ujRoxw9ehQAExMT2rVrx+DBgxk0aFCOSaDh4eEFPk5WpdFTmHViqUqlwsLCAgcHB0xNTXMtX9znUlwTNiMjI7P11BdG1tgyE9asNzlPo+L6PkVFRdG1a1f8/f0LVD8xMbFIxy1Jef2MFdd1WrBgAbGxsWzcuJF79+7x448/8uOPPwIZn5L17duXt99+O8ckbiGEEBkk4X/GGBoaMmPGDIYMGaL7w/nJJ58UuH5+q2AoWdYLL+yKGa1btyYwMJBNmzaxbds2Dh48SHBwMElJSezevZvdu3fz7bffsn379mx/2DMT0Y4dO+qSgILIuvpMScntSbt5yTwXLy8vNmzYUOB6+lanMTAwKHAbBYkL4PXXXy/Uz0xuSdjTvppK5vWwsLDgyJEjBa73+A3zu+++q0v2X3rpJUaMGEH9+vVxdHTExMQEtTrjQ9jnnnuOgwcP6l2Pvyzl9TOW9edm3bp11KpVq0BtmpubZ/va0tKSv//+m5MnT7J27VoOHDjAqVOnSE1N5dKlS1y6dInvvvsOX1/ffIcOCSHEs0gS/mfQoEGDmDNnDhcvXmTu3Lm89dZbeZbPOl47v2Ew9+7d0723tbUtdGzGxsYMGDCAAQMGABlj7Xfu3MnPP//MqVOnOHv2LMOGDWPXrl26Ovb29ty5c4f79++Xu2EihWVvb09AQAD37t2jTp06uoSvrGU+TElRFGJiYop8ne3t7YGMh009zTLPIz4+Hmdn53znNOQmNjaWv/76C4CBAwfy559/6i0bFRVVtEAfkzU5z+vhaA8fPiyW42VeJ8i4yXvS388mTZrQpEkTIONTAD8/P/78809WrlxJQkICgwcPplmzZoW6yRZCiGdB+cgmRKlSq9XMnDkTyBiq8e233+ZZPutY8cxhNvpk7e2sX7/+E0SZwc3NjVGjRnH06FEaN24MwJ49e7IlQI0aNQIyxvCHhIQ88THLUua5xMTE5HutS5NGo6Fu3boA/O9//8vzicp5yUzWIiMjuXDhQqHrl5dPBjK/T5AxbKsorl69SmpqKoBujHpu4uPjdZO8c1OYa5J1PkFeNxGZa94/qeK4TvqYmZnxwgsv4Ovry9y5c4GMOSNZ51oIIYTIIAn/M6pfv366BPq7777LczJg48aNdb31f/zxBykpKbmWUxSFX3/9FchIENu3b19s8WZtT1GUbPMD+vTpo9v+9ddfF9sxy0LmuQB89dVXZRdILjJji42NZdGiRUVq46WXXtK9z+9GMzdZH+ZU0FWmSsJLL72k+/Rl3rx5pKWlFbqNrHXyGpv/66+/5tl+Ya5J1mFsec0bWLlyZZ7tFFSjRo2oWrWqrs2SWhmrc+fOuvflcWKzEEKUNUn4n2GzZ88GMlaE+emnn/SWMzIyYuzYsQAEBwfz0Ucf5Vrum2++4fjx40BGj6Wjo2OBY9m5c2eewzxSUlJ0y3waGxtnGxc+ZMgQ3Uf4ixYtYtmyZXkeKygoiNWrV+e6L3O1kLIaEtC5c2dat24NZCz9OH369DzL37t3j6VLl5ZGaLz77rtYW1sD8Omnn7Jjx448y587dy7bMpwAnTp1onnz5kDG8qtLlizRWz8pKSlH8pZ1su+1a9cKFX9xqlmzpq5X/vTp04wZMybPpDw2NpaFCxdm21ajRg3dTYOvr2+u4/OPHDmiW1lLHzs7O91Sufldk7p16+qG2SxYsCDXT2r27NlT5Bu6x6nVal38iYmJ9O3bN8+JvOnp6axatSrbJ3U3btxg//79eR4n6xC/0pibI4QQTxsZw/8M6969O23atOHQoUP5Lm/36aefsmHDBgICAliwYAEBAQGMHTuWatWqcffuXX7//XfWrl0LgKOjI/PmzStULH/99RcvvfQSnTp1omvXrvj4+GBvb8/Dhw8JDAxk8eLFuiUdhw4dmm1lISMjI9avX89zzz1HQkICo0aNYs2aNQwaNIhatWphZGREREQEZ8+eZceOHezfv5++ffsycODAQl6x0vHnn3/SvHlzwsPDmTlzJjt37mT48OHUr18fU1NToqKiuHjxInv27GHnzp3Uq1ePUaNGlXhc9vb2rFy5kj59+pCcnEzPnj3p168fL7/8Mp6enqjVasLDwzl16hT//PMPx44d48MPP8y2FCpk9PQ2a9aMmJgYxowZw8aNGxk8eDBeXl6oVCpu3rzJgQMH+Ouvv1iyZEm2Tz0aN26MqakpiYmJTJkyBUVRqF69um5surOzs+6mpKQtWrSIEydOEBgYyG+//cbhw4cZPXo0TZs2xdLSkpiYGK5cucL+/fv5559/MDEx4Z133tHVt7Ozo0ePHmzdupWdO3fywgsvMHbsWNzd3YmMjOSff/5h8eLFWFlZ4ebmRmBgYK5xGBoa0qJFCw4ePMjSpUupW7cujRs31t0EWFtb626UDA0NGTt2LLNnz+bSpUt06NCBiRMnUr16de7fv8/mzZv59ddfad68eb7PDCioN998k71797JmzRpOnjxJnTp1GD16NB06dMDBwYGEhASCg4M5cuQI69evJywsjPPnz+smot+6dYuOHTvi7e1Nnz59aNasGW5ubhgYGHD37l3++ecf3U2+g4MD/fv3L5a4hRCiQimDh32JEqbvSbu52b9/f44nij7+FNxMISEhSoMGDfJ8Gmn16tWVS5cu5RvX48fI+mTYvF69evXK8VTZTCdPnlQ8PT0L1E5uT3lNSEjQ7W/cuHGe1y0veT1pt6CuX7+uNGnSpEDn0rFjR70xVKtWrUDHK8wTWHft2qU4ODgUKLbPP/881zbOnTuneHh45Ft/48aNOepOnjxZb/n8njT7uKw/k7k9UTY/9+/fV1544YUCXYvq1avnqB8SEqK4u7vrrWNvb68cPHhQad++vQIo7du3zzWOHTt2KGq1Otc2hg4dmq1sQkKC0rZtW73HbNiwoRIWFlbgJ+0WRGpqqvLBBx/ojTHry8jISLl69aqubkGfhuzk5KQcO3asQPEIIcSzRnr4n3Ht27enS5cu7N69O9+yrq6unDhxghUrVrB27VrOnDlDVFQUVlZW1KlTh379+jF27NhsY4oL6ocffqB3797s2bMHf39/wsLCCA8PR6VS4ezsTPPmzRk8eDC9evXS20bjxo25fPkyq1evZtOmTZw8eZL79++Tnp5OpUqV8PLyolWrVvTq1Yt27drlqJ91wvH7779f6HMoTh4eHvj7+7Np0ybWrVvH0aNHCQ8PJyUlBWtrazw9PWnRogU9evTg+eefL9XYunTpQlBQEMuXL2fbtm2cPXuWBw8eoFKpsLe3x9vbm3bt2tG7d+9skzazqlevHpcvX8bX15eNGzdy5swZIiIisLa2xtXVlSZNmvDqq69mG5ud6csvv8TLy4sVK1Zw4cIFoqKiivyMgCdlb2/Pv//+y//93/+xcuVKDh06xN27d0lISMDKyorq1avTpEkTunXrRs+ePXPUd3V15dSpU3zzzTds2rSJoKAgjIyMqFKlCr169eK9994r0DMLunXrxr59+/jhhx84fvy47mclN6ampuzevZsff/yR1atXExgYiIGBAZ6engwcOJAJEyYU6Xc4L4aGhsyfP58xY8awZMkS9u3bR3BwMDExMZiamuLm5kb9+vV5/vnn6devX7ZVj9q1a8fRo0fZs2cPBw4c4ObNm4SFhZGQkICNjQ1169alV69ejB49Gisrq2KNWwghKgqVopTDhZ2FKAPTpk1j1qxZ1KxZk8uXLxfbGvZCCCGEEGVJJu0K8Z/MScFTpkyRZF8IIYQQFYb08AtBxoowNjY2uLi4EBgYiKGhjHYTQgghRMVQ7nv4b926hZWVlW65xODgYL1ld+/eTc+ePXFwcMDExARPT08mTJiQ79NhhTAxMSEpKYkbN25Isi+EEEKICqXcJ/xvvvkmcXFx+ZabPXs2L7zwAtu3b9c9FfTu3bssWLAAHx+fIj3VUwghhBBCiKdduU74ly5dyq5du+jXr1+e5f7991+mTp0KZDxMJiQkhJMnTxISEkLnzp2JiIigT58+eletEEIIIYQQoqIqt2P4Q0JCqFu3LnZ2dmzdupW6desCGU9JffwpqM2bN8ff359BgwaxatWqbPsePHiAh4cHcXFxLF68mNGjR5fWKQghhBBCCFHmym0P/+jRo4mNjWXJkiXZnqr6uKCgIPz9/QF46623cuy3t7fn5ZdfBmD16tUlE6wQQgghhBDlVLlM+JcvX86OHTsYPnx4vg8Vynz8u5GRES1atMi1TPv27QE4duwYWq22eIMVQgghhBCiHCt3y5GEhobywQcf4OjoyPz58/MtHxAQAEC1atXQaDS5lvH09AQgMTGRmzdvUr169TzbvH37NiEhIdm23b9/n0uXLtG0aVPMzc0LcipCCCFENg8fPuTGjRv06tULFxeXsg5HCPGMKHcJ/5gxY4iOjmbdunVUqlQp3/KRkZEA2Nra6i2TdV9UVFS+Cf+yZcv4/PPPCxixEEIIUTgyp0wIUZrKVcL/xx9/sHXrVvr06aMbd5+fxMREIGNIjz4mJia69wkJCfm2OXLkSLp27Zptm7+/P++++y6LFy+mXr16BYpNCCGEyOr8+fOMGTMGDw+Psg5FCPEMKTcJf1hYGO+++y7W1tYsWrSowPVMTU0B8lxyMykpSfc+rwnAmapUqUKVKlVy3VevXj1atWpV4PiEEEKIx8nQUCFEaSo3Cf8777xDVFQUS5YsKdS4xsxhPxEREXrLZA77yVpeCCGEEEKIZ0G5WaXnxIkTAHz22Wc4OTllezVr1kxXrlmzZjg5OfHuu+8CUKtWLQBu3bpFampqrm1fv34dyBjaU61atZI8DSGEEEIIIcqVctPDnyk8PDzP/Q8ePAAgJiYGQDe8JiUlhaNHj9KuXbscdQ4cOABAy5YtUavLzT2OEEIIIYQQJa7cZL/BwcEoipLrKygoSFcuKCgIRVHw9fUFwMPDg6ZNmwLwyy+/5Gj3wYMHrF+/HoABAwaU/IkIIYQQQghRjpSbhP9JzJo1C4A///yThQsXoigKkDF2/7XXXiMuLg4PDw+GDx9elmEKIYQQQghR6ipEwt+tWzdmzJgBwPjx43Fzc6NJkya4ubmxd+9ebG1t2bhxI8bGxmUbqBBCCCGEEKWsQiT8ANOnT2fnzp10796d5ORkLly4gJOTE+PGjePChQvUr1+/rEMUQgghhBCi1JW7Sbu5cXd31w3TyUvXrl1zPDBLCCGEEEKIZ9lTkfALIYQQQr/U1FTi4uKIi4sjNTW1QJ1kQoing0qlQqPRYGlpiaWlJRqNptBtSMIvhBBCPMWSkpK4desW6enpAKjValmCWogKJD09ndTUVBISEnjw4AFVq1bFxMSkUG1Iwi+EEEI8pVJTU3XJvp2dHTY2NhgZGZV1WEKIYpaSkkJ0dDQRERHcunULDw8PDA0LnsZLF4AQQgjxlIqLi9Ml+w4ODpLsC1FBGRkZ4eDggJ2dHenp6cTGxhaqviT8QgghxFMqLi4OABsbm7INRAhRKjJ/1zN/9wtKEn4hhBDiKZWamoparZaefSGeEUZGRqjValJTUwtVTxJ+IYQQ4imlKIpM0BXiGaNSqQq9Epf8LyGEEEIIIcRTQqVSFbqOJPxCCCGEEEJUYJLwCyGEEEIIUYFJwi+EEEIIIUQFJgm/EEIIIUQZGTZsGCqVihkzZhRbm8HBwahUqiKN9S4L+/fvR6VS4e7uXmxt+vr6olKp6NChQ7G1WRCZ1z04OLhUj5sfSfiFEEII8UzITMYK+yrOZFyIslDwZ/IKIYQQQjzF2rRpk+v2Q4cOAVCzZk0cHBxy7K9atWqJxeTs7Iy3tzf29vbF1qZGo8Hb27vY2hNPP0n4hRBCCFFoMQmprDt5mz2X7xGXlIaliSFd6jjxcmM3rM00ZR1ervz8/HLdnjn0ZcqUKQwbNqwUI4KvvvqKr776qljbdHV15cqVK8Xapni6ScIvhBBCiEJZ63+baZsvkJSmzbb96I1I5u68wszePrzarEoZRSeEeJyM4RdCCCFEga31v83EDedyJPuZktK0TNxwjrX+t0s5spLh7u6OSqVi//79XL58mTfeeAM3Nzc0Gk22TwP8/PyYNGkSLVq0wMXFBSMjI+zt7enSpQurV6/W276+SbuPT7z18/OjZ8+e2NnZYWpqSv369Vm4cGGuT1zNa9Ju1uMlJiYyffp0vL29MTExoXLlygwYMICrV6/qjTc+Pp5PP/2UmjVrYmJigrOzM4MGDeLKlSslMvk2JCSEBQsW0KNHD2rUqIGZmRmWlpbUr1+fTz/9lIiIiHzb0Gq1fP/99zRo0ABzc3MqVapEz549OXz4cJ71rl27xttvv42Xl5fuuM2aNePbb78lOTm50OeyefNmevTogaOjIxqNBltbW2rVqsWgQYNYv359odsrDEn4hRBCCFEgMQmpTNt8oUBlp225QExCaglHVHoOHTpEkyZNWLt2LQ4ODnh7e6NWP0qj+vTpwzfffMPVq1exsbGhfv36GBkZsWfPHgYNGsTw4cOLfGxfX1/at2/P0aNH8fDwwMLCgvPnzzN+/Hg+/vjjIrUZGxtL69atmTVrFgYGBtSoUYPo6GjWrl1Lq1atuHnzZo46kZGRtG7dmi+//JJr165RrVo1XFxc2LhxI02bNsXf37/I56jP999/z4QJE9i3bx/p6en4+Pjg5OTElStX+PLLL2ncuDG3bt3Ks40BAwbw/vvvExUVRZ06dUhPT2f79u20a9eOlStX5lpn1apV+Pj48PPPPxMSEoKnpycODg6cPHmSDz/8kA4dOhAbG1vg85gxYwZ9+vRhx44dANSvXx9nZ2fCwsJYvXo1c+bMKfhFKQJJ+IUQQghRIOtPhejt2X9cUqqWDadCSjii0jN9+nT69u1LWFgYp06d4sKFCyxatEi3f86cOVy7do3IyEguXbrEiRMnCA0N5ejRo9SoUQNfX98i9+KOHTuW+fPnEx4ejr+/P/fv32f27NkAfPvtt1y/fr3QbS5cuBC1Wk1gYCCXLl3iwoULBAQEULNmTSIiIpg2bVqOOu+88w7nz5+nSpUqnDx5koCAAE6ePMndu3fp1q0bn332WZHOLy/du3fn//7v/4iLiyMoKIjjx49z9epVQkJCGDFiBLdu3eLtt9/WW//w4cNs27aNjRs3cuvWLfz9/bl37x5vvfUWWq2WN998k8DAwGx1Dh06xLBhw0hLS+Prr78mKiqK8+fPc/36da5cuUKTJk04evQoEyZMKNA5PHjwgC+++AJDQ0P+/vtvwsLCOHnyJBcvXiQ6OprTp08zevToJ7pO+ZGEXwghhBAFsvtSWCHL3yuhSEqft7c3K1aswMbGRrfN1NRU937UqFF4enrmqNeiRQt++uknAJYvX16kYw8ePJj33nsPAwMD3bYpU6bg4+ODoihs27at0G2q1WrWrl1LjRo1dNs8PDz48ssvAfjnn3+ylQ8ODuavv/4CMnq/GzdurNtnY2PDqlWrcHV1LXQc+encuTMdO3bE0DD7tFMHBweWLl2Kq6sr27dv59693H/WUlNT+eyzz+jTp49um6mpKYsWLaJevXokJSUxb968bHUmTZpEWloa06dPZ+LEiRgbG+v2eXl5sWHDBszMzFi5ciV37tzJ9xyuXbtGWloaPj4+9O3bN8dQq4YNG5Z4wi+TdoUQQghRIHFJaYUqH5tUcYb0DB06NEfS+biAgADWrVvH2bNniYiIICUlBUA33vvkyZNFOva4ceNybFOpVLRu3ZoLFy5w7dq1QrfZtWvXXG9QMpcujYqKIjIyEltbWwB27tyJoih4e3vTrl27HPWMjY0ZMmQIM2fOLHQs+YmPj2fdunX4+flx584dHj58qJu7EBcXh6IonD59mm7duuWoq9Fo9F6/9957j5EjR2a7YQoNDeXQoUOoVCrGjBmTazzVqlWjWbNmHDhwgAMHDjBo0KA8489c1jUwMJCjR4/SsmXLAp97cZGEXwghhBAFYmlSuLTByqR8Ls9ZFHXr1s1z/7Rp0/jiiy/QavUPeSrIBNPceHl55brd0dERyEiIi7vNzHYzE/6AgAAAGjRooLfNhg0bFjqO/Bw5coT+/ftz9+7dPMvpu7Zubm5YW1vnui/zexoaGkpsbCxWVlacOXMGAAMDA/r166f3eJnDgEJC8h+25uLiwuuvv86qVato1aoVTZo0oVOnTjRv3pwOHToU6zMY9JGEXwghhBAF0qWOE0dvRBaivGP+hZ4S5ubmevetW7eOWbNmoVKpmDp1Kv369dNNrlWr1dy4cQNPT0/S0gr3CUl+x86cNJzXTUZR23y83bi4OACsrKz0tmlpaVnoOPISFxdH3759uXfvHh07duSTTz6hfv362NraYmRkBMBzzz3HwYMHSU3N/dOkrDcwee2Li4vDysqKqKgoANLS0nQPZMtLQkJCgc7lt99+o379+ixdupSTJ0/qPu0xMDCgZ8+ezJ8/P9vwquImCb8QQgghCuTlxm7M3XmlQBN3TTRq+jdxK4Woyl7m2PwPPvgg1yEtRe3ZL08yk/m8VqbJvCkoLjt27ODevXtUqVKFbdu2ZZszkSm/a6tvbP/j+zLPz8LCAsj4ZOD27eJbWtbIyIiJEycyceJE7ty5g5+fH3v37mXdunVs2bKFM2fOcPbs2WxzRIqTTNoVQgghRIFYm2mY2dunQGVnvuSDtWnFGdKTl8xVctq3b5/r/oL0FJd33t7eAJw9e1ZvmczhMMUl87o2a9ZMb7KfOdRIn5CQEL03KRcvXgQyhtxkfnJRr149Xb3cliYtDq6urgwYMIAlS5Zw+fJlbG1tuXXrFlu3bi2R44Ek/EIIIYQohFebVeGb/vUxMcw9hTDRqPmmf/1n6km7ZmZmALmu2JKQkMCCBQtKO6Ri17VrV1QqFQEBARw8eDDH/uTkZP74449iPWZe1xVg3rx5pKen59lGamqqbpWkx/34448A9OzZU7fNw8ODJk2aAOiWPi1JTk5O1KxZE8iYS1BSJOEXQgghRKG82qwKx6Y8z9RedWjlYUddFytaedgxrVcdjk1+/plK9gE6dOgAwBdffMGlS5d020NDQ+ndu3eJJnKlpXr16rz22msAvP7665w6dUq3Lzo6mtdff71AS1QWRuZ1PXbsGAsWLNCtzJOWlsb8+fP5+uuvMTExybMNjUbDrFmz2LJli25bUlIS48eP5+zZsxgbG/Phhx9mq/Ptt99iaGjI0qVLeeedd3jw4EG2/SkpKfz777+88sorBTqPPXv28N5773Hq1KlsT0ZWFIV169bprmWzZs0K1F5RyBh+IYQQQhSatZmGkW2rM7Jt9bIOpcxNnDiRNWvWEBISQv369fHy8sLIyIgLFy6g0WhYtGgRI0eOLOswn9iCBQs4f/48Fy5coEmTJnh7e2NhYcHFixdRq9XMnj2biRMnZntewJNo0KABw4YNw9fXlwkTJvDll1/i5ubGjRs3iIyM1D0068CBA3rbaN26NZUrV6Z3795UrVoVBwcHAgMDiY2NRa1Ws3jxYt1wpUzPPfccq1atYsSIESxatIhffvkFLy8vrK2tiY6O5vr163onCecmPj6eH374gR9++AErKys8PDwwNDTk1q1bhIeHA/Dmm2/SsWPHol2oApAefiGEEEKIJ+Ds7MyxY8cYOnQo9vb2XLt2jfDwcF555RWOHz9Op06dyjrEYmFnZ8fhw4eZPHkynp6eBAUFcfv2bV566SX8/f2pXbs2kPdKPoW1bNky5s+fT506dYiMjOTq1avUqlWL3377jSVLlhSojTVr1vDtt99iY2PDxYsXUalUdOvWjQMHDjB06NBc67z66qtcuXKFiRMn4uPjQ0hICKdPnyYxMZGWLVsyffp0Tp8+XaDjt2vXjkWLFtGvXz8cHR25ceMGZ86cQa1W07NnT/7+++8Cn0tRqZSsny0IvY4cOULr1q05fPgwrVq1KutwhBBCPIWK+2/J1atXAXRjgIUoS3PnzmXixIn069ePDRs2lHU4FVZRfu+lh18IIYQQQjyR1NRU3fKk+lYrEmVHEn4hhBBCCJGvxMREpk6dyq1bt7JtDw0NZcCAAVy+fJlKlSoxePDgMopQ6COTdoUQQgghRL7S09OZPXs2s2fPpnLlylSrVo2HDx8SEBCAVqvF1NSUP/74A1tb27IOVTxGEn4hhBBCCJEvU1NT5syZw65duwgICODChQtAxtr1nTp14oMPPsix4o0oHyThF0IIIYQQ+TIwMGDSpElMmjSprEMRhSRj+IUQQgghhKjAJOEXQgghhBCiApOEXwghhBBCiApMEn4hhBBCCCEqMEn4hRBCCCGEqMAk4RdCCCGEEKICk4RfCCGEEEKICkwSfiGEEEIIISowSfiFEEIIIYSowCThF0IIIYQQogKThF8IIYQQQogKTBJ+IYQQQoinwIwZM1CpVAwbNqysQymQYcOGoVKpmDFjRrG12aFDB1QqFb6+vsXWZn58fX1RqVR06NCh1I5Z3CThF0IIIcQzQaVSFelVnAmrPr6+vsyYMYMzZ86U+LHEs8ewrAMQQgghhCgNbdq0yXX7oUOHAKhZsyYODg459letWrVE44KMhP/AgQO4u7vTsGHDXMvY29vj7e2Ns7NziccjKhZJ+IUQQghReIlRcOZPCNgBSTFgYg3ePaDhQDCtVNbR5crPzy/X7SqVCoApU6aU6+Ey77zzDu+8805ZhyGeQpLwCyGEEKJwTv0B2z+CtKTs24MPwt7Pocc8aDykbGITQuQgY/iFEEIIUXCn/oAt7+RM9jOlJWXsP/VH6cZVgu7evcvEiRPx8fHBwsICc3Nz6tevz4wZM4iNjc21Tnh4OB9//DF169bF3NwcExMTqlSpQps2bfj0008JDQ0FYP/+/ahUKg4cOADA8OHDs80fyDpRNK9Ju5nlg4ODOX/+PAMGDMDR0RFjY2O8vb2ZOXMmKSkpes/x7Nmz9O/fn8qVK2Nqakrt2rWZNWsWycnJJTL51s/Pj0mTJtGiRQtcXFwwMjLC3t6eLl26sHr16gK1ERISwqhRo3Bzc8PY2Bh3d3fef/99IiMj86y3ceNGevXqhaOjI0ZGRjg6OtKnTx/2799f6POIi4tj1qxZNG7cGEtLS4yMjHBxcaF58+Z8+OGHBAQEFLrNkiA9/EIIIYQomMSojJ79gtjxMdTuVW6H9xTU3r176d+/PzExMRgZGVG9enUALl26xPnz51m9ejV79+7Fzc1NV+fOnTu0aNGCO3fuYGhoSI0aNbC0tOTu3bscP36cw4cP06pVK1xcXLC2tqZNmzacP3+e2NjYHPMI6tWrV6h4d+3axbvvvouhoSHe3t4YGhoSGBjI9OnTOXfuHOvXr89RZ9u2bfTr14+UlBRMTU2pW7cusbGxTJs2jV27dpXIHIY+ffoQERFBpUqVcHJywsXFhdDQUPbs2cOePXvYtWsXy5cv11s/KCiIxo0bExkZiY+PDzY2Nly6dInvv/+eLVu2cODAgWzfE4Dk5GRef/11NmzYAGTMifDx8eHmzZts3ryZzZs3M2fOHCZNmlSgc4iPj6d169ZcuHABlUpFjRo1sLGx4f79+5w9exZ/f3+qV6+Ot7d30S9UMZEefiGEEEIUzJnV+nv2H5eaCGf/Ktl4Sti1a9fo27cvMTExfPjhh9y/f58rV65w5coVbt++zQsvvEBgYCCDBw/OVm/evHncuXOHLl26EBYWxuXLlzl+/Di3b98mKiqK33//HXd3dwAaNWqEn58fjRo1AjLmEfj5+eleCxYsKFTM77zzDhMmTOD+/fucOHGCO3fu8Pvvv6NSqdiwYQP79u3LVv7evXsMHjyYlJQUBg4cSFhYGCdOnCAwMJBjx45x/fr1XG8SntScOXO4du0akZGRXLp0iRMnThAaGsrRo0epUaMGvr6+eR73q6++onr16gQFBXHmzBkuXLjApUuXqFWrFjdu3GDo0KE56rz//vts2LCBmjVrsm/fPu7fv8+pU6eIiIjg999/x8zMjMmTJ+e4RvosW7aMCxcu0KBBA27evElgYCDHjx8nKCiI2NhYNmzYQIMGDYp8jYqTJPxCCCGEKJiA7YUrf2VbycRRSmbMmEFcXBwjRoxg3rx5WFlZ6fY5Ozuzbt06XFxcOHDgAEePHtXtu3z5MgDjxo3Dzs4uW5sWFhYMGTIEHx+fEon5ueee4+uvv8bExES3bciQIfTo0QOAf/75J1v5X375hejoaLy9vVmxYkW2c2zevDm+vr55DgUqqlGjRuHp6Zlje4sWLfjpp58A8uzhVxSFtWvXUqVKFd22WrVqsXLlSgD+7//+j8OHD+v2BQYGsnjxYkxNTdm6dWuONfWHDBnC559/jqIofP311wU6h8zv8/Dhw7PFAWBsbEy/fv1o165dgdoqaZLwCyGEEKJgkmJKtnw5kpqaysaNGwF46623ci1jZWVFly5dgIwEM1PmEJi1a9eSlFTAT0SKybhx43Ldnrkk6bVr17Jt37FjB5DxkCyNRpOj3gsvvEC1atWKOcoMAQEBzJ49m1deeYVOnTrRtm1b2rZty5QpUwA4efKk3rp9+/bNNa4mTZrokuxt2x7dcK5btw6tVkunTp3w8vLKtc2XX34ZgP/973+kp6fnG3/m93nTpk3ExJTvn3UZwy+EEEKIgjGxLtny5cjVq1dJSEgAYMKECajVufeR3rx5E8iYQJppwoQJ/P777/z5559s376drl270qpVK1q3bk2TJk30tlUc9CWzjo6OQMa486wyJ5XmNfQkc8hKcZo2bRpffPEFWq1Wb5mIiAi9+/L6hKRu3bocPHhQ1wMPGZOSAc6cOUPbtm1zracoCgCJiYlERETk+kyGrEaMGMG3337L/v37cXFx4fnnn6dNmza0atWKli1b5noDVVYk4RdCCCFEwXj3yFh6s6Bq9Sy5WEpYVFSU7v2RI0fyLZ95cwAZyeiRI0eYNWsWO3fuZM2aNaxZswYAV1dXPvnkE8aNG6db/784mZub57o98ybj8QQ7Li4OINtQnsdZWloWU3QZ1q1bx6xZs1CpVEydOpV+/frh4eGBhYUFarWaGzdu4OnpSVpamt42Mm9g8tqXeW7w6Pt5584d7ty5k2+MWb+f+jg5OXHs2DFmzpzJpk2b2LJlC1u2bAHAzs6O8ePHM2XKlHKR+EvCL4QQQoiCaTgwY539gkzc1ZhCg4ElH1MJsbCwADIS5cTERIyMjApVv1GjRvz999+kpKRw8uRJDh48yObNmzl8+DDjx48nJSWFDz74oCRCLxRLS0uio6P1Li8K2RPn4pA5Nv+DDz5g5syZOfbn1bOf6d69e/nuy3qjkvn9/Oyzz5g1a1ah4s2Lp6cnK1asID09nbNnz3Lw4EG2b9/O7t27mTFjBhEREfz444/FdryiKldj+M+fP8/s2bN54YUXcHZ2xsjICGtra5o1a8bMmTOz3W3nZvfu3fTs2RMHBwdMTEzw9PRkwoQJhIWFldIZCCGEEBWYaaWMh2oVRPe5YGpTouGUJC8vL4yNjdFqtdkm5BaWkZERrVq1YuLEiRw6dIjJkycD6CamZiqJ3v6CyFwyMnPIS27y2lcU169fB6B9+/a57j906FC+bVy8eDHffbVr19Zty1zetCBtF4WBgQGNGzfm3Xff5d9//+WXX34BYMmSJXl+UlFayk3Cf/36derXr8/UqVPZvXs3arWaBg0aYGlpyYkTJ5g+fTp169bl/PnzudbPvFHYvn07Go2GunXrcvfuXRYsWICPjw8XLlwo5TMSQgghKqDGQ+ClhWBokvt+jWnG/qf8Sbumpqb06tULgC+++EI3vvtJPffccwC6B29lMjMzAzLGj5em7t27A+Dr60tqamqO/bt27Sr28fuZ55rb0JqEhIQCLUW6ceNGbt26lWP76dOnOXgwY9hZz56PhpS98sorqFQq9u/fj5+fX1FDL7DM73NycnK+DwIrDeUm4VcUBQcHB2bOnMn169e5c+cO/v7+hISE4OfnR7Vq1bh79y59+vQhOTk5W91///2XqVOnArBgwQJCQkI4efIkISEhdO7cmYiICPr06VMiy0oJIYQQz5zGQ+DDK9D1K3BvB071M/7tNgc+uPzUJ/uZvvjiCywtLdm1axcDBgzIkWCmp6dz8OBBRo4cmS15HT16NH/88QfR0dHZyoeHhzN//nwAmjVrlm1fjRo1gIwn7xbXzUVBjB07FhsbGwICAhg6dGi2oT3Hjx9n2LBhhR7OlJ/MJTG/+OILLl26pNseGhpK7969c9wM6fPaa69lmyyd9ZkIHTp0oHXr1rp99erVY9SoUSiKQu/evfnrr79yrMQTFhbGzz//zJw5cwp0/MmTJ/Pzzz/nGF4UGxvLF198AYC7uzuVK1cuUHslSiknEhMTlfj4eL37Dx06pAAKoGzevDnbvmbNmimAMmjQoBz17t+/r1haWiqAsnjx4iLHd/jwYQVQDh8+XOQ2hBBCPNuK+29JYGCgEhgYWCxtPcsy84vly5fn2Ldv3z7F3t5eARSVSqXUrFlTadmypeLj46OYmJjo6gYFBenqNGjQQFfe09NTadGihVK7dm3F0NBQARQ7Ozvl7Nmz2Y5z7NgxRa1WK4Di5uamtG3bVmnfvr3y7rvv6spMnz5dAZShQ4fqPYescWS1fPlyBVDat2+fY98///yjGBkZKYBiZmamNG3aVPHy8lIApU2bNsrAgQMVQJk5c2YBruYjQ4cOVQBl+vTp2baHhoYqzs7OCqAYGBgotWvXVho0aKAYGBgoJiYmyrJly3Tn87j27dsrgDJt2jSlcuXKiqGhodKgQQPFx8dHUalUCqC4u7srt27dylE3OTlZef3113VtW1lZKU2aNFGaNWumuLm56bY/fn31XbvevXvr6lStWlVp3rx5tp8LU1NTZffu3YW6ZgVRlN/7ctPDb2JiondmOUDr1q2xts5Y3ivrMktBQUH4+/sDua+Ta29vr1tXdfXq1cUZshBCCCEquA4dOnDlyhVmzpxJ8+bNCQ8P59SpU0RHR9OwYUM+/vhjDh06lG1N+O+//54PP/yQZs2akZCQwKlTp7h16xa1a9fm448/5sKFC9SvXz/bcZo3b86mTZvo0KED8fHxHD58mAMHDnDmzJkSP8devXpx7Ngx+vbti4mJCefPn0elUjF9+nT27t2rGyGR10o+heHs7MyxY8cYOnQo9vb2XLt2jfDwcF555RWOHz9Op06d8m2jevXqnDp1ijfeeIP79+8TEBBAlSpVmDBhAidOnMjxICzImE+xcuVKdu/ezYABA7CxseHChQsEBgZiaWlJ3759WbZsGfPmFWyeytSpU/nss89o27YtWq2Ws2fPcv36dapWrcrbb7/N+fPnef755wt9fUqCSlFK8XOjJ5Ceno6VlZVubNc777wDwKpVqxg8eDBGRkbEx8fnuvTRihUrGDZsGKampsTHxxdp/dsjR47QunVrDh8+TKtWrZ74fIQQQjx7ivtvydWrVwGoWbPmE7clhD5169bl0qVLbNmyhRdffLGsw3nmFeX3/qlZlnPjxo26NVGzzurOfGBEtWrV9K5zmvno5sTERG7evEn16tXzPNbt27ezjQkD9E4WFkIIUbElnDqNiU9d1MU8jlmIp8GhQ4e4dOkSGo1GOjyfYk9Fwh8VFcWHH34IwIsvvqhbWgnQzXy2tbXVWz/rvqioqHwT/mXLlvH5558/SchCCCEqgMQLF7k1fDgmtWvj+uMPaPJ58qYQT6MdO3YQHR1Nnz59MDU11W3fu3cvb7zxBgCDBg3C3t6+rEIUT6jcJ/ypqam6mfGVK1fWrWuaKXP5qrxmkJuYPFo6rCBPThs5ciRdu3bNtu38+fOMGTOmMKELIYR4yoXPn4eSnEzimTPEbNqM/eg3yzokIYrd9evXGT9+PIaGhlStWhV7e3tu3bqle45Rw4YN+fbbb8s4SvEkynXCr9VqGTJkCLt378bS0pJ//vkHFxeXbGUy70TzWnIzKenREwEz137NS5UqVXKd7CGEEOLZ4vbDD9x6/z0uRl8htXczpH9TVETPP/88EyZMYP/+/YSGhnLr1i0sLCxo2bIlL7/8Mm+99VaB8idRfpXbhF+r1TJixAjWrFmDubk527Zto0WLFjnKVapUCcj7McxZH3iQWV4IIYTIj2JhxjcDNPjfjIXdo/ih4w+0cW1T1mEJUaxq1arFDz/8UNZhiBJUbpblzEpRFMaMGcOKFSswMzNj69attGvXLteytWrVAuDWrVu5PiEOHj3C2cTEJNuyWUIIIcTjlLS0jH8VhTnH5+B39zDJRioqmVTCq5JXGUcnhBCFVy4T/nHjxrF06VJMTU3ZsmWL7olsucmcMZ6SksLRo0dzLXPgwAEAWrZsWaQlOYUQQjwbEk6c4EbPXiRducKfV/5kTcAaAMwMzVjYaSGVzcrBEzOFEKKQyl32O2HCBH7++WdMTEzYvHkznTt3zrO8h4cHTZs2BcgxoRfgwYMHrF+/HoABAwYUf8BCCCEqhNTQUEImvEvKzZvceG0AK3d8DYBapWZu+7l423qXcYRCCFE05SrhnzhxIgsWLNAl+126dClQvVmzZgHw559/snDhQjKfJRYZGclrr71GXFwcHh4eDB8+vMRiF0II8fTSJiYS8s540v+b83XMU0uIrRaAic0m8pzbc2UZnhBCPJFyM2n3yJEjzJ07F8h4dPPMmTOZOXNmrmV79OjBlClTdF9369aNGTNmMGPGDMaPH89XX32Fk5MTly9fJjExEVtbWzZu3IixsXGpnIsQQoinh6Io3J06jaRLlwC47axhYXctqFQMrDWQ12u/XsYRCiHEkyk3CX9ycrLufXh4OOHh4XrL1qhRI8e26dOn07JlS3744QeOHz/OhQsXcHV1pUePHnz66ac4OzuXSNxCCCGebpG//Ubs1q0APDQ34Ku+WlI0Ktq6tmVM3fdZevAGey7fIy4pDUsTQ7rUceLlxm5Ym+X+dHchhChvyk3C36FDB91QnKLq2rVrjgdmCSGEeHbEJKSy7uTtAifo8Qf9CJ+f8UChdLWKb/rAA2sVNSvVpLXFe7SZs5+kNG22OkdvRDJ35xVm9vbh1WbyzBYhRPlXbhJ+IYQQ4kms9b/NtM0XCpygpwQHc+fDD0GbUX758youV1VhZ2JHd/tPmbrpmt5jJaVpmbjhHIAk/UKIcq9cTdoVQgghimKt/20mbjiXI9nPlJmgr/W/DWSM2w/9ZDLa2FgA9jZQsauxCmMDY75q8x3zt+sfVprVtC0XiEnI/RkwQghRXkjCL4QQ4qkWk5DKtM0XClQ2M0FXqVQ4f/kl6VWcCHBTsewFNahUfNn2Sy4F2+i9cXhcUqqWDadCniR8IYQocZLwCyGEeKqtPxVSpAT9jq3CuwOTmNtPTZqhincbv8sL7i+w+1JYoY6/+9K9Qscsnh7BwcGoVCpUKlVZh1KmSuI67N+/H5VKhbu7e7G1KXInCb8QQoinWlES9MikSMbtHUe4QTyx5ir61OjDSJ+RAMQlpRWqvdgkGdLztOnQoYMuec3rFR0dnWc7mzZtYsaMGezfv7/Isbi7u+uO17Fjx3zL16hRQ1e+Q4cORT6ueLbIpF0hhBBPtYIm6O4xdxl2aTvbKg3lvX0/ERKf0dPfzKkZ01pO0/VcWpoU7k+jlYksz/m0cnBwoGbNmnr3GxoaotFo8PbO/SnLmzZtYsWKFQDFknwfOHCAGzdu4OHhkev+//3vf1y/fv2JjyOePZLwCyGEeKoVJEG3THnItGPLcU6IxHPDdKaapoG1Cncrd77r8B0ag0dJe5c6Thy9EVng43ep41ikuEXZ6969O76+vnmWsbCw4MqVKyUeS+3atbl8+TIrVqzg888/z7XM8uXLs5UVoqBkSI8QQoinWpc6TnnuV2vTmey/EueEjCT+jm0KUZZgbWzNos6LsDa2zlb+5cZumBgW7M+jiUZN/yZuRQtciCyGDh2KSqVixYoVuT6XKD4+nvXr12NpaUn//v3LIELxNJOEXwghxFMtvwR95MVtNLp/FYAwG/i+jxq1oYYfOv5AVauqOcpbm2mY2dunQMee+ZIP1qYypKciy22yaua2zOE8n3/+ebax/0WZhFqtWjU6duzIzZs32bdvX47969atIz4+nldffRVzc/M820pISOCbb76hWbNmWFlZYWpqipeXF++++y4hIfpXlUpLS+O7776jXr16mJqaUrlyZXr16sXhw4cLdA779u3jlVdewdXVFSMjI+zs7HjhhRfYuHFjgeqLkiMJvxBCiKdaXgl651sn6Hf9fwAkaWDuywY8NFUxs/VMmjg20dvmq82q8E3/+npvJEw0ar7pX18euvWMMjExoU2bNjg4OABQpUoV2rRpo3s1a9asSO0OHz4ceDR0J6vMbZll9AkLC6NFixZMmjSJEydO4OrqSu3atQkODubHH3+kXr16+Pn55aiXkpLCiy++yAcffMCFCxdwdHTE3d2dAwcO8Nxzz+WZtCuKwoQJE+jUqRPr168nISEBHx8fNBoNu3fvpl+/frz99tuFuRSimEnCL4QQ4qmXW4LuFXWLCWfW675e8KKa25VVjK4/mhc9XyxQm8emPM/UXnVo5WFHXRcrWnnYMa1XHY5Nfl6S/WeYk5MTfn5+dO/eHYARI0bg5+ene61bt65I7fbv3x8rKys2bNhA7H8PhQO4du0aBw8epGbNmrRp0ybPNgYPHsyFCxfw9PTk7NmzXL58mVOnTnHnzh26du1KdHQ0/fv3JyIiIlu9L774gp07d2JhYcHWrVsJDg7G39+fe/fuMXToUCZNmqT3mHPnzmXBggU4OjqyYcMGoqKiOHXqFGFhYezYsYPKlSvz888/5ztfQpQcSfiFEEJUCFkT9C4OBsw88TtG2owVfNa1VeHvraabezfGNRxX4DatzTSMbFud1aNbsm1CO1aPbsmIttWxNpNhPBXBihUr9C7JWRbJqampKQMGDCAxMZE1a9botmfGkl/v/qFDh9i7dy8Af/zxB/Xr19ftq1y5MuvWrcPW1pbw8HB++eUX3b6HDx/y/fffAxnDk3r27KnbZ2Zmxq+//qp35aCoqChmzZoFZAw76tevX7b93bp146effgJgzpw5ecYvSo6s0iOEEKLCyEzQn182k4SH0QAc91Kxvq2a+pXrM6vNLNSqZ6uva9SuUdyNv1vWYTwRZwtnlr6wtNjbzWtZTkfHsll9acSIEfz666/4+vry5ptvotVq+f333zEwMOCNN97Is+7WrVsBaNOmDa1atcqx39LSkjFjxvDVV1+xbds2Pv30UwD8/PyIjY3F1NSUMWPG5KinVquZMGEC48blvFnevn078fHx1K1bl3bt2uUaV+/evdFoNAQEBBAaGoqLi0u+10EUL0n4hRBCVDj248dz46Q/oVbpLOylxsXSjR86/oCJoUlZh1bq7sbf5VbcrbIOo1wqyLKcpa1ly5bUqlWLw4cPExAQwM2bN7l9+zbdu3fH1dU1z7oBAQEA1KtXT2+ZzH1ZlxrNfO/u7q53QnDdunVz3X727FkgY+5A27Zt9R43c9JzSEiIJPxlQBJ+IYQQFc5qzSl2vQLh1gYYWliysNNC7E3tyzqsMuFs4VzWITyxinAOhTF8+HAmTZqEr68vwcHBum35yRz37+Skf6laZ+eMaxkXF6fblvk+r0819O2LiooCICIigkOHDuUbY0JCQr5lRPGThF8IIUSZiklIZd3J2+y5fI+4pDQsTQzpUseJlxu7FXisfGpoKAb29qg0Gn4++zM/n/0ZqqowUBnwU/v51KhUo4TPovwqiaEwomQNGTKEKVOm4OvrS3R0NLa2trz00kv51rOysgIyetv1uXs3Y3iXpaWlblvm+3v37umtp2+fhYUFkDFZ+I8//sg3RlE2JOEXQghRZtb632ba5gskpWmzbT96I5K5O68ws7dPvqvhJF+7xq3hIzCpX59Vg5xZde0vAFSomNZqGq1dW5dY/OLZlnVt/uLk7OxMt27d2LZtGwCjRo3C2Ng433q1atUC4MKFC3rLZO6rXbt2jnrBwcE8fPgw12E9Fy9ezLW9zCFCBV2rX5SNZ2vmkhBCiHJjrf9tJm44lyPZz5SUpmXihnOs9b+tt42kS5e4OeQN0u7fJ37vXhJ+/xMAQ5UhX7X7in41++mtK8STMjMzAyAxMbHY254wYQKdO3emc+fOvPnmmwWqk7m6jp+fH8ePH8+xPz4+nsWLF2crC9C2bVusrKxITEzk119/zVFPURQWLFiQ6zF79eqFqakpN27cYNWqVQWKU5Q+SfiFEEKUupiEVKZt1t8LmdW0LReISUjNsT3h9GluDh1G+n9jiM+5q9jeVIWxgTE/dPqBnh49c9QRojjVqJExVMzPz4/U1Jw/o0/ihRdeYM+ePezZsyfb8pp5adOmDZ07dwYercef6cGDB7z66qtERETg6OiYbTUec3NzJkyYAMC0adPYsWOHbl9CQgJjxozh+vXruR7TwcGBzz77DIA333yTn376ieTk5GxloqKi+OOPP/j4448LdB6i+EnCL4QQotStPxWit2f/cUmpWjacCsm27eHRo9waOQrtf5MN/Wuq+PoVNRpzSxZ3Wcxzbs8Ve8xCPO7ll1/GzMyMw4cP4+bmRps2bejQoQOvvfZamcW0cuVKfHx8uHr1KvXr16dOnTo0adIEV1dXduzYgY2NDevXr8fOzi5bvalTp9KlSxfi4uLo0aMH1atXp1mzZjg6OvLbb7/x9ddf6z3m5MmT+fjjj0lMTGTcuHHY2trSqFEjWrRogYeHB3Z2drzxxhv4+/uX9OkLPSThF0IIUep2X9I/qTD38o8mDMbt38/t0WNQ/lvt41BtFd/2VWNpYcdvXX+jiWOTYo1VCH2qVKnCrl276N69O1qtlqNHj3LgwAGOHj1aZjE5OTlx7Ngx5syZQ6NGjbh9+zYXL16katWqjB8/nvPnz+e6fKaRkRHbtm1j3rx51K1bl7t37xIUFET79u353//+R9++ffUeU6VS8c0333D8+HGGDx+Os7MzV65c4dKlS2g0Grp168aCBQtYuXJlSZ66yINKURSlrIN4Ghw5coTWrVtz+PDhXB9mIYQQouB6/niQi6GxBS5f18WKbRPaEbvzX+58/DH8N3zi/+qrWNxdjZOlC0u6LMHd2r2EIi4exf235OrVqwB6Hx4lhKh4ivJ7L6v0CCGEKHWWJoX782NloiH5xg3ufPABaDOGAm1vqmLF82rcbTxY0mUJTub61x4XQohnmQzpEUIIUeq61Clcct6ljiPGHh4oozLGRm9spcL3eTW17evi281Xkn0hhMiDJPxCCCFK3cuN3TAxLNifIBONmv5N3DgRdoKRTtuZMUjN6g4GNHVqxrIXlmFrYlvC0QohxNNNEn4hhBClztpMw8zePnkXUhRqRQYz8yUfzkYcYeyescSnxnOpmpoObh34+fmfsTCyKJ2AhRDiKSZj+IUQQpSJzCfo5vakXRSFMZe30SdwP/cbhPGu5VbSlDQAenn0YmabmWjUmtIOWQghnkqS8AshhCgzrzarQte6Tqw/FcKeS/eITUrFytiA0ac24BS4H4BKi9ZjPdaACGsVg2oNYlLzSahV8gG1EEIUlCT8QgghypS1mYaRbaszsm11lLQ07n76KTEHtgOQagDf9VETYa3i7QZvM7bBWFQqVRlHLIQQTxdJ+IUQQpQLSkoKdz78iLjduwFINoS5/dWc81DzSfNPeL3262UcoRBCPJ0k4RdCCFHm0qKiCP14Ig/9/ABIMII5rxpwtaohX7aZxYueL5ZxhEII8fSShF8IIUSZenj4MKGfTCYtPByAeBP4YoABt92M+a79PDpW7VjGEQohxNNNEn4hhBBlKv7QIV2yf98Kvn7FgAhXC37ptIBmTs3KODohhHj6ScIvhBCiTAX0b0zitt+5ZZvO0q5qjKwrsez5X6hrX7esQxNCiApBEn4hhBClRlEUEk+exKxpU5LTk/n2xLf8eeVPTAcpJBobUNWyKgs6LcDDxqOsQxVCiApDEn4hhBClIi0igrtTPiX+wAHU305nctparkZdBSDRWEXfGn35pPknmGnMyjhSIYSoWCThF0IIUeLiDxwgdMqnpEdEAPBg+kyCxqrBUIWlxpJprafRzb1bGUcphBAVkyT8QgghSow2KYnwufOIWrVKty3MBha8pCbNUEVjh8bMaTcHZwvnsgtSCCEqOHk2uRBCiBKRdOUKQS+/nC3Z31dfxcQRBtxwM2R8o/H81vU3SfaFeMqoVCpUKhXBwcFlHUqJ8vX1RaVS0aFDh7IO5YlJwi+EEKJYKVotEct9CX7lVVKuXQcy1taf31fNzz0NsLerworuKxhdfzQGaoMyjlY86+7fv89XX33F888/j6urKyYmJpibm1O1alV69uzJvHnzuHnzZlmH+dTav3+/7gahsK/9+/eXaFwzZsxg06ZNJXaM8kSG9AghhChWsdt3EP7117qvL1RTsbCXmkgrFS96vMiUFlOwMLIowwiFyPDdd9/x2WefkZCQAEDlypWpXbs2arWasLAwtm/fzvbt2/nkk094//33mTt3bhlH/PSxtramTZs2ObbHxMRw4cIFAJo2bYqxsXGudUvK/v37+fzzzxk6dCh9+vQpseOUF5LwCyGEKFaW3boS77sQk0vBrG6vZmsLFeZGlnzdcio9PHqUdXhCAPD+++/z/fffA/D6668zadIk6tWrl61McHAwq1ev5ocffmDfvn1lEOXTr1GjRvj5+eXYvn//fjp2zHiK9rp163B3dy/lyJ4tkvALIYR4ItrkZNT/9c5FJUUx/fB0zrW/jVUzA4KcVDSs3JA5z83B1cK1jCMVIsO6det0yf68efP48MMPcy3n7u7O5MmTefvtt1m6dGkpRihE8ZIx/EIIIYos8fx5gl7qTcw//3D07lFe3vIy+27vI8JKxU1nA95u8DbLuy2XZF+UG1qtlqlTpwLw/PPP6032s7K2ts61XIcOHVCpVPj6+nLnzh3eeustqlevjrGxcY6Jnrt27aJ37944OjpiZGSEo6MjvXv3ZteuXbkesyATRrMeP6+6vr6+tGjRAgsLC6ysrOjYsSO7d+/W266iKPj6+tK8eXPMzc2pVKkSnTp1YuvWrXrrFKfg4GDdOH6AHTt20K1bNypXroxardad74wZM1CpVAwbNkxvW+7u7jnmA6hUKj7//HMAVqxYkWPugD6FvY7liST8QgghCi0l5A53p04l+LWBpNy8yc1pn/Lp2jcJTwwHwMXcBd9uvrzV8C0M1fJhsig/Tp48SUBAAADjx48vljavXr1KgwYN+PXXX7G0tKROnToYGRnp9n/88cd07dqVLVu2oCgKDRo0QFEUtmzZQteuXfn444+LJY7cjBw5kuHDh3P37l28vLzQarXs37+fbt26sXnz5lzrjBo1iuHDh+Pv74+1tTU1atTgzJkzvPjiiyxYsKDEYs3Nt99+S48ePTh+/DjVq1enWrVqT9xmmzZtqFKlCgAODg60adMm2ys3RbmO5Ykk/EIIIQosNTSUu9Omc71bN6LXrYf0dAAuOqWRbKgA0L16d9a9tI5GDo3KMlQhcpU5nlylUvHcc88VS5tff/01jRo14vbt25w7d47Tp0/rksCVK1cyb9481Go1CxcuJCwsDH9/f8LCwvjxxx9Rq9XMmzePlStXFkssWR0+fJjNmzeza9cubt26xalTp7h37x69e/dGq9Xy3nvvoShKtjrLly/nt99+w9DQkN9++407d+7g7+/PvXv3mDp1aoE+ESlOn3zyCfPmzeP+/fscP36coKAgBgwY8ERt+vn5MWLECAC6d++On59fttfjinIdyxvpdhFCCJGv1LAwHixeTPT6DZCaqtseZaliXRsVexuqMNWY82XLz+jl0SvPj8VF6Yv8/Q8iV+WfUFZ6bSB2w4fpvk4JucOtkSPyradxcKTaH79n2xYyfjxJgYH51nWd/y2mPnV1X0f/vZEHi3/RfW37+mBs3xiSbzsFFRISAoCNjQ02NjbF0qatrS3r16/PtqqMqakpgG7oyJtvvsm4ceN0+9VqNePHj+fcuXMsXbqUmTNnMnjw4GKJJ1Nqairff/89Xbp00W0zNzfn559/Zvv27QQHB3P+/Hnq16+v2//ll18C8NZbbzF8+HDddo1Gw8yZMzl69GipDmMZNmxYjpuMzGtbWopyHcsbSfiFEELkKWr1au59+RVKlkQ/xkLN3y1hTyMVqYYq6tvXZ067OVSxqlKGkQp90mNiSL15K/9y0dHZN6SlFqgeqWk5N90NK1BdJSU529fauNhs9dJjYvI/fiHExsYCGQmbPh06dODAgQM5th85coSWLVvm2P7yyy/nuoRkQEAA165dA+Cjjz7K9Vgff/wxS5cu5erVqwQGBuLl5VWg8ygIa2trXn/99RzbnZ2dqV69OoGBgVy7dk2XqGaN97333su1zffee69UE/5Ro0aV2rH0Kex1LI8k4RdCCJEnYy8vXbIfa6Hm7xawu5GKVI0KU0NTRvuMYGS9kWjUmjKOVOhjYG2NplrV/Ms93uNtqClQPY2DY85tzk6kx8XmW1dllH39dbWlVbZjGhTzWuxWVlYAxMfH6y1Tr1490tIe3cQcOnQozzbr1q2b6/bMuQKmpqbUqFEj1zI1a9bExMSEpKQkrly5UqwJf82aNfV+2ubo6EhgYGC263DlyhVdvB4eHrnW03euJaW0j5ebwl7H8kgSfiGEEDpp9++TcvMmZk2bAhmrdZxwfMidRtacqxTHrsYqUjQqDNWGDPR6hdH1R2Nval/GUYv82L4xpEjDYozcXKnx779FOqZbESd32vTri02/vkWqWxCurhkrRsXExBAVFUWlSpVylHl8Ymp+Q9T0fVqQ+WmCo2POG6KsbTs6OnLz5k3i4uLyPE5h5fUphlqdMY1Tq9XqtmUeP69489pXEvI6h/IQQ27XsTyShF8IIQRpDx4QsXQZUX/9hYGVFZ67d3Eu5jLfnfyOU+GnoBtkrvPQo3oP3mn0DlUsZfiOePq0a9cOyLiZPXDgQIk+ZTXz04R79+7pLaMoim6/paWlbnvmTUZek0EfPnxYHGHqZB4/PDxcb5m8zqW0lcU1elpJwi+EEM+wtMhIIpYtI+rP1SiJiRnbkpJY+sUAFnhez1a2jWsb3mv8HrVsa5VFqEIUiyZNmuDl5UVgYCALFy4s0YS/Vq2M35XExESuX7+Op6dnjjLXrl0jKSkJgNq1a+u2Z/Yq55VgX716tTjD1cWbkJBAUFAQ1atXz1Hm4sWLxXrMJ5HfNYqKiuLBgwe57nvWFhaQZTmFEOIZlBYVRfj8+Vx7vguRy37TJfvJZhr+am/AUrdrurL17OvxW9ff+OX5XyTZF089tVrNzJkzAdi7dy/z588vsWN5eXlRs2ZNIGM9+dzMmzcPyBgnnlk282uAoKCgXBPaVatWEVPME5q9vLx0NyU//PBDrmX0bS8Lmdfo9OnTJCcn59j/008/6a1rZmYGZNyMPQsk4RdCiGdETEIqvttPs+SNjzj/XEcifl2KkpAAQKqZEeuf0zB6jJa/W6tINFbhbuXOdx2+Y1WPVTRzapajraUHb/DakiP0/PEgry05wjK/IGISUnM7tBDlyoABA3jnnXeAjNVzhgwZwvnz53OUe/DgAd99990THWvatGkALF68mMWLF+uGn2i1WhYtWsTSpUsBmD59erZ69erVw93dnZSUFN55551sienevXt577330GiKd6K8SqVi8uTJACxatIgVK1bo4k1LS+Pzzz9n3759xXrMJ9GpUyfMzc0JDw9n4sSJpP/3XBCANWvW8OWXX+q9RpmTqI8fP/5MDPuRIT1CCPEMWOt/m2mbL+AQGcri49t02+ONDNnWTM2O5ukkmKgAFQ5mDrzd4G161+id61NyM9tKSss+Se3ojUjm7rzCzN4+vNpMxveL8m3BggVUrVqVadOmsXLlSlauXEnlypVxdXXF2NiYyMhIgoKCSEtLQ61WM2zYsGxDbgpq8ODBnDlzhvnz5zN27FimT59O1apVuXnzpm6s/Icffphj2Ue1Ws33339Pv379WL9+PTt37sTLy4sHDx5w69YtRowYwfXr13NdPvRJjBw5koMHD7JixQqGDRvGlClTcHV15fr160RGRvLjjz8yYcKEYj1mUVlaWvLVV18xYcIEfvzxR37//Xdq1KhBSEgIYWFhzJw5k2XLlnHz5s0cdV944QUcHR0JDg7Gzc0Nb29vTExMANi/f38pn0nJkx5+IYQorxKj4Mgi8O0Fv7TL+PfITxnb85F2/z6Rq1YR4evLWv/bTNxwjqQ0LbesnAi2dCRBY8i6ViaMf1thw3NaEkxUmKgteL/J+2zru43+Xv31JvuZbeUmKU3LxA3nWOt/+4lPX4iS9vHHHxMcHMwXX3xBx44dMTAw4NKlS5w7d46kpCReeOEFvv76a4KDg1m2bFmua+0XxLx589i5cycvvvgiWq2W06dPoygKL774Ijt37tQN63lc7969+ffff+nQoQOQsWxm5cqV+fXXX1m2bFlRTztfy5cvZ9myZTRt2pSoqCgCAwOpX78+//zzD+PHjy+x4xbF+PHj+euvv2jevDnJyckEBARQo0YN/v77b6ZOnaq3nrm5OXv37qV///6YmJhw8uRJDhw4UOw3UOWFSinvzwIuJ44cOULr1q05fPgwrVq1KutwhBAV3ak/YPtHkJaUc5+hCfSYB42zL7OYFhFB3K5dxO7YSYK/PygKahsb+nb6lAStCtSJaKzOUjtlH+EO0Tw0/W+FC60hKZFtUMd25Nikl7A2y/0j8JiEVFp8uUdvsp+ViUbNscnP623rWVXcf0syJ21mHfsthKjYivJ7L0N6hBCivDn1B2x5R//+tCTd/rTqvYjbtZvYnTtIOHYcHlsLWhsdjXv8YW7UCMHQ8jwqdRpBAKhQFDWp0U1JedAZJS2j53LDqRBGtM25MgfA+lMhBUr2AZJStXm2JYQQovRIwi+EEOVJYlRGz34BhEyeQVzI15Blolomg3p1CGxcmR/MLxNm/Q9Z+9kVRUVaXB1S7ndFm+KQrd7uS/f0Jum7L4UV+DTya0sIIUTpqXAJv7+/P3PnzuXgwYNERkbi4OBAly5dmDx5snzkKYQoeYlRcOZPCNgBSTFgYg3ePaDhQDDN+UTPHM6sznUYT3qqCgNN9hGYalVatmTfuJ4P4S1rsLHKPXYmnUSrBGYrr02xITWmKanRTVDSco8lNkn/KjtxSWn5x1/AtoQQQpSeCpXwr1ixgpEjR5Keno69vT316tXj6tWrLF++nDVr1vDPP//QqVOnsg5TCFFR6Rt3H3wQ9n6e67j7HAK2oyiQGm9AYqSGpEgjEiM1JEYY4dk9HCPLRwm+ZdVEkpMqkdp/ILs8HrIu/gCRSVcgy7LSKsWQlNg6pMY0I/2hJ/mt1WBlon/MvaVJ4f5k5NWWEEKI0lNhEv6LFy8yatQo0tPTmTRpErNmzUKj0ZCQkMDo0aNZtWoVL7/8MlevXsXOzq6swxVCVDSFGHefY7Lt/fsknjtH4vnzJG2/RVKYE+kpORPz2Num2NeJB+ChSsWumob83QrOqVfCYw+T9KrkRb+a/YgK92HejpACn0aXOo557HPi6I3IYmlLCCFE6akwCf/nn39OWloarVu3Zs6cObrtZmZmLFu2jMOHDxMUFMT8+fP58ssvyzBSIUS586TDcAox7j5900TUXt1RWdjrtt1fsJDotWuzlHos2VcpmNikYmCSziljYzZamvOvuRmJajWQpcdfY0kPjx70rdmXOrZ1UKlUxFRLZeHu0AKvrNO/iZve/S83dmPuzivF0pYQQojSUyES/oSEBLZu3QrAW2+9lWO/sbExw4YNY/r06axevVoSfiGedk+aoGdVHMNw9Iy716apSIrU/Dc0R0NipBGp8YZUr/sTJgOm6cqZ1POBzIRfBUaWqZjapmJim4qpbQpRdlp22pix0cKGYKOcw2SaOTWjb42+PF/teUwNTbPtszbTMLO3DxM3nMv3Usx8yQdrU/3DcIqzLSGEEKWnQiT8p0+f1j1y+rnnnsu1TPv27QEIDg7m7t27ODs7l1p8QgiKL0kvjgQ9a1tFHIaTTcB2AGKCTXl4z5jUBAPSEgxIiTcARZWjeOKRPdkSfvOWLXH46ENMfOph4ulKwpKm+GvgiKkJR02sck3yHdLS6J2QTN/X/qFK5bp5nmbmU29zezouZPTGz3ypYE/HLc62hBBCFJ6iKKhUOf+25KVCJPwBAQEAGBkZUaVK7n9kPD09de+vXLmSZ8J/+/ZtQkKyj3k9f/58MUQqxFOmvCXpxZWgQ77DcBQtusQ9ddGnpDaOJPVBNGl3w0i9e5fUsDBq7N2DgYVFxrUBEh4YERNkprdNA+N0TO1SMTRKzrZd5erEzRcbc+TuEY74L+CCmwPp5HwmoqGi0CEhkb5x8bRJTMLgpYWQT7Kf6dVmVeha14n1p0LYc+kesUmpWJlo6FLHkf6N3Qr1gKzibEs8GZVKRXouy7IKISouRVFQq/NegOFxFSLhj4zMmERWqVIlvXc8tra2uvdRUXk/ln7ZsmV8/vnnxRegEE+j8pakF2KcPDs+htq9wLQSSno62vh40uPi0cbFkh4XhzYujvTTm9BeMkBlYEYlz4Rs1W/sqExyjCGQ5f+TQ7/kDP3uXQxq1sy4EQI0Zv8lXioFQ9N0jCzSMbVL+W9oTiqGZumoVKC41+FG9A2O3D3C0dCj+N/z52Hqw1xPxVyrpVliEq0Tk3jhYQJ2Wi1oTOGlhQX/JOM/1mYaRratzshiWBu/ONsSRafRaEhNTSUlJQUjI6OyDkcIUcJSUlLQarWYmJgUql6FSPgzh/Pk9Z9d1guTkJCgtxzAyJEj6dq1a7Zt58+fZ8yYMU8QpRClpDh65cs4Sc92qPv3SQ0NRXviL7Q3FbRppmjTVChpKrSZr1Q15s5JWLr+13Oemkjy9kUEf7kJ7cPcE+kM1mgs0nIk/KgVsiX7jzGwtUXj5IQ2JSVjg3cPCD6IjWcC1u4JGJpoUT3W+RKhVnPU1CxjmI4mgnube+fetsqA+pXr08q5Fa3s6lL39lk0gf+COgbsrKFWT2jwWuHnKogKydLSkoSEBKKjo3FwcMi/ghDiqRYdHQ1k/O4XRoVI+E1NMyappWT+8c1FUtKjXkozM/0fuQNUqVJF79AgIcq14uiVL2pPuqKgfZiANi4WJTUVo6pVs01mjQgwJzXeAG2qmvRUFdo0dfakPV2Fdm173Netx8TLS3eIqLVrebBg4X9f6V9SV22ofZTwA6rbB/NJ9jNoU3Mm9mb2KRgaa9GYpWNolo7GLB1NlWpo3lyDoZMT6sd7VhoOhL2fY8ij656oUnHKxJgjpiYcMTEh0DhLh0Ra9riqW1enlXMrWjq3pJlTMyyMLB7trPIctB6f73mIZ5OlpSUPHjwgIiICABsbG+npF6ICSklJITo6moiICAwMDLCysipU/QqR8FeqlNHTFRUVpXciQ+awn6zlhahQiqtX/r8kXZsOaFWoszzdNTVBzYOLlqSnqNGmqEhPVZO+qzvaZBXpcXG6p74aeXriuW2rbjIrQMwNM5Jj8hvbnYry2CdwajPzfOpkSE/N3qVuoIrHtFEj1JYWGFhaZfnXEgMrS9SnfsYg+jIGRjknnjo1ic15APfK4O6eY7OiKNzTJhPY9i0CTi8jwEhDgJERtzSGaPUNMTSxpYVzi4xefJdWOJk7FegchXicRqOhatWq3Lp1i4iICCIiIlCr1ahUqkJP6hNClD+KomR0qGkz/lYZGBhQtWpVDA0Ll8JXiIS/Vq1aQMbdz61bt6hWrVqOMtevX89RXogKowi98lpMMiaf3rlD6p3Q//69Q+rZvaRGOJKWZEDlerHY143XVVXSVURffzwBj8lxiPTY/7YlPdqnfjyxVimoDR+9VAYKajNTVI/1Tpo1aoj9uHGoL61GFXsjWx21gYLKUMHASIuBcfb2Dawr4b76T/3XoVok/DtZ//7H1epJSnoK16OvExAVQEBkAIFRgQREBRCT/N952trkWtVYq6VJShqt3F+gVbN3qFmpJurHx/wIUUQmJiZ4eHgQGxtLXFwcqampKErOSd9CiKePSqVCrVZjYmKCpaUlVlZWhU72oYIk/A0bNsTU1JTExET+97//MWRIzt7LAwcOAODu7i5LcoqKJ5d14LWpKlIeGpD60ACzyikYGP2XAKQmEvHVx4SvPZRHgwYZRR8aZNuqNsqSRKgUDDRa1KYaDKrUwcDKCrWVFQZWVhjY/TdJ/r/JrADOzaIzWjbKqKfK3nQG93ZQp062TaYNG2LasCEcURc6Qc/Tf8Nwcls/H+CBWk2gsVFGj72xKQFhOwletYQ0JS3fQ9samOCVBj5pCi0NrWno3QfjRoNl3L0oMYaGhtja2mZboEIIITJViITf3Nycnj17sn79ehYvXpwj4U9OTsbX1xeAAQMGlEGEQuShGCbZKpe3kRxlSGKEUcbrgYaUuEfDZ6p2eIC506M5LgYPA/W2pdKo0JimoDFPx9gme3JrYKSlxov3UBtpM3rlVWQk6cPW5d7Yf5NZAYytCrB0YF5Jej4JejYaU2gwMO8yppVI6TaH0J0fEaIx5I6hIbc1hlzVZAzJiTB87I4k5kaOJgxUBrhbueNl64V3JW+8bb3xruSNvam9DKcQQghRblSIhB9g+vTpbNq0iUOHDvHJJ58wa9YsNBoNCQkJjBkzhqCgIKytrfnoowIOexCiNDzhJNuo1auJ3fkviaduoKTqX6Ej9aEh8CjhN7ZKwaJjRzQuLmhcXTNeLi5o3FwxuPwnql1Tcm1HpQKN+WOJe2kl6aaVMq5HXvMUMnWfC6Y2aBUt9xPuExIfwp34O9yJu0NIfAghcSGExIdwP+E+ShWX/NsDLI0ssyX1XrZe1LCpgbGBcYHqCyGEEGWlwiT8Pj4+LF68mNGjR/P111+zbNkyqlWrxtWrV4mNjcXU1JR169Zhb29f1qEKkaGAk2yVtHSSTJuSePYslQa8ikrzqOc+KSCAhGPHclRVG2kxtU3B2CoNjXk6pvbZV7AyrWZPlek/5X7cRoPg/2aWWZKep8ybn/9ukhQgVq3ijmFGD/0dY1NCPNoSEnmIOxvXEhofSopW/+pduVEpUBVDvCyr4e3eAW+HhnhX8sbJ3El67YUQQjyVKkzCDzBixAh8fHz45ptv8PPz4/z581SuXJm+ffsyZcoUvLIs9SdEmcpjkm1qgvq/YTlGJEZoSFo3ByU9I9E0a9wIkyxj3E0bNCR67TqMXW0xNb6JqV0KpnYpGFlmPOBJr7x65Us4Sc9BY5rRzmOfZCiKQnRyNPcS7hGeEE7YwzDuJdzLeDXtwb2oa9xLjiFB9djkxMgz+YatUWtwtXDF1dIVNws3XC1ccbPM+Nfdyh0zTd5L9wohhBBPkwqV8AM0b96c9evXl3UYQuTtsUm2D8ONiA02Jf6uCWmJuc1mzZBw5ky2hN+q6wtYvdAFtToF5tcqvvHtRUzS82yvdq+M8w7YjjYpmkgTS+65tyTMrRH3UuO5d/K7jGT+4T3dv/n2zuu5qVGhwsHMQZfIu1m44WrpmvG1hRuVzSrLKjlCCCGeGRUu4RfiqZBlfXqAyCsWxIfm8phslYJJpVRMq1fG9LXPMGvRPNtute4hcubF2ysPOZJ03YTiAjzpNTEtkbCHYdyNv0vow1DuPryrex9mmcY99UPSlBi4uT7jVUgGKgMqm1XG0cwRRzPHbD30rhauuFi4YGQgDx8SQgghQBJ+IYqmiCvrpNy6Rey2bdgkRWX75bOqmkh8qAkGxumYOWQMyzG1T8HEJhW1IeDkAi/2yjum4u6Vh4xzafV2xus/iqIQkxxDaMSlbIn83fi7GV8/vEtkUmQejeZNo9bgYOaQkcybO+Jk5oSjuaMuuXc0d8TOxA4Dtf5PQoQQQgjxiCT8QhRWIVfWSYuIIHb7DmK3biXx7FkADF6wp1KW5bIt3ZKo2uEBZg4p5DrSJMt69nl6gl75rBRF4UHiA67HXOd69HWCYoIIiQ/RJfWJaYkFi+cxGrUGJ3MnnM2dcTJ3ypbEZ/5bybiSTI4VQgghipEk/EIURgFX1klPTCb+QWVi/tnKwyNHID37Upaxt4yzJfxqQyXbOvk55PcQqaxy6ZXXR6toufvwLjeib3Aj5gbXo69zI+YGN6JvEJcaV/Bj/sfSyBJnc2dczF1wtnDG2dxZ96+LuQt2pnYydl4IIYQoZZLwC1FQeayskyk5xpAHFy2JWzdPt7KOjkqFWfPmWPXqidVzzeHX5sU3yTYfado0QuJCuB5zPVtyHxwbXODeehUqKptWxtkiI3l3snDCxdwFFwsXnMwz3lsYWTxRnEIIIYQofpLwC1FQj62so0/sLdNsXxvXqY11z15Y9eyBxsnp0Y7inmT7n/iUeM7eP8u5++e4Fn2NGzE3uBl7k1RtaoHqGxsYU926Oh7WHnjaeOJh7YGHjQdVLKqgMdDk34AQQgghyhVJ+IUoqCwr6yhaiL1pigLYVH/UQ25snYaxTSraVBVWDeyx/nQlxp6eubdXTJNsHyQ+4NS9U5wKP8Wpe6cIiApAq2jzPR1zjXlGMv9YYu9i7iITYoUQQogKRBJ+IQoqKQZFgfg7Jtw/b0lyjAYD43Qs3ZIw0Dx6+FPVDhEYGGtROTuBvmQ/UyEn2SqKwu2425y8d5LT4ac5FX6Km7E38zyEtbE1ntaeeNh46P71sPbA0cxRJscKIYQQzwBJ+IUooIdhGsL32JMU8Wh99/RkAx6GGWNV5VEPvaHJf73rBV1ZJ49JtunadAKjAnW996fCT/Eg8YHepowNjKlnX4/Gjo1p7NCYWra1sDWxlcReCCGEeIZJwi9EPhLPnSP8u+9IOHIXeJTsW7gkUbleLCaV0nKvWJiVdf6TnJ7MhQcXOHXvFCfDT3I2/CzxqfF6y1sZWdHIoZEuwa9jV0ceOCWEEEKIbCThF0KP5BtBhH87n/g9e7NtN6ucTOX6cZhVzmMZzUKsrBObEsv/3fo/dgbt5HjY8Twn1zqaOdLYsTFNHJrQ2LExnjaessylEEIIIfIkCb8QeqSFh2dL9k3q1KHyi/UxD/6WfEfI5LOyTkJqAgdCDrAjaAd+d/z0Jvme1p40dmxMI4dGNHFsgouFSxHORAghhBDPMkn4xbMjMQrO/AkBOx5NjvXuAQ0HgmkllPR0VAaPVqcxb9kC89atSQ0Lo/KECVh2fSFjLPwpjyKtrJOcnozfHT92Bu3kQMiBXNe/r2VbixZOLXRJfiWTgj0ZVwghhBBCH0n4xbPh1B+5J+nBB0nfPpOI5B7EXQyn+sa/URs9GgPvMvcbDKytURlm+VUpxMo6qdpUjt89zo6gHey9tTfX8fge1h50r96dbu7dcLd2L+4zF0IIIcQzThJ+UfGd+iPXB1xpU1VEBpoTccUCbeoRAKL/WoPtG4965w3t7HJvM4+VdbSKlpP3TrIzaCe7b+4mKjkqRxk3C7eMJL96N2ra1JRVdIQQQghRYiThFxVbYlRGz34W2nSIvm7Og4sWpCc/GsKj1mghPf8n6eZGURTOPzjPjqAd7AreRXhieI4yDmYOdHPvRvfq3alrV1eSfCGEEEKUCkn4RcV2ZnW2YTzxd40J87cmNeHRj77KQIut10PsasVjUFvPEpt6XIu6xragbewI2sGd+Ds59lcyrsQL7i/QvXp3Gjk0khV1hBBCCFHqJOEXFVvAdgAULdw/b0nEZctH+1QKNp4J2NeNQ2P638OyrmyDlm/l2+zZ+2f59dyvHAg5kGOfpcaSztU60929O82dm2Ooll8zIYQQQpQdyURExZYUA4CiVREXYqLbbFklEYcGsRhZpOdaPjeKonDi3gkWn1vMsbvHsu0zNTSlQ5UOdHfvThvXNvLwKyGEEEKUG5Lwi4rNxBoAtaGCa+sobu2zw6FRLDbVcy6JmbV8Voqi4HfHjyXnlnDm/pls+2rY1GCEzwg6V+2MmcasuKMXQgghhHhikvCLCkmblERq6F2MvXtA8EEATCqlUeOlcNSGiv6KtXo+akPR8n+3/o8l55ZwOfJytmJ17eoyuv5oOlTpIOPyhRBCCFGuScIvKpzk69e58/4HpMfH4fHncgwMP9dN3M0z2deYQoOBpGnT2Bm8k6XnlnI95nq2Io0dGjOm/hhaubSSVXaEEEII8VSQhF9UGIqiEPP334TN/gIlMWPIzr3vf8Hl1Xm5rsP/uNSuc9hyey/LLizjdtztbPtau7TmzXpv0tSpaYnELoQQQghRUiThFxVCenw8YTM+J3brVt020yZNqPzuBHB2ztiQ25N2gSSNKX83G8jy4FWEPQzLtq9jlY6Mrj8aH3ufEo1fCCGEEKKkSMIvnnqJ5y9w58MPSb11K2ODSoXd2DFUHjcOleF/P+KNh0DtXhnr8gdsh6QYHppYstbBjRVxAUTc3aNrT4WKbu7dGFV/FF6VvMrgjIQQQgghio8k/OKppSgKkStWED7/W0hNBcCgsj2uc+di3rJlzgqmlaDV28Q0fp0/r/zJyksrib3/aOiOocqQnh49GVlvJNWtq5fWaQghhBBClChJ+MVT6/78+UQsXab72rxdO1zmfIWhnV2u5bWKltVXVrPg9AIepj7UbdeoNfSr2Y/hPsNxtXAt8biFEEIIIUqTJPziqWXzyitErf4LbXIyDu+/j+3wYajUuS+ReSPmBtMPTc+2jr6poSmveL3C0LpDcTBzKKWohRBCCCFKlyT84qllVK0aLt98jaG9PaYNGuRaJk2bhu9FX34+8zMp2hQgY+jOkLpDGFZ3GLYmtqUZshBCCCFEqZOEXzwVUsPCuPfFlzh+9hkax0e98ZadO+utExAZwNRDU7M9NKuOXR1mtp6Jt613icYrhBBCCFFeSMIvyr14v0OEfvQR6dHRpMfFUXXZUlQGBnrLp6SnsOTcEpadX0aakgaAkdqIcY3G8UadNzBUy4+9EEIIIZ4dkvmIci1uzx5C3v9AtwpPesQD0iMjMaxcOdfy5+6fY9qhadmekNvIoRGft/5cVt4RQgghxDNJEn5RbsXu/Jc7H30EaRm99Nb9++H02WeoTU1zlE1MS2Th6YWsvLwSraIFMiblvtf4PV6r9RpqVe6TeYUQQgghKjpJ+EW5FLt9O3c+ngjp6QDYjhiBw8cfoVKpcpT1D/Nn+uHp3I57tKZ+S+eWzGg9Q5bZFEIIIcQzTxJ+Ue7E/LOV0EmTQJvRU283ejSV338vR7IfnxLP96e+Z03AGt02S40lHzX7iL41+uZ6cyCEEEII8ayRhF+UKzGbNxM6eYou2bd/+y3sx4/Pkbz73fHj8yOfE/YwTLetQ5UOTG05VdbUF0IIIYTIQhJ+Ua6ozMxArQatFvvx71B53Lhs+2OSY/jG/xu2XN+i21bJuBKTW0ymm3s36dUXQgghhHiMJPyiXLHq0gXmzyfl5k3sR7+Zbd+em3uYfXQ2EUkRum3d3bvzSYtP5AFaQgghhBB6SMIvypyiKNl65q26vpBtf0RiBF8c+4LdN3frtlU2rczUllPpWLVjqcUphBBCCPE0koRflKnIFStIuXUbx88+zXU4TkBkAOP2juNewj3dtr41+vJRs4+wMrIqzVCFEEIIIZ5KkvCLMhPx23LCv/kGAJWhAY6TJ2fbv/P6fqYc+phUJQkAjWJHL5cJfNjoRayMNKUerxBCCCHE00ieRiTKxIMlv+qSfQAjd/ds+yf++zMfHZygS/bT4r2IDBzP7/9nTIsv97DW/zZCCCGEECJ/0sMvSt2Dn3/m/g8/ZnyhUuH0+QwqvfoqAOnadMZsm8GxyE1kjvBJiWpJctiLgAEASWlaJm44B8CrzaqUdvhCCCGEEE8V6eEXpUZRFO4vWJgt2XeePVuX7CekJvDO3nc5Frnpv/Iqku71JDmsN5nJflbTtlwgJiG1lKIXQgghhHg6ScIvSoWiKNz/4QceLFqUsUGtxmXOV9j07wdAeEI4w3YOwy/0QEZ5rYakkMGkRrYDcl9bPylVy4ZTIaURvhBCCCHEU0sSflHiFEXh/rffEvHL4owNajUuX3+Nde/eQMZKPIO2DeJy5GUAtKmWJNwcQ1p83Xzb3n3pXr5lhBBCCCGeZTKGX5SK9Pj4jDcGBrjOm4tV9+4A/C/kf3x84GMS0hIA0KS7EhU8BCXNpkDtxibJkB4hhBBCiLxIwi9KnEqlwmnqVFQqFWYtWuoerPXn5T/52v9rtIoWgLaubXlw41X8/0v+C8LKRJbnFEIIIYTIiyT8olSo1Gqcpk0DMlbimXtiLqsur9LtH+A9gE+af8IKk9v437hU4Ha71HEs9liFEEIIISoSGcMvip2iKITNmk3c3r059iWkJvDuvnd1yb4KFRObTeTTFp9iqDbk5cZumBgW7MfSRKOmfxO3Yo1dVEzDhg1DpVIxY8aMYmszODgYlUqV6xOihRBCiPJEEn5R7CJXrCBq1SpC3nufuP37ddvvPbzHsJ3DOBCSsRKPqaEpP3T8gSF1huiSJmszDTN7+xToODNf8sHaVIb0lDeZSXBhX8WZjIuc9u/fr7vWwcHBZR1OqXnw4AFTp06lUaNGWFtbY2pqiru7O3379mXNmjWFbu/EiRN8//33DB48GG9vb9RqNSqVijlz5hQpvnfffVf3fRk2bFiR2hBCiPzIkB5RrB4eO0743HkZXygKKk1GQn4l8grj9o4jPCEcgMqmlVnQeQF17XKuxJP5MK1pmy+QlKbNsd9Eo2bmSz7y0K1yqk2bNrluP3ToEAA1a9bEwcEhx/6qVauWWEzOzs54e3tjb29fbG1qNBq8vb2LrT1R/Hbv3s2AAQOIiorCyMgILy8vjIyMCA0NZdOmTcTFxTFgwIBCtTlq1CjOnj1bLPH5+fmxcOHCYmlLCCHyIgm/KDapYWHcef99SE8HwHHSJCzatOHA7QN8/L+PSUxLBMCrkheLOi/CydxJb1uvNqtC17pOrD8Vwp5L94hNSsXKREOXOo70b+yGtZn07JdXfn5+uW7P/BRnypQppd6T+dVXX/HVV18Va5uurq5cuXKlWNsUxefYsWO8+OKLpKWlMXv2bN59910sLCx0+0NCQor0/fPw8KBWrVo0bdqUpk2bMnnyZI4ePVrodpKTkxk9ejQWFhY0b96cPXv2FLoNIYQoKEn4RbHQpqQQMuFd0iMjAbB66UUqDX6dVZdX8Y3/N7qVeNq5tmNu+7mYa8zzbdPaTMPIttUZ2bZ6icYuhKhY0tPTGTZsGMnJyfz444+MHz8+Rxk3Nzfc3Ao/B+jvv//O9rWxsXGRYvzll1+4evUqP//8c5FuGIQQojBkDL8oFvdmf0HSuXMAGNeqhcP0acw5Poc5x+fokv2BtQbyY6cfC5Tsi2eLu7s7KpWK/fv3c/nyZd544w3c3NzQaDTZPg3w8/Nj0qRJtGjRAhcXF4yMjLC3t6dLly6sXr1ab/v6Ju0+PvHWz8+Pnj17Ymdnh6mpKfXr12fhwoUoipKjzbwm7WY9XmJiItOnT8fb2xsTExMqV67MgAEDuHr1qt544+Pj+fTTT6lZsyYmJiY4OzszaNAgrly5ohuL7+7unvdFLSZpaWksXryYdu3aUalSJUxMTKhevTojR47Ms4d88+bN9OjRA0dHRzQaDba2ttSqVYtBgwaxfv36HOXPnj3LkCFDcHd3x9jYGEtLSzw9PenevTvz5s0j/b9PDgti69atXLlyhWrVqvH2228X6bxL2rp162jXrh1jxowp61CEEM8A6eEXTyxq3Tqi164FQG1tjeP38/ng6GT2h+wHMlbimdR8Eq/Xfr0MoxRPg0OHDvHFF1+g1WqpU6cONjY2qNWP+iX69OlDREQElSpVwsnJCRcXF0JDQ9mzZw979uxh165dLF++vEjH9vX1ZeTIkdjY2ODh4UFwcDDnz59n/PjxBAcHM2/evEK3GRsbS+vWrTl79iy1atWiRo0aBAQEsHbtWvbu3cvJkyepVq1atjqRkZF06NCB8+fPA+Dl5YWFhQUbN25ky5YtTJ8+vUjnVxTx8fG8+OKL7P9v8r2HhweVKlXi8uXL/Pbbb6xatYpVq1bRv3//bPVmzJjB559/DoCDgwP169cnKSmJO3fusHr1agIDA3n55Zd15Xft2sWLL75ISkoKFhYWeHt7Y2hoSEhICP/++y87d+5k7Nix2Ybk5GXjxo0AvPTSSyQlJfHbb7+xb98+YmJicHFxoXPnzgwaNAgjI6NiuEqFk5ycDIChoSFLly6VVZ6EEKVDEQVy+PBhBVAOHz5c1qGUKwnnzimXfeopl7xrKZdq1VZC/92t9F03RvHx9VF8fH2U+subKFN2/qVEP0wp61BFGQMUQFm+fHmOfdWqVVMAxcDAQBk0aJASFRWl25eQkKB7/+uvvyrXrl3LUf/o0aNKjRo1FEBZt25djv1Dhw5VAGX69OnZtgcFBeniMjY2Vr777jslLS1Nt3/27NkKoKhUqhzHzVpX3/E0Go3SuHFj5erVq7p9169fV2rWrKkAyhtvvJGj7sCBAxVAqVKlinLy5End9qioKKV///6KkZGRAijVqlXLUTcv+/bt08UbFBRUoDojR45UAMXe3l7Zv3+/bntcXJzyxhtvKIBiamqqBAQE6Pbdv39fMTQ0VAwNDZW///5b0Wq12do8ffq0snjx4mzbGjZsqADK5MmTlaSkpGz7QkJClHnz5uXYnpfatWvr2vPw8NCdd9aXt7d3tu9LUbVv314BlK+++qpA5V9//XUFUMaOHavblvnzMnTo0CeORwghciNDesQTMbS3x7h2bQDC+r1B58trufowYzUWJd2UuODRrNpnQYsv97DW/3ZZhiqeAt7e3qxYsQIbGxvdNlNTU937UaNG4enpmaNeixYt+OmnnwCK3MM/ePBg3nvvPQwMDHTbpkyZgo+PD4qisG3btkK3qVarWbt2LTVq1NBt8/Dw4MsvvwTgn3/+yVY+ODiYv/76C4BVq1bRuHFj3T4bGxtWrVqFq6troeMoips3b+Lr6wvAggULaN++vW6fhYUFy5cvx9vbm8TERObOnavbd+3aNdLS0vDx8aFv3745erAbNmzI6NGjs227fPkyAJMmTcoxJt7V1ZUPP/ywUGPlQ0NDAZg3bx537txhwYIFPHjwgIcPH7Jp0yZcXFwICAigV69eJCUlFbjdJ3X8+HHd93fQoEGldlwhhJCEXxCTkMrSgzd4bckRev54kNeWHGGZXxAxCan51tU4O1Nt5R/cGfoOY23uYmBzBABFqyHh1nC0SRnJSVKalokbzknSL/I0dOhQDA3zHmkYEBDA7NmzeeWVV+jUqRNt27albdu2TJkyBYCTJ08W6djjxo3LsU2lUtG6dWsgI5EtrK5du+Z6g5K5dGlUVBSR/010B9i5cyeKouDt7U27du1y1DM2NmbIkCGFjqModu7cSXp6OlWqVOHVV1/NsV+tVvPBBx8AZLsZylxeNTAwsMCTUTPr/P7777nOlyis+Ph4AFJTU5kzZw7vvPMOdnZ2mJmZ0bt3bzZs2ABk/CytWLHiiY9XEMnJyQwfPlz3dX4/50IIUZzKTcKfnJzMP//8w7hx42jSpAnW1tYYGRnh5OREr169dP9B59fG119/TcOGDbGwsMDa2ppWrVqxePFitNqc67kLWOt/mxZf7mH2tsscvRHJxdBYjt6IZNbWSwXulY9LUzHB8C5GDv8HgKKoSQwZjDYp57rq07ZcKNCNhHg21a2b87kMWU2bNo06deowdepU1q9fz759+zh06BCHDh3ixIkTAERERBTp2F5eXrlud3R0BB4lkcXZ5uPtBgQEANCgQQO9bTZs2LDQcRRFZix169bNNo8iq3r16gFw9+5dYmNjAXBxceH1118nISGBVq1a0bRpUyZOnMj69et58OBBru1MnDgRgAkTJuDh4cGYMWP47bffinSTBY8+FbKwsOCtt97Ksb9ly5a6TyyK8slNUcyYMYNLly7x2muvlcrxhBAiq3KT8M+ePZuXXnqJn376iXPnzuHi4oKPjw8JCQls27aNl19+mf79+5OSkpJr/czJcZ988gnnz5/Hw8MDZ2dnjh49ytixY+nduzdpaWmlfFbl21r/20zccC7Xh1uB/l75+IMHSb1zR/f17AOrUFfe8qhe6KukP8z9gURJqVo2nAophuhFRWRurn8Fp3Xr1jFr1iwURWHq1KmcPn2amJgY0tPTURSF69evAxT591zfsTOT3aJ0GuTX5uPtxsXFAWBlZaW3TUtLy0LHURSZCbyTk/7nZTg7O+veZ8YO8Ntvv/H1119Ts2ZNTp48ydy5c3nllVdwcnKid+/eORL5UaNGsX79elq3bs2tW7dYsmQJI0eOpGbNmjRt2pTdu3cXKnZbW1sAPD099Q4Fyry5vHHjRqHaLoozZ84wd+5cPD09GTVqVIkfTwghHlduEn5FUWjTpg1//vknUVFRXL58mVOnThEREaF7ZPnff/+tW/nhcWPHjuXUqVNUrVqVs2fPcu7cOa5cucKBAwewtrZm69atzJw5szRPqVyLSUhl2uYLBSqbtVc+KTCQkAnvEtT/ZR4ePsyhO4fYee87VKqMj+GTwl4kLbZhnu3tvnTviWIXz6bMsfkffPABM2fOpGHDhlhZWemS56L27Jcnmcl8ZrKdm6yJdUnKvOkICwvTW+bu3bu691lvRIyMjJg4cSKBgYGEhITw119/8eabb2JpacmWLVvo3Lkz0dHR2drq378/hw4dIjIykh07dvDJJ5/g4eHByZMn6dGjB8eOHStw7LX/m1eU17j/zH2FWe6zqM6cOUN6ejp3797VrWjUq1cvnJyccHJyYs2aNQCsWbNGt+32bRn+KIQoPuUm4X///ffx8/Nj4MCB2ZZe02g0TJo0iTfffBMg1+E5Fy9e1E2EWrp0KT4+Prp9zz33HN988w0A8+fPz/FH5lm1/lSI3p79x2X2yqfHxhIyfjxKYiLp0dEE7d7E+/vfB1VGO8n3O5Ea1Sbf9mKTZEiPKLzMHvysk0ezOnToUGmGUyK8vTM+GTt79qzeMmfOnCmVWGrVqgXA/7d35/E1Xfv/x18n8yAiiVkREmOihl5UYi5aNbXUcC9tFVd7a+i9VWOvoaiq6uCrvS3lFlGKKip+rqk1JoQqTYgQhIgENSVyJCE5vz/ScyoySAw5Sbyfj0cej5y91t4+J6dNPnvttT7r6NGjuT7diIjIHDSoXLlyrk8lqlSpQt++fZk/fz6RkZF4enpy9uxZgoODc+zv7u7Oc889xwcffEBUVBStWrXi9u3bfP311/mOvWXLlsCf/83kxNx2P5tv3S+j0WhZs3HlyhUuXLjAhQsXLAuHU1JSLMcK40ZERB4fRSbh9/LyyrO9c+fOQOYo3qVLl7K0rVy5EpPJhI+PDx07dsx27iuvvIKLiwtGo5F169Y9vKCLsS1Hcx+1y7H/kXjOjx3HrTNnATD85Une9N3Dzds3AUi72py037P/7HNS2sm+YMGKAC4uLgDE3TGdzMxoNDJ37tzCDumhe/bZZzEYDERFRbFr165s7ampqQQFBRVKLM899xy2tracPXs2xzVUGRkZfPrppwB06dIlX9esWLEitWrVAv6spJMXOzs7y6Lp/PQ369evHzY2Nly+fJm1a9dmaz979iybNm0CoFOnTvm+7v0aOHAgJpMJk8lESEgIACEhIZZjr776KpC5aN18rLA2VhORx0ORSfjv5c7SaeY//GbmX6CtW7fO8VwnJyeaNWuWpe/jLimlYPOcm+1Zx42ffwbAUKE84zpc5OrtzGkHtVwDSE3oAeRvA5mO9Svcu5PIXdq2bQvA+++/z9GjRy3Hz58/T48ePQqUEBZVNWrUsCzq7N+/PwcPHrS0Xbt2jf79++d4w/MoVKtWzbLL8fDhw9m9e7el7caNGwwZMoTIyEicnZ0ZPXq0pW3r1q3885//5ODBg1kq7phMJlatWmV5T02bNgUypy/17t2bTZs2ZVujdfjwYb799tss/fPD19eXwYMHAzBixIgsT0USEhIYMGAAqampVKhQwfL02Gzv3r14e3vj7e3NuXNabyQiJUOxqQtm/qXfpEmTbIvWzNUk7qx1fTcfHx+2b9+e51bwZrGxsdl+0Zt3vSwp3Jzy/9E3TYjk2bA/6oU7ODDnJQdOGjKfEDSv1JwPWnxCq0M78zVFyMnehl5PFd4jdCk5xowZw4oVKzh37hxPPvkktWvXxsHBgYiICOzt7fniiy8sSV5xNnfuXMLDw4mIiOCpp56iTp06lCpViiNHjmBjY8P06dMZM2ZMlv0CCqpJkya5Vt4B+Pzzz+nXrx+fffYZ0dHR7Nixg1atWuHj42PZaTc5ORlHR0eCgoIso/aQeTMwZ84c5syZQ+nSpalZsyZ2dnacPXuWixcvAvD3v/+ddu3aAZlPCr7//nu+//57HBwc8PX1xc3NjYsXL3L69GlLvO+8806B3uOcOXM4fvw4O3bsoHHjxtSvXx8nJyfCw8O5desWnp6erF27NsueD5A5uHTmzBkg5wXgs2bNskwTBbh+/ToA06ZNy7Ibs/lnKCJSFBSLhP+HH36wlE579913s7Wb50SaKzPkxNx29erVe/57CxcuzHVxcEnRsX5F9p66cs9+lZJ/Z/QvyzCQOVL34wsV2F06c6Gen5cfc9rNwdXelak9/Bmz+rd7Xm9qd3/cnTWlRwquUqVK7Nu3j4kTJ/K///2P6OhoypYtS+/evZkwYUKhVa951Ly8vAgJCeGDDz5g5cqVnD59mjJlytC9e3cmT55sqSqTVyWfe7nX70HzE9VSpUqxZcsWFi5cyNKlSwkPDyc2NpaKFSvSt29fRo8ebZnrb9aqVSu++OILtm3bRnh4OKdOncJoNFK2bFm6dOnC4MGDefHFFy393dzc+Pbbb/npp5/Yt28f8fHxREVF4ebmRmBgIL179+aNN94o0MZbkFmac9u2bcybN48lS5YQGRlJamoq1atXp0uXLowePfq+NjEzGo05LhA3Go0YjUbL68Lc0EtE5F4Mpoexy8kjFB4eTmBgIElJSfTv35+lS5dm62Nra0tGRgYLFy5k0KBBOV5n0qRJTJs2DR8fn3vWds5thP/1118nJCSEFi1a3P8bKiKuG2/RfMbWPEflHW+n8cnOudRMzEzwDwdW5P3WmXW0vUt7s7jzYjyd/rzJWrk/lknrInK8ppO9DVO7+9OnadWH/E5EHi8fffQRY8aMoWfPnvnan0SKltDQUAICAkrM3xIRKR4eeIR/ypQp9z0a/uuvv+a5iUx0dDTPPvssSUlJtGnTJtcqDc7OziQnJ+daox/+HG25e/5/TqpWrUrVqiU7MXV3sb/nqHwF4xXc05IBuFijDB8GXAIMlHcpz7yO87Ik+wB9mlblWb+KfH/wHFuPXiAx5RalnezpWL8CvZo8gbuLRvZFHsStW7cs5Ulzq1YkIiJytwdO+J2cnHB3d7+vc/OagxoTE0P79u2Jj48nICCA4OBgy+6Jd/Pw8CA5OTnPOtzmaT8eHh73FWtJZB5tz21U/qJXZS7M+oqUxWOZ9vR5btsZKO1Qmnkd5lG5VOUcr+nuYs/gljUY3LLGI41dpKS6efMmM2bM4O9//zvVqv25W/X58+cZPnw4kZGReHh4MGDAACtGKSIixckDJ/zjxo1j3LhxDyMWi9jYWNq1a0dsbCzNmzdn48aNWWrz361u3bqcO3cuz6k65prLd883fdzda1T+2+NfM6VTPGDA2c6ZL575Al+P3BdHi8iDSU9PZ/r06UyfPp1y5cpRvXp1kpOTiYqKIiMjA2dnZ4KCgvJcsyQiInKnIrdoNy4ujnbt2hETE0PTpk3ZtGnTPRenBQQEsHXr1hzrVkPmdJ6wsDBLX8nqzlH525cvY+Pigo2zM8sil/Hl4S8BsDPY8UnbT2hUvpF1gxUp4ZydnZk5cyabN28mKirKsrlVzZo1ad++PW+//bZlgy4REZH8KFIJf0JCAu3bt+fkyZM89dRTbN68OV/ThXr37s3UqVM5efIkW7Zsybb51pIlSzAajTg7O9O9e/dHFX6xl5GWxrk3h5GRkkL0mJ7MjP6zxNz0ltNpWaWlFaMTeTzY2toyduxYxo4da+1QRESkhCgyG29dunSJZ555huPHj9OkSRO2bNmSrT5ybvz9/enbty8AQ4YMsYyIAezcuZMxY8YA8Pbbb2sOfx4uzJjBzcOHSY2K4saUmZj+KMU5rtk4utTM306aIiIiIlK0FJkR/n//+9+W3TPT0tLo1q1brn3nzp1L48aNsxybN28eUVFRHDp0iIYNG+Ln50daWpplU67OnTszefLkR/cGirnEjRu59t0KAJKd4D/PZ94LDn1yKP3r9bdmaCIiIiLyAIpMwp+ammr5/s4R+pyYdza8k7u7O6GhoXz66ad89913REdHY2trS7NmzXjttdcYOnRonjtLPs7Sr18nYfr7ltf/182GC54GetfuzfBGw60YmYiIiIg8qCKT8C9atIhFixY90DWcnJwYP34848ePfzhBPSYuzv6Y9D9Kmm5pZOBXXxs6Vu/Iu83fxWAwWDk6EREREXkQGvJ+zBkPHODaqlUAXHOFZW1taF6pOTNbzcTWJvd9EkRERESkeFDC/xjLSEsjfvIUy+tvOthQqVIt5rSbg4Otg/UCExEREZGHpshM6ZHCd3nBAtL+2JDs15oGfvV3Znnrj3C1d7VyZCIiIiLysGiE/zF228+XS562pNrBgmdtGNd8vHbRFRERESlhNML/mMowZTD11hr2DQKfBFv+0uh5etbqae2wREREROQhU8L/mAo6GsTuuN1gb+BGvSeY1GKSKvKIiIiIlEBK+B8z6UlJHL1+nM9++QwAOxs7ZreZTSmHUtYNTEREREQeCc3hf8yce28yV/oOpM7pNAD+2eSf+JX1s3JUIiIiIvKoKOF/jNzYswdj8EbKX77NsOAM2lZoySv1X7F2WCIiIiLyCCnhf0xkpKQQ/e4Yy+sfunowte0MzdsXERERKeGU8D8mjn86A8eEKwCE1Tbwt9fn4OHkYeWoRIqeKVOmYDAYGDhwoLVDEREReSiU8D8GrkeGcztoFQBGB0h/ayBNKza1clRSUhkMhvv6mjJlyiOPbdGiRUyZMoVDhw498n+rsAwcOBCDwUDbtm2tHcojZ74Zy+tr+PDh9339hIQERowYQc2aNXFycqJ8+fJ07dqVrVu35nrOyZMn+fjjj+nWrRvVqlXD0dGRUqVK8eSTTzJmzBji4uLuOx4RkYdFVXpKOFNGBr+N/gdlMzJfh3T15s12o6wblJRogYGBOR7fs2cPALVq1aJ8+fLZ2qtVq/ZI44LMhH/Hjh14e3vTqFGjHPuULVuWOnXqUKlSpUcej9yf8uXLU6tWrRzbfHx87uuav/32G+3atePKlSu4uLjg5+dHQkICGzZsYMOGDcyYMYPx48dnOSc9PR1f3z83KyxXrhwNGjTg8uXLREREEB4ezvz581m9ejXPPPPMfcUlIvIwKOEvpq4bb7Hql1i2Rl4gKeU2bk52dKxfkZeaPIG7i72l357/TKZs9GUATlexo/e4hdja2ForbHkM7N69O8fj5vUiEyZMKNLTZYYPH/5Ao8Ty6HXu3JlFixY9tOulpqbywgsvcOXKFTp06MCKFSvw9PTEZDLx+eefM3LkSCZMmECzZs2yJO4mkwk3NzfeeOMNXnnlFfz9/S1tR44cYcCAARw6dIiXXnqJqKioHG90RUQKgxL+Ymjl/lgmrYsg5XZGluN7T13ho/8dY2oPf/o0rcqZU4dw/vp7ANIN4D5pHBVLV7ZGyCIiRdbChQs5ffo0bm5ufPfdd3h6egKZN6kjRowgNDSU5cuXM3HixCwJv62tLTExMZb+d/Lz82PNmjXUrl2ba9eu8d133zFy5MhCe08iInfSHP5iZuX+WMas/i1bsm+WcjuDMat/Y3nYKWZtn0LCH+tyYzo3ILBN/0KMVKRg4uPjGTNmDP7+/pQqVQpXV1eefPJJpkyZQmJiYo7nXLx4kdGjR+Pn54erqytOTk5UrVqVwMBA3n33Xc6fPw/A9u3bMRgM7NixA4DXXnsty7zvO+e/57Vo19w/JiaG8PBw+vbtS4UKFXB0dKROnTpMnTqVtLS0XN/j4cOH6dWrF+XKlcPZ2Zl69eoxbdo0UlNTLXPxC2MtA8C5c+d46623qF27Ns7OzpQuXZqmTZsya9YsjEZjjuckJSUxbdo0mjRpgpubGw4ODlSuXJlmzZoxatQooqKisvTPyMhg8eLFtGvXDi8vL+zt7SlXrhz+/v4MGjQoz7nxhWnFihUA9OnTBy8vr2ztb7zxBgChoaHExMRYjhsMhhyTfTNvb2/q1asHQGRk5EOMWESkYDTCX4xcN95i0rqIfPWdFjIbW4+T7H7VlgEnKjJy/NePODqR+7dt2zZ69erF9evXcXBwoEaNGgAcPXqU8PBwli9fzrZt23jiiScs58TFxdG8eXPi4uKws7PD19cXNzc34uPjCQsLIyQkhBYtWlC5cmXc3d0JDAwkPDycxMTEbOsIGjRoUKB4N2/ezFtvvYWdnR116tTBzs6O48ePM3nyZH777Te+//77bOds2LCBnj17kpaWhrOzM35+fiQmJjJp0iQ2b95cKGsYzHbv3k23bt24du0aDg4O+Pn5YTQaOXDgAAcOHCAoKIgtW7ZQsWJFyzk3btwgICCAiIgIDAYDvr6+lClThkuXLnH48GH2799PjRo1qFOnjuWcQYMGsXjxYgCqVKlCzZo1SUpK4syZMxw5coTExEQ6dOhQ4PgPHz5M//79iY+Px9XVlXr16vHCCy8QEBBQ4Gulp6cTFhYGQOvWrXPs8/TTT+Pg4EBaWhqhoaF4e3vn+/opKSkAuLq6Fjg2EZGHRSP8xcj3B8/lOrJ/J9tSx7D12AWAs2Mp+o37Bkc390cdnsh9iY6O5sUXX+T69euMGjWKS5cucezYMY4dO0ZsbCydOnXi+PHjDBgwIMt5s2fPJi4ujo4dO5KQkEBkZCRhYWHExsZy9epVlixZYknMGjduzO7du2ncuDGQuY5g9+7dlq+5c+cWKObhw4czcuRILl26xIEDB4iLi2PJkiUYDAZWr17Nzz//nKX/hQsXGDBgAGlpafz1r38lISGBAwcOcPz4cfbt28fJkydzvEl4FC5fvkyvXr24du0azz//POfOnePgwYMcO3aMQ4cOUaNGDSIiIrL9vBcuXEhERAQNGzbkzJkzHD9+nLCwME6fPk1iYiKrV6+mYcOGlv6HDx9m8eLFuLu7s3PnTs6dO8f+/fs5duwYiYmJ7N69m549e97Xezh06BDLli3j559/Jjg4mI8++ojAwEB69uyZ69Og3Jw5c8aSlN+5APdODg4OVK1aFYBjx47l+9rmzxigTZs2BYpLRORhUsJfjGw5mnDPPga767iWX2F5PbnFZKqWrvoowxJ5IFOmTCEpKYlBgwYxe/ZsSpcubWmrVKkSq1atonLlyuzYsYO9e/da2sxTJIYNG5ZtGkapUqV4+eWXsyyifJhat27Nhx9+iJOTk+XYyy+/zPPPPw/A+vXrs/T/6quvuHbtGnXq1GHx4sVZ3mOzZs1YtGhRnlOBHqavvvqKixcv4uXlxYoVKyhXrpylrWHDhgQFBQGZT13MlZXgz5/3a6+9Zkl+zRwdHenZsyetWrXK1r9du3ZZjkPmVJjAwED+9re/FSj2ihUr8s477xASEsKFCxdISUkhMjKSsWPHYmtry5o1a3jxxRcxmUz5vuaVK1cs3+c1PcfcdvXq1XxdNy0tjX/84x9A5s+1S5cu+Y5JRORhU8JfjCSl3L5Hjwzq2S3iiwVJND+WgWtqAJ1rdC6U2ETux61bt1izZg2AJTm6W+nSpenYsSMAP/30k+W4eQrMypUrLSO0hWXYsGE5HjeXJI2Ojs5yfOPGjUBmzXx7e/ts53Xq1Inq1as/5ChzFhwcDGTOSy9VqlS29sDAQFq0aAFkTkMyM/+8165dy/Xr1+/575j7h4aGcuLEiQeOGzJj/uijj2jRogXly5fH0dGRunXrMnPmTJYuXQpk/jeycuXKfF/z5s2blu8dHBxy7We+ucttfcPdXn/9dQ4cOICTkxNBQUHY2OjPrYhYj34DFSNuTnkvuXDy3MY/tsdSNhFGrcmgw6mCzUsWKWwnTpywJFAjR46kZcuWOX5t27YNyFxoajZy5EgcHR1ZtmwZlSpVol+/fsyZM4f9+/eTkXHvqW8Ponbt2jker1ChApA53/1O5sWsd055uVtebQ+TOZa81i2Y2+6cvjJo0CC8vLzYvn07lStXpkePHsyaNYtdu3Zx69atbNd4+umnadWqFRcuXKBu3bq0bt2aiRMnEhwcXOBpN/nRr18/mjVrBsCqVavyfZ6zs7Pl+7yesphvKl1cXO55zdGjR7No0SLs7Oz47rvvCrxGRETkYdOi3WKkY/2K7D11Jcc2W5dTdD+zBd8/Zv0cKVuFms9rdF+KtjunR4SGht6z/52jq/7+/oSGhjJt2jT+97//sWLFCku1lSpVqjBu3DiGDRtmqf//MOW2ANM8inv3DUdSUhJAlqk8d3Nzc3tI0eXNnGzfuSD3buZNx8xxm/vv27ePqVOnsnbtWn788Ud+/PFHALy8vBgxYgQTJkywPMGwsbFhw4YNfPDBBwQFBbFr1y527cpcW+To6EifPn346KOPLDdJD0NgYCBhYWGWefP54eHhYfn+8uXLufYzT/25s39OJk2axOzZs7G1tWXZsmX06NEj37GIiDwqGuEvRl5q8gROdtk/MoPtDZ4o9S1/3ZmZZNyyseGrp/rTq2nhVf0QuR/mKSU2NjakpqZiMpny/Lp7s6XGjRvzww8/cO3aNUJCQvjwww8JCAggLi6OESNG8Omnn1rhXWVnTubzGtm+M7l+lMw3HQkJua8Jio+PB7LfhPj4+LB48WKuXLnCL7/8wmeffUanTp24cuUKU6ZMYdSorLt4u7m5MWPGDGJjY4mOjmbRokX0798fGxsbgoKC6NKlS45PB+6XeUpOQa7p7e1tma5z91Qss7S0NGJjYwGoW7durteaPn0606ZNw9bWlqCgIHr37p3vOEREHiUl/MWIu4s9U3vcvQjRhFOllQz5KRGnP/7GrfJtx9ABHXB3zj5XWKQoqV27No6OjmRkZGRZkFtQDg4OtGjRgjFjxrBnzx7Gjx8PwH/+858s/R7FaH9+mEtVHj58ONc+ebU9TOaENSIi9xK/5jZzDfm72dra0qRJE9566y02bdrEV199BcD8+fO5fTvntUY+Pj68+uqrLF26lAMHDmBnZ8cvv/zCvn37HuTtZBEeHg6QbVFxXmxtbS1TgXbu3Jljn71791qm+5jXN9ztww8/ZOLEidjY2LBo0SL++te/FiR0EZFHSgl/MdOnaVVm9XrSMtJv77mbwLhj/CU6syrF+VJePDn2X/Rpqso8UvQ5OzvTtWtXAN5///0CVVfJi7meunnjLTPz/Os7F2oWhs6dM6fXLVq0KMfR582bN3PmzJlCicVcLWbevHk5LkDdu3cvISEhWfrei/nnnZqamqXqTW7q169vqax092d0vw4dOsSmTZuAP3/e+dWnTx8gc+5/TtN6zDc0zZs3z7EG/yeffMK4ceOwsbHhm2++yVbSVETE2pTwF0N9mlZl34QODO1gj2fpjby25c/5wg0+/pDegT5WjE6kYN5//33c3NzYvHkzffv25ezZs1na09PT2bVrF4MHDyYuLs5yfOjQoQQFBXHt2rUs/S9evMjHH38MQNOmTbO0meusb9++/aHdXOTHG2+8QZkyZYiKiuLVV1/NMrUnLCyMgQMH5lkh5mHHUr58eS5dukS/fv2yJLjh4eGWZLVDhw5ZNrIaP348X375JRcuXMhyvcTERN5//30gc3qMuczn0qVLmTRpUra69bdv32bu3LlcuHABGxsbnnrqqXzFvXfvXkaMGGEZxTczmUwEBwfTuXNn0tPTqVatGkOHDs12/jvvvIO3tzf9+vXL1jZ48GCqV69OUlIS/fr1s9y0mEwm5s6dy/LlywGYNm1atnO/+OILRo0ahY2NDQsXLuSVV17J1/sRESlMWrRbTLk4wf7kL/nrzlt4/lEQxP3FFynfJtC6gYkUUJ06dfjxxx/p3bs3q1at4vvvv8fX1xcvLy9u3LhBdHS0pULKxIkTLeeFhYXx9ddfYzAYqFmzJmXLliUxMZETJ05w+/ZtvLy8sm2o1b9/fz7//HNWrlxJSEgI3t7e2Nra0qhRIz777LNH9h4rVKhAUFAQvXr1Yvny5axbt4769euTmJjI8ePHCQwMpG3btixfvhxbW9v7+jf27NlD2bJl8+zz+++/4+XlxerVq+natSvr16+nSpUq+Pn5cfPmTUvtfH9/f0s9frPIyEhmzpzJm2++SbVq1ahYsSJGo9Hy+Tg7O1s+D/O/NW3aNKZNm4aXl5el7Ojp06cti7WnTZuGj0/+BihSUlL4/PPP+fzzz/H09KR69erY29tz6tQpfv/9dyBz2tD69etzXFT9+++/c+bMmRxH6J2cnFi7di3t27dn69atVK1albp165KQkGB5AjFt2jRLeViz8+fPM2LECCBzPcqCBQtYsGBBjvE3bty4wBu8iYg8LEr4i6llkcs4deUEff94em7r4UH5MaOtG5TIfWrbti3Hjh3jP//5Dxs2bODYsWOcOXOG8uXL06hRI1q1asULL7yQpVb9Z599RnBwMLt27SI2NpaDBw/i4OBAvXr1eO6553j77bezVaJp1qwZa9eu5ZNPPuHQoUOEhIQ88hKeZl27drVUudmxYwfh4eF4e3szefJkxo8fT//+/YG8K/nk5fbt23lWmblTy5YtiYiIYNasWWzcuJEjR45gb29PkyZN6NOnDyNGjMhWfnLixIk0aNCA7du3ExMTw+HDh7GxsaFatWp06NCBt99+O0vy3qtXL9LT0/n55585evQoUVFRpKWlUaFCBTp06MCbb75J27Zt8/3+6tevz3vvvce+ffuIiori5MmTGI1GypQpQ7t27XjxxRcZNGhQrhWU7qVRo0ZEREQwY8YMNmzYQEREBG5ubnTu3Jl//etf2ZJ9yFzMa35SlJiYmGWjsrvZ2enPrYhYj8FUmM+1i7HQ0FACAgIICQnJddFWYblovEi3Nd0w3jZib7Bjlf1wynlUofRzz1k1LhG5f35+fhw9epQff/yRbt26WTsceUSK0t8SEXl8aMihGJq9fzbG25mL7V5rMAifxoOtHJGIPIg9e/Zw9OhR7O3tlQSKiMhDp0W7xcze+L1sjNkIQJVSVRjSYIiVIxKR/Ni4cSPLly/PViFo27Ztlioxf/vb3+45D19ERKSgNMJfjNxKv8WMfTN48lQG7snQe9honO2c732iiFjdyZMnGTFiBHZ2dlSrVo2yZcty9uxZywZYjRo14pNPPrFylCIiUhJphL8YWXJ0CTFXT/HKtgxGBGdQbfinpN9ItnZYIpIPHTp0YOTIkZbqPAcPHiQlJYWnn36a2bNns2fPHjw9Pa0dpoiIlEAa4S8mEpITmPfbPAIiTVTLrECHQ7Vq2Ja6v4oUIlK46taty5w5c6wdhoiIPIY0wl9MzNo/i9Q0I713/VlCsNzIEVaMSERERESKAyX8xcCeuD1sObOFVhEmKmfuV4Nbp0441atn3cBEREREpMhTwl/EpaWn8UHYB9imm3hpzx+j+wYD5UYMt25gIiIiIlIsKOEv4r6J+IYziWdo+5uJCtcyj5Xu0gXHWrWsGpeIiIiIFA9K+IuwuBtxfB3+Nfa3Tby0548NkW1sKDvsTesGJiIiIiLFhhL+Imxm2ExS01N55pAJr6TMhN+9Rw8ca9SwcmQiIiIiUlwo4S+idsTuYHvsdgAMlSpgX7MG2NlpdF9ERERECkR1+IuglNspfBD2geX1CwOn4zO2OSnh4Tg88YQVIxMRERGR4kYJfxH034j/EncjDoBO1TsRUDkAAOdGjawYlYiIiIgUR5rSU8TEJsayMHwhAM52zoxuOtrKEYmIiIhIcaaEvwgxmUzMCJtBWkYazikm/u+HMrjuO4rJZLJ2aCIiIiJSTCnhL0J+iv2J3XG7AXj5tzK4H4nl3JvDuLJosZUjExEREZHiSgl/EWG8ZeTDsA8BcL1p4pm9RgAMLi649+huzdBEREREpBhTwl9ELAhfQHxyPAD/iqqJIfkmAJ4DBmDn6WnN0ERERESkGFPCXwScvn6ab458A0DFNGee/DkWAJtSpfAa9Jo1QxMRERGRYk4Jv5WZTCY+2PcBtzNuAzDheD1ISQHAc+BAbMuUsWJ0IiIiIlLcKeG3ss1nNhMaHwpAExtvKm0+DICNuzuer75izdBEREREpARQwm9FybeSmbV/luX1O0drYkpNBcBr0CBs3dysFZqIiIiIlBBK+K1o3uF5XDReBKCfRwfsg38GwNbTE88B/a0ZmoiIiIiUEEr4rST6ajRBR4MAcLN3Y2jbsVSYNBG7ypXw+vvfsXF1tXKEIiIiIlIS2Fk7gMeReUfd26bMhbojmoygXOmK0Ls37j16WDk6ERERESlJlPBbwf87/f/Yn7AfgHqe9ehTu4+lzcbBwVphiYiIiEgJpCk9hexG2g1mH5htef1uo3ewMehjEBEREZFHQ5lmIfvi0Bf8fvN3AHrW6knZT1dwpv8AkveFWTkyERERESmJlPAXoqgrUSw/thyA0g6lGVa6G4kbN3Lz4EHi330X0+3bVo5QREREREqaIp/wf/rppxgMBgwGA23bts2zb2pqKh9++CGNGjWiVKlSuLu706JFC+bNm0dGRkbhBJwHZztnmlZsCsBbTd4ibd4SMJkAKDtsGAY7LakQERERkYerSGeY0dHR/Pvf/85X38TERNq1a8fBgwexsbHBz8+PtLQ09u7dy969ewkODmbNmjXYWTGprla6GvM7zmd33G6aXPPg7JbJADh4e+PeravV4hIRERGRkqvIjvCbTCYGDRpEWloa3bt3v2f/N954g4MHD1KtWjUOHz7Mb7/9xrFjx9ixYwfu7u4EBwczderUQog8bwaDgVZPtOLK519YjpUdPlyj+yIiIiLySBTZhH/u3Lns2rWLUaNG0bhx4zz7HjlyhO+++w6ABQsW4O/vb2lr3bo1s2bNAuDjjz/m2rVrjyzm/Lp56BA3tm8HwLFWLUo/39m6AYmIiIhIiVUkE/5Tp04xYcIEatWqxZQpU+7Zf+XKlZhMJnx8fOjYsWO29ldeeQUXFxeMRiPr1q17BBHf23XjLRbsOkW/+aFseufPJw0uQ/+BwaZIfgwiIiIiUgIUuUzTZDIxePBgjEYj8+fPx8nJ6Z7nhISEAJmj+TlxcnKiWbNmWfoWppX7Y2k+YyvTN0SSFHaAOuciAYh2r0LbvSZW7o8t9JhERERE5PFQ5CaOf/nll2zfvp2hQ4fesyqPWVRUFAC+vr659vHx8WH79u0cO3bsnteLjY3l3LlzWY7t35+5M254eHi+YjLbdvQCX2yPtrz2P7qRQzdvArCgZl2unz3KW/93lONtfXmmfoUCXVtERIoX89+Q5ORkK0ciIo+TIpXwx8TEMHbsWCpXrmyZd58fV65cAcDT0zPXPua2q1ev3vN6Cxcu5L333sux7fXXX893XDnJ8q7O/rlwd+JSmPhAVxYRkeLi1KlT1g5BRB4jRSrhHzJkCDdu3GDp0qW4u7vn+7ybf4yYOzg45NrHPDXIaDTe83qDBw/m2WefzXLs0qVLHD16lL/85S+4urrmOzbJHNF6/fXXmTdvHg0aNLB2OPII6bN+POhzvn/JycmcOnWKrl1VillECs8DJ/xTpkzJdTT8Xn799VcaNWoEwLx589i2bRu9e/emR48eBbqOs7MzycnJpKWl5donJSUFABcXl3ter2rVqlStWjXb8fyUB5XcNWjQgBYtWlg7DCkE+qwfD/qcRUSKhwdO+J2cnAo0Gn8nW1tbAM6fP8/o0aPx8PBg7ty5Bb6Oh4cHycnJXL58Odc+5mk/Hh4e9xWriIiIiEhx9MAJ/7hx4xg3btwDXeP48eMkJSXh6OhIw4YNs7XfuHEDyKywU7FiRQB++OEHAgICAKhbty7nzp0jOjo627lmJ0+etPQVEREREXlcFKk5/KmpqVy4cCHX9lu3blna75y+ExAQwNatW9m1a1eO56WkpBAWFmbpKyIiIiLyuCgSdfjbtm2LyWTK9Wvy5MkAtGnTxnLszpKdvXv3BjJH8bds2ZLt+kuWLMFoNOLs7Kx5+FbwxBNPMHnyZJ544glrhyKPmD7rx4M+ZxGR4sVgMplM1g7iXswLg9u0acP27dtz7NOvXz9WrFhBtWrV2LBhA/7+/gDs3LmT7t27c/36dd59912mT59eiJGLiIiIiFhXkZrS8yDmzZtHVFQUhw4domHDhvj5+ZGWlmbZlKtz586WJwUiIiIiIo+LIjGl52Fwd3cnNDSUGTNm4O/vz8mTJzl//jzNmjXjyy+/JDg4GHt7e2uHKSIiIiJSqIrFlB4REREREbk/JWaEX0REREREslPCLyIiIiJSginhFxEREREpwZTwi1Wkpqayfv16hg0bxlNPPYW7uzsODg5UrFiRrl27snr1amuHKAWwf/9++vTpQ6VKlXB0dKRq1aoMGjSIEydOWDs0eQjCw8OZPn06nTp1olKlSjg4OODu7k7Tpk2ZOnUqV69etXaIIiKSBy3aFauYOHGiZU8EOzs7fH19cXZ2Jjo6mqSkJAB69uzJ8uXLcXBwsGaocg+LFy9m8ODBpKenU7ZsWapXr86JEydITEzExcWF9evX0759e2uHKffp5MmT+Pr6Wl5XrlyZypUrEx8fT1xcHACVKlVi06ZNNGjQwFphiohIHjTCL1ZhMpkIDAxk2bJlXL16lcjISA4ePMjly5eZOXMmAD/88APvvfeelSOVvBw5coQhQ4aQnp7O2LFjOX/+PAcOHCA+Pp7+/ftjNBp56aWXuHz5srVDlftkMpkoX748U6dO5eTJk8TFxbF//37OnTvH7t27qV69OvHx8bzwwgukpqZaO1wREcmBRvjFKi5fvoyXl1eu7UOHDuXrr7/Gy8uLixcvYmOje9OiqE+fPqxatYqAgAD27NmTpS01NZV69epx+vRpxo8fz4wZM6wUpTyIlJQU0tPTcXV1zbE9JCSEwMBAANatW0f37t0LMzwREckHZVFiFXkl+5C5MzJk3hhcunSpMEKSAjIajQQHBwPwj3/8I1u7o6MjAwcOBGD58uWFGZo8RE5OTrkm+wABAQG4u7sDEBkZWVhhiYhIASjhlyIpJSXF8r2Li4sVI5Hc/Prrr9y8eROA1q1b59inTZs2AMTExBAfH19osUnhSU9P59atWwB53hiIiIj1KOGXIunbb78FoEmTJri5uVk5GslJVFQUAA4ODlStWjXHPj4+Ppbvjx07VihxSeFas2YNRqMR+PMGT0REihYl/FLk/PDDD2zYsAGAd99918rRSG6uXLkCgIeHBwaDIcc+np6elu9VurHkuXr1KqNGjQKgW7duqtIjIlJEKeGXIiU8PNwy77t///707NnTugFJrszTefIqm+rk5GT53jwKLCXDrVu36Nu3L2fPnqVcuXJ89dVX1g5JRERyoYRfCmTKlCkYDIb7+jp06FCe146OjubZZ58lKSmJNm3a8PXXXxfOm5L74uzsDEBaWlqufbQWo2TKyMjg5ZdfZsuWLbi5ubF+/XoqV65s7bBERCQXdtYOQIoXJycnS0WOgrK1tc21LSYmhvbt2xMfH09AQADBwcGWhFKKJg8PDyBzWofJZMpxWo952s+d/aV4y8jIYNCgQaxYsQJXV1c2bNhA8+bNrR2WiIjkQXX4xepiY2Np3bo1MTExNG/enM2bN1O6dGlrhyX3sGfPHlq2bAlk3rBVr149W58dO3bQtm1bAM6fP0+lSpUKM0R5yEwmE0OHDmXBggW4uLiwYcMGy+crIiJFl6b0iFXFxcXRrl07YmJiaNq0KZs2bVKyX0w0atTI8hRm586dOfbZsWMHAN7e3kr2S4Bhw4axYMECnJ2d+fHHH5Xsi4gUE0r4xWoSEhJo3749J0+e5KmnnmLz5s33PV1ICp+rqytdunQBYN68ednaU1NTWbRoEQB9+/YtzNDkERg5ciRffvklTk5OrFu3jmeeecbaIYmISD4p4ReruHTpEs888wzHjx+nSZMmbNmyhTJlylg7LCmgyZMnY2dnx549exg3bpxlAyaj0ciQIUM4ffo07u7uvPPOO1aOVB7EmDFjmDt3riXZ79ixo7VDEhGRAtAcfrGK119/nfnz5wPg7++f58j+3Llzady4cWGFJgX03//+l6FDh5Kenk7ZsmWpXr06J06cIDExEWdnZyWIxVxoaCgBAQEAlC9fnlq1auXa9/nnn2fChAmFFZqIiOSTqvSIVaSmplq+j4iIyLPv9evXH3U48gAGDRqEv78/s2bNYvfu3YSHh1OuXDlefPFFJkyYQO3ata0dojyAO/9fvXjxIhcvXsy1r6+vb2GEJCIiBaQRfhERERGREkxz+EVERERESjAl/CIiIiIiJZgSfhERERGREkwJv4iIiIhICaaEX0RERESkBFPCLyIiIiJSginhFxEREREpwZTwi4iIiIiUYEr4RURERERKMCX8IiIiIiIlmBJ+EREREZESTAm/iIiIiEgJpoRfRERERKQEU8IvIiIiIlKCKeEXERERESnBlPCLiIiIiJRgSvhFREREREqw/w83dsXvuJcDwAAAAABJRU5ErkJggg==",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "w, *_ = np.linalg.lstsq(train_x, train_y)\n",
- "plt.plot(syn_x[indices], train_y, \"o\", label=\"Training labels\")\n",
- "plt.plot(syn_x[test_indices], test_y, \"o\", label=\"Testing labels\")\n",
- "plt.ylim(-40, 40)\n",
- "plt.plot(syn_x, jnp.dot(syn_features, w), label=\"Fit Model\")\n",
- "plt.plot(syn_x, syn_labels, \"--\", label=\"Ground Truth\")\n",
- "plt.text(0, -20, f\"Training Loss {loss(w,0,train_x, train_y):.2f}\")\n",
- "plt.text(0, -30, f\"Testing Loss {loss(w,0, test_x, test_y):.2f}\")\n",
- "plt.legend(bbox_to_anchor=(1.02,1))\n",
- "plt.title(\"Noise, Perfect Features\")\n",
- "plt.show()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Adding noise reduces the accuracy on the training data. The testing labels have no noise and the model is not overfit, so the accuracy is good for the testing loss.\n",
- "\n",
- "Now we'll try adding redundant features. Our new features will be $[x^6, x^5, x^4, x^3, x^2, x, 1]$. Still less than our data point number but not all features are necessary to fit the labels."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 27,
- "metadata": {},
- "outputs": [],
- "source": [
- "syn_features = np.vstack([syn_x**i for i in range(7)]).T"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 28,
- "metadata": {
- "tags": [
- "hide-input"
- ]
- },
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvwAAAGSCAYAAACfThU4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAABP+AAAT/gEHlDmEAAC5hElEQVR4nOzdd1xV5R/A8c+9cOECsrcT3AN3bs2VO9O0cqQ5K8s0y9Tce2tlZmVpYmr+cuTIPVIT9w4XLhBwyxCQzT2/P65cQbYCF/H7fr3uS+45z/Oc7zmAfO85z1ApiqIghBBCCCGEKJTUxg5ACCGEEEIIkXck4RdCCCGEEKIQk4RfCCGEEEKIQkwSfiGEEEIIIQoxSfiFEEIIIYQoxCThF0IIIYQQohCThF8IIYQQQohCTBJ+IYQQQgghCjFJ+IUQQgghhCjEJOEXQgghhBCiEJOEXwghhBBCiEJMEn4hhBBCCCEKMUn4RYG1f/9+VCoVKpWK/fv3GzscIYQQQoiXkiT8IlVirVKpaNOmTZZ1fvjhB0nGc0nfvn1TXf/svLy9vY0ddoHk7e2do+v43XffGTtkIYQQIs9Jwi/S2LVrF//++6+xwxD5LGWyHBAQYOxwXlnyZEsIIURuMzV2AKJgGjt2LAcPHjRqDM2aNUNRFKPGkN927txJ0aJFsyxXvHjxfIjm5TZt2jQ6deqUaRl3d/d8ikYIIYQwHkn4RSpOTk48fPgQHx8fduzYQdu2bY0d0iulfPnyeHh4GDuMQqFYsWJ4eXkZOwwhhBDC6KRLj0hl8ODBWFtbAzBu3DgjRyOEEEIIIV6UJPwiFScnJ4YNGwbAqVOn2LBhwwu1l5iYyNKlS2nTpg1ubm6YmZnh7OxM06ZNWbBgAbGxsRnWzU5f5qtXrzJs2DCqV6+OjY0NZmZmuLm5UbVqVbp3785vv/1GeHh4hsd4/Pgx3377Lc2bN8fV1dUQX4sWLfjxxx+Ji4t7ofPPD48ePcLDwwOVSoWTkxO3b9/OsOy4ceMM13T27NnA0+vcr18/QzlPT89MBwpPmjTJsB0gMjKSmTNnUqdOHRwdHVGpVEyaNMlQXlEUjh8/zvjx42ncuDHOzs5oNBpsbW3x8vLis88+w8/PL3cvzHNKSEhgyZIltG/fnqJFi2Jubo6joyMNGzZk1qxZREZGZlr/xo0bfPfdd7Rr144SJUqg1WqxtLTE09OTHj16sHfv3nTrBQQEoFKpaN68uWFb8+bN03wfUl7XZ78PGUluO6MB38kDx5OfLt27d4+xY8dSrVo17OzsMqy3c+dOevXqhaenJ5aWllhbW+Pl5cWwYcOyHAfy6NEjZs6cSaNGjXB0dESj0eDo6EjFihVp164d8+fP58aNG5m2IYQQIpsU8crbt2+fAiiAsnDhQiU8PFyxt7dXAKVKlSpKUlJSmjoLFy401Nm3b1+67QYHByvVq1c3lEvv5enpqVy6dCnLuNI7xp9//qmYmZll2j6grF27Nt32fXx8FDc3t0zrVq5cWblx40a2r+Xz6NOnj+F4/v7+z9XGwYMHFRMTEwVQWrRoke737N9//1XUarUCKM2bNzeUSXmdM3stW7bM0NbEiRMN269du6aUKVMmTfmJEyemWz6jl6mpqbJ48eLnOv9ky5YtSzfe7Lp48aJSvnz5TOMsVqyYcurUqXTrZ/da9uvXT0lMTExV19/fP1t1M7qumUnZdnrXJflnsFSpUsqxY8cUFxeXTL//jx49Ujp06JBpnObm5sry5cvTjefChQtK0aJFszzXwYMHZ3peQgghskf68Is0bG1tGTFiBGPGjOHChQusXr2a999/P0dtREdH07JlS8Nd21atWjFo0CA8PDy4ffs2y5cvZ926dfj7+9OsWTP+++8/XFxcst3+3bt36d+/P/Hx8RQpUoRBgwbRsmVLXFxcSEhIwN/fn8OHD2f4hOL48eO0bNmSuLg4bGxs+OSTT6hXrx4lS5YkPDycnTt38sMPP3Dx4kXatm3LyZMnDV2dCqLGjRszduxYpkyZwj///MPcuXMZNWqUYX94eDi9evVCp9Ph4ODA77//jlqtf8BXp04dfH192bRpk6EbV3qDhzMaKNylSxdu3rzJoEGD6Ny5M87Ozty8eROtVmsok5iYiLu7O507d6ZBgwaULl0aCwsL7ty5w8mTJ1m0aBEPHjzgk08+oXz58jRr1iyXr1DW/P39ady4MaGhoZibmzNgwACaNWuGh4cHMTEx7N+/n++++45bt27Rpk0bzpw5k+aaJCYmYmVlRfv27WnRogUVK1bE1taWkJAQrly5wo8//siFCxdYtmwZHh4eTJgwwVC3WLFi+Pr6cuLECfr37w/Ab7/9Rp06dVIdIye/JzkVFRVFly5diIqKYtSoUbRp0wZra2uuXr1quPsfHx9P69atOXbsGAAdOnSgW7dueHp6YmZmxunTp1mwYAGXL1+mb9++ODs7065du1TH6d27t+FJVM+ePenatSvFihXDxMSEO3fucOrUKTZv3pxn5ymEEK8cY3/iEMb37B1+RVGUqKgoxdXVVQGUsmXLKgkJCanqZHWHf/To0Yb9n332WbrHnT59uqFMr169Mo3r2WMsWbLEsO/vv//O8NwSExOV8PDwVNvi4+OV0qVLK4BSq1Yt5cGDB+nWPXHihGJpaZnmrmpuS3mHf+fOnYqvr2+mr4sXL6bbTmJiotKwYUMFUDQajXLixAnDvm7duhmOsW7dunTrp7w7ntWThpR3ltVqtbJ169ZMy/v7+yvx8fEZ7g8PDzc8DWrSpEmmbWUm5TlMmzYt0+t4586dVHWbNGmiAIqHh0eGT3Vu3Lhh+L3o06dPmv0PHjxQQkNDM4xPp9Mp/fr1UwClSJEiyqNHj9KUyerJVkq5fYcfUCwtLTN8gqEoijJ+/HgFUMzMzJTt27enWyY6Olpp2rSpAiilS5dO9TTj2rVrhmMNHz4807gfPnyY6X4hhBDZIwm/SDfhVxRF+e677wzbf/nll1R1Mkv44+LiFAcHB0PyFBcXl+5xdTqdUqdOHUOC+mwCllniM23aNMO+9JKmzKxcudJQ98KFC5mWHTFihAIoxYsXz9ExciJlspWdl62tbYZt+fv7KzY2NgqglCtXTomKikqVBA8cODDDus+b8Pft2/c5zzy1TZs2Gdp83kQv5Tlk9fr8888N9Xx8fAzbt23blukxFi1aZEh4Hz9+nOMYQ0JCDN2v1q9fn2a/sRP+SZMmZdhOVFSUYmdnpwDKyJEjMz3mhQsXDG3u2bPHsD3ltd60aVOmbQghhMgdMmhXZGjQoEGUKFECgKlTp2Z7AOupU6cIDQ0F4IMPPsDMzCzdciqVio8++gjQD5Q8cOBAtmMrVqyY4etly5Zlux7Axo0bAahSpQqVK1fOtOzrr78OQHBwMEFBQTk6jjF4eHjw008/AfoBzT179mTIkCGAfsrPvFhZtlevXjmuExUVRUBAABcuXOD8+fOcP38eU9OnPQzPnTuXmyFmKflnwtraOsupaJN/JuLj4zl16lSmZePj4wkKCuLSpUuG87x9+zaOjo4AnD179oVjz22ZfT/3799vGAT/7rvvZtpO5cqVDed5+PBhw/aUv7srVqwgMTHxBaIVQgiRHZLwiwyZm5sb+nQHBQWxePHibNXz9fU1fF2/fv1MyzZo0CDdell56623sLe3B2DYsGE0aNCAOXPmcPTo0Sw/mJw8eRKACxcupJkB5dlXx44dDfXu3r2b7fiel7+/P4r+yVuGr8xmHQJ9n+jkpG3z5s1ERUWh0Wj4448/sLKyyvWYq1evnq1yQUFBDBs2jNKlS2NtbY2npydeXl5UrVqVqlWr0qFDB0PZhw8fvnBcy5Yty/Q6pvzwk/wzERkZiVqtzvRnomrVqoZ66f1MREdHM2fOHGrVqoWVlRUlS5akcuXKhvOsWrUq9+/fz7XzzE1WVlaUKVMmw/3J1wn0Yz+y+v0JCQkBUl8nDw8PmjZtCsC6desoX748o0ePZteuXVn+bAshhHg+kvCLTPXv39+QAMyYMYPo6Ogs6yTf3YesBxi6ubkZvk5ODrLDwcGBLVu2ULJkSQCOHj3KqFGjaNCgAXZ2drRu3Zrff/893buHyclWTmXn3AuKH374AUtLS8P7sWPHUrt27Tw5VvIHr8zs3LmTSpUqsWDBAvz9/bMsHxMTkxuhZVtu/UzcvHmTatWqMWrUKM6cOZPl3ev8Ps+sZPW9zK3rtHr1apo0aQLoP+TOmjWLNm3a4OjoSO3atZk9e7Yk/0IIkYtklh6RKVNTUyZNmkTv3r25d+8e33//PV9//XW262c1P7iiKNku+6yGDRty5coVNm7cyNatWzl48CABAQHExsaye/dudu/ezTfffMO2bdtSzTiTlJQE6Oc4//7777N9PE9PzxzFZ0y//vprqiRrz549jBs3DhMTk1w/VlZthoSE0KNHDx4/foyVlRVffvklbdu2pWzZstja2mJubg7o569P/nCZ8uciPyT/TJQvX57169dnu96zs/T07t2b69evA9CnTx969OhBpUqVcHFxwdzc3PAzXrJkSYKCgvL9PLOS1fcy+ToBHDp0CBsbm2y1++wHCXd3d/7991/279/Phg0bOHDgAL6+vuh0Ok6fPs3p06eZO3cuf/31l6ELlRBCiOcnCb/IUs+ePZk1axYXLlxg7ty5fPLJJ5mWT+63C1l3g7l3757hawcHhxzHZm5uTrdu3ejWrRug72u/Y8cOfvrpJ06fPs25c+fo27cvu3btMtRxcnLi1q1bPHjwAC8vrxwfs6A7c+YMY8eOBcDGxoaIiAh8fHyYMWMG48ePz/d41q5dS1hYGAB//fUXrVu3TrdcchljcHJyws/Pj3v37lG5cmXDlKU5cfnyZQ4ePAjA6NGjmTFjRoZlc+tcUyboOp0uw7gfP36cK8dzcnIyfG1ubv7Cvz/NmjUzTMH66NEj9u/fj7e3Nxs3biQkJIQuXbrg7+9foKfEFUKIl4F06RFZUqvVTJkyBdB31/nmm28yLZ+yj/PRo0czLXvkyBHD19WqVXuBKPWKFy/OwIEDOXr0KLVq1QL0d7dTJlg1a9YE9H34g4ODX/iYBUl0dDQ9e/Y0rE9w7NgxGjZsCMCUKVMy/X7k9AlLdl24cAHQ3+XNKNmH1P3D81vyz8SjR4+y/JnNSPJ5AnTv3j3Dcn5+fkRFRWW4Pyffh5SJcGYfIi5dupTtNjOTfJ1A300rN9na2tKpUyc2bNjA0KFDAf3ToYxWJhZCCJF9kvCLbOnSpYshgf72228zHWxYq1Ytw936FStWEB8fn245RVH49ddfAdBoNIaBfLkhZXuKoqQaH9C5c2fD9tmzZ+faMQuCL774gsuXLwOwYMECKlasyMqVK7GxsSExMZH333+fyMjIdOumXCgruzMyZUdyP/a4uDh0Ol26ZXQ6XbYHheeF5J8JgJkzZz5XGyn762fWN//HH3/MtJ2cfB9SdjM7ceJEhuVWrlyZaTvZ9cYbb1CkSBEAFi1alOHP0otq2bKl4euCNrBZCCFeRpLwi2ybNm0aoJ/JJLOkxczMjEGDBgEQEBDAV199lW65OXPmcPz4cUB/R9TV1TXbsezYscOwUmd64uPjDdN8mpubp+rD37t3b8OqoYsWLWLp0qWZHsvf35/Vq1enuy95NpLk9oxp48aN/PLLLwC88847htVaPT09WbRoEaDvJ588Teez3N3dDV9fu3Yt1+IqX748oH/6sGbNmnTLjBgxgjNnzuTaMXOqZcuWhichW7ZsYeLEiZmWv3fvHkuWLEm1Lfk8IeOpYjds2MAPP/yQads5+T40atTIMJ3p/Pnz0/1A5e3tzaZNmzJtJ7tsbW0Nd99v375Nt27dMu0uFBsby6JFi4iNjTVsO3v2LKdPn870OCm74L1MY2eEEKKgkj78ItvatWtHo0aNOHToEA8ePMi07NixY1m/fj1+fn4sXLgQPz8/Bg0aRKlSpbhz5w6///67IflzdXVl3rx5OYrlf//7H2+99RYtWrSgTZs2eHl54eTkxOPHj7ly5QqLFy82JBV9+vRJNWONmZkZ69at4/XXXyc6OpqBAwfy559/0rNnTypWrIiZmRkhISGcO3eO7du3s3//ft5++2169OiRwyuWc1euXMm0u0cye3v7VPOZ3759m4EDBwL6bk3JiX+yXr16sX37dv744w+WL19Ou3btDOMektWqVQsLCwtiYmIYM2YMiqLg6elp6Cfu7u6Ora1tjs/pvffeY8yYMcTGxtK/f3/Onj3LG2+8gb29PX5+fixevJh///2Xxo0b4+Pjk+P2c8sff/xB3bp1uX//PlOmTGHHjh3069ePatWqYWFhQVhYGBcuXGDPnj3s2LGDqlWrGq45QI0aNahatSq+vr4sXryYsLAwevfuTdGiRblz5w5r165lxYoVlClThvDw8Ax/h0qWLEmJEiUICgpizpw5uLi4UKlSJUNi7+TkZOhL7+TkRPfu3Vm5ciV79uyhQ4cODBkyBHd3d27dusWff/7JqlWrDL+3uWHixIn8+++/+Pj4sH37dipVqsTHH39Mw4YNsbe3JyoqimvXrnHw4EE2bNhAWFgYffr0MdQ/e/Ys/fr1o1atWnTs2JFatWrh7u6OoigEBQWxZs0aw/8NlStXztUnf0II8crKx0W+RAGV0Uq76dm/f3+aFUszWg00ODhYqV69eqarnXp6eioXL17MMq5nj5Hd1WnffPPNDFdDPXXqlFKmTJlstdOvX7809aOjow37a9Wqlel1y0xOV9oFlD59+hjq63Q6pWXLlgqgqNXqDL8fjx49Ujw8PBRAsbOzU27evJmmzOjRozM8ZsoVWrO7wmuy5cuXG1aXTe/VsmVL5fz585muBpsdKVfafZ42rl+/rtSuXTtb34PmzZunqX/u3DnF0dEx05/3S5cuKaVKlUrzfUxp8eLFGbYxceLEVGXv37+vVKxYMdNrm3LV28xW2i1VqlS2rtPjx4+V999/P1vXycrKSomOjjbUze5qyOXLl1euXr2arXiEEEJkTrr0iBxp2rQprVq1ylbZYsWKcfLkSZYsWULr1q1xcXFBo9Hg6OhIkyZN+Pbbb7l48SKVKlXKcRwLFizgr7/+4tNPP6VOnTqUKFECc3NztFotnp6edOvWjb///pu///471d39lGrVqsWlS5dYvnw5b7/9NiVLlsTCwgIzMzNcXV1p0qQJI0eO5N9//+W3335LUz/lgOMvvvgix+eQW+bNm2cY2Dhy5EjDrCfPsrGxYeXKlZiYmBAeHk7v3r3TdAGZMWMGy5Yto1mzZjg5OeXaNJ4ffPABhw4d4p133sHV1RWNRoOrqyvNmzdn6dKl7Nq1K08WBcup0qVLc+LECf766y969OiBp6cnVlZWaDQanJycqFevHkOHDmXHjh3s3r07Tf1q1apx9uxZBg8ejKenJ2ZmZtjZ2VGzZk2mTJnCmTNnqFixYpZxfPTRR2zatIl27doZrldGnJ2dOXr0KGPHjqVixYpotVrs7Oxo0KABP//8M7t27crwd+B5WVpasnLlSk6cOMGnn36Kl5cXtra2mJiYYGtrS9WqVenduzcrVqzg7t27WFhYGOr27NmTffv2MXbsWJo2bUqZMmUoUqQIGo0GNzc32rRpw88//8x///1H2bJlczVuIYR4VakUpYBNBC3ES2LChAlMnTqVcuXKcenSpTyZ414IIYQQ4kXJHX4hnlPyoOAxY8ZIsi+EEEKIAkvu8AvxHGJjY7Gzs6No0aJcuXLFMKBSCCGEEKKgKfB3+AMDA7GxsTFMfxgQEJBh2d27d9OhQwdcXFzQarWUKVOGoUOHZrnaqxA5pdVqiY2N5caNG5LsCyGEEKJAK/AJ/4cffpitxV2mTZtG69at2bZtGxqNhipVqnDnzh0WLlyIl5cX58+fz4dohRBCCCGEKFgKdMK/ZMkSdu3aRZcuXTItt3PnTsaPHw/AwoULCQ4O5tSpUwQHB9OyZUtCQkLo3Llzhiu+CiGEEEIIUVgV2D78wcHBVKlSBUdHR7Zs2UKVKlUA/aqnz65qWrduXU6cOEHPnj1ZtWpVqn0PHz6kdOnSREZGsnjxYj766KP8OgUhhBBCCCGMrsDe4f/oo4+IiIjgl19+yXQOaX9/f06cOAHAJ598kma/k5MT77zzDgCrV6/Om2CFEEIIIYQooApkwr9s2TK2b99Ov379eOONNzIte/jwYQDMzMyoV69eumWSl2Y/duxYmoWGhBBCCCGEKMwK3PQit2/f5ssvv8TV1ZX58+dnWd7Pzw+AUqVKZbgaZZkyZQCIiYnh5s2beHp6ZtpmUFAQwcHBqbY9ePCAixcv8tprrxWIFUGFEEK8fB4/fsyNGzd48803KVq0qLHDEUK8Igpcwv/xxx8THh7O2rVrsbe3z7J8aGgoAA4ODhmWSbkvLCwsy4R/6dKlTJ48OZsRCyGEEDkjY8qEEPmpQCX8K1asYMuWLXTu3NnQ7z4rMTExgL5LT0a0Wq3h6+jo6CzbHDBgAG3atEm17cSJE3z++ecsXryYqlWrZis2IYQQIiVfX18+/vhjSpcubexQhBCvkAKT8N+9e5fPP/8cW1tbFi1alO16FhYWAJlOuRkbG2v4OrMBwMlKlChBiRIl0t1XtWpVGjRokO34hBBCiGdJ11AhRH4qMAn/Z599RlhYGL/88kuO+jUmd/sJCQnJsExyt5+U5YUQQgghhHgVFJhZek6ePAnAuHHjcHNzS/WqU6eOoVydOnVwc3Pj888/B6BixYoABAYGkpCQkG7b169fB/Rde0qVKpWXpyGEEEIIIUSBUmDu8Ce7f/9+pvsfPnwIwKNHjwAM3Wvi4+M5evQoTZo0SVPnwIEDANSvXx+1usB8xhFCCCGEECLPFZjsNyAgAEVR0n35+/sbyvn7+6MoCt7e3gCULl2a1157DYCff/45TbsPHz5k3bp1AHTr1i3vT0QIIYQQQogCpMAk/C9i6tSpAPzxxx/88MMPKIoC6Pvud+/encjISEqXLk2/fv2MGaYQQgghhBD5rlAk/G3btmXSpEkADBkyhOLFi1O7dm2KFy/O3r17cXBwYMOGDZibmxs3UCGEEEIIIfJZoUj4ASZOnMiOHTto164dcXFxnD9/Hjc3NwYPHsz58+epVq2asUMUQgghhBAi3xW4Qbvp8fDwMHTTyUybNm3SLJglhBBCCCHEq+ylSPiFEEIIkbGEhAQiIyOJjIwkISEhWzfJhBAvB5VKhUajwdraGmtrazQaTY7bkIRfCCGEeInFxsYSGBhIUlISAGq1WqagFqIQSUpKIiEhgejoaB4+fEjJkiXRarU5akMSfiGEEOIllZCQYEj2HR0dsbOzw8zMzNhhCSFyWXx8POHh4YSEhBAYGEjp0qUxNc1+Gi+3AIQQQoiXVGRkpCHZd3FxkWRfiELKzMwMFxcXHB0dSUpKIiIiIkf1JeEXQgghXlKRkZEA2NnZGTcQIUS+SP5dT/7dzy5J+IUQQoiXVEJCAmq1Wu7sC/GKMDMzQ61Wk5CQkKN6kvALIYQQLylFUWSArhCvGJVKleOZuOR/CSGEEEIIIV4SKpUqx3Uk4RdCCCGEEKIQk4RfCCGEEEKIQkwSfiGEEEIIIQoxSfiFEEIIIYykb9++qFQqJk2alGttBgQEoFKpnquvtzHs378flUqFh4dHrrXp7e2NSqWiWbNmudZmdiRf94CAgHw9blYk4RdCCCHEKyE5GcvpKzeTcSGMIftr8gohhBBCvMQaNWqU7vZDhw4BUK5cOVxcXNLsL1myZJ7F5O7uToUKFXBycsq1NjUaDRUqVMi19sTLTxJ+IYQQQuTYo+gE1p4KYs+le0TGJmKtNaVVZTfeqVUcW0uNscNLl4+PT7rbk7u+jBkzhr59++ZjRDBz5kxmzpyZq20WK1aMy5cv52qb4uUmCb8QQgghcmTNiSAmbDpPbKIu1fajN0KZu+MyUzp58V6dEkaKTgjxLOnDL4QQQohsW3MiiJHr/0uT7CeLTdQxcv1/rDkRlM+R5Q0PDw9UKhX79+/n0qVLfPDBBxQvXhyNRpPqaYCPjw+jRo2iXr16FC1aFDMzM5ycnGjVqhWrV6/OsP2MBu0+O/DWx8eHDh064OjoiIWFBdWqVeOHH35Id8XVzAbtpjxeTEwMEydOpEKFCmi1WpydnenWrRtXr17NMN6oqCjGjh1LuXLl0Gq1uLu707NnTy5fvpwng2+Dg4NZuHAh7du3p2zZslhaWmJtbU21atUYO3YsISEhWbah0+n47rvvqF69OlZWVtjb29OhQwcOHz6cab1r167x6aefUr58ecNx69SpwzfffENcXFyOz2XTpk20b98eV1dXNBoNDg4OVKxYkZ49e7Ju3boct5cTkvALIYQQIlseRScwYdP5bJWdsPk8j6IT8jii/HPo0CFq167NmjVrcHFxoUKFCqjVT9Oozp07M2fOHK5evYqdnR3VqlXDzMyMPXv20LNnT/r16/fcx/b29qZp06YcPXqU0qVLU6RIEXx9fRkyZAgjRox4rjYjIiJo2LAhU6dOxcTEhLJlyxIeHs6aNWto0KABN2/eTFMnNDSUhg0bMmPGDK5du0apUqUoWrQoGzZs4LXXXuPEiRPPfY4Z+e677xg6dCj79u0jKSkJLy8v3NzcuHz5MjNmzKBWrVoEBgZm2ka3bt344osvCAsLo3LlyiQlJbFt2zaaNGnCypUr062zatUqvLy8+OmnnwgODqZMmTK4uLhw6tQphg8fTrNmzYiIiMj2eUyaNInOnTuzfft2AKpVq4a7uzt3795l9erVzJo1K/sX5TlIwi+EEEKIbFl3OjjDO/vPik3Qsf50cB5HlH8mTpzI22+/zd27dzl9+jTnz59n0aJFhv2zZs3i2rVrhIaGcvHiRU6ePMnt27c5evQoZcuWxdvb+7nv4g4aNIj58+dz//59Tpw4wYMHD5g2bRoA33zzDdevX89xmz/88ANqtZorV65w8eJFzp8/j5+fH+XKlSMkJIQJEyakqfPZZ5/h6+tLiRIlOHXqFH5+fpw6dYo7d+7Qtm1bxo0b91znl5l27drxzz//EBkZib+/P8ePH+fq1asEBwfTv39/AgMD+fTTTzOsf/jwYbZu3cqGDRsIDAzkxIkT3Lt3j08++QSdTseHH37IlStXUtU5dOgQffv2JTExkdmzZxMWFoavry/Xr1/n8uXL1K5dm6NHjzJ06NBsncPDhw+ZPn06pqam/PXXX9y9e5dTp05x4cIFwsPDOXPmDB999NELXaesSMIvhBBCiGzZffFuDsvfy6NI8l+FChVYvnw5dnZ2hm0WFhaGrwcOHEiZMmXS1KtXrx4//vgjAMuWLXuuY/fq1Ythw4ZhYmJi2DZmzBi8vLxQFIWtW7fmuE21Ws2aNWsoW7asYVvp0qWZMWMGAH///Xeq8gEBAfzvf/8D9He/a9WqZdhnZ2fHqlWrKFasWI7jyErLli1p3rw5pqaph526uLiwZMkSihUrxrZt27h3L/2ftYSEBMaNG0fnzp0N2ywsLFi0aBFVq1YlNjaWefPmpaozatQoEhMTmThxIiNHjsTc3Nywr3z58qxfvx5LS0tWrlzJrVu3sjyHa9eukZiYiJeXF2+//XaarlY1atTI84RfBu0KIYQQIlsiYxNzVD4itvB06enTp0+apPNZfn5+rF27lnPnzhESEkJ8fDyAob/3qVOnnuvYgwcPTrNNpVLRsGFDzp8/z7Vr13LcZps2bdL9gJI8dWlYWBihoaE4ODgAsGPHDhRFoUKFCjRp0iRNPXNzc3r37s2UKVNyHEtWoqKiWLt2LT4+Pty6dYvHjx8bxi5ERkaiKApnzpyhbdu2aepqNJoMr9+wYcMYMGBAqg9Mt2/f5tChQ6hUKj7++ON04ylVqhR16tThwIEDHDhwgJ49e2Yaf/K0rleuXOHo0aPUr18/2+eeWyThF0IIIUS2WGtzljbYaAvm9JzPo0qVKpnunzBhAtOnT0eny7jLU3YGmKanfPny6W53dXUF9AlxbreZ3G5ywu/n5wdA9erVM2yzRo0aOY4jK0eOHKFr167cuXMn03IZXdvixYtja2ub7r7k7+nt27eJiIjAxsaGs2fPAmBiYkKXLl0yPF5yN6Dg4Ky7rRUtWpT333+fVatW0aBBA2rXrk2LFi2oW7cuzZo1y9U1GDIiCb8QQgghsqVVZTeO3gjNQXnXrAu9JKysrDLct3btWqZOnYpKpWL8+PF06dLFMLhWrVZz48YNypQpQ2Jizp6QZHXs5EHDmX3IeN42n203MjISABsbmwzbtLa2znEcmYmMjOTtt9/m3r17NG/enK+//ppq1arh4OCAmZkZAK+//joHDx4kISH9p0kpP8Bkti8yMhIbGxvCwsIASExMNCzIlpno6Ohsnctvv/1GtWrVWLJkCadOnTI87TExMaFDhw7Mnz8/Vfeq3CYJvxBCCCGy5Z1axZm743K2Bu5qNWq61i6eD1EZX3Lf/C+//DLdLi3Pe2e/IElO5jObmSb5Q0Fu2b59O/fu3aNEiRJs3bo11ZiJZFld24z69j+7L/n8ihQpAuifDAQF5d7UsmZmZowcOZKRI0dy69YtfHx82Lt3L2vXrmXz5s2cPXuWc+fOpRojkptk0K4QQgghssXWUsOUTl7ZKjvlLS9sLQpPl57MJM+S07Rp03T3Z+dOcUFXoUIFAM6dO5dhmeTuMLkl+brWqVMnw2Q/uatRRoKDgzP8kHLhwgVA3+Um+clF1apVDfXSm5o0NxQrVoxu3brxyy+/cOnSJRwcHAgMDGTLli15cjyQhF8IIYQQOfBenRLM6VoNrWn6KYRWo2ZO12qv1Eq7lpaWAOnO2BIdHc3ChQvzO6Rc16ZNG1QqFX5+fhw8eDDN/ri4OFasWJGrx8zsugLMmzePpKSkTNtISEgwzJL0rO+//x6ADh06GLaVLl2a2rVrAximPs1Lbm5ulCtXDtCPJcgrkvALIYQQIkfeq1OCY2PeYPyblWlQ2pEqRW1oUNqRCW9W5tjoN16pZB+gWbNmAEyfPp2LFy8att++fZtOnTrlaSKXXzw9PenevTsA77//PqdPnzbsCw8P5/3338/WFJU5kXxdjx07xsKFCw0z8yQmJjJ//nxmz56NVqvNtA2NRsPUqVPZvHmzYVtsbCxDhgzh3LlzmJubM3z48FR1vvnmG0xNTVmyZAmfffYZDx8+TLU/Pj6enTt38u6772brPPbs2cOwYcM4ffp0qpWRFUVh7dq1hmtZp06dbLX3PKQPvxBCCCFyzNZSw4DGngxo7GnsUIxu5MiR/PnnnwQHB1OtWjXKly+PmZkZ58+fR6PRsGjRIgYMGGDsMF/YwoUL8fX15fz589SuXZsKFSpQpEgRLly4gFqtZtq0aYwcOTLVegEvonr16vTt2xdvb2+GDh3KjBkzKF68ODdu3CA0NNSwaNaBAwcybKNhw4Y4OzvTqVMnSpYsiYuLC1euXCEiIgK1Ws3ixYsN3ZWSvf7666xatYr+/fuzaNEifv75Z8qXL4+trS3h4eFcv349w0HC6YmKimLBggUsWLAAGxsbSpcujampKYGBgdy/fx+ADz/8kObNmz/fhcoGucMvhBBCCPEC3N3dOXbsGH369MHJyYlr165x//593n33XY4fP06LFi2MHWKucHR05PDhw4wePZoyZcrg7+9PUFAQb731FidOnKBSpUpA5jP55NTSpUuZP38+lStXJjQ0lKtXr1KxYkV+++03fvnll2y18eeff/LNN99gZ2fHhQsXUKlUtG3blgMHDtCnT59067z33ntcvnyZkSNH4uXlRXBwMGfOnCEmJob69eszceJEzpw5k63jN2nShEWLFtGlSxdcXV25ceMGZ8+eRa1W06FDB/76669sn8vzUikpny2IDB05coSGDRty+PBhGjRoYOxwhBBCvIRy+2/J1atXAQx9gIUwprlz5zJy5Ei6dOnC+vXrjR1OofU8v/dyh18IIYQQQryQhIQEw/SkGc1WJIxHEn4hhBBCCJGlmJgYxo8fT2BgYKrtt2/fplu3bly6dAl7e3t69eplpAhFRmTQrhBCCCGEyFJSUhLTpk1j2rRpODs7U6pUKR4/foyfnx86nQ4LCwtWrFiBg4ODsUMVz5CEXwghhBBCZMnCwoJZs2axa9cu/Pz8OH/+PKCfu75FixZ8+eWXaWa8EQWDJPxCCCGEECJLJiYmjBo1ilGjRhk7FJFD0odfCCGEEEKIQkwSfiGEEEIIIQoxSfiFEEIIIYQoxCThF0IIIYQQohCThF8IIYQQQohCTBJ+IYQQQgghCjFJ+IUQQgghhCjEJOEXQgghhBCiEJOEXwghhBBCiEJMEn4hhBBCCCEKMUn4hRBCCCGEKMQk4RdCCCGEeAlMmjQJlUpF3759jR1KtvTt2xeVSsWkSZNyrc1mzZqhUqnw9vbOtTaz4u3tjUqlolmzZvl2zNwmCb8QQgghXgkqleq5XrmZsGbE29ubSZMmcfbs2Tw/lnj1mBo7ACGEEEKI/NCoUaN0tx86dAiAcuXK4eLikmZ/yZIl8zQu0Cf8Bw4cwMPDgxo1aqRbxsnJiQoVKuDu7p7n8YjCRRJ+IYQQQuRcTBic/QP8tkPsI9DaQoX2UKMHWNgbO7p0+fj4pLtdpVIBMGbMmALdXeazzz7js88+M3YY4iUkCb8QQgghcub0Ctj2FSTGpt4ecBD2Tob286BWb+PEJoRIQ/rwCyGEECL7Tq+AzZ+lTfaTJcbq959ekb9x5aE7d+4wcuRIvLy8KFKkCFZWVlSrVo1JkyYRERGRbp379+8zYsQIqlSpgpWVFVqtlhIlStCoUSPGjh3L7du3Adi/fz8qlYoDBw4A0K9fv1TjB1IOFM1s0G5y+YCAAHx9fenWrRuurq6Ym5tToUIFpkyZQnx8fIbneO7cObp27YqzszMWFhZUqlSJqVOnEhcXlyeDb318fBg1ahT16tWjaNGimJmZ4eTkRKtWrVi9enW22ggODmbgwIEUL14cc3NzPDw8+OKLLwgNDc203oYNG3jzzTdxdXXFzMwMV1dXOnfuzP79+3N8HpGRkUydOpVatWphbW2NmZkZRYsWpW7dugwfPhw/P78ct5kX5A6/EEIIIbInJkx/Zz87to+ASm8W2O492bV37166du3Ko0ePMDMzw9PTE4CLFy/i6+vL6tWr2bt3L8WLFzfUuXXrFvXq1ePWrVuYmppStmxZrK2tuXPnDsePH+fw4cM0aNCAokWLYmtrS6NGjfD19SUiIiLNOIKqVavmKN5du3bx+eefY2pqSoUKFTA1NeXKlStMnDiR//77j3Xr1qWps3XrVrp06UJ8fDwWFhZUqVKFiIgIJkyYwK5du/JkDEPnzp0JCQnB3t4eNzc3ihYtyu3bt9mzZw979uxh165dLFu2LMP6/v7+1KpVi9DQULy8vLCzs+PixYt89913bN68mQMHDqT6ngDExcXx/vvvs379ekA/JsLLy4ubN2+yadMmNm3axKxZsxg1alS2ziEqKoqGDRty/vx5VCoVZcuWxc7OjgcPHnDu3DlOnDiBp6cnFSpUeP4LlUvkDr8QQgghsufs6ozv7D8rIQbO/S9v48lj165d4+233+bRo0cMHz6cBw8ecPnyZS5fvkxQUBCtW7fmypUr9OrVK1W9efPmcevWLVq1asXdu3e5dOkSx48fJygoiLCwMH7//Xc8PDwAqFmzJj4+PtSsWRPQjyPw8fExvBYuXJijmD/77DOGDh3KgwcPOHnyJLdu3eL3339HpVKxfv169u3bl6r8vXv36NWrF/Hx8fTo0YO7d+9y8uRJrly5wrFjx7h+/Xq6HxJe1KxZs7h27RqhoaFcvHiRkydPcvv2bY4ePUrZsmXx9vbO9LgzZ87E09MTf39/zp49y/nz57l48SIVK1bkxo0b9OnTJ02dL774gvXr11OuXDn27dvHgwcPOH36NCEhIfz+++9YWloyevToNNcoI0uXLuX8+fNUr16dmzdvcuXKFY4fP46/vz8RERGsX7+e6tWrP/c1yk2S8AshhBAie/y25az85a15E0c+mTRpEpGRkfTv35958+ZhY2Nj2Ofu7s7atWspWrQoBw4c4OjRo4Z9ly5dAmDw4ME4OjqmarNIkSL07t0bLy+vPIn59ddfZ/bs2Wi1WsO23r170759ewD+/vvvVOV//vlnwsPDqVChAsuXL091jnXr1sXb2zvTrkDPa+DAgZQpUybN9nr16vHjjz8CZHqHX1EU1qxZQ4kSJQzbKlasyMqVKwH4559/OHz4sGHflStXWLx4MRYWFmzZsiXNnPq9e/dm8uTJKIrC7Nmzs3UOyd/nfv36pYoDwNzcnC5dutCkSZNstZXXJOEXQgghRPbEPsrb8gVIQkICGzZsAOCTTz5Jt4yNjQ2tWrUC9AlmsuQuMGvWrCE2NptPRHLJ4MGD092ePCXptWvXUm3fvn07oF8kS6PRpKnXunVrSpUqlctR6vn5+TFt2jTeffddWrRoQePGjWncuDFjxowB4NSpUxnWffvtt9ONq3bt2oYke+vWpx84165di06no0WLFpQvXz7dNt955x0A/v33X5KSkrKMP/n7vHHjRh49Ktg/69KHXwghhBDZo7XN2/IFyNWrV4mOjgZg6NChqNXp3yO9efMmoB9Ammzo0KH8/vvv/PHHH2zbto02bdrQoEEDGjZsSO3atTNsKzdklMy6uroC+n7nKSUPKs2s60lyl5XcNGHCBKZPn45Op8uwTEhISIb7MntCUqVKFQ4ePGi4Aw/6QckAZ8+epXHjxunWUxQFgJiYGEJCQtJdkyGl/v37880337B//36KFi3KG2+8QaNGjWjQoAH169dP9wOUsUjCL4QQQojsqdBeP/VmdlXskHex5LGwsDDD10eOHMmyfPKHA9Ano0eOHGHq1Kns2LGDP//8kz///BOAYsWK8fXXXzN48GDD/P+5ycrKKt3tyR8ynk2wIyMjAVJ15XmWtbV1LkWnt3btWqZOnYpKpWL8+PF06dKF0qVLU6RIEdRqNTdu3KBMmTIkJiZm2EbyB5jM9iWfGzz9ft66dYtbt25lGWPK72dG3NzcOHbsGFOmTGHjxo1s3ryZzZs3A+Do6MiQIUMYM2ZMgUj8JeEXQgghRPbU6KGfZz87A3c1FlC9R97HlEeKFCkC6BPlmJgYzMzMclS/Zs2a/PXXX8THx3Pq1CkOHjzIpk2bOHz4MEOGDCE+Pp4vv/wyL0LPEWtra8LDwzOcXhRSJ865Iblv/pdffsmUKVPS7M/szn6ye/fuZbkv5QeV5O/nuHHjmDp1ao7izUyZMmVYvnw5SUlJnDt3joMHD7Jt2zZ2797NpEmTCAkJ4fvvv8+14z2vAtWH39fXl2nTptG6dWvc3d0xMzPD1taWOnXqMGXKlFSfttOze/duOnTogIuLC1qtljJlyjB06FDu3r2bT2cghBBCFGIW9vpFtbKj3VywsMvTcPJS+fLlMTc3R6fTpRqQm1NmZmY0aNCAkSNHcujQIUaPHg1gGJiaLC/u9mdH8pSRyV1e0pPZvudx/fp1AJo2bZru/kOHDmXZxoULF7LcV6lSJcO25OlNs9P28zAxMaFWrVp8/vnn7Ny5k59//hmAX375JdMnFfmlwCT8169fp1q1aowfP57du3ejVqupXr061tbWnDx5kokTJ1KlShV8fX3TrZ/8QWHbtm1oNBqqVKnCnTt3WLhwIV5eXpw/fz6fz0gIIYQohGr1hrd+AFNt+vs1Fvr9L/lKuxYWFrz55psATJ8+3dC/+0W9/vrrAIaFt5JZWloC+v7j+aldu3YAeHt7k5CQkGb/rl27cr3/fvK5pte1Jjo6OltTkW7YsIHAwMA028+cOcPBg/puZx06PO1S9u6776JSqdi/fz8+Pj7PG3q2JX+f4+LislwILD8UmIRfURRcXFyYMmUK169f59atW5w4cYLg4GB8fHwoVaoUd+7coXPnzsTFxaWqu3PnTsaPHw/AwoULCQ4O5tSpUwQHB9OyZUtCQkLo3LlznkwrJYQQQrxyavWG4ZehzUzwaAJu1fT/tp0FX1566ZP9ZNOnT8fa2ppdu3bRrVu3NAlmUlISBw8eZMCAAamS148++ogVK1YQHh6eqvz9+/eZP38+AHXq1Em1r2zZsoB+5d3c+nCRHYMGDcLOzg4/Pz/69OmTqmvP8ePH6du3b467M2UleUrM6dOnc/HiRcP227dv06lTpzQfhjLSvXv3VIOlU66J0KxZMxo2bGjYV7VqVQYOHIiiKHTq1In//e9/aWbiuXv3Lj/99BOzZs3K1vFHjx7NTz/9lKZ7UUREBNOnTwfAw8MDZ2fnbLWXp5QCIiYmRomKispw/6FDhxRAAZRNmzal2lenTh0FUHr27Jmm3oMHDxRra2sFUBYvXvzc8R0+fFgBlMOHDz93G0IIIV5tuf235MqVK8qVK1dypa1XWXJ+sWzZsjT79u3bpzg5OSmAolKplHLlyin169dXvLy8FK1Wa6jr7+9vqFO9enVD+TJlyij16tVTKlWqpJiamiqA4ujoqJw7dy7VcY4dO6ao1WoFUIoXL640btxYadq0qfL5558bykycOFEBlD59+mR4DinjSGnZsmUKoDRt2jTNvr///lsxMzNTAMXS0lJ57bXXlPLlyyuA0qhRI6VHjx4KoEyZMiUbV/OpPn36KIAyceLEVNtv376tuLu7K4BiYmKiVKpUSalevbpiYmKiaLVaZenSpYbzeVbTpk0VQJkwYYLi7OysmJqaKtWrV1e8vLwUlUqlAIqHh4cSGBiYpm5cXJzy/vvvG9q2sbFRateurdSpU0cpXry4Yfuz1zeja9epUydDnZIlSyp169ZN9XNhYWGh7N69O0fXLDue5/e+wNzh12q1GY4sB2jYsCG2tvrpvVJOs+Tv78+JEyeA9OfJdXJyMsyrunr16twMWQghhBCFXLNmzbh8+TJTpkyhbt263L9/n9OnTxMeHk6NGjUYMWIEhw4dSjUn/Hfffcfw4cOpU6cO0dHRnD59msDAQCpVqsSIESM4f/481apVS3WcunXrsnHjRpo1a0ZUVBSHDx/mwIEDnD17Ns/P8c033+TYsWO8/fbbaLVafH19UalUTJw4kb179xp6SGQ2k09OuLu7c+zYMfr06YOTkxPXrl3j/v37vPvuuxw/fpwWLVpk2YanpyenT5/mgw8+4MGDB/j5+VGiRAmGDh3KyZMn0yyEBfrxFCtXrmT37t1069YNOzs7zp8/z5UrV7C2tubtt99m6dKlzJuXvXEq48ePZ9y4cTRu3BidTse5c+e4fv06JUuW5NNPP8XX15c33ngjx9cnL6gUJR+fG72ApKQkbGxsDH27PvvsMwBWrVpFr169MDMzIyoqKt2pj5YvX07fvn2xsLAgKirquea/PXLkCA0bNuTw4cM0aNDghc9HCCHEqye3/5ZcvXoVgHLlyr1wW0JkpEqVKly8eJHNmzfTsWNHY4fzynue3/uXZlrODRs2GOZETTmqO3nBiFKlSmU4z2ny0s0xMTHcvHkTT0/PTI8VFBSUqk8YkOFgYSGEEIVb9OkzaL2qoM7lfsxCvAwOHTrExYsX0Wg0csPzJfZSJPxhYWEMHz4cgI4dOxqmVgIMI58dHBwyrJ9yX1hYWJYJ/9KlS5k8efKLhCyEEKIQiDl/gcB+/dBWqkSx7xegyWLlTSFeRtu3byc8PJzOnTtjYWFh2L53714++OADAHr27ImTk5OxQhQvqMAn/AkJCYaR8c7OzoZ5TZMlT1+V2Qhyrfbp1GHZWTltwIABtGnTJtU2X19fPv7445yELoQQ4iV3f/48lLg4Ys6e5dHGTTh99KGxQxIi112/fp0hQ4ZgampKyZIlcXJyIjAw0LCOUY0aNfjmm2+MHKV4EQU64dfpdPTu3Zvdu3djbW3N33//TdGiRVOVSf4kmtmUm7GxT1cETJ77NTMlSpRId7CHEEKIV0vxBQu4NfwrVCYmOA4cYOxwhMgTb7zxBkOHDmX//v3cvn2bwMBAihQpQv369XnnnXf45JNPspU/iYKrwCb8Op2O/v378+eff2JlZcXWrVupV69emnL29vZA5sswp1zwILm8EEIIkRUTGxtK/PwTSlwcqueY8EGIl0HFihVZsGCBscMQeahA/u+lKAoff/wxy5cvx9LSki1bttCkSZN0y1asWBGAwMDAdFeIg6dLOGu12lTTZgkhhBDPUhITU71XmZiglrubQoiXWIFM+AcPHsySJUuwsLBg8+bNhhXZ0pM8Yjw+Pp6jR4+mW+bAgQMA1K9f/7mm5BRCCPFqiD55khsd3iT28mVjhyKEELmmwGW/Q4cO5aeffkKr1bJp0yZatmyZafnSpUvz2muvAaQZ0Avw8OFD1q1bB0C3bt1yP2AhhBCFQsLt2wQP/Zz4mzcJ6NGTuCdPh4UQ4mVXoBL+kSNHsnDhQkOy36pVq2zVmzp1KgB//PEHP/zwA8lriYWGhtK9e3ciIyMpXbo0/fr1y7PYhRBCvLx0MTEEfzaEpCdjvqybN8esdGkjRyWEELmjwAzaPXLkCHPnzgX0SzdPmTKFKVOmpFu2ffv2jBkzxvC+bdu2TJo0iUmTJjFkyBBmzpyJm5sbly5dIiYmBgcHBzZs2IC5uXm+nIsQQoiXh6Io3Bk/gdiLFwEwr1wJ9+nTUKlURo5MCCFyR4FJ+OPi4gxf379/n/v372dYtmzZsmm2TZw4kfr167NgwQKOHz/O+fPnKVasGO3bt2fs2LG4u7vnSdxCCCFebqG//UbEli0AmNjbU2LhQtRPpnx+FJ3A2lNB7Ll0j8jYRKy1prSq7MY7tYpja5n+6u5CCFHQFJiEv1mzZoauOM+rTZs2aRbMEkII8erIaYIeddCH+/OfLChkakqxBd+hKVYMgDUngpiw6TyxibpUdY7eCGXujstM6eTFe3VkzRYhRMFXYBJ+IYQQ4kXkNEGPDwjg1vDhoNOXdx0zGqu6dQ1tjVz/X4bHik3UGfZL0i+EKOgK1KBdIUThl6BLIFGXmHVBIXIgOUF/NtlPlpygrzkRBOj77d/+ejS6iAgA7N59B/sePQD9U4IJm85n67gTNp/nUXT6a8AIIURBIXf4hRC5LlGXyJ2oO9yMvMnNiJsERQZxM+ImgRGB3Iq6hanalHae7Xi/0vtUdKho7HDFSy5tgq5g7vo3GrtjoFJAUQMqUNRM8VWz8Jo5JmoT3F9X+DjYlGhLE36uegpl41uYqk0Jj05EXSIeS0UNihrlSV1QERPUB5SnE0DEJuhYfzqY/o098/u0hRAi2yThF0I8lyRdEnce3yEwIpDAyEB9Qh8ZSGBEIMFRwZnexU9KSmLjtY1svLaR2q61eb/S+zQv0RxTtfyXJHJu3engVHf2NQ4+mDkcflpAlfquf3h8DAAhVjCyt4ImKZGImCCIeVrGRJvBwVTAM8PNdl+8Jwl/IRYQEICnp/77+6JjDV9meXEd9u/fT/PmzSlVqhQBAQG50qZIn/x1FUJk6ULIBS48vGC4S38z8ibBkcEk6HLWlcHNyo1S1qUIiAjgXvQ9AE7dO8Wpe6dwt3Kne8XudC3XFVtz27w4DVFI7b541/C1idVVzF22AaAoapIel36S8Cug0qFCoYhWhYeTJUlKEjpFR6IuETtFZ3h/PzKaBF0SoKBS6QDd0zaUtFN1RsRKl56XTbNmzThw4ECW5cLCwjLdv3HjRs6ePUuzZs1o1qzZc8Xi4eHBzZs3DXHt27cv0/Jly5bl+pNF4Zo2bcr+/fuf67ji1SIJvxAiQzGJMcw4NoON1zZmu46LpQslrUtSyqYUJW1KUspa/28J6xJoTfW3TRN0CfwT+A9/XPqD0/dPA3Dn8R2+PfUtP539iTfLvEnPij0pZ18uL05LFDKRsfqnSSpNCBbF/kCl0t99jLvXgYSwRoZyHo/u0PfiNra1H8iafu0zbK/7L0c4eiM028e30cr0nC8rFxcXypXL+P8ZU1NTNBoNFSpUSHf/xo0bWb58OcBzJ/wpHThwgBs3blA6g0Xf/v33X0OyL0ROSMIvhEjX9fDrDN8/nOuP0v5xcbJwSp3U25SipLU+qbfUWGbZtkatoY1HG9p4tOFCyAX+uPQH2/23k6BLIDYplnVX1rHuyjrqudXj/Urv83rx1zFRm+TFaYpCwFprCqo4LIr/jspE3y8nIbw2CWENn5aJf8yEY8twjw6lwvoZJPSugaZo0XTba1XZLUcJf6vKri92AsJo2rVrh7e3d6ZlihQpwuXLl/M8lkqVKnHp0iWWL1/O5MmT0y2zbNmyVGWFyC5J+IUQaWy8tpHpR6cTmxQLgL25PcNqD6OSQyVK2pTESmOVa8eq4liF6Y2n82XtL1l7ZS1r/NbwIOYBAMfuHuPY3WMUL1KcHhV70LlcZ2zMbHLt2KJweKOSC2fjFmCi1XcTS4opQezdt9F3uAe1LonRJ1biHv0kiS9eElMXlwzbe6dWcebuuJzhjD8paTVqutYu/sLnIESfPn0YPXo0y5cvZ9KkSWlWeo6KimLdunVYW1vTtWtXpk2bZqRIxctIpuUUQhhEJ0Qz1mcs4w+NNyT7tVxqsbbjWrqU60Ilx0q5muyn5GjhyKDqg9jZdSezmsyimlM1w77gqGDmnpzLG2vfYPrR6fg/8s+TGMTL6bHFTjQ2FwDQJVgTE9wblKf3swZc2ErNB1cBuGvlSMUfv0dlmvH9LltLDVM6eWXr2FPe8sLWQrr0FGYBAQGoVKpUCXjytuTuPJMnTzaUUalUeHh45Pg4pUqVonnz5ty8eTPdfvxr164lKiqK9957DyurzP8fjo6OZs6cOdSpUwcbGxssLCwoX748n3/+OcHBwRnWS0xM5Ntvv6Vq1apYWFjg7OzMm2++yeHDhzOsk9K+fft49913KVasGGZmZjg6OtK6dWs2bNiQrfoi70jCL4QA4ErYFbpv7c7m65sBUKHiw6ofsrTNUlyt8q/LgsZEQ4fSHVjVYRWr2q+ivWd7TFX65CwmMYb/+f2Ptza+xaA9gzgYfBCdkvVdWFF47Qvcx5ILPwGg6EyICe6Nkvj0KVDLwJN0uf4vADEmZkSMnYG9m1OW7b5XpwRzulZDa5r+n0mtRs2crtVk0a1XlFarpVGjRrg8eVJUokQJGjVqZHjVqVPnudrt168f8LTrTkrJ25LLZOTu3bvUq1ePUaNGcfLkSYoVK0alSpUICAjg+++/p2rVqvj4+KSpFx8fT8eOHfnyyy85f/48rq6ueHh4cODAAV5//fVMk3ZFURg6dCgtWrRg3bp1REdH4+XlhUajYffu3XTp0oVPP/00J5dC5DJJ+IV4xSmKwvor6+m5tafhzrmD1oGfW/3M0FpDjTpVZjXnasx+fTY739nJoOqDcNA6GPYdunWIT/d+SqeNnTgYfNBoMQrjuRF+g9E+ow3v3yo2BLNED8P78mGBDD27zvD+/mdf06nL69lu/706JTg25g3Gv1mZBqUdqVLUhgalHZnwZmWOjX5Dkv1XmJubGz4+PrRr1w6A/v374+PjY3itXbv2udrt2rUrNjY2rF+/nogni8IBXLt2jYMHD1KuXDkaNWqUSQvQq1cvzp8/T5kyZTh37hyXLl3i9OnT3Lp1izZt2hAeHk7Xrl0JCQlJVW/69Ons2LGDIkWKsGXLFgICAjhx4gT37t2jT58+jBo1KsNjzp07l4ULF+Lq6sr69esJCwvj9OnT3L17l+3bt+Ps7MxPP/2U5XgJkXck4RfiFfY44TFfH/yaSUcmEZcUB0Adtzqs67iOhkUbZlE7/7hYujC4xmB2v7Ob6Y2nU8mhkmFfQEQAg/cOxvu89ys9R/arJiI+gqH7hvI44TEAPSr2YEbrAYYEvZWLCVNO/o7Zk/Uginw0iLaf9MjxcWwtNQxo7Mnqj+qzdWgTVn9Un/6NPbG1lG48hcHy5ctTdcVJ+TJGcmphYUG3bt2IiYnhzz//NGxPjiWru/uHDh1i7969AKxYsYJq1Z52jXR2dmbt2rU4ODhw//59fv75Z8O+x48f89133wH67kkdOnQw7LO0tOTXX3/NcOagsLAwpk6dCui7HXXp0iXV/rZt2/Ljjz8CMGvWrEzjF3lHBu0K8YryC/XjqwNfERARAOi78AyqPoiPq31cYGfEMTMx460yb9GxdEfOPjjL8gvL2Ru4FwWF+afmc/3RdcbXH4+ZiZmxQxV5KEmXxMh/R3IzQj93eR23OoyoMwJ4mqC/sXQK0Y/DASjyRkuKDxtirHCNbuCugdyJumPsMF6IexF3lrRekuvtZjYtp6urcWZf6t+/P7/++ive3t58+OGH6HQ6fv/9d0xMTPjggw8yrbtlyxYAGjVqRIMGDdLst7a25uOPP2bmzJls3bqVsWPHAuDj40NERAQWFhZ8/PHHaeqp1WqGDh3K4MGD0+zbtm0bUVFRVKlShSZNmqQbV6dOndBoNPj5+XH79m2KZjBDlsg7kvAL8YpRFIW1V9Yy+/hs4nXxADhqHZn9+mzqudczcnTZo1KpqOlSk5ouNVnjt4YZx2aQpOhX7w2MCOTb5t+m6v4jCpfvz3zPoVuHAChqVZR5TeehUae+4+48ZCiBZ89hVrwYRWfNRqV+dR9o34m6Q2BkoLHDKJCyMy1nfqtfvz4VK1bk8OHD+Pn5cfPmTYKCgmjXrh3FihXLtK6fnx8AVatWzbBM8r6UU40mf+3h4ZHhgOAqVaqku/3cuXOAfuxA48aNMzxu8qDn4OBgSfiNQBJ+IV4hUfFRTD4ymR0BOwzb6rnXY1aTWThZZD2QsSB6r8J7lLQpyfD9w4mIj+D0/dP03NqThS0WysJdhdB2/+38dv43ALQmWha0WJDuhzvLWjUp+ctiNMWKYVIkb2aWelm4F3E3dggvrDCcQ07069ePUaNG4e3tTUBAgGFbVpL7/bu5uWVYxt1dfy0jIyMN25K/zuypRkb7klcjDgkJ4dChQ1nGGB0dnWUZkfsk4RfiFXEp5BJfHfjKcKdPrVLzSfVP+LDqhwW2C0921Xevzx8d/uCzvZ8REBHArahb9NrWizmvz6FpiabGDk9k4VF0AmtPBbHn0j0iYxOx1prSqrIb79Qqnqqv/KWQS0w4NMHwfmqjqVR0qAhAwu3bmDg5oTZ72p3L8jlnSils8qIrjMhbvXv3ZsyYMXh7exMeHo6DgwNvvfVWlvVsbPQzVN29ezfDMnfu6Lt3WVtbG7Ylf33v3r0M62W0r0iRIoB+sPCKFSuyjFEYx6v7jFOIV4SiKKy+vJr3t71vSPadLZxZ0noJg6oPeumT/WSlbEqxqsMqGrjr+61GJ0Yz5J8hMpi3gFtzIoh6M/Ywbesljt4I5cLtCI7eCGXqlovUm7GHNSeCAAiNDeXzfZ8b1ofo79Wftp5tAYi7do2Abt259eWXKAkJRjsX8ep5dnGs3OLu7k7btm25e/cusbGx9OzZE3Nz8yzrVayo/wB8/vz5DMsk76tU6enkB8n1AgICePz4cbr1Lly4kO725C5C2Z2rXxiHJPxCFGKR8ZEMPzCcGcdmkKDTJ0INizZkbce11HErfHc/bcxs+PGNH+lRUT8bS/Jg3gmHJxCfFG/k6MSz1pwIYuT6/zJc0TY2UcfI9f+x+rg/w/cP585j/Z3JxsUaM7TmUH2Zixe52fsDEh88IGrPXkKW/pZv8QthaWkJQExMTK63PXToUFq2bEnLli358MMPs1UneXYdHx8fjh8/nmZ/VFQUixcvTlUWoHHjxtjY2BATE8Ovv/6app6iKCxcuDDdY7755ptYWFhw48YNVq1ala04Rf6ThF+IQurCwwu8+/e77L65GwATlQmf1/qcn974CUcLRyNHl3dM1aaMqTeG8fXHY6LSP73YeG0jH+76kNDYUCNHJ5I9ik5gwqaM70KmNPXILE7eOwnon+TMfn02JmoTos+c4WafviQ96UNs1bABDh/0zrOYhXhW2bJlAX2CnZDLT5dat27Nnj172LNnT6rpNTPTqFEjWrZsCTydjz/Zw4cPee+99wgJCcHV1TXVbDxWVlYMHar/ED1hwgS2b99u2BcdHc3HH3/M9evX0z2mi4sL48aNA+DDDz/kxx9/JC4uLlWZsLAwVqxYwYgRI7J1HiL3ScIvRCG09cZWem3vxa2oW4B+Hvvf2vzGwKoDUatejV/79yq8x8+tfsbGTN+nNXkw79Wwq0aOTACsOx2c4Z39lExtT2Bip+8qYKWx4vvm32NjZsPjo0cJHDAQ3ZPBhkVatKD4Tz+hfnLHVYj88M4772Bpacnhw4cpXrw4jRo1olmzZnTv3t1oMa1cuRIvLy+uXr1KtWrVqFy5MrVr16ZYsWJs374dOzs71q1bh6Nj6hs/48ePp1WrVkRGRtK+fXs8PT2pU6cOrq6u/Pbbb8yePTvDY44ePZoRI0YQExPD4MGDcXBwoGbNmtSrV4/SpUvj6OjIBx98wIkTJ/L69EUGXo2//EK8Qs7eP8u4Q+NIfLLgUJNiTVjXcR21XGsZObL8lzyY18PGA8AwmPdA0AHjBibYfTHjQYXJ1NpAtG4bDe9nNp5JabvSRO7fT9BHH6M8me3Dpn07ii/4DnU2+jgLkZtKlCjBrl27aNeuHTqdjqNHj3LgwAGOHj1qtJjc3Nw4duwYs2bNombNmgQFBXHhwgVKlizJkCFD8PX1TXf6TDMzM7Zu3cq8efOoUqUKd+7cwd/fn6ZNm/Lvv//y9ttvZ3hMlUrFnDlzOH78OP369cPd3Z3Lly9z8eJFNBoNbdu2ZeHChaxcuTIvT11kQqXIaLZsOXLkCA0bNuTw4cPpLmYhREFw9/Fdum/pTkisfsn0AV4DGFpr6CtzVz8jEfERfLX/K47cOQLoFxn7svaX9KnSJ88G3YnMdfj+IBduR2S4X2UagaXHQtQa/R1829g38fl4JhE7dnJrxAh40n3CtmsX3KdMQWXycgw+z+2/JVev6p9YZbR4lBCi8Hme3/tXOwsQohCJTYzl832fG5L91qVa83mtz1/5ZB9kMG9BZK3NZFZoVQIWxVcYkv2EiCoUV3Uk7sYNbn35pSHZt+/dG/epU1+aZF8IIYxFMgEhCgFFUZh0ZBIXQy4CUMG+AlMbTZW71ynIYN6CpVXljBYGUtC6bcTEQj8dZ1KsK7G336N1ZXfMS5fG+cnAQsePPsJ1zOhXegVdIYTILvmfUohCYPmF5Wy9sRUAe3N7FrRYgKVGBi+mRwbzFgzv1CqO1jTtnyCN/WE0dqcAUJIsiAn+AK2pBV1rFwfAadDHlFy+HJcvv5APtEIIkU2S8AvxkvO55cO3p78FwFRlyvxm8ylWpJiRoyrYZDCv8dlaapjSySvVNhPL65i76j+4KoqKmKAeVLgXyZS3vLC1eLrirlW9uvkaqxBCvOwk4RfiJRbwKICRB0aiU/TTG46qO6pQLqiVFzJamXf5heVGjuzV8V6dEszpWg2tqRqVJhRtsVWoVPqf5bh77Rh46grf/vsDrW4cMXKkQgjxcpOEX4iXVGR8JEP3DSUyQT+wsWu5rnSr0M3IUb1c0hvMO+/kPBacXoBMYJY/3qtTgn0jGlCq8p+oTfXTbNon1uOXG4l0vrIfgLvTppFw+7YRoxRCiJebJPxCvISSdEl8ffBr/B/5A1DTpSZj642VPs3PIXkw77h64wwzGi3xXcKMYzMMT05E3tEpOmaemkBI/E0AqtpVYdVlO9wObANApdFQ/Ltv0RQtaswwhRDipSYJvxAvoUVnF/Fv8L8AuFq68k2zb9CYaLKoJTLTrWI35r4+F1O1frrI//n9j3E+TxcwE3njhzM/sC9oHwDuGmem7rQl6m99P36VVkvxn37CumVLY4YohBAvPUn4hXjJ7PDfwa++vwJgbmLOghYLcLJwMnJUhUNrj9Z83/x7zE30K7b+feNvvjrwlczVn0e23dhm+Fl2jDPjux0uxP+j/yCrtrKi5JJfKdK4kTFDFEKIQkESfiFeIpdDLzP+0HjD+8kNJ1PFsYoRIyp8mhRvws9v/IyVxgqAvYF7+WzvZ0QnRBs5ssLl/MPzTDg8AYCq/joWLjdFdfwcAGpbW0p6L8PytdeMGaIQQhQakvAL8ZIIjQ1l6D9DiU2KBaCfVz86lO5g5KgKp9fcXmNp66XYmdsBcOTOEQbtGUREfIRxAysk7kff5/N/PicuKQ6AXlFVMQ3RX1vTou6U+n05FlWrGjNEIYQoVCThF+IlkJCUwJf7v+TO4zsANC7WmM9rfm7kqAq3Kk5VWNZmGc4WzgCcuX+GATsHyKq8Lyg2MZZh+4ZxP+Y+AM1LNKf1dG/MK1XCpkMHSm/ciLZCBSNHKYQQhYsk/EK8BGafmM2pe/rVRz1sPJj9+mxM1CZGjqrwK2tfluXtlhsWMrscepm+O/py9/FdI0f2clIUhUmHJ5Jw5j8AytqVZWaTmZiaaym14neKzZ+HiY2NkaMUQojCRxJ+IQq4NX5r+NPvTwCKaIqwoMUCbMwkKcovJaxLsLztcjxtPQHwf+RP3x19CYoIMnJkL58VhxbiNftvpqxMonGgJQtbLDSMlTApUsTI0QkhROElCb8QBdipe6eYeWwmACpUzH59NqVtSxs5qlePq5Ur3m29qeRQCYBbUbfos6MP18KuGTmyl8fhdT9QbuhP1L6uX9Dss50mFDV3MXJUQgjxapCEX4gC6k7UHb7c/yWJin4e+KG1hvJ68deNHNWry0HrwNI2S6npUhOABzEP6LuzL+cfnjdyZAWbLjYWv3EjsB+3CLsnEx3FuTlQ+ocfUZuZGTc4IYR4RUjCL0QBFJMYw+f7PjcMEG3n0Y4BXgOMHJWwNrPm5zd+pmHRhgA8invEwF0DOXn3pJEjK5hiL1/mepcu6NZtMWy72aQMVbfswqJGDeMFJoR4ISqVCpVKRUBAgLFDyVPe3t6oVCqaNWtm7FBemCT8QhQwiqIw8dBELoVeAqCSQyUmN5qMSqUycmQCwFKj73v+Rsk3AHic8JhBewYZVj4WoOh0hCzzxv/d90i84Q9AlBY296vAG4s3YlLEysgRCvHUgwcPmDlzJm+88QbFihVDq9ViZWVFyZIl6dChA/PmzePmzZvGDvOltX//fsMHhJy+9u/fn6dxTZo0iY0bN+bZMQoSU2MHIIRI7bfzv7E9YDug70ayoPkCLEwtjByVSMnMxIy5Tecy8fBENl/fTFxSHJ//8zmzXp9FG482xg7P6CK2bef+7NmG9+dLqdjQvQQ/9VyOqVr+7IiC49tvv2XcuHFER+v7mzk7O1OpUiXUajV3795l27ZtbNu2ja+//povvviCuXPnGjnil4+trS2NGqVdMfvRo0ecP6/vEvnaa69hbm6ebt28sn//fiZPnkyfPn3o3Llznh2noJD/eYUoQP4N/pcFpxcAYKoy5Ztm3+BexN3IUYn0mKpNmdpoKlYaK1ZfXk2iksjIf0cSnRDN2+XeNnZ4RmXTri1XvH9AezGA1U3V7G9szcoOP2Frnnd/vIXIqS+++ILvvvsOgPfff59Ro0ZR9ZkF3wICAli9ejULFixg3759Rojy5VezZk18fHzSbN+/fz/NmzcHYO3atXh4eORzZK8WSfiFKCD8H/kz6t9RKOhnMRldbzS1XWsbOSqRGbVKzei6oymiKcKvvr+iU3RMODyBxwmP6VW5l7HDyze6uDjUKe7Onbh/iq+b3aZIHRMC3NT80HQOpe1kdilRcKxdu9aQ7M+bN4/hw4enW87Dw4PRo0fz6aefsmTJknyMUIjcJX34hSgAkgfpRiVEAdCtQjfeq/CekaMS2aFSqRhaayjDag0zbJt9YjY/n/sZRVGMF1g+ifH1xf+tTjz6+28AgiKC+PLAlzyw1uHvpuLL2l/K7FKiQNHpdIwfPx6AN954I8NkPyVbW9t0yzVr1gyVSoW3tze3bt3ik08+wdPTE3Nz8zQDPXft2kWnTp1wdXXFzMwMV1dXOnXqxK5du9I9ZnYGjKY8fmZ1vb29qVevHkWKFMHGxobmzZuze/fuDNtVFAVvb2/q1q2LlZUV9vb2tGjRgi1btmRYJzcFBAQY+vEDbN++nbZt2+Ls7IxarTac76RJk1CpVPTt2zfDtjw8PNKMB1CpVEyePBmA5cuXpxk7kJGcXseCRBJ+IQqA709/j/8j/eDG2q61GVVnlJEjEjk1oOoAxtUbhwr9H4tFZxcx7+Q8knRJRo4sb8QH3+LO+PEEdO9B/M2b3J08hXD/Kwz5ZwiP4h4B8FaZt+hTpY+RIxUitVOnTuHn5wfAkCFDcqXNq1evUr16dX799Vesra2pXLkyZimmnR0xYgRt2rRh8+bNKIpC9erVURSFzZs306ZNG0aMGJErcaRnwIAB9OvXjzt37lC+fHl0Oh379++nbdu2bNq0Kd06AwcOpF+/fpw4cQJbW1vKli3L2bNn6dixIwsXLsyzWNPzzTff0L59e44fP46npyelSpV64TYbNWpEiRIlAHBxcaFRo0apXul5nutYkEjCL4SRnbh7gpWXVgL6aR/nvD4HjYnGyFGJ59GtYjemN56OicoEgN8v/s7AXQO5E3XHyJHlnoTbt7kzYSLX27YlfO06SNJ/oNHWqM6MM3O5/ug6ANWcqzGhwQSZXUoUOMn9yVUqFa+/njtPn2bPnk3NmjUJCgriv//+48yZM4YkcOXKlcybNw+1Ws0PP/zA3bt3OXHiBHfv3uX7779HrVYzb948Vq5cmSuxpHT48GE2bdrErl27CAwM5PTp09y7d49OnTqh0+kYNmxYmieRy5Yt47fffsPU1JTffvuNW7duceLECe7du8f48eOz9UQkN3399dfMmzePBw8ecPz4cfz9/enWrdsLtenj40P//v0BaNeuHT4+Pqlez3qe61jQSB9+IYwoOiGa8YfGG96PrjsaF0tZffRl1rFMR6w0Vow4MIJ4XTwn752k6+aujK0/lg6lOxg7vOeWcPcuDxcvJnzdekhIMGw3dXHB6dNP8S5zi+0XlwHgaunKguYLMDdJO+uGMI7Q31cQuirrhNK+ew8c+/U1vI8PvkXggP5Z1tO4uFJqxe+ptgUPGULslStZ1i02/xssvKoY3of/tYGHi382vHd4vxcOH/TOsp3sCg4OBsDOzg47O7tcadPBwYF169almlXGwkI/u1py15EPP/yQwYMHG/ar1WqGDBnCf//9x5IlS5gyZQq9euXu2J+EhAS+++47WrVqZdhmZWXFTz/9xLZt2wgICMDX15dq1aoZ9s+YMQOATz75hH79+hm2azQapkyZwtGjR/O1G0vfvn3TfMhIvrb55XmuY0Ejd/iFMKL5J+dzK+oWAC1KtODN0m8aOSKRG1qUbMEfHf6grF1ZACITIvn64NeM/HekobvLyyRs9Wqut2pN+Or/GZJ9E2cnXMeMoczuXfjUseS3J8m+1kTL9y2+x8nCyZghi2ckPXpEws3ALF9J4eGpKyYmZKtewq1baY6ZcOdutuoq8XGp6ukiI1LH9Ch3f2ciIiIAfcKWkeS+8c++jh49mm75d955J90pJP38/Lh27RoAX331Vbp1k7vzXL16lSvZ+ICUE7a2trz//vtptru7u+Pp6QlgiO/ZeIcNG5ZumxltzysDBw7M1+OlJ6fXsSCSO/xCGMnhW4dZc2UNAPbm9oxvMF66PxQiFRwq8L83/8eC0wtYcXEFANv9t3Pm/hmmN5pOXfe6Ro4w+8zLl0dJTvSdnHD6cCB23bqh1mr578F/TDo8yVB2auOpVHasbKRIRUZMbG3RlCqZdbln73ibarJVT+PimnabuxtJkRFZ1lWZpX4SpLa2SXVMk1yei93GxgaAqKioDMtUrVqVxMREw/tDhw5l2maVKlXS3Z48VsDCwoKyZcumW6ZcuXJotVpiY2O5fPky5cuXz/RYOVGuXLkM/664urpy5cqVVNfh8uXLhnhLl05/Zq2MzjWv5Pfx0pPT61gQScIvhBFExEcw4fAEw/tx9cfJHdFCyNzEnJF1RtKkWBPG+Yzjfsx97j6+y8BdA+lTpQ9Dag7BzMQs64byUeKDB8TfvInla68ZtlnWro1Nx45oK1XCvkd31E8ep18KucSwfcOI18UD8HG1j2nr0dYocYvMOXzQ+7m6xZgVL0bZnTuf65jFn3Nwp12Xt7HrkndrWRQrVgzQL/wUFhaGvb19mjLPDkzN6mZMRk8Lkp8muLqm/UCUsm1XV1du3rxJZGRkpsfJqcyeYqjV+k4eOp3OsC35+JnFm9m+vJDZORSEGNK7jgWRdOkRwgjmHJ/Dveh7ALTzaEdrj9ZGjkjkpQZFG/BXp79oXUr/fVZQ8L7gTY+tPbgadtXI0eklPnzIvVmzudaqNbe+HI4uLnU3i2Jz5+DYvx9qCwsexT1i2tFpdN/anQcxDwBoWbIln9b41BihC5EjTZo0AfRTTx44cCBPj5X8NOHevXsZllEUxbDf2trasD35Q0Zmg0EfP36cG2EaJB///v37GZbJ7FzymzGu0ctKEn4h8tmBoANsuq6fvcHJwokx9cYYOSKRH2zNbZnXdB4zGs/ASqO/W3Ql7Ardt3RnxcUV6BTj3B1KDA3l3ty5XGvVmlBvb5TYWBLv39fPwPMMnaJj/ZX1dNzQkT/9/jTE/Jrra8xoPAO1Sv6kiIKvdu3ahm4zP/zwQ54eq2LFigDExMRw/fr1dMtcu3aN2NhYACpVqmTYnnxXObME++rV3L1hkBxvdHQ0/v7+6Za5cOFCrh7zRWR1jcLCwnj48GG6+161LrTyv7MQ+Sg8NpxJRyYZ3k9sMBE7rZ3R4hH5S6VS0bFMR9a/tZ5aLrUAiNfFM+fEHD7e/TH3HuffnbPEsDDuz5/PtTdaEbr0N5SYGADUtrY4D/sc286dUpW/8PACvbb1YtKRSYTFhQHgoHVgSsMpLG2zFEuNZb7FLsSLUKvVTJkyBYC9e/cyf/78PDtW+fLlKVeuHKCfTz498+bNA/T9xJPLJr8H8Pf3TzehXbVqFY9yeUBz+fLlKVOmDAALFixIt0xG240h+RqdOXOGuGeeSgL8+OOPGda1tNT/nxXz5P++wk4SfiHy0YzjM3gYo7/b0KlMJ5qVaGbcgIRRFCtSjN/a/MbntT7HVKUfSnX0zlG6bO7CroD0V93MDY+iE/DedoZfPvgK39ebE/LrEpToaADUNjY4DR1C2T27cRo0CJMiRQAIiw1j0uFJ9NjaA9+HvvqyKjXvlO3Ou64L+XOfGx0XHqL7L0dY6uPPo+iEDI8vREHRrVs3PvvsM0A/e07v3r3x9fVNU+7hw4d8++23L3SsCRP047UWL17M4sWLDd1PdDodixYtYsmSJQBMnDgxVb2qVavi4eFBfHw8n332WarEdO/evQwbNgyNJnfXbFGpVIwePRqARYsWsXz5ckO8iYmJTJ48mX379uXqMV9EixYtsLKy4v79+4wcOZKkpKcLHf7555/MmDEjw2uUPIj6+PHjr0S3H0n4hcgnu2/uZrv/dkA/T/mourKa7qvMRG3CwKoDWdlhJR42HoB+MPfwA8MZ6zOWqPjcnfFhzYkg6s3Yw29bTtPk+Fa0Cfq7YVGmWlZXboPvHG+cP/0Ukyd9eJN0SazxW0PHjR1Zf3U9Cvo/+rVcajHA83tWb6/FvB1BHL0RyoXbERy9EcrULRepN2MPa04E5WrsQuSFhQsXMmfOHLRaLStXrqRatWq4uLhQs2ZN6tevT/ny5XF3d+fLL79ErVbTv3//VF1usqtXr14MHz6cpKQkBg0ahLu7O3Xr1sXd3Z3PPvsMnU7H8OHD00z7qFar+e6771Cr1axbtw4XFxdq165NqVKleOONN3jrrbdo2LBhbl0OgwEDBtCnTx8SExPp27cvxYsXp27duri6ujJp0qQ8fSKSU9bW1sycOROA77//HicnJ+rUqYO7uzvdu3fn66+/pmjRounWbd26Na6urgQEBFC8eHHq169Ps2bNaNasWT6eQf6RhF+IfBASE8LUI1MN76c0nIK1mXUmNcSroopjFdZ0XEO3Ck9Xjtx8fTPv/P0OpwMPwJFF4P0m/NxE/++RHyEmLMt2Ex88IHTVKkK8vVlzIoiR6/8jNlFHoI0bAdauRJua80eFN+jXegy/l2/FVztuGBL1s/fP0mNrD6YenWpYN8DJwokZjWfQ3nEq32yNIjYx/TEHsYk6Rq7/T5J+8VIYMWIEAQEBTJ8+nebNm2NiYsLFixf577//iI2NpXXr1syePZuAgACWLl2a7lz72TFv3jx27NhBx44d0el0nDlzBkVR6NixIzt27DB063lWp06d2LlzpyEJvXz5Ms7Ozvz6668sXbr0eU87S8uWLWPp0qW89tprhIWFceXKFapVq8bff//NkCFD8uy4z2PIkCH873//o27dusTFxeHn50fZsmX566+/GD9+fIb1rKys2Lt3L127dkWr1XLq1CkOHDiQ5wO5jUWlFPS1gAuII0eO0LBhQw4fPkyDBg2MHY54iSiKwhf7v2Bv4F4A3i3/LhMaTMiilngV/Rv8L+MPjSc0NhQAtaIw4FEEn4Q9ItVDaVMttJ8HtVJPs5gYEkLkrl1EbN9B9IkToCio7ex4u8VYonVPB6iVDwvktpUTUWap+91rtdF0an6WbQGbDdtMVCb0rNSTT6t/SlKiOfVm7Mkw2U/VlkbNsdFvYGuZu10OXna5/bckedBmyr7fQojC7Xl+72UefiHy2Fb/rYZkv1iRYgx/bXgWNcSr6vXir/PXW38xaftA9kdeQ6dS8audLYcstMx8EELphCcLASXGwmZ9/+NEzzeJ3LWbiB3biT52HJ6ZC1oXHk7Jh4Fcdihl2HbF/tmFlJLQ2B/F1Hk32wJiDVtfc32NMfXGUM5e/0dl6XH/bCX7ALEJOtafDqZ/Y88cXgUhhBC5TRJ+IfLQ/ej7zDg2w/B+aqOphikZhUiPI2q+v3iY9RYmzHGwJ0at5qK5Oe8Uc6dsfAIlEhIomZhIyYREyoydjCZwFiSlTcItqlfHpn07Rj104vKDjI9nYuGPudsmTLR3DdtcLFz4qs5XtPVom2rqut0X76bXRIZ2X7wnCb8QQhQAhS7hP3HiBHPnzuXgwYOEhobi4uJCq1atGD16tDzyFPlKURQmHZ5EZLx+5cJelXpRx62OkaMSeS4mDM7+AX7bIfYRaG2hQnuo0QMs0q7omcbZ1agSY3knEurExDHa2RFfrTkm8XDJ3IxL5k9X5h1slUTTFMn+PQ8bQhtWRNW8Ee5lq2FmXZJbv10F0g4AVplGYO6yHY3tGcM2RVFjE9+CzT2npfvBNDI2MUeXIiJWZuwRQoiCoFAl/MuXL2fAgAEkJSXh5ORE1apVuXr1KsuWLePPP//k77//pkWLFsYOU7wiNl7byMFbBwEoZVOKobWGGjkikedOr4BtX+m73KQUcBD2Tk63330afttQFEiIMsEu1JT5J2K4+UihyH0Txg5Qc8PJxFD0cCUVxR8qHKmk5khFFQ/sooHTcOM03NCXUdmYYqm1R4l3RJfgiC7eEZU6DjPH/ahMns5bnRhVlrh7b1G1eKUMn0JZa3P2J8NGK/33hRCiICg0Cf+FCxcYOHAgSUlJjBo1iqlTp6LRaIiOjuajjz5i1apVvPPOO1y9ehVHR0djhysKudtRt5l9Yjagn7N8WqNpWJhaGDkqkadOrzD0q09Xin73aQbbPnhAzH//EePrS+y2QGLvupEU/3QSteR5QZYee4TGK5pAU1MCNaYEOphyuLczge6VSYoMgieDfVNSVImYmD8A8/T79egSbIm79yaJkV6AilaVXTM8hVaV3Th6I+0xMi6fcVtCCCHyT6FJ+CdPnkxiYiINGzZk1qxZhu2WlpYsXbqUw4cP4+/vz/z585kxY0YmLQnxYnSKjgmHJ/A4Qb+QR58qfajhUsO4QYnMvWg3nJgw/Z39bEjaOBJ1+XaoijgZtj1Y+APha9akKPXMjMkqBa1dAqbaJGx1OqrGx1M1Pl6/z746tF8JQGR8JEGRQYZXYEQg/uE3OXP3GirTiFRNKooJ8SFNiH/YAhR9NyGtRk3X2sUzjP2dWsWZu+NytmfpyawtIYQQ+adQJPzR0dFs2bIFgE8++STNfnNzc/r27cvEiRNZvXq1JPwiT63xW8OxO8cAKGNbhsE1Bhs5okLoRRP0lHKjG87Z1WnrA7pEFbGhGmJCNU/+NSMhyhTPKj+i7fZ0alZtVS9ITvhVYGadgIVDAlqHBCwc4jG3S0Cd0f/WFTsYvrQ2s6ayY2UqO1ZOVWTNiSBG/nUStVkoarOHqEyiSXxcBiUh9dPOKW95YWuRcTccW0sNUzp5MXL9f5lfj2y0JYQQIv8UioT/zJkzhiWnX3/99XTLNG3aFICAgADu3LmDu7t7vsUnXh1BEUF8c+obQD9/+fQm0zE3MTdyVAVEbiXpuZGgp2zrObvhpOK3DYBHARY8vmdOQrQJidEmxEeZgKJKUzzmyJ5UCb9V/fq4fDUcrVdVtGWKYbK4drofINLQWED1HlkWe69OCQAmbDpPbKRbmv1ajZopb3kZymW7rXTu9OekLSGEEDmnKEqqGdSyo1Ak/H5+fgCYmZlRokT6f2TKlClj+Pry5cuZJvxBQUEEBwen2ubr65sLkYrCTKfoGHdoHDGJ+g+fH1b7kCqOVYwc1QsqaEl6biXokGU3HEWHIXFPWDSWhFqhJDwMJ/HOXRLu3CHh7l3K7t2DSZEi+msDRD8045G/ZYZtmpgnYeGYgKlZXKrtZiVK4Dhw4NMN7edlfp7J2s0FC7usy6FP1NtUcWPd6WD2XLxHRGwCNloNrSq70rVW8RwtkJWbbYkXo1KpSEpKMnYYQoh8pCgKarU664IpFIqEPzRUP4jM3t4+w088Dg4Ohq/DwjJfln7p0qVMnjw59wIUr4SVF1dy+v5pACo6VOSjqh8ZOaIXVNCS9Bz0k2f7CKj0JljYoyQloYuKIikyCl1kBEmRkegiI0k6sxHdRRNUJpbYl4lOVf3GdmfiHpkCKf4/OfRz2tDv3MGkXDn9ByFAY/kk8VIpmFokYVYkCQvH+CddcxIwtUxCpQI8svggmHwd0rv+oL+z325u9p9kPGFrqWFAY08G5MLc+LnZlnh+Go2GhIQE4uPjMTMzy7qCEOKlFh8fj06nQ6vV5qheoUj4k7vzZPafXcoLEx0dnWE5gAEDBtCmTZtU23x9ffn4449fIEpRmPk/8uf7M98DYKo2ZXrj6WhMjHSXMzfuyhs5SU91qAcPSLh9G93J/6G7qaBLtECXqEJJVKFLfiWosXKPxbrYkzvnCTHEbVtEwIyN6B4/zuSgtmiKJKZJ+FErpEr2n2Hi4IDGzQ1d8sDZCu0h4CB2ZaKx9YjGVKtDldnNlxT97jNUq7f+epxdre8ylPy9rNgBqnfP+VgFUShZW1sTHR1NeHg4Li4uxg5HCJHHwsPDAf3vfk4UioTfwkI/3WF88h/fdMTGPr1LZmmZ8SN3gBIlSmTYNUiIZyXqEhnnM464JH2y+Wn1TylvX944weTGXfnnvZOuKOgeR6OLjEBJSMCsZMlUg1lD/KxIiDJBl6AmKUGFLlGdOmlPUqFb0xSPtevQln96/cLWrOHhwh+evMt4Sl21qe5pwg+ogg5mkezr6RLSJvaWTvGYmuvQWCZhapmExjIJTYlSaD78E1M3N9TP3lmp0QP2TsaU3Ot3D+iT+gaf6l9CpMPa2pqHDx8SEhICgJ2dndzpF6IQio+PJzw8nJCQEExMTLCxsclR/UKR8Nvb6+90hYWFZTiQIbnbT8ryQuQG7wve/PdQP2tJVaeq9PPqZ5xAcuuu/JMkXZcE6FSoNYphV0K0mocXrEmKV6OLV5GUoCZpVzt0cSqSIiPhSV9iszJlKLN1i2EwK8CjG5bEPcrqqUcCyjNP4NSW6S8C9aykhNS31E1UUVjUrInauggm1jYp/rXGxMYa9emfMAm/hIlZ2oGnbrUj0mzDwxk8PNI/uIV9nvS7FyIrGo2GkiVLEhgYSEhICCEhIajValQqVY4H9QkhCh5FUfQ31HT6v1UmJiaULFkSU9OcpfCFIuGvWLEioP/0ExgYSKlSpdKUuX79epryQryoK2FXWHR2EQDmJuZMazwN0wznT8xDz3FXXodWP/j01i0Sbt1+8u8tEs7tJSHElcRYE5yrRuBUJcpQVUlSEX792QT8UZpDJEU82Rb7dJ/62cRapaA2ffpSmSioLS1QPXN30rJmDZwGD0Z9cTWqiBup6qhNFFSmCiZmOkzMU7dvYmuPx+o/Mr4OpUJh5+iM9z8rq244edTvXoisaLVaSpcuTUREBJGRkSQkJKAoStYVhRAFnkqlQq1Wo9Vqsba2xsbGJsfJPhSShL9GjRpYWFgQExPDv//+S+/eaf+gHjhwAAAPDw+ZklPkigRdAuN8xpGoSwRgSM0hlLYtbZxg0pkHXpegIv6xCQmPTbB0jsfE7EkCkBBDyMwR3F9zKJMGTfRFH5uk2qo2S5FEqBRMNDrUFhpMSlTGxMYGtY0NJjY2mDg+GSSvtTUUd68Trm/ZTF9PlbppPY8mUDn1HPIWNWpgUaMGHFHnboL+pBtObk5/Kf3uhbGYmpri4OCQaoIKIYRIVigSfisrKzp06MC6detYvHhxmoQ/Li4Ob29vALp162aECEVh9PO5n7kUegmAWi616FWp1/M1lAuDbJVLW4kLMyUmxEz/eqghPvJp95mSzR5i5fZ0jIvJ4ysZtqXSqNBYxKOxSsLcLjHVPhMzHWU73kNtptPflVehT9L7rk2/sSeDWQHMbbIxdWBmSXpuJ+h51Q1H+t0LIYQoYApFwg8wceJENm7cyKFDh/j666+ZOnUqGo2G6OhoPv74Y/z9/bG1teWrr7LZ7UGITJy9f5YlvksAsDC1YFqjaZio07tlnYUXHGQbtno1ETt2EnP6BkpCxjN0JDw2BZ4m/OY28RRp3hxN0aJoihXTv4oWRVO8GCaX/kC1a0y67ahUoLF6JnHPryQ9LxJ06YYjhBDiFVBoEn4vLy8WL17MRx99xOzZs1m6dCmlSpXi6tWrREREYGFhwdq1a3FycjJ2qOIlF50QzRifMegUfZ/xkXVGUsLmOWZ1yuYgWyUxiViL14g5dw77bu+h0jy9cx/r50f0sWNpqqrNdFg4xGNuk4jGKgkLp9QzWFmUcqLExB/TP27NnvDPlIKZpOdFgi7dcIQQQhRyhSbhB+jfvz9eXl7MmTMHHx8ffH19cXZ25u2332bMmDGUL2+kqRJFoTL35FyCIoMAaFq8KV3Ldc15I5kMsk2IVj/plmNGTIiG2LWzUJL0s21Y1qqJNkUfd4vqNQhfsxbzYg5YmN/EwjEeC8d4zKyfLPCUkczuyhf0JD0vEnTphiOEEKIQK1QJP0DdunVZt26dscMQhdSBoAOsu6L/+bI3t2dSw0nPN/XdM4NsH983IyLAgqg7WhJjMu4aFH32bKqE36ZNa2xat0Ktjof5FXOvf3tBT9IlQRdCCCGyrdAl/ELkldDYUCYcnmB4P7HhRJwsnrOLWIr56QFCLxch6nY6y2SrFLT2CVh4OmPRfRyW9eqm2q02LCJnlTf92yVJF0IIIV56kvALkQ2KojD58GRCY/ULuL3t2Z6Wty7DP9/maGad+MBAIrZuxS42LNUvn03JGKJuazExT8LSRd8tx8IpHq1dAmpTwK0odHwz8yDzon+7JOlCCCHES08SfiGyYeO1jfwT9A8AxTS2jDq4HBJiUhfKYGadxJAQIrZtJ2LLFmLOnQPApLUT9immy7YuHkvJZg+xdIlHlXrBWL0U89lnSgagCiGEEOIZkvALkYXgyGBmHZ8FgAqYcfMKVglx6Rd+MrNOUkwcUQ+defT3Fh4fOQJJqaeyjAg0T5Xwq02VVPPkp5HVIlIpyV15IYQQQqQgCb8QmUjSJTHGZwzRidEA9I94TK24DJJ9IO6RKQ8vWBO5dp5hZh0DlQrLunWxebMDNq/XhV/r5u4qr0IIIYQQ6ZCEX4hMLLuwjDP3zwBQ0dyJwSGBWdaJCLRI9d68ciVsO7yJTYf2aNzcnu7Ii1VehRBCCCGeIQm/EBm4FHKJRWcXAWCmNmNmrIbkJa8UHUTctEAB7Dyf9uU3t03E3C4BXYIKm+pO2I5diXmZMukfQFZ5FUIIIUQ+kIRfiHTEJcUx+uBoEnWJAAyrPYyy//6CokDULS0PfK2Je6TBxDwJ6+KxmGgUQ92SzUIwMdehcneDjJL9ZDLIVgghhBB5TBJ+IdKx4PQCrj+6DkA9t3q8X+l9Hq9Zxv09TsSGmBnKJcWZ8PiuOTYlnt6hN9Xq9F9kd2YdGWQrhBBCiDwkCb8Qzzh65ygrLq4AwFpjzSS79wnqP4DoI3eAp8l+kaKxOFeNQGufmH5DOZlZRwghhBAij0jCL0QKEfERjPMZB4B7iMIM32JETkl9593SOQ7napFYOmcyjabMrCOEEEKIAkISfiFSmHFsBvei7wHQpkgdrI4cNezTVq6Mc8dqWAV8g0qVUQtPyMw6QgghhCggJOEXr46YMDj7B/htfzo4tkJ7qNEDLOzZcW0bW29sBcDFwoWB3b/j0dEvSbh7F+ehQ7Fu0xqVSgWnS8vMOkIIIYR4aUjCL14Np1ekn6QHHCRp2xQCo99Ac+wMpv1UJJqqmNp4KrbmtljNnYOJrS0q0xS/KjKzjhBCCCFeIpLwi8Lv9Ip0F7jSJagIvWJFyOUi6BJOURRodUaNfe/3aVi0IQCmjo7ptykz6wghhBDiJSEJvyjcYsL0d/ZT0CVB+HUrHl4oQlKciWH7Y3Owt7BnWO1h+RykEEIIIUTekYRfFG5nV6fqxhN1x5y7J2xJiH76ox9nCttfU7G1norFlVphYWphjEiFEEIIIfKEJPyicPPbBoCigwe+1oRcsn66T6VwvBosbWJKmLWKz8LCqRJwwkiBCiGEEELkDUn4ReEW+wgARaciMlhr2GxdIoYdTRQWlLIBoFpsHAPCI0D7yChhCiGEEELkFbWxAxAiT2ltAVCbKhRrGIaJWRLu9cJ42OIxC0vq7/Zb6HTMfBCi//T7pLwQQgghRGEhCb8olHSxscTd8NfPs/+E1j6Rsm/dx6x0LGOcHdE9WT1rRGgYJRMT9YUqdjBGuEIIIYQQeUYSflHoxF2/TsB73QgcOIAkzw5g+rQrj9pUYa6DHUEaDQBNo2N4J/KxfqfGAqr3MEbIQgghhBB5RhJ+UWgoikL4+vX4v/MucVeukHj7Dve++xnazzOU2WtpwTobfVce+6QkJj0IQZW8s91csLDL97iFEEIIIfKSDNoVhUJSVBR3J00mYssWwzaL2rVx/nwouLsDcH7P14x2tjPsn/gwFCedTn9nv91c/Qq6QgghhBCFjCT84qUX43ueW8OHkxAYqN+gUuE46GOcBw9GZar/EQ8q14zBV8oQExcGQK9EM1q6vKbvs1+9u37lXCGEEEKIQkgSfvHSUhSF0OXLuT//G0hIAMDE2Ylic+diVb++oVx4bDif7vmU0CfJfsuSLfmq6XxQm6TbrhBCCCFEYSIJv3hpPZg/n5AlSw3vrZo0oeismZg6Ohq2xSXF8fm+zwmICACgmnM1ZjWZhYkk+0IIIYR4RcigXfHSsnv3XdRWVmBqisuIEZRY/HOqZF+n6BjrM5bT908DUNK6JAtbLESbYtYeIYQQQojCTu7wi5eWWalSFJ0zG1MnJyyqV0+z/9tT37IzYCcA9ub2/PTGTzhoHfI7TCGEEEIIo5I7/OKlkHD3LsFDhpJw736q7dYtW6ab7P9x6Q+8L3gDYG5izvctvqekTcn8CFUIIYQQokCRO/yiwIvyOcTtr74iKTycpMhISi5dgsok4z74/wT+w+wTswFQoWJ2k9nUcKmRT9EKIYQQQhQscodfFGiRe/YQ9MknJIWHA5AU8pCk0NAMy/s+8GXUv6PQKToARtUdRctSLfMjVCGEEEKIAkkSflFgRezYSfCwLwxTbtp27YLHmjWYOjunWz4oIojP/vmM2KRYAHpX7s37ld7Pt3iFEEIIIQoi6dIjCqSIbdu4NWIkJCUB4NC/Py4jvkKlUqVbPiw2jE/2fkJorP7uf6tSrfjqta/yLV4hhBBCiIJKEn5R4Dz6ewu3R40Cnb5bjuNHH+H8xbAMk/3YxFiG/jOUmxE3AajuXJ0ZjWegVskDLCGEEEIISfhFgfJo0yZujx5jSPadPv0EpyFDMkz2dYqOMT5jOPvgLAClbErJXPtCCCGEEClIwi8KFJWlJajVoNPhNOQznAcPzrT8Nye/YffN3QA4aB34qeVP2Gvt8yNUIYQQQoiXgiT8okCxadUK5s8n/uZNnD76MNOyqy6tYvnF5QBoTbQsbLGQEjYl8iNMIYQQQoiXhiT8wugURUnVZcemTess6+wN3Mvs40/n2p/1+iyqOVfLsxiFEEIIIV5WMqpRGFXo8uXcmzYdRVGyXefcg3OM+ncUCvo6o+qOomVJmWtfCCGEECI9codfGE3Ib8u4P2cOACpTE1xHj061/1F0AmtPBbHn0j0iYxOx1ppSp5zCxrujiEuKA+CDyh/IXPtCCCGEEJmQhF8YxcNffuXBN98Y3pt5eKTav+ZEEBM2nSc2UWfYpjJ5jC8/oTYPB/Rz7Q9/bXh+hCuEEEII8dKShF/ku4c//cSDBd/r36hUuE2ehP177xn2rzkRxMj1/6WupErAovhy1OYPAUiMLsVrFoNlrn0hhBBCiCxItiTyjaIoPFj4Q6pk333atFTJ/qPoBCZsOv9MTR3aov/DxDJQ/y7OiZjgD5iy5QqPohPyKXohhBBCiJeTJPwiXyiKwoMFC3i4aJF+g1pN0VkzsevaJVW5daeDU3XjQZWAuftfaGwuAKBLtCI6qB8kWRGboGP96eD8OgUhhBBCiJeSJPwizymKwoNvviHk58X6DWo1RWfPxrZTpzRld1+8a/hapXmIpcdPmNmd1Lej0xAT1BclwTFF+Xt5G7wQQgghxEtO+vCLfJEUFaX/wsSEYvPmYtOuXbrlImMTATC1OYfW7S9UJvrZeJQkLTG3eqKLTb2wVkSsdOkRQgghhMiMJPwiz6lUKtzGj0elUmFZr36mC2tZaXWYu/2Fmf1xw7akmBLE3OqBkuCQpryNVpMnMQshhBBCFBaS8It8oVKrcZswIdMy/o/8eWA9DzPzAMO2+JAmxN1vQ0Y/qq0qu+ZilEIIIYQQhY/04Re5TlEU7k6dRuTevdmu8/f1v+m2pRsP4wP0bSRaEh30AXH3O5BRsq/VqOlau3guRCwKu759+6JSqZg0aVKutRkQEIBKpUKlUuVam0IIIURekIRf5LrQ5csJW7WK4GFfELl/f6ZlYxJjmHBoAmN8xhCTGANAcYtKPPYfSlJU5UzrTnnLC1sL6dJT0CQnwTl95WYyLtLav3+/4VoHBAQYO5w8pdPp2L59O1OnTuWtt96iaNGihnM/evToc7cbFxfH33//zeDBg6lduza2traYmZnh5ubGm2++yfr16zOtr1KpaNiwIQANGzZM9/fg4cOHzx2fEEJkRLr0iFz1+Nhx7s+dp3+jKKg0GSfk18Ov89WBr7gWfs2wrZ9XP4bUHMIGz7tpVtpNptWomfKWF+/VKZFmnzC+Ro0apbv90KFDAJQrVw4XF5c0+0uWLJlnMbm7u1OhQgWcnJxyrU2NRkOFChVyrT2ReyIiImjfvn2utztt2jSmTZsGgKmpKWXLlsXCwoJr166xdetWtm7dSpcuXVi9ejVmZmaZtlWtWjWsra3TbNdk8n+mEEI8L0n4Ra5JuHuXW198AUlJALiOGkWRDJK/jdc2MuPYDMNdfXtze6Y3nk6T4k0AeK9OCdpUcWPd6WD2XLxHRGwCNloNrSq70rVWcWwt5Y9iQeXj45Pu9uSuL2PGjKFv3775GBHMnDmTmTNn5mqbxYoV4/Lly7napsgdarWaGjVq8Nprr6V6vShFUWjUqBGDBw+mY8eOFClSBICEhAS++eYbvv76a/766y8mT57M9OnTM23r559/pkGDBi8ckxBCZIck/CJX6OLjCR76OUmhoQDYvNUR+17vpykXnRDN9GPT2Xx9s2FbLZdazHl9Dq5WqQfg2lpqGNDYkwGNPfM2eCFEoWJjY8OZM2dyvd0vvvjCcIc/JY1Gw6hRo7h+/Tq//vorixcvZurUqajV0mtWCFEwyP9GIlfcmzad2P/+A8C8YkXcJ09OM5jxStgVum/tbkj2Vaj4sOqHLG2zNE2yL14tHh4eqFQq9u/fz6VLl/jggw8oXrw4Go0m1dMAHx8fRo0aRb169ShatChmZmY4OTnRqlUrVq9enWH7GQ3afXbgrY+PDx06dMDR0RELCwuqVavGDz/8gKIoadrMbNBuyuPFxMQwceJEKlSogFarxdnZmW7dunH16tUM442KimLs2LGUK1cOrVaLu7s7PXv25PLly4a++B4eHplf1FySmJjI4sWLadKkCfb29mi1Wjw9PRkwYECmTzg2bdpE+/btcXV1RaPR4ODgQMWKFenZsyfr1q1LU/7cuXP07t0bDw8PzM3Nsba2pkyZMrRr14558+aR9OTJoTE5Ojpmur/dk/VFQkJCePDgQX6EJIQQ2SJ3+MULC1u7lvA1awBQ29pSfOH3qC0sDPsVReGvq38x8/hM4pL0C2k5aB2Y2WQmDYs2NErMomA6dOgQ06dPR6fTUblyZezs7FLdJe3cuTMhISHY29vj5uZG0aJFuX37Nnv27GHPnj3s2rWLZcuWPdexvb29GTBgAHZ2dpQuXZqAgAB8fX0ZMmQIAQEBzJs3L8dtRkRE0LBhQ86dO0fFihUpW7Ysfn5+rFmzhr1793Lq1ClKlSqVqk5oaCjNmjXD19cXgPLly1OkSBE2bNjA5s2bmThx4nOd3/OIioqiY8eO7H8y+L506dLY29tz6dIlfvvtN1atWsWqVavo2rVrqnqTJk1i8uTJALi4uFCtWjViY2O5desWq1ev5sqVK7zzzjuG8rt27aJjx47Ex8dTpEgRKlSogKmpKcHBwezcuZMdO3YwaNAgQxeagio2NtbwtaWlZaZlhw8fjqWlJW5ubjRu3JiePXtiY2OT1yEKIV5VisiWw4cPK4By+PBhY4dSoET/959yyauqcrFCReVixUrK3V17lV//va50W3xYab/gX+Wdxf8oXdcNVry8vQyvfjv6Kfcf3zd26CKfAQqgLFu2LM2+UqVKKYBiYmKi9OzZUwkLCzPsi46ONnz966+/KteuXUtT/+jRo0rZsmUVQFm7dm2a/X369FEAZeLEiam2+/v7G+IyNzdXvv32WyUxMdGwf9q0aQqgqFSqNMdNWTej42k0GqVWrVrK1atXDfuuX7+ulCtXTgGUDz74IE3dHj16KIBSokQJ5dSpU4btYWFhSteuXRUzMzMFUEqVKpWmbmb27dtniNff3z9bdQYMGKAAipOTk7J//37D9sjISOWDDz5QAMXCwkLx8/Mz7Hvw4IFiamqqmJqaKn/99Zei0+lStXnmzBll8eLFqbbVqFFDAZTRo0crsbGxqfYFBwcr8+bNS7M9p5LP/ciRIy/UTmY6dOigAEqtWrUyjSG9l729vbJx48Y8i00I8WqThD+bJOFPX/zt28qNd99TLlaoqPwzZqZSYew2pdSoLUqpUVsUzwm/KJUXN0uR7FdV/t/efYdFdW0PH/8OvQgI2CBRUVSMoGKPYO+dRGPJJRWNmljSrkRNLFdNL5rXFDWany2xm6h4LdgRsGJBpYiKAmLwKk2GOsz7x2QmIkWQMgOuz/P4PMzZ+5xZx0lknT17r/3juR/Veaq8x19Y1DilSfhbtWqlzs3NfaLr79+/Xw2ohwwZUqitNAn/+PHjC52Xn5+v9vDwUAPq77//vthzi3s/c3PzIh9QtmzZokvyHr2mQqFQA+pjx44VOi8rK0vdpEmTKkn4Y2Nj1cbGxmpAvWHDhkLtKpVK7ebmpgbUEyZM0B0PDQ1VA2pPT89Sx2Zubq4G1CkpKaU+p6wqO+Hftm2b7j22bdtWZJ8BAwao586dqwbUhw8fVt+/f1/9559/qtu0aaMG1CYmJuoDBw5USnxCiKebzOEXpCpzWRl0nXErQhn6/4IYtyKUVcdvkKrMfey5pk5ONF6/joTXp+KX5/53GU0VpvbBWLn8hJG5pqZ0fp4NypvjqZM7HGMj40q+I1Fdvf7665iYlDzTMCoqikWLFjF69Gj69OlDt27d6NatG7Nnzwbg7NmzT/TeU6ZMKXTs4brpMTExhdofZ+DAgbi6uhY6ri1dmpyczP2/F7oD7N27F7VajZubG927dy90nrm5Oa+++mqZ43gSe/fuRaVS0bBhQ8aMGVOo3cjIiA8++ACA3bt3645ry6tGR0eXuua99py1a9cWuV7C0IWHh+vWmvj6+jJy5Mgi++3bt49BgwYBms/S3t4eHx8fQkNDadeuHXl5eUybNq2qwhZCPEUMJuEv74Ym2mt8+eWXeHp6UqtWLezs7OjatSvLly8nP79wPXcBm0/H0eWzAyzaHcGJ6/e5fDuNE9fvszDgCl0+O8Dm03GPvUZ6noKpGU1RKxQYW0dh1eT/YdFgFwqjPADyHjRDeX06KmUz5u68VKoHCfF0cnd3L7F97ty5tGrVijlz5rB161YOHz5McHAwwcHBnDlzBtAsmHwSLVq0KPJ4/fqaBeUPHjyo8Gs+et2oqCgA2rZtW+w1PT09yxzHk9DG4u7uXmy1mdatWwOQmJhIWloaAM7Ozvj6+qJUKunatSsdO3bE39+frVu3FruplL+/PwDTp0+nadOmTJo0iV9//fWJHrKqWkxMDAMHDiQ9PZ2ePXvyyy+/lPkaVlZWujKeERERXLp0qaLDFEI85Qwm4V+0aBEjRozgp59+4uLFizg7O+Ph4YFSqWT37t289NJLjBo1ipycnCLP1y6OmzlzJuHh4TRt2hQnJydOnDjB5MmT8fHxIS8vr4rvyrBtPh2H/7aLRW5uBZCVl4//touFkv4HQUHkJiToXm8NiyfHOB7LhquwavR/GFv8BYBarSA7qT+ZcX6oVZoNZrJy89kWFl9JdySqO2tr62LbtmzZwsKFC1Gr1cyZM4dz586RmpqKSqVCrVZz7do1gCf+/7y499Ymu08yaPC4az563fT0dIASF28WtVlTZdAm8A0aNCi2j5OTk+5nbewAv/76K19++SXNmzfn7NmzfP3114wePZoGDRrg4+NTKJGfMGECW7duxcvLi1u3brFixQrGjx9P8+bN6dixI4GBgRV8dxUjNjaWPn36kJiYiJeXFwEBAVg+VLCgLB7esC46OrqiQhRCCMCAEn713xua/P777yQnJxMREUFYWBj37t3jiy++ANBtaFKUyZMnExYWRqNGjbhw4QIXL14kMjKSo0ePYmdnR0BAAAsWLKjKWzJoqcpc5u4o3SjSw6PyWdHRxE9/lxujXiIjJIQ7GXdYHf05Vk2WYlLrn1/ieQ/cUF5/j5x7fXn0P7PAK39V2H2Ip4e2+s4HH3zAggUL8PT0xNbWVpc8P+nIviHRJvPaZLsoDyfWlUn70HHnzp1i+yQmJup+fvhBxMzMDH9/f6Kjo4mPj2fjxo289dZb2NjYsHPnTvr27UtKSkqBa40aNYrg4GDu37/Pnj17mDlzJk2bNuXs2bMMGTKEkydPVuwNllNcXBy9e/cmLi6OLl26sGfPnnJVEXp4Z97cXPkWVAhRsQwm4X///fc5fvw4L7/8coF/NLUbmrz11lsARU7PuXz5Mhs3bgRg5cqVeHh46Np69OjBV199BcC3335b6JfM02prWHyxI/uP0o7Kq9LSiJ82DXVmJqqUFI5tX8rwP4aTYhyKZp0hqLKcUN6cQGbcm+TnFF1bPy1LfpmJstOO4Pfs2bPI9uDg4KoMp1K4ubkBmpr0xTl//nyVxNKyZUsArly5Uuy3G9qpJ87OzsV+K/HMM88wduxYVqxYQUREBA4ODty6dYuAgIAi+9vZ2TFo0CA+//xzoqKi6N69O3l5eU80VaayJCQk0Lt3b2JjY+nUqRP79u0rd0lNbRlWgIYNG5Y3RCGEKMBgEv7ybGiyefNm1Go1rq6u9O/fv9C5r732GlZWViiVSnbs2FFxQVdjgVeKH7Ursv/lRG5/NJPcm7cAiGxiykz3cLJUmrrT+bm2ZN4ejfLGNFTKZiVey9bC9MmCFk81bV3zhIemk2kplUqWLl1a1SFVuIEDB6JQKIiKiiIoKKhQe3Z2NuvWrauSWAYNGoSxsTG3bt0qcg1Vfn4+ixcvBmDo0KGlumaDBg1o3rw5ALdv335sfxMTE92i6dL0rwp37tyhT58+XLt2jQ4dOrB//37s7OzKfV3tN9mOjo506tSp3NcTQoiHGUzC/zglbWgSEhICaEbzi2JhYUHnzp0L9H3apWeVbZ5zp+AdPDh8GID/2cLXI/LJN1JgZWKFl8MrZFz7N3mpHSjNf1L9W8muuqLsevXqBcCnn37KlStXdMdv376Nj4+PwSSE5dGkSRPGjRsHaKq9hIWF6dpSUlLw9fUt8oGnMjRq1EhXeWbq1KkcP35c1/bgwQMmTJhAREQElpaWzJgxQ9d24MAB3nvvPcLCwgpU3FGr1WzZskV3T9qkNi0tjdGjR7Nv375Ca7QuXLjAb7/9VqB/ZTtx4gQuLi64uLgQH19wvdHdu3fp27cv0dHRtG/fnsDAQGrXrl2q606fPp3ffvsNpVJZ4HhSUhJ+fn5s374d0GxaZmoqgyJCiIpVbXba1f6j3759+0KL1rTVJJo1K35k2dXVlSNHjpS4FbxWXFxcoX/oH/66tSawsSj9R9/5fhADT+0EIMcYvhlpjNLahLEtXmJy28mYqu04evJAqaYIWZgaMarDs08ct3h6+fv7s2nTJuLj42nTpg0tWrTAzMyMS5cuYWpqyo8//sj48eP1HWa5LV26lPDwcC5dukSHDh1wc3OjVq1aXL58GSMjIxYtWoS/vz/Gxk9e3rZ9+/bFVt4B+OGHHxg3bhxLliwhJiaGo0eP0r17d1xdXXU77WZkZGBubs66det0o/ageRj4/vvv+f7777G1taVp06aYmJhw69YtkpKSAHjrrbfo3bs3oPmmYOvWrWzduhUzMzOaNWuGjY0NSUlJ3LhxQxfvv//97zLdo4+PT5HTvAYNGlSg9Ou5c+cKTKHJysri5s2bQOEF4J988onuYTMnJ4fhw4cX+/5Lly6lXbt2utcXL15k6dKlus/trbfeQq1WExUVhUqlQqFQ8NFHHzF16tQy3acQQpRGtUj4t2/frqvz/PHHHxdq19axdnBwKPYa2rbk5OTHvt+qVauKXRxcU/Rv1YAT1++X2EdhkkJj8x3M2BuuG7dfNdCIRp17s7jD+zS1a6rru8DHA/9tFx/7vgtGeGBnKaNXouycnJw4efIkc+bMYe/evcTExFCnTh1Gjx7N7Nmzq6x6TWVzdHQkJCSEzz//nM2bN3Pjxg1q167NiBEjmDdvHtevXwdKruTzOI/7d1D7jWqtWrUIDAxk1apVrF+/nvDwcOLi4mjQoAFjx45lxowZurn+Wt27d+fHH3/k4MGDhIeHc/36dZRKJXXq1GHo0KGMHz+eF198UdffxsaG3377jUOHDnHy5EkSExOJiorCxsYGb29vRo8ezeTJkzE3Ny/TPaampha5kDs1NbXAa5VKVeprZmdn635+XOnMR9/ngw8+wM3NjaNHjxIVFUV0dDSmpqa4urrSvXt3Jk+eTMeOHUsdixBClIVCbeC7nISHh+Pt7U16ejq+vr6sX7++UB9jY2Py8/NZtWoVfn5+RV5n7ty5LFy4EFdX18fWdi5uhH/SpEmEhITQtWvXJ78hA5GqzKXLZ8WMyhtlYeZ4hFo2QXy6PhsXzaAcZ553oOUXS+jUoOiv1jefjmPujktFXtPC1IgFIzwY00kWowlRHl9//TX+/v6MHDmyVPuTCMMSGhqKl5dXjfldIoSoHso9wj9//vwnHg0/d+5ciZvIlHZDE0tLSzIyMoqt0Q//jFg9Ov+/KA0bNqzxVRLsrEyLGJVXYWp/ErM6BzEyyaDe/9TY/j3dNMutES8v34GJuUWx1xzTqSED3RuwNSyeA1f+Ii0rF1sLU/q3qs+o9s9iZyUj+0KUR25urq48aXHVioQQQohHlTvht7CweOIKBSXNQS3Lhib29vZkZGSUWIdbO+3H3t7+iWKtibSj7XN3XCJbkYRlwzUYm/9TASne3pLd//Zh0vFEmn0yp8RkX8vOypTx3ZowvluTSotbiJosMzOTzz77jLfeeotGjRrpjt++fZupU6cSERGBvb09r7zyih6jFEIIUZ2UO+GfOXMmM2fOrIhYdMq6oUnLli2Jj48vcaqOtob3o/NNn3ZjOjWkjUs+b+77igeqv7e9VxvjWXswi3q+T2P7ejBOvzEK8TRRqVQsWrSIRYsWUbduXRo3bkxGRgZRUVHk5+djaWnJunXrSlyzJIQQQjzM4BbtPsmGJl5eXhw4cKDIutWgmc5z6tQpXV/xjyRlEh8Eva1L9r0tPfio5zya1JcHIyH0wdLSki+++IL9+/cTFRWlWxzatGlT+vTpo1v8KYQQQpSWQdXhf9INTUaPHg1oRvEDAwMLta9duxalUomlpSUjRoyo8Lirq/tZ95m4fyJx6XEAtKvtwYytKtQTZ5Jz65aeoxPi6WRsbMxHH33EwYMHiY+PJzMzk8zMTK5evcry5csl2RdCCFFmBpPwl2dDEw8PD8aOHQvAhAkTCpRLO3bsGP7+/oCmLJrM4ddIy0ljcuBkrqVqpjq52bux8EwTci6Gkx0VReLswuVPhRBCCCFE9WMwU3rKs6EJwPLly4mKiuL8+fO0bdsWd3d3cnJydJtyDR48mHnz5lXeDVQjylwl7xx4h4j7EQA0sWvC9+oxpG3R/P0Y2dri9OkifYYohBBCCCEqiMEk/OXZ0ATAzs6O0NBQFi9ezMaNG4mJicHY2JjOnTvz5ptvMnHixBJ3lnxaZOVlMe3QNC7cvQDAM7WeYXmX70h/6Q1dH+evvsSscWM9RSiEEEIIISqSwST8q1evZvXq1eW6hoWFBbNmzWLWrFkVE1QNk6vK5cOjH3LqjmYBcz2reqwcsBK+WoHq75KmtceMwaZXLz1GKYQQQgghKpIMeT8l8vLzmBk0k2PxxwBwsHBg5YCVOETdIWXLFgCM69Sh3ocf6DNMIYQQQghRwQxmhF9Unnx1PvNC5rH/5n4AbM1sWdF/BY0tn+HGvGm6fg1mz8L4CTdRE0IIIYQQhklG+Gs4tVrNZyc/Y+e1nQBYmVixrN8y3BzcuLdyJTl/b0hm3b07NoMH6zNUIYQQQghRCSThr8HUajWLzy5mU9QmAMyNzfmh7w+0rtsaAKt27TBt1AiFhQUN5s1FoVDoM1whhBBCCFEJZEpPDbb84nL+7/L/AWBiZMKS3kvo1KCTrt26a1ea7txB1qVLmD37rL7CFEIIIYQQlUhG+GuoNZfX8OP5HwEwVhjzTY9v6PZMt0L9jCwssOrYsarDE0IIIYQQVUQS/hpoS/QWvjnzDQAKFCz0Xkjfxn0BUKWnk//QngdCCCGEEKJmk4S/htl1bRcLQxfqXs/pOofhrv/sWvzXokXcGOFDxokT+ghPCCGEEEJUMUn4a5ADNw8wJ3gOatQAzOg4g9EtRuvaM0JCSN2xk5ybN7k9cxb5OTn6ClUIIYQQQlQRSfhriOMJx5lxbAYqtQqAKZ5TeM39NV17flYWifP/o3vd4JOPMTIzq/I4hRBCCCFE1ZKEvwY4fec07x1+j7z8PADe9HiTSW0mFejzv5+XkXvrFgC1+vXFpl+/Ko9TiOpg/vz5KBQK3njjDX2HIoQQQlQISfiruYt3LzL14FSyVZqFuGPdxvJ++/cL1NTPio7m3qpVABhZW9Pgk0/0Eqt4OigUiif6M3/+/EqPbfXq1cyfP5/z589X+ntVlTfeeAOFQkGvXr30HUqlu3PnDuvXr+fdd9/F29sbKysrFAoFLVu2LPE8tVrNiRMn+Pjjj+nZsyf16tXD1NQUe3t7unXrxuLFi8nMzCz2/CtXrvDTTz/h5+dHmzZtMDExQaFQMHny5HLdT3h4OIsWLWLAgAE4OTlhZmaGnZ0dnTp1YsGCBSQnJxd7bmxsLKtWreLtt9+mY8eOmJubo1AoGDRoULliEkLUTFKHvxqLTo5m8oHJKPOUAIxwHcHsLrMLJPvq/HzuzJsPeZrR/7rvvYdpgwb6CFc8Jby9vYs8HhwcDEDz5s2pV69eofZGjRpValygSfiPHj2Ki4sLnp6eRfapU6cObm5uODk5VXo8omw2btzI+++/X+bzDh06RL+HvtV0cXGhcePGxMXFERwcTHBwMCtWrCAwMJBni9iTZPbs2ezYsaNcsT8qPj6eMWPG6F47OzvTtm1bEhMTOXPmDGfOnGHZsmXs27eP1q1bFzp/yZIlfP/99xUakxCi5pKEv5pKVeby7v75pOekA2Cr6oCL+k3SM1XYWf3zxU3K5s1knjsHgEWbNtj/62W9xCueHsePHy/yuPZBdPbs2QY9XWbq1KlMnTpV32GIItja2tKvXz86duxIx44diY6OZvbs2Y89T61W4+LiwvTp0xk3blyBh7ldu3bx+uuvExkZydixY3UPpg9zdnbmxRdf1L3vihUr2LZtW7nvp169ekydOhVfX1+aNm2qOx4cHIyvry83b97khRde4MqVK5ibmxc4t06dOgwZMkQXU2BgIEuXLi13TEKImkkS/mpo8+k45gYEY9LkEgoFqLKcSLjxIp9GR/Htvqss8PFgTKeG5CYlkfTtd5qTjI1xWvAfFMbG+g1eCCGekJ+fH35+frrXq1evLtV5nTt3Jjo6GlNT00Jtw4cP54cffsDX15eQkBAuXrxImzZtCvT56aefCrz+/fffyx78I+rWrcv169extrYu1Obt7c3vv/+Ot7c3169fZ9++fYwYMaJAn08emZp59uzZcsckhKi5ZA5/NbP5dBz+2y6isrqAQqEpv5mb0hHts1tWXj7+2y6y+XQc+Q8yMGvYEACHN17H4jHzXIXQp8TERPz9/fHw8KBWrVpYW1vTpk0b5s+fT1paWpHnJCUlMWPGDNzd3bG2tsbCwoKGDRvi7e3Nxx9/zO3btwE4cuQICoWCo0ePAvDmm28WWD/w8Pz3khbtavvHxsYSHh7O2LFjqV+/Pubm5ri5ubFgwQJySih3e+HCBUaNGkXdunWxtLTkueeeY+HChWRnZ+vm4lfFWgbQTCl59913adGiBZaWltja2tKpUye++uorlEplkeekp6ezcOFC2rdvj42NDWZmZjg7O9O5c2c+/PBDoqKiCvTPz89nzZo19O7dG0dHR0xNTalbty4eHh74+flx4MCBqrhVbG1ti0z2tQYPHqz7OSIioipCwtzcvMhkX8vLyws7O7sqjUkIUXPJCH81kqrMZe6OSwCY2l4EQK1WkJdeeH7n3J2XGDirHy6bN5GydSt2j4wOCWFIDh48yKhRo0hNTcXMzIwmTZoAmsWS4eHhbNiwgYMHDxaYX52QkECXLl1ISEjAxMSEZs2aYWNjQ2JiIqdOnSIkJISuXbvi7OyMnZ0d3t7ehIeHk5aWVmgdQVFzpEuyf/9+3n33XUxMTHBzc8PExITo6GjmzZvHxYsX2bp1a6Fzdu/ezciRI8nJycHS0hJ3d3fS0tKYO3cu+/fvr5I1DFrHjx9n+PDhpKSkYGZmhru7O0qlUjd3fN26dQQGBtLgofU+Dx48wMvLi0uXLqFQKGjWrBm1a9fm7t27XLhwgdOnT9OkSRPc3Nx05/j5+bFmzRoAnnnmGZo2bUp6ejo3b97k8uXLpKWlFZhbry9ZWVm6n0tKwquSSqUiNzcXMJyYhBDVl4zwVyNbw+LJystHYXofYytNiU2VsgnqPNtCfbNy89kWFo/CxAT7ceMwsrKq6nCFKJWYmBhefPFFUlNT+fDDD7l79y6RkZFERkYSFxfHgAEDiI6O5pVXXilw3jfffENCQgL9+/fnzp07REREcOrUKeLi4khOTmbt2rW4uLgA0K5dO44fP067du0AzTqC48eP6/6Ude7z1KlTmT59Onfv3uXMmTMkJCSwdu1aFAoF27Zt4/DhwwX6//XXX7zyyivk5OTw8ssvc+fOHc6cOUN0dDQnT57k2rVrRT4kVIZ79+4xatQoUlJSGDJkCPHx8YSFhREZGcn58+dp0qQJly5dKvT3vWrVKi5dukTbtm25efMm0dHRnDp1ihs3bpCWlsa2bdto27atrv+FCxdYs2YNdnZ2HDt2jPj4eE6fPk1kZCRpaWkcP36ckSNHVsk9P85vv/0GgKmpKV5eXnqORuOPP/7QfdPSs2dPPUcjhKjuJOGvRgKv3AHA1CZcdywvrU2hfsb5qr/7/1U1gQlRDvPnzyc9PR0/Pz+++eYbbG3/eYB1cnJiy5YtODs7c/ToUU6cOKFr005zmDJlCo6OjgWuWatWLV599VU8PDwqJeYePXrw5ZdfYmFhoTv26quvMmTIEECzEPRhy5YtIyUlBTc3N9asWVPgHjt37szq1atLnApUkZYtW0ZSUhKOjo5s2rSJunXr6tratm3LunXrAM23Lg8vYNX+fb/55ps0/HuqoJa5uTkjR46ke/fuhfr37t27wHHQTI3y9vbmX//6V8Xe3BO4ceMGCxcuBGDy5Mk4ODjoOSJITk7mww8/BDRrDMr6DZQQQjxKEv5qJD1LU1rTRDedx4i89IIJjWtKAr8Gfk63hAukZVZNAiHEk8rNzeWPP/4A4O233y6yj62tLf379wc05RW1tFNgNm/eXGBKRlWYMmVKkce1JUljYmIKHN+zZw+gqZlf1FzyAQMG0Lhx4wqOsmgBAQGAJrmtVatWoXZvb2+6du0KaKYhaWn/vv/8809SU1Mf+z7a/qGhoVy9erXccVeG9PR0fHx8SEtLw83Njc8//1zfIZGbm8vYsWO5desWdevWZdmyZfoOSQhRA8gc/mrExsIEhdldjC0TAFBluKJW/fML20idz/TzW6iXmcLHp9fx+zOOQA89RSvE4129elU3bWH69OkYGRU9BnHz5k1As9BUa/r06axdu5bff/+d//73vwwcOJCuXbvi5eVFhw4dir1WRWjRokWRx+vXrw9o5rs/TLuY9eEpL4/STpWpbNpYSho1bt26NaGhoURGRuqO+fn58d1333HkyBGcnZ3p16+f7uHg+eefL/Qg8/zzz9O9e3eCgoJo2bIl3t7e9OzZky5dutCjR48C33LoQ2ZmJsOGDSM8PBwnJycCAgL0Plc+Pz+fV199lcDAQGxsbNi1axfOzs56jUkIUTNIwl+N9G/VgLC0LbrXuWkFk4fh14NpkaJJiC47uNBkiP4XwwlRkod3Eg0NDX1s/4erx3h4eBAaGsrChQvZu3cvmzZtYtOmTYBmgejMmTOZMmVKgY3oKkpxiaH2ISM/P7/A8fT0v/fLKCHJtbGxqaDoSqateNSghA34tHXqtXFr+588eZIFCxbw559/snPnTnbu3AmAo6Mj06ZNY/bs2brE38jIiN27d/P555+zbt06goKCCAoKAjRTgMaMGcPXX3+te0iqSllZWfj4+HDs2DHq1avHoUOHaNasWZXH8bD8/Hz8/PzYtGkT1tbW7N69my5duug1JiFEzSFTeqqRl9o/i5luOo8xeemtdG11lcm8fkUzbSBXYcyyTmMY1anqqn4I8SS0U0qMjIzIzs5GrVaX+OfRuuvt2rVj+/btpKSkEBISwpdffomXlxcJCQlMmzaNxYsX6+GuCtMm88WVF4WCyXVl0j503Llzp9g+iYmJQOGHEFdXV9asWcP9+/c5e/YsS5YsYcCAAdy/f5/58+fr5p1r2djY8NlnnxEXF0dMTAyrV6/G19cXIyMj1q1bx9ChQ3WVaKpKTk4OI0eOJDAwkLp163Lo0CFa6rlksVqtZtKkSaxZswYrKysCAgIKrXsQQojykIS/GknKjkVhrlmIq3rQAvL/rryjVvPOxT+wVGnm7G9p3puJr/TDzrL4utNCGIIWLVpgbm5Ofn5+gQW5ZWVmZkbXrl3x9/cnODiYWbNmAYU3TKqM0f7S0JaqvHDhQrF9SmqrSNrk9tKlS8X20bY999xzRbYbGxvTvn173n33Xfbt26ebZ75ixQry8vKKPMfV1ZXXX3+d9evXc+bMGUxMTDh79iwnT54sz+2USW5uLqNHj2bPnj04Ojpy4MAB3N3dq+z9izNlyhRWrlyJpaUlO3fuLLAvhBBCVARJ+KuRvbF7/3mR8c90Hu/b4Tx/5woAt2vVpc1H7zGmU8NHTxfC4FhaWjJs2DAAPv30U9RqdYVct0cPzdoV7cZbWlZ/l6fNzMyskPcpLe3GTqtXry5yRHv//v1VMn8fYOjQoQAsX768yA22Tpw4QUhISIG+j6P9+87Ozub+/fuP7d+qVStdZaVHP6PKkpeXx9ixY9m5cyeOjo4cPHiw0I66+jB9+nR+/vlnLCws2LFjB3379tV3SEKIGkgS/mpCrVaz94Ym4Tc3NufQ5CnMGdaKXs9YMu3yDl2/1t9+zmhvV32FKUSZffrpp9jY2LB//35ddZKHqVQqgoKCGD9+PAkJCbrjEydOZN26daSkpBTon5SUxLfffgtAp06dCrRp52kfOXKkwh4uSmPy5MnUrl2bqKgoXn/99QJTe06dOsUbb7yBmZlZlcVSr1497t69y7hx47h3756uLTw8XFd/v1+/fgVq0s+aNYuff/6Zv/4qWO43LS2NTz/9FAAXFxddmc/169czd+7cAgt/QZN4L126lL/++gsjIyM6dOhQKff5MO1i2D/++AMHBwcOHDhQ4gLqitStWzdcXFxYsmRJoTZ/f3+WLl2qS/a11aiEEKKiyaLdaiLifgS30jWJUI9ne+BkV5vx3Woz9NA6kpWaEnl2L75IvZ7e+gxTiDJzc3Nj586djB49mi1btrB161aaNWuGo6MjDx48ICYmRld2c86cObrzTp06xS+//IJCoaBp06bUqVOHtLQ0rl69Sl5eHo6OjoU21PL19eWHH35g8+bNhISE4OLigrGxMZ6enkUmZBWlfv36rFu3jlGjRrFhwwZ27NhBq1atSEtLIzo6Gm9vb3r16sWGDRswNjZ+ovcIDg6mTp06Jfb53//+h6OjI9u2bWPYsGHs2rWLZ555Bnd3dzIzM3W18z08PHT1+LUiIiL44osveOedd2jUqBENGjRAqVTqPh9LS0vd56F9r4ULF7Jw4UIcHR11ZUdv3LihW6y9cOFCXF1LP0ARFxen2zwNNN8ogKYM6sP37u3tzY4d/wyEbNq0iY0bNwKaBddTp04t9j38/Pzw8/MrcGzjxo0FztFWYVqzZk2BDdP8/f3x9/cvcG58fDw3b94s9GAaHh7O119/DWjWVSxYsIAFCxYUGdOQIUOYPXt2gWPBwcH4+PjoXmu/rTl06FCBv4uXX365zBvLCSFqHkn4qwnt6D7AIJdBAKjz8siJ1UwDMLa3p57/DL3EJkR59erVi8jISH766Sd2795NZGQkN2/epF69enh6etK9e3deeOGFArXqlyxZQkBAAEFBQcTFxREWFoaZmRnPPfccgwYN4oMPPihUiaZz5878+eeffPfdd5w/f56QkJBCFXUqy7Bhw3RVbo4ePUp4eDguLi7MmzePWbNm4evrC5RcyackeXl5BUbrS9KtWzcuXbrEV199xZ49e7h8+TKmpqa0b9+eMWPGMG3aNN30J605c+bQunVrjhw5QmxsLBcuXMDIyIhGjRrRr18/PvjggwLJ+6hRo1CpVBw+fJgrV64QFRVFTk4O9evXp1+/frzzzjtlnquuUqmKvMdHjz+6T4D2wQA0Dw1xcXHFvke/foWrm2VlZRX5vllZWQX2gChqilRxHp7alZSURFJSUrF9i6oglJubW2RMjx6vqsXgQgjDplBX5ffa1VhoaCheXl6EhIToNqWpKmq1moHbBpKYkYiViRVHxh7B0sRS15a6YwdGFhbYDhpUpXEJISqOu7s7V65cYefOnQwfPlzf4YhKos/fJUKIp5eM8FcDF+5eIDFDUyavV8NeumQfNFVHar/wgp4iE0JUhODgYK5cuYKpqakkgUIIISqcLNqtBvbF7tP9PLjJYD1GIoR4Unv27GHDhg2FKgQdPHiQMWPGAPCvf/3rsfPwhRBCiLKSEX4Dp8pX6RJ+G1MbvJy9eHA8GNW9/2E7bBiKJ1zgJ4SoWteuXWPatGmYmJjQqFEj6tSpw61bt3QbYHl6evLdd9/pOUohhBA1kYzwG7iwpDDuZt4FoG/jvphiTNKXX3D7o5lcH+GD6kGGniMUQpRGv379mD59uq46T1hYGFlZWTz//PN88803BAcH4+DgoO8whRBC1EAywm/gHq3Ok/bfPWRfjQHArFEjjGtZ6ys0IUQZtGzZku+//17fYQghhHgKScJvwPLy8wi8GQiAvbk9neq2J+6HF3XtdadP01doQgghhBCimpApPQbsVOIpkrM1G9T0a9wPZcBecm5q6u7bDBiAxXPP6TM8IYQQQghRDUjCb8D2xO7R/Ty4YX/+99NPmhcKBXWnFb9TpBBCCCGEEFqS8BuoHFUOB28dBKCOZR2aHr9Jbnw8ALZDh2LevLk+wxNCCCGEENWEJPwGKuR2COk5mi3RBzv34/6y5ZoGIyPqTHlHj5EJIYQQQojqRBJ+A7U39qHqPOHG5P1dq9vOxwfzJk30FZYQQgghhKhmJOE3QFl5WRy+dRgAJ2snmrh1waxpUzAxkdF9IYQQQghRJlKW0wAFJQShzFMCmtr7Nh17U6tnD7LCwzF79lk9RyeEEEIIIaoTGeE3QHtu/FOdZ2CTgQAojI2x9PTUU0RCCCGEEKK6koTfwGTkZhAUHwRAI5tGtHJopeeIhBBCCCFEdSYJv4E5EneELFUWlllqZq/P4sHhw6jVan2HJYQQQgghqilJ+A2MtjrPsNP5OFy5Tfw7U7i/eo2eoxJCCCGEENWVJPwGJC0njeMJx7HOVDP8tAIAhZUVdj4j9ByZEEIIIYSoriThNyCHbh0iLz+PESfzscjOB8DhlVcwcXDQc2RCCCGEEKK6koTfgOy9sRfbDDWDz2jm7BvVqoWj35t6jkoIIYQQQlRnkvAbiOSsZE4knsDnRD4WuZpjDm+8gXHt2nqNSwghhBBCVG+S8BuIwJuB2KblMTDs79F9OzscXn9Nz1EJIYQQQojqThJ+A7E3di8vhOZjlqd57ejnh7GNjX6DEkIIIYQQ1Z4k/AbgrvIuN6JP0++8ZnTf2MEBh1d89RyVEEIIIYSoCSThNwD7b+4n2VrNqgFGZNexxfGttzCyttZ3WEIIIYQQogYw0XcAQlOdR2Ws4LCnEbPmbsXeur6+QxJCCCGEEDWEJPx6lvggkfN3zwPQvn57Gtg31G9AQgghhBCiRpEpPXoWGBUAas3c/cEug/UcjRBCCCGEqGkk4dczi69XsWC9Co9b0K9xP32HI4QQQgghahhJ+PUo9twx3M+n0jIe3t1rgoOpnb5DEkIIIYQQNYzBJ/yLFy9GoVCgUCjo1atXiX2zs7P58ssv8fT0pFatWtjZ2dG1a1eWL19Ofn5+1QRcBnGLv9Z9ABmvDkVhIksqhBBCCCFExTLoDDMmJoZPPvmkVH3T0tLo3bs3YWFhGBkZ4e7uTk5ODidOnODEiRMEBATwxx9/YGIgSXXWlSvUORUDwG0HBR1efV/PEQkhhBBCiJrIYEf41Wo1fn5+5OTkMGLEiMf2nzx5MmFhYTRq1IgLFy5w8eJFIiMjOXr0KHZ2dgQEBLBgwYIqiLx0Yr/9QvdzuM9z1LZ21GM0QgghhBCipjLYhH/p0qUEBQXx4Ycf0q5duxL7Xr58mY0bNwKwcuVKPDw8dG09evTgq6++AuDbb78lJSWl0mIurczz51EHnwbgVl1wHfmaniMSQgghhBA1lUEm/NevX2f27Nk0b96c+fPnP7b/5s2bUavVuLq60r9//0Ltr732GlZWViiVSnbs2FEJET9eqjKXlUHXGbcilH3//uebhu09zOjduK9eYhJCCCGEEDWfwSX8arWa8ePHo1QqWbFiBRYWFo89JyQkBNCM5hfFwsKCzp07F+hblTafjqPLZwdYtDuC9FNncIuPAOB6fTju9Bz/vZBc5TEJIYQQQoing2GsYH3Izz//zJEjR5g4ceJjq/JoRUVFAdCsWbNi+7i6unLkyBEiIyMfe724uDji4+MLHDt9WjMFJzw8vFQxaR288hc/HonRvfa4sofzmZkArGuiIDXcnndPbiK6VzP6tqpfpmsLIYSoXrS/QzIyMvQciRDiaWJQCX9sbCwfffQRzs7Ounn3pXH//n0AHBwciu2jbUtOfvxo+qpVq/jPf/5TZNukSZNKHVdRCtzVGoBlAMxZD3PKdWUhhBDVxfXr1/UdghDiKWJQCf+ECRN48OAB69evx86u9JtQZf49Ym5mZlZsH+3UIKVS+djrjR8/noEDBxY4dvfuXa5cuULHjh2xtrYudWxCM6I1adIkli9fTuvWrfUdjqhE8lk/HeRzfnIZGRlcv36dYcOG6TsUIcRTpNwJ//z584sdDX+cc+fO4enpCcDy5cs5ePAgo0ePxsfHp0zXsbS0JCMjg5ycnGL7ZGVlAWBlZfXY6zVs2JCGDRsWOl6a8qCieK1bt6Zr1676DkNUAfmsnw7yOQshRPVQ7oTfwsKiTKPxDzM2Ngbg9u3bzJgxA3t7e5YuXVrm69jb25ORkcG9e/eK7aOd9mNvb/9EsQohhBBCCFEdlTvhnzlzJjNnzizXNaKjo0lPT8fc3Jy2bdsWan/w4AGgqbDToEEDALZv346XlxcALVu2JD4+npiYmELnal27dk3XVwghhBBCiKeFQc3hz87O5q+//iq2PTc3V9f+8PQdLy8vDhw4QFBQUJHnZWVlcerUKV1fIYQQQgghnhYGUYe/V69eqNXqYv/MmzcPgJ49e+qOPVyyc/To0YBmFD8wMLDQ9deuXYtSqcTS0lLm4evBs88+y7x583j22Wf1HYqoZPJZPx3kcxZCiOpFoVar1foO4nG0C4N79uzJkSNHiuwzbtw4Nm3aRKNGjdi9ezceHh4AHDt2jBEjRpCamsrHH3/MokWLqjByIYQQQggh9MugpvSUx/Lly4mKiuL8+fO0bdsWd3d3cnJydJtyDR48WPdNgRBCCCGEEE8Lg5jSUxHs7OwIDQ3ls88+w8PDg2vXrnH79m06d+7Mzz//TEBAAKampvoOUwghhBBCiCpVLab0CCGEEEIIIZ5MjRnhF0IIIYQQQhQmCb8QQgghhBA1mCT8QgghhBBC1GCS8Au9yM7OZteuXUyZMoUOHTpgZ2eHmZkZDRo0YNiwYWzbtk3fIYoyOH36NGPGjMHJyQlzc3MaNmyIn58fV69e1XdoogKEh4ezaNEiBgwYgJOTE2ZmZtjZ2dGpUycWLFhAcnKyvkMUQghRAlm0K/Rizpw5uj0RTExMaNasGZaWlsTExJCeng7AyJEj2bBhA2ZmZvoMVTzGmjVrGD9+PCqVijp16tC4cWOuXr1KWloaVlZW7Nq1iz59+ug7TPGErl27RrNmzXSvnZ2dcXZ2JjExkYSEBACcnJzYt28frVu31leYQgghSiAj/EIv1Go13t7e/P777yQnJxMREUFYWBj37t3jiy++AGD79u385z//0XOkoiSXL19mwoQJqFQqPvroI27fvs2ZM2dITEzE19cXpVLJSy+9xL179/QdqnhCarWaevXqsWDBAq5du0ZCQgKnT58mPj6e48eP07hxYxITE3nhhRfIzs7Wd7hCCCGKICP8Qi/u3buHo6Njse0TJ07kl19+wdHRkaSkJIyM5NnUEI0ZM4YtW7bg5eVFcHBwgbbs7Gyee+45bty4waxZs/jss8/0FKUoj6ysLFQqFdbW1kW2h4SE4O3tDcCOHTsYMWJEVYYnhBCiFCSLEnpRUrIPmp2RQfNgcPfu3aoISZSRUqkkICAAgLfffrtQu7m5OW+88QYAGzZsqMrQRAWysLAoNtkH8PLyws7ODoCIiIiqCksIIUQZSMIvDFJWVpbuZysrKz1GIopz7tw5MjMzAejRo0eRfXr27AlAbGwsiYmJVRabqDoqlYrc3FyAEh8MhBBC6I8k/MIg/fbbbwC0b98eGxsbPUcjihIVFQWAmZkZDRs2LLKPq6ur7ufIyMgqiUtUrT/++AOlUgn884AnhBDCsEjCLwzO9u3b2b17NwAff/yxnqMRxbl//z4A9vb2KBSKIvs4ODjofpbSjTVPcnIyH374IQDDhw+XKj1CCGGgJOEXBiU8PFw379vX15eRI0fqNyBRLO10npLKplpYWOh+1o4Ci5ohNzeXsWPHcuvWLerWrcuyZcv0HZIQQohiSMIvymT+/PkoFIon+nP+/PkSrx0TE8PAgQNJT0+nZ8+e/PLLL1VzU+KJWFpaApCTk1NsH1mLUTPl5+fz6quvEhgYiI2NDbt27cLZ2VnfYQkhhCiGib4DENWLhYWFriJHWRkbGxfbFhsbS58+fUhMTMTLy4uAgABdQikMk729PaCZ1qFWq4uc1qOd9vNwf1G95efn4+fnx6ZNm7C2tmb37t106dJF32EJIYQogdThF3oXFxdHjx49iI2NpUuXLuzfvx9bW1t9hyUeIzg4mG7dugGaB7bGjRsX6nP06FF69eoFwO3bt3FycqrKEEUFU6vVTJw4kZUrV2JlZcXu3bt1n68QQgjDJVN6hF4lJCTQu3dvYmNj6dSpE/v27ZNkv5rw9PTUfQtz7NixIvscPXoUABcXF0n2a4ApU6awcuVKLC0t2blzpyT7QghRTUjCL/Tmzp079OnTh2vXrtGhQwf279//xNOFRNWztrZm6NChACxfvrxQe3Z2NqtXrwZg7NixVRmaqATTp0/n559/xsLCgh07dtC3b199hySEEKKUJOEXenH37l369u1LdHQ07du3JzAwkNq1a+s7LFFG8+bNw8TEhODgYGbOnKnbgEmpVDJhwgRu3LiBnZ0d//73v/UcqSgPf39/li5dqkv2+/fvr++QhBBClIHM4Rd6MWnSJFasWAGAh4dHiSP7S5cupV27dlUVmiijX3/9lYkTJ6JSqahTpw6NGzfm6tWrpKWlYWlpKQliNRcaGoqXlxcA9erVo3nz5sX2HTJkCLNnz66q0IQQQpSSVOkRepGdna37+dKlSyX2TU1NrexwRDn4+fnh4eHBV199xfHjxwkPD6du3bq8+OKLzJ49mxYtWug7RFEOD/+/mpSURFJSUrF9mzVrVhUhCSGEKCMZ4RdCCCGEEKIGkzn8QgghhBBC1GCS8AshhBBCCFGDScIvhBBCCCFEDSYJvxBCCCGEEDWYJPxCCCGEEELUYJLwCyGEEEIIUYNJwi+EEEIIIUQNJgm/EEIIIYQQNZgk/EIIIYQQQtRgkvALIYQQQghRg0nCL4QQQgghRA0mCb8QQgghhBA1mCT8QgghhBBC1GCS8AshhBBCCFGDScIvhBBCCCFEDSYJvxBCCCGEEDWYJPxCCCGEEELUYP8fnqD0Fo/SfEYAAAAASUVORK5CYII=",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "train_x = syn_features[indices]\n",
- "test_x = syn_features[test_indices]\n",
- "test_y = syn_labels[test_indices]\n",
- "\n",
- "w, *_ = np.linalg.lstsq(train_x, train_y)\n",
- "plt.plot(syn_x[indices], train_y, \"o\", label=\"Training labels\")\n",
- "plt.plot(syn_x[test_indices], test_y, \"o\", label=\"Testing labels\")\n",
- "plt.ylim(-40, 40)\n",
- "plt.plot(syn_x, jnp.dot(syn_features, w), label=\"Fit Model\")\n",
- "plt.plot(syn_x, syn_labels, \"--\", label=\"Ground Truth\")\n",
- "plt.text(0, -20, f\"Training Loss {loss(w,0,train_x, train_y):.2f}\")\n",
- "plt.text(0, -30, f\"Testing Loss {loss(w,0, test_x, test_y):.2f}\")\n",
- "plt.legend(bbox_to_anchor=(1.02,1))\n",
- "plt.title(\"Noise, Extra Features\")\n",
- "plt.show()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "This is an overfit model. The training loss went down (note the noise was the same in the previous two examples), but at the expense of a large increase in testing loss. This wasn't possible in the previous example because over-fitting to noise wasn't feasible when each feature was necessary to capture the correlation with the labels. \n",
- "\n",
- "Let's see an example where the feature number is the same but they aren't perfectly correlated with labels, meaning we cannot match the labels even if there was no noise. "
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 32,
- "metadata": {},
- "outputs": [],
- "source": [
- "syn_features = np.vstack([syn_x**2, syn_x, np.exp(-(syn_x**2)), np.cos(syn_x), np.ones_like(syn_x)]).T"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 33,
- "metadata": {
- "scrolled": true,
- "tags": [
- "hide-input"
- ]
- },
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwQAAAGSCAYAAABdWwaVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAABP+AAAT/gEHlDmEAADL+klEQVR4nOzdd1hT1xsH8G9CAgl7bwQcuBD31orWba2zaq3W1Wrrqq1Vq627ta21Vmut1Tpw/ayr1r0rVpwIDnCAA5Qhe8vKOL8/Yq5EkhAgEMb7eR4e473nnvvezPveewaPMcZACCGEEEIIqZX4hg6AEEIIIYQQYjiUEBBCCCGEEFKLUUJACCGEEEJILUYJASGEEEIIIbUYJQSEEEIIIYTUYpQQEEIIIYQQUotRQkAIIYQQQkgtRgkBIYQQQgghtRglBIQQQgghhNRilBAQQgghhBBSi1FCQAghhBBCSC1GCQEhhBBCCCG1WI1MCAIDA8Hj8cDj8RAYGGjocEg1kZKSgtmzZ6NRo0YQi8Xce2jNmjWGDq1MvLy8wOPxMH78eEOHQnRU27+76D1LCCGGUa6EoOiPF4/HQ58+fUrc5rfffqvVP3j6NH78eO65jI6ONnQ41VpGRgY6dOiA1atXIyIiAvn5+YYOqUaSyWQ4dOgQJk+ejGbNmsHR0RFCoRA2NjZo0qQJPvzwQ+zZswd5eXmGDpVUQ9HR0Sq/SSX9DR482NAhE0JIlaDXOwRnzpzBf//9p88qCakU69evx5MnTwAAc+fOxaVLlxAWFoawsDCMHTvWwNG9Vp2voJ44cQJNmzbF0KFD8eeffyI8PBzJycmQSqXIyMjAgwcPsHPnTowePRpubm5YvXo15HK5ocOucWr7XYjqQPn6LFmyxNChEEJqCYG+K/z6669x6dIlfVdbKv7+/mCMGTQGUr2cO3cOANCmTRv8+OOPBo6m5lm1ahXmzZvHneB37doVgwYNgp+fH+zs7JCVlYWoqCicOnUKx44dQ3p6OmbPno2JEyfC2trasMGTamnQoEH49ttvtZaxtLSspGgIIaRq01tCYG9vj5SUFAQFBeHUqVPo27evvqompMLFx8cDAHx8fAwcSc3zv//9D3PmzAEA2NraYvfu3Wq/H/z9/TFhwgQkJCRgyZIl2LhxY2WHSmoQa2tr+Pr6GjoMQgipFvTWZGjatGmwsLAAAHzzzTf6qpaQSlFQUAAAEAqFBo6kZnnx4gUmT54MABCLxQgMDCzxYoGzszP++OMP7N+/n14PQgghpBLoLSGwt7fHrFmzAAAhISE4dOhQueqTSqXYsmUL+vTpA2dnZxgbG8PBwQHdunXD2rVrtXb61KWN7KNHjzBr1iw0b94clpaWMDY2hrOzM5o1a4ZRo0Zh69atyMjI0LiPly9f4pdffkH37t3h5OTExdejRw/8/vvv3AmmISk7HXt5eQEAkpKS8NVXX6Fx48YwMzODs7MzBg4ciGvXrqlsl5ycjMWLF8PX1xfm5uawsbFBnz59tPYPefM5l8vl2LRpE7p06QJ7e3uYmpqiSZMmWLBggdbntaj79+9j5syZ8PX1hZWVFUQiEby8vDBmzBgEBQVp3K5ox8KAgAAAwJEjRzBo0CC4u7tDKBTCy8sLAQEBXLlnz54BALZv367S6dDf31/tPk6fPo0xY8bA29sbpqamsLCwgK+vL2bNmqVzB+/IyEjMnj0bLVu2hJ2dHXd8/v7++PHHH/H06VOurL+/v9Y4i77OJXn33XfB4/FgZWWF3NzcEst36tQJPB4PHh4epW7Tv2bNGrx8+RIAsHjxYjRr1kznbYcPHw4zMzO16+Lj4zFv3jw0b94c1tbWEIlE8PT0xOjRo/Hvv/9qrVf5XCpf2ydPnmDWrFlo1KgRLCwsVL433vwMJSYm4uuvv4afnx+sra1V3mNF6eP9ocnTp0+xZs0a9OvXDx4eHhCJRDA1NYW3tzfef/99nD9/Xu12ys9F9+7duWXdu3cv9j7S1G69rJ/Hovbv34+ePXty3wk+Pj744osvEBcXV+rnoSKV5/VLTU3Frl27MGrUKPj4+MDMzAwmJiZwcXFBv379sHXrVkgkErXbKvsIKS1durTY61P0O6k0/UG09T8q+l0YHR0NiUSC3377DV26dIGjoyP4fL7a7crznpDJZNi+fTv69esHV1dXGBsbw8LCAvXq1UPXrl3x9ddf4+rVq1rrIIToESuHCxcuMAAMAFu3bh3LyMhgNjY2DABr2rQpk8lkxbZZt24dt82FCxfU1hsbG8uaN2/OlVP35+3tzR48eFBiXOr2sXfvXmZsbKy1fgBs//79ausPCgpizs7OWrdt0qQJe/r0qc7PZVmMGzeO219UVJTG9Z6enuzu3bvM1dVVbawCgYA71rt37zIPDw+15fh8PtuzZ4/aWIo+56dPn2a9e/fW+Ny4uLiw8PBwjccll8vZ119/zYyMjLQ+x9OmTWNSqbTY9lFRUVyZrVu3sgkTJhTb1tPTk23btq3E90C3bt1U6s7MzGQDBgzQuo2JiQnbvn27xuOTyWRswYIFJR5f8+bNuW26detWYqyenp4q+/H09GQA2Lhx41SWHz16lNsmICBAY5yMMfbgwQOu7MKFC7WWfZNcLmcODg4MADM1NWUZGRml2l6Tffv2MVNTU63PxYcffsgKCwvVbq98Lrt168aOHj3KzM3Ni22v/N4o+hm6fv06c3R0LFZ227ZtXN3lfX+U9N1VdL22vwkTJhT7bBT9XGj7W7x4scp25f08MsaYVCpl77//vsZtHRwcWHBwsMb3rK6KHmNZ6ijv6yeVSkt8ngCwtm3bsoSEhGLbK49f1++kkt4v6upW97wU/S68efMma9WqVbH9Ft2uvO+JrKws1rVr1xKPtWnTplqPiRCiP3pNCBhjbMWKFdyyXbt2FdumpITg5cuXrGHDhlyZXr16sYMHD7KQkBB29OhRNnz4cG6dk5MTS0xM1BrXm/t48eIFMzMzYwCYubk5+/LLL9nJkydZSEgIu3btGtuzZw+bMWMGc3d3V5sQXL9+nZmYmDAAzNLSks2bN4/9/fff7ObNm+zcuXNszpw5TCwWMwDMx8eHZWVlle3J1YGuCYGDgwOrV68es7KyYkuXLmWXLl1iN27cYKtWrWIWFhYMALOwsGBPnz5lderU4cr9999/LDg4mP38889cOSsrK5aUlFRsX0Wf8zZt2jAArEePHuzAgQPcazd06FCujKurK0tLS1N7XJ9//jlXrlmzZmz9+vXs7NmzLCQkhO3bt4/16tWLW//VV18V277oSYGfnx8DwDp27Mh27tzJgoODWWBgIFuzZg1LT09nYWFhLCwsjEuWBg0axC0LCwtTSeoKCgpY+/btuboHDBjAduzYwS5dusSuX7/ONmzYwBo1asQAMB6Px06cOKH2+D799FOuDjs7O7Zw4UJ27tw5duvWLfbvv/+yn3/+mXXr1o21aNGC2+bp06da4wwLC2MREREq+9F0AiCVSpm7uzsDwLp27ao2RqUvv/ySO57SJrjh4eHccfbu3btU22py5swZxufzuROzuXPnssDAQHbjxg22adMmVr9+fW6f48ePV1uHMiHw9vZmFhYWzNbWln377bfsv//+Yzdu3GCbN29mDx8+ZIy9/gzZ2dkxNzc3ZmpqyubNm8f+/fdfFhwczP73v/+xK1euMMb08/4o6QTv7NmzzMzMjL333ntsw4YN7MKFCyw0NJSdPXuWrV+/njVt2pTbfunSpSrbFhYWsrCwMLZ161auzNatW4u9j978Ti3v55ExxmbNmsWV8fLyYn/88Qe7ceMGCwwMZLNnz2ZCoZB5eXlxCaQhEgJ9vH4SiYTx+XzWo0cPtnLlSnby5El28+ZNdunSJbZz507Wp08frv7u3bsX2z4iIoKFhYVxZT799NNir0/Rz2FFJAR+fn6Mx+Ox999/nx05coSFhISw48ePs7/++osrX973xBdffMGt79y5M9u2bRv777//WGhoKDt37hxbvXo169Onj8pFEUJIxdJ7QpCTk8OcnJwYAFa/fn0mkUhUtikpIZg/fz63fvr06Wr3+91333FlxowZozWuN/exefNmbt3Ro0c1HptUKi12RbOwsJDVrVuXAWCtWrViycnJarcNDg7mrmC+ebVNn3RNCAAwGxsbtXdUjhw5wpVxcHBgtra2xU4sGWPs8OHDXLlffvml2Po3r1xOnDhRbcwLFy7U+vqeO3eOW79kyRIml8vV1jN37lwGgBkZGbHHjx+rrHvzSuj777+v9m5VUbpcmVTGbmxszE6ePKm2TG5uLnfCWbdu3WJXx44dO8bF1bx5c7UJrdLz58/LFKcuZRctWsTFERkZqXZ7iUTCfZZ79uxZ4v7etHv3bm4f8+fPL/X26uKpU6cOlwwEBQUVK5OVlaVydfPcuXPFyhS92+Ls7Kw10Sn6GTI1NWUhISEay+rj/VHSCV5ycrLGRJoxxZVb5R0xc3NzlpmZWaxMaU4i9fF5DAsL45K4Ro0aqY3/zJkzKleb9ZEQqEuai/69Gac+Xj+5XM4ePXqkNcaiJ9/nz59XW0a5vqTfj4pICACwDRs2aKxHH+8J5QWJ9u3bFztHKCo1NVXrMRFC9EfvCQFjjK1Zs4ZbvmnTJpVttCUEBQUFzNbWlruKVFBQoHa/crmctW3blgFgQqGQvXjxQmNcb+7j22+/5dap+7HUZteuXdy29+7d01p2zpw5DABzd3cv1T5KozQJwW+//aaxHuVJFgD2+++/l1huyJAhxdYVfc4dHR1ZTk6O2jqkUilr0qQJd8LyZrmePXsyAKxdu3Ya42BMkZwpr5Z/8803KuuKnhRYWlrq9DqXdKKdk5PDrK2tGQA2d+5crXXdu3dP4wlp586dufdtSScOZYlT17LPnj3jTtI0XdU9dOgQdxyamopps3btWm77NWvWlHr7N+3fv5+rb8GCBRrLhYWFMR6PxwCwgQMHFltfNCEoqclU0c/QkiVLNJbT1/ujNCd4mqSmpnIn1wcPHiy2vjT70Mfncdq0adz+/v33X411TJkyRa8JQUl/Ra8+6+v101XLli0ZADZjxgy16w2ZEPj7+2utRx/vCYFAwACwzz//XGsdhJDKo9eJyZQ++eQTeHh4AACWL1+ucwfbkJAQpKWlAQA+/PBDGBsbqy3H4/G4kUskEgkuXryoc2xubm7c423btum8HQD8888/AICmTZuiSZMmWsu+9dZbAIDY2FjExMSUaj/6xuPxMGrUKI3rmzdvzpUbOXJkieWKdnZVZ8SIERo7gxoZGXGd03JyclQ6NGdlZeHChQsAgPfee0/rPoRCITp27AgAuHLlisZy7777rl7GGg8MDOQ6Q5cUW5MmTWBnZ1cstrS0NO7/7777LurXr1/uuMqqTp063MziO3bsgEwmK1Zm69atABRDhQ4ZMqTU+8jOzuYem5ublzHS186ePcs9/uijjzSW8/X1RadOnQAA//77r9pjAxTvoREjRui8/zFjxmhcp4/3R1kUFhYiJiYGDx48QHh4OMLDwxEfH8/Vf/v27TLXra/Po/J18/LyUunQ/KZJkyaVOdbyqqjXjzGGFy9eICIignt9wsPD4erqCqB8r09F0fY+19d7Qvk7fPToUaSkpJQnXEKInlRIQmBiYsINPRoTE6PzeOJhYWHc4w4dOmgtq/yieXO7krz77ruwsbEBAMyaNQsdO3bEypUrce3atRITl5s3bwIA7t27V2zkhzf/Bg4cyG2XkJCgc3wVwd7envsBU0c58ZO9vT1sbW1LLFf0RE+ddu3aaV3fvn177nHR1+7WrVvcyducOXNKfI4PHjwIQPvzq0xiykv52gNA27ZtS4wtNTW1WGy3bt3iJszr1q2bXuIqD2VSHR8fj5MnT6qsS0hI4JaNGTMGJiYmpa5fOQwxoEj+ykv5XnFwcIC3t7fWssrvh5cvXyIqKkptGR8fH4jFYp32bWZmhnr16mlcr4/3h65yc3OxcuVKtGrVCmZmZqhTpw6aNGmCZs2acX9JSUkAUK6TLX18HgsKCvDo0SMAJX8vtGzZUuNFoLIYN24cmOIuuNq/oifj+nz9GGP466+/0LNnT1hYWMDV1RWNGjVSeX2OHz8OoHyvT0XR9p2pr+9o5UWhx48fo379+vj444+xf/9+xMbGVsxBEUJKVCEJAQBMnDiR+wFdsWKFTsMbKu8OAICjo6PWss7Oztxj5ZezLmxtbXHs2DHUqVMHAHDt2jXMmzcPHTt2hLW1NXr37o0dO3ZAKpUW21b5I1tauhx7RTI1NdW6ns/nl6qcpiuuSiW9dk5OTtzjoq9dRTy/yuSvvPQRW9EffxcXl3LHVF7vvPMOF4fyboDS9u3buc9AWa/c2tvbc48TExPLGOVryu+Hou8fTXT5fijNe6OkspX13fDs2TP4+flh3rx5uHXrltrvqaLy8vLKFBegn2NKT0/nkuCSvhcEAoHWCxIVSV+vX0FBAQYOHMgN/6occleT8rw+FUXbe11fz9M333yDyZMng8fjITMzE5s3b8aIESPg4eGBunXr4vPPP+cSSUJI5dDbTMXFKhYIsGTJEowdOxaJiYn49ddf8dVXX+m8fdGxmNVR/sjoUvZNnTp1QmRkJP755x8cP34cly5dQnR0NPLz83H27FmcPXsWq1evxokTJ7hbu8DrE+Hu3bvj119/1Xl/JV3NrGlK89oVVTTRWLNmDd5++22d9qftqqKRkZFOdZSkaGyXL1/WuRmSph/X0r5nK4JAIMCECROwYsUKHDt2DElJSdxJmzJBaNu2Lfz8/MpUf4sWLbjHISEh5Y5XSZfnTpfvh9K8N0oqq+/3hyZjx47FkydPACiugL///vto3LgxHB0dYWJiwh1rnTp1EBMTo/Gzpgt9fx5L+7pVJn29ft999x139b9r166YOnUqWrduDRcXF5iamnIXVT788EPs3LnTYMerjbb3ur7eEwKBABs3bsQXX3yBPXv24MKFC7hx4wby8/MRFRWFNWvW4LfffsOqVavw2Wefle1ACCGlUmEJAQCMHj0aP/zwA+7du4effvoJn376qdbyRZu1lHQrvegVx7JcVTIxMcHIkSO5NvOxsbE4deoUNmzYgNDQUNy5cwfjx4/HmTNnuG3s7e0RFxeH5ORk+Pr6lnqftUVJV5GKri/6mhe9oiyVSqvUc1w0NhMTkzLFVrSO+Ph4vcRVXh999BG+//57SCQS7NixA19++SUuXbqEyMhIAOVr192kSRM4OjoiKSkJQUFByMjI4JqdlYXyvaJLM5vyfj+Ulj7eHyV5+PAhLl26BACYP38+VqxYobFsenp6ufenj8+jjY0NeDweGGMlfi9IpVK9xF0W+nj9GGP4888/AQCdO3dGYGAglwC8SV/HWfTkvaRJA0u6W6ELfX9HN2zYEEuWLMGSJUtQWFiI69evY//+/fjzzz+Rn5+PWbNmoW3btlyfIEJIxamwJkOAoonJsmXLAChu969evVpr+aKzmL45e+6bis5gWNYrmEW5u7vjo48+wrVr19CqVSsAwLlz51S+uFu2bAlA0YeA2jpqduPGDZ3XF33NW7RowV1FPH36dMUEV0bK1x4oe2wtW7bkjq80HeGL0vedBW9vb/Ts2RPA67sCyn9NTU3x/vvvl6v+CRMmAFA0GdC1L5EmyvdKcnJyiR3bld8P5ubmlXKHTh/vj5Lcu3ePe6xtkICIiAitfTZ0fQ/p4/NoYmKCBg0aACj5e+H27dsoLCws037KSx+vX1paGpesjhgxQmMywBjT2x2zov10tCUZKSkpeumvUJHf0cbGxujatSt+/fVX/O9//+OW79u3T6/7IYSoV6EJAQAMHTqUO8H+5ZdftH4ptWrViruat3PnTo0/DkWvxAiFQr120CxaH2NMpf3x4MGDueU//vij3vZZ0+zbt09j22i5XI7t27cDUJysFe08bm9vj86dOwNQJGNFO/oZWs+ePbmRctavX19ix2p1bG1t0aVLFwDAkSNHuKYfpSESiQBA55G7dPHxxx8DAB48eIAzZ85g//79ABSjiJR3hKbPPvuMG3Fq6dKlpRoA4ODBgypXNXv16sU93rx5s8bt7t27x41q0qNHD701G9NGH++PkhTtL6Ct7fnvv/+utR7lewjQ/j7S1+dR+bpFRUVpTYTf7MdSmfTx+un6+vzzzz948eKF1rp0/Zx7e3tzJ+jBwcEay+3atUtrPbqqrO/ook2RqmLHa0JqogpPCADg22+/BaAYnUbbj5WxsTE++eQTAEB0dDS+/PJLteVWrlzJXW0aNWqUTp0MlU6dOqW1uUZhYSH3o2ViYqLSh2Ds2LHw8vICoPjR2LJli9Z9RUVFYc+ePWrXKUdhUNZXkyQmJmLWrFlq1y1fvhzh4eEAFCNNvDk86aJFiwAokq4RI0bg8ePHWvd1/Phx3L17t/xBl8DKygozZ84EoGjuM3LkSK234PPz87F+/Xrk5+erLJ8/fz4AxXC5w4cPR3JyssY61A1Xq+wEXNLzUhqDBw/m+g6MGzeOOy59DAPp4uKCTZs2AVCcJHXv3r3EK4tJSUmYOnUqhg8fDolEwi0fNGgQNxjA6tWr1Q75mJOTg/Hjx3Ntsyur/bG+3h/a+Pj4cI81DZl86NAh/Pbbb1rrKdqhvaT3kT4+j1OmTOGulk+dOpUb3rOof//9l3ufGII+Xj8HBweuSdyePXvUnsxHRkZi6tSpJcaj6+fcysqKGxVo27Ztak+e7969i8WLF5e4T12V9z2RlpaGw4cPa+0/UbSpbm3rg0eIwZRnEgNNE5Opo5yQqeifuolUXr58yRo2bMiV6d27N/v7779ZSEgIO3bsGBsxYgS3zsnJSe1Mr9omaxk3bhwTCoWsT58+bPXq1ezMmTMsNDSUXbp0iW3ZsoW1a9eO23by5MnF6r558yY3CzEA1qtXL7Zt2zZ29epVFhISws6cOcN++ukn1qNHD8bn89mwYcPUPh/K7T09PbU+b9roOjFZSfvQR7miz7ly0riePXuygwcPcq/d8OHDuTKurq4aZ1xVznAJgJmZmbGZM2eyY8eOsdDQUHbt2jW2f/9+NmfOHG7W6DdnnC46OdG2bdu0HpOSLhN+FRQUsC5dunB1e3h4sG+//Zb9+++/7NatW+zSpUts27ZtbOLEiczGxoYBYNnZ2cXqmTp1KleHvb09W7RoETt//jy7desWCwwMZGvXrmXdu3dnLVq0KLZt0ZmeFy9ezG7cuMEePHjAHjx4UGw20NJMYqacSE/55+PjU+I2pbFy5UpusjAA7K233mK//PILO3fuHAsNDWWBgYEsICCAjR49mpmZmXHl0tPTVeo5c+YMN6GaSCRi8+bNYxcvXmTBwcHszz//ZA0aNOC2nTBhgtpYlBOTdevWrcS4df1sMKaf94e27y65XM6aNWvGrR8xYgQ7evQo9/kaN24c4/P5rEGDBszBwUHra+/h4cEAsDp16rB9+/axsLAw7n305gzs5f08MsbYrFmzuDq8vb3Zxo0bWXBwMLt48SKbM2cOMzY2Zl5eXiXGXZKin/3S1qGP12/69Onc9m3atGG7d+9mN27cYBcuXGALFixgFhYWTCQScbNpa3pfjR07lgGKWZPXrl3LQkNDudfn2bNnKmU3b97M7bNhw4Zs165dLDQ0lF24cIF99dVXzNzcvMT3RNGJydT9lrypPO8J5WtUp04d9tlnn7E9e/awK1eusJCQEHby5En2+eefM7FYzAAwsVhc7HuNEFIxKi0hCAwM1CkhYIyx2NhY1rx582Lli/55e3uz+/fvlxiXuoRAW73Kv3feeYe9fPlSbf0hISGsXr16OtWj7qQkNzeXW9+qVSutz5s2VTUhOH36NOvTp4/G58TFxYWFh4dr3dfKlSuZiYlJic8vn88v9hpXVELAmCJh/eCDD3R67c3MzFhubm6xOmQyGZszZw53Yqvpr+hMqkpxcXHMzs5Obfk3X5fSJASRkZEqJ+w//vhjiduU1vHjx1WSfW1/Dg4ObN26dUwmkxWrZ+/evSpJubq/sWPHssLCQrVxVFRCwFj53x8lzTx7584dja+/8nvxwYMHJb72Gzdu1FiHutlxy/N5ZIwxiUTCRo0apfX1vnnzZqnes+qUJyFgrPyvX2ZmJneyr2mbgwcPlvi+unPnDhOJRGrrePN9K5fLVS62vPnn5eXFHj58qPNMxbokBIyV/T2h62zSlpaWapNLQkjFqJQmQ4BiIqaibYC1cXNzw82bN7F582b07t0bjo6OEAqFsLOzQ9euXfHLL7/g/v37aNy4canjWLt2Lf7++29MnToVbdu2hYeHB0xMTCASieDt7Y2RI0fi6NGjOHr0qMZx+Vu1aoUHDx5g+/btGDJkCOrUqQOxWAxjY2M4OTmha9eumDt3Lv777z+17WKLdoj+/PPPS30MVZ2xsTFOnDiBP/74A506dYKtrS1EIhEaNWqE+fPn4969e2jatKnWOubMmYMnT55g4cKF6NixI+zt7SEQCGBmZob69etj0KBBWLNmDZ49ewZ/f//KOTAoOtru2rULwcHBmDp1Knx9fWFlZQUjIyNYWVmhWbNmGDt2LHbu3ImEhAS1E1/x+XysXLkSd+/exbRp09CkSRNYWFhw78Hu3bvj559/xrFjx4pt6+rqips3b2LKlCmlmlirJA0aNOD6cwgEAowbN04v9RbVv39/3Lt3DwcPHsRHH32Epk2bcq+rlZUVmjRpgg8//BB79+5FTEwMpk+frrZj5ogRIxAZGYm5c+fCz88PlpaWMDExgYeHB0aNGoXz589jx44dEAqFej+Gkujj/aGNn58fbt++jWnTpsHb2xvGxsawtrZGy5YtsWzZMty6dQuNGjUqsZ7Jkyfj8OHD6NevH5ycnEp8rsr7eRQIBNizZw/27t2LHj16wMbGBmKxGA0aNMCsWbNw69YttG7dulTPRUUo7+tnaWmJoKAgrFixAs2bN4dYLIapqSkaNGiAadOm4datWxg6dGiJcfj5+eH69esYM2YMvLy8VPp9vInH4+Gvv/7Cxo0b0aFDB1hYWEAsFqNx48b45ptvcOvWLTRs2LDcz82byvqe8PT0xO3bt7Fq1SoMGDAAjRo1go2NDQQCAWxsbNCxY0csXrwYkZGReOedd/QeNyFEPR5jVXAg5Bpu0aJFWL58ORo0aIAHDx5USqfHihYYGIju3bsDAC5cuFCpJ+mk/AoLC+Hi4oK0tDQMHjwYhw4dMnRIhBBCCKkklXaHgLym7LS8YMGCGpEMkOrvn3/+4WYC/uijjwwcDSGEEEIqEyUElSw/Px/Xr1+Ht7c3xowZY+hwCAFjDD/99BMAwMvLC/369TNwRIQQQgipTNU6IXj+/DksLS25ITyjo6M1lj179iwGDBgAR0dHiEQi1KtXDzNnztRp1lN9EolEyM/Px9OnTyEQVOhE0YRolJaWhsePHyM4OBgTJ07kxhOfN2+exgmVCCGEEFIzVetf/o8//linCWS+/fZb9O7dGydOnIBQKETTpk3x4sULrFu3Dr6+vty4+ITUFr/++isaNGiAdu3aISAgAADQqVMnbpIyQgghhNQe1TYh2Lx5M86cOVPiiA2nT5/GwoULAQDr1q1DbGwsQkJCEBsbi7fffhupqakYPHiwxlmRCanJBAIB6tatiy+//BInTpygPi2EEEJILVQtRxmKjY1F06ZNYWdnh2PHjnFDWEZFRRWb+bddu3YIDg7G6NGjsXv3bpV1KSkpqFu3LrKzs7Fx40ZMnjy5sg6BEEIIIYSQKqFa3iGYPHkysrKysGnTJo1zBQCKBCE4OBgA8OmnnxZbb29vj+HDhwNQTDVPCCGEEEJIbVPtEoJt27bh5MmTmDBhAnr27Km17JUrVwAoJspq37692jLdunUDAFy/fh1yuVy/wRJCCCGEEFLFVathbuLj4/HFF1/AyckJP//8c4nlIyIiAChmRtQ0E2e9evUAAHl5eXj27Bm8vb1LrDcmJgaxsbEqy5KTk3H//n20adMGZmZmJdZBCCGEvOnly5d4+vQp3nnnHbi6uho6HEJILVGtEoIpU6YgIyMD+/fvh42NTYnllRMt2draaixTdF16erpOCcGWLVuwdOlSHSImhBBCSo/6tRFCKlO1SQh27tyJY8eOYfDgwVy7/5Lk5eUBUDQZ0kQkEnGPc3Nzdap30qRJ6NOnj8qy4OBgfPbZZ9i4cSOaNWumUz2kZriXcg/f3/geADCy4UgMrDfQwBGRmuZW0i38fFNxV3RM4zHo693XwBGRihIWFoYpU6agbt26hg6FEFKLVIuEICEhAZ999hmsrKywfv16nbcTi8UAoHVI0fz8fO6xtg7KRXl4eMDDw0PtumbNmqFjx446x0iqv9SnqTBNU7x3OnTsgI716PUn+mWTZoMNGRsAAFY+VujYht5jNR01PSWEVKZqkRBMnz4d6enp2LRpU6naVCqbFaWmpmoso2xWVLQ8IaWRmvf6/WUvtjdgJKSmcjR15B4n5iYaMBJCCCE1UbUYZejmzZsAgG+++QbOzs4qf23btuXKtW3bFs7Ozvjss88AAI0aNQIAPH/+HBKJRG3dT548AaBoOuTp6VmRh0FqqJS8FO4xJQSkItiY2EDAV1y/Sc5LNnA0hBBCappqcYdAKSkpSev6lBTFiVlmZiYAcE13CgsLce3aNXTt2rXYNhcvXgQAdOjQAXx+tciPSBVT9ASNEgJSEXg8HhzFjoh/GY+kXO3fg4QQQkhpVYsz4OjoaDDG1P5FRUVx5aKiosAYQ0BAAACgbt26aNOmDQDgjz/+KFZvSkoKDhw4AAAYOXJkxR8IqZGUdwgEPAGsTawNGwypsZTNhpJyk1ANJ5gnhBBShVWLhKA8li9fDgD43//+h99++437IU1LS8OoUaOQnZ2NunXrYsKECYYMk1RjKbmKhMBWbAs+r8Z/pIiBKBOCPGkesiXZBo6GEEJITVLjz1769u2LJUuWAABmzJgBd3d3tG7dGu7u7jh//jxsbW1x6NAhmJiYGDZQUm2l5CsSAgexg4EjITVZ0Y7FSS+p2RAhhBD9qfEJAQAsXrwYp06dQr9+/VBQUIDw8HA4Oztj2rRpCA8Ph5+fn6FDJNVUoawQmQWKPivUf4BUJCdTJ+5xUh4lBIQQQvSnWnUqVsfLy0un9rR9+vQpNpkYIeVFQ46SyuJg+voOFHUsJoQQok/VPiEgxJBoyFFSWVSaDFFCQEpBIpEgOzsb2dnZkEgk1CmdkBqGx+NBJBLBxsYGpqam4PF4pa6DEgJCyoESAlJZVJoMUUJAdJSfn4/nz59DJpMBAPh8Pg2xTUgNI5PJuKTfyckJtra2pa6DEgJCyoHmICCVpWiTIZqtmOhCIpFwyYCdnR2sra1hbGxs6LAIIXrGGENOTg7i4+ORmJgIU1NTiESiUtVBlwkIKQfqQ0Aqi1gghoWxBQAgOZdmKyYly87O5pIBR0dHSgYIqaF4PB4sLCzg5KS4k5yVlVXqOighIKQc6A4BqUzKZkPUZIjoIjtbMV+FtbW1YQMhhFQKc3NzAEBubm6pt6WEgJByoD4EpDIpOxan5qdCKpcaOBpS1UkkEvD5fLozQEgtIRAIwOfzIZWW/veBEgJCykHZZMhCaAGRoHTt9QgpLWVCIGdylWSUEHUYY9SBmJBahsfjlWkkMfqmIKQclE2G7MR2Bo6E1AY09CghhBBtyjLkKEAJASFlxhjjrtIWHQGGkIriKH6dEFDHYkIIIfpCCQEhZZRVmAWJXAIAsBdR/wFS8YreIaChRwkhhOgLJQSElJFKh2JTSghIxXM0oyZDhBBC9I8SAkLKiEYYIpWNZismpHYZP348eDwelixZorc6o6OjwePxytzWvLIFBgaCx+PBy8tLb3UGBASAx+PB399fb3XqQvm8R0dHV+p+dUEJASFlRHMQkMpmK7KFEc8IACUEhOib8mSttH/6PFknxFAEhg6AkOqKZikmlY3P48NebI/E3EQk5VFCQIg+de7cWe3yy5cvAwAaNGgAR0fHYuvr1KlTYTG5uLigYcOGsLfX32+MUChEw4YN9VYfqRkoISCkjKjJEDEEJ1MnRUJAdwhIFZaZK8H+kBice5CI7HwpLEQC9GrijOGt3GFlKjR0eGoFBQWpXa5sWrNgwQKMHz++EiMCvv/+e3z//fd6rdPNzQ0PHz7Ua52k+qOEgJAyoiZDxBCUIw29lLzES8lLmAnNDBwRIar2Bcdg0eFw5EvlKsuvPU3DT6ceYtkgX4xo62Gg6Agh6lAfAkLKSHmHQMATwNrE2rDBkFqDhh4lVdm+4BjMPXi3WDKglC+VY+7Bu9gXHFPJkVUMLy8v8Hg8BAYG4sGDB/jwww/h7u4OoVCocjchKCgI8+bNQ/v27eHq6gpjY2PY29ujV69e2LNnj8b6NXUqfrNjcFBQEAYMGAA7OzuIxWL4+fnht99+UztjrbZOxUX3l5eXh8WLF6Nhw4YQiURwcHDAyJEj8ejRI43x5uTk4Ouvv0aDBg0gEong4uKC0aNH4+HDhxXSOTg2Nhbr1q1D//79Ub9+fZiamsLCwgJ+fn74+uuvkZqaWmIdcrkca9asQfPmzWFmZgYbGxsMGDAAV65c0brd48ePMXXqVPj4+HD7bdu2LVavXo2CgoJSH8vhw4fRv39/ODk5QSgUwtbWFo0aNcLo0aNx4MCBUtdXWpQQEFJGKbmKhMBWbAs+jz5KpHIUnQSPmg2RqiQzV4JFh8N1KrvoSDgycyUVHFHluXz5Mlq3bo19+/bB0dERDRs2BJ//+ndh8ODBWLlyJR49egRra2v4+fnB2NgY586dw+jRozFhwoQy7zsgIADdunXDtWvXULduXZibmyMsLAwzZszAnDlzylRnVlYWOnXqhOXLl8PIyAj169dHRkYG9u3bh44dO+LZs2fFtklLS0OnTp2wYsUKPH78GJ6ennB1dcWhQ4fQpk0bBAcHl/kYNVmzZg1mzpyJCxcuQCaTwdfXF87Oznj48CFWrFiBVq1a4fnz51rrGDlyJD7//HOkp6ejSZMmkMlkOHHiBLp27Ypdu3ap3Wb37t3w9fXFhg0bEBsbi3r16sHR0REhISGYPXs2/P39kZWVpfNxLFmyBIMHD8bJkycBAH5+fnBxcUFCQgL27NmDH374QfcnpYzoLIaQMkrJfzVLsZhmKSaVp+jQozRbMalKDoTGarwz8KZ8iRwHQ2MrOKLKs3jxYgwZMgQJCQkIDQ1FeHg41q9fz63/4Ycf8PjxY6SlpeH+/fu4efMm4uPjce3aNdSvXx8BAQFlvgr8ySef4Oeff0ZSUhKCg4ORnJyMb7/9FgCwevVqPHnypNR1/vbbb+Dz+YiMjMT9+/cRHh6OiIgINGjQAKmpqVi0aFGxbaZPn46wsDB4eHggJCQEERERCAkJwYsXL9C3b1988803ZTo+bfr164d///0X2dnZiIqKwo0bN/Do0SPExsZi4sSJeP78OaZOnapx+ytXruD48eM4dOgQnj9/juDgYCQmJuLTTz+FXC7Hxx9/jMjISJVtLl++jPHjx0MqleLHH39Eeno6wsLC8OTJEzx8+BCtW7fGtWvXMHPmTJ2OISUlBd999x0EAgH+/vtvJCQkICQkBPfu3UNGRgZu3bqFyZMnl+t50gUlBISUQaGsEJkFmQCo/wCpXNRkiFRVZ+8nlLJ8zXn/NmzYENu3b4e1tTW3TCwWc48/+ugj1KtXr9h27du3x++//w4A2LZtW5n2PWbMGMyaNQtGRkbcsgULFsDX1xeMMRw/frzUdfL5fOzbtw/169fnltWtWxcrVqwAABw9elSlfHR0NP766y8AiqvnrVq14tZZW1tj9+7dcHNzK3UcJXn77bfRvXt3CASqXWIdHR2xefNmuLm54cSJE0hMVP9ek0gk+OabbzB48GBumVgsxvr169GsWTPk5+dj1apVKtvMmzcPUqkUixcvxty5c2FiYsKt8/HxwcGDB2Fqaopdu3YhLi6uxGN4/PgxpFIpfH19MWTIkGJNuVq0aFEpCQF1KiakDGjIUWIoRRMCajJEqpLsfGmpymfl15wmQ+PGjSt2UvqmiIgI7N+/H3fu3EFqaioKCwsBgGtvHhISUqZ9T5s2rdgyHo+HTp06ITw8HI8fPy51nX369FGbwCiHZk1PT0daWhpsbW0BAKdOnQJjDA0bNkTXrl2LbWdiYoKxY8di2bJlpY6lJDk5Odi/fz+CgoIQFxeHly9fcn0nsrOzwRjDrVu30Ldv32LbCoVCjc/frFmzMGnSJJWEKj4+HpcvXwaPx8OUKVPUxuPp6Ym2bdvi4sWLuHjxIkaPHq01fuWwtZGRkbh27Ro6dOig87HrEyUEhJQBDTlKDIUSAlJVWYhKd0phKaqaw4+WRdOmTbWuX7RoEb777jvI5ZqbVOnSAVYdHx8ftcudnBTNC3NycvRep7JeZUIQEREBAGjevLnGOlu0aFHqOEpy9epVDBs2DC9evNBaTtNz6+7uDisrK7XrlK9pfHw8srKyYGlpidu3bwMAjIyMMHToUI37UzYzio0tuVmcq6srPvjgA+zevRsdO3ZE69at0aNHD7Rr1w7+/v56nYNCG0oICCkDGnKUGIqZ0AxmQjO8lLykhIBUKb2aOOPa07RSlHcquVA1YWamefjf/fv3Y/ny5eDxeFi4cCGGDh3Kdf7l8/l4+vQp6tWrB6m0dHdYStq3slOztiSkrHW+WW92djYAwNLSUmOdFhYWpY5Dm+zsbAwZMgSJiYno3r07vvrqK/j5+cHW1hbGxsYAgLfeeguXLl2CRKL+blTRBEfbuuzsbFhaWiI9PR0AIJVKuQnrtMnNzdXpWLZu3Qo/Pz9s3rwZISEh3N0iIyMjDBgwAD///LNK862KQAkBIWVAdwiIITmaOiIqM4oSAlKlDG/ljp9OPdSpY7FIyMew1u6VEJXhKfsGfPHFF2qbzJT1zkBVojzZ1zayjjJp0JeTJ08iMTERHh4eOH78uEqfDaWSnltNfQveXKc8PnNzcwCKOwsxMfobOtfY2Bhz587F3LlzERcXh6CgIJw/fx779+/HkSNHcPv2bdy5c0elj4q+UadiQsqA+hAQQ1I2G0rJS4FMLjNwNIQoWJkKsWyQr05ll73rCytxzWkypI1ylJ9u3bqpXa/LleaqrmHDhgCAO3fuaCyjbG6jL8rntW3bthqTAWVTJk1iY2M1JjH37t0DoGjSo7zz0axZM247dUOv6oObmxtGjhyJTZs24cGDB7C1tcXz589x7NixCtmfEiUEhJQBNRkihqQcelTGZEjL172JBiEVbURbD6wc5geRQP3phUjIx8phfrVqpmJTU1MAUDviTG5uLtatW1fZIeldnz59wOPxEBERgUuXLhVbX1BQgJ07d+p1n9qeVwBYtWoVZDLtF0wkEgk3ytObfv31VwDAgAEDuGV169ZF69atAYAb2rUiOTs7o0GDBgAUfRkqEiUEhJQBNRkihkQdi0lVNqKtB64v6ImF7zRBx7p2aOpqiY517bDonSa4Pr9nrUoGAMDf3x8A8N133+H+/fvc8vj4eAwaNKjCT/Qqg7e3N0aNGgUA+OCDDxAaGsqty8jIwAcffKDTEJyloXxer1+/jnXr1nEjC0mlUvz888/48ccfIRKJtNYhFAqxfPlyHDlyhFuWn5+PGTNm4M6dOzAxMcHs2bNVtlm9ejUEAgE2b96M6dOnIyUlRWV9YWEhTp8+jffee0+n4zh37hxmzZqF0NBQlZmlGWPYv38/91y2bdtWp/rKivoQEFIGyiZDFkILiATav3AI0beik+El5iaiKbSPcEJIZbMyFWJSF29M6uJt6FAMbu7cudi7dy9iY2Ph5+cHHx8fGBsbIzw8HEKhEOvXr8ekSZMMHWa5rVu3DmFhYQgPD0fr1q3RsGFDmJub4969e+Dz+fj2228xd+5clfkSyqN58+YYP348AgICMHPmTKxYsQLu7u54+vQp0tLSuEnFLl68qLGOTp06wcHBAYMGDUKdOnXg6OiIyMhIZGVlgc/nY+PGjVxzKKW33noLu3fvxsSJE7F+/Xr88ccf8PHxgZWVFTIyMvDkyRONnZjVycnJwdq1a7F27VpYWlqibt26EAgEeP78OZKSFBd8Pv74Y3Tv3r1sT5SO6A4BIWWgbDJkJ7YzcCSkNqLZigmpPlxcXHD9+nWMGzcO9vb2ePz4MZKSkvDee+/hxo0b6NGjh6FD1As7OztcuXIF8+fPR7169RAVFYWYmBi8++67CA4ORuPGjQFoH4motLZs2YKff/4ZTZo0QVpaGh49eoRGjRph69at2LRpk0517N27F6tXr4a1tTXu3bsHHo+Hvn374uLFixg3bpzabUaMGIGHDx9i7ty58PX1RWxsLG7duoW8vDx06NABixcvxq1bt3Taf9euXbF+/XoMHToUTk5OePr0KW7fvg0+n48BAwbg77//1vlYyoPHit6fIGV29epVdOrUCVeuXEHHjh0NHQ6pQIwxtN7VGhK5BG2d22Jrn62GDonUMmHJYRh9QjHZzcfNPsbMVjMNHBHRF33+ljx69AgAuDbIhBjSTz/9hLlz52Lo0KE4ePCgocOpscr6uac7BISUUlZhFiRyxe1AexH1HyCVj/oQEEKqE4lEwg2/qmm0JWJYlBAQUkoqHYpNKSEglc9ObAc+T/H1TQkBIaQqyMvLw8KFC/H8+XOV5fHx8Rg5ciQePHgAGxsbjBkzxkAREm2oUzEhpUQjDBFDE/AFsBPZITkvmRICQkiVIJPJ8O233+Lbb7+Fg4MDPD098fLlS0REREAul0MsFmPnzp2wtbU1dKhEDbpDQEgp0RwEpCpQNhtKyqOEgBBieGKxGD/88AN69OjBjaIUFRWFunXrYvLkybh165bKmP6kaqE7BISUEs1STKoCR1NH3Eu9h+zCbORJ8yAWFJ+pkxBCKouRkRHmzZuHefPmGToUUgZ0h4CQUio6zCMlBMRQqGMxIYQQfaGEgJBSSsmnPgTE8CghIIQQoi+UEBBSSspOxQKeANYm1oYNhtRaRROCxNxEA0ZCCCGkuqOEgJBSSslVJAS2Yltu6EdCKlvRhIBmKyaEEFIedDZDSCkpmww5iB0MHAmpzZxMnbjH1GSIEEJIeVBCQEgpFMoKkVmQCYD6DxDDcjB9nZBSkyFCCCHlQQkBIaVAQ46SqsJCaMENNUp3CAghhJQHJQSElALNUkyqCh6P93pyMkoICCGElAMlBISUAs1STKoSZUKQnJcMOZMbOBpCCCHVFSUEhJQC3SEgVYkyIZDKpUjPTzdwNIQQQqorSggIKQXqQ0CqEkcxTU5GCCGk/CghIKQUqMkQqUpotmJCiNKSJUvA4/Ewfvx4Q4eik/Hjx4PH42HJkiV6q9Pf3x88Hg8BAQF6q7MkAQEB4PF48Pf3r7R9VgRKCAgpBWoyRKoSmq2YEP3h8Xhl+tPnCa0mAQEBWLJkCW7fvl3h+yK1k8DQARBSnSgTAguhBUQCkYGjIbWdymzFeTRbMSHl0blzZ7XLL1++DABo0KABHB0di62vU6dOhcYFKBKCixcvwsvLCy1atFBbxt7eHg0bNoSLi0uFx0NqHkoICCkFZUJgJ7YzcCSE0GzFpArLSwdu/w+IOAnkZwIiK6Bhf6DF+4DYxtDRqRUUFKR2OY/HAwAsWLCgSjfHmT59OqZPn27oMEg1RQkBITpijHEJQdFZYgkxlKLN1qjJEKkyQncCJ74EpPmqy6MvAeeXAv1XAa3GGiY2Qoha1IeAEB1lFWZBIpcAAOxF1H+AGJ7QSAhbkS0AukNAqojQncCR6cWTASVpvmJ96M7KjasCvXjxAnPnzoWvry/Mzc1hZmYGPz8/LFmyBFlZWWq3SUpKwpw5c9C0aVOYmZlBJBLBw8MDnTt3xtdff434+HgAQGBgIHg8Hi5evAgAmDBhgkr/haIdWbV1KlaWj46ORlhYGEaOHAknJyeYmJigYcOGWLZsGQoLCzUe4507dzBs2DA4ODhALBajcePGWL58OQoKCiqkc3BQUBDmzZuH9u3bw9XVFcbGxrC3t0evXr2wZ88eneqIjY3FRx99BHd3d5iYmMDLywuff/450tLStG536NAhvPPOO3BycoKxsTGcnJwwePBgBAYGlvo4srOzsXz5crRq1QoWFhYwNjaGq6sr2rVrh9mzZyMiIqLUdVYUukNAiI5UOhSbUkJAqgYnUyek5adRQkAMLy9dcWdAFyfnAI3fqbLNh3R1/vx5DBs2DJmZmTA2Noa3tzcA4P79+wgLC8OePXtw/vx5uLu7c9vExcWhffv2iIuLg0AgQP369WFhYYEXL17gxo0buHLlCjp27AhXV1dYWVmhc+fOCAsLQ1ZWVrF+DM2aNStVvGfOnMFnn30GgUCAhg0bQiAQIDIyEosXL8bdu3dx4MCBYtscP34cQ4cORWFhIcRiMZo2bYqsrCwsWrQIZ86cqZA+FIMHD0ZqaipsbGzg7OwMV1dXxMfH49y5czh37hzOnDmDbdu2adw+KioKrVq1QlpaGnx9fWFtbY379+9jzZo1OHLkCC5evKjymgBAQUEBPvjgAxw8eBCAok+Gr68vnj17hsOHD+Pw4cP44YcfMG/ePJ2OIScnB506dUJ4eDh4PB7q168Pa2trJCcn486dOwgODoa3tzcaNmxY9idKj+gOASE6ohGGSFWk7FicWZCJAlmBgaMhtdrtPZrvDLxJkgfc+ati46lgjx8/xpAhQ5CZmYnZs2cjOTkZDx8+xMOHDxETE4PevXsjMjISY8aMUdlu1apViIuLQ69evZCQkIAHDx7gxo0biImJQXp6Onbs2AEvLy8AQMuWLREUFISWLVsCUPRjCAoK4v7WrVtXqpinT5+OmTNnIjk5GTdv3kRcXBx27NgBHo+HgwcP4sKFCyrlExMTMWbMGBQWFuL9999HQkICbt68icjISFy/fh1PnjxRm0SU1w8//IDHjx8jLS0N9+/fx82bNxEfH49r166hfv36CAgI0Lrf77//Ht7e3oiKisLt27cRHh6O+/fvo1GjRnj69CnGjRtXbJvPP/8cBw8eRIMGDXDhwgUkJycjNDQUqamp2LFjB0xNTTF//vxiz5EmW7ZsQXh4OJo3b45nz54hMjISN27cQFRUFLKysnDw4EE0b968zM+RvlFCQIiOaA4CUhUV7Vj8JOOJASMhtV7EidKVf3i8YuKoJEuWLEF2djYmTpyIVatWwdLSklvn4uKC/fv3w9XVFRcvXsS1a9e4dQ8ePAAATJs2DXZ2qgNUmJubY+zYsfD19a2QmN966y38+OOPEIlej5I3duxY9O/fHwBw9OhRlfJ//PEHMjIy0LBhQ2zfvl3lGNu1a4eAgACtTY3K6qOPPkK9evWKLW/fvj1+//13ANB6h4Axhn379sHDw4Nb1qhRI+zatQsA8O+//+LKlSvcusjISGzcuBFisRjHjh0rNqfA2LFjsXTpUjDG8OOPP+p0DMrXecKECSpxAICJiQmGDh2Krl276lRXZaCEgBAd0SzFpCpq49yGe/xf7H8GjITUevmZFVu+CpFIJDh06BAA4NNPP1VbxtLSEr169QKgOAFVUjax2bdvH/LzdbyjoifTpk1Tu1w55Orjx49Vlp88eRKAYhIxoVBYbLvevXvD09NTz1EqRERE4Ntvv8V7772HHj16oEuXLujSpQsWLFgAAAgJCdG47ZAhQ9TG1bp1a+4k/Pjx1wnp/v37IZfL0aNHD/j4+Kitc/jw4QCA//77DzKZrMT4la/zP//8g8zMqv9epz4EhOgoOZfuEJCqp7NbZwh4AkiZFIExgfik+SeGDonUViKrii1fhTx69Ai5ubkAgJkzZ4LPV3999dmzZwAUHVyVZs6ciR07duB///sfTpw4gT59+qBjx47o1KkTWrdurbEufdB0suvkpLjTmJOTo7Jc2elVW9MWZZMYfVq0aBG+++47yOVyjWVSU1M1rtN2h6Vp06a4dOkSdwUfUHSaBoDbt2+jS5cuardjjAEA8vLykJqaqnZOiqImTpyI1atXIzAwEK6urujZsyc6d+6Mjh07okOHDmoTLEOihIAQHaXkUx8CUvVYGluitVNrXE+4jnup95CUm6QyYRkhlaZhf8XQorpqNKDiYqlg6enp3OOrV6+WWF6ZPACKk9WrV69i+fLlOHXqFPbu3Yu9e/cCANzc3PDVV19h2rRp3PwH+mRmZqZ2uTIJefMEPDs7GwBUmgq9ycLCQk/RKezfvx/Lly8Hj8fDwoULMXToUNStWxfm5ubg8/l4+vQp6tWrB6lUqrEOZYKjbZ3y2IDXr2dcXBzi4uJKjLHo66mJs7Mzrl+/jmXLluGff/7BkSNHcOTIEQCAnZ0dZsyYgQULFlSZxICaDBGiI2WnYgFPAGsTa8MGQ0gR3Ty6cY8vxl40YCSkVmvxPqDrDO5CMdD8/YqNpwKZm5sDUJxIFxQUgDGm9S8gIEBl+5YtW+Lvv/9GRkYGrly5gh9//BGdOnVCXFwcZsyYgV9++cUAR1Wc8mRf0/CpgOqJtT4o+wZ88cUXWLZsGVq0aAFLS0suadF2Z0ApMVHzvCzKdUUTGeXr+c0335T4WjLGuE7fJalXrx62b9+OtLQ0hISEYM2aNejduzfS0tKwZMkSzJ49W6d6KkO1SgjCwsLw7bffonfv3nBxcYGxsTGsrKzQtm1bLFu2TCVjV+fs2bMYMGAAHB0dIRKJUK9ePcycORMJCQmVdASkOkvJVSQEtmJb8HnV6qNDajh/d3/ucWBMoKHCILWd2EYx6Zgu+v0EiK0rNJyK5OPjAxMTE8jlcpUOw6VlbGyMjh07Yu7cubh8+TLmz58PAFzHWaWKuFugC+WQmMomNepoW1cWT54oBkfo1q2b2vWXL18usY579+6VuK5x48bcMuXwrbrUXRZGRkZo1aoVPvvsM5w+fRp//PEHAGDTpk1a73RUpmpzVvPkyRP4+flh4cKFOHv2LPh8Ppo3bw4LCwvcvHkTixcvRtOmTREWFqZ2e2UiceLECQiFQjRt2hQvXrzAunXr4Ovri/Dw8Eo+IlLdKJsMOYhplmJStXhYeqCelWJEjusvriNXUvLtbEIqRKuxwLu/ab5TIBQr1lfzmYrFYjHeeecdAMB3333HtS8vr7feegsAuInJlExNTQEo2q9Xpn79+gEAAgICIJFIiq0/c+aM3vsPKI9VXdOd3NxcnYZaPXToEJ4/f15s+a1bt3DpkqJZ24ABr5usvffee+DxeAgMDERQUFBZQ9eZ8nUuKCgocaK0ylJtEgLGGBwdHbFs2TI8efIEcXFxCA4ORmxsLIKCguDp6YkXL15g8ODBKChQHYv79OnTWLhwIQBg3bp1iI2NRUhICGJjY/H2228jNTUVgwcPrpChs0jNUCgrRGaBYpQA6j9AqiJ/D38AQIGsANdelP2KJSHl1mosMPsh0Od7wKsr4Oyn+LfvD8AXD6p9MqD03XffwcLCAmfOnMHIkSOLnYDKZDJcunQJkyZNUjm5nTx5Mnbu3ImMjAyV8klJSfj5558BAG3btlVZV79+fQCKmYv1lXzo4pNPPoG1tTUiIiIwbtw4laZDN27cwPjx42FsbKzXfSqH/Pzuu+9w//59bnl8fDwGDRpULFnSZNSoUSqduYvOCeHv749OnTpx65o1a4aPPvoIjDEMGjQIf/31V7GRhBISErBhwwb88MMPOu1//vz52LBhQ7HmS1lZWfjuu+8AAF5eXnBwqCIXGVk1kZeXx3JycjSuv3z5MgPAALDDhw+rrGvbti0DwEaPHl1su+TkZGZhYcEAsI0bN5Y5vitXrjAA7MqVK2Wug1Rd8dnxzDfAl/kG+LLFlxcbOhxCirmVeIt7jy66vMjQ4ZAy0udvSWRkJIuMjNRDVLWb8txi27ZtxdZduHCB2dvbMwCMx+OxBg0asA4dOjBfX18mEom4baOiorhtmjdvzpWvV68ea9++PWvcuDETCAQMALOzs2N37txR2c/169cZn89nAJi7uzvr0qUL69atG/vss8+4MosXL2YA2Lhx4zQeQ9E4itq2bRsDwLp161Zs3dGjR5mxsTEDwExNTVmbNm2Yj48PA8A6d+7M3n//fQaALVu2TIdn87Vx48YxAGzx4sUqy+Pj45mLiwsDwIyMjFjjxo1Z8+bNmZGREROJRGzLli3c8bypW7duDABbtGgRc3BwYAKBgDVv3pz5+voyHo/HADAvLy/2/PnzYtsWFBSwDz74gKvb0tKStW7dmrVt25a5u7tzy998fjU9d4MGDeK2qVOnDmvXrp3K+0IsFrOzZ8+W6jnTRVk/99XmDoFIJNLYOx4AOnXqBCsrxRBmRYeSioqKQnBwMAD1YwXb29tzY8vu2bNHnyGTGoRmKSZVXTP7ZrAV2QIALsZchJxpHq6PEKIf/v7+ePjwIZYtW4Z27dohKSkJoaGhyMjIQIsWLTBnzhxcvnxZZUz8NWvWYPbs2Wjbti1yc3MRGhqK58+fo3HjxpgzZw7Cw8Ph5+ensp927drhn3/+gb+/P3JycnDlyhVcvHgRt2/frvBjfOedd3D9+nUMGTIEIpEIYWFh4PF4WLx4Mc6fP8+1rtA2ElFpuLi44Pr16xg3bhzs7e3x+PFjJCUl4b333sONGzfQo0ePEuvw9vZGaGgoPvzwQyQnJyMiIgIeHh6YOXMmbt68WWyiMEDRn2PXrl04e/YsRo4cCWtra4SHhyMyMhIWFhYYMmQItmzZglWrdOsns3DhQnzzzTfo0qUL5HI57ty5gydPnqBOnTqYOnUqwsLC0LNnz1I/PxWFx1gl3nuqQDKZDJaWllz7sunTpwMAdu/ejTFjxsDY2Bg5OTlqh3favn07xo8fD7FYjJycnDKNAXz16lV06tQJV65cQceOHct9PKRq+ff5v/jswmcAgK/bf41RjUYZOCJCivsm6BscfnIYALC7/274OfiVsAWpavT5W/Lo0SMAQIMGDfQRGiFqNW3aFPfv38eRI0cwcOBAQ4dT65X1c19j5iE4dOgQNy5s0Z7pykk1PD09NY71qpweOy8vD8+ePYO3t7fWfcXExKi0SwOgsTMzqRnoDgGpDrp7dOcSgsCYQEoIKoH85UsUPI2CuJnmiZAIqakuX76M+/fvQygU0sXQaq7aNBnSJj09nRvLdeDAgdzwUQC43tu2trYaty+6rqShSwFgy5Yt6NSpk8rflClTyho+qQZS816Pe0wJAamqOrp2hJCvuPARGBto2GBqASaXI37+AjwbPRoZBw8aOhxCKsTJkyexZ8+eYiMcnT9/HiNGjAAAjB49Gvb29NtYnVX7OwQSiYTr3e/g4MCN7aqkfANr6wUvEr0eHk2X2ecmTZqEPn36qCwLCwujpKAGS85L5h5TQkCqKlOhKdq7tEdQXBAepT9CXE4c3MzdDB1WjZUbfBPZZ84AAJLWrIFF794w0vOsrYQY2pMnTzBjxgwIBALUqVMH9vb2eP78OTeHU4sWLbB69WoDR0nKq1onBHK5HGPHjsXZs2dhYWGBo0ePwtXVVaWMWCwGAK1Diubn53OPlePfauPh4aG2QwqpuajJEKku/N39ERSnGEc7MCYQHzT+wLAB1WBm7dvBbc0veLF4Cdx//ZWSAVIj9ezZEzNnzkRgYCDi4+Px/PlzmJubo0OHDhg+fDg+/fRTnc6dSNVWbRMCuVyOiRMnYu/evTAzM8Px48fRvn37YuVsbGwAaJ/quuikEMryhBSlTAgshBYQaZpwh5AqoJtHN3x7/VsAlBBUBsu+fWHWpQuMzM0NHQohFaJRo0ZYu3atocMgFaxa9iFgjGHKlCnYvn07TE1NcezYMXTt2lVt2UaNGgEAnj9/rnaWPeD1NNkikUhlaDBClJQJgZ3YzsCREKKds5kzGts2BgDcTLyJ7MJsA0dUszCptNgySgYIIdVdtUwIpk2bhs2bN0MsFuPIkSPcrHbqKHu9FxYW4to19bN3Xrx4EQDQoUOHMg05Smo2xhiXEDiYVpEZBQnRQjlrsVQuxeX4y4YNpgZhMhliPvkUST//DPbGLKaEEFKdVbuz35kzZ2LDhg0QiUQ4fPgw3n77ba3l69atizZt2gBAsQ7HAJCSkoIDBw4AAEaOHKn/gEm1l1WYBYlccXfJXkT9B0jVp0wIAMUkZUQ/klavxsugIKT+uRkJS5cZOhxCCNGbapUQzJ07F+vWreOSgV69eum03fLlywEA//vf//Dbb79BORdbWloaRo0ahezsbNStWxcTJkyosNhJ9aXSodiUEgJS9TW2bQxHU0cAwH+x/0EqL97MhZRO5tGjSNuyFQDAE4thM/p9A0dECCH6U20SgqtXr+Knn34CoJgee9myZejSpYvavxUrVqhs27dvXyxZsgQAMGPGDLi7u6N169Zwd3fH+fPnYWtri0OHDsHExKSyD4tUAzTkKKlueDwe/N39ASjucN1Oum3QeKq7vPB7ePHNQu7/rt+vgOhV/zRCCKkJqs0oQwUFBdzjpKQkJCUlaSxbv379YssWL16MDh06YO3atbhx4wbCw8Ph5uaG/v374+uvv4aLi0uFxE2qPxpylFRH3Ty6YV/kPgCK0YbaOLcxbEDVlDQlBbHTp4O9+g2ymzIFln37AgAycyXYHxKDcw8SkZ0vhYVIgF5NnDG8lTusTIWGDJsQQkql2iQE/v7+XFOfsurTp0+xCcUIKQnNUkyqo/Yu7SEWiJEnzcPF2Iv4su2Xhg6pSijNSTwrLETsZ7MgfTUBk7m/Pxw+mwkA2Bccg0WHw5Evlatsc+1pGn469RDLBvliRFuar4YQUj1Um4SAEENJzqUmQ6T6MTEyQUeXjvg35l9EZ0UjKjMK3lbehg7LoEp7Ep+wYgXyQkIAAMbe3nD9aSV4fD72Bcdg7sG7GveTL5Vz6ykpIIRUB9WmDwEhhpKST02GSPVEow29pjyJfzMZUFKexO8LjgEA5Fy8iIy/9gIA+ObmcF+/HkYWFsjMlWDR4XCd9rnoSDgyc9XPf0MIIVUJJQSElEDZh0DAE8DaxNqwwRBSCm+5vwUeeACACzEXDByN4ZTlJN6sa1fYT/0U4PPh9vMqmNRV3F05EBqrMal4U75EjoOhsWWOmxBCKgslBISUICVXkRDYim3B59FHhlQfdmI7+Dn4AQBuJ99GRn6GYQMykLKcxPP4fDjMnIl6J47DvFs3bv3Z+wml2vfZ+4mlKk+ql+joaPB4PPB4PEOHYlAV8TwEBgaCx+PBy8tLb3USzejshpASKJsMOYhplmJS/SibDcmZHJfiLhk2GAMpz0m88RsnI9n5pZvTISufmgxVN/7+/tzJrba/jIwMrfX8888/WLJkCQIDA8sci5eXF7e/7t27l1i+fv36XHl/f/8y75fUPtSpmBAtCmWFyCzIBED9B0j15O/uj7WhawEohh8dWG+gYQMyAJ1O4hnDzNsHcNe+HpJd/TUWsxCV7mfTUkTDj1ZXjo6OaNCggcb1AoEAQqEQDRs2VLv+n3/+wfbt2wFALyfnFy9exNOnT1G3bl216//77z88efKk3PshtRMlBIRoQUOOkuqunnU9uJm7IS4nDpfjL0Mik0BoVLtOUnU5iR/2+CL6PbuOfs+u419RPoCuasv1auKMa0/TdN53ryZOOpclVUu/fv0QEBCgtYy5uTkePnxY4bE0btwYDx48wPbt27F06VK1ZbZt26ZSlpDSoCZDhGhBk5KR6o7H46G7h6KpwUvJSwQnBhs4osrXq4mzyv95RjkQ2lyFwPweAKBVYgQm3DsOAJDx+HDq2E5jXcNbuUMk0O2nUyTkY1hr9zJGTchr48aNA4/Hw/bt29XOyZSTk4MDBw7AwsICw4YNM0CEpLqjhIAQLZLzaA4CUv0VHX40MCbQUGEYjOIknge++BlErn/BrP73EDkfhthjJ+oID+Orm7tgBMVJ1pYWg9Hrg/4a67IyFWLZIF+d9rvsXV9YiWvX3ZjaRl1nWuUyZXOhpUuXqvQ9KEsnWU9PT3Tv3h3Pnj3DhQvFRwzbv38/cnJyMGLECJiZmWmtKzc3FytXrkTbtm1haWkJsVgMHx8ffPbZZ4iN1TwqllQqxS+//IJmzZpBLBbDwcEB77zzDq5cuaLTMVy4cAHvvfce3NzcYGxsDDs7O/Tu3RuHDh3SaXtSsSghIEQLukNAaoJWTq1gIbQAoJiPoLyzvlcnedI8nI87Co9mm2DmtQFCq9vg8WUAAFEBwzcXLsFCkgcAOOXZDh0/n1LiSfyIth5YOcxP450CkZCPlcP8aFKyWkokEqFz585wdHQEAHh4eKBz587cX9u2bctU74QJEwC8bhpUlHKZsowmCQkJaN++PebNm4ebN2/Czc0NjRs3RnR0NH799Vc0a9YMQUFBxbYrLCzEwIED8cUXXyA8PBxOTk7w8vLCxYsX8dZbb2k9qWeMYebMmejRowcOHDiA3Nxc+Pr6QigU4uzZsxg6dCimTp1amqeCVABKCAjRghICUhMI+UJ0cesCAIh/GY/I9EgDR1Txnmc9x0/BP6Hn/p5YfGUxEvJfd7aUF1pDktoe04/K4fHqI/7QyQpuixZiRLs6OtU/oq0Hri/oiYXvNEHHunZo6mqJjnXtsOidJrg+vyclA7WYs7MzgoKC0K9fPwDAxIkTERQUxP3t37+/TPUOGzYMlpaWOHjwILKysrjljx8/xqVLl9CgQQN07txZax1jxoxBeHg46tWrhzt37uDBgwcIDQ1FXFwc+vTpg4yMDAwbNgypqakq23333Xc4deoUzM3NcezYMURHRyM4OBiJiYkYN24c5s2bp3GfP/30E9atWwcnJyccPHgQ6enpCA0NRUJCAk6ePAkHBwds2LChxP4apGJRQkCIFpQQkJqim8frsfQvxtbMWYtlchkCYwLxyblPMODQAOy4vwNZha9PnDq7dcaPnddgVqNtmHXXDu0eKe6UpJkDq0fkIMbkcKnunliZCjGpizf2TO6A4zO7Ys/kDpjYxRtWptRMqCbYvn27xiFHDXHyKhaLMXLkSOTl5WHv3r3ccmUsJd0duHz5Ms6fPw8A2LlzJ/z8/Lh1Dg4O2L9/P2xtbZGUlIQ//viDW/fy5UusWbMGgKL504ABA7h1pqam+PPPPzWOfJSeno7ly5cDUDRrGjp0qMr6vn374vfffwcA/PDDD1rjJxWLRhkiRAtKCEhN0cWtC4x4RpAxxUnzZL/Jhg5Jb9Lz03Ho8SHsi9iHuJw4lXUWxhYYUn8IRjYciTqWiqv/L1Ou4/m1IwAAJhTgl+F8ZJjLEXAvAFK5FHPbzq1VE019dOYjvMh5YegwysXF3AWbe2/Wa53ahh11cjLM6FETJ07En3/+iYCAAHz88ceQy+XYsWMHjIyM8OGHH2rd9tixYwCAzp07o2PHjsXWW1hYYMqUKfj+++9x/PhxfP311wCAoKAgZGVlQSwWY8qUKcW24/P5mDlzJqZNm1Zs3YkTJ5CTk4OmTZuia1f1I3cNGjQIQqEQERERiI+Ph6ura4nPA9E/SggI0UKZEFgILSASiAwcDSFlZ2VihVZOrRCcEIywlDCk5KVU+yQ3LDkMf0X8hVNRp1AoL1RZ19i2MUY1GoV+3v0gFohV1pm2aQ2LXj2RffYcXJcvx9RWlph9cTakcil2PdgFqVyKBe0X1Jqk4EXOCzzPfm7oMKocXYYdrWwdOnRAo0aNcOXKFURERODZs2eIiYlBv3794ObmpnXbiIgIAECzZs00llGuKzqUqvKxl5eXxg7LTZs2Vbv8zp07ABR9F7p06aJxv8rPWmxsLCUEBkIJASFaKBMCO7GdgSMhpPz83f0RnKAYdvRizEUM86l+wxMWyApwKuoU9jzcg3up91TWCfgC9PHqg1ENR6G5Q3ONJ/Q8gQCuP/+MnH//hWXfvugBYI3/Gnwe+Dkkcgn+ivgLcibH1x2+Bp9X81vWupi7GDqEcqsJx6CrCRMmYN68eQgICEB0dDS3rCTKfgfOzs4ay7i4KJ7H7Oxsbpnysba7IprWpaenAwBSU1Nx+fLlEmPMzc0tsQypGJQQEKIBY4xLCBxMHQwcDSHl5+/hj59u/gQACIwNrDYJQWauBLtuPMD+JzuQzg+CnP9SZb2zmTNG+IzA0AZD1SbvjDFInj+Hsacnt4xvbAzLvn25/3fz6IY13dfg8wufo1BeiH2R+yBjMizquKjGJwX6bmpDKtbYsWOxYMECBAQEICMjA7a2tnj33XdL3M7S0hKA4mq9Ji9eKJqOWVhYcMuUjxMTEzVup2mdubk5AEVn5p07d5YYIzGcmv0tR0g5ZBVmQSKXAADsRdW7aQUhAFDHsg7qWik6/12Lv4Z8ab6BIyrZvuAYtP/hKNZHfIlUwWmVZECe2wDvuX+Dk0NP4mO/j9UnA3I5Er9bgaeDhyA3NFTrvt5yfwvreqyDiZEJAODgo4NYdHkRZHKZfg+K1AoV1eTMxcUFffv2RUJCAvLz8zF69GiYmJiUuF2jRo0AAOHh4RrLKNc1bty42HbR0dF4+fKl2u3u3bundrmyCZKucxUQw6GEgBANVDoUm1JCQGoG5WhD+bJ8XH9x3cDRaLcvOAZz/74Jnss2GIkUVy6ZzASFaZ2Q82Q2Xj6bhK1nzfF3iPoOsUwmw4uFC5G+axdYXh5ip02HLEf9CY1SJ7dO+O3t3yAyUvQZOvzkML65/A0lBaTUTE1NAQB5eXl6r3vmzJl4++238fbbb+Pjjz/WaRvl6EBBQUG4ceNGsfU5OTnYuHGjSlkA6NKlCywtLZGXl4c///yz2HaMMaxbt07tPt955x2IxWI8ffoUu3fv1ilOYhiUEBCiAc1STGqi7h7duccXYorPeFpVZOZKsOjwHYjd/geBaTQAQF5og5dPZ6Mg8V2wwtfN+BYdCUdmrkRleyaRIH7OHGQe/BsAwDM2hsv3K2Bkrn0WVwDo4NIBv/f8neuMfOzpMcy/NB9SuVRPR0dqg/r16wNQnIBLJJISSpdO7969ce7cOZw7d05l+FBtOnfujLfffhvA6/kIlFJSUjBixAikpqbCyclJZTQhMzMzzJw5EwCwaNEinDx5kluXm5uLKVOm4MmT1/N8FOXo6IhvvvkGAPDxxx/j999/R0FBgUqZ9PR07Ny5E3PmzNHpOEjFoISAEA1oyFFSE/nZ+8HGxAYA8F/sf5AzuYEjUm9/yHPAcS8EFooRTuRSc+Q+nwQmtSxWNl8ix8HQWO7/8oICxM78DFknFCcuPFNTeGzaCAt/f53339a5LTb03ABTgeIq78nok5j33zyuGSEhJRk+fDhMTU1x5coVuLu7o3PnzvD398eoUaMMFtOuXbvg6+uLR48ewc/PD02aNEHr1q3h5uaGkydPwtraGgcOHICdnWrzu4ULF6JXr17Izs5G//794e3tjbZt28LJyQlbt27Fjz/+qHGf8+fPx5w5c5CXl4dp06bB1tYWLVu2RPv27VG3bl3Y2dnhww8/RHBwcEUfPtGCEgJCNEjNez1TIyUEpKYw4huhq7tiPPDkvGTcT71v4IiKY4xh56O1EFrdVvxfJkLe80lgEs2fw7P3FZ0a5bm5iP30U+RcUNz94FtYoM7mzTDr0KHUcbR2ao2NvTbCTKi4q3Dm2RnMuTgHEhklBaRkHh4eOHPmDPr16we5XI5r167h4sWLuHbtmsFicnZ2xvXr1/HDDz+gZcuWiImJwb1791CnTh3MmDEDYWFhaocHNTY2xvHjx7Fq1So0bdoUL168QFRUFLp164b//vsPQ4YM0bhPHo+HlStX4saNG5gwYQJcXFzw8OFD3L9/H0KhEH379sW6deuwa9euijx0UgIeK820jESjq1evolOnTrhy5YraCT9I9bMqeBW2398OADj47kH42PgYOCJC9OPss7P4IvALAMBkv8mY0XKGgSNS9fvt37HhzgYAAJMLkfd8EmR5Xlq3aepqiSMTWiBmyifIe9V52MjaGh5bNkOsYYx0Xd1NvospZ6cgR5IDQDFa08/dfoaxkXG56lVHn78ljx49AgCNk2sRQmqesn7u6Q4BIRqk5FOTIVIzdXLtBCFfCEAxH0FVsvvB7tfJAOMjL3ZMickAAFiKhEhYvJhLBgQODvDctbPcyQAA+Dn4YXPvzbAwVgy/GBgTiFkXZqFAVqB9Q0IIqSYoISBEg5RcRUIg4AlgbWJt2GAI0SMzoRnaubQDAESkRyA+J97AESkcfXIUP9z44dX/eMiPHwHZy4Y6bduriRMcv/wSAlcXCF1d4bl7F0xederUh6b2TbG592ZYmVgBAC7FXcJnFz6rFkO3EkJISSghIEQDZadiW7FtjZ+YiNQ+/u7+3OOLsYa/SxAYE4iFlxdy//+i5TwIclvptK1IyMew1u6KRGDbNnju2gnjOnX0HmMTuybY0nsLd4HgctxlzPh3BvKk+h9WkhBCKhOd5RCigbLJkIOYZikmNY+/hz/3ODAm0FBhAABuJtzElxe/hIwpxvqf1mIaJvh9gGWDfLVu5/IyBVYF2Vj2ri+sxIomUMaenhC6ulZYrA1tG2JLny2wFdkCAK69uIbp56cjV5JbYfskhJCKRgkBIWoUygqRWZAJgPoPkJrJ2cwZjWwVM5DeSLiBnMIcg8TxIPUBZvw7g2uPP6bxGEzxU4yBPqKtB1YO84NIUPynqk5WAlZd+h3bwndiWAOLSo3Zx8YHW/tshZ1IMTTjjYQbmHp+KiUFhJBqixICQtSgIUdJbaC8SyCVS3El/kql7z86MxqfnPuEG71nYN2BmNN2Dng8HldmRFsPXF/QEwvfaYKOde3Q1NUSQ8yy8duNTbDNz4I45imSf1U/S2pFqmddD1v7buXuIIYkhuDTc5/SjMaEkGqJEgJC1KBJyUhtYMh+BAkvEzD57GSk5adxsSztvFRtfx0rUyEmdfHGnskdsL+LOT45shrCnCwAgFmnTnD8cnalxq5U16outvXdBkdTRwDAwHoDYcQ3MkgshBBSHgJDB0BIVZScl8w9poSA1FSN7RrDUeyIpLwk/Bf7H2RyWaWc0Kbnp2PK2Sl48fIFAMUEYD91+4kbClWTl9euIWbqNLBcRdMc8x494PbLavBNTCo8Zk08LT0R0CcAoUmhGFR/kMHiIISQ8qA7BISoQXcISG3A5/HxlsdbAICMggzcSb5T4ft8KXmJqeem4mnmUwBAY9vGWNdjHUQCkdbtsk6cQMzkKVwyYNm/P9zXrjFoMqDkYelByQAhpFqjhIAQNSghILVFd4/u3OOKHm2oUFaIzy58hvDUcACAl6UXNvTcwE34pY4s5yXiv5qPuC9mgxUWAgCshg+D608rwRNqv6NACCFEN5QQEKIGJQSktmjn3A4iI8XV+cDYwArbj1Quxbz/5uH6i+sAACdTJ2zstRF2Yjut28mzMpF9/jz3f9tJE+GybBl4RtRWnxBC9IUSAkLUoISA1BYigQgdXTsCAKIyo/As65ne98EYw/Jry3Hu+TkAgLWJNTb12gRX85LnCxC6usJ5yWIY2dnBY+MfcJozBzw+/XQRQog+0bcqIWooEwILoUWJbZsJqe4qepKyX0J+wd+P/gYAmApMsaHnBtS1rqu2bGFsLCQvXqgssxowAPVOn4J5t256j40QQgglBISopUwISmrOQEhN8Jb7W+BBMfa/vhOCLWFbsO3eNgCAkC/E2h5r4WtffAZixhgyjxxB1KDBiJ8zF0ymOp6/kbm5XuMihBDyGg07SsgbGGNcQuBg6mDgaAipePZiezSzb4a7KXdxK+kWMgsyYWViVaa6pHIpnmc/R2R6JG4l3sL/Hv4PgGJEo5/e+gkdXDoU20aWlYWEpcuQdfw4ACD35k1k7D8Am1Ejy35QhBBCdEYJASFvyCrMgkQuAQDYi6j/AKkd/D38cTflLmRMhktxl/BO3XdK3CY9Px2R6ZEqf08ynqBAVlCs7JKOS/C259vFlucGByNu3jxI4183E7KdOBFWQ4eU74AIIYTojBICQt6g0qHYlBICUjv4e/jj11u/AgAuxlxUSQgkMgmeZj5FZHokHqU/4k7+i07gp4kx3xiz28zGkAaqJ/hMIkHyb+uRumkTwBgAQODoCNcff4BZx456PDJCSGXi8RTND6OiouDl5WXYYCpQQEAAJkyYgG7duiEwMNDQ4ZQbJQSEvIFmKSa1UX3r+nAzd0NcThyC4oKwNXwrd+IflREFKZOWWIdYIEYDmwbwsfFR+XtznoHC6GjEfTkH+eHh3DKL3r3hvHQJBDY2ej82QsoqOTkZmzdvxvnz5/HgwQOkpqbCyMgIdnZ2aNasGbp374733nsPnp6ehg61WgoMDET37t1LLqjGhQsX4O/vr9+AXgkMDERgYCBatGiBwYMHV8g+qhpKCAh5Aw05SmojHo8Hfw9/7H6wGzmSHPwS8ovmsuChjmUd+Nj4vE4ArH3gZuEGPk/7WBVMJsPzKVMgefZcUZepKZy/XgCroUO5K4uEVAW//PILvvnmG+S+mh3bwcEBjRs3Bp/PR0JCAk6cOIETJ07gq6++wueff46ffvrJwBFXP1ZWVujcuXOx5ZmZmQh/dcGgTZs2MFEzI7mVVdn6OekiMDAQS5cuxbhx4yghIKS2Ss1L5R5TQkBqk75efbH7wW6VZZbGlsWu+NezrgdToWmZ9sEzMoLzwkWI+egjiPz84LbyRxjX4GYFpHr6/PPPsWbNGgDABx98gHnz5qFZs2YqZaKjo7Fnzx6sXbsWFy5cMECU1V/Lli0RFBRUbHnROwf79++v0U2PqgpKCAh5Q3IuNRkitVMLxxb4rcdveJr5FPWs68HHxgdOpk7lvnIvLygAv8gVPvMuneGxaSPMOnYETygsb9iE6NX+/fu5ZGDVqlWYPXu22nJeXl6YP38+pk6dis2bN1dihIToH81DQMgbUvKpyRCpvbp5dMME3wl4y/0tOJs5lysZkBcWIvGHHxE96n3ICwtV1pm/9RYlA6TKkcvlWLhwIQCgZ8+eGpOBoqysrNSW8/f3B4/HQ0BAAOLi4vDpp5/C29sbJiYmxdq+nzlzBoMGDYKTkxOMjY3h5OSEQYMG4cyZM2r3GRAQoGjmp6UNfdH9a9s2ICAA7du3h7m5OSwtLdG9e3ecPXtWY72MMQQEBKBdu3YwMzODjY0NevTogWPHjmncRp+io6PB4/G476aTJ0+ib9++cHBwAJ/P5453yZIl4PF4GD9+vMa6vLy8wOPxVDoF83g8LF26FACwfft2bl9F96lOaZ/HqoYSAkLekJKrSAgEPAGsTawNGwwh1RCTyZB5+DCeDhyItIAAFDx4gOTVmvskEFJVhISEICIiAgAwY8YMvdT56NEjNG/eHH/++ScsLCzQpEkTGBsbc+vnzJmDPn364MiRI2CMoXnz5mCM4ciRI+jTpw/mzJmjlzjUmTRpEiZMmIAXL17Ax8cHcrkcgYGB6Nu3Lw4fPqx2m48++ggTJkxAcHAwrKysUL9+fdy+fRsDBw7EunXrKixWdVavXo3+/fvjxo0b8Pb21kvn7s6dO8PDwwMA4OjoiM6dO6v8qVOW57GqoYSAkDcoOxXbim1L7CBJCHmNyWTIPHoMTwe8g/h5X3Edh/nm5hA1bWLg6AgpmbI9O4/Hw1tvvaWXOn/88Ue0bNkSMTExuHv3Lm7dusWdJO7atQurVq0Cn8/Hb7/9hoSEBAQHByMhIQG//vor+Hw+Vq1ahV27dukllqKuXLmCw4cP48yZM3j+/DlCQ0ORmJiIQYMGQS6XY9asWWCvhgRW2rZtG7Zu3QqBQICtW7ciLi4OwcHBSExMxMKFC3W6o6JPX331FVatWoXk5GTcuHEDUVFRGDmyfBMaBgUFYeLEiQCAfv36ISgoSOXvTWV5Hqsi6kNAyBuUTYYcxDRLMSG6YHI5sk6eRMrvG1D45InKOou+feH45ZcwdnczUHREF2k7diJtd8knnTaj3ofdhPHc/wtj4/B80sQStxM6OsFz5w6VZbEzZiA/MrLEbd1+Xg2xb1Pu/xl/H0LKxj+4/9t+MAa2H44tsR5dxMbGAgCsra1hbW2tlzptbW1x4MABlVFxxGIxAHBNUz7++GNMmzaNW8/n8zFjxgzcvXsXmzdvxrJlyzBmzBi9xKMkkUiwZs0a9OrVi1tmZmaGDRs24MSJE4iOjkZYWBj8/Py49StWrAAAfPrpp5gwYQK3XCgUYtmyZbh27VqlNpMZP358sSRE+dxWlrI8j1URJQSEFFEoK0RmQSYA6j9AiC5kmZl4NmYMCh49Vllu0asX7KdPg6hhQwNFRkpDlpnJ3dHRWi4jQ3WBVKLTdpAUn8dC8iJBp21ZoerM1/LsLJXtZJmZJe9fR1lZWQAUJ3Sa+Pv74+LFi8WWX716FR06dCi2fPjw4WqHyIyIiMDjx4rPzZdffql2X3PmzMHmzZvx6NEjREZGwsfHR6fj0IWVlRU++OCDYstdXFzg7e2NyMhIPH78mDuRLRrvrFmz1NY5a9asSk0IPvroo0rblyalfR6rKkoICCmChhwlpHSMrKxgZGPL/d+859twmDYNosaNDRgVKS0jKysIPeuUXO7Nq+YCoU7bCR2dii9zcYYsO6vEbXnGqmPQ8y0sVfZppMfx6C0tLQEAOTk5Gss0a9YMUunrBOfy5cta62zatKna5cq+CmKxGPXr11dbpkGDBhCJRMjPz8fDhw/1mhA0aNBAYydZJycnREZGqjwPDx8+5OKtW7eu2u00HWtFqez9qVPa57GqooSAkCJolmJCNGOMIedCIMy6dAa/SKdIh5kzkLplK+ynT4O4CvxAk9Kz/XBsmZrdGLu7of7p02Xap3sZO6BaDx0C66FDyrRtSdzcFE3bMjMzkZ6eDhs1M2e/2XG2pJG4NN1tUN6NcHIqniwVrdvJyQnPnj1Ddna21v2Ulra7IHy+ov+cXC7nlin3ry1ebesqgrZjqAoxqHseqyrqMUlIETRLMSHFMcaQ/e+/iBo2DLFTpyLjwAGV9aZt2sBjw++UDJBqr2vXrgAU73l1zYL0SXk3IjExUWMZxhi33sLCgluuTEK0dVZ9+fKlPsLkKPeflJSksYy2Y6lshniOqjNKCAgpghICQl5jjCH7wgVED38PsVOnoeD+AwBA6sZNYBKJgaMjRP9at27NNcv57bffKnRfjRo1AgDk5eXhyRud8ZUeP36M/Px8AEDjIs3wlFeltZ2AP3r0SF+hAngdb25uLqKiotSWuXfvnl73WR4lPUfp6elISUlRu668kzFWR5QQEFIEJQSEvGoa9N9/iB4xErGfTkV+kR95s86d4bbmF5pUjNRIfD4fy5YtAwCcP38eP//8c4Xty8fHBw0aNACgGE9fnVWrVgFQtFNXllX+HwCioqLUnvDu3r0bmXrsbK2Mt169egCAtWvXqi2jabkhKJ+jW7duoaCgoNj633//XeO2pqamABTJWm1BCQEhRVBCQGqrzFwJNl96iq/nb8Jp/wGImTwF+WFh3HrTjh3g+b/dqLNlM0xbttSprlGbrmLAr5cwatNVbAmKQmYu3VUgVd/IkSMxffp0AIrRf8aOHYuwIp8FpZSUFPzyS/km3Fu0aBEAYOPGjdi4cSPXvEUul2P9+vXYvHkzAGDx4sUq2zVr1gxeXl4oLCzE9OnTVU5cz58/j1mzZkGo56Sdx+Nh/vz5AID169dj+/btXLxSqRRLly7FhQsX9LrP8ujRowfMzMyQlJSEuXPnQiaTcev27t2LFStWaHyOlJ28b9y4UWuaFVFCQEgRlBCQ2mhfcAzarziHb48/gPe1s/BMfN0cIMyhPp588zM8t22DaatWparr2tM03IvPwrWnaVh+7D7arziHfcExFXkohOjFunXrsHLlSohEIuzatQt+fn5wdHREy5Yt0aFDB/j4+MDFxQVffPEF+Hw+Jk6cqNKkR1djxozB7NmzIZPJ8Mknn8DFxQXt2rWDi4sLpk+fDrlcjtmzZxcb1pLP52PNmjXg8/k4cOAAHB0d0bp1a3h6eqJnz55499130alTJ309HZxJkyZh3LhxkEqlGD9+PNzd3dGuXTs4OTlhyZIlFXpHpbQsLCzw/fffAwB+/fVX2Nvbo23btnBxccGoUaPw1VdfwdXVVe22vXv3hpOTE6Kjo+Hu7o4OHTrA398f/v7+lXgElYsSAkKKUCYEFkILiAQiA0dDSAny0oGr64GAd4A/uir+vfq7YrkWTCbDy2vX8GLxEvx99g7mHryLfKliFIxLbs0BAGF2dTG38yeY2/kTTA9nOp3I7wuOUanrTflSOeYevEtJAakW5syZg+joaHz33Xfo3r07jIyMcP/+fdy9exf5+fno3bs3fvzxR0RHR2PLli1q5xrQxapVq3Dq1CkMHDgQcrkct27dAmMMAwcOxKlTp7hmQ28aNGgQTp8+zZ2kPnz4EA4ODvjzzz+xZcuWsh52ibZt24YtW7agTZs2SE9PR2RkJPz8/HD06FHMmDGjwvZbFjNmzMBff/2Fdu3aoaCgABEREahfvz7+/vtvLFy4UON2ZmZmOH/+PIYNGwaRSISQkBBcvHixwjuaGxKPVYf5lKuBq1evolOnTrhy5Qo6duxo6HBIGfU+0BsvXr6Al6UXjg45auhwCNEsdCdw4ktAml98nUAE9F8FtHo9jCSTyZAbEoLsU6eQdfoMZKmKOTc2tRiCQ16duXIiaQHqZsbjvq0XUKRjnUjIx/X5PWFlqv4We2auBO1XnNOYDBRVUl21mT5/S5SdSou2PSeE1Gxl/dzTPASEvMIY4+4QOJg6GDgaQrQI3Qkcma55vTQfODIdTM6Qx2uKrJOnkH36NKTJycWKNn/xUCUhyBeY4L6dd7Fy+RI5DobGYmKX4usA4EBorE7JgC51EUIIqVyUEBDySlZhFiRyRadHexH1HyBVVF664s5ACXJemODFx99Bmle8ZaiRlRUsevfGr/I62Ctx1HnXZ+8najyJP3s/Qed6SqqLEEJI5apVCUFwcDB++uknXLp0CWlpaXB0dESvXr0wf/58uqVKEJkeyT12MXcxYCSkxspLB27/D4g4CeRnAiIroGF/oMX7gLj4jKhq3d5TrJkQY4BcyoOR8HULUKGZVCUZ4FtZwaLn27Ds2w9mHdqDJxTi7q+XII/P0jn8rHzNowRl50t1rqekugghhFSuWpMQbN++HZMmTYJMJoO9vT2aNWuGR48eYdu2bdi7dy+OHj2KHj16GDpMYkC3km5xj1s6ah9WkZBS09TmP/oScH5psTb/GkWcgFzCQ366EHlpQuSlGiMvVQgzp0K4ts/giplYymDqWAChoz0sZ66CWYcO4Bkbq1RlISrdT4ClSHObf33WRQghpHLVioTg3r17+OijjyCTyTBv3jwsX74cQqEQubm5mDx5Mnbv3o3hw4fj0aNHsLOzM3S4xEBCk0K5xy0cWhguEFLz6NjmH0CxpIBJJMh/+BB5YWHIDwtH/n/RKEhzBpjqTJrZsXywNgDP6PWyOt1TwXNxA956S+1uezVxxrWnaTofRq8mTlrW6a8uQgghlatWDDu6dOlSSKVSdOrUCT/88AM3EYWpqSm2bNkCb29vpKenV6nxc0nlkslluJN0BwBQz6oerEXWhg2IVB1lHNpTZXsd2vwDADs+B7KEZyrLpCkpiH5vBBKXLUfmoUMoSJUVSwaMRDKYu+RDJlH9SufxoGiWpMHwVu4QCXT7GRAJ+RjW2r1S6iKEEFK5anxCkJubi2PHjgEAPv3002LrTUxMMH78eADAnj17KjM0UoU8yniEHEkOAKCVU8mTL5Eqrrwn8UqhO4GfGwGnFyia9iTcVfx7er5ieejOkutQ0+YfULT7L8w2QuYzERJvWSL6vB0i9lrhxZfTVMoJnJ1hZP+6kztfbAxTpwLYNc6GW+c01B+YgAaDEuHWKQMCkZpRfhoN0BialakQywb5lnwMAJa96wsrseZmPvqsixBCSOWq8U2Gbt26xU3p/ZaG2+bdunUDAERHR+PFixdwcaEOpbVNaOLr5kLUf8BA9NHhFtBfW/1yNPNREXFCUTyPj5QH5pDmGkGSa4TCHAHkhcWvyeRFqt4h4PF4cJg5A3yxGCJfXxg7WoL3SxP18w+8SSgGmr+vtciIth4AgEWHw9UOGyoS8rHsXV+uXGXVRQghpPQYY+DxeCUXfEONTwgiIiIAAMbGxvDwUP8jVK9ePe7xw4cPS0wIYmJiEBsbq7IsLCysnJESQyraf4DuEOhIXyfwQNU7iS+hmQ9jgLyQB0muESSbFkDSsQDSlExIXiRAkvAC0vgXsBw4EI6fz1I8NwAYgPRIc8375DGYWEsgdhOBSSTgCV9fQbcZMUK1bP9V2o9Tqd9PgNi6xGIj2nqgT1NnHAiNxbn7icjKl8BSJESvJk4Y1sq9VBOI6bMuUj48Hg8ymczQYRBCKhFjDHx+6RsA1fiEIC1N0cnNxsZGY8Zka2vLPU5PL7lJwZYtW7B06VL9BEgMjjGGW4mKEYYcTR3hauZq4IiqAX2dwCvrqoSTeBUn5wCN3wETWYMVFECWlQV5Tg7kWVmQZedAHnIAsod8yCXmMHfLg4nl65OqjCgxEkKswKRFvnADi/c/ksTEKB68asMvMJEDPAYwHvhCOYSmMohsJBDZSiC2LYSJjQR8IwBejQFhCSfNyudB00zFQrEiGdD1NYCiyc+kLt6YpIe5AfRZFyk7oVAIiUSCwsJCGL8xwhQhpOaRSqWQy+UwMTEp9bY1PiFQNhfS9mUoEom4x7m5uSXWOWnSJPTp00dlWVhYGKZMmVLGKIkhxeXEISkvCQDQ2rF1mW61VRv6uKqvrxN4ZTylPIkvGieTy5H/4AFYXh7kofshjwLkUjHkUh6YlAe5lA+5lAe5lAeXtpmv65LkIW7qBGTdfApINI2Hbw0AEJhKVRICvpCpJgNv4BkbQ+DiDCPlhYaG/YHoS+Dxgbr9kiAQy1XmCyhGS5t/Fa3GKp6P23sUzZKUr2ejAUDzUaW/S0NqHAsLC+Tm5iIjIwOOjrpPQEcIqZ5ychR9IU1NTUu9bY1PCMRiMQCgsLBQY5n8/NdX2HR5Ej08PDQ2PyLVT9HmQi2danD/AX1c1S/HCTyTSCDLzoYsMxMCBwcYmZtzHW7z0wXIfGYKeSEPMsnrk3j26l+5lA+5jAfzxxPgtu2f1/tgDNHDhhfZqS00cWqVqbgCr5QVpyUZeE3+xsg9xuZSiO0KITCVQWgmg9BUBoGrO4Tjt0H4KhFQSSpbvK94fqX5KomFWjq0+VchtgE6TlX8EfIGCwsLpKSkIDU1FQBgbW1NdwoIqYEYY8jJyUFiYiIAwNLSstR11PiEwMZGcTKSnp6usaOFsllR0fKk9ijaobiVYw3tP6Cvq/qvTuCVbeiNTFSvdKc/NkVeijFkhXzICnmQXxgImUQAWXY2WJG7b25r18KyT2+uw21htgBpD7W0r39FnhSj8n+ekRF4IhFYfskdbOUSPvhGrzu6imzkkHboACMLc/AtLFX/vbMF/KwIGAnlMLFUnYFXZC2FV68U1cq9HAHfpup3LLbRe5t/QnQhFApRp04dPH/+HKmpqUhNTQWfzwePx6vZd0IJqUUYY2CMQS5X/L45OTmptHzRVY1PCBo1agRAcYfg+fPn8PT0LFbmyZMnxcqT2kM5Q7GF0AL1resbOJoKUJa29SZWkKakQBofj8K4OEji4iGJj4PkxhFIUhwgeWkEgIeGw1+g6HlFbpIJsp6Li1SYqnY38uwsxYNXHW75xsWb0PCM5OALGPfHM2Iwtiz+JWf/yRQAPPDDdoKX9eRVeTn4Rq+2FTLwjeUwMlYd9cauiwvsxm9T/zxcfakYWlRXJTXzqYA2/4ToQiQSoW7dusjKykJ2djYkEgkY09JkjRBSrfB4PPD5fJiZmcHGxqZMzYWAWpAQtGjRAmKxGHl5efjvv/8wdmzxH9yLFy8CALy8vGjI0VomPT8dTzOfAgCaOzaHkUqbkhpCzTj4jCmGwZS8FAA8BlP7V01nJHlgof9DxPQtYK/63xT3usOrrICvMvY9v8hJN08gh5FIACOXeuBbWcLIwhJGlpbgW1rCuO6rkb1edbgV2xXCu28SjIRy8I1fJQDqLmB6NS62yP6TTxQPrsr0dxJfpJlPiXRt5kNt/omBCAQC2NraqgygQQghRdX4hMDMzAwDBgzAgQMHsHHjxmIJQUFBAQICAgAAI0eONECExJCUdweAKtxcqLwdgSNOQFrAR16KEHmpxshLNUZ+qhDyVx1jTR0K4Pn26yv5vEcnYWRlBamGhEAgftV23kwK9sZQ8w7NsuDgmw0joRw8IwBeXYHxRzTH9qrDrZGQwchaqrmcUmWdxFdUMx9q808IIaQKqvEJAQAsXrwY//zzDy5fvoyvvvoKy5cvh1AoRG5uLqZMmYKoqChYWVnhyy91bFZBagyVhKAqzj9Qjo7AhTExSF63Dnn/RUGS4axxF5LcN+6K5GfCokdvyF/mQOjmBqGrK/ev4NkR8P/9RmNdAhMGxYj7r5TUlKYqn8RTMx9CCCG1RK1ICHx9fbFx40ZMnjwZP/74I7Zs2QJPT088evQIWVlZEIvF2L9/P+zt7Q0dKqlkyhGGhHwhfO19DRzNG3TsCCxJz0GevD6MrKxg1q4dt5pnbIysI0fVbMhgYiWFyEYCobkUxuZvjHwjsoLzooXq9+k4BvjvW/01panqJ/HUzIcQQkgtUCsSAgCYOHEifH19sXLlSgQFBSEsLAwODg4YMmQIFixYAB8fH0OHSCpZnjQP91PuAwCa2jWFiVHpJ/KoMBo6AstlQEG6oulPboox8lKFkP71KwDAolcvlYRA6OQEgbMzWE4GxJYZENsVQmxfCJGtpOzj4FdEU5qqfhJPzXwIIYTUcLUmIQCAdu3a4cCBA4YOg1QR4SnhkDJFu/Uq11yoSEdgaQEfWdFiZMWIkJ9mDCZXP1xg3u3bxYbW9T54AEZiHnirG+vvqn5FNKWhk3hCCCHEYGpVQkBIUVV6/oFX4/MDgCTbCIm3rNQWE4hkENsXQtzADeJJq4uvt7NTPKiIq/r6bkpDJ/GEEEKIQVBCQGqtojMUt3Bsod/KyzAykLywEDkXL4Ll58Pq1fj8ACCyk0BoJoUk1whiW4kiAbArfDVbrlwxPKezB9CmjeZ4KuKqPp3AE0IIITUCJQSkVpLKpbiddBsAUN+6PqxM1F+BL5NSjAzE5HLk3ghG5rGjyD59BvLsbAicnWE5zhLKhj88HuDaMV0x1Kf4jXE+lUQ6xE8dZAkhhBCiBiUEpFZ6lP4IudJcAHpuLqTDyEDs8HQURCcg8xFD1okTkCYmqhZJSECe0TCYIohbxk0cpklJw3sq0VV9QgghhLyBEgJSKxVtLtTSqaV+KtUwMlBRqQ/NkPHUFIV7txZbZ2RvD8v+/WA1cCBE9dyA1X/qd6ZcQgghhBA1KCEgtVLRDsWtHVvrp9IiIwNpkpdijMIsIfd/vpkZLHr1guXAd2DWvj14giIfyYqYKZcQQggh5A2UEJBahzHGzVDsbOYMF3MX/VRcZGSgwhwjpEWYwbF5FvhFPmWWnnnIjhfB3CUfVm29YL7kFPgikfr6aKZcQgghhFQCSghIrRObHYvkvGQAQEtHPTUXAoD8TEjy+Ei9Z4H0p6aAnAehmQx2jV5yRcxd8+EzOAFGxkwxMpCmZECJOgITQgghpIJRQkBqnaL9B/TVXEiWkYHUa1KkBTuCyfjc8sxnYtg2fAnlXGF8IwBGr2YJ1mVkIIA6AhNCCCGkQlFCQGodZXMhoPwdiuUvXyJt506kbtkKeXY2AEUyYGQig33THFjXe50MFKPryECEEEIIIRWIEgJS64QkhgAALIwtUN+6fpnqYDIZ0v+3Byl//AFZaiq3nC+Uw65RDmx9XoIvZJoroJGBCCGEEFJFUEJAapW0/DREZ0UDUPQf4PP42jfQhM9H1okTXDLAE4lgO3YM7NpawOjfOSVvTyMDEUIIIaSKoISA1CoqzYWKdijOSwdu/w+IOPm6427D/kCL9wGxDRhjgFwOnpERAIDH48Hxi8/xbOIk2Lw3HHaffAKho6OiLnMxjQxECCGEkGqDEgJSqxSdf4CboTh0p/oT+OhLYOeW4qXHVCQfDYP1qJGwee89brVp27aof/7c60SAq5hGBiKEEEJI9UEJAalVlHcIjPnG8LX3VSQDGib/yk0RIvmOGXKT/wIApKz/HVbvvgu+iQlXplgyoEQjAxFCCCGkmqCEgNQauZJcPEh9AADwtfeFceFLxZ2BN+RnCJB81xI58apzBBjXcYcsPR18Z+dKiZcQQgghpDJQQkBqjbCUMEiZFMCr/gO396g0E5JJeEgMtUJmlBjA67FCRbaFcPTLgtn4TgAlA4QQQgipYco4xAoh1U/RCclaObVStO9/JS9NiKjTDsiMMoUyGTC2lMC9Sxq8eqXAzLkQeHi8skMmhBBCCKlwdIeA1Bq3EhX9B3jgoblDc0Vn31fy04WQ5Cg+DkYiGRybZ8HKMw8qo5IWKU8IIYQQUlNQQkBqBalcijvJdwAA9W3qw8rESjHyzyvWdXPxMsEEcgkPrh0yIBDJi1dSpDwhhBBCSE1BCQGpFSLSI5ArzQWgGG40/+FDmPj0Ay/6EgCAxwNc22eAZ8TA42mopNGASoqWEEIIIaTyUB8CUitwzYXkDD3OJiNq6DCkPxAAgtcjCfEFWpIBoRho/n4lREoIIYQQUrkoISC1QmhSKGyyGRbtkcFm9xlALkfSmvUobLVAtwr6/QSIrSs0RkIIIYQQQ6AmQ6TGY4yh8NJV/PS3DJZ5imU8ExM4LVgAYb/3AGdb9TMVA4o7A/1+Usw+TAghhBBSA1FCQGo0eWEhnny/FNP2ZHDLjOvXg9vq1RD5+CgWtBoLNH5HMS9BxAnFaEIiK0WfgeajFLMOE0IIIYTUUJQQkBqr8NkzxH0xG9J797hlab1aoePKzeCLxaqFxTZAx6mKP0IIIYSQWoT6EJAaSZKYiKihw5D/KhnINQbWDOLDcdmS4skAIYQQQkgtRgkBqZGETk6wHKAYJvS5uwnmTjRCeAtr1LOuZ+DICCGEEEKqFmoyRGosp/lfQeJih3kmmyAz4qGbY0vweZQDE0IIIYQURWdHpNpjjCH9r7+QsnGTynK+WIzI/k0gM1JMLtDSsaUhwiOEEEIIqdLoDgGp1uS5uYifvwDZp08DfD7ELVvArF07bn1oUij3uLVTa0OESAghhBBSpdEdAlJtyV++RMzkKYpk4JWCyEcqZZQzFBvzjdHErkmlxkcIIYQQUh3QHQJSLclychAzeQryQhV3AIwc7OH+yy8wbdOGK5MrycWDtAcAAF97XxgbGRskVkIIIYSQqowSAlLtyLKzEfPRx8i7cwcAIHByguf2ABh7eamUu5tyFzImA0DNhQghhBBCNKEmQ6RakWVm4vnESa+TAVcXeO7cUSwZAF43FwKoQzEhhBBCiCZ0h4BUG7KMDDyfOAn59+8DAIRubqizfTuM3d3Ulg9JCgEA8MBDc8fmlRYnIYQQQkh1QncISLXBEwrBE4kAAEIPD8WdAQ3JgEQuwd3kuwAAHxsfWBpbVlqchBBCCCHVCSUEpNrgm5nBY9MmWL47EJ47d0Do6qqxbGRaJPKkeQCouRAhhBBCiDbUZIhUaYwx8Hg87v9G5mZwW7myxO1CEkO4x62cWlVIbIQQQgghNQHdISBVliQxCc/HfoiCJ09Kve2tJOpQTAghhBCiC7pDQKokSUICno8bj8Jnz/Bs/Hh47tgBE29vlTKZuRLsD4nBuQeJyM6XwkIkQK8mzhjW0o2bodjN3A3OZs6GOARCCCGEkGqBEgJS5Uji4/Fs3HhIYmIAAAI7exhZW6uU2Rccg0WHw5Evlassv/Y0DT+dvwShVxoAujtACCGEEFISSghIlVIYG4fn48ZBEhcHADBp0hh1tmyBwMaGK7MvOAZzD97VWIfU+CmErx5T/wFCCCGEEO2oDwGpMgqfP8ezD8dyyYDI1xee27apJAOZuRIsOhyutR6BaTT3uIGlX4XESgghhBBSU1BCQKqEwuhoPBv7IaTxLwAAouZ+qLN1C4ysrFTKHQiNLdZM6E1GrxICJjVFyCO6CUYIIYQQog0lBMTgCp5GKZKBxEQAgLhVK9TZsgVGlsUnEzt7P0FrXTyjbPCNUwEA0jxPnHuQrP+ACSGEEEJqELp8SgyOSQrBCgsBAKZt2sBj4x/gm5mpLZudL9Val1GR5kKyXC9kySV6i5MQQgghpCaiOwTE4EQNG6LOtq2w6NULHps2akwGAMBCpD2HVUkI8rxgKRJqLkwIIYQQQighIFWDqEkTuK/7FXxTU63lejXRPqeAkTgaAMDkAsjz3NCriZO+QiSEEEIIqZEoISCVLv/BA8TO+hzyvLxSbzu8lTtEAg1vW34B+KJ4AIAszwMioTGGtXYvT6ikFhg/fjx4PB6WLFmitzqjo6PB4/HA4/H0VichhBBSUSghIJVKmpaGmKnTkH3qFGKnTYe8oKBU21uZCrFskK/adUbi5+DxGABFc6Fl7/rCSkxNhqoS5Ulyaf/0ebJOigsMDOSe6+joaEOHU6HkcjlOnjyJ5cuX491334Wrqyt37NeuXdOpjn/++QcDBw6Ei4sLhEIhzM3N0axZM3z55ZeIj48vdUw5OTnYu3cvJk2ahDFjxgAAunXrBg8PD7z33ns4f/68xm2LJp+a/szNzUsdEyGkdqFOxaTSMKkUcbNnQ/pCMbQojIyAMlxBHdHWAwCKzVSsbC4EABNa9eDKkaqjc+fOapdfvnwZANCgQQM4OjoWW1+nTp0Ki8nFxQUNGzaEvb293uoUCoVo2LCh3uoj+pOVlYX+/fuXaVvGGMaPH48dO3YAAKytrdGsWTNkZmbi/v37CA8Px5YtW3Dq1Cm0b99e53o//fRT7Nq1CwBgbGwMAPD09ERcXBwOHDiAAwcOYMaMGVi7dq3Wu06aPl+mJTTFJIQQSghIpUleswa5VxVX4ISedeD28yrwX/34ldaIth7o09QZB0Jjce5+IrLyJUi1iMNLAHzwMaNzTz1GTvQlKChI7XLlSc6CBQswfvz4SowI+P777/H999/rtU43Nzc8fPhQr3US/eDz+WjRogXatGmj8qeLv/76i0sG1qxZg2nTpkEgUPyMRkZGYvTo0QgJCcEHH3yAR48elarJWP/+/fHpp5/C3Nwc3bt3x44dO+Dn54evv/4aa9euxbp169CsWTN8/PHHGuvQ9PkihJCSUEJAKkXWqVNI3bwFAMATi+G+bp3aeQZKw8pUiEldvDGpizckcgk675kNSAEfWx+YG9MtckJIcZaWlrh161aZtj106BAA4N1338Vnn32mss7HxwcBAQFo1qwZnjx5gnv37sHXV33zxjetWbMGdnZ2AICrV69yy83MzLBmzRrcv38fZ8+exYYNG7QmBIQQUlbUh4BUuILHjxG/4Gvu/67ffQuRj49e9/Ew9SHypIpOyq0cW+m1bmJYXl5e4PF4CAwMxIMHD/Dhhx/C3d0dQqFQ5W5CUFAQ5s2bh/bt28PV1RXGxsawt7dHr169sGfPHo31a+pU/GbH4KCgIAwYMAB2dnYQi8Xw8/PDb7/9BsZYsTq1dSouur+8vDwsXrwYDRs2hEgkgoODA0aOHIlHjx5pjDcnJwdff/01GjRoAJFIBBcXF4wePRoPHz7k+gJ4eXlpf1L1RCqVYuPGjejatStsbGwgEong7e2NSZMmab1DcvjwYfTv3x9OTk4QCoWwtbVFo0aNMHr0aBw4cKBY+Tt37mDs2LHw8vKCiYkJLCwsUK9ePfTr1w+rVq2CTCaryMPk5ObmAlA0bVPHx8eHe80lEt3nQFEmA5r069cPAOiuEyGkwtAdAlKhZNnZiJ0+A+zVD6nthAmwLGP7XW1Ck0K5xy2dWuq9fmJ4ly9fxnfffQe5XI4mTZrA2toafP7raxqDBw9GamoqbGxs4OzsDFdXV8THx+PcuXM4d+4czpw5g23btpVp3wEBAZg0aRKsra1Rt25dREdHIywsDDNmzEB0dDRWrVpV6jqzsrLQqVMn3LlzB40aNUL9+vURERGBffv24fz58wgJCYGnp6fKNmlpafD390dYWBgAxQmoubk5Dh06hCNHjmDx4sVlOr6yyMnJwcCBAxEYGAgAqFu3LmxsbPDgwQNs3boVu3fvxu7duzFs2DCV7ZYsWYKlS5cCABwdHeHn54f8/HzExcVhz549iIyMxPDhw7nyZ86cwcCBA1FYWAhzc3M0bNgQAoEAsbGxOH36NE6dOoVPPvmkUjrOtmrVCsePH8fly5fBGCuW8F28eBGMMVhbW/+/vTsPi6psHzj+ZQcFAXGDBBdwR0VMTcx9Ky1NzaUs9+1N09Lc6jXNzF/anqZiWm5lrmXpa4nmjitu4IKiIqgICgjosPP8/qCZHJlBQHbuz3VxOfM8zznnPgzCuc95FurXr59vx01KSgKePBZg0qRJXLp0CaUU1atXp0OHDgwYMABra+t8i0UIUUopkS/8/f0VoPz9/Ys6lGIjIz1dhb01Xl2oV19dqFdfhb45RMXGadT3B66qgb7+qsc3B9RAX3+14uA1df9hylMda+KeicpzlafyXOWpIh9G5tMZiMICKED9+OOPWepq1KihAGVmZqZef/11FRsbq6vTaDS6199//70KCQnJsv3Ro0eVh4eHAtSmTZuy1A8dOlQBavbs2Xrl169f18VlZWWlvvrqK5WWlqarnzdvngKUiYlJluM+uq2x41lYWChvb2915coVXd3Vq1dVnTp1FKCGDBmSZdvXXntNAcrV1VUFBAToymNjY1W/fv2UpaWlAlSNGjWybJudvXv36uK9fv16jrYZOXKkAlSlSpXUvn37dOUJCQlqyJAhClA2NjYqODhYV3f37l1lbm6uzM3N1datW1VGRobePk+fPq18fX31yry8vBSgZs6cqZKSkvTqbt68qT7//PMs5bmlPfcjR45k2y46OlpVr15dAer1119XZ8+eVRqNRt25c0etXbtWVa1aVZmamqrVq1fnOZbH/5akp6erJk2aKED17ds3S/tHf9YMfVWvXl0dPnw4z/EIIcoGSQjyiSQEWWVkZKjoNWvVhUae6nL7Dmqz31lV74P/qRrTt2f5qvfB/9SG42F5Pk7b9W2V5ypP9cLmF/L5LERhyElC0LBhQ5Wampqn/e/atUsBqkePHlnqcpIQjBw5Mst2GRkZytPTUwHqm2++MbqtseNZWVkZTGA2bdqkAOXo6JhlnyaZ8+qqAwcOZNkuKSlJ1apVq1ASgtDQUGVmZqYAtX79+iz16enpql69egpQo0aN0pUfOXJEAcrLyyvHsVlZWSlA3b9/P8fb5FZOEwKllIqIiFAjR45Utra2WS6+27dvb/CzyY3H/5Z88cUXClCmpqbqxIkTWdqHh4erPn36qK1bt6qrV6+qpKQkFRkZqdatW6dq1qypAGVra6sCAwOfKi4hROkmXYZEtuI0qWwKCGf3xUgSktKwszana8NqvOpdHfty2c/xb2JiQsU338C6QX32XL3PlN3hRtsmpWUwbcs5gFxPFxoaH0psciwA3lVl/EBpNXToUN2MLsYEBwezadMmzp49S3R0NCkpKQAk/7PeRUBAQJ6OPX78+CxlJiYm+Pj4EBQUREhISK732b17d9zd3bOUa6eOjI2NJSYmhooVKwLw559/opSiXr16tG3bNst2VlZWvPnmm8ydOzfXseTWn3/+SXp6Oq6urgwYMCBLvampKZMnT2bs2LHs2LFDV66dPvby5cscPXqU55577onHcnNz48qVK6xZs4YJEyYU+WJvd+7cISIigsTERGxtbXF3dyc2Npbw8HCOHDnCypUradasWb50Ydq9ezfTp08HYObMmQZnQ6pevTpbt27VK6tSpQqDBw+ma9euPPvss4SHhzN16lR27tz51DEJIUqnEjGoODk5mT/++IPx48fTvHlz7O3tsbS0pFq1arz00kts2bIlR/tYsGABXl5e2NraYm9vT+vWrfH19SUjI+OJ25dFG0+E02r+bubtuMjRazGcvx3P0WsxfLz9Aq3m72bjCeMX+I9KbdiUqYE5G2D34e9BxGlyPhgP4FTkI+MHqsj4gdKqUaNG2dZ/+OGHNGzYkFmzZrF582b27t3L4cOHOXz4MCdPngQgOjo6T8eua2QQfNWqVYHM/vT5vc/H9xscHAxA06ZNje7Ty8sr13HkhTaWRo0a6Y3jeFTjxo0BiIiIID4+HgAXFxcGDx6MRqOhdevWPPvss0ybNo3Nmzdz7949g/uZNm0aABMnTqR27dqMHTuWH374IU9J2NPy9/enTZs27Ny5kwULFhAbG8uZM2e4ceMGgYGBNGrUiNWrV9O9e3eDg81zIygoiD59+pCWlsagQYPylOhVqVKFmTNnAuDn58f9+/efKiYhROlVIhKCefPm0atXL5YsWcK5c+dwcXHB09MTjUbDjh07ePXVV+nXr5/ubuDjtIP3ZsyYQWBgILVr18bZ2ZmjR48ybtw4evfuTVpaWiGfVfG28UQ407ac01v461HaO/qPJwUZiYnEbdum98dw86mbRveTZb+pGWw5dTNXsT46oFieEJRe5cuXN1q3adMmPv74Y5RSzJo1i9OnTxMXF0d6ejpKKa5evQqQ5//nxo6tvRjOy02FJ+3z8f0mJCQAmdNmGmNnZ5frOPJCe4FfrVo1o22cnZ11r7WxA/zwww8sWLCAOnXqEBAQwGeffUb//v2pVq0avXv3znKhP2rUKDZv3oyPjw9hYWEsX76ckSNHUqdOHZ599ln8/Pzy+eyMmzRpEhqNhhEjRjBlyhS9J1aNGjVi8+bNmJub4+/vb3C2pNyYMmUKDx48oG/fvqxdu9Zo4vUk2idO6enpXLt27aliEkKUXiUiIVBK0aZNG37++WdiY2O5ePEip06dIjo6mk8//RSArVu36maueNy4ceM4deoUbm5unD17lnPnznHp0iX279+Pvb0927dvL5TH7CVFnCaVD7cF5ajto3f0lVJEfDib29NnEDFjBhmJmdOA+l24k6vj+12IzFX701GZc4o7WDlQq0KtXG0rSgft7EGTJ09m7ty5eHl5UaFCBd1FVF6fDBQn2ot97cW4IY9eeBckbVJy547x/9sR2hXJ0U9ULC0tmTZtGpcvX+bmzZv88ssvjB49Gjs7O37//Xc6d+6c5U52v379OHz4MDExMezcuZMZM2ZQu3ZtAgIC6NGjB8eOHcvfEzRAo9Houpx1797dYJvatWvrpiTNa0zaKWcTEhLo3bs3v/zyyxO7ymXH8pHFH3MzFaoQomwpEQnBu+++y6FDh3jttdf0+mVaWFgwffp03UIthrr/nD9/nl9++QWAFStW6C0U065dOxYuXAjAF198IY9T/5HXO/qx634i/o8/AHhw8BDpcXEAJCTl7q5sfFLO/2jd1dwlPCHzKUWzKs2KvH+xKBraJwDt27c3WH/48OHCDKdA1KtXD8ick9+YM2fOFEos2ik1L1y4YPTpSFBQ5k0FFxcXo081nnnmGQYOHMjy5cu5ePEiFStWJCwsjO3btxtsb29vzwsvvMD//d//ERwcTNu2bUlLS+P777/Ph7PKXkJCQo66AWnbaKcKzY2goCDdgmdt2rRh48aNWFhkP1brSbRT1AK4uuZufJYQouwoEQlBThdtiY6O5u7du3p1GzduRCmFu7s7Xbt2zbLtkCFDKFeuHBqNhm3btuVf0CVYXu7oa06eJHLBgswCMzOe+fJLLP7pTmBnnbu7WxWsc/YHMDEtkS8CvtC9b161ea6OI0oP7fzst27dylKn0WhYtGhRYYeU77p3746JiQnBwcEcPHgwS31ycjJr164tlFheeOEFzMzMCAsLMziGKyMjg6+++gqAnj175mif1apV091dv3379hPbm5ub4+Pjk+P2T6ty5co4OjoCmYOqDQkJCdHd4W/QoEGu9n/x4kW9pyPz58/Xu7ufF2lpaXzxRebvyCZNmuDi4vJU+xNClF4lIiF4kkfvxDy+cIu/vz+Q+TTAEGtra1q2bKnXtqzL7R19ou9y85134Z/+2VXee4/yz7XSVXdtaLyfsSFdG1Z9YpvrcdcZ/L/B7LiWOYOJhakFHVw75Oo4ovTo0KEDAJ988gkXLlzQld++fZvevXsXygVjQatVqxaDBg0CYPDgwZw69e/Ymfv37zN48GCDCVFBcHNz060SPWHCBA4dOqSre/DgAaNGjeLixYvY2NgwdepUXd3u3bt55513OHXqlN7ddqUUmzZt0p1TixYtgMzuUf379+evv/7KMkbs7Nmz/PTTT3rtC5KpqSlDhgwBMruoffnll3pjUoKCgnj11VdJT0/H1taW/v37622/efNmatasaXAV6ZCQELp06UJUVBStW7cGyPGTgTfffJNt27bpZtLSCg0N5ZVXXtF1XZo3b16Oz1UIUfaUimlHtX8UvL29swyq086G4eHhYXR7d3d39u3bl+Nl4cPDw7l5U3/g66OPZUu63NzRN89IY7jfCtL/mSGkQo8XqThsqF6bV72r89mfl3LUDcnawpR+zatn2+bP0D+ZfXg2mrTM1Y8drRz5tO2n1KhQI9vtROk1bdo0NmzYwM2bN2nSpAl169bF0tKSoKAgLCws+O677xg5cmRRh/nUFi1aRGBgIEFBQTRv3px69epha2vL+fPnMTU1Zd68eUybNg0zM7M8H8Pb2zvbAayLFy9m0KBBfP3114SEhLB//37atm2Lu7u7bqXihw8fYmVlxdq1a3V3/SEzWfjmm2/45ptvqFChArVr18bc3JywsDCioqIAGD16NB07dgQynzRs3ryZzZs3Y2lpiYeHB3Z2dkRFRXH9+nVdvO+9916uzrF3794Gu5G98MILev31T58+rdfNZt68eQQEBHDo0CGmTJnCnDlzdNOOhoWFoZTCxsaGdevWUaVKFb19P3jwgBs3bhiMZ/z48bqkNTY2cwrlcePGGRwkvnnzZr3B3AcPHmTdunVYWFjg4eGBvb09MTExXLlyBaUUFhYWfPXVV7z88su5+A4JIcqaEp8QbN26VTfP9QcffJClPiYmBkA3l7ch2jrtL+InWblypdEBzKVB14bVOHotJkdtRwf+juvtzFlBrOrUwXnevCz9+O3LWTC3t6dunYHszO3lib2N4TtjKekpfH7yc9ZfWq8r86rsxWftP6Na+dw9hRCli7OzM8eOHWPWrFn8+eefhISEUKlSJfr378/7779faLPvFDQnJyf8/f35v//7PzZu3Mj169dxcHCgV69ezJ49WzeLTHYzET3Jk34Pap/I2tra4ufnx8qVK1m3bh2BgYGEh4dTrVo1Bg4cyNSpU3VjDbTatm3Ld999x549ewgMDOTatWtoNBoqVapEz549GTlyJH369NG1t7Oz46effuLvv//m2LFjREREEBwcjJ2dHW3atKF///6MGzcOKyurXJ1jXFycwYHmcf+Me9JKT0/Xe29ra8u+fftYvXo169ev5+zZswQFBWFpaUn9+vXp3LkzkyZNyvYGlCGP3t3X3pg6d87w78vHxybMnTuXv//+m1OnThEZGUlISAhWVlY0atSITp068dZbb+nGnwghhDEm6mknSy5CgYGBtGnThoSEBAYPHsy6deuytDEzMyMjI4OVK1cyYsQIg/v58MMP+fjjj3F3d8/R3NbGnhCMHTsWf39/3SPfkipOk0qr+bufeEe/S9gJppzaAICpnR21Nm3E0sDjcK2NJ8L5cFuQwf1aW5gyt5en0UXJbj+4zZR9UwiK/nf2oyENh/BO83ewMH26QXdClBafffYZ06ZNo2/fvjlan0UUP0eOHMHHx6dU/C0RQpQcBfqEYM6cOXm+k3769OlsF9kJCQmhe/fuJCQk0L59e6OzTNjY2PDw4UOjaxTAv3dcHh9/YIyrq2upnq0hp3f068T+uwaBy8IF2SYDkLkCcfdG1dh86ia7L0QSn5RKBWsLujasSr9sVj4+cPMAMw/OJD4lc7pFWwtb5rWZR+canXN3YkKUYqmpqbrpV43NtiSEEEIYUqAJgbW1Nfb29nnaNrs+sKGhoXTq1ImIiAh8fHzYvn07NjY2Bts6Ojry8OHDbOch13Yr0s4gIdDdqc/ujn6tj2ZT7fpR0mOisfunz++T2JezYOTztRj5/JPXC0jLSGPx6cWsDFqpK2tQsQFftP8C1wqlNyETwpjExETmz5/P6NGjcXNz05Xfvn2bCRMmcPHiRRwdHXnjjTeKMEohhBAlTYEmBDNmzGDGjBn5us/w8HA6duxIeHg4rVq1YufOnXprEzyufv363Lx5M9uuQNo5zB/v71rW5eiOfku3J+8oD+5q7jL1wFQCIgN0Zf3r9md6y+lYmeWuv7AQpUV6ejrz5s1j3rx5VK5cmRo1avDw4UOCg4PJyMjAxsaGtWvXZjtmSgghhHhciRpUfOvWLTp27EhoaCgtWrTgr7/+euLgOR8fH3bv3m1w3m7I7C50/PhxXVuh7/E7+ik3b2FZ/ZkCPeaxiGNMOzCNmKTMJzc25jbMem4WL7vLLBmibLOxseHTTz9l165dBAcH6xb/ql27Np06dWLy5MkygFQIIUSulZh1CO7cuUOnTp24evUqzZs3Z9euXTnqjqSdC/rq1av4+fllqV+zZg0ajQYbGxt69eqV73GXJvG7dnH1hReI/uHHHK3YmVsZKgPfs76M8RujSwZq29dmfc/1kgwIQWZXyunTp7Nnzx5u3rxJYmIiiYmJXLlyBV9fX0kGhBBC5EmJSAju3r1L586duXz5Mt7e3vj5+eHg4JCjbT09PRk4cCAAo0aN0t1RAzhw4ADTpk0DYPLkyTKGIBvJ164RMWMmpKURtXAhiQEBT94oF2KTYnlrz1ssPrOYDJU5ZqFn7Z6s77kedwf3fD2WEEIIIYT4V4noMvTf//5Xt/poSkpKtgusLFq0iGbNmumV+fr6EhwczJkzZ2jatCmNGjUiJSVFt2jZiy++yOzZswvuBEo4lZLCjbcnkKHJXAjMZvAAbJo3z7f9n717lvf2v8edh3eAzFWHZ7ScQf+6/bOsaSCEEEIIIfJXiUgIHl205dE7/IY8vrAMgL29PUeOHOGrr77il19+ISQkBDMzM1q2bMnw4cMZM2ZMtitzlmXRidHsn/c2Da5mrgp6wRU+fmYL1uv/wtXOVfflZueW+W8FN6qUq4KpyZO/n0opfrr4E1+c/II0lQbAM7bP8GWHL2no1LBAz0sIIYQQQmQq0QuTFSelbTGZ+JR4Vp9fza6Dq5nn+xDLdEg2h8mjzbjrkP1de0tTS6rbVcfNzi3z3wpuuqTB2dYZC1MLElISmO0/G78b/47r6OTaiY+f/5gKlnlfZVUIIUqy0va3RAhRMpSIJwSi8CSmJfLzxZ/5IegH4pPj+HBHBpbpmXXhA33o086L8IRwwuPDCUsI0y0W9qiUjBSuxV3jWty1LHVmJmY4l3cmJT2FqMQoXdm7zd9lSMMh0kVICCGEEKKQSUIgAEhNT2Xzlc0sP7ece4n3AGgfqPC8kfkAyaJeHV6asQwTC/3VhOOS4zIThIRwwuLDCEsI42bCTcISwnT7eVS6Sufmg5u691XKVeHz9p/TrEqzLG2FEEIIIUTBk4SgjEvPSGf7te0sPbuUWw9u6corJlkwen8GkAwmJjzz8bwsyQCAvZU99lb2eFbyzFKnSdXokoXwhMwnCtqnCzFJMTz/zPPMaj2LitayiJIQQgghRFGRhKCMUkqxO2w3i08v1uvaY25iTp86fRhdezAmkT8Ru/4XHF9/HZsmTXJ9jHIW5ahXsR71KmadG10pJd2DhBBCCCGKAUkIyhilFP63/fn29LdciL6gKzfBhB61e/BW07dwq+CWWfjhh9j36oWlh0e+xyHJgBBCCCFE8SAJQRlyKvIU357+loBI/UXFOrp2ZEKzCdR1rJtlGxsvr0KKTgghhBBCFAVJCMqAi9EXWXR6EQdvHdQrf875Od5u9jZNKv/bHSjt3j3MK1Uq7BCFEEIIIUQRkYSgFLsRf4NvT33Lrhu79MqbVGrCRO+JtHJupVeedPkyof0H4DhoIJUnTsS0fPnCDFcIIYQQQhQBSQhKqbD4MAZtH8SD1Ae6Mg8HDyY2m0gH1w5Z+vCrjAzuzJ6DSk4mZvUaLGu74zhwQGGHLYQQQgghCpkkBKXU4jOLdcmAq50r473G82KtFzE1MTXY/v7GjSSePg2AdZMmOLzar9BiFUIIIYQQRcfw1aEo0S7HXubP638C8IztM/zW+zd61u5pNBlIjYoi6osvM9+YmeH80RxMzMwKK1whSow5c+ZgYmLCsGHDijoUIYQQIt9IQlAKLT69GEXmCsNveb2FpZlltu0j5/8fGQkJAFQcOhTrBg0KPEZRNpmYmOTpa86cOQUe26pVq5gzZw5nzpwp8GMVlmHDhmFiYkKHDh2KOpQCt3v3biZNmsTzzz+Pm5sb5cqVw8bGBg8PD4YNG8bJkydztJ8dO3bw6quvUr16daysrKhcuTLNmzfn3Xff5c6dO1nad+jQ4Yk/v5s3b87xefzyyy8A+Pj45PpzmzRpku6Y+Zm0/vbbb7r91qxZ02Cb9PR0vv76a9544w0aN25MlSpVsLCwwN7enpYtW/Lxxx9z//79fItJCJG/pMtQKRN4N5C94XsBqG1fm561embbPmHfPhL+zHyaYOHiQuUJ4ws8RlF2tWnTxmD54cOHAahTpw5VqlTJUu/m5lagcUFmQrB//35q1qyJl5HpditVqkS9evVwdnYu8HhE7ixbtowtW7ZgZmZGtWrVaNiwIQkJCdy4cYPVq1ezdu1aFixYwHvvvWdw++TkZAYPHsyWLVsAcHFxoWnTpty/f5+LFy9y6tQp+vXrR7Vq1Qxub+xnFzJ/bnIiJCSE5cuX56jt4w4dOsTixYvztG12YmJi+M9//vPEdomJibz77rsAlCtXDhcXF2rUqEFERAQnTpzgxIkTLF26FD8/Pxo1apTvcQohno4kBKXMotOLdK9T7nWl12J/7KzN6dqwGq96V8e+nIWuPkOj4c7cubr31ebMxrRcuUKNV5Qthw4dMliuHeT+/vvvF+vuOBMmTGDChAlFHYYwoH///owYMYJ27dpha2urK4+JieGDDz5g2bJlTJs2jfbt29OiRYss2w8aNIjffvuNZs2asWzZMlq2bKmrS01N5dChQ9SuXdvo8Z/2Z1cpxYgRI0hNTc31tomJiYwYMQJbW1tatmzJ7t278xzH4yZOnMidO3fo27cvW7duNdrOwsKCzz//nE6dOuHl5aU3cUVAQABvvvkmFy9e5LXXXuPcuXP5Fp8QIn9Il6FS5MSdExyJOAJAepILF0NqcP52PEevxfDx9gu0mr+bjSfCde3vLlpM2u0IACr0eBHbdu2KJG4hhHhaAwcOpEePHnrJAEDFihVZsmQJDRs2RCmlewLwqJ9//pnffvuNmjVrsm/fPr1kADIvdjt27IiLi0uBxb9o0SIOHjzIa6+9luttP/jgA65cucKCBQt45pln8i2mP/74g59++omBAwfy8ssvZ9vWysqKKVOm0KxZsyyz2DVv3pwff/wRgMDAQC5dupRvMQoh8ockBKWEUorZBz7XvU+O6sbjH29SWgbTtpzTJQWmdrZgYYFphQpUnTmzMMMVIlciIiKYNm0anp6e2NraUr58eZo0acKcOXOIj483uE1UVBRTp06lUaNGlC9fHmtra1xdXWnTpg0ffPABt2/fBmDfvn2YmJiwf/9+AIYPH67X//vRftzZDSrWtg8NDSUwMJCBAwdStWpVrKysqFevHnPnziUlJcXoOZ49e5Z+/fpRuXJlbGxsaNCgAR9//DHJycm6sQCFMZYC4ObNm0yaNIm6detiY2NDhQoVaNGiBQsXLkSj0RjcJiEhgY8//hhvb2/s7OywtLTExcWFli1bMmXKFIKDg/XaZ2RksHr1ajp27IiTkxMWFhZUrlwZT09PRowYka93uU1MTKhfvz4ADx8+zFL/+eeZvzv/+9//UqFChXw7bk5du3aN999/nzp16jBy5MhcbXvkyBG++eYb2rZty9ixY/Mtpvv37zN27FgqVqzIt99++9T7a9iwoe61oc9ACFG0pMtQKfHXtf2EJ14AIF1Tg/SH9Yy2/fD3ILo3qkblt96iQrdupISFY165cmGFKkSu7Nmzh379+hEXF4elpSW1atUC4MKFCwQGBrJ+/Xr27NlD9erVddvcunWLVq1acevWLczNzfHw8MDOzo6IiAiOHz+Ov78/rVu3xsXFBXt7e9q0aUNgYCDx8fFZ+oI3btw4V/Hu2rWLSZMmYW5uTr169TA3N+fy5cvMnj2bc+fOGRxgumPHDvr27UtKSgo2NjY0atSI+Ph4PvzwQ3bt2lUoYyi0Dh06xMsvv8z9+/extLSkUaNGaDQaTp48ycmTJ1m7di1+fn56fekfPHiAj48PQUFBmJiY4OHhgYODA3fv3uXs2bOcOHGCWrVqUa/ev7+XRowYwerVqwF45plnqF27tq7P//nz54mPj6dLly75ck4ajYYTJ04AZOkuFBoayunTpzExMaF3794cO3aMNWvWcOXKFSwtLWncuDFvvPHGE/u9b9myhd9//5379+/j6OhI8+bNee2113Q/r8YopRg5ciQajYbly5djZWWV4/NKSkpi+PDhWFpasmLFiix35p/GpEmTiIiIYPXq1UbHRuSGNuG2s7PTJWdCiGJEiXzh7++vAOXv71/ox87IyFCdfu6tPFd5Ks9Vnqr2R9+oGtO3Z/u18uC1Qo9TCGMABagff/xRr/zKlSvKzs5OAWrKlCkqLi5OV3f79m3VrVs3Baj27dvrbffOO+8oQHXt2lXdu3dPry4hIUGtWbNGBQYG6pW3b9/eYAyPmj17tgLU0KFDjZ6DhYWFmjZtmkpMTNTVrVmzRpmYmChA/f3333rb3blzRzk4OChAvfbaa3rneOzYMeXs7KwsLS0VoGbPnm00NkOGDh1q8PtjzL1791SVKlUUoHr06KGioqJ0dWfOnFG1atVSgOrcubPedl9//bUCVNOmTVVYWJheXVJSktqyZYs6cOCA3r4AZW9vr1euVObvs0OHDqmffvopV+dqSHR0tNq7d6/us23Xrp1KS0vTa7NhwwYFKBcXFzV79mzd5/Tol6mpqZozZ47BY2j3bejL3NxczZ49W2VkZBiN8bvvvlOAGjNmjFLq378lOfncpk6dqgA1f/58XZn2Mzf0M5pTO3bsUIDq1q2bruzHH39UgKpRo0aO95OWlqbCw8OVr6+vcnJyUiYmJmrZsmV5jksIUXCky1ApsDtsN1EpVwFIe+BBusbdaFuzjHQA/C5EFkpsQjyNOXPmkJCQwIgRI/j888/1unM4OzuzadMmXFxc2L9/P0ePHtXVXbx4EYDx48fj5OSkt09bW1vefPNNPD09CyTmdu3asWDBAqytrXVlb775Jj169AAy+2U/atmyZdy/f5969eqxevVqvXNs2bIlq1atyrarUX5atmwZUVFRODk5sWHDBio/8uSwadOmrF27Fsh8aqOdGQr+/X4PHz4cV1dXvX1aWVnRt29f2rZtm6V9x44d9cohs3tPmzZteP311/N0DocOHdJ133JycqJjx45cunSJhQsX4ufnh9lja6xou47dvXuXjz76iHbt2hEQEEBycjLXrl1j1KhRZGRkMGfOHF0/+Ec1btyYzz//nHPnzhEXF8fDhw/x9/enT58+pKWl8dFHHzH3kckbHhUaGsr06dNxcXFh4cKFuTrP48eP8+WXX9K0aVOmTp2aq22zExcXx5gxYyhfvjy+vr552seoUaMwMTHB3NwcV1dXxo4di6enJ35+fvnarUkIkX8kISjh0jPSWXz636nmku92N95YKd4/voYpAetJj40phOiEyLvU1FR+/fVXAKPTHlaoUIGuXbsC8Pfff+vKtV1sNm7cSFJSUgFHqm/8eMNT92qnXA0JCdEr37lzJ5C5ZoCFhUWW7bp160aNGjXyOUrDtm/fDsC4ceOyDM6FzHNo3bo1kNnNSUv7/f7tt9+Ii4t74nG07Y8cOcKVK1eeOu5HabuA+fj4ULt2bSwsLIiMjGTDhg0EBARkaf/gQeaK7qmpqbi4uPC///0Pb29vXfe077//nhdeeAGAWbNmkZ6errf9okWLmDJlCo0bN6ZChQqUK1eO1q1bs3XrVt3F7/z58wkPD+dxo0aN4sGDByxZsgR7e/scn2NycjLDhw8HYOXKlZib51/v38mTJ3Pr1i0++eQTo2sOPEmdOnVo06YNLVq00HU3On78OGvXrjU65kcIUbQkISjh/nf9f1yLuwZAakIDMpJcjbb1iQjC5855uoQHMOrPJYUVohB5cuXKFd0A1okTJ/L8888b/NqzZw+QORBWa+LEiVhZWfHzzz/j7OzMoEGD+Oabbzhx4gQZGRkFGnfdunUNlletWhX49wJUSzvYtmnTpkb3mV1dftLGkt24CW3dozPFjBgxAicnJ/bt24eLiwu9e/dm4cKFHDx40OA0ms899xxt27YlMjKS+vXr065dO2bNmsX27duf+oKxcePGHDp0iMOHD3P16lUiIyOZOnUqAQEBdOjQgePHj+u1t7Gx0b0eP3485QxMvTx9+nQgc2zK2bNncxzLp59+iqWlJSkpKWzbtk2vztfXlz179tC/f3969+6dm1Nkzpw5XLhwgcmTJ9O8efNcbZudv/76ix9++IFWrVrx9ttv53k/06dP59ChQxw/fpzIyEhOnDiBl5cXq1evplOnTlmSKiFE0ZOEoARLzUhlyRnthb0JKXe7GW1bLjWR/5z7Vfc+/vXczWQhRGGLjY3VvT5y5AiHDx82+KVNBB6d/cbT05MjR47Qp08fkpOT2bBhA++88w4tW7bEzc2NxYsXo5QqkLjLly9vsNzUNPPX7eMJScI/q4RnN7uNnZ1dPkWXPe3FuLHFtwDdomzauLXtjx07xpAhQzA3N+f3339n+vTptGvXDmdnZz766CO9xMDU1JQdO3Ywc+ZMXFxcOHjwIPPmzePll1+mSpUqDBkyhMjI/OnW6OjoyMKFCxk9ejQpKSn897//1auvWLGi7vWjM+E86tEBxdeuXcvxsR0cHHTbXr58WVd++/Ztpk6diqOjI4sWLTK2uUFnzpzhs88+w93dnY8++ihX22ZHo9EwevRoLC0tWblype7nNT88++yz/Pnnnzg5OREQEMCGDRvybd9CiPwhCUEJ9uuVX7n5IPNiqLNrNyzTjc8/PfTCTiolZf6x/7tGC7q+8VKhxChEXmm7rJiampKcnIxSKtuvVatW6W3frFkztm7dyv379/H392fBggX4+Phw69Yt3n77bb766qsiOKustBf72d0Zf/TiuyBpk5I7d+4YbRMRkbl2yeNJiru7O6tXryYmJoaAgAC+/vprunXrRkxMDHPmzGHKlCl67e3s7HRdaUJCQli1ahWDBw/G1NSUtWvX0rNnzzwt0mVMr169ADh58qReeYMGDXSvjc3w8+h4kNze3ba0tATQO5fLly+TkJCARqOhadOmVKtWTff10kv//m729/fXlfv7+wOZCUF6ejoRERHUqlVLb9tq1arpLrY3bNigKzPUXelxUVFRhIeHk5GRQefOnbPsd9KkSQCEh4dnOVZOVKhQQTeF7+OfgRCi6ElCUEIlpyfjey5zwJeZiRnvNJ/A3N6GB0nWj7nBS9czFyyLsyxHtenTsLfJ2ldZiOKkbt26WFlZkZGRoTdgOLcsLS1p3bo106ZN4/Dhw8z8Z82NJUv0u83l55SNuaGdijO7rii56abyNLTTQQYFBRlto6179EL6UWZmZnh7ezNp0iT++usvli1bBsDy5ctJS0szuI27uztDhw5l3bp1nDx5EnNzcwICAjh27NjTnI4e7bEfv6D38vLSJZ9Xr141uO2j4z4end42J8fUdq16fLA1ZI4FiIyM1PuKifl3fFdqaqqu/PGB5RqNJsu2kZGRujEzSUlJurLcJDFpaWkG96tNWDMyMnRliYmJOd6vdt+Q+6RKCFHwJCEooTZc2kCUJgqAXu69qGlfkwEtXFnYrwnW5v9+rGYZ6Uw8sxlTMrtHxA8fT79OBTO7ihD5ycbGRne39JNPPsm3Lj7t/lmRWzu7jJa273huL3Ke1osvvgjAqlWrDN4R37VrFzdu3CiUWHr27Alk9m83tADZ0aNHdXeqtW2fRPv9Tk5O1rvYNaZhw4a6maEe/4yexqZNmwDw9vbWK7e2tqZPnz5A5gBdQz9n2tl2HBwcsqxjkJ2lS5fqBllrByYDdOjQweiTLu33F6B9+/a6cu3d9WHDhmX7pGzo0KEADB06VFeWk8HBNWvWzHa/2hmWatSooSsztECfMffu3WPv3r1A1s9ACFH0JCEogTSpGlYGrQTA3NSccU3H6eoGtHDl2PtdmPVSQ1rXduI/UceoFZ/5iN+yZSu6vjO8SGIWIi8++eQT7Ozs2LVrFwMHDiQsLEyvPj09nYMHDzJy5Ehu3bqlKx8zZgxr167l/v37eu2joqL44osvgKwLVHl4eACZKxcX1PgCQ8aNG4eDgwPBwcEMHTpUr+vQ8ePHGTZsmK7bSWHEUqVKFe7evcugQYOIjo7W1QUGBvLGG28A0KVLF3x8fHR1M2fOZOnSpVn6/cfHx/PJJ58AmRec2mlM161bx4cffqg3MBky7yAvWrSIyMhITE1NczxgNjg4mPfee4/AwMAsdVFRUUycOJGff/4ZIEvXJcgcpGttbc2ZM2d477339O7Gr1mzhpUrM3/fTp8+Xe+zWLp0KQsXLsySuCQlJfHll1/qjtWvX79icxF88+ZNatasSc2aNZ/qydvjlixZwooVK7h3716WuqNHj9K1a1fi4+OpUaMGr776ar4dVwiRTwpykYOypDAXJvM966tbhOyTo58YbZccFqYuNvVSF+rVVxcbN1HJ168XeGxC5AVGFiZTSqm9e/eqSpUqKUCZmJioOnXqqOeee055enoqa2tr3bbXH/n5btq0qa69u7u7atWqlWrQoIEyNzdXgHJyclJnz57VO86xY8eUqampAlT16tXV888/r9q3b68mTZqka5OThcmuG/l/pl3YydBiU3/88Ydu8bFy5cqpZ599VtWtW1cBqk2bNuq1115TgJo7d24Ovpv/0i5SZW5urpycnLL90jp48KCyt7dXgLKyslLe3t6qQYMGuvPz9PRUEREResfp3bu3rt7NzU21bNlS7/OxsbFRfn5+uvZfffWVrr2Tk5Py9vZW3t7eytHRUVf+ySfGf7c97vTp07rt7O3tlZeXl3ruuedUnTp1dJ+phYWF+vrrr43uY+vWrcrKykoBysHBQbVs2VI988wzuv2+8cYbKj09XW8b7c+D9memRYsWytvbW5UrV05X3q1bN5WQkJDjc8nNwmSGPGlhsuvXr+v2v3fv3hzv90kLk02aNEnvZ6BFixaqRYsWuoXuAFWrVi11/vz5XJ+TEKLg5d/kxaJQxCXHsSpoFQDWZtaMaTLGaNvkK1cwMc3sLFTprf9gmcc5pYUoSh06dODSpUssWbKEHTt2cOnSJW7cuEGVKlXw8vKibdu2vPLKK3pz9X/99dds376dgwcPEh4ezqlTp7C0tKRBgwa88MILTJ48OctMOi1btuS3337jyy+/5MyZM/j7+xf4FKVaL730EseOHWPu3Lns37+fwMBAatasyezZs5k5cyaDBw8Gsp+JKDtpaWl6d/uz8/zzzxMUFMTChQvZuXMn58+fx8LCAm9vbwYMGMDbb7+dZWrOWbNm0bhxY/bt20doaChnz57F1NQUNzc3unTpwuTJk3F3/3fBxH79+pGens7evXu5cOECwcHBpKSkULVqVbp06cJbb72l6yKTEx4eHixdupR9+/Zx9uxZbty4QXx8PLa2tjRr1owOHTowZswYo1PCAvTp04fTp0+zcOFC9uzZw5kzZyhfvjxdunRh9OjRDBgwIMs2vXv35sGDBxw/fpzQ0FCCgoLIyMigcuXKdO/enTfeeIM+ffoU2fiUwjR69GgcHBw4cOAA165d4/z586SlpeHk5ES3bt145ZVXGDZsmN40r0KI4sNEqUJ8Nl6KHTlyBB8fH/z9/XUL9xSEb099y/eB3wMw3HM4k5tPzrZ9akQE0T/8SNWp72FSSN0OhBD5q1GjRly4cIHff/+dl19+uajDEQWosP6WCCHEo+QJQQkSnRjNuovrALC1sGVEoxFP3MbC2ZlqH7xf0KEJIQrI4cOHuXDhAhYWFnKBKIQQokDIoOISZEXgChLTMmdAGdJwCA7WDkUbkBAiX+zcuZP169dnmeFoz549uq4qr7/+OpUqVSqK8IQQQpRy8oSghLjz8A4bgzcC4GDlwJsN3zTYTqWnc3fRIhxe7Y9ldeMLlQkhio+rV6/y9ttvY25ujpubG5UqVSIsLEy3QJiXlxdffvllEUcphBCitJInBCWE7zlfUjIyp8Ib4TkCW0tbg+3i/7eT6GW+XH3xRWI3bCzMEIUQedSlSxcmTpxIw4YNiY+P59SpUyQlJfHcc8/x+eefc/jwYSpWrFjUYQohhCil5AlBCRAeH85vV34DoJJNJQbVH2SwnUpL497ixZlvUlOxadqkkCIUQjyN+vXr88033xR1GEIIIcooeUJQAiw5u4Q0lbnk+5gmY7AxNzxtW9y230n5Z0VTu+7dsa5fv9BiFEIIIYQQJZMkBMVcSGwIO67tAMClvAuv1jG8wqNKSeHekiWZb0xMqDxhfGGFKIQQQgghSjBJCIq57858hyJzqYhxTcdhYWZhsN39rb+SeusWABV69sSqTp1Ci1EIIYQQQpRckhAUY+ejz7M7bDcANSvU5GV3wwsSZSQnc2/Zssw3ZmZUGv9WYYUohBBCCCFKOEkIirFFpxfpXo/3Go+5qeEx4Pc3biLtn+kJ7Xv3xqpWrUKJTwghhBBClHySEBRTpyJPcfjWYQDqOdajW81uBttlJCZyz9c38425OZXe+k9hhSiEEEIIIUoBSQiKIaUU357+Vvd+QrMJmJoY/qhUcjJ2HTuCuTkO/fphWb16YYUphBBCCCFKAVmHoBg6cvsIAZEBADSp1IT21dsbbWvm4IDzx3NxGjMaU2vrwgpRCCGEEEKUEpIQFDOPPx142/ttTExMnridpatrQYYlhBBCCCFKKekyVMz8Hf4356PPA9CyWkuec36uiCMSQgghhBClmTwhKEbSM9JZfHqx7v3bzd422vae73LSY2JwGjMacyenwghPCCGEEEKUQpIQFCN/hv5JyP0QANpVb4dXFS+D7dJiY4levpyMhw+J27EDj7/3YGppWYiRCiGEEEKI0kK6DBUTSilWn1+te5/d04GYH34k4+FDABz69ZNkQAghhBBC5Jk8ISgmTExMWNplKT8E/cD95PvUr1jfYLu06Ghi1q0DwNTWFqfhwwoxSiGEEEIIUdpIQlCMONk4MbXFVJRSRttEL/8elZgIQMXhwzBzcCik6IQQQgghRGkkXYaKIWPTjKZGRhH7yy8AmNnbU3Ho0MIMSwghhBBClEKSEJQg0b6+qORkACqOHImZrW0RRySEEEIIIUo6SQhKiNTbt7m/aRMAZhUrUnHw60UckRBCCCGEKA0kISgh7i1dhkpNBcBpzGhMy5cv4oiEEEIIIURpIIOKS4iKw4eR8fABmlOncRw0qKjDEUIIIYQQpYQkBCWEVe3aPPPll6Q/eIiptXVRhyOEEEIIIUoJ6TJUwpjZSlchIYQQQgiRfyQhKOYy/llzQAghhBBCiIIgCUExlhR8mSvt2nN30WLSExKKOhwhhBBCCFEKSUJQjN1bvIiMhATuffcdD/7+u6jDEUIIIYQQpVCJTgi++uorTExMMDExoUOHDtm2TU5OZsGCBXh5eWFra4u9vT2tW7fG19eXjIyMwgk4FxLPnyfBbzcAlrVqUeGll4o4IiGEEEIIURqV2FmGQkJC+O9//5ujtvHx8XTs2JFTp05hampKo0aNSElJ4ejRoxw9epTt27fz66+/Ym5efL4d975dpHtdacJ4TMzMijAaIYQQQghRWpXIJwRKKUaMGEFKSgq9evV6Yvtx48Zx6tQp3NzcOHv2LOfOnePSpUvs378fe3t7tm/fzty5cwsh8pxJPHOGB/v3A2BVpw4VXnyxiCMSQgghhBClVYlMCBYtWsTBgweZMmUKzZo1y7bt+fPn+eWXXwBYsWIFnp6eurp27dqxcOFCAL744gvu379fYDHnxt1vv9W9rjTxbUxMS+THJIQQQgghSoASd6V57do13n//ferUqcOcOXOe2H7jxo0opXB3d6dr165Z6ocMGUK5cuXQaDRs27atACLOmThNKisOXmPah6t46H8EgAduHmT4tC+ymIQQQgghROlXohICpRQjR45Eo9GwfPlyrHOwYq+/vz+Q+TTAEGtra1q2bKnXtrBtPBFOq/m7mbf9As/u2aQrX+jSjuf+bw8bT4QXSVxCCCGEEKL0Kz6jaHNg6dKl7Nu3jzFjxjxxViGt4OBgADw8PIy2cXd3Z9++fVy6dClH+wwPD+fmzZt6ZSdOnAAgMDAwR/vQ2nMhku/2hQDgknCX9JvnOQPcsKvKoTQTuHGeSd+e53IHDzo3rJqrfQshhChZtH9DHj58WMSRCCHKkhKTEISGhjJ9+nRcXFx0/f5zIiYmBoCKFSsabaOti42NzdE+V65cyUcffWSwbuzYsTmO7XF3gNd1727A+eO6d7PWwaw871kIIURJcu3ataIOQQhRhpSYhGDUqFE8ePCAdevWYW9vn+PtEhMTAbC0tDTaRtv1SKPR5GifI0eOpHv37npld+/e5cKFCzz77LOUL18+x/GJzDtiY8eOxdfXl8aNGxd1OKKAyOdcNsjn/HQePnzItWvXeEnWnhFCFKICTQjmzJlj9E76k5w+fRovLy8AfH192bNnD/3796d379652o+NjQ0PHz4kJSXFaJukpCQAypUrl6N9urq64urqmqU8J1OgCuMaN25M69atizoMUcDkcy4b5HMWQoiSo0ATAmtr61zdzX+U2T8Lcd2+fZupU6fi6OjIokWLnrBVVo6Ojjx8+JDo6GijbbTdihwdHfMUqxBCCCGEECVVgSYEM2bMYMaMGU+1j8uXL5OQkICVlRVNmzbNUv/gwQMgc4agatWqAbB161Z8fHwAqF+/Pjdv3iQkJMToMa5evaprK4QQQgghRFlSYsYQJCcnExkZabQ+NTVVV/9o9yAfHx92797NwYMHDW6XlJTE8ePHdW2FEEIIIYQoS4r9OgQdOnRAKWX0a/bs2QC0b99eV/bolKT9+/cHMp8C+Pn5Zdn/mjVr0Gg02NjYyBiAIlK9enVmz55N9erVizoUUYDkcy4b5HMWQoiSx0QppYo6iKehHbjcvn179u3bZ7DNoEGD2LBhA25ubuzYsQNPT08ADhw4QK9evYiLi+ODDz5g3rx5hRi5EEIIIYQQRa/EdBl6Gr6+vgQHB3PmzBmaNm1Ko0aNSElJ0S1a9uKLL+qeNAghhBBCCFGWFPsuQ/nB3t6eI0eOMH/+fDw9Pbl69Sq3b9+mZcuWLF26lO3bt2NhYVHUYQohhBBCCFHoSnyXISGEEEIIIUTelYknBEIIIYQQQgjDJCEQQgghhBCiDJOEQAghhBBCiDJMEgJR7CQnJ/PHH38wfvx4mjdvjr29PZaWllSrVo2XXnqJLVu2FHWIIhdOnDjBgAEDcHZ2xsrKCldXV0aMGMGVK1eKOjSRDwIDA5k3bx7dunXD2dkZS0tL7O3tadGiBXPnziU2NraoQxRCCPEEMqhYFDuzZs3SrQlhbm6Oh4cHNjY2hISEkJCQAEDfvn1Zv349lpaWRRmqeILVq1czcuRI0tPTqVSpEjVq1ODKlSvEx8dTrlw5/vjjDzp16lTUYYo8unr1Kh4eHrr3Li4uuLi4EBERwa1btwBwdnbmr7/+onHjxkUVphBCiCeQJwSi2FFK0aZNG37++WdiY2O5ePEip06dIjo6mk8//RSArVu38tFHHxVxpCI758+fZ9SoUaSnpzN9+nRu377NyZMniYiIYPDgwWg0Gl599VWio6OLOlSRR0opqlSpwty5c7l69Sq3bt3ixIkT3Lx5k0OHDlGjRg0iIiJ45ZVXSE5OLupwhRBCGCFPCESxEx0djZOTk9H6MWPG8P333+Pk5ERUVBSmppLXFkcDBgxg06ZN+Pj4cPjwYb265ORkGjRowPXr15k5cybz588voijF00hKSiI9PZ3y5csbrPf396dNmzYAbNu2jV69ehVmeEIIIXJIrqREsZNdMgCZK0tDZuJw9+7dwghJ5JJGo2H79u0A/Oc//8lSb2VlxbBhwwBYv359YYYm8pG1tbXRZADAx8cHe3t7AC5evFhYYQkhhMglSQhEiZOUlKR7Xa5cuSKMRBhz+vRpEhMTAWjXrp3BNu3btwcgNDSUiIiIQotNFJ709HRSU1MBsk0chBBCFC1JCESJ89NPPwHg7e2NnZ1dEUcjDAkODgbA0tISV1dXg23c3d11ry9dulQocYnC9euvv6LRaIB/E0AhhBDFjyQEokTZunUrO3bsAOCDDz4o4miEMTExMQA4OjpiYmJisE3FihV1r2VqytInNjaWKVOmAPDyyy/LLENCCFGMSUIgSozAwEBdv/PBgwfTt2/fog1IGKXtLpTdtLDW1ta619q7yKJ0SE1NZeDAgYSFhVG5cmWWLVtW1CEJIYTIhiQEIt/MmTMHExOTPH2dOXMm232HhITQvXt3EhISaN++Pd9//33hnJTIExsbGwBSUlKMtpGxIKVTRkYGb775Jn5+ftjZ2fHHH3/g4uJS1GEJIYTIhnlRByBKD2tra92MIrllZmZmtC40NJROnToRERGBj48P27dv111wiuLJ0dERyOw2opQy2G1I263o0faiZMvIyGDEiBFs2LCB8uXLs2PHDlq1alXUYQkhhHgCWYdAFGvh4eG0a9eO0NBQWrVqxa5du6hQoUJRhyWe4PDhwzz//PNAZkJXo0aNLG32799Phw4dALh9+zbOzs6FGaLIZ0opxowZw4oVKyhXrhw7duzQfb5CCCGKN+kyJIqtW7du0bFjR0JDQ2nRogV//fWXJAMlhJeXl+4pzoEDBwy22b9/PwA1a9aUZKAUGD9+PCtWrMDGxobff/9dkgEhhChBJCEQxdKdO3fo1KkTV69epXnz5uzatSvP3ZFE4Stfvjw9e/YEwNfXN0t9cnIyq1atAmDgwIGFGZooABMnTmTp0qVYW1uzbds2OnfuXNQhCSGEyAVJCESxc/fuXTp37szly5fx9vbGz88PBweHog5L5NLs2bMxNzfn8OHDzJgxQ7dAlUajYdSoUVy/fh17e3vee++9Io5UPI1p06axaNEiXTLQtWvXog5JCCFELskYAlHsjB07luXLlwPg6emZ7ZOBRYsW0axZs8IKTeTSDz/8wJgxY0hPT6dSpUrUqFGDK1euEB8fj42NjVxAlnBHjhzBx8cHgCpVqlCnTh2jbXv06MH7779fWKEJIYTIBZllSBQ7ycnJutdBQUHZto2LiyvocMRTGDFiBJ6enixcuJBDhw4RGBhI5cqV6dOnD++//z5169Yt6hDFU3j0/2pUVBRRUVFG23p4eBRGSEIIIfJAnhAIIYQQQghRhskYAiGEEEIIIcowSQiEEEIIIYQowyQhEEIIIYQQogyThEAIIYQQQogyTBICIYQQQgghyjBJCIQQQgghhCjDJCEQQgghhBCiDJOEQAghhBBCiDJMEgIhhBBCCCHKMEkIhBBCCCGEKMMkIRBCCCGEEKIMk4RACCGEEEKIMkwSAiGEEEIIIcowSQiEEEIIIYQowyQhEEIIIYQQogyThEAIIYQQQogyTBICIYQQQgghyrD/B+u9plS6WpsCAAAAAElFTkSuQmCC",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "train_x = syn_features[indices]\n",
- "test_x = syn_features[test_indices]\n",
- "\n",
- "w, *_ = np.linalg.lstsq(train_x, train_y)\n",
- "plt.plot(syn_x[indices], train_y, \"o\", label=\"Training labels\")\n",
- "plt.plot(syn_x[test_indices], test_y, \"o\", label=\"Testing labels\")\n",
- "plt.ylim(-40, 40)\n",
- "plt.plot(syn_x, jnp.dot(syn_features, w), label=\"Fit Model\")\n",
- "plt.plot(syn_x, syn_labels, \"--\", label=\"Ground Truth\")\n",
- "plt.text(0, -20, f\"Training Loss {loss(w,0,train_x, train_y):.2f}\")\n",
- "plt.text(0, -30, f\"Testing Loss {loss(w,0, test_x, test_y):.2f}\")\n",
- "plt.legend(bbox_to_anchor=(1.02,1))\n",
- "plt.title(\"Noise, Imperfectly Correlated Features\")\n",
- "plt.show()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "It's arguable if this is overfitting. Yes, the testing loss is high but it could be argued it's more to do with the poor feature choice. In any case, even though our parameter number is less than the clear cut case above, there is still left over variance in our features which can be devoted to fitting noise.\n",
- "\n",
- "\n",
- "Would there overfitting with imperfectly correlated features if we had no noise? Justify your answer\n",
- "\n",
- "```{admonition} Answer\n",
- ":class: dropdown\n",
- "Probably not - although features might diverge or become zero where the test data is located, we cannot be overfitting to noise if there is no noise. \n",
- "```\n",
- "\n",
- "\n",
- "### Overfitting Conclusion\n",
- "\n",
- "* Overfitting is inevitable in real data because we cannot avoid noise and rarely have the perfect features. \n",
- "* Overfitting can be assessed by splitting our data into a train and test split, which mimics how we would use the model (i.e., on unseen data). \n",
- "* Overfitting is especially affected by having too many features or features that don't correlate well with the labels. \n",
- "* We can identify overfitting from a loss curve which shows the testing loss rising while training loss is decreasing. "
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "tags": [
- "remove-cell"
- ]
- },
- "outputs": [],
- "source": [
- "# THIS CELL IS USED TO GENERATE A FIGURE AND NOT RELATED TO CHAPTER, YOU CAN SKIP IT\n",
- "N = 20\n",
- "syn_x = np.linspace(-3, 3, N)\n",
- "# create feature matrix\n",
- "syn_labels = syn_x**3 - syn_x**2 + syn_x - 1 + np.random.normal(size=N)\n",
- "syn_features = np.vstack([syn_x]).T"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "tags": [
- "remove-cell"
- ]
- },
- "outputs": [],
- "source": [
- "# THIS CELL IS USED TO GENERATE A FIGURE AND NOT RELATED TO CHAPTER, YOU CAN SKIP IT\n",
- "from myst_nb import glue\n",
- "\n",
- "L = 250\n",
- "test_vals = np.empty((N, L))\n",
- "test_vals[:] = np.nan\n",
- "fig, axs = plt.subplots(ncols=2, figsize=(12, 4))\n",
- "for i in range(L):\n",
- " indices = np.random.choice(range(N), size=N // 2)\n",
- " test_indices = list(set(range(N)) - set(indices))\n",
- " train_x = syn_features[indices]\n",
- " train_y = syn_labels[indices]\n",
- " test_x = syn_features[test_indices]\n",
- " test_y = syn_labels[test_indices]\n",
- " w, *_ = np.linalg.lstsq(train_x, train_y)\n",
- " test_vals[test_indices, i] = jnp.dot(test_x, w)\n",
- " axs[1].plot(syn_x, jnp.dot(syn_features, w), color=\"C0\", alpha=0.7, linewidth=0.1)\n",
- "axs[1].plot(\n",
- " syn_x,\n",
- " jnp.dot(syn_features, w),\n",
- " color=\"C0\",\n",
- " alpha=0.7,\n",
- " linewidth=1,\n",
- " label=\"Predicted\",\n",
- ")\n",
- "axs[0].plot(syn_x, jnp.dot(syn_features, w), color=\"C0\", label=\"Predicted\")\n",
- "axs[0].plot(syn_x[test_indices], test_y, \"o\", color=\"C1\", label=\"Test Data\")\n",
- "axs[0].plot(syn_x[indices], train_y, \"o\", color=\"C4\", label=\"Train Data\")\n",
- "axs[1].set_ylim(-40, 40)\n",
- "axs[0].set_ylim(-40, 40)\n",
- "axs[1].plot(\n",
- " syn_x, syn_x**3 - syn_x**2 + syn_x - 1, \"--\", label=\"Ground Truth\", color=\"C1\"\n",
- ")\n",
- "axs[0].plot(\n",
- " syn_x, syn_x**3 - syn_x**2 + syn_x - 1, \"--\", label=\"Ground Truth\", color=\"C1\"\n",
- ")\n",
- "axs[1].legend()\n",
- "axs[0].legend()\n",
- "axs[0].set_title(\"Single Model Fit\")\n",
- "axs[1].set_title(f\"Model Fit on {L} Training/Test Splits\")\n",
- "\n",
- "plt.tight_layout()\n",
- "glue(\"low_var\", plt.gcf(), display=False)\n",
- "plt.show()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "tags": [
- "remove-cell"
- ]
- },
- "outputs": [],
- "source": [
- "# THIS CELL IS USED TO GENERATE A FIGURE AND NOT RELATED TO CHAPTER, YOU CAN SKIP IT\n",
- "syn_features = np.vstack([syn_x**i for i in range(7)]).T\n",
- "L = 1000\n",
- "test_vals = np.empty((N, L))\n",
- "test_vals[:] = np.nan\n",
- "fig, axs = plt.subplots(ncols=2, figsize=(12, 4))\n",
- "for i in range(L):\n",
- " indices = np.random.choice(range(N), size=N // 2)\n",
- " test_indices = list(set(range(N)) - set(indices))\n",
- " train_x = syn_features[indices]\n",
- " train_y = syn_labels[indices]\n",
- " test_x = syn_features[test_indices]\n",
- " test_y = syn_labels[test_indices]\n",
- " w, *_ = np.linalg.lstsq(train_x, train_y)\n",
- " test_vals[test_indices, i] = jnp.dot(test_x, w)\n",
- " axs[1].plot(\n",
- " syn_x[test_indices], jnp.dot(test_x, w), color=\"C0\", alpha=0.7, linewidth=0.1\n",
- " )\n",
- "axs[1].plot(\n",
- " syn_x,\n",
- " jnp.dot(syn_features, w),\n",
- " color=\"C0\",\n",
- " alpha=0.7,\n",
- " linewidth=1,\n",
- " label=\"Predicted\",\n",
- ")\n",
- "axs[1].plot(\n",
- " syn_x,\n",
- " np.nanmedian(test_vals, axis=1),\n",
- " color=\"C2\",\n",
- " alpha=1.0,\n",
- " linewidth=2,\n",
- " label=\"Median on Test\",\n",
- ")\n",
- "axs[0].plot(syn_x, jnp.dot(syn_features, w), color=\"C0\", label=\"Predicted\")\n",
- "axs[0].plot(syn_x[test_indices], test_y, \"o\", color=\"C1\", label=\"Test Data\")\n",
- "axs[0].plot(syn_x[indices], train_y, \"o\", color=\"C4\", label=\"Train Data\")\n",
- "axs[1].set_ylim(-40, 40)\n",
- "axs[0].set_ylim(-40, 40)\n",
- "axs[1].plot(\n",
- " syn_x, syn_x**3 - syn_x**2 + syn_x - 1, \"--\", label=\"Ground Truth\", color=\"C1\"\n",
- ")\n",
- "axs[0].plot(\n",
- " syn_x, syn_x**3 - syn_x**2 + syn_x - 1, \"--\", label=\"Ground Truth\", color=\"C1\"\n",
- ")\n",
- "axs[1].legend()\n",
- "axs[0].legend()\n",
- "axs[0].set_title(\"Single Model Fit\")\n",
- "axs[1].set_title(f\"Model Fit on {L} Training/Test Splits\")\n",
- "plt.tight_layout()\n",
- "glue(\"high_var\", plt.gcf(), display=False)\n",
- "plt.show()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "tags": [
- "remove-cell"
- ]
- },
- "outputs": [],
- "source": [
- "# THIS CELL IS USED TO GENERATE A FIGURE AND NOT RELATED TO CHAPTER, YOU CAN SKIP IT\n",
- "F = 6\n",
- "bias = []\n",
- "var = []\n",
- "test_error = []\n",
- "L = 2500\n",
- "for f in range(1, F):\n",
- " syn_features = np.vstack([syn_x**i for i in range(f)]).T\n",
- " test_vals = np.empty((L, N))\n",
- " test_vals[:] = np.nan\n",
- " for i in range(L):\n",
- " indices = np.random.choice(range(N), size=N // 2)\n",
- " test_indices = list(set(range(N)) - set(indices))\n",
- " train_x = syn_features[indices]\n",
- " train_y = syn_labels[indices]\n",
- " test_x = syn_features[test_indices]\n",
- " test_y = syn_labels[test_indices]\n",
- " w, *_ = np.linalg.lstsq(train_x, train_y)\n",
- " test_vals[i, test_indices] = np.clip(np.dot(test_x, w), -1000, 1000)\n",
- " ed = np.nanmean(test_vals, axis=0)\n",
- " bias.append(np.mean((ed - (syn_x**3 - syn_x**2 + syn_x - 1)) ** 2))\n",
- " test_error.append(np.nanmean((test_vals - syn_labels) ** 2))\n",
- " var.append(np.nanmean((ed - test_vals) ** 2))\n",
- "plt.plot(range(1, F), bias, label=\"bias$^2$\")\n",
- "plt.plot(range(1, F), var, label=\"variance\")\n",
- "plt.plot(range(1, F), test_error, label=\"test error\")\n",
- "plt.xlabel(\"Feature Number\")\n",
- "plt.legend()\n",
- "glue(\"bv\", plt.gcf(), display=False)\n",
- "plt.show()"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Exploring Effect of Feature Number\n",
- "\n",
- "We've seen that overfitting is sensitive to the number and choice of features. Feature selection is a critical decision in supervised learning. We'll return to the solubility dataset to discuss this. It has 17 molecular descriptors, but these are just a small fraction of the possible molecular descriptors that can be used. For example, there is a software called [Dragon](https://chm.kode-solutions.net/products_dragon.php) that can compute over 5,000 descriptors. You can also create linear combinations of descriptors and pass them through functions. Then there is the possibility of experimental data, data from molecular simulations, and from quantum calculations. There is essentially an unlimited number of possible molecular descriptors. We'll start this chapter by exploring what effect of number of features (dimension of features) has on the data.\n",
- "\n",
- "```{margin}\n",
- "**Descriptor** is chemistry and materials specific word for feature. It pre-dates the word features and comes from the field of \"quantitative-structure activity relationship\" (QSAR), which has a long history in drug design and molecular design.\n",
- "```\n",
- "\n",
- "We are now working with a real dataset, which means there is randomness from which features we choose, which training data we choose, and randomness in the labels themselves. In the results below, they are averaged over possible features and possible training data splits to deal with this. Thus the code is complex. You can see it on [the Github repository](https://github.com/whitead/dmol-book/blob/main/ml/regression.ipynb), but I've omitted it here for simplicity.\n",
- "\n",
- "\n",
- "```{glue:figure} small_feature_number\n",
- "----\n",
- "name: small_feature_number\n",
- "----\n",
- "Effect of feature number on 25 training data points averaged over 10 data samples/feature choices combinations. Notice there is not a significant change when the number of features crosses the number of data points. \n",
- "```\n",
- "\n",
- "\n",
- "{numref}`small_feature_number` shows the effect of choosing different features on both the loss on training data and the loss on test data. There are three regimes in this plot. At 1-3 features, we are **underfit** meaning both the training and testing losses could be improved with more features or more training. In this case, it is because there are too few features. Until about 10 features, we see that adding new features slightly improves training data but doesn't help test data meaning we're probably slightly overfitting. Then at 10, there is a large increase as we move to the overfit regime. Finally at about 30 features, our model is no longer converging and training loss rises because it is too difficult to train the increasingly complex model. \"Difficult\" here is a relative term; you can easily train for more time on this simple model but this is meant as an example. \n",
- "\n",
- "\n",
- "```{glue:figure} large_feature_number\n",
- "------\n",
- "name: large_feature_number\n",
- "------\n",
- "Effect of feature number on 250 training data points averaged over 10 data samples/feature choices combinations. \n",
- "```\n",
- "\n",
- "{numref}`large_feature_number` shows the same analysis but for 250 train and 250 test data. The accuracy on test data is better (about 1.9 vs 2.5). There is not much overfitting visible here. The model is clearly underfit until about 10 features and then each additional feature has little effect. Past 20 features, we again see an underfit because the model is not trained well. This could fixed by adding more training steps. \n",
- "\n",
- "------\n",
- "\n",
- "Increasing feature numbers is useful up to a certain point. Although some methods are unstable when the number of features is exactly the same as the number of data points, there is reason overfitting begins at or near feature numbers equal to the number of data points. Overfitting can disappear at large feature numbers because of model size and complexity. Here there is also a risk of underfitting. \n",
- "\n",
- "The risk of overfitting is lower as your dataset size increases. The reason for this is that the noise becomes smaller than the effect of labels on training as you increase data points. Recall from the Central Limit Theorem that reducing noise by a factor of 10 requires 100 times more data, so this is not as efficient as choosing better features. Thinking about these trade-offs, to double your feature number you should quadruple the number of data points to reduce the risk of overfitting. Thus there is a strong relationship between how complex your model can be, the achievable accuracy, the data required, and the noise in labels. "
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "tags": [
- "remove-cell"
- ]
- },
- "outputs": [],
- "source": [
- "# THIS CELL IS USED TO GENERATE A FIGURE AND NOT RELATED TO CHAPTER, YOU CAN SKIP IT\n",
- "# get K samples of N data points\n",
- "N = 25\n",
- "K = 10\n",
- "train_data = [np.empty((K, N, len(feature_names))), np.empty((K, N))]\n",
- "test_data = [np.empty((K, N, len(feature_names))), np.empty((K, N))]\n",
- "\n",
- "for i in range(K):\n",
- " sample = soldata.sample(N, replace=False)\n",
- " train_data[0][i] = sample[feature_names].values\n",
- " train_data[1][i] = sample[\"Solubility\"].values\n",
- " sample = soldata.sample(N, replace=False)\n",
- " test_data[0][i] = sample[feature_names].values\n",
- " test_data[1][i] = sample[\"Solubility\"].values"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "tags": [
- "remove-cell"
- ]
- },
- "outputs": [],
- "source": [
- "# THIS CELL IS USED TO GENERATE A FIGURE AND NOT RELATED TO CHAPTER, YOU CAN SKIP IT\n",
- "def adam_fit(ftransform, x, y, test_x, test_y, rng):\n",
- " x = jnp.dot(x, ftransform)\n",
- " test_x = jnp.dot(test_x, ftransform)\n",
- " w, *_ = jax.numpy.linalg.lstsq(x, y)\n",
- " b = jnp.mean(y - jnp.dot(x, w))\n",
- " if ftransform.shape[1] >= x.shape[1]:\n",
- " opt_init, opt_update, get_params = optimizers.adam(step_size=0.2)\n",
- " opt_state = opt_init((w, b))\n",
- " for i in range(100):\n",
- " p = get_params(opt_state)\n",
- " grad = loss_grad(*p, x, y)\n",
- " opt_state = opt_update(i, grad, opt_state)\n",
- " w, b = get_params(opt_state)\n",
- " return loss(w, b, test_x, test_y), loss(w, b, x, y)\n",
- "\n",
- "\n",
- "def fit(ftransform, x, y, test_x, test_y, rng=None):\n",
- " x = jnp.dot(x, ftransform)\n",
- " test_x = jnp.dot(test_x, ftransform)\n",
- " w, *_ = jax.numpy.linalg.lstsq(x, y)\n",
- " b = jnp.mean(y - jnp.dot(x, w))\n",
- " return loss(w, b, test_x, test_y), loss(w, b, x, y)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "tags": [
- "remove-cell"
- ]
- },
- "outputs": [],
- "source": [
- "# THIS CELL IS USED TO GENERATE A FIGURE AND NOT RELATED TO CHAPTER, YOU CAN SKIP IT\n",
- "feature_sizes = list(range(1, N)) + list(range(N, 2 * N, 5))\n",
- "max_features = max(feature_sizes)\n",
- "fts = np.zeros((len(feature_sizes), K, len(feature_names), max_features))\n",
- "for i, f in enumerate(feature_sizes):\n",
- " fts[i, :, :, :f] = np.random.normal(size=(K, len(feature_names), f))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "tags": [
- "remove-cell"
- ]
- },
- "outputs": [],
- "source": [
- "# THIS CELL IS USED TO GENERATE A FIGURE\n",
- "# AND NOT RELATED TO CHAPTER\n",
- "# YOU CAN SKIP IT\n",
- "rng = jax.random.PRNGKey(0)\n",
- "vfit = jax.vmap(fit, (0, 0, 0, 0, 0, None))\n",
- "losses = []\n",
- "for i, f in enumerate(feature_sizes):\n",
- " l = np.mean(vfit(fts[i], *train_data, *test_data, rng), axis=1)\n",
- " losses.append(l)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "tags": [
- "remove-cell"
- ]
- },
- "outputs": [],
- "source": [
- "# THIS CELL IS USED TO GENERATE A FIGURE\n",
- "# AND NOT RELATED TO CHAPTER\n",
- "# YOU CAN SKIP IT\n",
- "from myst_nb import glue\n",
- "\n",
- "lo = plt.plot(feature_sizes, losses)\n",
- "plt.xlabel(\"Number of Features\")\n",
- "plt.ylabel(\"Loss\")\n",
- "vo = plt.axvline(x=N, linestyle=\"--\")\n",
- "plt.legend(lo + [vo], (\"Testing Data\", \"Training Data\", \"Number of data points\"))\n",
- "glue(\"small_feature_number\", plt.gcf(), display=False)\n",
- "plt.show()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "tags": [
- "remove-cell"
- ]
- },
- "outputs": [],
- "source": [
- "# THIS CELL IS USED TO GENERATE A FIGURE\n",
- "# AND NOT RELATED TO CHAPTER\n",
- "# YOU CAN SKIP IT\n",
- "# get K samples of N data points\n",
- "N2 = 500\n",
- "K = 10\n",
- "\n",
- "fts = np.zeros((len(feature_sizes), K, len(feature_names), max_features))\n",
- "for i, f in enumerate(feature_sizes):\n",
- " fts[i, :, :, :f] = np.random.normal(size=(K, len(feature_names), f))\n",
- "\n",
- "train_data = [np.empty((K, N2, len(feature_names))), np.empty((K, N2))]\n",
- "test_data = [np.empty((K, N2, len(feature_names))), np.empty((K, N2))]\n",
- "\n",
- "for i in range(K):\n",
- " sample = soldata.sample(N2, replace=False)\n",
- " train_data[0][i] = sample[feature_names].values\n",
- " train_data[1][i] = sample[\"Solubility\"].values\n",
- " sample = soldata.sample(N2, replace=False)\n",
- " test_data[0][i] = sample[feature_names].values\n",
- " test_data[1][i] = sample[\"Solubility\"].values\n",
- "\n",
- "losses_500 = []\n",
- "for i, f in enumerate(feature_sizes):\n",
- " l = np.mean(vfit(fts[i], *train_data, *test_data, rng), axis=1)\n",
- " losses_500.append(l)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "tags": [
- "remove-cell"
- ]
- },
- "outputs": [],
- "source": [
- "# THIS CELL IS USED TO GENERATE A FIGURE\n",
- "# AND NOT RELATED TO CHAPTER\n",
- "# YOU CAN SKIP IT\n",
- "lo = plt.plot(feature_sizes, losses_500)\n",
- "plt.xlabel(\"Number of Features\")\n",
- "plt.ylabel(\"Loss\")\n",
- "plt.legend(lo, (\"Testing Data\", \"Training Data\"))\n",
- "glue(\"large_feature_number\", plt.gcf(), display=False)\n",
- "plt.show()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "tags": [
- "remove-cell"
- ]
- },
- "outputs": [],
- "source": [
- "# THIS CELL IS USED TO GENERATE A FIGURE\n",
- "# AND NOT RELATED TO CHAPTER\n",
- "# YOU CAN SKIP IT\n",
- "# define our loss function\n",
- "@jax.jit\n",
- "def reg_loss(w, x, y, alpha):\n",
- " return jnp.mean((y - jnp.dot(x, w)) ** 2) + alpha * jnp.mean(w**2)\n",
- "\n",
- "\n",
- "reg_loss_grad = jax.grad(reg_loss, 0)\n",
- "\n",
- "# we really need adam, because\n",
- "# these polynomial coefficients\n",
- "# need very different learning rates\n",
- "@jax.jit\n",
- "def adam_fit(x, y, alpha):\n",
- " w, *_ = jax.numpy.linalg.lstsq(x, y)\n",
- " opt_init, opt_update, get_params = optimizers.adam(step_size=0.5)\n",
- " opt_state = opt_init(w)\n",
- " for i in range(100):\n",
- " p = get_params(opt_state)\n",
- " grad = reg_loss_grad(p, x, y, alpha)\n",
- " opt_state = opt_update(i, grad, opt_state)\n",
- " w = get_params(opt_state)\n",
- " return w\n",
- "\n",
- "\n",
- "def sample_fit(train_x, train_y, test_x, nan_test_x, alpha):\n",
- " w = adam_fit(train_x, train_y, alpha)\n",
- " return jnp.dot(test_x, w), jnp.dot(nan_test_x, w)\n",
- "\n",
- "\n",
- "vsample_fit = jax.vmap(sample_fit, (0, 0, 0, 0, 0))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "tags": [
- "remove-cell"
- ]
- },
- "outputs": [],
- "source": [
- "# THIS CELL IS USED TO GENERATE A FIGURE\n",
- "# AND NOT RELATED TO CHAPTER\n",
- "# YOU CAN SKIP IT\n",
- "def make_data(features, labels, L, N):\n",
- " nan_test_x = np.empty((L, *features.shape))\n",
- " nan_test_x[:] = np.nan\n",
- " indices = np.array(\n",
- " [np.random.choice(range(N), size=N // 2, replace=False) for _ in range(L)]\n",
- " )\n",
- " test_indices = np.empty((L, N // 2), dtype=int)\n",
- " for i in range(L):\n",
- " test_indices[i, :] = list(set(range(N)) - set(indices[i]))\n",
- " nan_test_x[i, test_indices[i]] = features[test_indices[i]]\n",
- " train_x = np.apply_along_axis(lambda x: features[x], 0, indices)\n",
- " train_x = np.swapaxes(train_x, 1, 2)\n",
- " test_x = np.apply_along_axis(lambda x: features[x], 0, test_indices)\n",
- " test_x = np.swapaxes(test_x, 1, 2)\n",
- " train_y = np.apply_along_axis(lambda x: labels[x], 0, indices)\n",
- " return train_x, train_y, test_x, nan_test_x"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "tags": [
- "remove-cell"
- ]
- },
- "outputs": [],
- "source": [
- "# THIS CELL IS USED TO GENERATE A FIGURE\n",
- "# AND NOT RELATED TO CHAPTER\n",
- "# YOU CAN SKIP IT\n",
- "# recompute features/labels\n",
- "N = 20\n",
- "syn_features = np.vstack([syn_x**i for i in range(7)]).T\n",
- "syn_labels = syn_x**3 - syn_x**2 + syn_x - 1 + np.random.normal(size=N)\n",
- "L = 1000\n",
- "alphas = [0.0, 1, 10.0, 100]\n",
- "mdata = make_data(syn_features, syn_labels, L, len(syn_x))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "tags": [
- "remove-cell"
- ]
- },
- "outputs": [],
- "source": [
- "# THIS CELL IS USED TO GENERATE A FIGURE\n",
- "# AND NOT RELATED TO CHAPTER\n",
- "# YOU CAN SKIP IT\n",
- "fig, axs = plt.subplots(ncols=len(alphas), figsize=(12, 4), sharey=True)\n",
- "rng = jax.random.PRNGKey(0)\n",
- "\n",
- "for i, a in enumerate(alphas):\n",
- " test_vals, nan_test_vals = vsample_fit(*mdata, np.array(L * [a]))\n",
- " # rely on fact that feature 1 = x\n",
- " axs[i].plot(\n",
- " mdata[2][:, :, 1].T, test_vals.T, \"-\", color=\"C0\", alpha=0.4, linewidth=0.5\n",
- " )\n",
- " axs[i].errorbar(\n",
- " syn_x,\n",
- " np.nanmedian(nan_test_vals.T, axis=1),\n",
- " zorder=10,\n",
- " yerr=np.nanstd(nan_test_vals.T, axis=1),\n",
- " color=\"C4\",\n",
- " alpha=1.0,\n",
- " linewidth=1.5,\n",
- " label=\"Median on Test\",\n",
- " )\n",
- " axs[i].set_ylim(-100, 100)\n",
- " axs[i].set_xlim(-4, 4)\n",
- " axs[i].plot(\n",
- " syn_x,\n",
- " syn_x**3 - syn_x**2 + syn_x - 1,\n",
- " \"--\",\n",
- " label=\"Ground Truth\",\n",
- " color=\"C1\",\n",
- " alpha=0.8,\n",
- " )\n",
- " axs[i].set_title(f\"$\\\\lambda = {a}$\")\n",
- "plt.tight_layout()\n",
- "glue(\"l2\", plt.gcf(), display=False)\n",
- "plt.show()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Bias Variance Decomposition\n",
- "\n",
- "We will now try to be more systematic about this difference in model performance between training and testing data. Consider an unseen label $y$ and our model $\\hat{f}(\\vec{x})$. Our error on the unseen label is:\n",
- "\n",
- "```{math}\n",
- ":label: exp_error\n",
- " E\\left[\\left(y - \\hat{f}(\\vec{x})\\right)^2\\right]\n",
- "```\n",
- "\n",
- "What is the expectation over? For now, let's just assume the only source of randomness is in the noise from the label (recall $y = f(\\vec{x}) + \\epsilon$). Then our expression becomes:\n",
- "\n",
- "\\begin{equation}\n",
- " E\\left[\\left(y - \\hat{f}(\\vec{x})\\right)^2\\right] = E\\left[y^2\\right] + E\\left[\\hat{f}(\\vec{x})^2\\right] - 2 E\\left[y\\hat{f}(\\vec{x})\\right]\n",
- "\\end{equation}\n",
- "\n",
- "\\begin{equation}\n",
- " E\\left[\\left(y - \\hat{f}(\\vec{x})\\right)^2\\right] = E\\left[\\left(f(\\vec{x}) - \\epsilon\\right)^2\\right] + \\hat{f}(\\vec{x})^2 - 2 E\\left[\\left(f(\\vec{x}) - \\epsilon\\right)\\right]\\hat{f}(\\vec{x})\n",
- "\\end{equation}\n",
- "\n",
- "I have dropped the expectations over deterministic expression $\\hat{f}$. You can continue this, again dropping any $E[f(\\vec{x})]$ terms and using the definition of $\\epsilon$, a zero mean normal distribution with standard deviation $\\sigma$. You will arrive at:\n",
- "\n",
- "```{math}\n",
- ":label: exp_error_noD\n",
- " E\\left[\\left(y - \\hat{f}(\\vec{x})\\right)^2\\right] = \\left(f(\\vec{x}) - \\hat{f}(\\vec{x})\\right)^2 + \\sigma^2\n",
- "```\n",
- "\n",
- "This expression means the best we can do on an unseen label is the noise of the label. This is very reasonable, and probably matches your intuition. The best you can do is match exactly the noise in the label when you have a perfect agreement between $f(\\vec{x})$ and $\\hat{f}(\\vec{x})$\n",
- "\n",
- "*However, this analysis did not account for the fact our choice of training data is random*. Things become more complex when we consider that our choice of training data is random. Return to Equation {eq}`exp_error` and now replace $\\hat{f}\\left(\\vec{x}\\right)$ with $\\hat{f}\\left(\\vec{x}; \\mathbf{D}\\right)$ where $\\mathbf{D}$ is a random variable indicating the random data sample. You can find a complete derivation on [Wikipedia](https://en.wikipedia.org/wiki/Bias-variance_tradeoff). The key change is that $\\left(f(\\vec{x}) - \\hat{f}\\left(\\vec{x}; \\mathbf{D}\\right)\\right)^2$ is now a random variable. Equation {eq}`exp_error_noD` becomes:\n",
- "\n",
- "```{math}\n",
- ":label: bv\n",
- " E\\left[\\left(y - \\hat{f}(\\vec{x})\\right)^2\\right] = E\\left[f(\\vec{x}) - \\hat{f}\\left(\\vec{x}; \\mathbf{D}\\right)\\right]^2 + \n",
- " E\\left[\\left(E\\left[\\hat{f}\\left(\\vec{x}; \\mathbf{D}\\right)\\right] - \\hat{f}\\left(\\vec{x}; \\mathbf{D}\\right)\\right)^2\\right] + \\sigma^2\n",
- "```\n",
- "\n",
- "This expression is the most important equation for understanding ML and deep learning training. The first term in this expression is called **bias** and captures how far away our model is from the correct function $f(\\vec{x})$. This is the expected (average) loss we get given a random dataset evaluated on a new unseen data point. You may think this the most important quantity -- expected difference between the true function and our model on a new data point. However, bias does not determine the expected error on an unseen data point alone, there other terms.\n",
- "\n",
- "```{margin}\n",
- "In Equation{eq}`bv` $\\vec{x}$ is a fixed quantity, unlike what you may be used to in probability. The actual random variables are $\\epsilon$ (noise in label) and $\\mathbf{D}$ (our chosen training data).\n",
- "```\n",
- "\n",
- "The second term is surprising. It is called the **variance** and captures how much change at the unseen data point $(\\vec{x},y)$ there is due to changes in the random variable $\\mathbf{D}$. What is surprising is that the expected loss depends on the variance of the learned model. Think carefully about this. A model which is highly sensitive to which training data is chosen has a high expected error on test data. Furthermore, remember that this term **variance** is different than variance in a feature. It captures how the model value changes at a particular $\\vec{x}$ as a function of changing the training data.\n",
- "\n",
- "```{note}\n",
- "There are three sources of randomness in the expectation: the choice of test data, the label noise, and the choice of training data. However, once you pick the training data, the test data is fixed so we do not indicate or worry about this. A quantity like $E[\\hat{f}(\\vec{x})]$ means splitting your data every possible way, fitting the models, then computing the value $\\hat{f}(\\vec{x})$ on the unseen test $\\vec{x}$. Then you take the average over the unseen test values. You can also skip the last step and leave $E[\\hat{f}(\\vec{x})]$ as a function of $\\vec{x}$, which is what is plotted in {numref}`low_var` and {numref}`high_var`. \n",
- "```\n",
- "\n",
- "\n",
- "```{glue:figure} low_var\n",
- "----\n",
- "name: low_var\n",
- "----\n",
- "A single feature fit to the polynomial model example above. The left panel shows a single train/test split and the resulting model fit. The right panel shows the result of many fits. The model variance is the variance across each of those model fits and the bias is the agreement of the average model. It can be seen that this model has low variance but poor average agreement (high bias). \n",
- "```\n",
- "\n",
- "\n",
- "These three terms: noise, bias, and variance set the minimum value for test error. Noise is set by your data and not controllable. However, bias and variance are controllable. What does a high bias, low variance model look like? A 1D linear model is a good example. See {numref}`low_var`. It has one parameter so a sample of data points gives a consistent estimate. However, a 1D model cannot capture the true $f(\\vec{x})$ so it has a large average error (bias) at a given point. What does a low bias, high variance model look like? An overfit model like the one shown in {numref}`high_var`. It has extreme outliers on test data, but on average it actually has a low bias.\n",
- "\n",
- "\n",
- "```{glue:figure} high_var\n",
- "----\n",
- "name: high_var\n",
- "----\n",
- "A 7 feature fit to the polynomial model example above. The left panel shows a single train/test split and the resulting model fit. The right panel shows the result of many fits. The model variance is the variance across each of those model fits and the bias is the agreement of the average model. It can be seen that this model has high variance but good average agreement (low bias). \n",
- "```\n",
- "\n",
- "**The Tradeoff**\n",
- "\n",
- "\n",
- "```{glue:figure} bv\n",
- "----\n",
- "name: bv\n",
- "----\n",
- "The bias, variance, and fit on test values for the polynomial example averaged across 2,500 train/test splits. As the number of features increases, variance increases and bias decreases. There is a minimum at 4 features. The plot stops at 5 because the variance becomes very large beyond 5.\n",
- "```\n",
- "\n",
- "The way to change bias and variance is through **model complexity**, which is feature number in our linear models. Increasing model complexity reduces bias and increases variance. There is an optimum for our polynomial example, shown in {numref}`bv`. Indeed this is true of most ML models, although it can be difficult to cleanly increase model complexity and keep training converged. However, this is [not typically true in deep learning with neural networks](https://www.bradyneal.com/bias-variance-tradeoff-textbooks-update){cite}`neal2018modern`.\n",
- "\n",
- "```{note}\n",
- "The bias--variance tradeoff for model complexity is based on experience. The decomposition above does not prove a tradeoff, just that you can split these two terms. Intentionally underfitting, adding noise, and exchanging one feature for another are all ways to affect bias and variance without adjusting complexity. Also, sometimes you can just improve both with better models. \n",
- "```\n",
- "\n",
- "The bias--variance tradeoff is powerful for explaining the intuition we've learned from examples above. Large datasets reduce model variance, explaining why it is possible to increase model complexity to improve model accuracy only with larger datasets. Overfitting reduces bias at the cost of high variance. Not training long enough increases bias, but reduces variance as well since you can only move so far from your starting parameters."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Regularization\n",
- "\n",
- "Adding features is a challenging way to exchange model bias and variance because it comes in discrete steps and some features are just better than others. A different way is to use a complex model (all features) but reduce variance through **regularization**. Regularization is the addition of an extra term to your loss function that captures some unwanted property about your model that you want to minimize. \n",
- "\n",
- "### L2 Regularization\n",
- "\n",
- "```{margin}\n",
- "You can add the bias $b$ to the regularization term, but this should\n",
- "only be done if you have some prior belief that the bias should be 0 -- like if it represents some physical quantity that should be minimized. Otherwise minimizing $b$ has no effect on overfitting and so is not part of regularization.\n",
- "```\n",
- "\n",
- "Our first example is the magnitude of fit coefficients. The magnitude of the coefficients is $\\sum_k w_k^2$ where $w_k$ the index of a single coefficient. We add this to our loss function:\n",
- "\n",
- "\\begin{equation}\n",
- " L = \\frac{1}{N}\\sum_i^N \\left[y_i - \\hat{f}(\\vec{x}_i, \\vec{w}, b)\\right]^2 + \\lambda \\sum_k w_k^2\n",
- "\\end{equation}\n",
- "\n",
- "where $\\lambda$ is our strength of regularization. By changing $\\lambda$, we control how large the magnitude of our parameters are and that directly reduces the variance. You can see the result in {numref}`l2` for our polynomial example. Increasing the strength of regularization decreases variance at the cost of increasing model bias. Remember in deep learning there isn't as much of a tradeoff and often you just get a reduction in variance with no degradation in bias. Adding L2 regularization with a linear model has a specific name: **Ridge Regression**.\n",
- "\n",
- "```{glue:figure} l2\n",
- "----\n",
- "name: l2\n",
- "----\n",
- "A 7 feature fit to the polynomial model example above with increasing strength of regularization. The vertical bars indicate standard deviation of model at each point. \n",
- "```\n",
- "\n",
- "Why does this work? Look at the gradient of a particular weight of our new loss function:\n",
- "\n",
- "\\begin{equation}\n",
- " \\frac{\\partial L}{\\partial w_4} = \\frac{2}{N}\\sum_i^N \\left[y_i - \\hat{f}(\\vec{x}_i, \\vec{w}, b)\\right]\\frac{\\partial \\hat{f}(\\vec{x}_i, \\vec{w}, b)}{\\partial w_4} + 2\\lambda w_4\n",
- "\\end{equation}\n",
- "\n",
- "where $w_4$ is one of our weights. The first term on the right-hand side accounts for how $w_4$ affects our accuracy, like usual. The second term is from the regularization. You can see that the gradient is just the value of weight times a constant. Let's contract the first term into a variable called $g_{w_4}$ and look at how this new gradient affects our updates to $w_4$. Our gradient descent update of $w_4$ becomes:\n",
- "\n",
- "\\begin{equation}\n",
- " w_4' = w_4 -\\eta g_{w_4} - 2\\eta\\lambda w_4\n",
- "\\end{equation}\n",
- "\n",
- "\n",
- "So our regularization pushes $w_4'$ to always have a lower magnitude. If $w_4' = 2.5$, the update will include a term of $-2\\eta \\lambda 2.5$, pushing our weight value closer to zero. This means our weights always are pushed towards zero. Of course the term coming from model error ($g_{w_4}$) also has an effect so that we end up at a balance of lower magnitude weights and model error. We control that balance through the $\\lambda$ term.\n",
- "\n",
- "```{margin}\n",
- "The terms L1 and L2 come from the definition of norms. They indicate the coefficient \n",
- "used in the norm: $(\\sum_i x_i^p)^{1/p}$, where $p =1$ for L1 and $p = 2$ for L2. Others exist, like $p = 0$ which counts dimension and $p = \\infty$ which takes the maximum element. The \"L\" comes from the word Lebesgue integral, via a confusing path. \n",
- "```\n",
- "\n",
- "### L1 Regularization\n",
- "\n",
- "L1 regularization changes our loss to be the following:\n",
- "\n",
- "\n",
- "\\begin{equation}\n",
- " L = \\frac{1}{N}\\sum_i^N \\left[y_i - \\hat{f}(\\vec{x}_i, \\vec{w}, b)\\right]^2 + \\lambda \\sum_k \\left|w_k\\right|\n",
- "\\end{equation}\n",
- "\n",
- "It may appear at first that this is identical to L2. In fact, the L1 regularization has a powerful benefit: it induces sparsity. L2 just causes regression coefficients to be on average lower, but L1 forces some coefficients to be 0. This gives us a kind of \"automatic\" feature selection. This is called **Lasso Regression** when you combine L1 regularization with linear regression. \n",
- "\n",
- "As far as choosing which regularization to use, I'll [quote Frank Harrell](https://stats.stackexchange.com/a/184022), a biostatistics professor at Vanderbilt:\n",
- "\n",
- "> Generally speaking if you want optimum prediction use L2. If you want parsimony at some sacrifice of predictive discrimination use L1. But note that the parsimony can be illusory, e.g., repeating the lasso process using the bootstrap [introduced below] will often reveal significant instability in the list of features \"selected\" especially when predictors are correlated with each other."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Strategies to Assess Models\n",
- "\n",
- "\n",
- "We will now discuss more ways to assess model performance. These are more robust approaches to assess loss on testing data.\n",
- "\n",
- "### k-Fold Cross-Validation\n",
- "\n",
- "The bias--variance decomposition shows that our testing error is sensitive to what training data has been chosen. The expected mean test error $E\\left[\\left(y - \\hat{f}(\\vec{x})\\right)^2\\right]$ depends on the label noise **and** the way we split our data into training and testing data. Thus far, we've only gotten a single sample from this expectation by splitting. One way to better estimate the value on unseen data is to repeat the process of splitting data into training and testing multiple times. This is called **k-fold** cross-validation, where $k$ is the number of times you repeat the process. k-fold cross-validation is useful because certain high-variance model choices can give different testing errors depending on the train/test split. k-fold also provides multiple samples so that you can estimate the **uncertainty** in testing error. As all things to do with model variance, the smaller the dataset the more important this is. Typically with very large datasets k-fold cross-validation is not done because label noise dominates and testing a model k times can be time-consuming. \n",
- "\n",
- "k-fold cross-validation has a specific process for splitting testing and training data. What we did previously was split into a 50/50 split of training and testing. In k-fold, we split our data into k segments. Then we train on k-1 segments and test on the last segment. You can do this k-ways. For example, with K = 3 you would split your data into A, B, C. The first train/test split would be A, B for training and C for testing. Then B, C for training and A for testing. The last would be A, C for training and B for testing. Following this procedure means that your percentage split will be 90/10 for $k = 10$ and 50/50 for $k = 2$. This has a disadvantage that the number of estimates for testing error depends on size of train/test split. For example, you cannot get 10 estimates for an 80/20 split. An 80/20 split means exactly 5-fold cross-validation. We'll see other methods that relax this later on. The 80/20 is a typical rule that balances having enough data for good training and enough to robustly assess how well your model performs.\n",
- "\n",
- "Let's now use k-fold cross-validation in two examples: our full dataset and a smaller 25 data point sample. Rather than using gradient descent here, we'll just use the pseudo-inverse to keep our code simple. The pseudo-inverse is the least-squares solution. "
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "tags": [
- "hide-input"
- ]
- },
- "outputs": [],
- "source": [
- "k = 10\n",
- "N = len(soldata)\n",
- "# make indices for the k segments\n",
- "splits = list(range(0, N + N // k, N // k))\n",
- "error = []\n",
- "for i in range(k):\n",
- " # slice out segments\n",
- " test = soldata[splits[i] : splits[i + 1]]\n",
- " test_x, test_y = test[feature_names].values, test[\"Solubility\"].values\n",
- " train = pd.concat([soldata[splits[i] :], soldata[splits[i + 1] :]])\n",
- " x, y = train[feature_names].values, train[\"Solubility\"].values\n",
- " # compute coefficients\n",
- " w, *_ = np.linalg.lstsq(x, y)\n",
- " # compute intercept (b)\n",
- " b = np.mean(y - np.dot(x, w))\n",
- " # compute test erropr\n",
- " error.append(np.mean((np.dot(test_x, w) + b - test_y) ** 2))\n",
- "plt.plot(error, \"o\")\n",
- "plt.xlabel(\"Split Number\")\n",
- "plt.ylabel(\"Test Error\")\n",
- "plt.title(f\"{k}-fold cross-validation of soldata\")\n",
- "plt.show()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "tags": [
- "remove-cell"
- ]
- },
- "outputs": [],
- "source": [
- "# THIS CELL IS USED TO GENERATE A FIGURE\n",
- "# AND NOT RELATED TO CHAPTER\n",
- "# YOU CAN SKIP IT\n",
- "from myst_nb import glue\n",
- "\n",
- "glue(\"large_error\", np.mean(error))\n",
- "glue(\"large_error_std\", np.std(error, ddof=1))"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "The final answer in this case is the average of these values: {glue:text}`large_error:.2f`$\\pm${glue:text}`large_error_std:.2f`. The advantage of the k-fold is that we can report standard deviation like this. \n",
- "\n",
- "Now what effect does k have on the test error? Let's see how our choice of k matters"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "tags": [
- "hide-input"
- ]
- },
- "outputs": [],
- "source": [
- "N = len(soldata)\n",
- "error = []\n",
- "error_std = []\n",
- "for k in range(2, 25):\n",
- " splits = list(range(0, N + N // k, N // k))\n",
- " k_error = []\n",
- " for i in range(k):\n",
- " # slice out segments\n",
- " test = soldata[splits[i] : splits[i + 1]]\n",
- " test_x, test_y = test[feature_names].values, test[\"Solubility\"].values\n",
- " train = pd.concat([soldata[splits[i] :], soldata[splits[i + 1] :]])\n",
- " x, y = train[feature_names].values, train[\"Solubility\"].values\n",
- " # compute coefficients\n",
- " w, *_ = np.linalg.lstsq(x, y)\n",
- " # compute intercept (b)\n",
- " b = np.mean(y - np.dot(x, w))\n",
- " # compute test error\n",
- " k_error.append(np.mean((np.dot(test_x, w) + b - test_y) ** 2))\n",
- " error.append(np.mean(k_error))\n",
- " error_std.append(np.std(k_error, ddof=1))\n",
- "plt.errorbar(range(2, 25), error, yerr=error_std, capsize=6)\n",
- "plt.xlabel(\"k\")\n",
- "plt.ylabel(\"Test Error\")\n",
- "plt.title(\"k-fold cross-validation of soldata\")\n",
- "plt.show()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "tags": [
- "remove-cell"
- ]
- },
- "outputs": [],
- "source": [
- "# THIS CELL IS USED TO GENERATE A FIGURE\n",
- "# AND NOT RELATED TO CHAPTER\n",
- "# YOU CAN SKIP IT\n",
- "glue(\"kf-5\", np.mean(error[3]))"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "As you can see, there is not much sensitivity to k. This is good, because k is mostly arbitrary. Larger k means more samples, but each test data is smaller so that these two effects should balance out.\n",
- "\n",
- "Large datasets are not that sensitive because the training and testing splits are large. Let us examine what happens with $N = 25$, a realistic case in chemistry data. We'll just pick 25 data points at the beginning and not change that choice, mocking what would happen in a real example. "
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "tags": [
- "hide-input"
- ]
- },
- "outputs": [],
- "source": [
- "small_soldata = soldata.sample(25, replace=False)\n",
- "N = len(small_soldata)\n",
- "error = []\n",
- "error_std = []\n",
- "for k in range(2, 25):\n",
- " splits = list(range(0, N + N // k, N // k))\n",
- " k_error = []\n",
- " for i in range(k):\n",
- " # slice out segments\n",
- " test = small_soldata[splits[i] : splits[i + 1]]\n",
- " test_x, test_y = test[feature_names].values, test[\"Solubility\"].values\n",
- " train = pd.concat([small_soldata[splits[i] :], small_soldata[splits[i + 1] :]])\n",
- " x, y = train[feature_names].values, train[\"Solubility\"].values\n",
- " # compute coefficients\n",
- " w, *_ = np.linalg.lstsq(x, y)\n",
- " # compute intercept (b)\n",
- " b = np.mean(y - np.dot(x, w))\n",
- " # compute test erropr\n",
- " k_error.append(np.mean((np.dot(test_x, w) + b - test_y) ** 2))\n",
- " error.append(np.mean(k_error))\n",
- " error_std.append(np.std(k_error, ddof=1))\n",
- "plt.errorbar(range(2, 25), error, yerr=error_std, capsize=6)\n",
- "plt.xlabel(\"k\")\n",
- "plt.ylabel(\"Test Error\")\n",
- "plt.title(\"k-fold cross-validation of soldata subsample\")\n",
- "plt.show()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Our results are a little sensitive to the choice of $k$. Now why might test error decrease? Remember that a larger $k$ means *more* data points for training. This did not matter above when we had 10,000 data points. Now it is very importatnt, since we only have 25 data points. Thus larger k means more training data. \n",
- "\n",
- "\n",
- "### Leave-one-out CV\n",
- "\n",
- "Larger k means more training data, so what is the largest it can be? Remember that k is the number segments in your data. So $k = N$ is the max, where each data point is a segement. This is called **leave-one-out cross-validation** (LOOCV). It creates $N$ different models, one for each data point left out, and so is only used for small datasets. Thus the advantage of LOOCV is it maximizes training data, but maximizes the number of times the model needs to be trained."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Computing Other Measures\n",
- "\n",
- "Using LOOCV and k-fold cross-validation, we're able to predict test error. This \"test error\" is specifically an expected error on an unseen data point. Now how do we actually treat a new data point? What will we report as the certainty in a new point? The test error? We'll call this point the **prediction point** and we'll try to estimate the quantiles of this point. Quantiles are the building blocks for confidence intervals. Recall that confidence intervals allow us to report our model prediction as $4.3 \\pm 0.2$, for example.\n",
- "\n",
- "```{margin}\n",
- "Classically bootstrap resampling and **jacknife**, its predecessor, are used for estimating variance in model parameters (i.e., model variance). However, they are more commonly used in ML for predicting confidence intervals and/or test error for new points (also called generalization error). \n",
- "```\n",
- "\n",
- "\n",
- "### Bootstrap Resampling\n",
- "\n",
- "To estimate quantiles, we need to have a series of observations of predictions from the prediction point $\\hat{f}(\\vec{x}')$, where $\\vec{x}'$ is the prediction point. For example, we could do 5-fold cross-validation and have 5 estimates of $\\hat{f}_k(\\vec{x}')$ and could estimate the quantiles using a t-statistic. Instead, we'll use a method called **bootstrap resampling** which removes the restriction that we can only use $1 - 1 / k$ of the training data. Bootstrap resampling is a general process for estimating uncertainty for empirical statistics without assuming a probability distribution (i.e., non-parametric). In bootstrap resampling, we create as many as desired new training datasets that are the same size as the original by sampling **with replacement** from the original dataset. That means our new dataset has fewer members than the original and makes up the difference with duplicates. Let's see an example. If your training dataset originally has data A, B, C, D, E, our bootstrap resampled training data is:\n",
- "\n",
- "1. A, B, B, D, E\n",
- "2. B, C, C, C, E\n",
- "3. A, B, D, E, E\n",
- "4. A, B, C, D, E\n",
- "5. A, A, C, C, D\n",
- "\n",
- "and so forth. The \"with replacement\" means that we allow repeats. This gives some variation to our training data. It also means we can generate $2^N$ new datasets, which is practically as many as we want. Let's see now how we could use this to quantile the estimate for a prediction on a test point. We'll set $N = 1000$ and do bootstrap resampling for 100 iterations."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "# Create training data and 1 test point\n",
- "N = 1000\n",
- "# this line gets the data for our example\n",
- "# it is not the bootstrap resampling\n",
- "tmp = soldata.sample(N + 1, replace=False)\n",
- "small_soldata = tmp.iloc[:N]\n",
- "predict_point = tmp.iloc[-1]"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "samples = 100\n",
- "predictions = []\n",
- "for i in range(samples):\n",
- " # choose with replacement indices to make new dataset\n",
- " idx = np.random.choice(np.arange(N), size=N, replace=True)\n",
- " train = small_soldata.iloc[idx]\n",
- " x, y = train[feature_names].values, train[\"Solubility\"].values\n",
- " # compute coefficients\n",
- " w, *_ = np.linalg.lstsq(x, y)\n",
- " # compute intercept (b)\n",
- " b = np.mean(y - np.dot(x, w))\n",
- " # compute test prediction\n",
- " predictions.append(np.dot(predict_point[feature_names].values, w) + b)\n",
- "# compute quantiles (lower, median, upper)\n",
- "qint = np.quantile(predictions, [0.025, 0.5, 0.975])\n",
- "# compute avg distance from median to report +/-\n",
- "print(\n",
- " f'prediction = {qint[1]:.2f} +/- {(qint[-1] - qint[0]) / 2:.2f}, label = {predict_point[\"Solubility\"]:.2f}'\n",
- ")"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "The resulting prediction has confidence intervals, thanks to the bootstrap resampling. This approach has a few disadvantages though. The first is that we need to produce and keep 100 models, one for each bootstrap resample. Of course you could choose fewer, but you need to have enough for good statistics. \n",
- "\n",
- "Another issue is that this process does not give a reportable test error. We could further split our data again and do k-fold cross-validation on this approach to get test error. However, this is a bit overly complex and then we'll be at a similar problem that we'll have k sets of 100 models and it's not obvious how to combine them. These prediction intervals also under-estimate the model bias, because it has no estimate of the test error. It only accounts for variation due to training data. Using the language above, it only accounts for model variance but not model bias. \n",
- "\n",
- "Bootstrap resampling is still an excellent technique that is used often to estimate uncertainties. However, it is not a great choice for estimating model error on unseen datapoints. \n",
- "\n",
- "### Jacknife+\n",
- "\n",
- "\n",
- "```{margin}\n",
- "There is a method called Jacknife, which does not compute multiple predictions. It computes the residuals as mentioned above, but it trains one final model on all data. Since it requires you to compute all $N$ models to get the residuals, it is preferred to just use Jacknife+ which is more robust.\n",
- "```\n",
- "\n",
- "An alternative approach that accounts for model variance like the bootstrap method and model bias like the k-fold cross-validation method is called **Jacknife+** {cite}`barber2019predictive`. Jacknife+ carries strong guarantees about accuracy of the confidence intervals generated, regardless of the underlying data or model. The change now is that we use LOOCV to create an ensemble of models (although you can subsample down if you do not want N of them) and also compute the models' test error on the withheld test data. The final quantile estimates incorporate the variance from the variety of models (model variance) and also each models' individual test error (model bias). \n",
- "Specifically, we compute:\n",
- "\n",
- "\\begin{equation}\n",
- "R_i = \\left|y_i - \\hat{f}(\\vec{x}_i;\\,\\mathbf{X} \\setminus \\vec{x}_i )\\right|\n",
- "\\end{equation}\n",
- "\n",
- "where $\\mathbf{X} \\setminus \\vec{x}_i$ is the dataset to train the $i$th model and is the dataset excluding point $(\\vec{x}_i, y_i)$, $\\hat{f}(\\vec{x}_i;\\,\\mathbf{X} \\setminus \\vec{x}_i ) $ is the $i$th model evaluated on point $\\vec{x}_i$, and $R_i$ is the residual of model $i$ computed by taking the difference between the label and prediction on point $i$. $R_i$ encodes how good the $i$th model is. We then combine it with the predictions on our new test point $(\\vec{x}', y')$ to make our set for quantiling\n",
- "\n",
- "\n",
- "\\begin{equation}\n",
- "q_1 = \\left\\{ \\hat{f}(\\vec{x}';\\,\\mathbf{X} \\setminus \\vec{x}_i ) - R_i\\right\\}\n",
- "\\end{equation}\n",
- "\n",
- "\\begin{equation}\n",
- "q_2 = \\left\\{\\hat{f}(\\vec{x}';\\,\\mathbf{X} \\setminus \\vec{x}_i ) + R_i\\right\\}\n",
- "\\end{equation}\n",
- "\n",
- "where $q$ means quantile. The first quantile $q_1$, with $ - R_i$, is how low below the estimate from the $i$th model we could expect to see our prediction based on how the $i$th model did on its test point. The second set, with $ + R_i$, is how high above the estimate from the $i$th model we could expect to see our prediction based on how the $i$th model did on its test point. To compute our final value, we take the median of $\\hat{f}(\\vec{x}';\\,\\mathbf{X} \\setminus \\vec{x}_i )$ and report the lower end of the interval as the 5% quantile of $q_1$ and the top as the 95% quantile of $q_2$. You can see that this method combines the ensemble of prediction models given by bootstrap resampling with the error estimates from LOOCV. Let's see an example. \n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "residuals = []\n",
- "predictions = []\n",
- "for i in range(N):\n",
- " # make train excluding test point\n",
- " # we just make a set and remove one element from it\n",
- " # and then convert back to list\n",
- " idx = list(set(range(N)) - set([i]))\n",
- " train = small_soldata.iloc[idx]\n",
- " x, y = train[feature_names].values, train[\"Solubility\"].values\n",
- " # compute coefficients\n",
- " w, *_ = np.linalg.lstsq(x, y)\n",
- " # compute intercept (b)\n",
- " b = np.mean(y - np.dot(x, w))\n",
- " # compute test prediction\n",
- " predictions.append(np.dot(predict_point[feature_names].values, w) + b)\n",
- " # now compute residual on withtheld point\n",
- " yhat = np.dot(small_soldata.iloc[idx][feature_names].values, w) + b\n",
- " residuals.append(np.abs(yhat - small_soldata.iloc[idx][\"Solubility\"]))\n",
- "# create our set of prediction - R_i and prediction + R_i\n",
- "q1 = [p - ri for p, ri in zip(predictions, residuals)]\n",
- "q2 = [p + ri for p, ri in zip(predictions, residuals)]\n",
- "# compute quantiles (lower, median, upper)\n",
- "qlow = np.quantile(q1, [0.05])[0]\n",
- "qhigh = np.quantile(q2, [0.95])[0]\n",
- "# compute avg distance from medianto report +/-\n",
- "print(\n",
- " f'prediction = {np.median(predictions):.2f} +/- {(qlow - qhigh) / 2:.2f}, label = {predict_point[\"Solubility\"]:.2f}'\n",
- ")\n",
- "print(f\"Average test error = {np.median(residuals):.2f}\")"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "The uncertainty is much higher, which is likely closer to reality. You can see that the residuals add about 1 solubility (model variance) unit and the variability in the data (label noise) adds about 2 solubility units. Jacknife+ should be the preferred method when you have small datasets (1-1000) and can train models quickly enough to be able to compute 1000 of them. You can also replace the exhaustive LOOCV with a random process, where you only do a few iterations (like 25) of LOOCV to avoid computing so many models. "
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Training Data Distribution\n",
- "\n",
- "We have come a long ways now. We're able to compute test error, identify overfitting, understand model bias and variance, and predict uncertainty on unseen data points. One of the implied assumptions so far is that our splitting of data into training and testing data mimics what it will be like to predict on an unseen data point. More specifically, we assume that testing data comes from the same probability distribution as our training data. This is true when we're doing the splitting, but is often violated when we actually get new data to make predictions with. \n",
- "\n",
- "There are specific categories for how we have left the training distribution. **Covariate shift** is when the distribution of features changes. Covariate is another word for features. An example might be that the molecular weights of your molecules are larger in your testing data. The relationship between features and labels, $f(\\vec{x})$ remains the same, but the distribution of features is different. **Label shift** means that the distribution of labels has changed. Perhaps our training data was all very soluble molecules but at test time, we're examining mostly insoluble molecules. Again, our fundamental relationship $f(\\vec{x})$ that we try to estimate with our model still holds.\n",
- "\n",
- "```{margin} Applicability Domain\n",
- "Applicability domain is a term from cheminformatics describing \n",
- "avoiding covariate shift by trying to stay within the training data distribution.\n",
- "```\n",
- "\n",
- "There are two common reasons unseen data can be out of the training data distribution. The first is that you are extrapolating to new regions of chemical space. For example, you have training data of drug activities. You make a model that can predict activity. What do you do with the model? You obviously find the highest activity drug molecule. However, this molecule is likely to be unusual and not in your training data. If it was in your training data you would probably already be done -- namely, you already synthesized and found a molecule with very high activity. Thus you will be pushing your model to regions outside of your training data. Another reason you can be out of training data is that the way you generated training data is different than how the model is used. For example, perhaps you trained on molecules that do not contain fluorine. Then you try your model on molecules that contain fluorine. Your features will be different than what you observed in training. The result of leaving your training data distribution is that your test error increases and the estimates you provide will be too low.\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "### Leave One Class Out Cross-Validation\n",
- "\n",
- "Thus understanding and assessing training data distribution is an important task. In general, standard models that minimize a loss are poor at predicting extreme values. We will approach this challenge later with specific methods like black-box function optimization. For now, be wary of using your models as tools to find extreme values. The second challenge, that you're leaving your training data due to how points are generated, can be assessed by computing a more realistic estimate of model error. Namely, your training data is typically gathered (generated) according to a different process than when your model is deployed at test time. This is generalization error, sometimes called **covariate shift**, and we sometimes wish to approximate its effect by simulating different training and testing distributions. This leads us to **leave one class out cross-validation** (LOCOCV). \n",
- "\n",
- "In LOCOCV, we must first assign a class to each training data point. This is domain specific. It could be based on the molecule. You could use a clustering method. In our case, our solubility data actually is a combination of five other datasets so our data is already pre-classified based on who measured the solubility. We will now perform a kind of k-fold cross-validation, leaving one class out at a time and assessing model error. We'll compare this to k-fold cross-validation without classes. \n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "# let's see what the groups (classes) are\n",
- "unique_classes = soldata[\"Group\"].unique()\n",
- "print(unique_classes)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "# Leave one class out CV\n",
- "N = len(soldata)\n",
- "error = []\n",
- "error_std = []\n",
- "for c in unique_classes:\n",
- " # slice out segments\n",
- " test = soldata.loc[soldata[\"Group\"] == c]\n",
- " train = soldata.loc[soldata[\"Group\"] != c]\n",
- " test_x, test_y = test[feature_names].values, test[\"Solubility\"].values\n",
- " x, y = train[feature_names].values, train[\"Solubility\"].values\n",
- " # compute coefficients\n",
- " w, *_ = np.linalg.lstsq(x, y)\n",
- " # compute intercept (b)\n",
- " b = np.mean(y - np.dot(x, w))\n",
- " # compute test erropr\n",
- " k_error.append(np.mean((np.dot(test_x, w) + b - test_y) ** 2))\n",
- " error.append(np.mean(k_error))\n",
- " error_std.append(np.std(k_error, ddof=1))\n",
- "print(f\"test error = {np.mean(error):.2f}\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "tags": [
- "remove-cell"
- ]
- },
- "outputs": [],
- "source": [
- "# THIS CELL IS USED TO GENERATE A FIGURE\n",
- "# AND NOT RELATED TO CHAPTER\n",
- "# YOU CAN SKIP IT\n",
- "glue(\"lococv\", np.mean(error), display=False)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "We computed above what the 5-fold cross-validation is for this data, {glue:text}`kf-5:.2f`. You can see the LOCOCV test error ({glue:text}`lococv:.2f`) is similar, which means our different data sources agree well. So perhaps on new unseen data we can expect similar (not so great) accuracy. There may be other ways to group this data into classes, like based on molecular weight or which atoms are contained in the molecule. It depends on what you believe to be important. Breaking it down into the constituent datasets, like we did above, is a reasonable approach because it captures how different research groups would measure solubility. It is not always obvious or possible to use LOCOCV, but it should be something you consider to assess out of training data distribution. You can read more about the issue of leaving training data distribution for materials in this recent article {cite}`sutton2020identifying`. You can read more about model selection in general in this recent tutorial article {cite}`raschka2018model`."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Chapter Summary\n",
- "\n",
- "* Regression is supervised learning where the labels are real numbers. We only considered scalars\n",
- "* To assess a regressed model, we split data into training and testing and only report error on testing data\n",
- "* Overfitting causes a mismatch between training and testing error\n",
- "* Overfitting can be understood via the bias-variance decomposition\n",
- "* Increasing model complexity can improve fit (reduce bias), but increases model variance and thus test error\n",
- "* Regularization is a strategy to decrease model variance. L2 is a good first choice\n",
- "* More rigorous assessment of models can be done via k-fold cross-validation or Jacknife+ when the training data is small enough that we can train multiple models\n",
- "* Much of our model assessments depends on the testing data being from the same distribution as the training data (similar values). This is often not true and can be measured with leave-one-class-out cross-validation.\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Exercises\n",
- "\n",
- "### Overfitting\n",
- "\n",
- "1. What happens if we have redundant features but no noise? Is it possible to overfit?\n",
- "2. We said that increasing dataset size reduces model variance. Show this by using k-fold cross-validation on a few different dataset sizes. \n",
- "\n",
- "### Regularization\n",
- "\n",
- "1. Implement L1 regularization on the solubility data with $N = 35$ data points. Increase the strength until some feature coefficients ($w_i$) go to zero. Which ones are they? Why do you think they go to zero first?\n",
- "2. Repeat 1 with a few different sets of training data. Are your results consistent on which features disappear? Based on your results, do you think there is meaning to the features which go to zero?\n",
- "3. Implement the L-infinity (supremum norm) regularization, which returns the maxmium of the absolute values of the elements.\n",
- "\n",
- "### Model Assessment\n",
- "\n",
- "1. Develop the best linear model for the complete solubility dataset and assess using your best judgment. Justify your choice of model and assessment. \n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Cited References\n",
- "\n",
- "```{bibliography}\n",
- ":style: unsrtalpha\n",
- ":filter: docname in docnames\n",
- "```"
- ]
- }
- ],
- "metadata": {
- "celltoolbar": "Tags",
- "kernelspec": {
- "display_name": "py39ml",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.9.15"
- },
- "vscode": {
- "interpreter": {
- "hash": "cfdfd2918ff9d262c836e8815c89caad5df20c22cef5d9d2cb941140a5368784"
- }
- }
- },
- "nbformat": 4,
- "nbformat_minor": 4
-}
diff --git a/notebook/0_basic_MLDL/2_0_dl_overview.ipynb b/notebook/0_basic_MLDL/2_0_dl_overview.ipynb
deleted file mode 100644
index 7c9489b..0000000
--- a/notebook/0_basic_MLDL/2_0_dl_overview.ipynb
+++ /dev/null
@@ -1,92 +0,0 @@
-{
- "cells": [
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# Deep Learning Overview\n",
- "\n",
- "**Deep learning** is a category of **machine learning**. Machine learning is a category of **artificial intelligence**. Deep learning is the use of neural networks to do machine learning, like classify and regress data. This chapter provides an overview and we will dive further into these topics in later chapters.\n",
- "\n",
- "There are many good resources on deep learning to supplement these chapters.\n",
- "- The introduction the from [Ian Goodfellow's book](https://www.deeplearningbook.org/contents/intro.html) to be a good intro. \n",
- "- [short video series](https://www.youtube.com/watch?v=aircAruvnKk) specifically about neural networks that give an applied introduction to the topic.\n",
- "- DeepMind has a high-level video showing what can be accomplished with [deep learning & AI](https://www.youtube.com/watch?v=7R52wiUgxZI). \n",
- "- When people write \"deep learning is a powerful tool\" in their research papers, they typically cite [this Nature paper](https://www.nature.com/articles/nature14539) by Yann LeCun, Yoshua Bengio, and Geoffery Hinton. \n",
- "- A practical and example-driven [online book](http://d2l.ai/index.html) that gives each example in Tensorflow, PyTorch, and MXNet. \n",
- "- Many chemistry-specific examples and information about deep learning in chemistry via the excellent [DeepChem](https://deepchem.io/) project. \n",
- "\n",
- "The main advice I would give to beginners in deep learning are to focus **less** on the neurological inspired language (i.e., connections between neurons), and instead view deep learning as a series of linear algebra operations where many of the matrices are filled with adjustable parameters. Of course nonlinear functions (activations) are used to join the linear algebra operations, but deep learning is essentially linear algebra operations specified via a \"computation network\" (aka computation graph) that vaguely looks like neurons connected in a brain.\n",
- "\n",
- "```{admonition} nonlinearity\n",
- "A function $f(\\vec{x})$ is linear if two conditions hold:\n",
- "\n",
- "\\begin{equation}\n",
- "f(\\vec{x} + \\vec{y}) = f(\\vec{x}) + f(\\vec{y})\n",
- "\\end{equation}\n",
- "\n",
- "for all $\\vec{x}$ and $\\vec{y}$. And\n",
- "\n",
- "\\begin{equation}\n",
- "f(s\\vec{x}) = sf(\\vec{x})\n",
- "\\end{equation}\n",
- "\n",
- "where $s$ is a scalar. A function is **nonlinear** if these conditions do not hold for some $\\vec{x}$.\n",
- "```"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "```{note}\n",
- "The content in this part is primary from: \n",
- "- [Deep Learning for molecules & materials](https://dmol.pub/ml)\n",
- "```\n",
- "\n",
- "## References\n",
- "\n",
- "```{bibliography}\n",
- ":style: unsrtalpha\n",
- ":filter: docname in docnames\n",
- "```"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
- }
- ],
- "metadata": {
- "celltoolbar": "Tags",
- "kernelspec": {
- "display_name": "base",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.9.7 | packaged by conda-forge | (default, Sep 29 2021, 19:15:42) [MSC v.1916 64 bit (AMD64)]"
- },
- "vscode": {
- "interpreter": {
- "hash": "2b6e7cfdce5ef245d32482b7f80393907c6182a3f3a40203474e09cb3d62b454"
- }
- }
- },
- "nbformat": 4,
- "nbformat_minor": 4
-}
diff --git a/notebook/0_basic_MLDL/2_1_dl_neural_network.ipynb b/notebook/0_basic_MLDL/2_1_dl_neural_network.ipynb
deleted file mode 100644
index ee57b22..0000000
--- a/notebook/0_basic_MLDL/2_1_dl_neural_network.ipynb
+++ /dev/null
@@ -1,493 +0,0 @@
-{
- "cells": [
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# What is a neural network?\n",
- "\n",
- "The *deep* in deep learning means we have many layers in our neural networks. What is a neural network? Without loss of generality, we can view neural networks as 2 components: \n",
- "- (1) a nonlinear function $g(\\cdot)$ which operates on our input features $\\mathbf{X}$ and outputs a new set of features $\\mathbf{H} = g(\\mathbf{X})$ \n",
- "- and (2) a linear model like we saw in our {doc}`/1_1_ml_supervised_unsuppersives`. \n",
- "\n",
- "Our model equation for deep learning regression is:\n",
- "\n",
- "\\begin{equation}\n",
- " \\hat{y} = \\vec{w}g(\\vec{x}) + b\n",
- "\\end{equation}\n",
- "\n",
- "One of the main discussion points in our ML chapters was how arcane and difficult it is to choose features. Here, we have replaced our features with a set of trainable features $g(\\vec{x})$ and then use the same linear model as before. So how do we design $g(\\vec{x})$? That is the deep learning part. $g(\\vec{x})$ is a differentiable function composed of **layers**, which are themselves differentiable functions each with trainable weights (free variables). Deep learning is a mature field and there is a set of standard layers, each with a different purpose. For example, convolution layers look at a fixed neighborhood around each element of an input tensor. Dropout layers randomly inactivate inputs as a form of regularization. The most commonly used and basic layer is the **dense** (or **fully-connected**) layer.\n",
- "\n",
- "```{margin}\n",
- "Dense means each input element affects each output element. At one point, sparse layers were popular and had a nice analogy with how a brain is connected. However, dense layers do not require deciding which input/output connections to make and sparse layers are very rare now (except incidentally sparse layers, like convolutions).\n",
- "```\n",
- "\n",
- "A dense layer is defined by two things: the desired output feature shape and the **activation**. The equation is:\n",
- "\n",
- "\\begin{equation}\n",
- " \\vec{h} = \\sigma(\\mathbf{W}\\vec{x} + \\vec{b})\n",
- "\\end{equation}\n",
- "\n",
- "where $\\mathbf{W}$ is a trainable $D \\times F$ matrix, where $D$ is the input vector ($\\vec{x}$) dimension and $F$ is the output vector ($\\vec{h}$) dimension, $\\vec{b}$ is a trainable $F$ dimensional vector, and $\\sigma(\\cdot)$ is the activation function. $F$, the number of output features, is an example of a **hyperparameter**: it is not trainable but is a problem dependent choice. $\\sigma(\\cdot)$ is another hyperparameter. In principle, any differentiable function that has a domain of $(-\\infty, \\infty)$ can be used for activation. However, the function should be nonlinear. If it were linear, then stacking multiple dense layers would be equivalent to one-big matrix multiplication and we'd be back at linear regression. So activations should be nonlinear. Beyond nonlinearity, we typically want activations that can \"turn on\" and \"off\". That is, they have an output value of zero for some domain of input values. Typically, the activation is zero, or close to, for negative inputs. \n",
- "\n",
- "The most simple activation function that has these two properties is the rectified linear unit (ReLU), which is \n",
- "\n",
- "$$\n",
- "\\sigma(x) = \\left\\{\\begin{array}{lr}\n",
- "x & x > 0\\\\\n",
- "0 & \\textrm{otherwise}\\\\\n",
- "\\end{array}\\right.\n",
- "$$\n",
- "\n",
- "## Universal Approximation Theorem\n",
- "\n",
- "One of the reasons that neural networks are a good choice at approximating unknown functions ($f(\\vec{x})$) is that a neural network can approximate any function with a large enough network depth (number of layers) or width (size of hidden layers). There are many variations of this theorem -- infinitely wide or infinitely deep neural networks. For example, any 1 dimensional function can be approximated by a depth 5 neural network with ReLU activation functions with infinitely wide layers (infinite hidden dimension) {cite}`lu2017expressive`. The universal approximation theorem shows that neural networks are, in the limit of large depth or width, expressive enough to fit any function.\n",
- "\n",
- "\n",
- "## Frameworks\n",
- "\n",
- "Deep learning has lots of \"gotchas\" -- easy to make mistakes that make it difficult to implement things yourself. This is especially true with numerical stability, which only reveals itself when your model fails to learn. We will move to a bit of a more abstract software framework than JAX for some examples. We'll use [Keras](https://keras.io/), which is one of many possible choices for deep learning frameworks. \n",
- "\n",
- "## Discussion\n",
- "\n",
- "When it comes to introducing deep learning, I will be as terse as possible. There are good learning resources out there. You should use some of the reading above and tutorials put out by Keras (or PyTorch) to get familiar with the concepts of neural networks and learning."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "outputs": [],
- "source": [
- "## set env\n",
- "import sys, re, os\n",
- "from pathlib import Path\n",
- "dir_nb = Path(globals()['_dh'][0]) \n",
- "\n",
- "import tensorflow as tf\n",
- "import pandas as pd\n",
- "import numpy as np\n",
- "import matplotlib.pyplot as plt\n",
- "plt.style.use(str(dir_nb.parents[1]/\"code/light.mplstyle\"))\n",
- "\n",
- "import warnings\n",
- "warnings.filterwarnings(\"ignore\")"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example model\n",
- "\n",
- "We'll see our first example of deep learning by revisiting the solubility dataset with a two layer dense neural network.\n",
- "\n",
- "### Load Data\n",
- "\n",
- "We download the data and load it into a [Pandas](https://pandas.pydata.org/) data frame and then standardize our features as before."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {},
- "outputs": [],
- "source": [
- "soldata = pd.read_csv( \"https://github.com/whitead/dmol-book/raw/main/data/curated-solubility-dataset.csv\")\n",
- "features_start_at = list(soldata.columns).index(\"MolWt\")\n",
- "feature_names = soldata.columns[features_start_at:]\n",
- "\n",
- "# standardize the features\n",
- "soldata[feature_names] -= soldata[feature_names].mean()\n",
- "soldata[feature_names] /= soldata[feature_names].std()"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Prepare Data for Keras\n",
- "\n",
- "The deep learning libraries simplify many common tasks, like splitting data and building layers. This code below builds our dataset from numpy arrays. "
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {},
- "outputs": [],
- "source": [
- "full_data = tf.data.Dataset.from_tensor_slices( ( soldata[feature_names].values, soldata[\"Solubility\"].values ) ).shuffle(1000)\n",
- "N = len(soldata)\n",
- "test_N = int(0.1 * N)\n",
- "test_data = full_data.take(test_N).batch(16)\n",
- "train_data = full_data.skip(test_N).batch(16)"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Notice that we used `skip` and `take` (See {obj}`tf.data.Dataset`) to split our dataset into two pieces and create batches of data.\n",
- "\n",
- "### Neural Network\n",
- "Now we build our neural network model. In this case, our $g(\\vec{x}) = \\sigma\\left(\\mathbf{W^0}\\vec{x} + \\vec{b}\\right)$. We will call the function $g(\\vec{x})$ a *hidden layer*. This is because we do not observe its output. Remember, the solubility will be $y = \\vec{w}g(\\vec{x}) + b$. We'll choose our activation, $\\sigma(\\cdot)$, to be tanh and the output dimension of the hidden-layer to be 32. The choice of tanh is empirical --- there are many choices of nonlinearity and they are typically chosen based on efficiency and empirical accuracy. You can read more about this Keras [API here](https://keras.io/guides/sequential_model/), however you should be able to understand the process from the function names and comments."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {},
- "outputs": [],
- "source": [
- "# our hidden layer\n",
- "# We only need to define the output dimension - 32.\n",
- "hidden_layer = tf.keras.layers.Dense(32, activation=\"tanh\")\n",
- "# Last layer - which we want to output one number the predicted solubility.\n",
- "output_layer = tf.keras.layers.Dense(1)\n",
- "\n",
- "# Now we put the layers into a sequential model\n",
- "model = tf.keras.Sequential()\n",
- "model.add(hidden_layer)\n",
- "model.add(output_layer)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "WARNING:tensorflow:Layer dense is casting an input tensor from dtype float64 to the layer's dtype of float32, which is new behavior in TensorFlow 2. The layer has dtype float32 because it's dtype defaults to floatx.\n",
- "\n",
- "If you intended to run this layer in float32, you can safely ignore this warning. If in doubt, this warning is likely only an issue if you are porting a TensorFlow 1.X model to TensorFlow 2.\n",
- "\n",
- "To change all layers to have dtype float64 by default, call `tf.keras.backend.set_floatx('float64')`. To change just this layer, pass dtype='float64' to the layer constructor. If you are the author of this layer, you can disable autocasting by passing autocast=False to the base Layer constructor.\n",
- "\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- ""
- ]
- },
- "execution_count": 5,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# our model is complete\n",
- "# Try out our model on first few datapoints\n",
- "model(soldata[feature_names].values[:3])"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "```{margin} Jax vs Keras\n",
- "We could have implemented this in Jax, but it would\n",
- "have been a few more lines of code. To keep the focus high level, \n",
- "I've used Keras for this chapter.\n",
- "```\n",
- "\n",
- "We can see our model predicting the solubility for 3 molecules above. There may be a warning about how our Pandas data is using float64 (double precision floating point numbers) but our model is using float32 (single precision), which doesn't matter that much. It warns us because we are technically throwing out a little bit of precision, but our solubility has much more variance than the difference between 32 and 64 bit precision floating point numbers. We can remove this warning by modifying the last line to be:\n",
- "\n",
- "```py\n",
- "model(soldata[feature_names].values[:3].astype(float))\n",
- "```\n",
- "\n",
- "At this point, we've defined how our model structure should work and it can be called on data. Now we need to train it! We prepare the model for training by calling {obj}`model.compile`, which is where we define our optimization (typically a flavor of stochastic gradient descent) and loss"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {},
- "outputs": [],
- "source": [
- "model.compile(optimizer=\"SGD\", loss=\"mean_squared_error\")"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Look back to the amount of work it took to previously set-up loss and optimization process! Now we can train our model"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "tags": [
- "remove-output"
- ]
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Train for 562 steps\n",
- "Epoch 1/50\n",
- "562/562 [==============================] - 1s 1ms/step - loss: 2.2192\n",
- "Epoch 2/50\n",
- "562/562 [==============================] - 0s 732us/step - loss: 1.7783\n",
- "Epoch 3/50\n",
- "562/562 [==============================] - 0s 745us/step - loss: 1.6714\n",
- "Epoch 4/50\n",
- "562/562 [==============================] - 0s 696us/step - loss: 1.5818\n",
- "Epoch 5/50\n",
- "562/562 [==============================] - 0s 728us/step - loss: 1.5503\n",
- "Epoch 6/50\n",
- "562/562 [==============================] - 0s 743us/step - loss: 1.5198\n",
- "Epoch 7/50\n",
- "562/562 [==============================] - 0s 776us/step - loss: 1.4744\n",
- "Epoch 8/50\n",
- "562/562 [==============================] - 0s 723us/step - loss: 1.4667\n",
- "Epoch 9/50\n",
- "562/562 [==============================] - 0s 701us/step - loss: 1.4570\n",
- "Epoch 10/50\n",
- "562/562 [==============================] - 0s 757us/step - loss: 1.4336\n",
- "Epoch 11/50\n",
- "562/562 [==============================] - 0s 728us/step - loss: 1.4395\n",
- "Epoch 12/50\n",
- "562/562 [==============================] - 0s 765us/step - loss: 1.4254\n",
- "Epoch 13/50\n",
- "562/562 [==============================] - 0s 753us/step - loss: 1.3970\n",
- "Epoch 14/50\n",
- "562/562 [==============================] - 0s 748us/step - loss: 1.3903\n",
- "Epoch 15/50\n",
- "562/562 [==============================] - 0s 750us/step - loss: 1.4100\n",
- "Epoch 16/50\n",
- "562/562 [==============================] - 0s 759us/step - loss: 1.4047\n",
- "Epoch 17/50\n",
- "562/562 [==============================] - 0s 711us/step - loss: 1.3958\n",
- "Epoch 18/50\n",
- "562/562 [==============================] - 0s 776us/step - loss: 1.3979\n",
- "Epoch 19/50\n",
- "562/562 [==============================] - 0s 715us/step - loss: 1.3744\n",
- "Epoch 20/50\n",
- "562/562 [==============================] - 0s 731us/step - loss: 1.3654\n",
- "Epoch 21/50\n",
- "562/562 [==============================] - 0s 745us/step - loss: 1.3711\n",
- "Epoch 22/50\n",
- "562/562 [==============================] - 0s 775us/step - loss: 1.3722\n",
- "Epoch 23/50\n",
- "562/562 [==============================] - 0s 746us/step - loss: 1.3858\n",
- "Epoch 24/50\n",
- "562/562 [==============================] - 0s 739us/step - loss: 1.3608\n",
- "Epoch 25/50\n",
- "562/562 [==============================] - 0s 744us/step - loss: 1.3188\n",
- "Epoch 26/50\n",
- "562/562 [==============================] - 0s 716us/step - loss: 1.3470\n",
- "Epoch 27/50\n",
- "562/562 [==============================] - 0s 735us/step - loss: 1.3250\n",
- "Epoch 28/50\n",
- "562/562 [==============================] - 0s 751us/step - loss: 1.3449\n",
- "Epoch 29/50\n",
- "562/562 [==============================] - 0s 756us/step - loss: 1.3356\n",
- "Epoch 30/50\n",
- "562/562 [==============================] - 0s 733us/step - loss: 1.3387\n",
- "Epoch 31/50\n",
- "562/562 [==============================] - 0s 727us/step - loss: 1.3142\n",
- "Epoch 32/50\n",
- "562/562 [==============================] - 0s 780us/step - loss: 1.3136\n",
- "Epoch 33/50\n",
- "562/562 [==============================] - 0s 744us/step - loss: 1.3093\n",
- "Epoch 34/50\n",
- "562/562 [==============================] - 0s 744us/step - loss: 1.3003\n",
- "Epoch 35/50\n",
- "562/562 [==============================] - 0s 745us/step - loss: 1.3017\n",
- "Epoch 36/50\n",
- "562/562 [==============================] - 0s 721us/step - loss: 1.3063\n",
- "Epoch 37/50\n",
- "562/562 [==============================] - 0s 783us/step - loss: 1.3166\n",
- "Epoch 38/50\n",
- "562/562 [==============================] - 0s 769us/step - loss: 1.3138\n",
- "Epoch 39/50\n",
- "562/562 [==============================] - 0s 737us/step - loss: 1.3029\n",
- "Epoch 40/50\n",
- "562/562 [==============================] - 0s 743us/step - loss: 1.3116\n",
- "Epoch 41/50\n",
- "562/562 [==============================] - 0s 734us/step - loss: 1.2975\n",
- "Epoch 42/50\n",
- "562/562 [==============================] - 0s 754us/step - loss: 1.2994\n",
- "Epoch 43/50\n",
- "562/562 [==============================] - 0s 759us/step - loss: 1.2822\n",
- "Epoch 44/50\n",
- "562/562 [==============================] - 0s 736us/step - loss: 1.2819\n",
- "Epoch 45/50\n",
- "562/562 [==============================] - 0s 732us/step - loss: 1.2906\n",
- "Epoch 46/50\n",
- "562/562 [==============================] - 0s 747us/step - loss: 1.2754\n",
- "Epoch 47/50\n",
- "562/562 [==============================] - 0s 739us/step - loss: 1.2543\n",
- "Epoch 48/50\n",
- "562/562 [==============================] - 0s 735us/step - loss: 1.2622\n",
- "Epoch 49/50\n",
- "562/562 [==============================] - 0s 744us/step - loss: 1.2885\n",
- "Epoch 50/50\n",
- "562/562 [==============================] - 0s 728us/step - loss: 1.2592\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- ""
- ]
- },
- "execution_count": 7,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "model.fit(train_data, epochs=50)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "That was quite simple!\n",
- "\n",
- "```{margin}\n",
- "An epoch is one iteration over the whole dataset, regardless of batch size.\n",
- "```\n",
- "\n",
- "For reference, we got a loss about as low as 3 in our previous work. It was also much faster, thanks to the optimizations. Now let's see how our model did on the test data"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {
- "tags": [
- "remove-output"
- ]
- },
- "outputs": [],
- "source": [
- "# get model predictions on test data and get labels\n",
- "# squeeze to remove extra dimensions\n",
- "yhat = np.squeeze(model.predict(test_data))\n",
- "test_y = soldata[\"Solubility\"].values[:test_N]"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGACAYAAADrmrZvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAABP+AAAT/gEHlDmEAACU0ElEQVR4nO2deXgUxdbG35nMnkAIhi0CCYsLyC6yKBBAERBEQBEUFPQq4FUE4fqBiohKFL0S3AANKqgBZDPBoFFQtiCLijckIIICCWAUEJKwJBBCzvdH7KF7prunu6dneiap3/P0k0wv1ad6qber6tQpExERGAwGg8EIMmajDWAwGAxG9YQJEIPBYDAMgQkQg8FgMAyBCRCDwWAwDIEJEIPBYDAMgQkQg8FgMAyBCRAjaJhMJvTr189oMxgMRojABIgR0uTl5WHmzJnYunWrYP2mTZtgMpkwZswYYwwLAh999BFat24Nh8OBBg0a4PHHH8eZM2cUHbtt2zb07NkTUVFRiI6OxqBBg3DgwAHJ/f/v//4PDofDa/3ixYthMplkFwZDKxajDWAw5MjLy8OLL74Ih8OBbt26uddfe+21WLBgAa677joDrQscCxcuxNixY9G9e3fMnj0bhw4dwvz583HgwAGsX79e9ticnBzceuutqF+/PqZPn46LFy9i3rx56NmzJ3JychAbGwsAuHz5Mg4cOIAdO3ZgwYIFoml17dpVctv8+fOxZ88e/zLKqN4QgxEkAFDfvn1VHbNx40YCQK+++mqArAo9ysvLqV69etSiRQu6dOmSe/1LL71EAOi7776TPf6ee+4hq9VKhw4dcq/bsmULAaDnn3/eve7w4cMEwL3Y7XbFNv7+++9ksVhoxIgRKnLGYAhhTXBViO+++w633347oqOjUatWLXTu3BlvvPGGe/vevXsxZMgQ1K5dG06nEx06dMAnn3wiSGPMmDEwmUzYuXMnxowZg1q1auGRRx4BcKUPJyMjA127doXNZkNWVhYA4PDhw3jggQdQt25d2O12tGjRAvPnz5e1991330WHDh1Qp04dWK1W1KlTB0OHDsVvv/0GoLL5p1evXgCAZ555xt3kM3PmTOTl5cFkMmH8+PHu9CoqKjBnzhy0bNkSdrsd9erVw5gxY3Ds2DH3PtxxY8eORUpKClq3bg2n04m2bdvi66+/9uPq68euXbtw/PhxDB8+HBbLlUaKUaNGAQDWrFkjeWxFRQW+/vpr3HLLLWjSpIl7fffu3dG4cWPBsfXq1UNGRgYyMjLQqlUrVTa+8MILqKiowAsvvKDqOAaDD2uCqyIsW7YMo0aNwtVXX43HH38c0dHRWLduHZ5++mn85z//QXZ2Nnr06AG73Y5HH30U0dHR+OKLLzB69Gjk5eVhxowZgvR69eqFAQMG4KWXXkKLFi3c6zdt2oRdu3ZhzJgxeOCBB5CQkIDff/8dXbt2hdVqxb/+9S/ExMTg22+/xeOPPw6z2SwQCT67du1CXFwc7rzzTsTGxuLAgQNYuHAhdu7ciQMHDqBr16546qmnMHfuXAwePBh9+/YFAHTs2FE0vTFjxuDTTz9F//79MWbMGBw9ehQffPAB1q9fj59++gkNGjRw77t48WKsWbMGjzzyCGrVqoU333wTd911F/bv34+EhATZa/3XX3+hvLxcdh+LxYL69evL7iPFL7/8AgCC6w4ATZo0gcPhkG32OnLkCM6dO+d1LJfehg0bcPnyZURERMDpdGLgwIEAgDfeeMMt/L7Yu3cvli1bhpEjR+L6669Xmi0Gwxujq2AM/zlz5gzFxMTQ1VdfTSdPnhRsW79+PRERdevWjWw2G/3+++/ubZcuXaLExESKiIigw4cPExHR6NGjCQClp6d7nQcANW/e3Osc/fv3p3r16tHx48cF6++44w6qXbs2lZWVuY/nN8FVVFR4nWPmzJkEgL766isikm6C45qPxo0bR0RE3377LQGgf/3rX17556/njuvcubMgH19++aXipr74+HhB05XYEh8f7zMdKV577TUCQOvWrfPa1qBBA7rhhhskj925cycBoGeffdZr23333UcAvO4fEVFiYqLiJrjBgweTxWKh3377TdH+DIYUrAZUBVi3bh0KCwvxzDPPuDuYOW677TacOHECW7duxbBhw9CsWTP3NovFggkTJmDz5s3IyMjAhAkT3Ns6d+4seq5mzZoJzlFUVISvv/4aY8aMQVlZmaC5q1OnTvjqq6+wb98+tGnTxistk8mEiooK/O9//8P+/ftRVFTk9tQ6efKkqmvw+eefAwAmT57slf9WrVohPT0dH3zwgXt9u3btBPngagx5eXk+z/XRRx+hpKREdh+Xy+UzHf614mjYsCEuXrwIAILmNw6r1YrS0lLJNH0dC0D2eF/89NNPSE9Px8MPP4zmzZtrTofBAFgTXJXg4MGDAIDWrVuLbj98+DAAiBYY11xzDQDg0KFDms594MABEBEWLVqERYsWie5TVFQkuj4tLQ0TJkzAH3/8AbPZjAYNGrgLyYqKClV2HDp0CCaTSSCwHNdccw327NmD4uJiyeOjoqIAABcuXPB5rt69e6uyTYpGjRp5rSMi2O12AJVeap5cunQJNWrUkEzT17EA4HQ6NdkLAM8++yysViuef/55zWkwGBxMgKoAXGEtNSaD/pnySWy73DY157733nvxwAMPiO5zww03eK375ZdfcO+996Jhw4ZYtWoVBgwYAIfDgVWrVmHYsGGq7SCZaa2U5FFN/vXqA8rIyBBdX69ePQAQHfNTWFgo63oud+zp06dhsVhQq1YtWbuk2Lx5M9avX4/x48f77CdjMJTABKgKwHk77d27191RL7Z9//79Xtt+//13wT5q4QqiiooKd4e2Er7++muUl5fjrbfewqBBgyT3UyoMTZs2BRHht99+8/Lo+v3331G7dm3UrFkTp0+fVmyjFF26dEF+fr7sPvHx8T6b86SuFyfYP//8M4YOHepen5eXhwsXLogKOkejRo1Qs2ZN/Pzzz17b9u/fj+uuu060eU4Jzz33HOx2O5577jlNxzMYnjA37CrAbbfdBpfLhXfeeceruWvz5s2oV68eunTpgoyMDIGnU3l5Od555x2YzWZV4sGnfv366Nq1K9LS0rBjxw6v7T/++KNocxrX5MXvjyAi/PDDD4L96tatCwA+heOuu+4CACQnJwvWf/vtt9izZ497ux589NFHbvdlqeWjjz7SnH6HDh0QFxeHtLQ0QU1r2bJlAIA777zTve7IkSP49ddf3c2LZrMZd9xxB3744QeBSG7fvh15eXmCY9Xw1Vdf4fvvv8fYsWPRsGFDTWkwGJ6wGlAV4KqrrsLs2bPx5JNPokOHDrj//vsRExODTZs2YevWrSgsLMSbb76JXr16oWvXrvjXv/6FWrVqYc2aNdi5cydmzJihuQYEAPPmzUNiYiJ69OiBkSNHolWrVigpKcG3336LLVu24NKlSzCbhd86AwYMQM2aNTFx4kTs378fTqcTq1ev9vpyb9asGRo2bIj58+cjIiICDocDHTp08Orv6tu3L4YOHYpFixbhzz//RO/evXHkyBF88MEHaNCgAWbNmqU5f57o1QckhdlsxqxZs/Dwww/j1ltvxZAhQ3Do0CEsWLAAPXr0ENRyH3zwQWzevBmLFi1yhyWaPn06vvjiC/Tu3RuPPvqoOxJC3bp1MWnSJPexJSUl+OqrrwBUOn1UVFRg1apVAIDExETUqVMHQOWHwfTp0+F0OvHMM88ENO+MaoZh/ncM3Vm9ejV17dqVIiMjyeFwUOfOnWn+/Pnu7bt27aIBAwZQdHQ02e12ateuHX300UeCNDg37D///NMrfchEMvjtt99ozJgx1LBhQ7JYLBQdHU19+vShDz/8UPL4rVu30k033UQ2m43i4uLo6aefpg8++IAA0KJFi9z7bd++nTp16kQOh4NiY2Np6dKlXm7YRERlZWU0a9Ysuuaaa8hqtVJsbCw98MADdOTIEfc+YscREZ08eZIA0OjRo+UvchBZtGgRtWrVimw2G9WrV4/Gjx9PhYWFgn0SExO9rhdR5TVLTEwkl8tFNWrUoAEDBtC+ffsE+3hGQuAvGzdudO+3YsUKAkCTJ08OUE4Z1RUTkUzvLYPBYDAYAYL1ATEYDAbDEJgAMRgMBsMQmAAxGAwGwxCYADEYDAbDEJgAMRgMBsMQmAAxGAwGwxCYADEYDAbDEJgAVRF69uwJh8NhtBkMBoOhGCZAjJCmvLwcs2fPRu/evdGwYUNERUWhXbt2WLhwoaIpGz766CP069cPCQkJcDgcaNiwIR544AH3vEN8Fi5ciOuvvx52ux0JCQlISkpyT2HAUVpaipdffhktWrSAy+VCs2bN8Pjjj+PEiRO65ZnBqC6wSAhVhJ49e2LHjh2K5rMJJ4qKilC7dm307t0biYmJsFqtWL58ObKzs/HMM8/glVdekT2+cePGaN68Obp164arrroKe/bswaJFixAbG4v9+/cjOjoaAPDEE09g3rx5uOeee9C5c2fs2rULn332Gfr164evvvrKPXle7969kZWVhVGjRqFdu3bYs2cPPv74Y8THxyM7O1t2rh4Gg+GBsZGAGHqhZkrlcKK0tJR+/PFHwbqSkhKKj48nl8vlnu5bioMHD3qtmzp1KgGgL774gogq46aZTCZ6/PHHBftNmTJFsN+GDRsIAE2ZMkWwHzeN+Mcff6w6fwxGdYY1wVVh9u7diyFDhqB27dpwOp3o0KEDPvnkE8E+p06dwoQJE9CkSRM4nU5cc801uO+++5Cbm6toe6BxOBzo2LGjYJ3T6USnTp1QUlKCU6dOyR7ftGlTr3XcrKHcjKTp6ekgIowcOVKw31NPPQXgynTf3DTh3CyyHNz05efPn1eUJwaDUQmbjqGKkp2djR49esBut+PRRx9FdHQ0vvjiC4wePRp5eXmYMWMGiAgDBgxAdnY2xo8fj6ZNm+LQoUNYsmQJ2rZti1atWslul5oCHKickVNsVk5P6tSp4xYENRw9ehRWq9U9ZYAvCgsLUVBQgPXr1+P111/HxIkT0a5dOwBX5hqKjY0VHHP11VcjJiYGe/bsAQB07doVNpsNc+bMQZ8+fdzilpWVBavViv79+6vOB4NRrTG6CsbQB88muG7dupHNZqPff//dve7SpUuUmJhIERERdPjwYdq7dy8BoP/85z+CtM6cOUN79+71uV2OF154QTLUPyTC/islJyeHTCYTDRo0SPExI0eOdJ9z+vTpVFFR4d42a9YsAkDLli3zOq5x48bUvHlz9+/PP/+coqOjyWaz0QMPPEBvvPEGxcTE0NKlS1Xng8Go7rAaUBXkxIkT2Lp1K4YNG4ZmzZq511ssFkyYMAGbN29GRkYGbr/9dgDATz/9hDNnzqBmzZoAgBo1aqBly5buKbyltstx//33ezWdiSFXixLj4sWLGDNmDGw2G15++WXFx/3nP//BoEGDsGvXLiQnJ2PXrl1Yu3YtzGYz7rvvPrz88suYOHEiAOCmm27CiRMnkJGRgePHj6N58+budKKiohATE4MBAwZg27Zt+PTTT3HNNdegcePGqvLBYDDAakBVBX4NaMeOHQSAnnnmGa/9du/eTQBo0qRJRER0zz33EAByOBzUo0cPevbZZ2nPnj3u/X1tDyYVFRV0//33EwBauHCh5nTeeecdAiCYjG/t2rUUGxvrriWZTCYaOnQomUwmuu2224iI6KeffiKbzUazZ89225ORkUHx8fFkt9tpx44d/mWQwahmMAGqIvAFaPv27QSAnn32Wa/9srOzCQA99dRTRER0+fJlSk9PpzFjxlCLFi0IAFksFvr8888VbZeiuLiYjh496nO5cOGC4jxOnjyZAFBSUpLiY8TIyckRnRW1tLSUdu7cSRs2bKCCggL6+++/CQBNnTqViIgeeughAkBnzpwRHMeJ+gMPPOCXXQxGdYMJUBWBL0B//fUXAaC7777ba79Vq1YRAHr77bdF09m5cydZrVbq3r27pu0cevcBPfPMMwSAXnnlFUX7y7F582ZFU0x/8sknBMBds+nbty+ZTCY6e/asYL+zZ88SAOrXr5/ftjEY1QnWB1QFqVevHrp06YKMjAz89ttvbrfh8vJyvPPOOzCbzRg4cCBycnJgMpkE/TAdO3aEy+VCeXm5z+1y6NUHRESYPHky3nrrLcyZMweTJ0+W3PfgwYO4dOkSGjduDJfLhT179qCiogJt2rQR7Pfee+8BAAYOHCiZVl5eHqZNm4Y+ffq43azbtm2Lb775Bh9++KG7vwiodOMGgE6dOsnmhcFgCGGREKoInpEQdu7ciV69esHlcuFf//oXatWqhTVr1mDnzp2YMWMGXnzxRaSnp+Puu+9G37590b17d9hsNmRkZGDz5s1YsWIFrFar7PZhw4YFPF8rVqzA8OHDkZiYiBEjRnhtj4uLw6BBgwAACQkJyM/Px8aNG9GzZ0+kp6dj6NChuO2229CzZ09YLBZkZmZi06ZNeOCBBwRjopYtW4aDBw+iZs2a2LdvH5YsWYKrr74amzZtQr169QAAf/31F2688Ub8+eefuP/++9GhQwf8+uuv+Pjjj9G0aVPs2LHDHVmBwWAowOAaGEMnxCIh7Nq1iwYMGEDR0dFkt9upXbt2go73v//+m5577jlq3bo1ORwOcjgcdNNNN9GaNWsUbQ8GixYtkm3CS0xMdO8bHx8vaNYrKCigKVOmUMeOHalOnTpks9nouuuuo1deeYUuXbokOM9///tfslqtFBkZSa1ataKZM2fSuXPnvOw5efIk/fvf/6YGDRqQxWKhq6++miZMmECnT58O5GVgMKokrAbEYDAYDENgoXgYDAaDYQhMgBgMBoNhCEyAGAwGg2EITIAYDAaDYQhMgBgMBoNhCEyAGAwGg2EITIAYDAaDYQhVUoDWr1+PESNGoEWLFnC5XGjSpAnGjRuHEydOGG0ag8FgMP6hSg5EHTx4MHJzczFo0CA0btwYu3btwrJly9CkSRPk5OTA5XIZbSKDwWBUe6pkMNJp06bhpptuQkREhHvd1Vdfjddffx1paWkYOXKk6HEFBQVYu3YtmjZtisjIyGCZy2AwGFWO8+fP49ChQxg4cCDi4uLEdzI2ElDw+PLLLwkAvfrqq5L7vP/++4qmEGALW9jCFrYoW95//33JMrdK1oDEOHr0KIDKmpAUTZs2BQDMmjUL1113nWBbjRo13FNSMxgMBkOe3NxcjBs3zl2uilEtBIiI8OGHH8Jms+H222+X3I9rdps+fbrXthdeeAEzZ84UrNuyZQuOHDkCALBarRg+fLhk2hkZGSguLgYAxMbGol+/fpL7pqamuv9v1qwZunbtKrpfUVER1q5d6/594403okWLFqL75ufnIysry/27d+/ektXinJwc5OTkuH8PGTJEskmSXQN2DQB2DQB2DQDhNTh+/DgAyHZnVEknBE/eeOMNPP3005g2bRpeffVVyf22b9+Om2++GStXrkSHDh0E22JiYhATExNoUxkMBqNKwJWn27ZtkxTNKl8D+uqrrzBt2jT06tULL730kqJjrr76atlqI4PBYDD8p0qOA+LYvn07hg8fjg4dOiAtLQ1Wq9VokxgMBoPxD1VWgH788Uf0798fLVu2xPr168N+quTz588bbULQqE55BVh+qzosv9JUSQHasmULbrvtNrRp06ZKiA8ApKWlGW1C0KhOeQVYfqs6LL/SVMk+oH79+sFms2HIkCFYunSp1/aRI0eiRo0aBljGYDAYDI4qKUClpaUoLS3F5MmTRbf369ePCRCDwWAYTJUUoKroWd6mTRujTQga1SmvAMtvVYflV5oq2QdUFalOD3F1yivA8lvVCcv8XroE2GyAyQTs2qXqUCZADAaDwdDGr79Wis+lS5W/7faAnYoJEIPBYDAqeestgB++58cfgVatAna6KtkHxGAwGAwVEAHXXw8cOHBlXUkJ4HQG9LSsBsRgMBjVmT//BMzmK+LzwAOVghRg8QGYADEYDEb1ZcUKgB8FOzMT+OSToJ2eCVCYUFBQYLQJQaM65RVg+a3qhGx+77gD4E8ZceoUIDMthFLU5JcJUJiwYcMGo00IGtUprwDLb1Un5PJ75kyle3VmZuXvW26pbHKrXVuX5NXklwkQg8FgVBc2bQL4sTEXLQK2bjXMHOYFx2AwGNWBxx8H5s+/8jsvD4iPN8wcgAlQ2NC9e3ejTQga1SmvAMtvVcfw/JaVCQeT1qsHFBRUer4FADX5ZU1wYUK8wV8qwaQ65RVg+a3qGJrf3Fyh+MyaBfz1V8DEB1CXX1YDYjAYjKrIa68B06Zd+Z2dDbRta5g5YjABYjDCkOLiYuTl5SEhISFgEy4G4xyMAFBRATRqVNnMxnHhQkBjummFNcExGGFGeno64uLi0K5dO8TFxSE9PT0sz8EIAEeOABERV8Rn7NhKF+sQFB+ACRCDEVYUFxdj5MiRKCkpAQCUlJRg5MiRKC4uDqtzMALAp58Kvdq++w54/33j7FEAEyAGI4zIy8tzCwNHSUkJ8vLywuocDJ3p2RN48MErv4uKgN69jbJGMUyAwoR9+/YZbULQqE55BdTlNyEhATabTbDOZrMhISFBN3sSEhLgcrkE61wul27nYPdXRwoLK6MabN5c+btPn8omNwP77NTklwlQmLBL5ayE4Ux1yisQevmNjo7GkiVL3CLkcrmwZMkS3RwRQi2/gSZg+V23Thg+Z+nSynUGoya/zAuOUa0JN0+vvLw8lJWVCdaVlZUhLy8PbXV0sR08eDAKCgrC6tpUKx5+uDKMDsexY8DVVxtnj0ZYDYhRJSkuLsbu3btlO875nl4NGjTA3LlzQ76jPRhNcBzR0dFo27YtE59Q4sKFyiY3TnyaNKl0uw5D8QGYAIUNAwcONNqEoOFvXpW4EHt6epWWlmLy5Mlo0KBB0F2Oq9O9BVh+NfPzz8JJ4t54Azh0qFKQQgg1+WUCFCbUqlXLaBOChj95VepCLObpBVQKUbBdjtXkV64JLlyoTs8yoFN+X3wRuPHGK7/37gWmTPE/3QCgJr9MgBhVCqUuxGKeXnL7+0txcTG2bt2KrVu3qhY3fnOinh5qSpopQ/n4asHly5WOBjNnXllXVga0bGmYSXrCBIhRpVBaQHOeXk6Ree9dLhdiYmJ0KxzT09NRt25ddO/eHd27d0fdunUVN/N5Nidu3LhRFw81fyMdGH18teDwYcBiqXS1BoCJEytdrK1WY+3SE2K42bZtGwGgbdu2GW0Kww/S0tLI5XIRAHK5XJSWlia5b1FRESUnJ5PT6XTvP23aNMXH+6KoqMidNn9xOp1UVFTk81jODm5xuVxUVFRERUVFlJ2d7TMNtemGw/HVgoULiSrlpnLJyjLaItUoKU9ZDYhR5eBciLOzs1FQUIDBgwdL7hsdHY2nnnoKf/75J7Kzs7Fv3z68/fbbuoWhycvLQ2lpqdf60tJSn818cs2J/nio+RvpwOjjqzREwE03AY8+emXdmTNAt27G2RRAmAAxqiRqC2hu/8LCQl0Lx4SEBNFmPqfTiYSEBNl+EL36ezzP4W+6Rh9fZfn778p5en76qfL3oEGVglSjhrF2BRAmQGHC9u3bjTYhaBiZV7HC0el04uzZs5pqQdHR0Vi6dKlg7I7NZsPSpUuxceNG2X4Qz4gETqcTs2bNUnV+sb4WrZEOOCED4Fc/1C+//CI43uFwICUlpcqON1L0PK9dC9Spc+X36tXAmjWBMyqAqHp/g9gkGPKEch/Qp59+arQJQcPovPL7kGw2G9lsNr/7g4qKiigrK4uysrLcfThK+0HE+qmU2OHrHGr6kcT61bT2Q3H3NzU1lRwOhy59baGMz+d5xAhhf8+ffwbHsADB5Zf1ATEYGuD6kLKyshAREeEed+NPf1B0dDS6deuGbt26ITo6WnU/yPTp0919SUrt8HUOpc2UUmOrAEge78vFuri4GGPHjsWFCxdU5alKUVJSOYj0s88qf99wQ2VUg/r1jbUriDABYjBEiI6ORo0aNbwcCPTqLFfTD6K1016vvha151fiYl3tHRF27gQiI6/8fucdYM+ekItqEHCCVS0LNt9//z0lJiZSZGQk1axZk+68807av3+/7DGh3ATHCD6BdhdW6i7ujx1qXNKlUNtcqGTfau2KPW2asMnNR7kUrigpT6ukAO3evZscDgclJCTQq6++SjNnzqQ6depQgwYN6OTJk5LHMQGqfvjqx9CjAPfn/HrY4c+YIbXnz87O9hrzBICys7M1p1lluHSJyGq9Ijx2e+U6HVFyr/V4HpRQbQXonnvuIavVSocOHXKv27JlCwGg559/XvI4JkDVCzU1kGC8sL7OE2g79Di/2ppNsK6t4ezfL6z1TJ2q+ymUPM/BFP1qKUCXL1+mqKgo6tmzp9e2xo0bU5s2bSSPZQJUfTCyCUis0DW6NqD2/HLCYXReQo533xWKz44dup9CyfMc7Ge+WnrBHTlyBOfOnUOLFi28trVo0QL79u3D5cuXZdP4448/cOjQIcFSyMVjYuiGUcEoi4uLkZaWZkgnuFgHvdII3oFC7fnlnAyKi4vRpEkT7Nu3T1EkCi22hk0AU6JKz7Ynnriy7vx5oHNn3U+lxKkjFB0/qtyMqCdOnAAAxMTEeG2rXbs2Ll26hMLCQsTGxkqmMWzYMK91L7zwAmbyI9IC2LJlC44cOQIAsFqtGD58uGSaGRkZ7pcmNjYW/fr1k9w3NTXV/X+zZs3QtWtX0f2Kioqwdu1a9+8bb7xRVHgBID8/H1lZWe7fvXv3RlxcnOi+OTk5yMnJcf8eMmQIIvkeOzy0XoMDBw5gzpw5KCkpcQ9k5BdUvq4BN5NprVq1BPnydQ3mzp2LefPmoby83Gs730NMr2vAn3EVAEaMGIGLFy8CuFLQf/PNN6IFw7vvvov4+HiUlJTA4XDgrrvuEnV59vc5OHnypOj5161b57aVuwbl5eWiYrVy5UqsW7cOCxYsQFlZmfueis3SqvVdOHbsGF5++WXRZybU3oWo8+cxePz4KxtHjACWLXP/1Ls84CJu8L02HQ6HwOOR84rk32ubzYadO3eiTp06ul+Dw4cPS+bJTUDqXgbC9fXMmDHDa9uDDz5IAOjIkSOix3JVxpUrV9LBgwcFy+nTpwNterXB36YArU08UoFB8U9wUL2bijztTE5OFj13VlaW5PUIRnOWmvuRlZWlOg/BttFwVq8WNrllZATltKwPKATYuXMnAaDnnnvOa9t9991HACQ94UK5DygzM9NoE3TDl6eUXF79KYikzssVoHoiZqfT6fQSQJfLRatWrZKMNBCsQldp4SUm4C6XS1KYxLzffD3LYv1LarzrDGXQIKH4nDwZ1Hc3FLzguPxWyz6gevXqAQDOnDnjte306dOwWCxhOSPj33//bbQJuuFrgKRcXv1px5YLDNq6dWvfhqtAzM7S0lIkJSV5xVArLS0VjeAdzDZ7XxHEuX4iz4G5TqcTS5YsQevWrRUPepW7v1L9SyEfwPTs2cpBpF98Ufn7ppsqoxrExgb13VUS3cKfSOpKUJPfKidAjRo1Qs2aNfHzzz97bdu/fz+uu+46WCxVrusrrNAaDBPwryCSCwyq98soZefDDz8sWdB7FgwJCQkCWzl7pfLqz6yrYufnIzWF+bp16zB48GC/7inffilnCD3SDxhZWUDNmld+L1wI/PBD9YtqoAUtVazx48fTqVOntNXPgsCIESPIarVSXl6eex1XHZw2bZrkcUY3wclVjb/44gsDLAosUvn1lVd/27E9A4NqtdMXSu2Uym9RUZE7ECq32Gw2UbvT0tIE+9psNl3b99VEOPB1raTyK9XMxm8eDblxQxMnCpvceGMPOariuysHl1/d+oAKCwsFv+12O8XExNBbb71F5eXl2i0NEHv27CGXy0VNmzYVREKoW7cu/fXXX5LHGSlAbOyEOoJVEOkhdlrtlOuz4tviz6yravKhJSI3d6ySayAmclw+Qu59KCsTCk9MDFEIloVGoosAffzxx1S/fn3BuoMHD9LgwYPJZDJRy5Yt6ZtvvvHfWp3Zvn07JSYmksvloho1atCAAQNo3759sscYJUBh5eFTxeEXlkbfF6kC2dMWOaHSo5OeL8JOp5OSk5MD5rGYlpbmnqIhZN+HvXuF4vPCC0ZbFHo1Q/JTgH777Tfq1asXNWzYkNatWye6z/r16+mGG24gs9lMd955J/3222/+W20gRglQ2Hj4VHGUuk3rfV+URhWQskXvGpBeIqzl2LS0NLLb7aH7PrzxhlB8du0y2qKQbT3xS4BmzpxJtWrVosOHD8uepLy8nN566y2qXbs22e12evrpp+nMmTOajTYSVgOqvqhxm9bzvvALD4fDQampqaK2ZWVlydqiVx+QniKs9sNKrsZn+PtQUUEUHy8Un9JS4+z5h1AuO/wSoH379lGXLl0oPj6eNm3a5PNkp06dovHjx5PFYqF69erRhx9+qM1qA2F9QNUXqcIyOTlZ86BXLYE7AYiKEJHvZ0Stc4USe+x2u1eTWKBqQFL3wOFwGPs+HDsmFJ4xY4JugtTzFMqtJ7r0AS1YsIBiY2N9nmzv3r20aNEi6tGjB5lMJjKbzdSxY0favn27OqsNJJS94BiBRa6wlLovUuv9nbrA4XCoih7NrcvPz/fr+ZGyx2KxSE5L7uuZVfNhJSWA+fn5mvKjC0uXCsVHojsikMhdwypbA+Jz4sQJwe+jR4/S6tWraerUqdSrVy+qWbMmmc1mMplMZLFYqH379jRu3Di69tprKSIigqZMmUKXL1/2LzdBwGgBYhiLmsJSal81BUJRURFZrVa/vmDF+oi01qDlmsCcTqdXzYofGUHOU03Nh1Wg3clVcdttQvExIByXkucpVFtPAhaKh6vhmEwmqlOnDt155530yiuv0MaNG+n8+fPu/crLy2n27NlksVjo6aef1nKqoBLKAvTZZ58ZbULQMCqvSpuw5AoFNU0iYuN8uMJcaxOXEtHzVWMR80LzzIPUGCUltUS5+yvmUBH0L/rCQqHw9OjhV3L+PM9Kn6dQaj3h8huwUDxjx47F4sWLceDAAZw4cQJffPEFnnnmGfTs2VMw+jsiIgJTp07Ff/7zH3zyySdaTsX4h0uXLhltQtAIdl6Li4sxd+5cNGjQAN27d0ffvn2xceNGyf3lQuSoidSQl5eHsrIyr/VJSUmKRvhLRSfg28NHbhoFjsGDB2P//v1wOBxe2/bs2eP+Pzc318v2srIy5Obm+jyf3P3Ny8vzCvcT1CkDNmwA+JH0P/kE2LzZryT9eZ6VPk+BDq+jBjX51SRA7733Hh544AE0b95c0f5t27Z1T5PAYIQS6enpaNCgASZPnuwu+HzNhyMWU44rFNSEjBErXJxOJx5++GFFtosd72kPh9I5f4qLi1FYWIi3337bK81HH31UcZgfLXMcFRcX4+zZs5LXNuCMGwfceuuV30eOAA88EPjzyhDSIYj0IBhVstOnT9OyZcuCcSq/COUmuM2bNxttQtAIVl59DfSU6ocR66dITU0VNIF4NolINZFMmzZNcE6xUFFaxglx6XDNiosWLRLNY1ZWljttT5dwqevicrkoNTWVLBaLl7MCZ6Nc05HY/eWf22azSTo9BIQLF4RNbldfTaRjn7Uez3MoNbH5gstvtZyOwR9CWYAY+uMr1I1UH4pn34fFYpENUaPGYcGz/0dJB3N+fr6oq3RqaqpoHxNfOPlOBHL7ei5Op9PLgYLfBySVN65/LT8/n5YvX075+fk+91WKpkI6O1soPrNnh1VhH8owAVIJE6DqhZbYY1Lz3kiJiBaHheTkZJ/H8pFKRyqiAF84feVFriYkVcPhkKrVeJ73oYce8pmWLzR5gs2aJRSfnJyQ9SgLR5gAqYQJUPWBE4DU1FRVcc6UCBBfROSaooqKikQLeE7A1HhAeQqVWuEQW1wuF+Xn51NmZqaXmDmdTkUDVKWiOPgSOu7cWoOYOhwO6fFDly8T1a0rFJ+LFyUF39/xVdUVJkAqYQJUPfD8yvXsv5FDynVaSkTkajFpaWmy44BSU1NFRcFXXxCXJ1+FvtjC1U64r3+xPian00nTpk1TPF5HrqmTW6ZMmSKwf9q0aYprIqoiKOTlCYXn3/9WlI4SOxhCAiZAvXv3ptTUVCopKdFsXCjCBKjqo8fIcf4ATLvdTiNHjpStqYg16/gaw5Ofny+6PSUlxZ0PzzFLnn0Xns4SShe73U6pqamSNtrtdq905cYuiY3t8Vy4viAuooOaeyQm1KLHLVokFJ+NG30+G0o/ABjeBEyAatWqRWazmaKjo2ns2LFhFW5HDiZAVR+9Ymelpqa6v4zFOvA9CypPcfD11S63XU3tgy9UfJt9LU6nU9JzTmrhTxzniVRQU8Db80/tYF5fopGdnU10880C8Sk6csRnGCUlA3IZ0gRMgMrKyigtLY3uuececjqdZDab6brrrqPXXnuNCgoKNBtsNKEsQOfOnTPahKARyLzqUQMS8zrje5Qpaarx1W+hpGBVWgPxZbtei69wPJ61IJvNRrm5uYJ91NaAfDXvNXQ6hbWefv0UBXXVUhOTojq9u0RX8huUPqAzZ87QRx99RLfddhtFRESQxWKhO+64g1auXEllZWX+Jh9UQlmAPv30U6NNCBr+5FWJC60/nk5yoWr4Y2r0sMNzjJCvZfny5YrjrekhQmLNe3IFtFx+Pbcp7QOSE+rBdrtQfP65PmpERQ+vuOr07hJdyW/QnRA2b95M8fHxZDabyWw201VXXUUTJkygXSEwaZMSmACFBlrzqqaw8CUQUlGnlcReU2vHrFmzRL3H1NSA+HYoqX2JebapXaTcuOWaqDzzK+Ulp8b7TMwB49SAAULx+eMPItLWBOvvuCB/391wG5cUVAE6fvw4vfXWW9S5c2d3gNK2bdvSq6++SkOGDCGr1Upms5natGnj76kCjj8CFOiHhAmQPHo0rXFICYhU4cXvg9Fix6effip4foqKimj58uWi5xLrA9JaC7FarYKIA6mpqZSVleWXMCm55tz9lYrioEQUPHFfvz//FArPNddUTibH20+v50Qp/ry74TguKeACdO7cOfrkk0+ob9++ZLVayWQyUf369Wny5Mm0e/duwb5//PEHPf/88xQXF6flVEFFqwAF4yHxvK5VGS159ce5wLPwlyqg5GolXEe6Fjvmzp0rOmBTTHz4fURyIXbUdNgnJSUJCmAxrzKbzaZoYKvUZHp8du/e7bOGp0kUfvxRKD5z54ruFuxCXeu7a4RY6gGX34AJkMvlIrPZTE6nk4YPH05ffvkllZeXyx7ja3sooEWAwvUhqWpovQ98zzCXy/cU1HIuv1JhZeQ84pQ2tUkVlGrynZmZKSkcnvt7Xpe0tDTJ4/mLnCMCH7kBvZpEYfp0ofjs2ye7ezg0a4XybKdKCJgA3XzzzZSSkhLSN08LWgQo3B+ScHgRlaL2y1ZMTHyN8Jfzulq+fLmkHdx1TklJEbhvT5kyxWeh7su5gD8uSUoAfDk0iLlQez4bSgfh+hJ+vr2e1171dOLl5USRkULxCTPnJynC/eOWRUJQSXWrAYVj+7IvlApqUZF4GBwAgugEnmNs5I7jh37h2yFV4CpZlDxLvgQoPz/f53nkxvBInUtukfoAk6rxKa05Cfj9d6HwTJ6s7ngVGPWhFs7vaMAEyGw2u0dkizFx4kTq0qWLlqQNJZT7gPRGb+EMt5qUkvAwXMEoNljR0wNMbBoFIuW1Br7gqZmKQOo+8j3IpBwapMTTF77SlHuOpK67UgF08957QvH5/nt1x6vAn/dbj/ci3N4tjoBOyf3+++9Lbn/11VfJ4XBoSdpQQtkLTm/0bDoMVwFWWisRC/6ZlZVFH3/8Mc2cOVMwmNITpcFLuZpXUlKSquCXSuKXpaSkaK6xSCFVqxKNv+Zx7fz68KmoIGrbVig+Z8+qsl0N/tgr916EW3mhhYAKkFQN6Pz589S7d29q0KCBlqQNJZTHAemNXjWgcGyC5F7+559/3mfB7JkXsXA2nAuzWIGiRoD4tS6p0flaxgu5XC6aNGmSbK1LzXgoIv9qMpo/WI4fFwrP0KGyNuqB1g81ufciHD/YtKCrAM2aNYucTqc79A4XesRzsVgsZDKZaMqUKbpkIpiEsgD98c9AOj3R40UIhBNGIPLK4WvsCVcTEbsmch5w/ELG80tXS0BQNQNb+dvl4pfl5+fTokWLvJoPpQTI1xe81g+Pffv2uePTKa7tpacLxecfWwJdmGvNp5xAh9sHm1q491dXAVq8eDH17NmTevbsSSaTia699lr3b27p1asXDR8+nBYsWBAWbteehKoASY2W1yttf74eA1EDCtSgW6Uuz2LeWEVFRZJTJ8iJR1FRkeSEa74W7r4oub7cfRSLX2a32ykzM9O9j5IPBl/nLSoqoqSkJPfYILHCX+zZSuNF6Fbc33X33ULxOX5c0kZNnnQ+0CJyUtdPqkYcLl6zSgj4QNSEhARaunSpNutCmFAUoHCoruttY6AESKnjgViBoLYpLTs7WxfvN18T2vmK6OxZ00lKShINe6O0iY3LF79WZ7FYvJrkpVzR1Qw+LTp2TCg8bdsKohr4mlJdz3dFy4ea0mtQ1WpAhsWCC3dCTYDC6WHVsx3e6BqQ2MBRtVMT5ObmKjoXvxAXm/hM6hngz+QqVtjKOR6IefCJjfnxFCqn00n5+fmSospFQVD79S8m/JtffVUgPjsfekhVbL5QeVfEWi/C4aPSHwIiQHzXa7G+H8/F5XL5mY3gE2oCpGf/Sjh53eTl5QUsbbHagVxTkK8+I6lmOV+uz/xzcp5jSmo0nuIjVtjKjVWSssVzKgnPWg63n9y8Pg6HQ7bWJtb/IZaHC088IRCfZiLiyx9jJZcm967k5+fT8uXLVbmb64XY86zlfQyXd5jLr64CFB8f7252S0xM9Or/EVvCjVATIL1qQFX9i0st/P4S7oUWK6B8fWHbbDZJMZCa0dThcFBycjIVFclP2SBWI+E3u8kVtmqaGsUWu90uKWBikSI8bVDqAcYXYafTSa++9BJVmExu4TkLkFnGTn6zllRE7aKiIq8oEFJjtkKZcHyHWROcSkJNgIj8f/DCqRnPKKSusVRB/uKLL7o79Ym8w9xMmjTJnS5XKDocDkpKSlLUQe7rnitxEFDT/Kd2SU5O9jkXkNIxMPn5+fSf//yHWlutglrPywpt8XVOqfFKetSEglUjCdd3uFoK0A8//ECjR4+mVq1aUWRkJF199dU0fPhwOnTokM9jQ1GAiPx70IMZqy5cmgj4yL3cYv0gYl/fYoV9amqqQID4Ux84HA5KSUmRHNfjeU6+FxuHGtdsu91OI0eO1OwQIZY3rV5wnjY6nU56kic8BFBHlfbwn2XPc0o1hXJx+7QSzBpJuMab1E2AHA6Hon6fUOgDmjhxIjVo0IAee+wxSk5OpnHjxpHdbqerrrrK53ThoSpA/hDoryfuhffVKR6qqPH2EhMhqY51fr+Kry94bh6ezMxMmjBhguS+nnHppJoNxWZl5ZqpMjMz/Z4Nlevr8TwfH+58UjW+oqIicjmd9KuH+DhV2iI3iJa7RmLH+VMDCnaNpNrXgJT2+YRCH9CPP/5IpaWlgnXz588nADRr1izZY6uiABEF7mtNrgM4HF4QIvlYakqasTIzMxWPD9JjsVqtXn0p3D0Vm0KByDtYqdS4JDUDZuW+vj2F21M4iYj2rF8vEJ5PRWxRMjGeLwEi8m4i9bcPyIgaCesDCmP27t1LAGjcuHGy+1VVASLSv3lMST9DqDcRcHgWUA899JDicT92u53MZnPQBIgTPc9rLyaCnJCKebNJhRNSUmvj14CIvGtdUlMtuI9ZsUIgPv1ERCUtLY1yc3MViWJycrLXPfV83vX0gjOqRhJuTdxMgP7h66+/JgD00ksvye7HXbCVK1fSwYMHBcvp06eDZK04v/zyi6Hn98SXp5U/L6TeefXlbSZWyDkcDk0hdMTS4QpVvQRo5syZiveVGr80bNgwdw2Diz2Xlpbms3nOYrEIvr6VTugH/BMnrn9/gfg05NXMnn/+eVq0aBHl5+eL1q6dTqfodfSMWB6M2oKac4TauxtouPwqESALFBIREYH33nsPjz76KJxOJ0wmk+z+JpMJ58+fV5p8QFm4cCEAYODAgYr2HzZsmNe6F154ATNnzhSs27JlC44cOQIAsFqtGD58uGSaGRkZKC4uBgDExsaiX79+kvumpqa6/2/WrBm6du2KXbt2oUWLFoL9ioqKsHbtWvfvG2+80Wsfjvz8fGRlZbl/9+7dG3FxcaL75uTkICcnx/17yJAhiIyMFOyTkJAAl8uFkpISr+NdLhdSUlKQl5eHhIQEREdHA1B+DXbt2oVdu3Z5XQMxfF2D9PR0jBw5EiUlJXA4HBg3bhw6duwIAOjYsSN27NiBsrIyr3QvXLgAs9ksek41vP322+jUqRMSEhKwdu1aPPTQQ7h06ZJfaXo+h1LY7XbUr19fdNvKlSvd/1++fBnnz5/H2LFjceHCBdH9hwwZggcffBAdOnRAYWEhiouLsXbtWowaNcq9T0lJCaZOnQqLxYLy8nLB8TUAdOve3f37ZPPm+GbGDLzpcqFevXrYsmULZs2ahdLSUtjtdhCR4L5YLBYsXboUhw8fxuTJkwVpl5aWIicnB/n5+SgpKcGECRPcx5aUlGDkyJEoKChwP4d6vAuDBw9GQUGB4BmXKg/E3l1/ywMxjCwPOLZs2YIdO3Zg165dOHz4sGSeOExERD73QmWB8+qrr+K+++5Dz549fQoQAGzcuFFJ0rL8+uuv2LRpk8/92rdvj86dO3utX7VqFYYNG4YRI0Zg2bJlsmls374dN998M1auXIkOHToItsXExCAmJkaV7XqSmpoqeNlDAX7hzolOq1atsGfPHowdO9a9fsmSJRg8eLDidPXKa3FxMeLi4gQi6XK5UFBQgI0bN7ptDyTc+bjCr7i4GHl5eYiJiUFhYSH27NmDMWPGeBXYVqsVJpNJVBw9kdrXZrPho48+UiR6drsdFy9elM0D/5o5nU6Ul5crEtMeADbzfm968EH0/PhjAJXP0P3334/S0lKf6XAFZp8+fQRCyb/Gu3fvRrt27byOzc7ORtu2bX2eg4O7T/wPKK2E4rsbSLj8cuXptm3bJEUz5JvgFi5cqKipYerUqV7H7tq1iyIjI+mGG25Q1BwUyn1Aeoen0as9WWzApL/t43rlVeuIfLnFM4yNkm2++sLef/99yszM9GpeioiIUNyEZ7PZRPuBOJdvJXkTa37jmue0jC2KiIigd3nNbQRQPK44A6lJk+9VKBe5QixiudrnT6p5Tes7E6jQUqFK0GLBHT16lFasWEFz5syhOXPm0Nq1a6mkpMSfJHVj//79VL9+fWratCkdPXpU0TGhLECFhYW6pRXINnI9PIT0yqs/McnkCkJuGgGpAZlqC7/CwkLJ6xYREUHJycmKvPKkvMYeeughSk1NlfXWs1qtAld6p9PpjthApD66gtVDeE4AZPrnenChWtTMSut5naUilkuNyeLvIyciYk4USmLvyaWt57sbDnD5DZgAlZSU0MMPP0w2m43MZjOZTCYymUxkNpupdu3a9PHHH2syXC8OHjxIDRs2pGbNmtGRI0cUHxfKAqQXwRgXFEpjFsTEVsxGJS6/fDHlxrnIddqLTSzH4emVVSQTv43zOlPiJCCVj9zcXFkPN86dmR+miD+OJz8/3+vcVqtV9HytPMTnRYn5lZTUgOx2OyUlJUneBz6+Pn6UfHhJOVGIeQ0G2/EhEATSsy5gAvTYY4+RyWSiu+66i5YtW0ZZWVn07bff0oIFC6h169ZkNptp5cqVmg33h71791JcXBy1bNmSjh07purY6iBAwRjDEOyXUclXrdi8NHwb5by3PEVFLP6b2CI1O6hU6J4pU6bIppWdnU2ZmZmytkkNZH3ttdcUCSt3bTynW5Cq6XkK0P95iM+XSUmy94d/HyIiIiTzpWQKCV9RLXx9GEm5kEuJOne9Qu2jSymBfk8DJkC1a9emu+++W3TbhQsXqE2bNtSmTRstSftNixYtyGaz0axZs2jBggVei9xsm9VBgIL1sgRrzII/L5Hn+BUlrtJJSUmKxMfpdFJmZqZXM5HUyPyUlBTJbVarVTCQVMpOm80m2d/ja3oIJeGH5BYTQMc8xMem8NlSUptMTk5WdJ+lngclH15S+4jdc36+wjFUTjDKgYAJUFRUFM2dO1dye1JSEjkcDi1J+018fLzsi7Jx40bJY6uDABGFb3OBJ3JRDLSEuvclQFy/g5ICmT84lR8JQKqWY7PZKD8/X7QWIDaFtlyMukmTJgnWcSP/paYU5zcVaukfa+ghPO9LFMRSHyX5+fn04IMPKhJHsTBDYvdSydxBYjUgz334zZ9S70w41oCCIZoBE6C+ffvSww8/LLn9lVdeobi4OC1JG0p1ESCi8BtVLYbUSyQWjkavtKRqKb4WbjI3ub4muSY4zyUzM1OyWY3rw/Ec+S/nFUgkDNmjdBnlIT79PUScK4ilCnDP5kg5ceTQ+gGl5Di5MEJKmxLD4aMurGtA2dnZ5HK5aM+ePaLbe/fuTffdd5+WpA2lOglQVUBJJ7bSl0qsBmSz2bya0fyZa0duVlV+tGxfi68akFQNMD8/X7Q2JdVH4mvZ4CE+RXl5ip0+XC6X+32TWgYNGiTaz6OkP0juPmvxglP6DIXTR13Y9AGJRcM2m83uF8FzMZlMVKNGDd0yEixCWYACYVOovjBq8sp/iaT6EOSaFfheX1ICwH85pZqxlIiGv1GouUVqvBHX/MavtXGzh0rFeTObze5roPT8tTyE51uP6+T5XEmlLTemCvAOsUMk7aWmV9NRIJqm/Hl3A/2OBiJ9Lr+6heLp3LmzosgHjMBx8OBB6dHEGvCMYqA2WkEgUZNXfkiUmJgYtGjRwivyQUJCguix/Gtgt9slow6UlJTg/vvvx6+//opHH31UdX5sNhsASIa5UYtn1AQAWL58OYqLizF27Fj3upKSEp8j8CsqKrB9+3Z07doVNpvNZ+SFPgDW8X7fD4CLL8IPe8OPOiAVtkksH3xKS0uRl5fnTqu4uBjPPfec135Op1PyHqtFzFa5Z0gJWt9duXdUr0gN0dHRqiJEKEFVfnWTvSpAKNeA9BxNHeqdpv7kVWmzgq/+GLHljjvuUF1bGTFihF8DX5UsXLOb1hrWvHnzFNXsFkdECGo+y+fMEd2PcxmXcnuXcrcWW5T0YXHRsP35mucfq3fTlJbnWe4dDfX+pqBFQqhqVBcBCnW3UX/z6qsgSktL03UOH4fDQc8//7zkNqVzC2kVn7S0NL/6pj7++GNZ8bJD2ORG8fGU9vnnok16FotF4DLOj6bAuVurufZ8MRMrlLlmOn8KZal+K3+apvjHa3me1YSR0uvjUa/muIALUJMmTXwuTZs21Wa9gYSyAOlJqNeAAonWcS5Si9lsdk9RLfVlz82uyi/khg4d6rfocVMXcPnSWgOSc45o7yE+3/brp1pQ+Z5saoSS72zBCYNSJwex/iOp50Hvd0GPGoqUXVK1aX8/HgNRqwqYAN1www3UqlUr0SU2NpasViu1bt1as+FGUV0EiCj83Eb1wp+aglwBKxUuBrgSi8zzCzM3N1e0NiBVQ+A67fnBOPm1DLlmNKfTSSkpKV4d/1arVXKQ6gwP8Wn5z3q1TZf8Ql2pt53YgFux8UBy91Rsojqlz4PWAl1PQVPjUeiPYAbqg9SQJjgu5tS3336rd9IBpzoJEFHoesEFEr1rQNwiVyhLhY3Jzs6WFS6xc2RmZkrOOJqWliaZ3qJFi9xNVWJuxpMmTXIX+GaATnmIj1WHa8Qfb8QVeJ6RrVNSUmj58uWSIYfEhEHqnvqqBUlFYFBb+PLfo0AImq8wUr4+Hn2954FqkjesD+jf//439ejRIxBJB5TqJkDVFc/Bhp7L888/r0qklPRp8Psy+AWI0+n0Ol7OtuXLl8sKVG5urmRTHH8wrdQ+CR7C85ZMnsQK7pEjR0ruz5/agR/olCsg+TH27Ha7ZA1IDLXu2fx74Hnt/ek/EosTGIjmbaUfj0rEqkrVgIiI3n77bXK5XIFIOqCEuwBVxxqNJ2rCtWRlZdGwYcNEC2qpcTNaFn7UaLGpvvm1AEAYxsdzv1WrVsmeKyIiQnZ8jVw/wr88xKebjzxxA165v0qumVi/Dnc/pARBqvD0vNee55aasiErK0vSTrlak+fzJFVwK5m6IRioEZaw6gOSo7i4mLp3707x8fF6Jx1wwlmAqmufDh+pph2paRHkOu65giY5OVm1EHkKipJFSb+K2jSlFjFPqh88xCdKgS38iAta3cC5AlHOVT3pn4jaUvdazEFBbNI6qVqP2L2Xe7Z8eR7ym+OM/BhU27Smt80BE6AWLVqILk2bNnXPEfT6669rNtwowlWAAu3VFgovky98dW5zIWf4SBV6nOu01sI1NzdX1TF6RUhQU+BzBepVHsLzhYq0+LO1StW6lAirL5HnAoLK3Wu+g4JYDUdsSge56+Pr2eLGXoWyN6nR3q5KylMzNFBSUoLS0lKvxWw24+abb8ann36Kp59+WkvSDAm+/vpryW15eXleo8xLSkqQl5fn93nT09MRFxeHdu3aIS4uDunp6X6n6Qu5vIpRXFyMb775xusa8CkrK0Nubq77d3p6Ovr06SO670MPPYQWLVq487x69WrRKAYWi3ggkcWLF6OwsFA28oHVagVQOcr+ySefhMvlktzXH6xWK5xOp/tcS5YsQXR0NAYPHozD776Lv3n73g1gkIq0ufyVlZWJRjVwuVz48MMP3XlzOp3uqBAcTqcTzz33HEpLS2XPw3+Wt2/fLvm8R0dHo0aNGl7pcWWUHPzrw0fq/SosLMSSJUvc+ZM6Xu3zrBfR0dGK7NMbVfkNihSGCaFcA5IbzBaoLx2jvqDUDNxT2qwCXPHC8lVb8vyal/p6TkxMlPxiz83NVVSDSE1NpU8//VTgnaalCU9q4Vy0PWuwh7t0EdR86smkkZSURCkpKe4aj5Iam81mc5/bM8oAv2lMyUSA/GdOKno2fx+pcUGe99Bmswn65vhTd/Px9R74aiHQcxC5FoLdgsEiIWgkXAWIKDB9QEZFTFD6wiodU8IVNr7GjcgtUpEOpBY5bzXPguz9998XCBA366rcAFEli2iH+vnzAuH5ReZ4bpAt/9my2+2KvAStMtNwT58+3e0cIDZ2yWKxuIWBf7zUVBgOh8PrHPxmPU5cPL0P1XjZ+fN+GS1AwUZ3ARKLhu1rYV5w+vLFF1/43EfvLx2jakBK8kokLSTLly8XeGR5OiGoES7PL2WloqImWsDs2bMl+xi01oREC8kvvhCIzxMK0klJSZH0TlNqm2e/E7dOymuO72HHf9akRH3evHmiLu42m81LCLl3REtEAa3vl9LnuarA5Vc3AUpMTKSePXuqXsKNUBYgowhl7zq5zmG+e7Avt1OxwlXJFNhiC1/sxAZ9ihXOUoVhVlYWJScnK2r6slqtlJSUJJ3njh0F4nONwvzI5d1ut9PHH3/sc1oFLi+e11suP2KeZHI1ICX3ylcznT8DUBnesCY4lTABEicQL5peaXoK5LRp0xQLptgASKVfymLCk5yc7CUAvo4fOnSoZMHqGW7HV1pcrUJwXS9eFAYSBciuIhq1L6FQeryU7WI1S64JUuw+evYBKRE/T2GTena8rp3M8xrKH2ahQlAEaM+ePfTFF19QRkaG5Ayp4QITIG2oFRO9X17u/P64xUrlwVdzXVJSkmwYfyXNffPmzfNZcHI1O6Vi4HK5KHPmTIHwFDZtKlkjk5siISUlRfFYKLEaSEpKiuR14IcA4o73FU2Am25cKlyP3DURu79SHyFSz2uwoh2EOwEVoO+++46uu+46MpvNguXaa68NyzhwREyAtKAlLlWgXl4tThNKxFOqKY3fyS+XLzWeer6+3pXOyLoIwlrP5ief1GwDf1Cur74wq9UqGmsuLS1N1HZOWPmheZTeR7Frzm8+FRuM6kl+fj7NmzdPNvCp0qZDJc451anZLmACtH37drLZbFS7dm2aMGECvf322/TWW2/RE088QbVr1ya73U7bt2/XbLhRMAFShj81jkB61qkVNzXiKeVZpTRf/jgUcAs37YOv2HPksUTLFJq+Fs/r99hjj/k8JjMz0+t8TqdT0qtPibBI3UepWqeScExSLt18u6Tuq1QAU/674W8Q0XAnYALUt29fio+PpxMnTnhtO3HiBDVu3Jj69u2rJWlDYQLkG/5LpOVLMNCedUpfcq12pKamuvPNT99Xekpdv+Wa41wul6w7eFMP4bnso9D0tXgG5pTqq/K0Uc0MsGqERQottQpfeZGrAXk2w3H2idV05Zpiq3qzXcAEqGbNmjR9+nTJ7c899xzVrFlTS9KGwgRIHiX9GUpeqkB/CSopkORmnJTriJYrRDzH8qh1/eaCZ6oRCW6Z4TFd9hSR+6I2wKrnOCIpN2gueKqafq9ACYtS5MZpeY4rkqpleUb0lsqznCiHyizEgSBgoXguX74Mh8Mhud3hcIiG5mBoZ/ny5UabIBqSBID7WXApDPUxePBgFBQUIDs7GwUFBRg8eLBgu795jY6ORtu2bWXtSEhI8Ap/Y7PZ0KdPH7Rr1w4NGjRwhx0qLi7G7t27kZubqznkkWdYFDGSkpKQn5/vMy1PCMCLly+7f//y1Vdon5rqFYIlMjJSVbqlpaXIy8tz579ly5ai+1VUVMButyMlJQWDBw9GdHQ0UlJSZMuI5cuXi957Pkruo1a6dOkiut5ut2P//v3o1asXdu/ejeLiYq/nFQDi4uLQvXt39O3bFxs3bpR8NwC413vee5fLhYSEBP0yFSKoen+1KNvNN99Mbdu2pQsXLnhtKykpodatW1OXLl20JG0ooVwDCoXR1L7G3ej1pRqsvHqOjPd06fX0yJLaR66pRszrSipYptqprmsDXv09yXPmCM7F7wvR4oQwadIkwdd/69atZWs0nk4XYvP6iAWGNQIxl27PpjTPWprcOyB1fbn8Vpc+oICH4snIyCCTyURt27al9957j9avX0/ffvstzZs3j1q1akVms5lWrlypzXoDYQLkm2C8RMHMK1dIS82z48vriytc5Jr0xPAcsZ8mE95fbLnfQ3je4zUf8ZuFuGYirU17ahexAaeecwBNnDgxIPdQi6jl5+fTokWLKDMzU/ZDIjc31+dMrVJ9QPz8VgcvuKDEglu4cCHVqFGDTCaT2wXbZDKRy+Wid955R2uyhhLKArR582ajTXAT6Jco2HlNS0tTFWpHrPCRqmFIzUVEdOU6fvnll+7fcv0IkyZNIgC0z0N8bpQQRn5tzWq1SnrhyU2noGaR6+vg+tby8/Ppww8/9Omhpubeafkgkjq3ko8AzzFT/JqumBdcKL27wYDLb8AHohYVFdHKlSvptddeo9mzZ9OKFSuosLDQnyQNJZQFiBEYtDZNcQs3dxBRZWEo5mmmxttJbnT+W6+95tXkFqHCVn5NRO+Fs1WseVGsac5zjA6XT1/Nub6aFeVmNJW6xmqdRThBVyt61Q1dBai8vJyOHz8uKjD79++n6dOn0+OPPx6WTW8cTICqH1oiY3vWlvhuuFI1KSlvJ25UPydiROJf52d27BAOLNUoFFlZWYojdQOVHm785jPPUEeccPD7ysQGgKoVerGC3VM4pKZySE5OlrzfSvrqPIVSSsw9p/tmCNFVgD788EMym800d+5cwfqtW7eS0+l0N8GZzWa64447NBttJEyAqh9aakAff/yx6EBLqdqFVA3IsxN82rRp4ka+8YZAfAbwjlHTdMbVDtTm+fnnnxcIoqdASkUL4BfQWoTes2lLrLYjVuOUqwWpibKQnZ0tO69TVXah1gNdBWjQoEHUpEkTunz5smB9165dyWQy0dNPP01r166lRx55hMxmM3344YfaLTcIJkDVA88C1NMbbuTIkbIFo5p5eux2u3tiNj5SAyH5NSGqqCBKSBCIj8Njf37fjpwYWSwWQeQGNeGB7Ha7pjFV/JqI1qZOrpCXOsd//vMfVeKgZUAo1/em5hiGzgLUvHlzeuqppwTrjhw5QiaTiQYMGCBY37t3b2rXrp1Kc42HCVDVR6r93zPUjlRhbrPZRF1uxWpAFotFNGoCkfRAyEWLFlXucOyYQHgWyxTS3ADW/Px8URs8J3fjvOMyMzMpMzNTUS1KrEDnhDwlJUXSLqmmLSWLrxoQ5/4s1eek9hmQIyUlxWdcOa2I1SirgqecrgLkcrno7bffFqxbsmQJmUwmWrhwoWB9UlISuVyhMSFddnY2RUdHk91u97kvE6CqjdzXr9IvdO6rXqwQ86xJyc24KTe3zQ+TJwvE59zq1T5t4wTClw2eE8nZbDbRL3ypayQW+VuNcBUVFSnqg/IMA8TlTSzShBZB0VLIB0IYPG1XM51IqKOrAEVHR9Pzzz8vWPfoo4+S2WymX3/9VbB+7ty5igr8QHPw4EGqX78+AQh7ATp37pzRJgSNQOVVbgZVJeNkHA6HoPARK5C4dUpCr4gFw/yGJzwEEJ06RUTytQfPL36uhqO0qdDpdHoFGeVcjZWKqxK7OP744w9FU3p7Husr1FEoCIoYUs+zXqGtQg0uv7oKUO/evalp06buxP/66y+KiYmhxo0be+07btw4uvrqq9XarSvHjx+n5s2bU2JiInXp0iXsBShUBqIGAy15VVKYyL3wSmsLcpOW+ToX11TGP5Yb2FjTQ3jOtm8vmmZWVhYlJSV5ReXWUjvxFFcpW7X033CTyoldq08//dRnJGqgMqq23PX0p3BWW2vyR6yknmeljhnh5uwQkIGoX375JZlMJmrSpAnde++91KBBAzKbzZSUlCTY78KFC9SgQQMaOHCgRvP958yZM9S+fXtq06YNFRUVUWJiIhOgMEJtXtUUJnKFs2dfyKRJk2Q923wVWnLjXvh9T7dbLALxeUQiVI1netxYFH7acrUTqW1SruOZmZmqZoXlloceekh2grf3339f0Xgku93uPk6vaTykQiHJiRn/untOw6EEqee5qtaAAhYJ4c033ySHw0Emk4lMJhM99NBDXl5xL7/8MplMJsMKzAsXLlCvXr0oISGBCgoKiIhUC9DKlSvp4MGDguX06dOBNl2WqixAnl+XavKq5ctYaT+Er+kLlBQOUgWeu4N+7FiB+DSCuDt2UVGRX4NIly9f7q4dedbq+DUqscVqtYrGwJPaX8whg3+t7r//fsV2y/XRqS2cfdUMxcRMahZaNSIk9zz7aloNxz4gNQJkIiKCCoqKinDgwAHEx8ejXr16XtuXLFmC8vJy3HvvvXA6nWqS9puKigoMHz4cmzZtwvfff49rr70WANCzZ0/s2LEDFy5ckD1++/btuPnmm0W3vfDCC5g5c6Zg3ZYtW3DkyBEAgNVqxfDhwyXTzsjIQHFxMQAgNjYW/fr1k9w3NTXV/X+zZs3QtWtX5OTkoE2bNoL9ioqKsHbtWvfvG2+8ES1atBBNMz8/H1lZWe7fvXv3RlxcnOi+OTk5yMnJcf8eMmSIZCRlf69Beno6Ro4ciZKSEnfU5qZNmwrOz10DMbKystCjRw+v9dnZ2Wjbtq1gHf8alJSUYNKkSSgtLZW0FwAiIiJwmRdpWuz8FRUVstdg9+7daNeunWCdDcBF3u8CAA1RWfK4XC4UFBQgIyPDvf3HH3/E22+/LWurFE6nE+vWrUPr1q1RVFSEb775Br///jv+97//ISsrCxcvXoTNZgMR4dKlS5LpcNfC5XJh7NixePPNN1XZkZ2djYSEBMTGxqqKlj9r1izEx8fj2LFjePnllwXPChdN29e7UFxcjLi4OMmI1dw15yJvFxcX46OPPsK0adNQVlbmtb/D4cBff/0liNQt9i4UFxdj3bp1uP322wX78t+FiooKjBs3TlA+ORwO7N+/H40bNxYtD8TgrkFJSQlOnjyJPn36oFOnTqL7BrI82Lt3L2rUqIHDhw9jxowZ2LZtm6TNfoXiCQb79u2jBQsW+Fx27NhBr732GlksFlq9ejUdPXrUvXB9QEePHqXi4mLJc4VyDShckWs71+Or1p80PDvWtcRDk4v1xreRXyNoA2F/zzSRdPnzEmmp/XBf7WJNf/zOfLVLZmamZK2AW8RC/nD3RCp6gWd8Nal7qbUvRq6/xbOmofT6+Gr+U9o0rOdcQZ7PtNgYtGAR8FhwwWDhwoWKXoypU6fSxIkTfe73wgsvSJ4rlPuAgoWenkG+XkC92vW1uOFycPn1NWW2w+GglJQUn7HepK4fV/A+6yE+uxYt8hJQz+jRUoW2nGDa7XbRpjWHw+FX4NVFixb57Dz3nMaCP/5IqmDnIifwJ81TIu5q7rMSpxClDhdKmnmVfBhJiZ2Wvh8p2/W8jmqoEgKkhr1791JGRobX0qpVK7JarZSRkUH79++XPL66C5A/BbknSl5APT2b/BVOJR5JycnJsrHe5K5f0enT9JeH+NT6px9IbF4azwJErA9JamoAfqGuVWikFm7aAiXjkjzvia9rzF1DvQWIs0POMULNc6Dk3VDycaW3YPiq5QW7JlTtBEiKquAFF2j0dnNVWrvRU/T8wVezklTcMaCykz43N1f6+uXlCYRnPoS1AqUDYMVqFL6O1VOETCaTaPgiscJOLKq1nL3cMUqfQaUfHJ7Ply83ejlRUOqCL5WOZ17UziGl5Zxy716gYQL0D0yAfKNXcxiHGkEL1oBAqfOJFaaefScPPfSQbOEsVTPKf/FF4fieL75QVSvgRCQ/P1/0Ovny7Bo5cqRuUzBYrVbRwZ+eNQu50fxi9nL76P3RovWjSq9+FF926vXR5zkGTK8mPX9hAvQPTIB8o3cNiCg0ajdyYsN9EXvm27PAF4s3pmTZZjYLoxoodMSQ6sSXK2jlYrI5HA6fAVaVLr4+IpTUYvj7+oqq7U+zrT8fVVIfRWo/lnzt7+87InY85+zB70dkfUAGUhUE6I8//gj4OQIhGFpqN3rlVanY+Cqk1Ewl4HA4qDZfdACi22+XtfPDDz/0uu5iTYK+JluTclbQe5ErwH0V+kVFRbRu3TrJief0dFzR+6NKa/+Ur+dZawuAr/wFu2WBg8uvbgLUq1cv1Uvv3r31yU0QCWUBCtZAVKMeWj565FXs5ZQSG8/1nn0Yajyjjn/8sVB8PvtMUX49J6ZTMsWBZ361NrU5nU6fTYxyNRKltRi55jfPvMi57muNYuDPR1VRUZFoqCYl70mg3l29m831QvdICJGRkRQVFeVeHA4Hmc1mwTpusdvtZDKZqEaNGvrkJogwAQoN9Mir1MspJjZK+jDEalOezRz5PXsKxefYMUW2Tpw4UbHLssViUdXcpGThXJF9OSxwfUBifT/8vhKpZiE5BwSlHzxpHpEcPOc5EkNs1lm1SI3VUeIwEKh3NxDN5noQsFA8HOPHj6f+/fuLbvvll1/I4XAIAgmGC0yAQoNA1YDExIb7Ipbrw5BzAigqKqLdHtNlU7NmlZPJ+SA/P5/mzZvnNQiTK0SGDRsmWuiJvVu+Cvhp06aJCho3FiY1NdUdW05q4eKgydUGuaYpLS7YWu4p/5xi6FUDCkUBIgqNflZPAi5AjRo1otdee01y+/jx46lHjx5akjaUUBagvLw8o00IGnrlVerllGvikas5ib7cP/4oFJ9/agG+mjF9RYPOysqSHBi7aNEinx5xYi7Hnp3TntG+lSxK3LrFvsLz8/MlBU7pV7vacS561hD8aYIL9LsbCs3mfLj8BkyAHA4Hvfzyy5Lbk5OTyeFwaEnaUEJZgNQSag+lUSi9DnI1IKnCq/Tpp4Xi88svir5IpSaj459HLgJ1SkqK5DmKiiqDn3qO8PfMq1iAVD3ER6xGI+Ua7Kv2Ima3mnEueveRaHVCCFf8LUMCJkA33ngjtWzZks6fPy+6feDAgVSnTh0tSRtKVRGgUKyWhzKe12vatGny3nHl5VTmcAjEJ33lSsVf3L4mihs5ciRlZmaKFtqPPfaY7Dnk7j2/QFE6xQJXa5HyIpQSFTmnBP7Cb8JSUuCpGecidm6x8DtqqC4fdnqUIQEToPT0dDKbzXT99dfT22+/TevWraNNmzbRJ598Qv369SOz2UyTJk3SkrShVAUBCtWOyVBFqpBatWqV1+BSl8tFZ/73P4HwJCuotXh+cfsKocMtFovF3exjs9koJSVF9qteqQcafy4hX0Li6S4tNtbIc7oG/nTaSpvN1BR4+fn5NGXKFPdHgtz+nvkWm5OJIUSvMiSg44BWrlxJDRs2JJPJRGazmcxms/v/MWPGUFlZmdakDaMqCFAouWaGw9eiXAHpWWD9b/x4gfjcLPI1r+TFLSoqUhx5226306JFi9weXLm5uaL7cUIhVcvwVXNxOp00adIkQaHu2YeUlpYmWTMUE2vOhV3K+YHfJ6e0wOMLitIoBVJNjuzDTBy9ypCAD0QtKSmh9PR0ev311+nVV1+lTz75xC9XR6MxSoD0LKhDpQYULs2AvpqInE4nZW3ZQhdbthSIz1USBa7SfMsV5lK1BV9Ng1L3XklzG9cUJuZi7XK5JCOBA/KDeT3dprkJ8PjNYEoLPH+e7VD6MAt1wqIGtHfvXrrrrrvoqquuooiICPryyy+JiOiHH36g7t2706ZNm7QmbRhGCFAgCupgFv5SrsmhIIJKERsgyS11eKJDAKWbTF7eUHJ9LXJw+yUlJSkWIilxkmvKUiKyvu6f1MK5ZovVLsQcOjynmpCyT+x58Te0Tjg9k0YT0n1AGzZsIJvNRvXq1XP3+XACRER0/fXX0/33368laUMJtgCpeSl++eUX1WkHuvlL6iFV80UrZqPavOqBWDPNnR7iM1gkTzabzT1FgVZefPFFvwTIcwpvKRdtKZdrfp8NkfJBrdz4KLFaTppMcFGx512Jh5m/ImJUrdyI51kPtJYhXH4DJkDdunVze8EdPXqUTCaTQICmTp1KcXFxWpI2lGALkJovulAbiCpXGCgpKOQKA7m8qq1dyLkii21PTU0lALTCQ3zqKihIlYwzErNDyiFAaT+Rrxhx3Hl8TbjHNZ8rqQFx46LE9rXb7e6Bu0pqUmrmAfJXRIzolwy1dzfQBHwgqsvlopdeeomIiI4dO+YlQG+99RbZbDYtSRtKKNeAQu0h9iWevtyB5fItlVc1/Sty+8ltz9m+XSA82SpqIp6uykoKSKnraLfbBWnZbDZZQeL6VaRcjJX0A/EH28oNlOWLla+Bu55OA2LNl2JNdXLu0mpFxGhnmFB7dwNNwAWoZs2alJSURETiAjR58mSKjY3VkrShhHIfUKg9xErEU+rF9yVeYnlVKta+9pPdvm2bQHwe+2e7EpdlfsGr5IOCQypCQEpKittetYNGuSYw/vVX6votJQj87b4+JjzzzreD31zHpeXLVdufprJQcIYJtXc30ARcgG699Vbq2LEjEXkL0KlTp6hu3bo0YMAALUkbSih7wRUWFgbPIIVofbl9iYRYXpU2V/raT2r78QcfFIhPaw93ZKkJ5+TER8pGsesnVfAWFRXR8uXLFYsPt1itVkFnvxpHB6nzLV++XNI1Wk3e8/LyfEbQ9iVkejxnwSIU391AwuU3YAK0adMmslgsdPvtt9MHH3xAJpOJXnnlFZo/fz4lJCRQREQEbdy4UUvShlIVxgEFG63NG2rFK1A1oAiAynnCQ04n0aVLXvni+obklpSUFMXxwpT0j4hNTKd1cTqdivuU+KF++OIqN8RCbP4irQ4CYovYlOS+YK7XxhJQN+xVq1ZRbGwsmUwm9wBUk8lEUVFR9MEHH2hN1lCqgwAZ3R7ujy169wFdxxcegOiZZ2TPn5qaKjt2RyyAqJQA+TN9AjcmSKmrNLeI1YLEHBMcDoekCMlNfaCHg4BYc6PT6dQ0iDRUakDVlaAMRF2zZg29/vrrNHv2bPrss8/o9OnT/iRpKFVdgEKhPdxf9PKCK5k9WyA+Z7/7TvH5pUbVKw3Fw6WjVkAAYTMYf9Cor6jWXMHLF1GXyyU5i6rNZqM333xTVHC5/il/7o8cns+plI1KajJV4ZkPVwImQGazWfYhnDhxInXp0kVL0oZSlQWoOn8NCgrFigqia68ViI8T4qFn5BAr2Hy5pouNzZFrYhPzGJNzK8/MzBTtq/J0a+bbolUIfU0C5y++bFTz7IZSrb86oaQ8NUMDVClcktvr16+P7OxsLUkzAkReXh5KSkoE60pKSpCXl2eMQUEiPT0dcXFxaNeuHTo0aACYzcCBAwCAFRERMAEoReW1GDVqFNq1a4e4uDikp6fLpjt48GAUFBQgOzsbBQUFGDx4MKKjo7FkyRK4XC4AgMvlwpIlS7Bx40a3DVJp22w22Gw2AIDD4UBqaiqWL1/ulVZ0dLSoPdHR0WjQoAEuXrzote3zzz9HkyZNcOTIEezevRsA0LZtW0RHR7ttdjgcCq7mFR555BEUFxerOkYN0dHRXjZy18LpdGLWrFma0qpOFBcXY/fu3QG9T36jRdlMJpNkDej8+fPUu3dvatCggZakDYXVgKoW/DzfA2F/z8G331bUZKX1vPyvd6VharixL/wI1GoHtXqmKebIINYUlZ+fr3pyOs6uYNUuioqKvKZB19KkVh1qRKHQ9KhrE9ysWbPcnYFms9n9YHsuFouFTCYTTZkyRZdMBJNQFiA9bAqFh1IJel1/rqN/rYf45G7cqKjpSa23lFjBJtV/ITUnkBZvLz6+Bn7KCayYp5/L5aI333xTNI1JkyZpslXr/dXjI8qId8CIYR1Gfmxy+dVVgBYvXkw9e/aknj17kslkomuvvdb9m1t69epFw4cPpwULFlB5ebn/OQkyoSxAeg1mC4evP93yeuSIQHi2A+Tiha3xNQ5HzTXid+5z3mJitR9ucTgcXuKg1dvLK9//3GNf0Q/EBNbTSYEroMXmAdJ6zbTeX3/dqo0qmIM9ENVo9/OAD0RNSEigpUuXarMuhKkOAhQO6JLXTZsE4vOQyBcv59GWlZWlOoQOH6kxQr4Gf3pGhvbH20sMX7U8KUcCsY8UpW7jSmzVen/9FRCjCuZgv7ti10lJvEC9UCNAmpwQnnjiCYwaNQobNmzw2rZlyxZcddVVSElJ0ZI0g+E/TzwB9Ozp/nlm925M5DkLAFecE7p3746+ffsiMjISBQUFyMrKwjfffINevXopOlVxcTEeeeQR0W0vvfSS27FAjLKyMqxbtw6zZs1CQUEBHn74YXdHO4fL5UJCQoIiWzzhOu+lbBg7diyKi4u9OqvFOu0TEhK8bPNEja1KOsjF7BJz8lDqXCCWB3+ub6gidt8vX76MjRs3GmiVBFoUrnPnznTbbbdJbh84cCB17dpVS9KGEso1IIYCLl4UDiyNjSW6fNlrN6kvaS21IF81A7k4clL9MJ5Nef4g1wwIqOtz8uw/4Q+GVVNr9ExHzP2d76Iu50aulnDpB/UXKeeXYDa9B6wJrlatWvT6669Lbp8zZw65XC4tSRsKE6AwJjdXKD4vvii5q1wEZ7UvrFwzl1zUBLEpB8T6pMT2EyuApQplOYHU0ufkeR494rPxz82Np1IaUUIL4dAP6i9G9wMRBXgckFzVubCwEBEREVqSZjDU8/rrQOvWV37//DMwY4bk7mJNMQ6HAxcuXBCsUzJOyrNZiMPlcuGDDz6A3W4XPW7dunXu5kCgsrlp5MiRXmO1SktLMXz4cPf7tmTJEtSvX18wpog/1slznJFc09mIESNQWloqmWexZjLP5jm1Y2zExqPxzz1y5Ehs374dZWVlgm1lZWXIzc1VdA5fVIdxQeHS3KhJgDp16oTU1FQUFhZ6bSsuLsbSpUvRpk0bv41jMGSpqAAaNgSmTr2yrrQUaN/e56GzZs2C0+kEcEUsxEQpJibGZ1r8Qan5+fnuwamRkZGoqKjw2t/lcqE1XzAhXzBzhe+SJUswatQot1CWlJTgvvvuw4gRI9zHcoW4Z78Jl1c+n332mej6PXv2ID09HQ0aNEC7du3QoEEDnwNzleKrL6mkpAR//fWXLueqzvjbXxY0tFStvv32W4qIiKDGjRvTnDlz6JtvvqF169bR3LlzqWnTpmQ2m8OybZU1wYURHi7W9PDDig7zHCeTnJws65btz2BHsaYmNdNN85fMzEzZJj3PxbOpRcolW8xTT2z8kJ5NYL7c38UGxep5/uqEkc2NAQ1GunTpUqpdu7Y7EjYXDTsyMpLeeecdrckaChOgMOHTT4Xis26dosOUTNUgFk9NS+etVBt8VlaWqF1cUFExhwGbzaZoRlM5e6XyriZdMdu1ws+zmEMC/1rITdHNCF0CHg377NmztHr1anc07OXLl9OpU6f8SdJQmACFAT17CsVHRfR1uY5ZX/PRcDUKNdG4lYxZEfMIS05Odtd2uMJXadBQ/rTanigNoCo1+Z6eAuR5reTEiNV8wpOAC1BVI5QFKDMz02gTgoZoXk+fFgpPr16q05USBbkpqPnCodSFV6pAFfNmkxIpqejZ3P52u93LxdvXpHF826TS5Qp+f5rAfIm02P01OnyMpy16Cl91eneJruS3WgvQ0aNH6YknnqBmzZqR3W6nGjVq+BSWUBagah0JYd06ofj4MTZGTETkXJXlagpKazRShZkWV1l+4ajnmBbPQlduHI4cSmwSe5ZDwW2YKDDjhKrTu0ukLhKCBQqJiIjAe++9h0cffRROpxMmk0l2f5PJhPPnzytNXle+//579O/fHy6XC6NGjUKjRo2Ql5cn6RLLCGH+9S/go4+u/D5yBGjUSHNynMdaXl4eEhISEB0djSNHjojum5mZia5duyI6Ohq7d++WnM6ibdu2ALxdqUtKSjB27FgUFBSIeh9xHmH8dPmussXFxQI7gUrvpoSEBOTl5aFXr15eedEK55rMuV736tULf/75p6q0xfI/cuRIyfzzkbsWYtchEPhjP0MbigWoUaNGiIqKAgB07tzZpwAZRVFREYYOHYrmzZvj22+/Re3atY02SReq0wsQHR0NXLgA8F2EGzUC8vIq5/PRIX1ONACIDicAgAYNGrivu1gB6emmLTfnEv98/AJ1yZIlGDFiBC5evChwlU1PT3cXhtz6wYMHS67XAy1p8/OiNP9izzLnNsyd3+FwICUlBRs3bpS0SW9hUmq/Ujj7LBbFxWyVQNW9CFa1LFjMmjWLAND//vc/1ceGchNcteLnn4VNbq+9FtDTaWleg0cTndJ0pBwBPKMLKO2r0tpPovSccmmLNTf6ax8/FJGYO7ja/jgleeev1+v6VpeQP3JUyz6g9u3bU8uWLYmIqKKigv7++2+6LBIPTAzugq1cuZIOHjwoWE6r8LZi+MHMmULxyc0NymmVFhj5+fmyIXvk0lFawEn1hyxfvlxVP4lUQaumH0wubbG8+BNVXKmnX1ZWlmah8HWf9RCOUHKoMBLd+oB69+6tZDcBJpMJ3333nerj/KG8vBx79uxBx44dce+992Lt2rUoLS2F3W7Hvffei3feeUdR9XDYsGFe61544QXMnDlTsG7Lli3u/gOr1Yrhw4dLppmRkeEenR4bG4t+/fpJ7puamur+v1mzZujatavofkVFRVi7dq3794033ogWLVqI7pufn4+srCz37969eyMuLk5035ycHOTk5Lh/DxkyBJGRkaL76nYNLl8G6tYFTp92r1q6aBEqsrPR7OzZgF+DwYMHY9++fdixYwe6dOmCoqIiwX3grkFhYaFoyJ53330X8fHxsFqtkv0ySpt4xJr77HY7unTpItpPUqtWLYGt1157Lb7//ns899xzKC0tFTRd5ebmYvjw4e5QN1w/x759+0SbGHfu3OkOgcN/DuTy8u6776JDhw6STWNSz4FcNAh+frlzeZ6buweA+HMg1sczfPhw7N69G9dffz0A7z7C/Px80edADO5dyM/P93mfq0N5cPjwYYkc8VCiZJGRkRQVFeVeHA4Hmc1mwTpusdvtZDKZqEaNGrqo6L59+2jBggU+lx07dtDx48cJAEVGRtK4ceNo8eLF9Nlnn9GIESMIACUmJsqei9WADOLQIWGt54kngm6CGhdrrV+3ao6VskfJF7zYYFbuPErHQvn6+g/EV75Ymp5zJqnxSPQkWJ52rAZUScCa4MaPH0/9+/cX3fbLL7+Qw+HQzfd94cKFPqvkAGjq1Kl07NgxAkBjx471Smfw4MEEgH7++WfJc7E+IAP44AOh+GzeHHQTlBYYSsf3yKG2kJfqq8jOzqb8/Hyf/TieBa2SaBBKx8AEop9DSR+Z1nMHUxhYH1AABahRo0b0mkzH8Pjx46lHjx5akvaLs2fPEgAaNWqU17a5c+cSAFq2bJnk8UyAgkhFBdFNNwnFp7jYEFOUfBmrGd/jCz0GOmoZz+TvGJ9A5UVrmlrOHUxhqA7TPsih6zggPidPnvQKl87n2muvxeLFi7Uk7RdRUVGIj4/Hnj17vLZx7fY1atQItlkMT/7+G6hT58rvAQMAXtt1sFEyHsez7+CRRx7B/v37Nbn/erqBK4HvcgxAdLyKWD8OADidzoBFQubnRS+3aKXXR8t1FBsHFii02Ffd0DSo4oYbbsCyZcskOww3bNhgWEF/9913Izs7WzD97OXLl7Fy5UpERUWhe/fuhtjlL8uXLzfaBH348kuh+KxY4SU+wcorN+gSgGzoerHO8QsXLuC6667TZZoCX/n1nO/no48+Eu3kLiwsFOTDbrcjKSkJf/75p2DszMiRI93zAJWWlgqmb9CK3JxEnhj9LAd7PiCj8xtsVOVXS9UqPT2dzGYzXX/99fT222/TunXraNOmTfTJJ59Qv379yGw206RJkzRX3fzh5MmT1KhRI3I6nfTUU0/Ra6+9Rp07dyYANG/ePNljQ7kJrkqE8xgxQtjkVlAgulsw8qq0r4HI9yyeWptYuPO9//77svt4ntvXTKb8sTSezUyB6IhX27ei5P5WpearKvHuqkBNKB7N44BWrlxJDRs29JqOwWw205gxY6isrExr0n5z4sQJGj16NNWuXZtsNhu1b9+eVq5c6fM4JkAB4vx5ofBcf31lH5AEgc6rWqcDbuCj1Hw8WqJE8wXQZrN5jRfizislGMnJyaJ9GUqcDDy3KwliKodaUfN1f6taB35Yv7saCIoAERGVlJRQeno6vf766/Tqq6/SJ5984teDbDShLECbDfAO04WdO4Xi89ZbPg8JdF61OB2kpaWJDkLlCnB/B1xKjfCXiy4gVktQmzd+mnKu53K1EbU1ILn7WxVdmMP23dUIl9+ACtDevXvprrvuoquuuooiIiLoyy+/JCKiH374gbp3706bNm3SmrRhhLIAhSXTpgnF59dfDTHDswBNTU2VbUqTavbiBEJq0jilhaTcZHX+RhdQWoD7iujAobQ2oletJVSiYntSlZoEg0XABGjDhg1ks9moXr167j4fToCIiK6//nq6//77tSRtKEyAdOLSJSK7/YrwRERUrjMAJTUKAJTKm+JBrtmLqHK+E61NcUVFRZLHS63nN8fpNT5HSUGvtjaiRyEdijWgqtYkGCwCJkDdunWjli1b0vnz5+no0aNkMpkEAjR16lSKi4vTkrShMAHSgQMHhLWe//zHMFOkRtYrKXjFajlcLUhqGmtfAiTW9OUpQHoNEtWj2cyo2kgoFfihKIjhgpLyVJMb9s8//4wRI0bA5XKJTssQFxeHv//+W0vSjHBm3jzg2muv/N62Dfjvf4NqAudazY1J8XRXFhu/xh/zA1S66SYlJXntV1pairy8PLRu3Ro2m02wzWKxoHHjxrJ28cfuiDF06FA8+eSTou7gatycuTzIuRpz0x9IuZ4DQExMDBwOh+A4F2+OHu466w03Vic7OxsFBQW6TTehBbmYdwwd0KJsNWvWpKSkJCIiOnbsmFcNaPLkyRQbG6slaUNhNSCNVFQQtWolrPmcOxd0M5Q2t8Hja1bsC1usFiQVTcBXWkTStQkxe8RC7MjZ4g9KImZ75s/IGkqw+2JYDUg7AWuCu/XWW6ljx45E5C1Ap06dorp169KAAQO0JG0oTIA08NdfQuG55x5DzJCbHkDKfXr58uWyBYmvglZpR76UfXa7XVETV3Jysu5NYZ4FOf+3nKu2kQWyUcIXSk2C4UTABGjTpk1ksVjo9ttvpw8++IBMJhO98sorNH/+fEpISKCIiAjauHGjVrsNI5QF6JwBNQqfrF4tFJ81a3RJVkte5for1AiFJ3Jf3Gr7SNS4WPPPL9cfpQVPO6ZNmyb4LSd4evQLSd1fuYHAWVlZAasFKsGfmldIvrsBhMtvQN2wV61aRbGxsWQymdwDUE0mE0VFRdEHH3ygNVlDCWUBCrnBbHfdJRSfEyd0S1pLXn19mQfiK1YqQgLfo07sGH5BlpaW5naM8LSrqKhIchK6pKQkTQWir4jZnLiJiV5qaqouNSCx+yt1f3w5bhjtnq2EkHt3A0xQB6KuWbOGXn/9dZo9ezZ99tlnYT1vDhMgBZw5IxSeDh1koxpoQWtefYlMIPoPfI0pUsL777/vNb2CXMErNkeOUpT2RSUlJUnmy18x97y/UqImNgW5UTUgfwiZdzdIqBEgTdGwk5KS0KdPH3Tq1AmDBg3SkgQjHNm6FeAHc33/fWDsWOPs8cBXpONARCdu1aqV1zqxWU7lcLlcOHz4MG6++WaUlJTA6XTi8uXLoh573DYumCgXCbugoEBRcM2YmBhF9vTo0cNrPZcvvSNKS3ma7dixQ9JrUMxrjxF+aHLDfvXVV/HTTz/pbQtDhjZt2hhrwKRJQvH5/feAiY8/eeW7H+vpKiyVFjeVAx+1rspNmjQRuGiXlpaKis/y5cuxbt06r21q3IILCwtF13Pu1lzB3rp1a8l8Af5FlPa8v1LXkJuCnI/T6URWVpbh7tlqMPzdDTKq8qulijVkyBD617/+pa1+FsKEchOcYZSVCZvcatQgKi832iqf6Nnn4ystse1qzq+kWYwf/82fPhi55i49Zh3VipI+IOaBFl4ErA9oz549VLNmzbDoAFQDEyAP9u4Vis/zzxttkSL0dBXWEjlb7fnz8/NFRYfz3HM4HALHBn8LZTXH6xVeR0ka+fn5tHz5cq+AxiwOW3gSMAFyOBxkNpvJarW6PWY8F5fLpdlwo2ACxGPOHKH4/Pij0RYpRs8QMlrSUnuM1P5PPPGEe6yQmIecP4VysAr1YAczZYQOSspTExGR8ga7Snr16qVoP/6spOHA9u3bcfPNN2Pbtm3o2rWr0eYYAxHQrBlw+PCVdSUlgNNpnE0qKS4uRlxcnNcU20o76v1NS+0xYvuLoTUPRqH0Ouh5vxihg5LyVJUTQmlpKV5//XXUrFkT0dHRuOuuu7B+/Xps3LhRdGGEGX/8AZjNV8TnwQcrBSmMxAdQFucskGmpPYbb3zO+nCd6xSA7cuQIVqxYgSNHjnht09NxQ2kcNan9cnNz/baBEeIorU6dPXuW2rdv7x5wyg0+bdOmDZ3QcRCikVTrJrilS4VNbpmZRlvkN3o2M2lJS230arHBn/xFj3Ev06ZNE6Q5bdo09za9m8HU9J+JRSl3Op2sKS6M0bUP6NlnnyWTyUQPP/wwbdu2jXbt2kXPPfccWa1WGjZsmC4GG00oC9Aff/wRuMT79BGKz6lTgTuXAgKaVx8Y0eH9xx9/+PSEU1sYi+VDytkhkDHexETN8/5KCZBeNhiNkc+zEXD51XU6hvT0dPTo0QMffvghunbtig4dOmDWrFl49tln8fnnn6OoqEht5Yuhgg0bNuifaHExYDIB69dX/r7llkoJql1b/3OpICB5VYDaKQ/0YsOGDaJjYQDAZrMhKSkJf/75p+JxL1L52LFjh+j+O3bsCNi0A2JTK3je37y8PNFxT3rZoBa9p5ow6nk2CjX5VSxAeXl5uOOOO7zW33XXXaioqMAvv/yi+KSMEGDDBqBWrSu/Fy+ujHQQ5mgtPDzn6+EiDARivhv+OXfv3o2SkhKvfiObzQar1YqysjIkJSUp7lOVy0eXLl1Ej+nSpYvsgFpf9vu6Rr4GrUqJrxIb9Maoj5DqimIBKi0tFX2AYmNjAQBnzpzRzypGYBk3Drj11iu/8/KA0aMNM0cv/Ck8gj3xGN/WCRMmID093V1byMrKQkREBC5duuS2Q6kYyuWjcePGmDZtmmDbtGnT0LhxY9WOE3oW1J7n5gh2uB0jPkKqPUrb9UwmE73xxht0/PhxwfK///2PTCYTLV261GtbuBHKfUB5eXn+J3LhgrCvp359osuX/U9XZ7TkNVARAgLR/+DrXP6MY1KSD6kBn9zxvvrAtFwrfrpS95fbRywqgy87ldott0+gpiDX5d0NI7j86uqEwHm9iS1i2yIiIvzPSZAJZQHym+xsofj8M6NtVcHfQjs7O1swP08gB0P6stVfMQz0oE5/50Hy1x5f8xmJpS9mg5iIabnuLFKDOLoORH3ooYeUVqrcLFq0SPUxRlJlB6K+8grw3HNXfmdnAzpHhTYarYMZ09PT3c0uLpcLKSkpaNWqlS5Rnv2x1dOuJUuWqAq+WVxcLIhW7flbaj+97Neyr9Zze+KZvtgxNpsNERERKC0tFVxftdfd3/tUlVFUngZNDsOAKlcDunyZqF49Yc3nwgWjrQoYar+0jfziVWKrXl/WgQj0qfRYvZu1lM5nxE9fTbBXIuXX3cjpycOBgE9IV9WoUgKUlycUnnHjjLYoKKgptLUUjno2JwWi6UZps5LYZG/8iNtKC+BA9Bf5OqdnenJiovQYLaIYqD6jqgITIJVUGQFavFgoPt99Z7RFIYnawjHUv3jFxFGqkJSa6js5OVn3/qNQ6wNyOp1eA1+13MdQfx6MhgmQSqqEAN1yi1B82Msgix7z9oTCF6/amo7Yei6SfSAKVL1re/56wekliiyKtzRMgFQSygL0yy+/yO9w6pRQePr0CY5hAcBnXnVGTZNTIApoPfIrJ45K+4CSk5ODIrDBvr9S6CWKvtIJlfwGCy6/uobiYRjLrl27pDd+/TVw1VVXfi9bBqxbF3ijAoRsXgOA0umlN27ciMuXL7t/22w2XQZK6pFfuUgGYuFwAO8wOQ8//LDqaAhaCPb9lcKfacXVpBMq+Q0WavLLBCjcGT0a6N//yu9jx4ARI4yzp4rCjZLnxyyLiIhQPDeW0nNoDSOUl5eHlJQUyUgG0dHRSEhIQF5eniB9fuGp5zQWDIYSLEYbwNBIaSnA/1pt0gQ4eLAyuChDd8RC3JSWliIvLw9tdRhTpXU8idJxTErT52pFascGMRiaCFa7YDDZuXMn9evXj+rUqUO1atWim2++WVHnYCj3ARUWFl758dNPwv6eOXMMsysQCPIaIgTS4ykvL0/zeCQlx4Wat1Yo3t9AUl3zWy37gNatW4ebb74Zv//+OyZOnIinn34ap0+fxpAhQzB//nyjzdNMLS5y9YwZQMeOVzbs3QtMnmyITYGiFj9Kd4gQyOapoqIiTYFQ/Z1xNNjTHHCE4v0NJCy/0lS5JrikpCRYrVZs27YNderUAQA89thjaNasGd544w38+9//NthCjVy+XDl9wrlzV9aVlQFWq2EmVTcC1TzFORB4hqvx1fmv9Dit6TMYgabK1YBOnjyJmJgYt/gAQExMDK699lqcP3/eQMv84OBBwGK5Ij6TJlU2vjHxCTp6eU55pqmldqX0OF/76T0BG4OhlConQImJifjzzz+RlJQE+ifOalFREfbs2YO77rpLURp//PEHDh06JFgKCwsDabY0778PNG9+5XdWFjB3rjG2MAKGlKu0XsdJ7ccmYGMYieJo2OHCuXPnMGLECHz55Ze4/vrrMXbsWGRkZODy5ctYu3YtatSoIXksF71VjBdeeAEzZ84UrNuyZQuOHDkCALBarRg+fLhk2hkZGe4vzNjYWPTr109y39TUVIAIdzz/PGrn51/ZcOYMwLO/qKgIa9eudf++8cYb0aJFC9E08/PzkZWV5f7du3dvxMXFie6bk5ODnJwc9+8hQ4YgMjJSdN+AXoN/aNasmWQ0XXYNtF+DkpISTJo0CaWlpe7t/EjS1eEaAOw5AAJzDQ4fPowZM2bIRsMOeQH69ddfsWnTJp/7tW/fHp07d0ZJSQkmTJiA77//HjfccAPWrl2LsrIyPPXUU3jllVfgcDgk0+AEaOXKlejQoYNgW0xMDGJiYvzNjjJOngTq1r3y+667APZlytCZ3bt3o127dl7rs7OzdXEtZ1RvqsR0DAsXLhQND+K5TJ06lYiI7r77boqLi6NTp04REdHx48dp/PjxBIAGDx4se66QcMNes0boYr16tdu26kJ1yiuRcfk1yj2b3d+qDZffKuGG/cgjj4AqY9bJLrNnz8aRI0ewevVqjBgxArVr1wYA1K1bFwsWLMCQIUOQnp6OQ4cOGZwjGYYNq6ztcPz1FzB0KADg4MGDBhkVfKpTXgHj8mtU5AN2f6s2avJbpdywCwoKAABms7euNm3aFECllxz3f8hw/jwQFXXld6tWQE4Oi2rACDihEPmguLgYubm5AIDWrVuz6AvViJCvAamhRYsWsNlsWLlyJc6cOeNef/HiRWRmZiIyMhI33HCDgRaKsH27UHzefRfIzWXiwwgagXAtV0p6ejrq1q2L7t27o3v37qhbty7zxKtOBLg5MOi89NJLBICaNm1KL774IiUlJVHr1q0JAL333nuyxwa9D+jpp4X9PQcOBOe8DEYIIDa9Bf6Zl4hN6hb+KClPq1QTHAA8//zzaNu2LZKSkjB79myYTCZ06NABa9euxYABA4w2r5LycsDhqIxuAAB2e+UgU0uVux0MhiR5eXkCF3AOPYO8MkKbKlniDRo0CIMGDTLaDHH27weuv/7K72nTgFdfNc4eBsMgEhIS4HQ6vUTI6XSyMEHVhCrVBxTyvP22UHx27GDiw6i2REdHY+nSpbDZbO51NpsNS5cuZY4I1YQqWQMKOYgqhefAgSvrzp8XzufDYIQQ3CR3gfaMGzx4ME6cOMG84KoprAYUaP78EzCbr4jPffdVChITH0aIEuz4cNHR0ejWrRu6devGxKeawQQokKxcCfDjK61dCyxdapw9DIYPuKnHuakbSkpKMHLkSBYpmxEQmAAFioEDgXvvvfL75EnADy+8r7/+WgejwoPqlFcgtPIbjMnrQim/wYDlVxrWB6Q3Z84A/GaETp0qnQ38HFj6999/+2lY+FCd8gqEVn6DMXldKOU3GLD8SsNqQHqyebNQfD74ANi5k0U1YIQNRsWHY1RPWA1IL9LTgSFDrvw+dAho0kS35KtTAVCd8gqEXn4DHR8u1PIbaFh+pWECpBc//lj5t3Zt4MQJICJC1+TvvPNOXdMLZapTXoHQzC8XHy4QhGJ+AwnLrzSsCU4vXnqpUnhOndJdfBgMBqMqwgRILyIigDp1jLaCwWAwwgYmQAwGg8EwBCZADAaDwTAEJkAMBoPBMAQmQAwGw3CKi4uxe/duFvKnmsEEKExYvny50SYEjeqUV4DlN9jBT4NNdb+/cjABChMuXbpktAlBozrlFaje+a0OwU+r8/31BRMgBoNhGMEIfsoIXZgAhQmNGzc22oSgUZ3yClTv/HLBT/noHfzUaKrz/fUFE6AwoUePHkabEDSqU16B6p3f6hD8tDrfX1+wWHAMBsNQAh38lBG6MAFiMBiGE8jgp4zQhTXBMRgMBsMQmACFAYWFhZg5cyYKCwuNNiXgVKe8Aiy/VR2WX3mYAIUBhYWFePHFF6vFQ1yd8gqw/FZ1WH7lYQLEYDAYDENgAsRgMBgMQ2ACxGAwGAxDYG7YPM6fPw8AyM3NNdgSIX/88QcA4Oeff8bx48cNtiawVKe8Aiy/VZ3qnN/Tp08DuFKuimEiIgqKZWFASkoKxo0bZ7QZDAaDUWV4//33MXbsWNFtTIB4FBQUYO3atWjatCkiIyONNofBYDDClvPnz+PQoUMYOHAg4uLiRPdhAsRgMBgMQ2BOCAwGg8EwBCZADAaDwTAEJkAMBoPBMAQmQAwGg8EwBCZADAaDwTAEJkBhyA8//ID+/fujbt26iImJwS233IL09HSjzQoox44dw4QJE9C8eXM4HA7UrFkT27dvN9qsgLJ7927UqlULDofDaFMCwo8//ogxY8agdevWiIqKQsOGDTFixAgcPnzYaNN0Ydu2bejZsyeioqIQHR2NQYMG4cCBA0abpTvr16/HiBEj0KJFC7hcLjRp0gTjxo3DiRMnfB7L3LDDjHXr1uGOO+5AkyZNMGbMGJhMJnz66af49ddfMW/ePPz73/822kTd+f7779G/f3+4XC6MGjUKjRo1Ql5eHh544AF06NDBaPMCwqFDh3DLLbfgr7/+gt1ux4ULF4w2SXcmTZqEFStWYPDgwbjmmmuwf/9+LF68GFFRUcjNzUWDBg2MNlEzOTk56Ny5M+rXr49x48bh4sWLmDdvHiwWC3JychAbG2u0iboxePBg5ObmYtCgQWjcuDF27dqFZcuWoUmTJsjJyXFPty4KMcKKHj16kMPhoBMnTrjXnT59mmJiYqhJkyYGWhYYCgsLqW7dutS+fXs6deqU0eYEhePHj1Pz5s0pMTGRunTpQna73WiTAsKPP/5IpaWlgnXz588nADRr1iyDrNKHe+65h6xWKx06dMi9bsuWLQSAnn/+eQMt05/t27dTeXm5YN3//d//EQBKTU2VPZY1wYUZJ0+eRExMDOrUqeNeFxMTg2uvvVY25lK4Mm/ePJw4cQIfffQRateubbQ5Aefs2bPo168fXC4X1qxZA7vdbrRJAaNjx45ezYuJiYkAgKNHjxphki5UVFTg66+/xi233IImTZq413fv3h2NGzfGmjVrDLROf7p06YKIiAjBOqX3kQlQmJGYmIg///wTSUlJoH9aT4uKirBnzx7cddddBlunP6tXr0bLli3Rrl07EBFOnTqFiooKo80KCBcvXsRdd92FwsJCfP3114iOjjbapKDDFVhXX321wZZo58iRIzh37hxatGjhta1FixbYt28fLl++bIBlwUPpfWQCFGb897//xYABAzB9+nS0bNkSc+fOxdChQ3HjjTdizpw5RpunK+Xl5dizZw+io6Nx7733IjIyErGxsXC5XHjwwQdRXFxstIm6UVFRgVGjRiE3NxfffPNNWPd/+MPChQsBAAMHDjTYEu1wne8xMTFe22rXro1Lly5V6RlSiQgffvghbDYbbr/9dtl92XQMBvPrr79i06ZNPvdr3749OnfuDLPZjHr16uG6665Dy5YtMW3aNJSVleGpp56C1WoNvMF+oia/TZo0waVLl5CTk4M2bdpgwYIFcDgcSE9Px6effoojR44oSsso1OR18+bNSE9Px/Lly+FyuXDs2DEAlbUioNILsGbNmqhZs2YgTfYLtc+yJ6tWrcLq1asxYsQItG/fPgAWBgfunlks3sUr946WlpYG1aZgMmfOHPz444+YNm0a6tWrJ79zwHqmGIpYuHAhAfC5TJ06lYiI7r77boqLi3N3yB8/fpzGjx9PAGjw4MFGZkURavJ77NgxAkBjx471Smfw4MEEgH7++WcDcqEMNXmdOHGiz/1eeOEFo7Mki9pnmc+uXbsoMjKSbrjhBioqKjLAev3YuXMnAaDnnnvOa9t9991HAOjkyZMGWBZ4vvzyS4qIiKBevXpRWVmZz/2ZAIUR+fn5BIAmT57stW3IkCEEgA4ePGiAZYHh7NmzBIBGjRrltW3u3LkEgJYtW2aAZfqzd+9eysjI8FpatWpFVquVMjIyaP/+/UabGRD2799P9evXp6ZNm9LRo0eNNsdv8vLyCABNmDDBa1vfvn3JYrHQpUuXDLAssGzbto2ioqLopptuUvwRwZrgwoiCggIAgNns3XXXtGlTAJVectz/4U5UVBTi4+OxZ88er23cuJgaNWoE26yA0LJlS7Rs2dJr/RtvvAGz2RzWfSJyHDp0CLfeeisiIyOxceNGNGzY0GiT/KZRo0aoWbMmfv75Z69t+/fvx3XXXSfaPBfO/Pjjj+jfvz9atmyJdevWKXagYU4IYUSLFi1gs9mwcuVKnDlzxr3+4sWLyMzMRGRkJG644QYDLdSfu+++G9nZ2di4caN73eXLl7Fy5UpERUWhe/fuBlrH8IdffvkF3bt3R82aNbF582Y0atTIaJN0wWw244477sAPP/yA/Px89/rt27cjLy8Pd955p4HW6c+WLVtw2223oU2bNli/fr0q700WCSHMePnllzFjxgw0bdoUo0ePhsViwWeffYbc3Fy89957VW5K8b///hsdOnTA33//jfHjx6N+/fr4/PPPsXPnziob+YFPz549sWPHjioZCaFly5Y4ePAgZsyYgauuuspr+6BBgyRn0gx19u7di06dOqF+/fp49NFH3ZEQTCYTcnJyfHfOhxEulws2mw0vvPACnE6n1/aRI0dKt1QEtFGQERDWrFlDnTp1IqfTSS6Xi7p160Zr16412qyAceLECRo9ejTVrl2bbDYbtW/fnlauXGm0WUEhMTGxykZCiI+Pl3VW2Lhxo9Em+sX27dspMTGRXC4X1ahRgwYMGED79u0z2izdkbuHAOjw4cOSx7IaEIPBYDAMgfUBMRgMBsMQmAAxGAwGwxCYADEYDAbDEJgAMRgMBsMQmAAxGAwGwxCYADEYDAbDEJgAMRgMBsMQmAAxGAwGwxCYADEYDAbDEJgAMRgMBsMQmAAxGAwGwxCYADEYDAbDEJgAMRghQlRUFHr27BnUc/bs2RMOhyPkj2NUTZgAMYLCmDFjYDKZULt2bZw/f95r+7lz51CrVi2YTCaMGTMm+AaGEV999RVuvfVWREdHw+VyoXnz5hg0aBA+/PBDXLp0yWjzBCQkJMBkMqnavnjxYsyaNSvQpjFCgKo1Lywj5CkuLsaHH36IJ598UrB+0aJFOHv2rEFWhQ9vvfUWJk2ahISEBEyYMAF16tTB4cOHkZ6ejoyMDAwYMAD169c32kw3SUlJsvdVbPvixYuxY8cOTJ8+PdDmMQyGCRAjqNx5552YO3cuHn/8cURERAAAKioq8Pbbb+Ouu+5CWlqawRaGLoWFhZg6dSoaN26M3bt3o2bNmu5tb7zxBt5++23YbDYDLfRm5MiRfm1nVG1YExwjqEyZMgV5eXlYtWqVe11GRgYOHjyIKVOmeO2/efNm3HbbbahZsyZcLhe6deuGDRs2CPZ599130aFDB9SpUwdWqxV16tTB0KFD8dtvv7n3OXLkCEaPHo1GjRohMjISLVq0wCOPPIL8/HwAlU1B119/vdf5W7VqhYSEBME6rh9jz549GDp0KCIjI/Hyyy8rthcA1qxZg44dO8LhcKBRo0YYP348ysvLZa/dgQMHcPHiRXTq1EkgPgBgsVgwefJk1K5d271u7dq1uOWWWxAZGYmaNWuib9++2L59u+w51FwHAMjOzka/fv0QFRWF2rVr47HHHkNJSYnXtZLCc3tCQgI2b96MixcvwmQyuZdbbrkFLpfLq7ZUVlaGmJgY9OrVS/Ic48ePh8lkwpEjR7y2HTp0CA6Ho8pNZR8uMAFiBJXu3bvjpptuwn//+1/3urlz5+LOO+/EddddJ9h39erVuPXWW1FYWIj/+7//w9SpU3Hq1Cn07dsXe/bsce+3a9cuxMXF4d///jeSk5MxYsQIfPXVV+jZsyfOnz+Ps2fPolevXsjIyMCoUaPwyiuvoEePHli+fLnPAlmKsrIydO3aFbVq1cJrr72GPn36KLZ31apVGDJkCM6fP49nn30Wjz/+OPLy8lBWViZ7zvj4eABAVlYW/vrrL9l9P/jgA9x55504e/Yspk2bhgkTJmDfvn1ITEzEt99+qynPnnDXoEGDBnjppZfQs2dPvPfee3j88cc1p5mUlIRrrrkGFosFCxYscC+jR49GaWkpPv/8c8H+X331FYqKivDQQw9JpnnzzTcDAH744QevbVOmTIHD4WB9TkYRrHnDGdWb0aNHE/e4LVu2jADQhg0b6H//+x8BoC1bttDJkycJAI0ePZrOnz9PV111Fd166610+fJldzpnz56lunXr0p133uleV1FR4XW+mTNnEgD66quv6MsvvyQA9O677wr2OXHiBB06dIiIiOLj4+m6667zSueGG26g+Ph4wbrExESKiIigXbt2udcptff8+fPUsGFDuuaaa+jMmTOCdCMjIykxMVHuMtKYMWMIANWqVYseeeQRSk1Npfz8fME+hYWFFBUVRa1ataKSkhL3+uPHj1NMTAxdc8017muWmJhIdrvdvY/S65CYmEgWi4V2794t2G/QoEFksVjcNnmm7+u31LrCwkJyOBzUp08fwfp77rmHatSoQefOnfO+WP9w4MABAkBPP/20YP369esJACUnJ0seywgsrAbECDr33HMPGjdujDfeeANz585Fp06d0L17d8E+69evx6lTpzB8+HAUFBTg2LFjOHbsGIqKitC+fXts3brVva/JZEJFRQV27dqFpUuXYv78+Thw4AAA4OTJk+6+pm3btuHixYvu4+rUqYMmTZpoyoPFYkGHDh1U27tu3TocO3YM//73v1GjRg3V5124cCFefvllREVF4YMPPsCoUaMQHx+Prl27us+xfv16nDt3Do899hicTqf72Lp162LkyJH47bffBDUyrURERKBNmzaCdSNGjEB5ebnmmqUUtWrVwqBBg7BhwwZ37e/MmTNYu3Yt7r33XkRGRkoee8011yA2NlZQAyovL8ekSZNw3XXX4YknntDVVoZymBMCI+hYLBY8+eSTePrpp2GxWLBkyRKvffbv3w8AGDt2rGgafNfdtLQ0TJgwAX/88QfMZjMaNGgAq9UKoNLB4dZbb0XXrl2xdOlSZGRkoEuXLujRowceeOABd7OWvyi1lxPGFi1aaDqPxWLB9OnTMX36dOzbtw9ZWVlIT09HZmYmbrvtNmRnZ+PQoUMAgObNm3sdf8011wCo7Pto3bq1JhvkaNiwIQDg6NGjuqf94IMPYsWKFfjss88wadIkrF69GhcuXJBtfuPo0qULNm3ahIqKCpjNZsyfPx979+7FV1995X5WGMGHCRDDEB599FG89NJLuOqqqzB06FCv7RUVFQCAl19+Ge3atZNM55dffsG9996Lhg0bYtWqVRgwYAAcDgdWrVqFYcOGAagstDdt2oSVK1fiyy+/xM6dO7F+/XrMnj0b3377Lbp06eJ3fpTae/nyZQDQxVutRYsWaNGiBcaOHYunn34ab7zxBj799FN3zUps/A0RSW7TA34NU2/69u2LevXqYenSpZg0aRKWLl2Ka665BrfccovPY7t27Yq1a9fil19+QYMGDTBz5kzccccd6N+/f8DsZfiGCRDDEGrWrIkVK1agRo0a7iYyPpzHVUxMDAYOHCiZztdff43y8nK89dZbGDRokOR+NpsNI0eOdLv9pqenY8iQIZg/fz66dOkCi8XiV+Gp1N6rr74aAEQ9snxBRJLCkZiYiDfeeAOFhYVo27YtgMpaWZ8+fQT7/f777wAg2fTo73Xg0r/22ms1pyGVR4vFgvvvvx9z587F5s2bsWHDBsXOA127dgVQ6Yjw448/4ty5c0hOTtZsI0MfWB8QwzD69u3r9lDy5Pbbb0dkZCRef/11nDp1SrCNiNzt+VFRUQCA0tJS0e0AsHXrVre7NQfX58S5Pjds2NDdZ8OxZ88en95mau1NTEyEyWTC0qVLBfvs27fPZxSDJUuW4OWXX8aFCxe8tq1Zs8adfp8+feB0OrFgwQKBS/TJkyexZMkSNGvWDDfccIPoOfy5DhcuXMD8+fNRq1Yt3HrrrT73l6Ju3bq4dOkSzp0757Vt9OjRACqb4/h/fdGpUydERERg8eLFWLhwISZMmODldckIPqwGxAhJateujTfffBNjx45FixYt3J3tBQUFWLNmDWJjY7F161YMGDAANWvWxMSJE7F//344nU6sXr0aP//8szutn376CbfeeisGDRqETp064fLly1ixYgWsVqu7A/rRRx/F5s2bceedd2LYsGH49ddfsWjRIpSXl7tFTg974+Pj8eCDD+Ljjz/GwIED0bt3bxw4cACLFy/26YZdXl6OGTNmYP78+Rg0aBCuv/56lJSU4LvvvsPGjRvRt29fDBs2DGazGa+99hqefPJJdO7cGffeey8uXryITz75BOfOncNnn30Gs1n821PNdbh48SJ69+6N2267DUSEFStWIDc3Fx999JGsU4AvevbsiRUrVmDQoEHo06cP/vrrL7z11lsAgLZt26JNmzbIyclB37593TVKX0RGRqJ169bIyspCnTp1MGPGDM32MXTESBc8RvWB74YtBd8Nm+O7776j/v37U+3atclisVD9+vVpxIgRtGHDBvc+W7dupZtuuolsNhvFxcXR008/TR988AEBoEWLFlF+fj5NnDiRrr32WrLZbORyuahnz56UlZUlOP/s2bOpUaNG5HA4qFu3brRu3TpJN2xPN2E19l64cIGefPJJuuqqq8hms9Ett9xCX375pU837HPnztHHH39Md9xxBzVo0ICsVis5HA5q06YNpaSkCNy/iYiWL19OnTp1IofDQVFRUXTbbbfR1q1bfeZFyXVITEykyMhIGj58ONWvX59sNhu1atWKPvvsM9n0lbhhX7p0iZ566imqV68e2Ww2uummmwTbX3nlFQLgdS5fjB07lgBQSkqKquMYgcNE9E+vJIPBYIQBQ4cOxaZNm/Dnn3/CbrcrOqa8vBwtW7ZEVFQUfvrpJ8kaICO4sCY4BoMRNvzxxx/IyMjA2LFjFYsPAMyZMwe///47srKymPiEEEyAGAxG2PD++++jvLxc0dif06dP45tvvkFOTg7++9//YuLEiYpcthnBgzXBMRiMsKC8vByNGzdG7dq1FUVyWLZsGe6//37UqVMHDzzwAF577TVYLOybO5RgAsRgMBgMQ2CNoQwGg8EwBCZADAaDwTAEJkAMBoPBMAQmQAwGg8EwBCZADAaDwTAEJkAMBoPBMAQmQAwGg8EwhP8HTctPPbAgovIAAAAASUVORK5CYII=",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "plt.plot(test_y, yhat, \".\")\n",
- "plt.plot(test_y, test_y, \"-\")\n",
- "plt.xlabel(\"Measured Solubility $y$\")\n",
- "plt.ylabel(\"Predicted Solubility $\\hat{y}$\")\n",
- "plt.text( min(test_y) + 1, max(test_y) + 2, f\"correlation = {np.corrcoef(test_y, yhat)[0,1]:.3f}\",)\n",
- "plt.text( min(test_y) + 1, max(test_y) + 1, f\"loss = {np.sqrt(np.mean((test_y - yhat)**2)):.3f}\",)\n",
- "plt.show()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "This performance is better than our simple linear model."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Exercises\n",
- "\n",
- "1. Make a plot of the ReLU function. Prove it is nonlinear.\n",
- "2. Try increasing the number of layers in the neural network. Discuss what you see in context of the bias-variance trade off\n",
- "3. Show that a neural network would be equivalent to linear regression if $\\sigma(\\cdot)$ was the identity function\n",
- "4. What are the advantages and disadvantages of using deep learning instead of nonlinear regression for fitting data? When might you choose nonlinear regression over deep learning?"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Chapter Summary\n",
- "\n",
- "* Deep learning is a category of machine learning that utilizes neural networks for classification and regression of data. \n",
- "* Neural networks are a series of operations with matrices of adjustable parameters. \n",
- "* A neural network transforms input features into a new set of features that can be subsequently used for regression or classification.\n",
- "* The most common layer is the dense layer. Each input element affects each output element. It is defined by the desired output feature shape and the activation function.\n",
- "* With enough layers or wide enough hidden layers, neural networks can approximate unknown functions. \n",
- "* Hidden layers are called such because we do not observe the output from one. \n",
- "* Using libraries such as TensorFlow, it becomes easy to split data into training and testing, but also to build layers in the neural network. \n",
- "* Building a neural network allows us to predict various properties of molecules, such as solubility. "
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## References\n",
- "\n",
- "```{bibliography}\n",
- ":style: unsrtalpha\n",
- ":filter: docname in docnames\n",
- "```"
- ]
- }
- ],
- "metadata": {
- "celltoolbar": "Tags",
- "kernelspec": {
- "display_name": "base",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.11.0 | packaged by conda-forge | (main, Oct 25 2022, 06:12:32) [MSC v.1929 64 bit (AMD64)]"
- },
- "vscode": {
- "interpreter": {
- "hash": "2b6e7cfdce5ef245d32482b7f80393907c6182a3f3a40203474e09cb3d62b454"
- }
- }
- },
- "nbformat": 4,
- "nbformat_minor": 4
-}
diff --git a/notebook/0_basic_MLDL/2_2_layers.ipynb b/notebook/0_basic_MLDL/2_2_layers.ipynb
deleted file mode 100644
index c49f4f1..0000000
--- a/notebook/0_basic_MLDL/2_2_layers.ipynb
+++ /dev/null
@@ -1,705 +0,0 @@
-{
- "cells": [
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# Standard Layers\n",
- "\n",
- "We will now see an overview of the enormous diversity in deep learning layers. This survey is necessarily *limited to standard layers* and we begin *without* considering the key layers that enable deep learning of molecules and materials. Almost all the layers listed below came out of a model for a specific task and were not thought-up independently. That means that some of the layers are suited to specific tasks and often the nomenclature around that layer is targeted towards a specific kinds of data. \n",
- "\n",
- "```{admonition} Objectives\n",
- "This chapter builds on the overview from {doc}`2_0_dl_overview` and {doc}`1_2_regression`. After completing this chapter, you should be able to:\n",
- " * Construct a neural network with various layers\n",
- " * Understand how layers change shapes\n",
- " * Recognize hyperparameters in a neural network\n",
- " * Split data into train, test, and validation\n",
- " * Regularize to prevent overfitting\n",
- "```\n",
- "\n",
- "The most common type is image data and we first begin with an overview of how image features are represented. Generally, an image is a rank 3 tensor with shape $(H, W, C)$ where $H$ is the height of the image, $W$ is the width, and $C$ is the number of channels (typically 3 -- red, green, blue). Since all training is in batches, the input features shape will be $(B, H, W, C)$. Often layers will discuss input as having a batch axis, some number of shape axes, and then finally a channel axis. The layers will then operate on perhaps only the channels or only the shape dimensions. The layers are all quite flexible, so this is not a limitation in practice, but it's important to know when reading about layer types. Often the documentation or literature will mention *batch number* or *channels* and this is typically the first and last axes of a tensor, respectively. \n",
- "\n",
- "```{note}\n",
- "Everything and nothing is batched in deep learning. Practically, data is always batched. Even if your data is not batched, the first axis input to a neural network is of unspecified dimension and called the batch axis. Many frameworks make this implicit, meaning if you say the output from one layer is shape $(4,5)$, it will be $(B, 4, 5)$ when you actually inspect data. Or, for example in JAX, you can write your code without batching and make it batched through a function transform. So, all data is batched but often the math, frameworks, and documentation make it seem as if there is no batch axis. \n",
- "```\n",
- "\n",
- "```{figure} image/neural_network.svg\n",
- "---\n",
- "width: 600px\n",
- "name: fig-nn\n",
- "alt: A neural network consisting of an input 3 x 64 x 64 image, a convolutional layer, a max pooling layer, a fully connected layer, and an output layer (128)\n",
- "---\n",
- "A typical neural network architecture is composed of multiple layers. This network is used to classify images.\n",
- "```\n",
- "\n",
- "An example of what a neural network looks like is shown in {numref}`fig-nn`. In this case, its input is a 128x128 images with 3 channels (red, green, blue) and it outputs is a vector of probabilities of length 128 that indicate the class of the images. In other words, it takes in an image and gives it a probability of 128 possible labels like \"cat\" or \"vase\" or \"crane\". The words annotating the figure indicate the different layer types we'll learn about below."
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Hyperparameters\n",
- "\n",
- "We saw from the Full connected (FC)/Dense layer that we have to choose:\n",
- "- The bias\n",
- "- The activation\n",
- "- and the output shape.\n",
- "\n",
- "As we learn about more complex layers, there will be more choices. These choices begin to accumulate and in a neural network you may have billions of possible combinations of them. These choices about shape, activation, initialization, and other layer arguments are called **hyperparameters**. They are parameters in the sense that they can be tuned, but they are not trained on our data so we call them hyperparameters to distinguish them from the \"regular\" parameters like value of weights and biases in the layers. The name is inherited from Bayesian statistics. \n",
- "\n",
- "```{margin}\n",
- "**Hyperparameters** are parameters whose values control the learning process and determine the values of model parameters that a learning algorithm ends up learning. The prefix ‘hyper_’ suggests that they are ‘top-level’ parameters that control the learning process and the model parameters that result from it.\n",
- "```\n",
- "\n",
- "Choosing these hyperparameters is difficult and we typically rely on the body of existing literature to understand ranges of reasonable parameters. In deep learning, we usually are in a regime of hyperparameters which yield many trainable parameters (deep networks) and thus our models can represent any function. Our models are expressive. However, optimizing hyperparameters makes training faster and/or require less data. For example, papers have shown that carefully choosing the initial value of weights can be more effective than complex architecture {cite}`glorot2010understanding`. Another example found that convolutions, which are thought to be the most important layer for image recognition, are not necessary if hyperparameters are chosen correctly for dense neural networks{cite}`noconv`. This is now changing, with options for tuning hyperparameters, but the current state-of-the art is to take hyperparameters from previous work as a starting guess and change a little if you believe it is needed. \n",
- "\n",
- "### Validation\n",
- "\n",
- "The number of hyperparameters is high enough that overfitting can actually occur by choosing hyperparameters that minimize error on the test set. This is surprising because we don't explicitly train hyperparameters. Nevertheless, you will find in your own work that if you use the test data extensively in hyperparameter tuning and for assessing overfitting of the regular training parameters, your performance will be overfit to the testing data. To combat this, we split our data three ways in deep learning:\n",
- "\n",
- "1. Training data: used for trainable parameters. \n",
- "2. Validation data: used to choose hyperparameters or measure overfitting of training data\n",
- "3. Test data: data not used for anything except final reported error \n",
- "\n",
- "To clean-up our nomenclature here, we use the word **generalization error** to refer to performance on a hypothetical infinite stream of unseen data. So regardless of if you split three-ways or use other approaches, generalization error means error on unseen data. \n",
- "\n",
- "```{margin}\n",
- "You can replace this three-way split with cross-validation methods from previously, but remember that those require training $k$-times. Thus you rarely see k-fold cross-validation and even more rarely see leave-one-out or Jacknife because of how computatioanlly expensive it is to train models.\n",
- "```\n",
- "\n",
- "### Tuning\n",
- "\n",
- "So how do you tune hyperparameters? The main answer is *by hand*, but this is an active area of research. Hyperparameters are continuous (e.g., regularization strength), categorical (e.g., which activation), and discrete variables (e.g., number of layers). One category of ways to tune hyperparameters is a topic called meta-learning{cite}`finn2017model`, which aims to learn hyperparameters by looking at multiple related datasets. Another area is auto-machine learning (auto-ML){cite}`45826`, where optimization strategies that do not require derivatives can tune hyperparameters. An important category of optimization related to hyperparameter tuning is **multi-armed bandit** optimization where we explicitly treat the fact that we have a finite amount of computational resources for tuning hyperparameters{cite}`hyperband`. A comprehensive overview on hyperparameters and tuning techniques can be found in {doc}`Hyperparameter_tuning`."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Common Layers\n",
- "\n",
- "Now that we have some understanding of hyperparameters and their role, let's now survey the common types of layers.\n",
- "\n",
- "### Convolutions\n",
- "\n",
- "You can find a more thorough overview of [convolutions here](http://d2l.ai/chapter_convolutional-neural-networks/why-conv.html) and [here with more visuals](https://cs231n.github.io/convolutional-networks/). Here is a [nice video on this](https://www.youtube.com/watch?v=x_VrgWTKkiM). Convolutions are the most commonly used input layer when dealing with images or other data defined on a regular grid. In chemistry, you'll see convolutions on protein or DNA sequences, on 2D imaging data, and occasionally on 3D spatial data like average density from a molecular simulation. What makes a convolution different from a dense layer is that the number of trainable weights is more flexible than input grid shape $\\times$ output shape, which is what you would get with a dense layer. Since the trainable parameters don't depend on the input grid shape, you don't learn to depend on location in the image. This is important if you're hoping to learn something independent of location on the input grid -- like if a specific object is present in the image independent of where it is located.\n",
- "\n",
- "In a convolution, you specify a **kernel shape** that defines the size of trainable parameters. The kernel shape defines a window over your input data in which a dense neural network is applied. The rank of the kernel shape is the rank of your grid + 1, where the extra axis accounts for channels. For example, for images you might define a kernel shape of $5\\times5$. The kernel shape will become $5\\times5\\times{}C$, where $C$ is the number of channels. When referring to a convolution as 1D, 2D, or 3D, we're referring to the grid of the input data and thus the kernel shape. A 2D convolution actually has an input of rank 4 tensors, the extra 2 axes accounting for batch and channels. The kernel shape of $5\\times5$ means that the output of a specific value in the grid will depend on its 24 nearest neighboring pixels (2 in each direction). Note that the kernel is used like a normal dense layer -- it can have bias (dimension $C$), output activation, and regularization. \n",
- "\n",
- "Practically, convolutions are always grouped in parallel. You have a set of $F$ kernels, where $F$ is called the number of **filters**. Each of these filters is completely independent and if you examine what they learn, some filters will learn to identify squares and some might learn to identify color or others will learn textures. Filters is a term left-over from image processing, which is the field where convolutions were first explored. Combining all of these together, a 2D convolution will have an input shape of $(B, H, W, C)$ and an output of $(B, \\approx H, \\approx W, F)$, where $F$ is the number of filters chosen, and the $\\approx$ accounts for the fact that when you slide your kernel window over the input data, you'll lose some values on the edge. This can either be treated by padding, so your input height and width match output height and width, or your dimensionality is reduced by a small amount (e.g., going from $128\\times128$ to $125\\times125$). A 1D convolution will have input shape $(B, L, C)$ and output shape $(B, \\approx L, F)$. As a practical example, consider a convolution on DNA. $L$ is length of the sequence. $C$, your channels, will be [one-hot indicators](https://en.wikipedia.org/wiki/One-hot#Machine_learning_and_statistics) for the base (T, C, A, G).\n",
- "\n",
- "```{margin} padding\n",
- "Padding means insert some constants to make a tensor increase in shape. For example, if I want all my tensors to be of shape (32,32) and some are smaller, I could pad by adding 0s until the shape is (32,32).\n",
- "```\n",
- "\n",
- "One of the important properties we'll begin to discuss is **invariances** and **equivariances**. An invariance means the output from a neural network (or a general function) is insensitive to changes in input. For example, a translational invariance means that the output does not change if the input is translated. Convolutions and pooling should be chosen when you want to have **translation invariance**. For example, if you are identifying if a cat exists in an image, you want your network to give the same answer even if the cat is translated in the image to different regions. However, just because you use a convolution layer does not make a neural network automatically translationally invariant. You must include other layers to achieve this. Convolutions are actually translationally equivariant -- if you translate all pixels in your input, the output will also be translated. People usually do not distinguish between equivariance and invariance. If you are trying to identify *where* a cat is located in an image you would still use convolutions but you want your neural network to be translationally equivariant, meaning your guess about where the cat is located is sensitive to where the cat is located in the input pixels. The reason convolutions have this property is that the trainable parameters, the kernel, are location independent. You use the same kernel on every region of the input. \n",
- "\n",
- "```{margin} equivariance\n",
- "It's a bit more complicated. Convolutions and pooling are *almost* translationally equivariant. There are edge effects because images are not infinitely wide so something special always must be done to deal with pixels near the edges of images, which prevents them from being fully equivariant.\n",
- "```\n",
- "\n",
- "### Pooling\n",
- "\n",
- "Convolutions are commonly paired with pooling layers because pooling also is translationally equivariant. If your goal is to produce a single number (regression) or class (classification) from an input image or sequence, you need to reduce the rank to 0, a scalar. After a convolution, you could use a reduction like average or maximum. It has been shown empirically that reducing the number of elements of your features more gradually is better. One way is through **pooling**. Pooling is similar to convolutions, in that you define a kernel shape (called window shape), but pooling has no trainable parameters. Instead, you run a window across your input grid and compute a reduction. Commonly an average or maximum is computed. If your pool window is a $2\\times2$ on an input of $(B, H, W, F)$, then your output will be $(B, H / 2, W / 2, F)$. In convolutional neural networks, often multiple **blocks** of convolutions and poolings are combined. For example, you might use three rounds of convolutions and pooling to take an image from $32 \\times 32$ down to a $4 \\times 4$. Read more about [pooling here](http://d2l.ai/chapter_convolutional-neural-networks/pooling.html)\n",
- "\n",
- "\n",
- "\n",
- "### Embedding\n",
- "\n",
- "Another important type of input layers are **embeddings**. Embeddings convert integers into vectors. They are typically used to convert characters or words into numerical vectors. The characters or words are first converted into **tokens** separately as a pre-processing step and then the input to the embedding layer is the indices of the token. The indices are integer values that index into a dictionary of all possible tokens. It sounds more complex than it is. For example, we might tokenize characters in the alphabet. There are 26 tokens (letters) in the alphabet (dictionary of tokens) and we could convert the word \"hello\" into the indices $[7, 4, 11, 11, 14]$, where 7 means the 7th letter of the alphabet. \n",
- "\n",
- "After converting into indices, an embedding layer converts these indices into dense vectors of a chosen dimension. The rationale behind embeddings is to go from a large discrete space (e.g., all words in the English language) into a much smaller space of real numbers (e.g., vectors of size 5). You might use embeddings for converting monomers in a polymer into dense vectors or atom identities in a molecule or DNA bases. We'll see an embedding layer in the example below."
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example\n",
- "\n",
- "At this point, we have enough common layers to try to build a neural network. We will combine these three layers to predict if a protein is soluble. Our dataset comes from {cite}`solubility` and consists of proteins known to be soluble or insoluble. "
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {},
- "outputs": [],
- "source": [
- "## set env\n",
- "import sys, re, os\n",
- "from pathlib import Path\n",
- "dir_nb = Path(globals()['_dh'][0]) \n",
- "\n",
- "import tensorflow as tf\n",
- "import pandas as pd\n",
- "import numpy as np\n",
- "import matplotlib.pyplot as plt\n",
- "plt.style.use(str(dir_nb.parents[1]/\"code/light.mplstyle\"))\n",
- "\n",
- "import warnings\n",
- "warnings.filterwarnings(\"ignore\")\n",
- "import urllib"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Our task is binary classification. \n",
- "- The data is split into two: positive and negative examples. \n",
- "- We'll need to rearrange a little into a normal dataset with labels and training/testing split.\n",
- "- We also really really need to shuffle our data, so it doesn't see all positives and then all negatives."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 16,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "18453 examples\n"
- ]
- }
- ],
- "source": [
- "urllib.request.urlretrieve( \"https://github.com/whitead/dmol-book/raw/main/data/solubility.npz\", \"solubility.npz\", )\n",
- "with np.load(\"solubility.npz\") as r:\n",
- " pos_data = r[\"positives\"]\n",
- " neg_data = r[\"negatives\"]\n",
- "\n",
- "# create labels and stich it all into one tensor\n",
- "labels = np.concatenate( (np.ones((pos_data.shape[0], 1), dtype=pos_data.dtype),\n",
- " np.zeros((neg_data.shape[0], 1), dtype=pos_data.dtype) ), axis=0 )\n",
- "features = np.concatenate((pos_data, neg_data), axis=0)\n",
- "\n",
- "# we now need to shuffle before creating TF dataset so that our train/test/val splits are random\n",
- "idx = np.arange(len(labels))\n",
- "np.random.shuffle(idx)\n",
- "labels = labels[idx]\n",
- "features = features[idx]\n",
- "full_data = tf.data.Dataset.from_tensor_slices((features, labels))\n",
- "\n",
- "# now split into val, test, train\n",
- "N = pos_data.shape[0] + neg_data.shape[0]\n",
- "print(N, \"examples\")\n",
- "split = int(0.1 * N)\n",
- "test_data = full_data.take(split).batch(16)\n",
- "nontest = full_data.skip(split)\n",
- "val_data = nontest.take(split).batch(16)\n",
- "train_data = nontest.skip(split).shuffle(1000).batch(16)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Before getting to modeling, let's examine our data. The protein sequences have already been tokenized. There are 20 possible values at each position because there are 20 amino acids possible in proteins. Let's see a soluble protein"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "array([13, 17, 15, 16, 1, 1, 1, 17, 8, 9, 7, 1, 1, 4, 7, 6, 2,\n",
- " 11, 2, 7, 11, 2, 8, 11, 17, 2, 6, 11, 15, 17, 8, 20, 1, 20,\n",
- " 20, 17, 1, 6, 4, 8, 7, 20, 1, 9, 8, 1, 17, 20, 16, 17, 20,\n",
- " 16, 20, 11, 16, 6, 6, 15, 11, 2, 10, 8, 20, 16, 11, 2, 2, 8,\n",
- " 16, 19, 11, 17, 8, 11, 10, 2, 6, 2, 2, 20, 14, 1, 11, 3, 20,\n",
- " 11, 16, 16, 2, 6, 16, 1, 20, 1, 4, 18, 14, 1, 3, 15, 7, 2,\n",
- " 15, 2, 8, 18, 2, 6, 14, 4, 19, 20, 2, 18, 17, 1, 9, 15, 12,\n",
- " 1, 8, 13, 15, 20, 11, 7, 4, 1, 11, 1, 6, 11, 9, 5, 2, 11,\n",
- " 17, 4, 11, 10, 15, 11, 8, 1, 16, 4, 4, 11, 11, 20, 1, 7, 20,\n",
- " 11, 4, 8, 2, 8, 2, 3, 8, 2, 15, 11, 20, 3, 14, 3, 8, 2,\n",
- " 11, 9, 4, 20, 7, 14, 2, 8, 20, 20, 2, 20, 16, 2, 4, 6, 15,\n",
- " 16, 1, 20, 17, 16, 11, 7, 0, 0, 0, 0, 0, 0], dtype=int64)"
- ]
- },
- "execution_count": 15,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "pos_data[0]"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Notice that integers/indices are used because our data is tokenized already. To make our data all be the same input shape, a special token (0) is inserted at the end indicating no amino acid is present. This needs to be treated carefully, because it should be zeroed throughout the network. Luckily this is built into Keras, so we do not need to worry about it. \n",
- "\n",
- "This data is perfect for an embedding because we need to convert token indices to real vectors. Then we will use 1D convolutions to look for sequence patterns with pooling. We need to then make sure our final layer is a sigmoid, just like in {doc}`../ml/classification`. This architecture is inspired by the original work on pooling with convolutions {cite}`LeNet`. The number of layers and kernel sizes below are hyperparameters. You are encouraged to experiment with these or find improvements!\n",
- "\n",
- "We begin with an embedding. We'll use a 2-dimensional embedding, which gives us two channels for our sequence. We'll just choose our kernel filter size for the 1D convolution to be 5 and we'll use 16 filters. Beyond that, the rest of the network is about distilling gradually into a final class. "
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 18,
- "metadata": {},
- "outputs": [],
- "source": [
- "model = tf.keras.Sequential()\n",
- "\n",
- "# make embedding and indicate that 0 should be treated specially\n",
- "model.add(tf.keras.layers.Embedding(input_dim=21, output_dim=16, mask_zero=True, input_length=pos_data.shape[-1] ))\n",
- "\n",
- "# now we move to convolutions and pooling\n",
- "model.add(tf.keras.layers.Conv1D(filters=16, kernel_size=5, activation=\"relu\"))\n",
- "model.add(tf.keras.layers.MaxPooling1D(pool_size=4))\n",
- "\n",
- "model.add(tf.keras.layers.Conv1D(filters=16, kernel_size=3, activation=\"relu\"))\n",
- "model.add(tf.keras.layers.MaxPooling1D(pool_size=2))\n",
- "\n",
- "model.add(tf.keras.layers.Conv1D(filters=16, kernel_size=3, activation=\"relu\"))\n",
- "model.add(tf.keras.layers.MaxPooling1D(pool_size=2))\n",
- "\n",
- "# now we flatten to move to hidden dense layers.\n",
- "# Flattening just removes all axes except 1 (and implicit batch is still in there as always!)\n",
- "\n",
- "model.add(tf.keras.layers.Flatten())\n",
- "\n",
- "model.add(tf.keras.layers.Dense(256, activation=\"relu\"))\n",
- "model.add(tf.keras.layers.Dense(64, activation=\"relu\"))\n",
- "model.add(tf.keras.layers.Dense(1, activation=\"sigmoid\"))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Model: \"sequential_1\"\n",
- "_________________________________________________________________\n",
- " Layer (type) Output Shape Param # \n",
- "=================================================================\n",
- " embedding_1 (Embedding) (None, 200, 16) 336 \n",
- " \n",
- " conv1d_3 (Conv1D) (None, 196, 16) 1296 \n",
- " \n",
- " max_pooling1d_3 (MaxPooling (None, 49, 16) 0 \n",
- " 1D) \n",
- " \n",
- " conv1d_4 (Conv1D) (None, 47, 16) 784 \n",
- " \n",
- " max_pooling1d_4 (MaxPooling (None, 23, 16) 0 \n",
- " 1D) \n",
- " \n",
- " conv1d_5 (Conv1D) (None, 21, 16) 784 \n",
- " \n",
- " max_pooling1d_5 (MaxPooling (None, 10, 16) 0 \n",
- " 1D) \n",
- " \n",
- " flatten_1 (Flatten) (None, 160) 0 \n",
- " \n",
- " dense_3 (Dense) (None, 256) 41216 \n",
- " \n",
- " dense_4 (Dense) (None, 64) 16448 \n",
- " \n",
- " dense_5 (Dense) (None, 1) 65 \n",
- " \n",
- "=================================================================\n",
- "Total params: 60,929\n",
- "Trainable params: 60,929\n",
- "Non-trainable params: 0\n",
- "_________________________________________________________________\n"
- ]
- }
- ],
- "source": [
- "model.summary()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Take a moment to look at the model summary (shapes). This is a fairly complex neural network. If you can understand this, you'll have a grasp on most current networks used in deep learning. Now we'll begin training. Since we are doing classification, we'll also examine accuracy on validation data as we train. "
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 20,
- "metadata": {},
- "outputs": [],
- "source": [
- "## Training\n",
- "model.compile(\"adam\", loss=\"binary_crossentropy\", metrics=[\"accuracy\"])\n",
- "result = model.fit(train_data, validation_data=val_data, epochs=10, verbose=0)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaMAAAFMCAYAAABmh9OjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAABP+AAAT/gEHlDmEAABhUElEQVR4nO3dd1gU19cH8O8uS3HpRUAREEQU7IINVFDsClYUY41GjBqj/tREDbZobLEXLElsWBBsCBpiS0CFIFEMFgQFARUrYEE63PePedm4LiggyyzL+TwPT2Danj0Z9+zMvXOvgDHGQAghhPBIyHcAhBBCCBUjQgghvKNiRAghhHdUjAghhPBOxHcAii4tLQ0hISGwtraGpqYm3+EQQkiN9e7dOyQlJWHAgAGoX7++1DoqRp8QEhKCyZMn8x0GIYQojZ07d8Lb21tqGRWjT7C2tgbAJa9FixY8R0MIITXXzZs3MXnyZMnn6vuoGH1Cya25Fi1aoFOnTjxHQwghNV9pTR7UgYEQQgjvqBgRQgjhHRUjQgghvKM2Izl79+4ddQn/AOVEVm3NSWFhIZ4+fYq8vDwUFxdLrSsqKoKKigpPkSkeRc+HUCiEuro6TE1NIRJVvLTQlZGcnThxgu8QFA7lRFZtzElhYSFSU1Px9u1bFBQU4MMxm4uKiniKTDEpcj4YYygoKMDbt2+RmpqKwsLCCh+DrowIIbwouSLS0dFB/fr1IRAIpNanp6fD0NCQp+gUj6LngzGGtLQ0vHnzBk+fPkWDBg0qtD9dGRFCeJGXlweBQFBqISI1z/v/L/Py8iq8PxUjOftwyAsCtGzZku8QFE5tzElxcTGEQmGZhahOnTrVHJFiqwn5EAgEEAqFMu1/5UHFSI4OHTqE/v374/Tp03yHolBq4wfvp9TWnHzsikgsFldjJIqvpuSjsle5VIzkyMTEBAUFBfDy8kJsbCzf4RBCiMKiYiRHbm5u8PX1RVZWFtzd3fH06VO+QyKEEIVExUjOvL29MWvWLKSmpmLQoEHIycnhOyRCSBVasmQJrl69+lnHaNiwIVxdXcu9vUAgwPjx4z/rNRUNde2uBj///DMSEhJw+vRpfPnllzh8+DD1HiJESSxduhRGRkZo3759pY9x8OBBaGholHv7c+fOKV3nKIW5MoqIiICrqyu0tLSgq6sLDw8PJCQklGvfzMxMzJ8/H/b29hCLxdDU1ERAQIDUNlevXkXfvn1hbGwMfX19ODs74+TJk3J4J7JUVFRw+PBhtGjRAkeOHMHSpUur5XUJITWDs7MzHBwcyr19jx49YG9vL8eIqp9CFKPY2Fi4ubkhJSUFPj4++N///oe///4brq6uePny5Uf3jY+PR7NmzeDr64vu3btj1apVmD59OnR0dCTbnD17Fk5OTrh//z5mzJiBuXPnIiMjA4MHD4avr69c31taWhoAQFtbG8HBwTAxMcHSpUtx6NAhub6uIivJCfkP5URWfn4+3yF8UsOGDQEA06dPh0AggEAgQMOGDTF16lTMmTMHZmZmWLZsGfbv3w97e3toaWlBQ0MDTk5OuHLliuQ4jo6Okttue/fuhUAgQGhoKDp06ACxWIzOnTvjzp07ku2NjIywZMkSANxtQiMjI5w6dQrNmzeHlpYW+vfvj+fPn0u2f/fuHSZMmAAtLS3Uq1cPY8eOhUAgQEhIiNxzVG5MAQwbNoypqqqypKQkybLw8HAGgC1cuLDM/fLz85m9vT2zsLBgycnJZW7XtWtXpqGhwZ4/fy5ZlpGRwfT19ZmVldVHY4uIiGAAWERERAXe0X/8/Pyk/v7777+Zuro6U1dXr/Qxa7oPc0JqZ04SEhJYQkJCmetfvnxZjdFUzuXLlxkA9s0337Bz586xc+fOMUtLSyYQCNjEiRNZcHAwS0hIYFu3bmU+Pj7s2LFjLCAggDk7O7O6deuy169fM8YYc3BwYOPGjWOMMbZnzx4GgBkbG7OtW7eyI0eOMGtra+bk5CR5XUNDQ7Z48WLGGGOLFy9mAFijRo3Y7t272f79+5mhoaHkeIwx1qdPH1avXj22a9cuFhgYyLy8vBgAFhwcXOU5+dj/1499nvLeZlRcXIzQ0FA4OzvDyspKsrxLly6wsLBAUFAQfvzxx1L3DQgIwJ07d3Dy5ElYWlqW+RovXryAvr4+6tatK1mmr68PW1tbPHjwoOreTDl06NAB+/btg5eXFwYNGoSoqCjJtytCCNCqVSs8f/5c8lBsdTI2Nsa///5b7u2dnZ0BAE2aNEGPHj0kyydMmIBff/1V8nfjxo2l9rO2toajoyOuXbuGbt26lXrs9z8bnj59ipkzZyIvLw/q6uoy22pra+P69euSO0IxMTHw9/cHAISHhyM0NBSXLl1C586dAXBXYiXrFQXvt+lSU1ORlZUFOzs7mXV2dnaIi4src4DAY8eOQUdHB/379wfAjd1U2rYuLi548uQJfvrpJ8lgjK9evcKtW7cwcODAKnw35TNixAgsXboUz58/h7u7O968eVPtMRBC5EdPT0/qb8YYgoKCMHXqVPTs2RNffvklAO72WVmMjIwkv5ubm4MxhmfPnpW6rZqamlTThLm5ueRRktDQUNStW1dSiBQV71dGJfc19fX1ZdYZGBigoKAAmZmZUv9jSsTExMDExARTp06Fv78/3r59CxUVFfTr1w/bt2+HmZkZAK4328OHD+Hj44MDBw7A29sbwcHBcHBwwLp168oV5+PHj5GUlCS1TF9fv9S439elS5dSly9cuBB3797F4cOH4eXlhVOnTlVq2PWaqKyc1GaUk/+UXJmUdRVQE3l5eSEwMBCDBw9Gr169oKGhgW+//bbc+6uqqgJAuYfZUVVVlXzxfvnyJUxNTSsedDXj/dOvZEC90j6IS/4HlPVszrNnz1BYWIjs7Gxs2LABOjo6+Ouvv7B9+3bEx8cjNjYW6urqEAqFMDExQZMmTWBvb4958+YhPz8fs2bNkrzGp3h6esosW7x4saQRsUR4eDhSU1Ml8Y8YMaLU4wkEAgwdOhTR0dH4/fffMWzYsI/27jtw4IDk90aNGqFTp06lbvfq1SupRkkHB4dSrzoBICUlBZcuXZL83b179zK7i8bGxkqNIjF48OAy59/5VA7ev6UaHByM169fA+C+Cfbp06fUYwLKlYP3leTg0qVLtTYHr169ktzVEIlE0NXVLbMQpaenS35XV1eHlpZWqdsVFhZKzi2AG06nrPHd8vLykJWVJflbW1sbampqpW6bnZ1d7ucF3759i/j4eAQEBGDt2rWYPXs2ACA5OVmmGOXn5yM9PV0qjrIwxpCdnY309PSPdvQoLCyEWCzG69evkZ6eLrcc6OnplTnX0vvnwUebRaq89aqCoqKiGAD2ww8/yKwbOXIkA8BevHhR6r4ikYj16tVLZvnMmTMZAHb8+HHGGGNDhw5l9evXZ+np6Ywxxp49e8a+/vprBoANGjToo/GVNLgFBgayxMREqZ+MjIyKvl0ZT58+ZZaWlgwA8/X1/ezjEVJTfKoDQ02hqanJ1q5dK/nb0tKSzZ49W/L3P//8I9Nof+PGDakOBKV1YHj79q1k++DgYAaAPXjwgDEm24HB0NBQKqYtW7awko/3vXv3MqFQyB49eiRZn5CQoHAdGHhvMzIxMQGAUttNMjIyIBKJZO6/ltDT00N2drbMchcXFwBct+/U1FQcO3YMXl5eMDAwAMA1Um7fvh2DBw/GyZMnZW6/lcbMzAzW1tZSP5+6RVceJiYmCAkJgba2NqZPn45z58599jEJIdWnTZs2+O233+Dv749NmzbJrLezs0PdunWxYMECnDp1Clu3bkXv3r2rLT5PT08YGBjA09MTgYGB2Lx5M3r27Amg8oOaygPvxcjc3Bw6Ojq4fv26zLr4+Hg0adKkzLaUZs2aIS4uTuY+am5uLgDuMrPk+Y3SeuVYW1sD4Hrb8al58+bw9/cHYwyenp6Ii4vjNR5CSPlt27YNYrEY48ePx+bNm2XWi8ViHD16FC9evMCwYcMQEBCArVu3Vlt8YrEYQUFByMrKwqhRo+Dr64uZM2cCQJm3OHlR5ddoleDl5cVUVVWlnhUquZybN28eY4yxFy9esLi4OJaWlibZZvPmzQwA2717t9TxBg4cyIRCIbt37x579eoVU1NTY5aWlpI+/Ywxlpuby+zt7ZmmpqbU5fCHPvc5o4rYtGkTA8Csra3LvDVJiLJQltt0NdH58+eZQCBgz549q/Jj19jnjADAx8cHp06dQvfu3TFp0iTk5eVh27ZtMDY2llTwrVu3YunSpRg3bhz27t0LAJg0aRL27NmDSZMmITIyEra2tjh37hzOnj2LuXPnwsbGRnL8RYsWoU2bNhg3bhxEIhH8/f1x584d7NixQ2G+HUyfPh13797F9u3bMWTIEJw7d05pehMRQvjz/fffw8rKCpaWlkhLS8OqVaswZMgQGBsb8x3af6q8LFZSZGQkc3FxYWKxmGlra7P+/fuzuLg4yfqSp4zff6qYMcaysrLYzJkzmYmJCVNVVWV2dnaldgQICgpi7du3Z3Xq1GFisZh17tyZhYSEfDKuz70yunPnToW2z8/PZz179pS81+Li4kq9riKraE5qg9qYk09dGWVnZ1djNIrvc/Ixfvx4ZmxszEQiETMxMWFff/31R+8IfY7KXhkpTDFSVFU9HFB5ZGZmsqZNmzIAbOXKlZV6XUVWG4e++ZTamBNlGA6oOtWUfNTY3nRElp6eHkJCQmBoaIj58+fj+PHjfIdECCFyRcVIQTVq1AgnTpyAqqoqRo8ejWvXrvEdEiGEyA0VIzkbMGBApfft0qULfv31V+Tk5MDDwwOPHz+uwsj48zk5UVaUE1m6urp8h6BQlD0fVIzkrKwHdstr7NixWLBgAdLS0uDu7v7RgRVris/NiTKinMiqLWM1lpey54OKUQ2wbNkyDB06FDExMRg9enS5B0skhJCagopRDSAUCrF//344ODjg5MmTWLBgAd8hEUJIlaJiVEOIxWKcOnUKZmZmWL16Nfbs2cN3SIQQUmWoGNUg9evXR3BwMMRiMSZPnoywsDC+QyKEVFLDhg0xZ84cAMCSJUsgEAiQnJxc6rbJyckQCARS04J8zMaNG3H27FmZ13N1df2ckOWKipG8lTFLbWW1adMGBw8eRGFhIYYMGYL79+9X6fEJIdVv7NixOHfuXJVNgldaMTp48GC5JxPlAxUjebp+HbkWFsChQ0AVdjoYNGgQVq9ejYyMDAwYMACZmZlVduzqEBkZyXcICodyIqs8k8wpC2tra/To0QMaGhpyew1nZ2c4ODjI7fifi4qRPIWHQ/3JE2DUKKBdO+DixSo79Jw5czBhwgTEx8fD09MTBQUFVXZseUtMTOQ7BIVDOZFVMgu0IuvQoQMGDRoktezu3bsQCARYvXo1GjduDLFYDE1NTfTq1Qt37twp9Thbt26VmlsoKysL48aNg5aWFkxMTCS380p87Niurq5ISUnBunXrIBAIJLf/HB0dMX78eMkxzp8/DwcHB6irq8PCwgIrV66UTFX+119/QSAQ4MiRI+jZsyfq1KmDVq1aITo6ugqyVjrl7rjOt5kzcTonBwMuXQJ+/x1wcwP69gVWrwZatPisQwsEAmzfvh2JiYm4cOECvvnmG+zYsUOhJssipFJatQKeP4d+cTFQyjxkcmVsDPz7b7k39/LywoIFC5CVlSUZ/f/YsWMwMjLC27dv8eWXX6J58+Z4+/YtVqxYgaFDh+LOnTuf/Hc6ePBg3L59Gxs2bICRkRGCg4Ol1ufk5JR57HXr1qF///7o2rUrvL29AUDm9t+tW7fQt29fDBkyBAsWLMCtW7ewePFiqKqqShW+r776Cj4+PpgyZQpWrVqFkSNHIj4+vswpxj8HFSM5e2VuDpw5A1y4AHz3HVeUQkOB8eOBH38EGjSo9LHV1NRw7NgxdOzYEbt27YKdnZ1kyg1CiPx5enpi9uzZOHPmDIYPHw4AOH78OIYNG4bly5dLbauhoYFhw4YhOTkZVlZWZR7zzz//xPnz5xEREYFOnToB4NqK3+9Bu2TJkjKP7eDgAA0NDVhYWKBHjx6lvsaPP/6I5s2b48iRIwCAoUOHoqCgACtXrsT06dMl2wUHB0s6PYhEIgwcOBCJiYmwtbUtX4IqgIqRnI0ePZr7xc0NiI4G/P2BBQuAPXu432fN4opUJYf6MDQ0REhICDp27Ij//e9/sLGxUfihZSQ5IRKUk/f8/5VJTWhDaNCgAZydnXHs2DEMHz4cqampuH79OtavX4/8/HwcPXoUFy5cQHJyMh49egQAnxxF5Y8//oCxsbGkEJWmsscuER0djS+++EJqWb9+/fDTTz9J3TI2MjKS/G5ubg4AePr0qVyKUU34/608hELgiy+A+Hhg3TpAQwNYsQKwsQG2bAHy8yt12CZNmuDo0aNQUVHByJEjERsbW8WBE0LKMmLECJw5cwa5ubk4fvw46tevj06dOqF79+4YN24cCgsLMWDAAIwcObJcx8vIyICJiUmZ6wsLCyt97BJPnjyBoaGh1LKSwvPkyZNS91FVVQUAuY0AQ8WID+rqwP/+ByQmAnPnAm/fAt9+C9jbA4GBwP83IlaEm5sbfH19kZWVBXd3dzx9+lQOgRNCPjRs2DBkZ2fjjz/+wPHjxzF8+HBcunQJV65cQXBwMPbt24dZs2aV+xmfunXr4u3bt2WuDwsLq/SxS9SrVw8vX76UWlbyd7169Sp0rKpCxYhP+vrAmjXcldKYMUBSEjB8ONCxIxAeXuHDTZo0Cf/73/+QmpqKQYMGIScnRw5BE0LeZ2pqChcXF2zfvh1XrlyBl5cXXr16BQBo1aqVZLvXr1+X63hNmjRBSkoKHj58KFmWnZ0t+b08x9bS0vpob8QOHTrg9OnTUsvOnDkDfX19NGrUqFxxVjUqRorA0hLYvx+4dg3o0QO4ehVwcQEGDgTi4ip0qDVr1mDAgAGIiorCl19+KemqSQiRnxEjRuCPP/6ApaUlOnTogA4dOkBDQwMzZsxASEgIVq1ahTFjxpTrWAMHDoSRkRGGDx+OwMBAbNiwQaojQnmO3aZNGxw9ehR+fn7YuXMnMjIypNYvWLAAd+7cgaenJ44fP44ff/wRa9aswbx586Curv75CakEKkaKpE0b4Nw54I8/gJYtgVOngObNgcmTgTLu435IRUUFhw4dQsuWLXHkyBGZXjeEkKo3dOhQiEQijBgxAgDXseHgwYP4559/MHToUFy+fBnr168v17F0dXVx8eJF5ObmYtSoUfDz88MPP/wgWV+eY//0009o2rQpvL29sXz5cuR/0B7dsmVLBAcH4/79+xg5ciR++eUXLFq0CHPnzv3MTFSegNFX54+KjIyEk5OTVDfLalFUBBw8CPj4AA8fAmIxMGcO96Ot/cndU1NT0b59ezx79gwHDhzAqFGjqiFoQsrv3r17AIDGjRvzHAmpSh/7//qxz1O6MpKz0NDQyu2oogKMHcu1J61eDaiqcs8l2dgA27cDnxhxwcLCAkFBQdDQ0MCECRMQERFRuTjkoNI5UWKUE1nlbWOpLZQ9H1SM5OzDHisVVqcO9xxSYiL3TFJmJjB1Knf77sSJj/a869ChA/bt24f8/HwMGjSozBGBq1VRETL//5kI8p/PPk+UUGFhId8hKBRlzwcVo5rC0BBYv567Uho5EkhIAIYMATp3Bj5y1TN8+HD8+OOPePHiBVxcXHDjxo3qi/n5c+D8eWDDBuDLLwFHR0BLCyMnTeKGXXFy4noRLlkC+PkBkZHcPnTnmJBah0ZgkDPdSo6sUCYrK24U8P/9j3tG6a+/AGdnrjCtXAmU8mS0j48PXr16hfXr18PJyQl79+6VDF1SJXJygDt3gNhY4ObN//77/Ln0dgIBYG2NTBUV6GdmcsWntNGqtbS425GNGnE/7//eoAF3C1PJVPl5UkN8rMlaHuOf1WQ1JR+MsUqNkUnFSM7c3d3lc2BHR24U8N9/527jHT8OBAVxPe8WLQLee4JbIBBg3bp1aNGiBSZPnowRI0bg33//xbJlyyCsyECUxcVAcrJs0bl3T3aKDAMDwNWVGxC2ZUvuv82aAVpa0C/Z5s0b7tmqxETg/n3uvyW///svUNpVnJoaV5A/LFI2NkDDhtwDxTWQ3M4TBSYUClFQUFDmh5eenl71B6XAakI+GGMoLi6WjNZQEVSMajKBAOjXD+jdG9i3D1i4EPD15Z5Z+u477upJU1Oy+fjx49G0aVMMGTIEK1asQGxsLA4cOFD6t/KMDOmCU/Lz4dhXamrSBafk93r1uPg+RkcHaN2a+/lQXh5X+D4sUomJwIMH3O3K0vJhbl56oWrUqFy9EEn1UVdXR35+PtLS0lC/fn0acb6GY4whLS0NjLFKPatEXbs/gbeu3ZWRnQ1s3AisWsUNMVSvHrB0KddeI/rve0daWhqGDBmCqKgotGjSBKfWrEHDN2+ki8/jx7LHt7D4r+iU/NfWluvpV52Kirj4SitUiYncey9N3brSRcrWFvDw4G4LkmpXWFiI1NRU5OXlQSAQQCgUUkGqoUquiEoKkYWFBUQi2Wudj32eUjH6hBpVjEq8eAEsW8Z1AS8sBOzsuO7hrVtLik1RTAzSzp6F6atXkCklOjrSVzktWnC992rAbQIwxr3/ksL0YaH6sB3LxIS7opw0ibvKI9WqsLAQT58+RV5entwG4CTVQygUQl1dHaampqUWIuDjn6d0m04Z1a0LbN7MDb66YAE3+KqHh9QmKgAaqKggw9QU5549w00AbceNw5DFiyGwtPz0LTZFJRBwPfWMjYHSvjy8fftfYfrrL2DXLuCbb7ieisuWAV5e1T+hWy0mEonQ4DPm9CLKg/7VKTMbGyAggOux5u4O9OrFjeCwfz8QEwPBu3cwfPIERmfPYrueHobt3YvRP/yAnNxcviOXH21t7gpx6FBu2o74eO7h4gcPuOnh27blOoXQDQP+REQA48YBly7xHQmpTox8VEREBAPAIiIi+A5Fru7fv8+aNWvGADAHBweWmprKd0jVKzaWMXd3xrgyxJiLC2ORkXxHVbs8fszY6NH//T8QiRjbvJmx4mK+IyNV5GOfp3RlJGcl0/oqukaNGiEyMhKDBw/GtWvX4OjoiCtXrsjltRQyJy1acAPTXrrEPbcVFsbd5hs8uMIjp1eGQuakuuTlcW2atrbAgQNA48bA6tXIV1XlbjWPH889y1bLKfs5QsVIzgo+MYacItHW1sbRo0exZMkSPH/+HN26dcMvv/xS5a+j0Dnp3JkrSCUjpp88yf13wgRuwFo5UeicyNPp01x+583j2vvWrAFu3QK++w6/L13Kdb7Zv5/7/5KSwne0vFL2c4SKEZEiFAqxePFiHD9+HGpqavD29sY333yj9P8QpAgEXBvbjRvc81vm5sCePdw39jlzgPR0viOs+eLjuWfkBgzgejuOHcsNcTV3rqRX49t69YCoKG50kevX/3vQmyglKkZyZmFhwXcIlTJ48GBERkbCysoK27ZtQ8+ePfHixYsqOXaNycn7I6dv3Mh1fli3DrC2Bn76SfYB4M9QY3Lyud684R7IbtGC6yji6Mh1sNm3j3su7j0WFhZczo8eBVas4L4E9OzJ9XyshR1MlP4c4aENq0apLR0YyvLy5Uvm5ubGADBLS0sWExPDd0j8ef2asUWLGNPU5BrYTU0Z8/VlLD+f78gUX1ERY3v3cjkDGKtbl7HffuOWl9fvvzOmp8ftP3IkY+/eyS9eIhfUgYFUmqGhIUJDQzFz5kykpKTA2dkZgYGBfIfFDx0dbkSLpCRg+nTum/rUqVy7hr+/7Ph8hBMdzY3QPn488PIlNxVKQgLXDleRZ7r69AH++Ye7qjp8mDvmgwdyC5tULypG5JNEIhE2bNiAPXv2oLCwEMOHD4ePj0/tfWLe2Jh7qPjuXWD0aK44jRzJ3XL6449aeQupVM+eARMnAu3bc20/PXtyI4CsX1/50TwaNeJu6w0fzg2m6+gInD1bpWETflAxIuU2fvx4hIWFoV69evjpp58waNAgvHnzhu+w+GNtzc3DFBPDNcbHxHDf3t3cuA/f2qqggCs4trbA7t3cKOsnT3KF2s7u84+vqcldia5ZA7x6BfTty3UNpy8BNZrCFKOIiAi4urpCS0sLurq68PDwQEJCQrn2zczMxPz582Fvbw+xWAxNTU0EBATIbPfo0SNMnz4dNjY20NDQgI6ODiJLm0+HlKljx474559/0L59ewQHB6Njx46SOe9rrVatuC7KJc8m/fkn0LEjN8rD3bt8R1e9zp7lxjOcPZsbF3H5cm6uq4EDq3aIKYGA63n3xx/cVda8ecCIEUBWVtW9BqlWCjE2XWxsLNzc3GBqagofHx/k5eVh27ZtcHV1RWxsLIyMjMrcNz4+Ht26dcO7d+8wZswY2NraIi0tDTo6OlLbXblyBX379oVYLMbo0aNhbm6O5OTkSg11XtvVr18fYWFh+Prrr7Fv3z60b98e/v7+6N27N9+h8atrV+DKFe4ZpQULuDmmTp7k2kYWL+YmBlRWSUnclCVBQdzfI0dyVy7yfs89enDtSEOGcGMw3rnD5dzGRr6vS6oeDx0qZAwbNoypqqqypKQkybLw8HAGgC1cuLDM/fLz85m9vT2zsLBgycnJZW6XmZnJjI2NWZs2bVh6enqFYvvc3nRZWVmV2q8mKC4uZhs2bGBCoZAJhUL2888/s+JyDN2izDmRKCxkbM8exszNud5fGhqMzZ3LWBnnX43NSVYWYz/8wJi6Ovc+W7ViLCysig5dgZy8e8fYqFFcDHp6jJ05UyUxKJIae46852Ofp7wXo6KiIqalpcVcXV1l1llYWLCWLVuWue+BAwcYAHby5MmPvsby5csZgEp1S/7cYuTn51ep/WqSc+fOMX19fQaAjRo1imVnZ390+9qQE4mcHMbWr2fM0JD7oNTVZWzFCpluyTUuJ8XFjB06xJiZGfe+DAwY276dK8JVpMI5KS5mbMMGxlRUGBMIGFu+vGJdxxVcjTtHSqHQXbtTU1ORlZUFu1IaNu3s7BAXF4eioqJS9z127Bh0dHTQv39/AEB6enqp2x47dgz29vZo3bo1GGNIT0+vcE+wx48fIykpSeonMzOzQsdQVj169EB0dDSaNWuGgwcPokuXLnj06BHfYSkGDQ2uK3NiIuDjwzXuL1jA3UbasYP7u6a5cYO7JfnFF8CTJ8C0adzU819/zT0ozBeBAJg5Ezh3DjA05PI9bFjZky0ShcJ7m9Hz/5/sTF9fX2adgYEBCgoKkJmZWWq7UUxMDExMTDB16lT4+/vj7du3UFFRQb9+/bB9+3aYmZmhsLAQt27dgqOjI4YPH46QkBDk5ORAXV0dw4cPx5YtW0qfdvsDnp6eMssWL16MJUuWSC0LDw9HamoqAHxyHvjg4GC8fv0aAGBkZIQ+ffqUue2BAwckvzdq1KjMif5evXqFkJAQyd8ODg6lFnoASElJwaX3hunv3r076tevX+q2sbGxiI2Nlfw9ePBgaL43pXnJQKtjx47FyZMn0bx5c3z77bdo1qwZRowYUeb7UqYcvO/D82DEiBHcfEnTpnGN+jt3AlOmAOvX45/Bg5Gmr48DBw4odg5evkT61KnQP3oUQsbw1M4OOnv2QNyhQ/lzUIYqPQ+6dQOuXUPhwIEQnTiBV1FRCJ85E40HDFCM86AMteHfwoOPPRdW/Rdq0krahhYtWiSzbuzYsQxAmdMZ1KlTh6mqqrJRo0axX3/9lQUEBLCpU6cygUDAbG1tWW5uLnv27BkDwDQ1NdnkyZPZ3r17mb+/P/Py8mIAmIuLy0fjK7msDAwMZImJiVI/GRkZn3x///77b7nyoCyKiorY4sWLGQCmqqrKdu3aJbNNbctJqe7f50YR+P/pEgq1tLj2lkGDGJs1i7FNmxg7dYqxmze5dhk+FRQwtmXLf6MfmJszFhAg96kdPvs8yc5mbNw4LmYdHcaCgqokLr4ow78bhW4zioqKYgDYDz/8ILNu5MiRDAB78eJFqfuKRCLWq1cvmeUzZ85kANjx48fZo0ePGADm7e0ts92gQYMYAHb9+vUy46vtwwFV1rFjx5impiYDwKZNm8byacic0sXEMDZ4MGMNGnDtHCVz+Xz4U7cuY+3bMzZ8OGPff8/Yjh2M/fEHYwkJjOXmyi++ixcZa978v04YixbVrGF4iosZ27qVmxsJYGzxYqVqR6ppPvZ5yvttOhMTEwAo9eHJjIwMiEQi6JXxtLaenh6ys7Nllru4uGDjxo2Ij49Hz549AaDM7U6ePIn4+Hi0adPmM94F+dCQIUPQuHFjDBw4ENu2bcOtW7cQGBiIunXr8h2aYmndmusCDnDz+qSmAsnJ3DA37/8kJwNXr3I/HxIIgPr1uYdLP/xp2JDrXl3RtpyUFO45npKhn4YOBdau5Y5XkwgE3K3Rli259qOlS4Fr17h5k8pxe55UH96Lkbm5OXR0dHD9+nWZdfHx8WjSpAlEotLDbNasGW7duoXi4mII3xvjKvf/p83W1taGlpYWLC0tcevWLZn939+OVL0WLVogOjoaI0aMwIULF9CuXTucPHkSrVu35js0xaSuzk1T0bhx6evfvZMuVB8WrcuXuZ8PiUSAhYV0gXq/YJmY/PdAak4O93zQqlVAbi7QrBmwaRM3qkRN1qULV4SGDgVCQrghik6cAOzt+Y6s5rl3jzuHPtEmXmE8XKnJ8PLyYqqqqlLPCpVczs2bN48xxtiLFy9YXFwcS0tLk2yzefNmBoDt3r1b6ngDBw5kQqGQ3bt3jzHG2P/+9z8GgF28eFGyTWFhIWvbti3T0tJir1+/LjM2uk33+QoKCiS3TsViMTt8+HC5nkciFZSRwdi1a4wdO8bY2rWMTZvGWL9+jNnZMVanTtm3AOvU4bbp25cxS8v/uqBv2qR8I5Ln5jL21Vfce9TS4nJFyicri7H58xlTVWXs558rdQiFbjNijLFbt24xsVjMrK2t2cqVK9mSJUtY3bp1mbGxMXv69CljjEkaxceNGyfZLycnh7Vp04apqKiwSZMmsZ9//pn16tWLAWBz586VbPfixQtmbm7O6tSpw2bNmsVWr17NOnTowACwbdu2fTQ2KkZVZ8+ePUxNTY0BYK6uriwyMpLvkGqP4mLGnj5lLDKSez7op5+4D+UePRhr1Oi/NhWBgLFJkxh7/pzviOVr507uQxVgbMGCKn0+SukUFzN24gRjFhZcvoyMGKvkM08KX4wYYywyMpK5uLgwsVjMtLW1Wf/+/VlcXJxkfWnFiDHuqeSZM2cyExMTpqqqyuzs7Jivr6/M8Z8/f87GjRvHDAwMmJqaGmvTpg0LDAz8ZFxUjKpWdHQ0c3JyYgAYADZw4EB28+ZNvsMihYWMpaQw9ugR35FUn4gIxurV4z5g+/ThriyJtPv3uavrki8qX39d5igi5VEjipGi+txi9Pjx4yqOqOZ79OgRCw4OZi1atGAAmEAgYGPHjmUPHjzgOzTe0Hkiq1pykpbGmJMT92HbqBFjsbHyf81KqtZzJDub63lYMsyToyNjV69+9mEVegQGZXfx4kW+Q1A4f/75JwYMGICYmBgcOHAADRs2xP79+2Fra4tvv/0Wz5494zvEakfniaxqyUm9etwo61OmcKNkdOwIlDLivyKotnPkzBmgeXOu56FYDGzfDvz9N9CunVxflooR4Y2KigpGjRqFu3fvYtu2bTAwMMCWLVvQqFEjLFy4UPI0OiFypaYG+PoCv/7KTXsxYgTw/ffc77VJSgoweDDQvz83CvuECUB8fLUN80TFiPBOTU0NU6dORWJiIlasWAGRSITly5fD2toaP//8M3JycvgOkdQGEycCly4BZmZc9/a+fbmp5ZVdXh6wYgU38eHJk9z8XFeuAL/9BlTjc4FUjOSsS5cufIegcMrKiaamJubPn4+kpCR8//33yM7OxnfffYfGjRtj165dKKiJg4qWE50nsnjJSfv23PNIXbsC589z05pfuaIQs8jKJR/nz3MPBP/wA/fc0KZN3PxQTk5V/1qfQMVIziwtLfkOQeF8KicGBgZYtWoVEhMT8fXXX+PZs2eYPHkymjVrhiNHjlR4xPWagM4TWbzlxMSE+5D+9lvuweLOnbmrhY0bgRcv+IkJVZyPx4+525E9ewIJCcDo0dysxN9+yz0kzQMqRkRh1a9fH9u3b0dcXBxGjhyJe/fuwcvLC46OjggNDQVTgG+rREmVXCUEBXGzyd68yU0FYmb23ygONbFNqaAAWLcOaNqU66hhbw/89Rfg58d15uARFSOi8GxsbHDo0CHExMSgX79+iImJQd++feHq6oqIiAi+wyPKzMODmx/pwQNgyRKuGB0/Dri7A+bmXEeHu3f5jrJ8wsKANm2AOXO4244//8zNTeXiwndkAKgYkRqkdevWOH36NMLDw+Hs7Cz5r4eHB27evMl3eESZNWwILF7Mdf++cIG7rfXqFdfRwc6Oa2P59VeglAGfeff0KTBmDODqCty+DQwfzhXQOXOqfny5z0DFiNQ4Xbp0waVLlxASEoKWLVsiODgYrVq1wpgxY5CUlMR3eESZCYVA9+7cba2nT7lJEjt0ACIjgUmTuFtd48Zxt774btssLAS2bAGaNOFGKbe1Bc6eBY4c4UZyVzBUjEiNJBAI0L9/f8TExODgwYOwsrLCgQMH0LRpU3zzzTd4+vQp3yESZaerC3h7cw+E3r7NXWloawP793OzzTZuzM3u+/+znFaryEjuIdVvv+XaiX76CYiN5TosKCgqRnIWFxfHdwgKpypzIhQK8cUXXyAuLg6+vr4wNDTEtm3b0KhRIyxYsACvXr2qsteSJzpPZNWonNjbc20wDx9ynR4GDeKK0KJF3C2+3r0Bf39uWo5KKlc+XrzgnpdycuLagwYOBO7cARYs4KYoUWBUjOTs2rVrfIegcOSREzU1NUyZMgWJiYlYtWoV1NTUsHLlSlhbW2P16tWlTq6oSOg8kVUjc6KqynV6OHGC6z69bh1XqM6eBUaO5G7jTZvGPctUwd6gH81HURF3y7BJE2D3bm6eqpAQ7iHWGjIhIhUjolTEYjG+//57JCUlYd68ecjNzcW8efNgY2ODHTt2KPWDs0TBGBsD//sf1y386lVuWB3GuKGHHB25WX6r4tmlf/4BOnXijp+dzXW0uH2bG9anBqFiRJSSvr4+Vq5cicTEREydOhUvXrzAlClTYGdnh8OHDyvlg7NEQQkEXPvN9u3AkyfAwYPczLmxsdLPLp0+XbFnlzIyuAFe27cHoqO54Ytu3eK6oNepI7e3IzefPSa4kvvcKSQyMzOrNiAlwEdO7t+/z0aNGsUEAgEDwFq1asVOnz6tMDPO0nkiS+lz8uABY0uWMNaw4X+z7tarx9j33zN2967M5pJ8FBUxtns3N8kdwE16d/w4NwmegqMpJHikp6fHdwgKh4+cNGrUCAcOHMCNGzcwYMAA/Pvvv+jfvz969uyJ27dvV3s8H6LzRJbS5+TDZ5dGjQIyM4HVq7kREpydpZ5d0tPT4zoldOnCjaj9+jUwfz7XQWHwYO4KrAajYkRqlZLnki5fvoyOHTviwoULaNWqFaZPn46MjAy+wyO1UcmzSwcOcM8u7djBPbsUESH97NK0aYCDA7e85DbfihWApibf76BKUDEitZKzszMiIiLg5+cHExMTbN26FY0bN4avry8Ka+KYY0Q56OoCkydLP7ukpcU9u+TrC5iacl3Ez53jrp6UCBUjUmsJBAKMHj0a8fHxWLBgAd69e4dp06ahbdu2+PPPP/kOj9R2Jc8uPXrEPbvk68sN4zNiRI2/JVcaKkak1tPS0sJPP/2EO3fuYMiQIbh58ya6d++OYcOG4cGDB3yHR2q7kmeXpkzhRnhQUlSMCPl/1tbWOHbsGM6fP4/mzZvj2LFjsLOzw8KFC/Hu3Tu+wyNEqVExkrPIyEi+Q1A4ip4TNzc3xMTEYOvWrRCLxVi+fDmaNGmCQ4cOyW0OJUXPCR8oJ9KUPR9UjOQsMTGR7xAUTk3IiUgkwrRp03Dv3j1MmzYNT548wahRo9C5c2e5DFNTE3JS3Sgn0pQ9H1SMCPkIQ0NDbN26FTdu3ED37t0RERGBdu3aYeLEiXj27Bnf4RGiNKgYEVIOLVq0wPnz53H8+HE0bNgQu3fvRuPGjbF27Vrk5+fzHR4hNZ6AyesmuJKIjIyEk5MTIiIi0KlTJ77DIQogNzcX69evx4oVK/Du3Ts0btwYGzZsQP8aNjAlIdXtY5+ndGVESAVpaGhgwYIFiI+Px+jRo3Hv3j0MGDAA/fr1w927d/kOj5AaiYoRIZVkZmYGPz8/REREwNHREb///jtatGiB2bNn15hJ/QhRFFSMCPlMnTp1QlRUFPbs2QNDQ0OsX78etra2+OWXX1BUVMR3eITUCFSMCKkCQqEQ48ePR0JCAr777ju8evUK3t7eaNeuHS5fvsx3eIQoPCpGhFQhHR0drF69Grdv34a7uztiYmLQpUsXjBw5Eg8fPuQ7PEIUFhUjQuSgcePGOHXqFEJDQ9G0aVP4+/ujSZMm+PHHH5GTk8N3eIQoHCpGchYaGsp3CAqnNuWkd+/eiI2NxcaNG6GmpobFixejadOmCAwMlBpaqDblpLwoJ9KUPR9UjOTs5cuXfIegcGpbTlRVVTFjxgzcu3cPkydPxsOHDzF8+HB069YN//77L4Dal5PyoJxIU/Z8UDEipJrUrVsXO3bswPXr19G1a1eEhYWhbdu2+Prrr/H27Vu+wyOEV1SM5ExXV5fvEBRObc9J69at8ddff+HIkSMwMzPDzp07sXDhQrkMwFqT1fbz5EPKng8qRnLm7u7OdwgKh3LCzTI7fPhw3L17F7Nnz0Z6ejq6dOmCI0eO8B2awqDzRJqy54OKESE8EovFWLt2Lfz8/FBcXAwvLy8sWrQIxcXFfIdGSLWqUDF6+PAhAgICkJKSIll29epVjB8/HmPGjEFUVFSlA4mIiICrqyu0tLSgq6sLDw8PJCQklGvfzMxMzJ8/H/b29hCLxdDU1ERAQECZ2//777/Q09ODhoZGpeMlpCqNHj0aYWFhMDU1xbJly+Dp6Umzy5JaRVSRjX/88UcEBAQgKSkJAJCamgo3NzfJP5rAwED8+eefFR7dOjY2Fm5ubjA1NYWPjw/y8vKwbds2uLq6IjY2FkZGRmXuGx8fj27duuHdu3cYM2YMbG1tkZaWBh0dnVK3T0pKQp8+ffD69Wuoq6tXKE5C5KlDhw6Ijo7GoEGDcPz4cSQmJiIoKAiWlpZ8h0aI/LEKsLOzY19//bXk7+XLlzOBQMCCgoLYy5cvWZs2bZibm1tFDskYY2zYsGFMVVWVJSUlSZaFh4czAGzhwoVl7pefn8/s7e2ZhYUFS05O/uTrPHv2jNnY2DAXFxfWsWNHpq6u/sl9IiIiGAAWERFRvjdDyGd69+4dGzFiBAPAjI2N2eXLl/kOiZAq8bHP0wrdpktNTYW9vb3k7/DwcDRq1AgeHh4wNDTEiBEjKnyrrri4GKGhoXB2doaVlZVkeZcuXWBhYYGgoKAy9w0ICMCdO3ewefPmT357fPv2Lfr06QOxWIygoCC6KiIKSywW4/Dhw1i2bBmeP3+Obt26Yc+ePXyHRYhcVagYGRgY4OnTpwCA/Px8/P333+jQoYNkvYqKCgoLCysUQGpqKrKysmBnZyezzs7ODnFxcWWOfHzs2DHo6OhIJjVLT08vddu8vDwMHDgQmZmZCA0NrVQXycePHyMpKUnqJzMzs8LHIaQ8BAIBfHx8cPz4caipqWHChAmYPXs2jQJOlFaF2oy6deuGnTt3okGDBoiIiEBWVpbU7JZXr15Fw4YNKxTA8+fPAQD6+voy6wwMDFBQUIDMzMxS241iYmJgYmKCqVOnwt/fH2/fvoWKigr69euH7du3w8zMDMXFxRg9ejRu3ryJK1euoF69ehWKr4Snp6fMssWLF2PJkiVSy8LDw5GamgqAe/IeAEaMGFHqMYODg/H69WsAgJGREfr06VPm6x84cEDye6NGjcpsl3v16hVCQkIkfzs4OJRa6AEgJSUFly5dkvzdvXt31K9fv9RtY2NjERsbK/l78ODB0NTULHXbD3Pw4fs/cuSIZFltzcH7goODER8fD1NTU5kcDB48GFeuXIGHhwfWr1+P8+fPY9q0aRCLxUqXgw/Pg/fPk/cp83nwsX8L7+ejpubgwYMHpW4DoGJtRqmpqcza2poJBAImEAiYs7MzKygoYIwxlpKSwtTV1dmsWbMqdA+xpG1o0aJFMuvGjh3LALDU1NRS961Tpw5TVVVlo0aNYr/++isLCAhgU6dOZQKBgNna2rLc3Fy2evVqJhKJ2LFjx9jDhw8lPyVtRg8fPmSvX78uM76Se5yBgYEsMTFR6icjI+OT78/Pz6/8yaglKCeyPpWTZ8+esc6dOzMArGnTpiwhIaGaIuMPnSfSlCEfH2szqtCVkbm5Of79919cunQJKioqcHNzg4qKCgCu2/fq1asxZMiQihxS0nZT2u2HgoICAECdOnVK3begoADdu3eX+pbg6ekJNTU1bNy4EWfOnEFaWhoKCwsxdOjQMt9TaVc4HzIzM4O1tXV53hIhVc7Y2Bjnz5/HlClTsGfPHnTo0AEBAQHo0aMH36ERUiUqVIwePnyIyMhIdOjQQdJh4OrVq/D19UVhYSG++eYbmJubVygAExMTAMCbN29k1mVkZEAkEkFPT6/UffX09JCdnS2z3MXFBRs3bkR8fDy8vb1L/Qc7f/58xMfH4/jx47C1ta1QzBVhYWEht2PXVJQTWeXJibq6On777Te0aNECc+bMQZ8+fbBx40ZMmzYNAoGgGqKsXnSeSFP6fFTkEuurr75iOjo67OXLl4wx7taclpaW5Ladurp6hbtAFxUVMR0dHebs7CyzrmHDhqxZs2Zl7uvi4sIMDQ1ZUVGR1PLDhw8zAGzr1q0f3Ze6dpOa6vfff2c6OjoMAPP29mZ5eXl8h0TIJ1VZ1+4rV67giy++gKGhIQDAz88P7969w8mTJ/HixQvY29tj4cKFFSqGQqEQ/fr1w9WrV6VGdoiMjERycrJkPKaXL1/i7t27ePLkiWSboUOHIj09Hfv27ZM6pr+/P4RCIXr37l2hWAipKfr06YOoqCjY2Nhg165d6NWrl9JPMUCUG+/PGQGAj48PVFVV0b17d6xatQpLly7FwIEDYWxsjJkzZwIAtm7dCjs7O8yfP1+y36RJk9CmTRtMmjQJ3t7eWLt2LXr37o2goCDMnj0bNjY2FY6FkJqiadOmiIqKQo8ePRAWFob27dvj1q1bfIdFSKXw/pwRADRr1gwXLlyAubk5li1bhnXr1qF9+/YICwuTtCmVRkNDA5cuXcL06dNx6tQpLFiwAA8fPoSvry/WrFlT4TgIqWkMDAzw+++/Y/r06Xjw4AE6deqEU6dO8R0WIRVXkft9Y8eOZYaGhszX15eNHj2aCYVCdujQIcl6T09P1rRp08+/sahAqM2I1BQ7d+5kIpGICQQCtnLlSlZcXMx3SIRIqbI2o+XLl0NXVxfTpk3DwYMH0bFjR8nDoKmpqTh16hT69u0rh5JJCPkUb29vnD9/HgYGBpg/fz7GjBmD3NxcvsMipFwqVIxKnjM6ffo0QkNDER4eDpGI6x1e8pzRrFmz5BJoTUXTAMiinMiqqpy4uLggOjoazZs3x8GDB+Hi4iLV6acmofNEmrLno8KT62lpacHFxQUFBQXw9fXF1q1bcfr0abRu3RozZsyo8HNGyu7EiRN8h6BwKCeyqjInVlZWiIiIgLu7O65evYp27drhn3/+qbLjVxc6T6Qpez4qXIz8/PzQoEEDeHh4YMaMGfj222/h4eGBBg0ayHSxJoTwQ1tbGydPnsT8+fPx+PFjmtKcKLwKFaPff/8d48ePh7GxMX7++WcEBQXh5MmTWLNmDYyNjTFhwgScOXNGXrESQipAKBRixYoVOHDgABhj8PLywsKFC2lKc6KQKjQc0IoVK2BnZ4fo6GiZ8eKmTJmCdu3aYcWKFejXr1+VBlmTtWzZku8QFA7lRJY8czJq1Cg0btwYgwYNwvLly3H79m3s378fWlpacnvNqkDniTRlz0eFroxiYmLg5eVV6sClYrEYXl5euHHjRlXFphSU/QSqDMqJLHnnpH379oiOjoajoyNOnDgBZ2dnqRFPFBGdJ9KUPR8VKkYqKiqSkbRLU1BQAKGwws1QhJBqYGZmhvDwcHh5eSE2Nhbt2rXD5cuX+Q6LEAAVLEYdOnTAgQMHJBNAvS8zMxN+fn5o165dlQVHCKladerUwaFDh7B8+XK8ePEC3bt3x2+//cZ3WIRUrM1oyZIl6NatG5o0aYIvv/wSjRo1gkAgQHx8PPbt24f09HTs2bNHXrESQqqAQCDADz/8AHt7e4wZMwZfffUVbt26hZ9//lny3CAh1a1CZ56TkxOCgoLw9ddfY/Xq1VLrGjRogOPHj8PV1bUq4yOEyMngwYMREREBDw8PbNy4EXFxcfD39y9z/jBC5KnCDTx9+vRBUlISrl69Cn9/fxw+fBhRUVFITk5GZGQkfbMipAZp2bIlrl69is6dO+OPP/5Au3btcOrUKTDG+A6N1DKV6m0gFArh6OiI4cOHY8SIEWjXrp2k4wKdxNLS0tL4DkHhUE5k8ZkTY2NjXLhwAd7e3rh//z4GDhwIZ2dnhIWF8RYTQOfJh5Q9H9T1Tc4uXrzIdwgKh3Iii++cqKmpYefOnYiKikK3bt0QGRkJV1dX9O3bFzExMbzExHdOFI2y54OKESFEon379rhw4QLOnj0LBwcHhIaGom3bthg5ciTu37/Pd3hEiVExIoRIEQgE6NmzJ6KjoxEYGAhbW1v4+/vDzs4OU6ZMUfrbRYQfnyxGz58/L/ePsg9xXhldunThOwSFQzmRpYg5EQgEGDZsGG7fvo1ffvkFJiYm2LFjB2xsbDB//nxkZmbK9fUVMSd8UvZ8CNgnehwIhUIIBIJyHYwxBoFAgKKioioJThFERkbCyckJERER6NSpE9/hEMKbnJwcbNu2DStWrEBmZib09PQwb948TJ8+HWKxmO/wSA3wsc/TT/bDHjt2bLmLESFEedWpUwdz5szBV199hbVr12LDhg2YN28eNm3ahEWLFmHixIlQVVXlO0xSQ33yyqi2oysjQkr39OlT/PTTT9i5cycKCgrQqFEjLF++HMOHD6cxKkmpPvZ5SmcMIaRSTE1NsWXLFty9exejR49GUlISRo4cKemFR99zSUVQMSKEfBZra2v4+fnhxo0bGDBgAG7cuIG+fftKnlcipDyoGBFCqkTLli0RHByMS5cuoXPnzggLC4OTkxMGDhyIW7du8R0eUXBUjOQsLi6O7xAUDuVEljLlpHPnzggPD8fp06fRsmVLnDp1Ci1btsS4ceOQnJxc7uMoU06qgrLng4qRnF27do3vEBQO5USWsuVEIBCgX79+iImJwcGDB2FlZYX9+/fD1tYWM2bMwPPnzz95DGXLyedS9nxQMSKEyI1QKMQXX3yBuLg4bNu2DQYGBti8eTOsra2xePFivHnzhu8QiYKgYkQIkTs1NTVMnToViYmJ+Omnn6CiooIff/wR1tbWWL9+PXJzc/kOkfCMipGcDRgwgO8QFA7lRFZtyYmmpiYWLFiApKQkzJ07F+/evcPs2bNha2uL3bt3o7CwULJtbclJeSl7PqgYyRnNmimLciKrtuXE0NAQa9aswf379+Ht7Y20tDRMnDgRLVq0wPHjx8EYq3U5+RRlzwcVI0IIb8zMzLBz507cuXMHw4cPx927dzF06FB06NABN2/e5Ds8Uo2oGBFCeGdra4sjR47gn3/+Qa9evRAdHQ1nZ2eEhobyHRqpJlSMCCEKw8HBAX/88Qd27tyJ7OxsDBgwANu3b+c7LFINqBgRQhSOt7c3zpw5A7FYjKlTp2L27NlKNTUNkUXFiBCikHr16oWIiAhYWFhg/fr1GDZsGE3gqcSoGMkZDRQpi3Iii3IiKzIyEs2bN8fff/8NR0dHnDx5Eq6urnj69CnfofFC2c8RKkZylpiYyHcICodyIotyIqskJ/Xq1cNff/2FwYMH459//kGHDh1q5cCryn6OUDEihCg8TU1NBAYGYvbs2UhNTYWTkxP++OMPvsMiVYiKESGkRlBRUcHatWuxfft2ZGdno3///ti1axffYZEqojDFKCIiAq6urtDS0oKuri48PDyQkJBQrn0zMzMxf/582NvbQywWQ1NTEwEBAZL10dHRGD9+PFq0aAEtLS00aNAAXl5eePDggbzejsTo0aPl/ho1DeVEFuVEVlk5+frrrxESEgKxWIzJkydj7ty5KC4uruboqp+ynyMivgMAgNjYWLi5ucHU1BQ+Pj7Iy8vDtm3b4OrqitjYWBgZGZW5b3x8PLp164Z3795hzJgxsLW1RVpaGnR0dCTbHDx4EGfPnsWgQYMwYcIExMfHY+/evTh//jxu3ryJevXqVcfbJIRUkT59+uDy5csYMGAA1q5di6SkJPj5+UEsFvMdGqkspgCGDRvGVFVVWVJSkmRZeHg4A8AWLlxY5n75+fnM3t6eWVhYsOTk5DK3i46OZjk5OVLLfH19GQC2fPnyj8YWERHBALCIiIhyvhtCSHVJS0tjDg4ODABr164de/LkCd8hkY/42Ocp77fpiouLERoaCmdnZ1hZWUmWd+nSBRYWFggKCipz34CAANy5cwebN2+GpaVlmds5OjpCQ0NDapmLiwsA4OHDh5/5DgghfKlXrx7CwsIwcOBAREdHo2PHjrh9+zbfYZFK4L0YpaamIisrC3Z2djLr7OzsEBcXV+aT18eOHYOOjg769+8PAEhPTy/3U9olRcjMzKxc2z9+/BhJSUlSP5mZmeXalxAiP5qamjh27BhmzZqFlJQUODk54dy5c3yHRSqI9zajkumH9fX1ZdYZGBigoKAAmZmZpbYbxcTEwMTEBFOnToW/vz/evn0LFRUV9OvXD9u3b/9oofnll18AlH+OEE9PT5llixcvxpIlS6SWhYeHIzU1FQCgqqqKESNGlHnM4OBgvH79GgBgZGSEPn36lLntgQMHJL83atQInTp1KnW7V69eISQkRPK3g4NDqYUeAFJSUnDp0iXJ3927d0f9+vVL3TY2NhaxsbGSvwcPHgxNTc1St6UcUA6A6s2BiooK1q9fDxsbG0yfPh19+/bFunXrYGhoKNlW2XNQGkU7Dz7aaYyH24ZSStqGFi1aJLNu7NixDABLTU0tdd86deowVVVVNmrUKPbrr7+ygIAANnXqVCYQCJitrS3Lzc0tdb/AwEAGgHl5eX0yvpJ7nIGBgSwxMVHqJyMjo2JvlhAid6dPn2ZaWloMAPvuu+9YUVER3yGR/6fQbUbq6uoAUOrttYKCAgBAnTp1St23oKAA3bp1w4EDBzBx4kR4enpi27ZtmDFjBhISEnDmzBmZfa5fv47x48ejWbNm2LFjR7njNDMzg7W1tdRPaVdzH6Ih8GVRTmRRTmRVNif9+vXD5cuXYWZmhjVr1mD48OHIycmp4uiqn7KfI7wXIxMTEwDAmzdvZNZlZGRAJBKVOcOhnp4esrOzZZaXdE6Ij4+XWp6QkID+/fvDxMQEoaGh0NXV/czoP+3ly5dyf42ahnIii3Ii63Ny0qpVK0RFRaFNmzY4duwYunXrhmfPnlVhdNVP2c8R3ouRubk5dHR0cP36dZl18fHxaNKkCUSi0pu2mjVrhri4OJkH3nJzcwEA2trakmVJSUlwc3ODpqYm/vrrLzRo0KAK3wUhRNGYmZkhPDwc7u7uiIqKQseOHXHnzh2+wyJl4L0YCYVC9OvXD1evXkVKSopkeWRkJJKTk+Hu7g6A+1Zw9+5dPHnyRLLN0KFDkZ6ejn379kkd09/fH0KhEL179wYA3LlzB126dIGOjg7CwsJgbm5eDe+MUx1XXzUN5UQW5URWVeRES0sLJ06cwIwZM5CcnAwnJyecP3++CqKrfsp+jggYY4zvIG7fvo327dvD1NQUkyZNkozAIBAIEBsbCxMTEyxZsgRLly7FuHHjsHfvXgDcFZCTkxNiY2MxYcIE2Nra4ty5czh79izmzp2LNWvWAADs7e2RmJiIRYsWSfWuKeHh4VFmr5HIyEg4OTkhIiKizB4rhBDFt2XLFsycORNCoRA7duzAxIkT+Q6p1vnY5ynvXbsB7nbbhQsXMG/ePCxbtgwqKiro2rUr1q5dK2lTKo2GhgYuXboEHx8fHD58GBkZGbCxsYGvry+mTJki2S47Oxv5+fnw8fEp9ThNmzYtsxgRQpTD9OnTYWVlBS8vL3z11Ve4f/8+fvrpJwiFvN8gIlCQKyNFRldGhCiXmJgYDBgwAGlpafD09MS+ffvK7LFLqtbHPk/pKwEhpFZp06YNoqKi0Lp1awQGBqJ79+6Sh+8Jf6gYEUJqnQYNGiA8PBz9+/fH33//jY4dOyIuLo7vsGo1KkaEkFpJW1sbJ0+exDfffIMHDx6gU6dOuHDhAt9h1VpUjAghtZZIJMKWLVuwadMmvHnzBn369MHu3bv5DqtWomIkZ0eOHOE7BIVDOZFFOZFVnTn59ttvERQUBDU1NUycOBELFixQuNljlf0coWIkZyXj65H/UE5kUU5kVXdO3N3dcenSJdSrVw8rV67EyJEjFWpMO2U/R6gYEULI/2vbti2ioqLQsmVLBAQEwM3NDS9evOA7rFqBipGcWVhY8B2CwqGcyKKcyOIrJ+bm5rh8+TL69u2LyMhItGvXDjExMbzE8j5lP0eoGMlZ165d+Q5B4VBOZFFOZPGZE21tbZw6dQrffvutZPZYPz8/3uIBlP8coWJECCGlEIlE2LRpk2Qg5rFjx2LGjBlK33bDFypGhBDyEWPHjsWVK1dgaWmJzZs3o0ePHjV+biRFRMWIEEI+oW3btvjnn3/Qo0cPhIeHw8HBAVFRUXyHpVSoGBFCSDkYGRnh999/x3fffYfHjx+ja9eu+OWXX/gOS2lQMSKEkHISiURYvXo1jhw5AlVVVXh7e8Pb2xt5eXl8h1bjUTGSs3fv3vEdgsKhnMiinMhS5JwMHz4cf//9N2xsbPDLL7/AxcUFjx49kutrKnI+qgIVIzk7ceIE3yEoHMqJLMqJLEXPSfPmzREdHY3+/fsjKioKDg4OCA8Pl9vrKXo+PhcVI0IIqSQ9PT2cOnUKixYtwvPnz+Hm5obNmzeD5iytOCpGhBDyGYRCIZYuXYqgoCCIxWLMmDED48aNQ3Z2Nt+h1ShUjOSsZcuWfIegcCgnsignsmpaTjw8PHD16lXY2dnBz88PnTt3RnJycpUdv6blo6KoGMmZsp9AlUE5kUU5kVUTc9KkSRNERUVh6NChiImJgaOjI86fP18lx66J+agIKkaEEFKFtLW1ERgYiJUrVyIjIwO9e/fGmjVrqB3pE6gYEUJIFRMIBJg3bx5CQ0Ohq6uL77//HiNGjEBWVhbfoSksKkaEECInvXr1wrVr19CqVSsEBgaiY8eOuHfvHt9hKSQqRoQQIkdWVlaIiIjAqFGjcPv2bbRr1w4hISF8h6VwqBgRQoicicVi+Pn5YePGjcjKyoK7uzuWLl2K4uJivkNTGFSM5CwtLY3vEBQO5UQW5USWsuVEIBBgxowZuHDhAurWrYslS5Zg0KBBeP36dbn2V7Z8fIiKkZxdvHiR7xAUDuVEFuVElrLmxMXFBdevX0f79u0RHByM9u3b486dO5/cT1nzUYKKESGEVLMGDRogLCwMX331FRISEtC+fXscPXqU77B4RcWIEEJ4oKGhgV9++QU7d+5Efn4+PD09MW/ePBQVFfEdGi+oGMlZly5d+A5B4VBOZFFOZNWWnHh7eyMsLAz169fH6tWr0a9fP6Snp8tsp+z5oGIkZ5aWlnyHoHAoJ7IoJ7JqU046deqEa9euoXPnzjh79iwcHR1x48YNqW2UPR9UjAghRAGYmpriwoUL+Oabb5CcnAwnJyccPHiQ77CqDRUjQghREGpqatiyZQv27dsHxhhGjx6NmTNnoqCggO/Q5I6KESGEKJixY8fiypUrsLCwwKZNm9CzZ088e/aM77DkiooRIYQooLZt2+LatWtwc3NDWFgYHB0dkZCQwHdYckPFiBBCFJSRkRFCQ0Mxa9YsPHr0CG5ubnjw4AHfYckFFSM5i4uL4zsEhUM5kUU5kUU54YhEIqxbtw4TJkyQFKRHjx7xHVaVo2IkZ9euXeM7BIVDOZFFOZFFOfmPQCCAq6srvvnmGzx48ABubm54+vQp32FVKYUpRhEREXB1dYWWlhZ0dXXh4eFR7vujmZmZmD9/Puzt7SEWi6GpqYmAgACpbeLi4jBgwADo6upCS0sL3bp1w9WrV+XxVgghpMoJBAJs2rRJMoRQz5498fLlS77DqjIivgMAgNjYWLi5ucHU1BQ+Pj7Iy8vDtm3b4OrqitjYWBgZGZW5b3x8PLp164Z3795hzJgxsLW1RVpaGnR0dCTbpKWloWvXrhAIBJg1axY0NDSwc+dOdO/eHdeuXUOTJk2q420SQshnEQqF2LFjB3JycnDw4EH06tULFy9ehJ6eHt+hfT6mAIYNG8ZUVVVZUlKSZFl4eDgDwBYuXFjmfvn5+cze3p5ZWFiw5OTkMrebM2cOA8AuX74sWZaYmMhEIhEbM2bMR2OLiIhgAFhEREQF3tF/MjMzK7WfMqOcyKKcyKKcSHs/HwUFBWzo0KEMAOvYsSN78+YNf4FVwMc+T3m/TVdcXIzQ0FA4OzvDyspKsrxLly6wsLBAUFBQmfsGBATgzp072Lx580eHyjh9+jQaNmwIZ2dnyTJra2s4OTkhODgYjLGqeTOlUIpvLFWMciKLciKLciLt/XyIRCIcOnQI/fv3x99//w13d3dkZ2fzF1wV4L0YpaamIisrC3Z2djLr7OzsEBcXV+YotseOHYOOjg769+8PAEhPT5fZtrCwEPfu3Svz+K9evVLKnimEEOWmpqaGo0ePokePHggLC8PgwYORm5vLd1iVxnsxev78OQBAX19fZp2BgQEKCgqQmZlZ6r4xMTEwMTHB1KlToaOjAyMjI6irq8PDwwOPHz8GAGRkZKCwsLDM4wMo15PNjx8/RlJSktRPWXERQkh10NDQwMmTJ9GlSxecPXsWw4cPr7FDB/HegSEvLw8Ad9n5IVVVVQBATk5Oqfs+e/YMhYWFyM7OxoYNG6Cjo4O//voL27dvR3x8PGJjYz/r+O/z9PSUWbZ48WIsWbJEall4eDhSU1Mlxx8xYkSZxwwODpZMOWxkZIQ+ffqUue2BAwckvzdq1AidOnUqdbtXr14hJCRE8reDg0OpV4UAkJKSgkuXLkn+7t69O+rXr1/qtrGxsYiNjZX8PXjwYGhqapa6LeWAcgBQDoDqy0FISAh69uyJ4OBgjBo1CocOHYJIJFK4HHz0gd3qb8KSFhUVxQCwH374QWbdyJEjGQD24sWLUvcViUSsV69eMstnzpzJALDjx4+zZ8+eMQBs1KhRMtvNnz+fAWDR0dFlxlfS4BYYGMgSExOlfjIyMirwTgkhRH4yMjJY69atGQA2ZswYVlRUxHdIMhS6A4OJiQkA4M2bNzLrMjIyIBKJymzI1NPTK7XRzsXFBQDX7dvAwAAikajM4wNA3bp1PxmnmZkZrK2tpX5Ku/VHCCF80NfXx9mzZ2Fvbw8/Pz9MmTJFrp2zqhrvxcjc3Bw6Ojq4fv26zLr4+Hg0adKk1FtsANCsWTPExcWhuLhYanlJI562tjZEIhGaNGlS6vHv3r0LHR0dmJubV8E7KV1kZKTcjl1TUU5kUU5kUU6klScfdevWxfnz52FjY4Ndu3Zh1qxZNaYg8V6MhEIh+vXrh6tXryIlJUWyPDIyEsnJyXB3dwcAvHz5Enfv3sWTJ08k2wwdOhTp6enYt2+f1DH9/f0hFArRu3dvAIC7uzseP34s9T8zJSUFkZGR6NevH4RC+aUhMTFRbseuqSgnsignsign0sqbj3r16uHixYuwtLTEpk2bsGDBghpRkHgvRgDg4+MDVVVVdO/eHatWrcLSpUsxcOBAGBsbY+bMmQCArVu3ws7ODvPnz5fsN2nSJLRp0waTJk2Ct7c31q5di969eyMoKAizZ8+GjY0NAGDmzJkwNjbGoEGDsHTpUqxatQrdunWDiooKfHx8+HjLhBAiN+bm5rh48SLMzMywatUqLF++nO+QPon33nQAd7vtwoULmDdvHpYtWwYVFRV07doVa9eulbQplUZDQwOXLl2Cj48PDh8+jIyMDNjY2MDX1xdTpkyRbGdiYoKwsDDMmTMH69atQ1FREdq1a4eDBw+iWbNm1fEWCSGkWllbW+PChQvo2rUrFi1ahDp16mDOnDl8h1UmAasJ1288ioyMhJOTEyIiIsrsQkoIIYrq5s2bcHV1RUZGBrZu3Ypp06bxFsvHPk8V4jYdIYQQ+WjRogXOnTsHXV1dfPPNN9i9ezffIZWKihEhhCi5tm3b4vfff4empia++uorHD58mO+QZFAxIoSQWqBTp044ffo01NXVMWbMGBw/fpzvkKRQMSKEkFrCxcUFQUFBUFFRgZeXF86cOcN3SBJUjAghpBbp1asXjh49CsYYhgwZggsXLvAdEgAqRoQQUuu4u7vj0KFDKCgogIeHBy5fvsx3SFSM5C00NJTvEBQO5UQW5UQW5URaVefD09MTe/fuRU5OjmQUHD5RMZKzly9f8h2CwqGcyKKcyKKcSJNHPsaMGYMdO3bg7du36N27N27cuFHlr1FeVIwIIaQW8/b2xsaNG/Hq1Sv07NkTd+7c4SUOKkZypqury3cICodyIotyIotyIk2e+ZgxYwZWrlyJly9fokePHrh//77cXqssVIzkrGTUcfIfyoksyoksyok0eedj3rx5WLhwIZ48eYLu3btLzaJQHagYEUIIAQAsXboUc+bMwcOHD9G9e3c8fvy42l6bihEhhBAAgEAgwJo1azBt2jQkJSXBzc0Nz549q5bXpmJECCFEQiAQYPPmzZgwYQLi4+PRs2dPpKeny/11qRgRQgiRIhQKsWvXLnzxxRe4efMmevfujdevX8v3NeV6dEIIITWSiooK9u3bhyFDhuDatWvo168fsrKy5PZ6VIwIIYSUSiQS4fDhw+jXrx8iIiLg4eGBnJwcubwWFSM5O3LkCN8hKBzKiSzKiSzKiTS+8qGmpoZjx47Bzc0Nf/75J4YMGYK8vLwqfx0qRnJWUFDAdwgKh3Iii3Iii3Iijc98aGhoICgoCJ07d0ZoaCimTp1a5a9BxYgQQsgnaWpq4vTp0xg4cCBmz55d5ccXVfkRiRQLCwu+Q1A4lBNZlBNZlBNpipAPHR0dnDx5Ui7HpisjOevatSvfISgcyoksyoksyok0Zc8HFSNCCCG8o2JECCGEd1SMCCGE8I6KkRxlZmZiyZIlyMzM5DsUhUE5kUU5kUU5kVYb8kHFSI4yMzOxdOlSpT6BKopyIotyIotyIq025IOKESGEEN5RMSKEEMI7KkaEEEJ4RyMwfMK7d+8AADdv3qzwviVT9l6/fr3aZktUdJQTWZQTWZQTacqSj5LP0ZLP1fcJGGOsugOqSXbt2oXJkyfzHQYhhCiNnTt3wtvbW2oZFaNPSEtLQ0hICKytraGpqcl3OIQQUmO9e/cOSUlJGDBgAOrXry+1jooRIYQQ3lEHBkIIIbyjYkQIIYR3VIwIIYTwjooRIYQQ3lExIoQQwjsqRnISEREBV1dXaGlpQVdXFx4eHkhISOA7LF6cO3cOXl5esLOzg1gshpWVFSZPnoznz5/zHZrCOHv2LNTU1NC0aVO+Q+FdXFwcvvzyS1hYWEBdXR0GBgZITU3lOyze/PHHH3BxcYG+vj7q1q2Lnj17IiwsjO+wqhx17ZaD2NhYdOjQAaamppg8eTLy8vKwbds2iEQixMbGwsjIiO8Qq9WgQYNw8+ZNeHh4wMLCAteuXcPhw4dhZWWF2NhYiMVivkPkVXR0NLp164Z3796hSZMmuHv3Lt8h8ebo0aMYNWoUzMzMMHLkSNStWxfx8fHw8fGBmZkZ3+FVu927d2PixIlo06YNvLy8kJ2djV9//RVPnjxBUFAQBgwYwHeIVYeRKjds2DCmqqrKkpKSJMvCw8MZALZw4UIeI+NHZGQkKywslFr23XffMQDswIEDPEWlGO7evcuMjIzYyJEjmYWFBWvSpAnfIfEmMTGRaWhosN69e7OcnBy+w1EIFhYWrEGDBiw7O1uyLCkpiQmFQtatWzceI6t6dJuuihUXFyM0NBTOzs6wsrKSLO/SpQssLCwQFBTEY3T86NixI1RUVKSWubi4AAAePnzIR0gK4fHjx+jduzdat26Nffv2QSAQ8B0Sr1auXAkA2Lt3LzQ0NHiORjG8ePECDRo0QJ06dSTLrKysULdu3VLHd6vJqBhVsdTUVGRlZcHOzk5mnZ2dHeLi4lBUVMRDZIqlpAjVxlsvADdZWp8+fWBkZIQTJ05AVVWV75B4d/z4cXTv3h2mpqYoKipCRkYGWC1vRXBxcUFUVBT2798vWZaQkIBnz55h4MCBPEZW9agYVbGSRnl9fX2ZdQYGBigoKFDq2RrLgzGG3377DWpqaujVqxff4VS7nJwcuLu7Izc3F2fOnIGWlhbfIfEuJSUFGRkZEAgE6N27N8RiMQwNDaGjo4OZM2ciPz+f7xB5sWfPHrRv3x7jxo1D+/bt4evri2HDhsHT0xPfffcd3+FVKZpCoorl5eUBAEQi2dSWfPvNycmp1pgUzbp16xAdHY158+bBxMSE73Cq3ezZsxEbG4uQkBDk5+fj0aNHAICioiIUFhbi0aNHMDAwqFUdO0qmRYiMjMT48eMxbtw4FBcXw8/PD5s2bUJmZib27dvHc5TVT0VFBcbGxujQoQN0dHQwffp0CIVCfPHFFxAKlexagu9GK2UTFRXFALAffvhBZt3IkSMZAPbixQseIlMMp0+fZioqKqxbt24sPz+f73B4MXDgQAbgoz979uzhO8xqdfnyZQaArVixQmp5cXExa9u2LRMKhbXu301xcTFr164da9WqFcvNzWWMMfbgwQM2ZMgQBoDNnDmT5wirFl0ZVbGSb/pv3ryRWZeRkQGRSAQ9Pb1qjkoxREZGYsSIEWjbtm2tbifx8fHBV199JbN84sSJUFNTw/bt29G6devqD4xHJf8msrOzpZYLBAJ06dIF169fx/3792vVYxGXLl1CdHQ0Nm/eDHV1dQBAw4YNcfToUTg6OmLr1q1YtWqVZF1NR8Woipmbm0NHRwfXr1+XWRcfH48mTZqUegtP2UVHR6Nv376wt7fH2bNnoaury3dIvHF0dCx1eZ06daChoaFcz46Uk42NDdTU1HDr1i2Zdbm5uQAAbW3t6g6LV2lpaQAgcztOIBDAysoK169fx6tXr5TmVreS3XTkn1AoRL9+/XD16lWkpKRIlkdGRiI5ORnu7u48RseP8PBw9OjRAy1btsS5c+dqdSEipVNXV8eAAQNw5swZxMfHS5ZnZWUhJCQElpaWsLe35zHC6teqVSsAwL59+1BYWChZnpGRgUuXLsHS0hLGxsZ8hVflaAQGObh9+zbat28PU1NTTJo0STICg0AgQGxsrNJ8kykvsVgMNTU1LF68WOp5iRKjRo2qdd96S9OwYUNoaGjU2hEY7t27B0dHR6ioqGDKlCnQ1NSEn58f7t27hxMnTtTKL3ITJ07E7t270apVK4wYMQL5+fnYu3cvHj16hJMnT6J///58h1h1+G60UlaRkZHMxcWFicVipq2tzfr378/i4uL4DosX+ERj/YMHD/gOUSFYWlrW6hEYGOMa6AcNGsS0tbWZhoYG69y5M7t48SLfYfGmuLiY7d69mzVv3pypq6szbW1t1rt3bxYREcF3aFWOrowIIYTwjtqMCCGE8I6KESGEEN5RMSKEEMI7KkaEEEJ4R8WIEEII76gYEUII4R0VI0IIIbyjYkQIIYR3VIwIIYTwjooRIYQQ3lExIqSWW7JkCQQCAf7++2++QyG1GBUjQqrR+PHjIRAIyvyZOXMm3yESwovaN8sbIQpg9erV0NHRkVnesmVLHqIhhH9UjAjhwdixY2Fqasp3GIQoDLpNR4iCKbmVFxYWhqFDh0JPTw9aWloYPnw4nj9/LrVtREQEevXqBR0dHWhqaqJz5844c+aMzDEvXLiAXr16QVdXF3p6eujQoQPWrl0rtU16ejpmzJgBU1NT6OvrY+jQoXj27Jlc3yshJagYEcKDJ0+e4NGjRzI/RUVFkm3c3NygoqKCRYsWYejQoQgMDMSwYcMk60NDQ+Hq6op79+5hxowZ+P7775GRkYEBAwZg3759ku0OHz6MXr164e7du5g2bRrmz58PLS0tzJ07VyqmYcOG4fr16/juu+8wevRoHD9+HGPHjpV/MggBaKZXQqrTuHHjPjnrbck2ISEhUvtOnTqVAWCXLl1ihYWFzNLSktWtW5elp6dLtsnKymK2trZMV1eXvX37lr1584bp6+szMzMz9uLFC6njnTt3jjHG2OLFixkAtmzZMqn1np6eDAB78uSJnLJByH+ozYgQHvj5+UFPT09muYmJieR3BwcHqXVffPEFfH19cfnyZairqyMlJQVz586FgYGBZBtNTU14e3tjzpw5+PPPP5Gfn4/MzEzMnz8fRkZGUsfr0aPHR/+2s7MDACQnJ1P7FpE7KkaE8KBHjx4V/oA3NzcHAKSmpiIpKQkAYGNjI7Nd48aNAQBJSUnIy8sDALRo0aLCMWppaQEAcnNzK7wvIRVFbUaE1BAlhUVFRQWMMQCAQCCQ2e79dcXFxWVu9ymV2YeQyqJiREgNcffuXQBAkyZNYG1tDQCIj4+X2e7+/fsAACsrK1hZWQEAbt++XU1RElI5VIwIqQEKCwuxfv16iEQiDBo0CA4ODmjQoAH27duH9PR0yXbZ2dnYtWsXdHR04Orqih49ekAsFmPLli149eqV1DHDwsKq+V0QUjZqMyKEB/v37//kCAweHh7w8PCASCRCUFAQ/v77byxbtgwNGjQAAGzZsgVDhw6Fg4MDxowZA1VVVfj7+yMhIQG//fYbtLW1AQCrVq3Ct99+i7Zt2+KLL76Avr4+/vrrL1y+fBmZmZnV84YJ+QQqRoTw4Pvvvy91+YwZMyS/t2vXDrt370ZaWhosLCywbds2TJ06VbJ+0KBBOHfuHJYtW4YNGzaguLgYrVu3xqlTp+Du7i7Zbvr06TAzM8PatWuxceNGFBUVoVWrVlixYoX83iAhFSRgJa2dhBCFMH78eOzbtw9PnjyhLtWk1qA2I0IIIbyjYkQIIYR3VIwIIYTwjtqMCCGE8I6ujAghhPCOihEhhBDeUTEihBDCOypGhBBCeEfFiBBCCO/+DzyfYz13xbwXAAAAAElFTkSuQmCC",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "plt.plot(result.history[\"loss\"], label=\"training\")\n",
- "plt.plot(result.history[\"val_loss\"], label=\"validation\")\n",
- "plt.legend()\n",
- "plt.xlabel(\"Epoch\")\n",
- "plt.ylabel(\"Loss\")\n",
- "plt.show()"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "You can see this is a classic case of overfitting, with the validation data rising quickly as we improve our loss on the training data. Indeed, our model is quite expressive in its capability to fit the training data but it is incidentally fitting the noise. We have 61,000 trainable parameters and about 15,000 training examples, so this is not a surprise. However, we still able to learn a little bit -- our accuracy is above 50%. This is actually a challenging dataset and the state-of-the art result is 77% accuracy {cite}`deepsol`. We need to expand our tools to include layers that can address overfitting. "
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Back propagation\n",
- "\n",
- "At this stage, we should probably talk about back propagation and its connection to automatic gradient computation (autograds). This is how training \"just works\" when we take a gradient. This is actually a bit of a complicated topic, but it also nearly invisible to users of modern deep learning packages. Thus, I have chosen to not cover it in this book. You can find comprehensive discussions of modern autograd in {cite}`baydin2018automatic` and in the [Jax manual](https://jax.readthedocs.io/en/latest/notebooks/autodiff_cookbook.html)."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Regularization\n",
- "\n",
- "As we saw in the ML chapters, regularization is a strategy that changes your training procedure (often by adding loss terms) to prevent overfitting. There is a nice argument for it in the bias-variance trade-off regarding model complexity, however this doesn't seem to hold in practice {cite}`neal2018modern`. Thus, we view regularization as an empirical process. Regularization, like other hyperparameter tuning, is dependent on the layers, how complex your model is, your data, and especially if your model is underfit or overfit. Underfitting means you could train longer to improve validation loss. Adding regularization if your model is underfit will usually reduce performance. Consider training longer or adjusting learning rates if you observe this. \n",
- "\n",
- "\n",
- "### Early Stopping\n",
- "\n",
- "The most commonly used and simplest form of regularization is **early stopping**. Early stopping means monitoring the loss on your validation data and stopping training once it begins to rise. Normally, training is done until converged -- meaning the loss stops decreasing. Early stopping tries to prevent overfitting by looking at the loss on unseen data (validation data) and stopping once that begins to rise. This is an example of regularization because the weights are limited to move a fixed distance from their initial value. Just like in L2 regularization, we're squeezing our trainable weights. Early stopping can be a bit more complicated to implement in practice than it sounds, so check out how frameworks do it before trying to implement yourself (e.g., {obj}`tf.keras.callbacks.EarlyStopping`).\n",
- "\n",
- "### Weight \n",
- "\n",
- "**Weight regularization** is the addition of terms to the loss that depend on the trainable weights in the solubility model example. These can be L2 ($\\sqrt{\\sum w_i^2}$) or L1 ($\\sum \\left|w_i\\right|$). You must choose the strength, which is expressed as a parameter (often denoted $\\lambda$) that should be much less than $1$. Typically values of $0.1$ to $1\\times10^{-4}$ are chosen. This may be broken into **kernel regularization**, which affects the multiplicative weights in a dense or convolution neural network, and **bias regularization**. Bias regularization is rarely seen in practice. \n",
- "\n",
- "### Activity\n",
- "\n",
- "**Activity regularization** is the addition of terms to the loss that depend on the *output* from a layer. Activity regularization ultimately leads to minimizing weight magnitudes, but it makes the strength of that effect depend on the output from the layers. Weight regularization has the strongest effect on weights that have little effect on layer output, because they have no gradient if they have little effect on the output. In contrast, activity regularization has the strongest effect on weights that greatly affect layer output. Conceptually, weight regularization reduces weights that are unimportant but could harm generalization error if there is a shift in the type of features seen in testing. Activity regularization reduces weights that affect layer output and is more akin to early stopping by reducing how far those weights can move in training. \n",
- "\n",
- "### Batch Normalization\n",
- "\n",
- "It is arguable if batch normalization is a regularization technique -- there is often debate about why it's effective. Batch normalization is a layer that is added to a neural network with trainable weights {cite}`ioffe2015batch`. Batch normalization has a layer equation of:\n",
- "\n",
- "\\begin{equation}\n",
- "f(X) = \\gamma\\frac{X - \\bar{X}(B)}{S(B)} + \\beta\n",
- "\\end{equation}\n",
- "\n",
- "where $\\bar{X}$ and $S$ are the sample mean and variance taken across the batch axis. This has the effect of \"smoothing\" out the magnitudes of values seen between batches. $\\gamma$ and $\\beta$ are optional trainable parameters that can move the output mean and variance to be $\\beta$ and $\\gamma$, respectively. Remember that activations like ReLU depend on values being near 0 (since the nonlinear part is at $x = 0$) and tanh has the most change in output around $x = 0$, so you typically want your intermediate layer outputs to be around $0$. But, $\\gamma$ and $\\beta$ allow the optimum output to be learned. At inference time you may not have batches or your batches may be a different size, so $\\bar{X}$ and $S$ are set to the average across all batches seen in training data. A common explanation of batch normalization is that it smooths out the optimization landscape by forcing layer outputs to be approximately normal{cite}`santurkar2018does`.\n",
- "\n",
- "```{margin}\n",
- "**Inference** is the word for when you use your model to make predictions. Training is when you train the model and inference is when you use the model. \n",
- "```\n",
- "\n",
- "#### Layer Normalization\n",
- "\n",
- "Batch normalization depends on there being a constant batch size. Some kinds of data, like text or a graphs, have different sizes and so the batch mean/variance can change significantly. **Layer normalization** avoids this problem by normalizing across the *features* (the non-batch axis/channel axis) instead of the batch. This has a similar effect of making the layer output features behave well-centered at 0 but without having highly variable means/variances because of batch to batch variation. You'll see these in graph neural networks and recurrent neural networks, with both take variable sized inputs. \n",
- "\n",
- "### Dropout\n",
- "\n",
- "The last regularization type is **dropout**. Like batch normalization, dropout is typically viewed as a layer and has no trainable parameters. In dropout, we randomly zero-out specific elements of the input and then rescale the output so its average magnitude is unchanged. You can think of it like *masking*. There is a mask tensor $M$ which contains 1s and 0s and is multiplied by the input. It is called masking because we mask whatever was in the elements that were multiplied by 0. Then the output is multiplied by $|M| / \\sum M$ where $|M|$ is the number of elements in $M$. Dropout forces your neural network to learn to use different features or \"pathways\" by zeroing out elements. Weight regularization squeezes unused trainable weights through minimization. Dropout tries to force all trainable weights to be used by randomly negating weights. Dropout is more common than weight or activity regularization but has arguable theoretical merit. Some have proposed it is a kind of sampling mechanism for exploring model variations{cite}`gal2016dropout`. Despite it appearing ad-hoc, it is effective. Note that dropout is only used during training, not for inference. You need to choose the dropout rate when using it, another hyperparameter. Usually, you will want to choose a rate of 0.05--0.35. 0.2 is common. Too small of a value -- meaning you rarely do dropout -- makes the effect too small to matter. Too large of a value -- meaning you often dropout values -- can prevent you from actually learning. As fewer nodes get updated with dropout, larger learnings rates with decay and a larger momentum can help with the model's performance.\n",
- "\n",
- "```{figure} ./drop_out.gif\n",
- "----\n",
- "name: drop_out\n",
- "width: 250px\n",
- "alt: A gif showing how dropout works.\n",
- "----\n",
- "Dropout. \n",
- "```\n",
- "\n",
- "## Residues\n",
- "\n",
- "One last \"layer\" note to mention is residues. One of the classic problems in neural network training is **vanishing gradients**. If your neural network is deep and many features contribute to the label, you can have very small gradients during training that make it difficult to train. This is visible as underfitting. One way this can be addressed is through careful choice of optimization and learning rates. Another way is to add \"residue\" connections in the neural network. Residue connections are a fancy way of saying \"adding\" or \"concatenating\" later layers with early layers. The most common way to do this is:\n",
- "\n",
- "\\begin{equation}\n",
- "X^{i + 1} = \\sigma(W^iX^i + b^i) + X^i\n",
- "\\end{equation}\n",
- "\n",
- "This is the usual equation for a dense neural network but we've added the previous layer output ($X^i$) to our output. Now when you take a gradient of earlier weights from layer $i - 1$, they will appear through both the $\\sigma(W^iX^i + b^i)$ term via the chain rule and the $X^i$ term. This goes around the activation $\\sigma$ and the effect of $W^i$. Note this continues at all layers and then a gradient can propagate back to earlier layers via either term. You can add the \"residue\" connection to the previous layer as shown here or go back even earlier. You can also be more complex and use a trainable function for how the residue term ($X^i$) can be treated. For example:\n",
- "\n",
- "\\begin{equation}\n",
- "X^{i + 1} = \\sigma(W^iX^i + b^i) + W'^i X^i\n",
- "\\end{equation}\n",
- "\n",
- "where $W'^i$ is a set of new trainable parameters. We have seen that there are many hyperparametes for tuning and adjusting residue connections is one of the least effective things to adjust. So don't expect much of an improvement. However, if you're seeing underfitting and inefficient training, perhaps it's worth investigating."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Blocks\n",
- "\n",
- "You can imagine that we might join a dense layer with dropout, batch normalization, and maybe a residue. When you group multiple layers together, this can be called a **block** for simplicity. For example, you might use the word \"convolution block\" to describe a sequential layers of convolution, pooling, and dropout."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Dropout Regularization Example\n",
- "\n",
- "Now let's try to add a few dropout layers to see if we can do better on our example above. "
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "model = tf.keras.Sequential()\n",
- "\n",
- "# make embedding and indicate that 0 should be treated specially\n",
- "model.add(tf.keras.layers.Embedding(input_dim=21, output_dim=16, mask_zero=True, input_length=pos_data.shape[-1] ))\n",
- "\n",
- "# now we move to convolutions and pooling\n",
- "# NOTE: Keras doesn't respect masking here\n",
- "# I should switch to PyTorch.\n",
- "model.add(tf.keras.layers.Conv1D(filters=16, kernel_size=5, activation=\"relu\"))\n",
- "model.add(tf.keras.layers.MaxPooling1D(pool_size=4))\n",
- "\n",
- "model.add(tf.keras.layers.Conv1D(filters=16, kernel_size=3, activation=\"relu\"))\n",
- "model.add(tf.keras.layers.MaxPooling1D(pool_size=2))\n",
- "\n",
- "model.add(tf.keras.layers.Conv1D(filters=16, kernel_size=3, activation=\"relu\"))\n",
- "model.add(tf.keras.layers.MaxPooling1D(pool_size=2))\n",
- "\n",
- "# now we flatten to move to hidden dense layers.\n",
- "# Flattening just removes all axes except 1 (and implicit batch is still in there as always!)\n",
- "\n",
- "model.add(tf.keras.layers.Flatten())\n",
- "\n",
- "# Here is the dropout\n",
- "model.add(tf.keras.layers.Dropout(0.3))\n",
- "model.add(tf.keras.layers.Dense(256, activation=\"relu\"))\n",
- "model.add(tf.keras.layers.Dropout(0.3))\n",
- "model.add(tf.keras.layers.Dense(64, activation=\"relu\"))\n",
- "model.add(tf.keras.layers.Dropout(0.3))\n",
- "model.add(tf.keras.layers.Dense(1, activation=\"sigmoid\"))\n",
- "\n",
- "model.summary()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "model.compile(\"adam\", loss=\"binary_crossentropy\", metrics=[\"accuracy\"])\n",
- "result = model.fit(train_data, validation_data=val_data, epochs=10, verbose=0)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "plt.plot(result.history[\"loss\"], label=\"training\")\n",
- "plt.plot(result.history[\"val_loss\"], label=\"validation\")\n",
- "plt.legend()\n",
- "plt.xlabel(\"Epoch\")\n",
- "plt.ylabel(\"Loss\")\n",
- "plt.show()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "We added a few dropout layers and now we can see the validation loss is a little better but additional training will indeed result it in rising. Feel free to try the other ideas above to see if you can get the validation loss to decrease like the training loss. \n",
- "\n",
- "## L2 Weight Regularization Example\n",
- "Now we'll demonstrate adding weight regularization."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "model = tf.keras.Sequential()\n",
- "\n",
- "# make embedding and indicate that 0 should be treated specially\n",
- "model.add(\n",
- " tf.keras.layers.Embedding(\n",
- " input_dim=21, output_dim=16, mask_zero=True, input_length=pos_data.shape[-1]\n",
- " )\n",
- ")\n",
- "\n",
- "# now we move to convolutions and pooling\n",
- "model.add(tf.keras.layers.Conv1D(filters=16, kernel_size=5, activation=\"relu\"))\n",
- "model.add(tf.keras.layers.MaxPooling1D(pool_size=4))\n",
- "\n",
- "model.add(tf.keras.layers.Conv1D(filters=16, kernel_size=3, activation=\"relu\"))\n",
- "model.add(tf.keras.layers.MaxPooling1D(pool_size=2))\n",
- "\n",
- "model.add(tf.keras.layers.Conv1D(filters=16, kernel_size=3, activation=\"relu\"))\n",
- "model.add(tf.keras.layers.MaxPooling1D(pool_size=2))\n",
- "\n",
- "# now we flatten to move to hidden dense layers.\n",
- "# Flattening just removes all axes except 1 (and implicit batch is still in there as always!)\n",
- "\n",
- "model.add(tf.keras.layers.Flatten())\n",
- "\n",
- "# HERE IS THE REGULARIZATION:\n",
- "model.add(tf.keras.layers.Dense(256, activation=\"relu\", kernel_regularizer=\"l2\"))\n",
- "model.add(tf.keras.layers.Dense(64, activation=\"relu\", kernel_regularizer=\"l2\"))\n",
- "model.add(tf.keras.layers.Dense(1, activation=\"sigmoid\"))\n",
- "\n",
- "\n",
- "model.compile(\"adam\", loss=\"binary_crossentropy\", metrics=[\"accuracy\"])\n",
- "result = model.fit(train_data, validation_data=val_data, epochs=10, verbose=0)\n",
- "\n",
- "plt.plot(result.history[\"loss\"], label=\"training\")\n",
- "plt.plot(result.history[\"val_loss\"], label=\"validation\")\n",
- "plt.legend()\n",
- "plt.xlabel(\"Epoch\")\n",
- "plt.ylabel(\"Loss\")\n",
- "plt.show()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "L2 regularization is too strong it appears, preventing learning. You could go back and reduce the strength; here we're just using the default which doesn't look appropriate for our setting. Tuning hyperparameters like this is a favorite past time of neural network engineers and we could go on forever. We'll stop here and leave it as an exercise for the reader to continue exploring hyperparameters. "
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Activation Functions\n",
- "\n",
- "Recall in {doc}`introduction` we mentioned that activation functions must be nonlinear and we often want them to have a region of input where the output value is zero. ReLU is the simplest example that satisfies these conditions - its output is zero for negative inputs and $f(x) = x$ for positive values. Choosing activation is another hyperparameter and choice that we make. People used activations like $\\tanh$ or sigmoids in early neural network research. ReLU began to dominate in modern deep learning because it's so efficient that models could be made larger for the same runtime speed. \n",
- "\n",
- "```{glue:figure} activations\n",
- "----\n",
- "name: activations\n",
- "----\n",
- "Comparison of the usual ReLU activation function and GELU and Swish.\n",
- "```\n",
- "\n",
- "Since 2019, this has been revisited because modern GPUs can run a variety of activation functions now quite quickly{cite}`eger2019time`. Two commonly used modern activation functions are Gaussian Error Linear Units (GELU){cite}`hendrycks2016gaussian` and Swish{cite}`eger2019time`. They are shown in {numref}`activations`. They have these two properties of nonlinearity and an ability to turn-off at negative values. They seem to give better results because of their non-zero gradient at negative values; they can continue to respond to gradients while they are turned off. It is more common now to see Swish than ReLU in most newer networks and GELU is specifically seen in transformers (discussed in {doc}`NLP`.\n",
- "\n",
- "The equation for Swish is:\n",
- "\n",
- "$$\n",
- "\\sigma(x) = x \\cdot\\textrm{sigmoid}(x) = x \\frac{1}{1 + e^{-x}}\n",
- "$$\n",
- "\n",
- "and the equation for GELU is:\n",
- "\n",
- "$$\n",
- "\\sigma(x) = x\\cdot \\Phi(x) = x\\cdot {\\displaystyle {\\frac {1}{2}}\\left[1+\\operatorname {erf} \\left({\\frac {x-\\mu }{\\sigma {\\sqrt {2}}}}\\right)\\right]}\n",
- "$$"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Discussion\n",
- "\n",
- "Designing and training neural networks is a complex task. The best approach is to always start simple and work your way up in complexity. Remember, you have to write correct code, create a competent model, and have clean data. If you start with a complex model it can be hard to discern if learning problems are due to bugs, the model, or the data. My advice is to always start with a pre-trained or simple baseline network from a previous paper. If you find yourself designing and training your own neural network, read through Andrej Karpathy's [excellent guide](http://karpathy.github.io/2019/04/25/recipe/) on how to approach this task. "
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Chapter Summary \n",
- "\n",
- "* Layers are created for specific tasks, and given the variety of layers, there are a vast number of permutations of layers in a deep neural network. \n",
- "* Convolution layers are used for data defined on a regular grid (such as images). In a convolution, one defines the size of the trainable parameters through the kernel shape.\n",
- "* An invariance is when the output from a neural network is insensitive to spatial changes in the input (translation, rotation, rearranging order)\n",
- "* An equivariance is when the output from a neural network changes the same way as the input. See {doc}`data` and {doc}`Equivariant` for concrete definitions.\n",
- "* Convolution layers are often paired with pooling layers. A pooling layer behaves similarly to a convolution layer, except a reduction is computed and the output is a smaller shape (same rank) than the input.\n",
- "* Embedding layers convert indices into vectors, and are typically used as pre-processing steps. \n",
- "* Hyperparameters are choices regarding the shape of the layers, the activation function, initialization parameters, and other layer arguments. They can be tuned but are not trained on the data.\n",
- "* Hyperparameters must be tuned by hand, as they can be continuous, categorical, or discrete variables, but there are algorithms being researched that tune hyperparameters. \n",
- "* Tuning the hyperparameters can make training faster or require less training data.\n",
- "* Using a validation data set can measure the overfitting of training data, and is used to help choose the hyperparameters.\n",
- "* Regularization is an empirical technique used to change training procedures to prevent overfitting. There are five common types of regularization: early stopping, weight regularization, activity regularization, batch normalization, and dropout. \n",
- "* Vanishing gradient problems can be addressed by adding \"residue\" connections, essentially adding later layers with early layers in the neural network. "
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Cited References\n",
- "\n",
- "```{bibliography}\n",
- ":style: unsrtalpha\n",
- ":filter: docname in docnames\n",
- "```"
- ]
- }
- ],
- "metadata": {
- "celltoolbar": "Tags",
- "hide_input": false,
- "kernelspec": {
- "display_name": "py37tf",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.7.12 | packaged by conda-forge | (default, Oct 26 2021, 05:37:49) [MSC v.1916 64 bit (AMD64)]"
- },
- "vscode": {
- "interpreter": {
- "hash": "4a36ad010f38edd30ea8b91925b3d07c05fc561bbd94613d09664141d5a43ea2"
- }
- }
- },
- "nbformat": 4,
- "nbformat_minor": 4
-}
diff --git a/notebook/0_basic_MLDL/3_1_workflow.ipynb b/notebook/0_basic_MLDL/3_1_workflow.ipynb
deleted file mode 100644
index ade7345..0000000
--- a/notebook/0_basic_MLDL/3_1_workflow.ipynb
+++ /dev/null
@@ -1,421 +0,0 @@
-{
- "cells": [
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# Workflow in ML\n",
- "\n",
- "Refer to [Pytorch workflow](../pytorch_deep_learning/01_pytorch_workflow.ipynb)\n",
- "\n",
- "![](../pytorch_deep_learning/images/01_a_pytorch_workflow.png)\n",
- "\n",
- "| **Topic** | **Contents** |\n",
- "| ----- | ----- |\n",
- "| **1. Getting data ready** | Data can be almost anything but to get started we're going to create a simple straight line |\n",
- "| **2. Building a model** | Here we'll create a model to learn patterns in the data, we'll also choose a **loss function**, **optimizer** and build a **training loop**. | \n",
- "| **3. Fitting the model to data (training)** | We've got data and a model, now let's let the model (try to) find patterns in the (**training**) data. |\n",
- "| **4. Making predictions and evaluating a model (inference)** | Our model's found patterns in the data, let's compare its findings to the actual (**testing**) data. |\n",
- "| **5. Saving and loading a model** | You may want to use your model elsewhere, or come back to it later, here we'll cover that. |\n",
- "\n",
- "\n",
- "## 1. Data (preparing and loading)\n",
- "\n",
- "Data in ML **can be anything**, but **must be turned into numbers** (normally represented in tensors)\n",
- "\n",
- "### Turn data to number\n",
- "Turning data to numbers is called **Numerical encording**\n",
- "\n",
- "![](../pytorch_deep_learning/images/01-machine-learning-a-game-of-two-parts.png)\n",
- "\n",
- "### Split data into training and test sets\n",
- "\n",
- "| Split | Purpose | Amount of total data | How often is it used? |\n",
- "| ----- | ----- | ----- | ----- |\n",
- "| **Training set** | The model learns from this data (like the course materials you study during the semester). | ~60-80% | Always |\n",
- "| **Validation set** | The model gets tuned on this data (like the practice exam you take before the final exam). | ~10-20% | Often but not always |\n",
- "| **Testing set** | The model gets evaluated on this data to test what it has learned (like the final exam you take at the end of the semester). | ~10-20% | Always |\n",
- "\n",
- "```{note}\n",
- "Should keep in mind the data explorer's motto... \"visualize, visualize, visualize!\"\n",
- "\n",
- "Think of this whenever you're working with data and turning it into numbers, if you can visualize something, it can do wonders for understanding.\n",
- "\n",
- "Machines love numbers and we humans like numbers too but we also like to look at things.\n",
- "```"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## 2. Build model\n",
- "\n",
- "### PyTorch model building essentials\n",
- "\n",
- "PyTorch has four (give or take) essential modules you can use to create almost any kind of neural network you can imagine.\n",
- "They are \n",
- "- [`torch.nn`](https://pytorch.org/docs/stable/nn.html), \n",
- "- [`torch.optim`](https://pytorch.org/docs/stable/optim.html), \n",
- "- [`torch.utils.data.Dataset`](https://pytorch.org/docs/stable/data.html#torch.utils.data.Dataset) and \n",
- "- [`torch.utils.data.DataLoader`](https://pytorch.org/docs/stable/data.html). \n",
- " \n",
- "\n",
- "| PyTorch module | What does it do? |\n",
- "| ----- | ----- |\n",
- "| [`torch.nn`](https://pytorch.org/docs/stable/nn.html) | Contains all of the building blocks for computational graphs (essentially a series of computations executed in a particular way). |\n",
- "| [`torch.nn.Parameter`](https://pytorch.org/docs/stable/generated/torch.nn.parameter.Parameter.html#parameter) | Stores tensors that can be used with `nn.Module`. If `requires_grad=True` gradients (used for updating model parameters via [**gradient descent**](https://ml-cheatsheet.readthedocs.io/en/latest/gradient_descent.html)) are calculated automatically, this is often referred to as \"autograd\". | \n",
- "| [`torch.nn.Module`](https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module) | The base class for all neural network modules, all the building blocks for neural networks are subclasses. If you're building a neural network in PyTorch, your models should subclass `nn.Module`. Requires a `forward()` method be implemented. | \n",
- "| [`torch.optim`](https://pytorch.org/docs/stable/optim.html) | Contains various optimization algorithms (these tell the model parameters stored in `nn.Parameter` how to best change to improve gradient descent and in turn reduce the loss). | \n",
- "| `def forward()` | All `nn.Module` subclasses require a `forward()` method, this defines the computation that will take place on the data passed to the particular `nn.Module` (e.g. the linear regression formula above). |\n",
- "\n",
- "![](../pytorch_deep_learning/images/01-pytorch-linear-model-annotated.png)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {},
- "outputs": [],
- "source": [
- "import torch\n",
- "from torch import nn\n",
- "\n",
- "# Create a Linear Regression model class\n",
- "class LinearRegressionModel(nn.Module): # nn.Module is almost everything in PyTorch (as neural network lego blocks)\n",
- " def __init__(self):\n",
- " super().__init__() \n",
- " self.weights = nn.Parameter(torch.randn(1, # start with random weights (this will get adjusted as the model learns)\n",
- " dtype=torch.float), # <- PyTorch loves float32 by default\n",
- " requires_grad=True) # <- can we update this value with gradient descent?)\n",
- "\n",
- " self.bias = nn.Parameter(torch.randn(1, # start with random bias (this will get adjusted as the model learns)\n",
- " dtype=torch.float), # <- PyTorch loves float32 by default\n",
- " requires_grad=True) # <- can we update this value with gradient descent?))\n",
- "\n",
- " # Forward defines the computation in the model\n",
- " def forward(self, x: torch.Tensor) -> torch.Tensor: # <- \"x\" is the input data (e.g. training/testing features)\n",
- " return self.weights * x + self.bias # <- this is the linear regression formula (y = m*x + b)"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Making predictions using torch.inference_mode()\n",
- "\n",
- "`torch.inference_mode()` is used when using a model for inference (making predictions).\n",
- "\n",
- "`torch.inference_mode()` turns off a bunch of things (like gradient tracking, which is necessary for training but not for inference) to make **forward-passes** (data going through the `forward()` method) faster."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {},
- "outputs": [
- {
- "ename": "NameError",
- "evalue": "name 'model_0' is not defined",
- "output_type": "error",
- "traceback": [
- "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
- "\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)",
- "Cell \u001b[1;32mIn[4], line 3\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[39m# Make predictions with model\u001b[39;00m\n\u001b[0;32m 2\u001b[0m \u001b[39mwith\u001b[39;00m torch\u001b[39m.\u001b[39minference_mode(): \n\u001b[1;32m----> 3\u001b[0m y_preds \u001b[39m=\u001b[39m model_0(X_test)\n",
- "\u001b[1;31mNameError\u001b[0m: name 'model_0' is not defined"
- ]
- }
- ],
- "source": [
- "# Make predictions with model\n",
- "with torch.inference_mode(): \n",
- " y_preds = model_0(X_test)"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## 3. Train model\n",
- "\n",
- "### Creating a loss function and optimizer in PyTorch\n",
- "\n",
- "In ML loss function is also called cost function, objective function,... that is needed to minimize.\n",
- "\n",
- "| Function | What does it do? | Where does it live in PyTorch? | Common values |\n",
- "| ----- | ----- | ----- | ----- |\n",
- "| **Loss function** | Measures how wrong your models predictions (e.g. `y_preds`) are compared to the truth labels (e.g. `y_test`). Lower the better. | PyTorch has plenty of built-in loss functions in [`torch.nn`](https://pytorch.org/docs/stable/nn.html#loss-functions). | Mean absolute error (MAE) for regression problems ([`torch.nn.L1Loss()`](https://pytorch.org/docs/stable/generated/torch.nn.L1Loss.html)). Binary cross entropy for binary classification problems ([`torch.nn.BCELoss()`](https://pytorch.org/docs/stable/generated/torch.nn.BCELoss.html)). |\n",
- "| **Optimizer** | Tells your model how to update its internal parameters to best lower the loss. | You can find various optimization function implementations in [`torch.optim`](https://pytorch.org/docs/stable/optim.html). | Stochastic gradient descent ([`torch.optim.SGD()`](https://pytorch.org/docs/stable/generated/torch.optim.SGD.html#torch.optim.SGD)). Adam optimizer ([`torch.optim.Adam()`](https://pytorch.org/docs/stable/generated/torch.optim.Adam.html#torch.optim.Adam)). | \n",
- "\n",
- "Common optimizers:\n",
- "- SGD (stochastic gradient descent) optimizer\n",
- "- Adam optimizer\n",
- "\n",
- "### Creating an optimization loop in PyTorch\n",
- "\n",
- "We will create a **training loop** (and **testing loop**).\n",
- "\n",
- "The training loop involves the model going through the training data and learning the relationships between the `features` and `labels`.\n",
- "\n",
- "The testing loop involves going through the testing data and evaluating how good the patterns are that the model learned on the training data (the model never see's the testing data during training).\n",
- "\n",
- "Each of these is called a \"loop\" because we want our model to look (loop through) at each sample in each dataset.\n",
- "\n",
- "#### PyTorch training loop\n",
- "For the training loop, we'll build the following steps:\n",
- "\n",
- "| Number | Step name | What does it do? | Code example |\n",
- "| ----- | ----- | ----- | ----- |\n",
- "| 1 | Forward pass | The model goes through all of the training data once, performing its `forward()` function calculations. | `model(x_train)` |\n",
- "| 2 | Calculate the loss | The model's outputs (predictions) are compared to the ground truth and evaluated to see how wrong they are. | `loss = loss_fn(y_pred, y_train)` | \n",
- "| 3 | Zero gradients | The optimizers gradients are set to zero (they are accumulated by default) so they can be recalculated for the specific training step. | `optimizer.zero_grad()` |\n",
- "| 4 | Perform backpropagation on the loss | Computes the gradient of the loss with respect for every model parameter to be updated (each parameter with `requires_grad=True`). This is known as **backpropagation**, hence \"backwards\". | `loss.backward()` |\n",
- "| 5 | Update the optimizer (**gradient descent**) | Update the parameters with `requires_grad=True` with respect to the loss gradients in order to improve them. | `optimizer.step()` |\n",
- "\n",
- "![pytorch training loop annotated](../pytorch_deep_learning/images/01-pytorch-training-loop-annotated.png)\n",
- "\n",
- "```{note}\n",
- "The above is just one example of how the steps could be ordered or described. With experience you'll find making PyTorch training loops can be quite flexible.\n",
- "\n",
- "And on the ordering of things, the above is a good default order but you may see slightly different orders. Some rules of thumb: \n",
- " * Calculate the loss (`loss = ...`) *before* performing backpropagation on it (`loss.backward()`).\n",
- " * Zero gradients (`optimizer.zero_grad()`) *before* stepping them (`optimizer.step()`).\n",
- " * Step the optimizer (`optimizer.step()`) *after* performing backpropagation on the loss (`loss.backward()`).\n",
- "```\n",
- "\n",
- "#### PyTorch testing loop\n",
- "\n",
- "As for the testing loop (evaluating our model), the typical steps include:\n",
- "\n",
- "| Number | Step name | What does it do? | Code example |\n",
- "| ----- | ----- | ----- | ----- |\n",
- "| 1 | Forward pass | The model goes through all of the training data once, performing its `forward()` function calculations. | `model(x_test)` |\n",
- "| 2 | Calculate the loss | The model's outputs (predictions) are compared to the ground truth and evaluated to see how wrong they are. | `loss = loss_fn(y_pred, y_test)` | \n",
- "| 3 | Calulate evaluation metrics (optional) | Alongisde the loss value you may want to calculate other evaluation metrics such as accuracy on the test set. | Custom functions |\n",
- "\n",
- "Notice the testing loop doesn't contain performing backpropagation (`loss.backward()`) or stepping the optimizer (`optimizer.step()`), this is because no parameters in the model are being changed during testing, they've already been calculated. For testing, we're only interested in the output of the forward pass through the model.\n",
- "\n",
- "![pytorch annotated testing loop](../pytorch_deep_learning/images/01-pytorch-testing-loop-annotated.png)\n",
- "\n",
- "```{note}\n",
- "- Training loop and testing loop are normally performed together\n",
- "- In ML, **epoch** means step, like in MD.\n",
- "```\n",
- "\n",
- "Let's put all of the above together and train our model for 100 **epochs** (forward passes through the data) and we'll evaluate it every 10 epochs."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {},
- "outputs": [
- {
- "ename": "NameError",
- "evalue": "name 'model_0' is not defined",
- "output_type": "error",
- "traceback": [
- "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
- "\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)",
- "Cell \u001b[1;32mIn[5], line 12\u001b[0m\n\u001b[0;32m 8\u001b[0m epoch_count \u001b[39m=\u001b[39m []\n\u001b[0;32m 10\u001b[0m \u001b[39mfor\u001b[39;00m epoch \u001b[39min\u001b[39;00m \u001b[39mrange\u001b[39m(epochs):\n\u001b[0;32m 11\u001b[0m \u001b[39m### Training\u001b[39;00m\n\u001b[1;32m---> 12\u001b[0m model_0\u001b[39m.\u001b[39mtrain() \u001b[39m# Put model in training mode (this is the default state of a model)\u001b[39;00m\n\u001b[0;32m 14\u001b[0m y_pred \u001b[39m=\u001b[39m model_0(X_train) \u001b[39m# 1. Forward pass on train data using the forward() method inside \u001b[39;00m\n\u001b[0;32m 15\u001b[0m loss \u001b[39m=\u001b[39m loss_fn(y_pred, y_train) \u001b[39m# 2. Calculate the loss (how different are our models predictions to the ground truth)\u001b[39;00m\n",
- "\u001b[1;31mNameError\u001b[0m: name 'model_0' is not defined"
- ]
- }
- ],
- "source": [
- "torch.manual_seed(42) # seed to make sure reproducing the same random number on different runs or machines \n",
- "\n",
- "epochs = 100 # Set the number of epochs (how many times the model will pass over the training data)\n",
- "\n",
- "# Create empty loss lists to track values\n",
- "train_loss_values = []\n",
- "test_loss_values = []\n",
- "epoch_count = []\n",
- "\n",
- "for epoch in range(epochs):\n",
- " ### Training\n",
- " model_0.train() # Put model in training mode (this is the default state of a model)\n",
- "\n",
- " y_pred = model_0(X_train) # 1. Forward pass on train data using the forward() method inside \n",
- " loss = loss_fn(y_pred, y_train) # 2. Calculate the loss (how different are our models predictions to the ground truth)\n",
- " optimizer.zero_grad() # 3. Zero grad of the optimizer\n",
- " loss.backward() # 4. Loss backwards\n",
- " optimizer.step() # 5. Progress the optimizer\n",
- "\n",
- " ### Testing\n",
- " model_0.eval() # Put the model in evaluation mode\n",
- "\n",
- " with torch.inference_mode():\n",
- " test_pred = model_0(X_test) # 1. Forward pass on test data\n",
- " test_loss = loss_fn(test_pred, y_test.type(torch.float)) # 2. Calculate loss on test data (note: predictions come in torch.float datatype, so comparisons need to be done with tensors of the same type\n",
- "\n",
- " # Print out what's happening\n",
- " if epoch % 10 == 0:\n",
- " epoch_count.append(epoch)\n",
- " train_loss_values.append(loss.detach().numpy())\n",
- " test_loss_values.append(test_loss.detach().numpy())\n",
- " print(f\"Epoch: {epoch} | MAE Train Loss: {loss} | MAE Test Loss: {test_loss} \")"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## 4. Make a prediction with trained model (inference)\n",
- "\n",
- "We used it during training/testing loop.\n",
- "\n",
- "There are three things to remember when making predictions (also called performing inference) with a PyTorch model:\n",
- "1. Set the model in evaluation mode (`model.eval()`).\n",
- "2. Make the predictions using the inference mode context manager (`with torch.inference_mode(): ...`).\n",
- "3. All predictions should be made with objects on the same device (e.g. data and model on GPU only or data and model on CPU only)."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "model_0.eval() # 1. Set the model in evaluation mode\n",
- "with torch.inference_mode(): # 2. Setup the inference mode context manager\n",
- " model_0.to(device) # 3. setup device-agnostic, to make all on the same device\n",
- " X_test = X_test.to(device)\n",
- " y_preds = model_0(X_test)"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## 5. Saving and loading a model\n",
- "\n",
- "For saving and loading models in PyTorch, there are three main methods you should be aware of ([PyTorch saving and loading models guide](https://pytorch.org/tutorials/beginner/saving_loading_models.html#saving-loading-model-for-inference)):\n",
- "\n",
- "| PyTorch method | What does it do? | \n",
- "| ----- | ----- |\n",
- "| [`torch.save`](https://pytorch.org/docs/stable/torch.html?highlight=save#torch.save) | Saves a serialzed object to disk using Python's [`pickle`](https://docs.python.org/3/library/pickle.html) utility. Models, tensors and various other Python objects like dictionaries can be saved using `torch.save`. | \n",
- "| [`torch.load`](https://pytorch.org/docs/stable/torch.html?highlight=torch%20load#torch.load) | Uses `pickle`'s unpickling features to deserialize and load pickled Python object files (like models, tensors or dictionaries) into memory. You can also set which device to load the object to (CPU, GPU etc). |\n",
- "| [`torch.nn.Module.load_state_dict`](https://pytorch.org/docs/stable/generated/torch.nn.Module.html?highlight=load_state_dict#torch.nn.Module.load_state_dict)| Loads a model's parameter dictionary (`model.state_dict()`) using a saved `state_dict()` object. | \n",
- "\n",
- "```{note}\n",
- "As stated in [Python's `pickle` documentation](https://docs.python.org/3/library/pickle.html), the `pickle` module **is not secure**. That means you should only ever unpickle (load) data you trust. That goes for loading PyTorch models as well. Only ever use saved PyTorch models from sources you trust.\n",
- "```\n",
- "\n",
- "### Saving a PyTorch model's `state_dict()`\n",
- "\n",
- "The [recommended way](https://pytorch.org/tutorials/beginner/saving_loading_models.html#saving-loading-model-for-inference) for saving and loading a model for inference (making predictions) is by saving and loading a model's `state_dict()`.\n",
- "\n",
- "call `torch.save(obj, f)` where `obj` is the target model's `state_dict()` and `f` is the filename of where to save the model."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "torch.save(obj=model_0.state_dict(), f=filename) # Save the model state_dict(), only saves the models learned parameters"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Loading a saved PyTorch model's `state_dict()`\n",
- "\n",
- "Since we've now got a saved model `state_dict()` at `models/01_pytorch_workflow_model_0.pth` we can now load it in using `torch.nn.Module.load_state_dict(torch.load(f))` where `f` is the filepath of our saved model `state_dict()`.\n",
- "\n",
- "Why call `torch.load()` inside `torch.nn.Module.load_state_dict()`? \n",
- "\n",
- "Because we only saved the model's `state_dict()` which is a dictionary of learned parameters and not the *entire* model, we first have to load the `state_dict()` with `torch.load()` and then pass that `state_dict()` to a new instance of our model (which is a subclass of `nn.Module`).\n",
- "\n",
- "Why not save the entire model?\n",
- "\n",
- "[Saving the entire model](https://pytorch.org/tutorials/beginner/saving_loading_models.html#save-load-entire-model) rather than just the `state_dict()` is more intuitive, however, to quote the PyTorch documentation (italics mine):\n",
- "\n",
- "```{tip}\n",
- "The disadvantage of this approach *(saving the whole model)* is that the serialized data is bound to the specific classes and the exact directory structure used when the model is saved...\n",
- "\n",
- "Because of this, your code can break in various ways when used in other projects or after refactors.\n",
- "```\n",
- "\n",
- "So instead, we're using the flexible method of saving and loading just the `state_dict()`, which again is basically a dictionary of model parameters.\n",
- "\n",
- "Let's test it out by created another instance of `LinearRegressionModel()`, which is a subclass of `torch.nn.Module` and will hence have the in-built method `load_state_dit()`."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "# Instantiate a new instance of our model (this will be instantiated with random weights)\n",
- "loaded_model_0 = LinearRegressionModel()\n",
- "\n",
- "# Load the state_dict of our saved model (this will update the new instance of our model with trained weights)\n",
- "loaded_model_0.load_state_dict(torch.load(f=filename))"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Improving a model (Hyperparameters tuning) \n",
- "\n",
- "When the model gives bad predictions, there are a few ways to try for making it better. See [example here](pytorch_deep_learning/02_pytorch_classification.ipynb)\n",
- "\n",
- "| Model improvement technique* | What does it do? |\n",
- "| ----- | ----- |\n",
- "| **Add more layers** | Each layer *potentially* increases the learning capabilities of the model with each layer being able to learn some kind of new pattern in the data, more layers is often referred to as making your neural network *deeper*. |\n",
- "| **Add more hidden units** | Similar to the above, more hidden units per layer means a *potential* increase in learning capabilities of the model, more hidden units is often referred to as making your neural network *wider*. |\n",
- "| **Fitting for longer (more epochs)** | Your model might learn more if it had more opportunities to look at the data. |\n",
- "| **Changing the activation functions** | Some data just can't be fit with only straight lines (like what we've seen), using non-linear activation functions can help with this (hint, hint). |\n",
- "| **Change the learning rate** | Less model specific, but still related, the learning rate of the optimizer decides how much a model should change its parameters each step, too much and the model overcorrects, too little and it doesn't learn enough. |\n",
- "| **Change the loss function** | Again, less model specific but still important, different problems require different loss functions. For example, a binary cross entropy loss function won't work with a multi-class classification problem. |\n",
- "| **Use transfer learning** | Take a pretrained model from a problem domain similar to yours and adjust it to your own problem. We cover transfer learning in [notebook 06](pytorch_deep_learning/06_pytorch_transfer_learning/). |\n",
- "\n",
- "```{note}\n",
- "- Because you can adjust all of these by hand, they're referred to as **hyperparameters**. \n",
- "- And this is also where **machine learning's half art half science** comes in, there's no real way to know here what the best combination of values is for your project, best to follow the data scientist's motto of *\"experiment, experiment, experiment\"*.\n",
- "```"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "py39mlcvs",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.9.16"
- },
- "orig_nbformat": 4,
- "vscode": {
- "interpreter": {
- "hash": "ffd1abbb83318c5604f0d207c5fcbf9a26b71537d918692fbc05e98eeb47c7d3"
- }
- }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
diff --git a/notebook/0_basic_MLDL/3_2_Model_template.ipynb b/notebook/0_basic_MLDL/3_2_Model_template.ipynb
deleted file mode 100644
index 49c910d..0000000
--- a/notebook/0_basic_MLDL/3_2_Model_template.ipynb
+++ /dev/null
@@ -1,71 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "view-in-github",
- "colab_type": "text"
- },
- "source": [
- " "
- ]
- },
- {
- "cell_type": "markdown",
- "source": [
- "# Core Ml templates\n",
- "\n",
- "## REFs\n",
- "[10 Templates for Building Machine Learning Models with](https://levelup.gitconnected.com/templates-for-building-machine-learning-models-with-5fbc190c7970)\n",
- "\n",
- "[github/Machine-learning-templates](https://github.com/ila987/Machine-learning-templates)\n",
- "\n",
- "\n",
- "# DeepML templates\n",
- "\n",
- "\n",
- "# Methods use in Ryu lab\n",
- "\n",
- "SBO - Single-Objective Bayesian Optimization\n",
- "\n",
- "MBO - Multi-Objective Bayesian Optimization\n",
- "\n",
- "CGIDN - Contrained Generative Inverse Design Network\n"
- ],
- "metadata": {
- "id": "bPlgG8f3j_8k"
- }
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "py39mlcvs",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.9.16"
- },
- "orig_nbformat": 4,
- "vscode": {
- "interpreter": {
- "hash": "ffd1abbb83318c5604f0d207c5fcbf9a26b71537d918692fbc05e98eeb47c7d3"
- }
- },
- "colab": {
- "provenance": [],
- "include_colab_link": true
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
\ No newline at end of file
diff --git a/notebook/0_basic_MLDL/image/1_1_machine-learning.png b/notebook/0_basic_MLDL/image/1_1_machine-learning.png
deleted file mode 100644
index 066f3dee35ac9dd6fbbead95c4aa97fcb855bf3c..0000000000000000000000000000000000000000
GIT binary patch
literal 0
HcmV?d00001
literal 61104
zcmb@tcRbbYA3y%iJT_%zDSS!OIJ;#>lU+~=bhJe%c
zpKBaOi8MPBJIq@}dae1IUQ18(iHsiIUU=&B+Fo3T~X9FhI-yqyOy0YwHyEoy5QY
z*~n;|lv)ZP&qDq;^?8N}onkhIC0C0Ey2>nEES%-v1{HDLE}i9iCiaL~K2_%#B!A#d
z%=LepLLdKtPtv$E?bR{uO-(%Vky$`~zCx2ofjakZd!ZV&6EeS2j@Hep7mFmG5+ZLI
zIDIl#nkz4DGPa!U`vRy3N_w
zV(BOAPzp%F$|oB&Crudf)}B($QFA~DWh}h$itb+5=Nd$??eB+Xh8O6UeiqstVTN?f
zwlBME@eCfTH#nD39G9S-)q@e99La_z}7Fd>dALfmmFGMww4YbCU`F)^&;Qv)+eBG4ViK(CU
zL*QA)T-U?IhvPDi(?h@EjZ@s5xvC`r=%yF3^K~Z{ca>9@7m-8%h=qLZJhsoRrGwsz
zuc8i$IM%8zR)sNN$2TGF9GNMn-zSBjdIzy8#EQ4A`JKkVtusC1;jrr@@vQia)|(|P
zTdl3S1A+I+TON=#Qx6$tJxg4SuGo@~-b-+0Pn+&>C4x7O$7lNM>&+HOhug8PR9!W{
zG5P5Cg9LsEQbF-Xp*~wS#*}~hqpGTB_Vke-x&`qnGt3)anjHCprM
zZqH#BTD-cqGf9ki;MWB4)|ms-F%8!>)EyvP8pOu
z)WU#|&h%C|91tF3TBCb%^f}Slx_6h)oE_N8U2NB|?h@U_*Y}y+6V$DTB(a=pJq-6<
zlkNQ`NLvtz{X}Y3(e@uto0vTm6F+aaOEPf>KJhd#`uw^z7j_sXI9ZI!F5AELN8|Zs
zyFB|NOV29tyjw6-gkE#D1tko5;xDYpll<_sW4U3g*d<0q+s^LA5RNCb-59knwf#;z`*OD-$t`D-uqZbL`SR8<&AR1N
z;wrI-Le5s-Z)-+xKu3R>b1Ixg<%<+%vm&oL`rPc$~@B-=>E8XxUoJtmXSj>$j8E
zl2>j#x|su)X6nUAey$r1V$FK@?y@Id(FEs8UT5T7!$v5NeHHcb2tKjFj03+*x9;0p
z_o8>yd&Z0x%bEGP+P95`xsLK?qF%(99F9>EYh|SL(a5)Lz=Y_fx>=%C_n$tVaXz?7
zMKLGiccG$vrv9HX5n7A+@ys#JkzwNsMIoJE09z#`Nii4pcm1&s*j#AOwM}C#vaI@Y
zA&zzeHAdD4&$|Cn6p6E+lRtAvUN_wde$TR9foZ0VF8xj~ehxQg+S*X?0HLsS&@#ST
zG%%XUBAC`1ZspTD7utd1fAZkr&`hY#9~QY}#IjiUtdqwyzLvuP*wPPun3n&!u)d0o
z<1hF`e|{M1CSM!b`r-1g%g@Tk#FZ}1*H7-M&2=XovCRdZkgS_O+YJ`|!?_aukfHGt
zH@l^OTblj$8fhzW_0l`F(2=O~uSi>L7dFXAFK75kwDrE^At_9As9QK{y1`-4#kKKD
z@dPxH_
zpVB!?`nj0{vwKd`GJZE^;i{sGdl_5I^wGQdu_U??oV|7XJrxbK-B0xQ
zRt6HbAHi=ZE!{9r-H@dFL<;3yhY`u=0F|I`y!OgeX`NV+X1`h;IiVSd*_qwbng>p3Wtod_XhOusS~B8bqer_Uz5^2g6ZZ$d^Kz4@cg-O-%!x>D^s?y}a?Rd+M|3
z2I-5Zs?)u;hT9x<`iD&M-a+RB<`&8;u-JuFB!S5qC1T{DvXnqxXfDVw*y!JCa
zb=CJ&S(6&VGmW%7gQvmM7E0fv$h5iOOyXD*vNWSA)0)QWuW_R^7m)cCVr~4o>yF_c
zgSEcNKNZ``I7#s2jyrGIGbJd`0})=*}PE1Xc(uoF{7<_jlckz8j2e_zdg*kp{AZ-FqUU2drNm
z2iO;t?Qd-Q44+)P{jtnqFiSD(R_r=nBP&FM;US&N(HkyEMGS<2-cDu0<|V;EhRZt4
zB<+y|8TNZC+6*xeLoMB_8>ytgtxHwWxIPcT=xEHZ%9?<$4h;C%w)@0RU%c7%Hf=Kw
zoNm2a)|is%3d+i8$d;QxWMHa_;$f(B9RiYf`n^=cuFoUZHWWqrWm;4nKZSS1xEDon
zjY@D1EyzEF47uiVHydKjWHE^Pv3cJmCVby$M2}m1ZT30L!x!*IS9*WiyH5R%!^0%J
z8>|61>O=88xakb-sLUlSDHQivWnDuhHKwZUPy$5AW)JNh-)WY_iIIeH3`uYrEC8yK
zfy=^!U-OK9V`bfU*Z0ExX`t{En|(Nv&w8)d_yYbw8aFkfdj&{`y^v|`M!(r}wd54^
z{_2v?X$Z$yoLnFF{jPKKQFg9HtX;z!KQ`O>q&+ViaRYVVS-KH&Rb07$^~3fsCzl@?
zoRKnDTafO+%Tt%lM)G3XkEr3!
zVQ9@Q4C3RB_?Q=BPXb28Ba6iwU9ETgMStuIKH9IMLPaDLS2g+!cg-;FoyQY}(u}}F
z3rGZF{m979Zc1C_D$t@4XN-G;{-evpsj@5$)&mXys2=i&V3~U7Ovc0>DiqCKsF~v4
zU#+w#g&(pYDNw{q55(V@dNe?gDx3^Sp;=~*L1Y}`qnwGWnHSO5;ioy6wg~()SCa-rjklU<$+2E?YR!CG%W<^2CX}?eTm1AGnyoq
zX5eQEdP5Qx&mQZD5dD@aH|y=kiyJX+b+8h(_6XL%w&XoPDLAd%JG5@G{L<6AJN$yA
zr8>dShArKa>aM|w-yk(4_+GnlPxI$Q<=9RjixL`~$v-i-@jQmq8sVuMhtFutb5+e0
z+{D~O;VV%!_UtEy_0_(v6%XzUBLbYlXY*uSNFs3&Qi%@f=OaTk-8D?tdiD1Xy1e$*XMahz=Ap{stHC4ECpCBb2^zQc$Jf}*ro@ni?yUPYoAKmBQ5
zDJKPBdN_=IWFB*?#Uu~YRMVpsO}5#tV#nL8Z=u%<8WBi2*8_q6h*?*PP3H)~$?#Ph
zGQmx{N8NAP7cf;E(v-gh31k-Igt?UsdAoYtzhdD+x#{;F!5>
zwuG_qCH-@$-}fVX2ib0f1JM$@1si^lYBc(sLAt27Lcg~@J<T>q&4?e^>@;5J6d+9+{i&F3C}BC
zL!cF&28jOSc|tm~#by*h$1dWf;X_CBZtK~i^{3{V(XfIegTui!#}!h%!Si#7a-C(e
z{Oi3h9)Y}qkil9_J-tk|V-mwM#^KyKy&><50;-;4Vz-(6sn(ri1}^^rw8lN1$%_V
z0Nm6+Z~Ea&o(CBYBBG=0muv-}sZTLSxS0&yu+6#Op;!htHr2g)6=(ooj4ET@ZhIKnC
z=4UP)GAlh3A|lxR&W}o4X3p$0BR=}*MnO@R`%Qj^CzHM6*WL8@4AZI#v^9<`)Aaae5L(xeMuk`Z09KE`
zE-W_ImU$U0o236l{UcmFe0GGhT9}d&DeK^yC`N&Dcs=7F)qgMEYnGAKXO5UWVGuCIh;I&k1Xwv|nKcU_BY
z?Tv*`%C4gBuhd&yCyj3I9sLa!U5%08uZ4Bx^qo5PQDlgau#mL}`UO)yn%BO8Iry`kH>Rak6q=~I!|}KGntsMfJd0
zLP^e(JiVE>@9F3e-p&SN(_}@zdidGmU3Bc>N6d2UAFkEq2RlK{bDa-EGrCz@I)ADT
z`!gPo(qeOJoa6=C{NAvwH%LCYXm?|Br9RU_;iigL+~BY}-(B~|qCaUBns!7vXbEaD-FeHs2SQi#Xyr-)vglFhA5a5O{wrak0=^6SCr
z#))2Qa>b_|$7jbD!>Mjs!#Sp2GDJ|G%qoiOCC}49x@%2UO2rgw;(w=vhuMdC8-b+Y=VTF6A#*#4i*JFrcu9tV&s|2tKEMCk+5WNd9Kv`9uquI#y)Av`&n~a=tjrXoL
zT+S!tdkvWePFFT4)IO1Gm<@T5lE1S>rWhY4Ohx~k0IWUoi+VBmXXvWfN1Aeltc>`n
z;LP(Chqnh+z{n1@2c*e^>%C@NOKVQ)nmGA=$w6fZ`rNdzC;$`ii4-~JzDDa6u~vP#
zj=PPpmxc=I(Cb@YzP6nDBKn=`{zbh^t6PKvVK@1{-0GjebmNvgY)flv4IAjW_Cm{x142dJ_j~E?5R_YTycImEzdl6wEKgeisscvWZ
zW%s=zgH$9y?n8m3dWzZMB4LOG5RiSRssB0=1Xt*s)Lnm_WedKmP%w0yUjyG-fQ2xg
z6Zy*`1OxXjQ;LVi)p7E*5TwPz>mo4z<1@i9bjqf7{=zv3
z1}yQq0Q_3r<_{5qUx)xHRPo$FuM_AJxLo+?-7#4?<8u&F)AxTp;pSz(B^*ScyegO;
zg%3gIzCci1op-rP$N=N8JOBU3r+F{kL5%_jGPEZoZz5X=b1IS)68^vfW-Sd={+;w&
z5^>n3I_x%KB$_k-iQSscpgrizLrPNce>&^(n3wurcaR3(lOWY6{Ok7zT_BZl`pEll
zW!&uv79kG2or3p?U3u3_$AMtR3xLrP0%?Hbgtt6QQ<264k+7Bwd3zF2+9H4qwdrrm;k}%
z_C!gt>Z{r;3Dky$!jnCnZkiGSLm|n0X&mFl557V%95Ccfof7RY&LFu1hSWwGCO;%_
z1az0DO|ef_1%pB>VNzG~xq6s@QbNsv2iaWtTnG}&5PBArZZy*W4u+s@`p0);{S{2f
zpbi<5S1${=KBfE}08TG<3h}E1qFgjX|LaUo55Id3Nnr|uI>?d{4#ejKG=O~rF~CIs
z>*=cbki#Rj
zJALR3OL4GU)0^G>ISquM@(}o`Z1xRF9>^<3#@9moAgbd)9Wq7P%@Hu}rYFzQlB;pt5QlydYbJXAOZ_oxar=+4`);^Hd1Sru
zmX8y0t{_xqKeF-1C>DcV7s1JP>Xg0c5|_jMb}4SJoJyq1a`N&ahVm|jhg(%I6&@|O
zu6A)WRC;0%(eqe-rmr_+ty?s*hAPvKrM``ls=NYDaXb3lR81=WvMoPT{ifZHbb$Wn
zAoHaJa!5rwe752Gc1jW59;HP&BVOkC_4`j(`4lQTf)rmSy(m*due*#=-JNbc3GC}2
zD`%IjpY3xxm1u~nD)XeiKz0jPHg_z(nDg;o(3*XJ=gj51bMFK8{-JWLb!
z8KKu(tL;=(>hiCvUOdNdasZ#4N^QHixvU-dJ+H&ieeM4Jy(_Z~m!{QBP2{5~!V6j>
z-X1eEK4rLj_YG$PW-8&bGM+^G9z=)+%p@`o!o2jnm0u*l#|=jewk
zexu|gKc@=mY$g4YGFz;Z7mI7236W%zwA|A!L-SH)A#WDCOukv;vd49as-oHLtV}4i
z`kQ8fbw-fdPU$9KuqPB(N=cBYu>9+E&ww{iL*8GgT#r@fLxr%&(-3~`j&GkwljdGi
zTSpN(-ZYNUkEwi4TfTPbuFTq5Rkuu8k2
zf7gymVO{wT*kxgKC=+QJ5CC)4)Eae?+6L{7{A{@N(&|gA>Cv|AzybTU%c^ES8=6V&
z2mKSiRGxi^YZQtT8?Ey1naZT&NE?LTv5KZW+Olht>4v8nh!-+ZHh1yK2fE=V-M?9g)P4+$qoP7DPyCKZeU9pQu;@N{V(dTLtjF0B7_oc8-Squ{xZ3pU
zt=WcvuRr^C5akV@+?Kay>YQhH`mf@H924?49r^-YnK|*(+i;!23-
zxqL^-$@UIDII7|RM$il%5q29A56NyfME^7C!0}SAE8NP&V9pDH
zeJ3zu_2<*A<6v3e3LSL0^95YEl@Tq@-A6xv^SRww_nqgMDjK??TVb-GSKUC^t(9n6J+`o1Ru*}+hYggJPyBziTJ}g
zBdi>b4tZVzQb)Zgkp>Me@4tS$A_QUy8q~>TM7UM=ucigQ^-0o}@4E{JSm_71pLMJZ
zAUV6F9G|Yn#FowFn{3nwA3m#p*IT8a8=?5VDh5drO;fXzO!AAS6te6mZ>^}M9mTX`wm3tK~!P(EKbnwR<$*fcpKW>c?Y_lrbz
z@;hSZe+M)lfg8*B<&T)ERSBW-GIzShEuoH_9Nm**PE%R)^q
zG_3U)=CUlkq6&azGOn#HeTjE%-}Ji8cGIe{RfCH*%@NJc?@pc3XzGs6{1h?&ouu?)
zqgQtL?B^;EBJEgSbr?9iOZ3p|!8@`XvH6vh0k0A2X6W@lJ|!^nOQbDEsSM&GzvCq$
zeJ+yPg(OX&iQ6ZG4^y>{7s=wA^VxKx-Q8oN+?ORcqSg>LSmJLpi;MDsku7?v>w7q@
z$%Z0KRSU-`gzc=!b8S~njJ=4zO>2QXL=HHpU)~fQ&<(c|e|)fcq~5Jq8|xSs7{1Ic
z$3|OyGcAx1f!4A
zaXblLEh|Cq+~Vlmlhq#V#GRR4z$d&p{LNdlBO%1d`pjnsv?>CRw6)?_QYeOV_&|Us;$z_WX~bX=6z9
ziD#px4|U;>J&sK61zx#vw~%3t7!JBSDGh@v)CK
zGDuofN4snMP3Rn2f_rDzQ|A--+3PID(|>m9Bo9wK<`Snr2pEsum~ZE5&?~bm?-9ID
z+97~Jm8
z$XnWHS#q4~s(pf2h^LR@ghDc1oN(0YvqsugDY<+w6fR?OIik~QKF!8hx&IubC6A5&
zZQdO|YjFM>vn*qT83M~Hm
zFKXh-co(-8*!GwK-}5f5cn97m1qyt2l5{9`BY)jRxt>iqkg=`lMclV}cA1v^i}4A^
z2qG>6U=He8EItf_+mOYcq0i)qCXsrN1Zm4IYU3SVA?z4F8a({EiLDLQ6+Vl$2|PMH
zV+*uz{N4%zP7LA?JPndv1o=k^-gUUFRuqve^~>1IPx;*yr|hrt5*zt_*g{rJPGAL5F1w
zVs4jRIOleIE|Rp6+$EdOXP?VxUEVAYejJ1jn0(;Cg%$9@l8&P9Nx!G*)kL_Jfr6Hl
zTeW@e {N7^IXsv_@a&=9&YjvY
z%T7^w^0^Rpqu|n|lLAkA=394gQ>IbPon1d@5t-X@qha>%gh$?5jI6uPiatIExxarr
zm~P9AWxB8bf;xO$;*Yq8iMnzmDL6#;*kXC{=X~xx
z+0d8AX4A12qw-)zCv47KaCz>Zd7qO!Jiu9E+rKc{*nmM))F4&S<>j1PfqR&t@)Lzk
zEq;;lw)VZV_Vte6x~a(COluE#aI&A?vN2hUL!c0<swQvZ?(pk1PESz!iqhH?qFOKAe3Nk)Loc1T!KLl-p_$c!>y7
zL9<_FL`K}M`9S{WXeLy$8a|mjiNx>H^ohynqt|JDcm@{^Q<)|i>I`<}T8#W9%EPV3
z1GNE|;oYvp;sH1obi26|c$Y-Kky#Irlk_~)T0dB`qE2rVJsjM(UiYhRygPj`g?80E
z3AZv2hfntGSVTn2zyh{2Y&Pj(LdS^qs}q5{zdIYcY5XG^3^aqW8LP_2`G^;;Bb5dS
zs`1ul)Q@SgvTTqX6v(|0Yd5gg^VGBzlwr(x-jVN!!Gn)5={
zHQItmA|7l#FP7#JTh{Fdi2E1>y~iIM55nMavf-q6=7*S$H(z=pTc+Y`Gd0l8zuFtL
zA(6lyYU(A|s7Umqqv|^a&t|!5lyrL|9ALl~VW?3m)U4r`jf?CKtdVu$R*m2ovUoBy
zFNmp9Y(R_+k8-0h%Lmx_8y})t^)|a!0yj@%w+;hvw>eR&e1{ST0gA`#1u#_D%Wx}y
z00>Bxz^26bx`*5!Sf?eWXS{toTlC49x4QU>+E^ZHy8h>L5KyfuXHwhd;{-gK|G=ep
z>hpr0_Z~>Ea_ZV~d*dRq6%Ijbta!xb
zX9a?U#egLEu_gIDo@4nmThhNqvG3gBY{9-S=p<2<&}N&N@`spipp#xbZzJD5-A?oVD((BL`L9
z_3&8++k2;=2F#f#yJBnYu@uLSFB*@N9st*tM7;*>`ZF-=3{|?h>CL`NSfsVhSY$z&
zILh>gEg3bJbrDs_!cS~=+<811>7)k$l<`(#U%&DISsgR>>ADjBUu#60di!i9U*9
zm0pPH+`L^bck0Xx2)7z_joq^jw^~>$
zoV$3i(v+Gf9;n$G58??|4tx*H)tAf=SfY%^dW@=b~3zHSolm
z$?&uS-9GMxbhxaM(sKo&&}Us%M5WLCH`Y>l$f$d&
zu{6H#Ww10QsE*b>pnA98v7dsUwmp7h{(LFZ^z$gyRCGsB;`AU$Ok=7ptz-0~
zI0UJ)PxJB3RN6hc#j0sU(gNu);kk^%hgUZI$fpYkr!WURgRDiswrErJ$!@Fd-alcF
zr|Ar+0?aJ3AXyi|XJ}VS$_0~S5Jl;tGnquUIiGfM`rbUI)3JDZfv{fhag?4@L>9MiC_
z-W9!p%rGwYMZPtz_F1df&;BvCW6ildw$SRIZhYvq_Vj#C@y&(g3wBq2`ciHvMX7bo
zPLtjq^sJ6Ozxlh1?N=A9X;HcGb2c+`Y7dS431n@At7*mGGoS8%}Q1z?dyR}N{%8IAW`h8PB8$Y(5?f=gBtiN<2`^I4D*(Qjl{#|^M
zW@ywjjSst#y5glhIa;r|Wdf;GxQ|8WNyWP+*0z>$Z{0W`;d@%BsaY@L8Lo?cars2wDsR>kL7^Y?rdCCacOC5g*^q#8m9h*cCOoZtmJAleO65
z?CISbM`jvfuHUL^pHJ)(Qn4a5@iO%IyGZWXj@_WIT~`EznDGtL)kEbyv=xSEi;U1b
zMA-9M{28;ILU^aK?4S7KZK<1DOvRt}wpxygq}P+XCI$E2T*R08cQ(Bn8lE&N_^H
zzJ69L+^8`;OzTL}a?vL9?4cj}n9i{no@lZ{o11xS<9L%m@GjxMJ{M!_e~-fg+|8`jQQ
z8(Ks~v6qS6s(I$Y)HPT!wmj*5uS-q=FgJf!(HT5E9H9ydx
z79tBeMTeItP)3i@!qF|w^wKK^b|;3Dbbl2nPV>8~aly3w0(S
z*jUAQe>bG|BOzyw)UfHhidCA6hEGmjbSd>lABPDes$H70CQq<$Pui7wmbDAulbLg|
zM-L{xUEuU1X|WBF5RPhY_G8vN`ziBn$eTRY-K?>_RKSeZvSGdzQF%{J{pei)p?M~gB(4Rq$W(q!vbL4qiJ
zd;Ia7V82JBG~BvI6CwHpOKxH&9Ql^288Ve@vun=1N~U#O#>FhZj#C%ZPT6iH)U!HX
zxKFOwTJg5|k$b`~UcoY@igWXS&}(uXO+sBHt7v?Qsbb+#YA>5l*8@jja$}#m_~R+z
zch@mhr1P6qB)RwDsem`4rYm7&2CYRMy)lpa)CZ*Vco
zTMbMVdng%on^*!pk!U(udr`jQ7~FKlWQJ~<)&~X~6*JFjBsw?Z>X(~4c;l;@p!OTX
z08eE%7RtG=hr6pF75!T@Ss0v+5ySP|GHx&EWe03I3%BbTq@SXL1fz-63R4OOUBhQx
zCQNE~kfIe`@7Blp<{ds|*c6ls*`pQW&*RsK9?b9OV7g|_J-8s2y0)_S97e6mVn-Un
z;7(9%3$h+;qF1`WRZ-%sV71|g_(T=`C98CG!@74RUM~$_2rUqQ$U+`aPEWpHN(RWq
zNX(NLG1+#U_@XvfhKSiFIs;)o?7mu|bJ@rp)9LDKGNdh&TTK?nbE7dn99dgg>?pFT
z-k{k=*F)t+|Jj&^Qm&aL1JnH~WK1mmwbRE1Gjt&rzwaW~FQjd>Zz5U{T9iIPn~Iwu
z-Mk`{w8;)siXnH#B_E7a$><2O{fv`1Qcb7W+EO}7OV>UvQ_pC~do@RUB%D%X@1Glz
z|AQL@Bbm|^D4Yygi#$o*p~x-=|I5O@8zNz~oA!gpzYUegLB;ASmWkU?;NZ`A)T>jL
zwLH<^!J-e2sNQ}Z{Un8ruW>Ci-&u0j!bwz9UD8c0r%(sw_9&j!-Ir~CFdFB*MG5m6
z(pmN5tA)!BI+&@TaWL$Gbtk|Koq9xCzjyWDU}nRU#fvMrH7PIb_`be=8GyFGECH{0
zk)R{amr*~@!Jl5(r#vU}2o&QC1Dn{3HOJJjU89UPzhZ1{Vxu4=&!K(naOV9vnOXID
z<~K*vvF<4A>6qJwXyF))>LY<^M!Zhgh>`w=G8s_#0<8%L5D@Isz_{_I{MXruYw5J!a~=4Rh(8Yi$GX4CHVQ7HHupZT75YK{Yw=
zc;ol>IQcb~(bdT0drWFWLI)+}AVn7sPDb)F#L77<_$pn^H#&=N0mpr=0MxAAvm5`G
z#?!!B9&19gYG_zJ8+T1Hx3L&)Q$6$$2k!YalS+EqJpJ8L{`d?RQA`yRrb?SeEqo$E
z$*0YhD*BvK;4+BXf>neo?^x;^8q7z`mkNDk`noRK&xbW}d41E>G8Hb%V|k;_W%=qn
zUrL^}?bN%#p_d2i?#dWY5P_kn*kgGGXQby7+A{4+z%!t-Q0YXt>3(w*W^LOYjslixX}#Cd+U!Yl0ro&D`k@&g_L>{o8O<>&j#_5g`}t6$n8i-_YiNx>
zIm3a5g4?U`S&2(og=KQL!fJyO6Ps=td_#aWp_>r<)b6&_QJ9^;4{^jOEehFniH`=Q
zm+BmVws^bu$FMkO4Ma>zm$qC%aIF{cY}U5JZ23V#O$*}VB>)?V{!nYZH4%mpqab#h
zyWP21*LFk}OlQ%pxF^tmx3!w3&hiIaD5zLGQ~F!63Y&bc0j|?Ek0PQ?KbAFCTvHdP
z$KOx<)HV7;{PUZ`^6**t`L-Z8^R57xg96`U&O4794*$SSxLQop8;c+G#J0v~AY&gL
zTql4i=!W>Pr0&C@8pX@Y&-D7Xr4rz$q@p0gYDd}!ZyAz-i8e@n0_j9p>`!4t8ETgg77p|mxbaUb)Z6Qpyv5Mkwq
z3r{T%uxg|kk_)KaX`f=mdv-%mtk^0lI06*K40FGgfhwEI;^NVjKOX%wrn82|cmn)P
zZ`p^~#wWP(5Y66Kw&c-ElF*#J`F7?o%d1O&!}FR@PZ=@97>#~WKsdM|o+k&ITi4Z_
z?l9Sa5@6^h2D7^$Y6tbo$l(_R&@iDc92f?wdL_jk_27G+3=l*b#r4vpW?558DDO#R
zD!5$$LLdqZzXpID{4L#*MyB0UQOYeR)V}LMseSWON1@a{Q58KDdW}%11oeIhI!~k<
zOTb?c%Fzli@vGpa7vM+bsrJ=1VoLxIz|lVhbx}o77lk0Fa)9f;m81=jHvg7eV|bGP
zV*tE^i)`jLC4oBbN4{eG3%npOMJF&^xB>tigj%Z~X}-YXSY$bY%x!w7yZYG!DFC<1
znJ>_70zN@npk5EU{w3Xw9x>6Z{NH!Lt28JDS6=Y|Y3aUj_hbUS0H6iFRd~toorCNE
za7TvTlK@r#WpH|L2@+7>Y5>@on|yd+k>DeN7B}AQ3O&xji*%5naHl>2QAXf?$b9T5
zYZVHW0NrEG`%e^{#@2Fz7BPVQ%2D6`L=S37f5jjEt#+h7w-#V7pr<8M+lD%Xe3YFU8ItO6qFYW5D>%^>J)!<
zr3Jfn(eytgz#)C?{Q~o>0nlAV2QW+)ZbYDvP?-lhF^;A^ac+`bb38vDAs%fly3NssY91Lz1F5r8W!CNTIQD&`cI~Rp~DQgmFaq
zrTa*m!F!O(EJMbB5(I1{Qy5fMUY1us2mLaLEROtF;Gq5-67x;;BvvVGB_K
zkAZ^q)B7SufHuMMujotur-_RHgCAkVIOXpX4XT0u9clofF^0_YgP?T4#e2ODbFJA-
z@bC`|H>2B2iyn<^JcB(lE@c`N0IhjyfOoF&DeV5$K^_Qt3*@}1
zEtXkg-SvRrF84s${I{u^c{I?$UuX(9h2!OMt1M~Ira}Ycqd?)RzAiP$2=)RExbwZk
zZ@L7tc8cD<|6tO~9zanN0f51*)51>ac`X4tQ3CWZ#{XH#u+dWnv{nO14TtS!*l)T)
zf@49>V9GaaWX&Oc&&i=YOJF5V1D!Kg97sZAJ|Oji6aC6u@?{$E(L+6p`%A0^K|s4v|+E1e|1=`ry$Klk+D=lkGO9Rf-8xL=|-
zED*tKMXO7XWb{mBi)=PMXBQI_x3YAc37SRsd>-+{m2N#|m=mZ7L9J;e&;!^-C1S?=
zt#QCxnA?Rh>*AbV!mBnYsr1#G#b{%P2dv*SCcb(yg4$p^c$8}WZR~o#+Kiy>)@Auv
z&<%PBfEexXjVDv(K1f%FEIuKI46Om2p{=>_9AeC0R+Am{2^|5;R+FhB3^x`;fLww>
zhwQt_Vy33K%iuS#MTEWMQOKAgK#^ff1Kgv5jAOuJ?bdss&(=5m-#*~2#}O|{NE*20Z+rdjtG`q}@m0I-6OA}IY1>*my+zD`6$gE1xtP%~TY&`!m
zwSnvNMQW%d4hZ7ld}?X~?J_mN|L%fBVjx}k7bivsNhq)HzAWNKHoWfqzW%>}t9+og
z4U&SCa#4@J`?}c6xxYq8D^I_2N^wrGjeyXa1>A34f-1c$JyQvGL0IybB)7iQ!Lx@L
z>Wdw&y}!>h=u4pH5s>-VOv3DFCSHwj~p2E~y0M6`y~6H{-@jVG;=bFLRIYQWFjnh{Ka-
ztSy58KT7j>19q$1zS<0%1n1%+x+A1E+sQ->2~y_sGv#x2fIp$oKA>{t?7SDT#vpnN
zRU`W_SJPiNn(N)S@H597bu
z37iM&kOYF2wB<|jY)ciUf|6u9wPFe2H)tC;-`3^GLW#0!_o#Ewh#KravIurTciFel
zv&8w`G}!nn00HiunnE$Z1x*QduM^hsysri^A4?2mtBDd=44f%kqc6Pqg)jp|9}R#0JM@
z8A73n(DR3%|Htqjr%v_0-RX`LN{}BeWKAU)D1qOb>BC7v>K^q(Ds2pGclk@Xz3Ktg
zJS-&9jPuvQ&IbHrHnSs1$fzx;oEeOH1-1d@XL(7N06r3n0IvC(g0l4dMDII)Fk=!0
zky_b@{bfrGWXMetdGDX~bKp;4LgT<#gel1X!=Z_3?T7)-1`(Z@7D4YWjX-9VBoTxa
z0SJ(nzEJ3%LQ}!HybNIUzln)d%hZspri2ma!RmARtXd`&IiFH!pmBA2EdtE$Usi1N
zU|J@1r^2Rk&^>Zqp8rGzWU{6COH+LAKW>y_prkT)t3DH2AX_ciX$jld>vtpP^8Ub1
z1^-1MDuU;BlNWv)5dd!VYj+vdCBOoCmYD1L+$L!m?%l*Hj_R|_VcaIKe^Z(&fi@WO
zs*~%<1yg0{r398A|9b7d!BQW%M221;3libw?oI+{qMB9gzaYSu!dU(vuh+~2-VsA8
zjs(;F_S!dzjle^>;h|!uQrQxc(T4~U)Ii^9()^b@`f#gorC44N`I59S+Jz`(DiGB7
z$IwSMpG$+Ygw}@y0%j!m7pIy>oxdpw+Y%LWt;ejQ(k
zL!Dxp&vdl@)*lSRMaN|?jDWHbDguNc>e)B?OG{M&u0focEGEu`78P~k^1=7(a07gD
zNoGg_yO;)p;0EYBVD!#f{){Trks~_Js4*^!%?80=v~5)bW&3-YQ8{~lD%5g+om=xh
zF0c~B3@ZETvt1O+|5He#o{FYXjdOix*yfQou@yU!b+>q?!CQ_yo4883YSJKDEWMU+
z(a?kx*0m7nat_*wm~A192Jr?!(+kixHYgtPk8YgJM@YNur@L)?TowzA)Y9KuCdb;`%;+`r;=Eh{I=REe;vM!d`&?K`8d0S-QnXem2ok_9!>
z?WJLE5K-elNhT?*PXqG-FQ&Wpwj&}v8B=s-BNQm1$7}%kgx+k%3x&_drac)NzX={v
ztD-FoOV%g3?E^#BSJgg*9)4ygX($tOz0YtfgRH|DJpJ+)6?rTLpb?HrAOl)4^}b!q
z)#%HDH-8_J!87RpBkIlLq5R(eaTSq$r(|DRY#}6}gschK(pbipG$Ul}6q0>SvL_{rNq9|MZ9Md+u{z=Q`(H*YkQluRB`p9nW>j_>`ew
z1ogK?P`&xR(_Qrek}I%tClC)UC<_r1Tf%X0A7O42tXh{~e{6
zK@t#GNc^1I;$?EaoK$^M6KYZwb4}Y*CeYlrPtJV2={8~(DAt9s~;mC(}*&l$#fK3D|=q
z3Ko>Chp`q^Kxr^?3HL-tD4M&$&*U}QNul>W*of>z7tW>Dt`fJn0RDSN!N&j5{{vf%1-=@1j6WVT*&0M%J^tk?kaX
zoPVZ6)r>KF$Gx1SR~~+@+~MhdiP4C*!>?qKZV|b{O$0Jq#?$LSS}E%0VbXa7cLfO2
z>g_RmOCpoZ*)?q%%%Q<*lG9ze_aQ1=ccJ0_mWBHk9UVq^FT92akgaMIRXuI#xTWT{
zFWp(s+w7{|s%nJ7i*4nCew)>@EF*FE0OdW1EI$FJ*q#OoRycJbfX6(%LtUr(DikZ2jJ;t@gEp}{M+atiH1_ouF
z9*4bw=G1i5T13>drmL4eY>>PGOMJ
zsr)D6yRTFks0szv=5$Yn4VYuWQ4i32wiq_e4((JS8EBQNZk1XIKruai&IFW7oI`LN
zd5Ol`TW(b;;ycG5ne29M|8$d3`=Y>%pxvHQWO)*KYUBLb?FKd8lz}@R`w^Fml*7V?
zULLtc81aNb@XeBA+qp8Jpwk=UW)neO$KbHV&=O$DxRUd93VUB=;^GQuvM$A|3L_*P`Xqo68u7P=O(0U4?g_=e`%p4wpIZdb
zb$V6cRb^@d)a|5N>biU<@`QHh{(&tHXW)>-Fju_-cs~AH
z%$vuz`m2UlTY}dJnoe>bb^{tN)U{x3FoKR*2MdiqJRAoo6}L#5Kh&1&RD|@D2wtnO)&ZwH{%IhW%Ao1KO8%;9;iv)lP4+sy)=oD&8%0{z6Y6?jj
zQpM+M6@3{#HxYZ0NSd!xeV#$_oh=a*xVyH)SIlJ8F@o1iL0J-583$LcpB~TAYGt*dkXZb(ytuuWuj%eYcrnD
z%MCgK1QJJzJa0iGn*^)GCUyvqkt9PB&ni37^kLEJ+L^|2s@nl}$0-k4$)mppL8q%{
z;i_UU2O#OTiu`2t>-gjL*3F&%l43qEMU@kmXBxH`c(kV9sH*$#P7BoK9R(~Y&23KX
z?>KDbVpz75aPOSTi&B-Sfh>B<07eWNLhGVN<>r1EiI&G~63-O4$A|bG?Sa>T8co%?Z_Mr30ZMY#@syjL9_JFxuy0Qt
zmiBn@kWe5!{@pk)?K9pGy;Zm+Yc@h*EXlF+{>#GLx?37+DNF0`K<@|1DC>?RKi~(V;mYVvE
z{A!=`pFq>%d~3PjyM_5SaD-IFzEC%FdF|${^q57F9#PzsJ5H_mvz;V#*-CNWd+gY@nay&L>pUyG>xH@-o4>!&%-<t7!RJ?T0zf+a9uU`MVB1;IDwvwTI&YyF`<24ONc&C
zRV+QiXh!5|6``e`H$Ugi*;4`B?WDJ$WegV7>EJ(HIsjk6XA(A3OYkR?k@^$NUR8m!
z>8%d6jN@~qP~$ZQ3-krF$yBe>GYsCg#Vy;F8q+8A1-~@GV!%4rQxR>(pKx6y~!)q5X$bY=kFG`t45xr3)uF8>Re=;$9<%cTold!sRS37cHR;T^
z6lRC#t5{jRiCl?STRC<|7Qf^b=n=9K;Qjp64OQ;;)N9X-mj=jMv<>^PB%Mi;nh35K
zZbzC4u3rAcy*832jtlN{vtxeT!vYteZ6z_Q3bpPYdbee{12sDT^M(EN`=J4pT_4I`
zV_v)_c5$~h&Ca)T;sY!>9RDG=&U3osdUL#Y5McG2XGN)3KEW2}G=@CZAmjSB)c!K8
zvJpiFsmOH2>W_a?Dc_f!KkIt-x*gT%kO+>6Z{`K|wMNxV-0;Wr(*D4YyQdSXWzfn#
z#Gl~w=rTd8jRf|396ea;y<7m|o6s7NqS?t>S7E|2N>m^EK)e&^`PP&Hfld>~1^@I<
zznuQJZ#38llkKSPoA3?M)MB{>^gfRO>w$@o@w8gHZL7aB@+_v*S?XVq;`2uAJjxqS
z$UFKi8@lr~;7_t}-$~Q}11q@5kHw8t5doujSjCu;ev$
zRh7E)_UpBTDtj{0pi;kXxcjg3c*vLOSJ(DYvSXw&%JY^REtrCazkh*?#B&qXb5C&W
z8hc+4z~obxVxUJPuIE{1+LLSZ%0qAC{!tR$%NY=(Ew*a!DrQB$^DBvbt_G5wqh=p0
zgtjbA-MmY?$H5K5}u6(D4p>dx}8ICc!)9e1_nAg)D<`>mrxcrllB
z!HOE2)Ua%|TT+jbN?hbX8^K$*EML9YQgG#ABYKUN+9px#i|g4+A6W+G1e|t#vaE?0
z^SndX|b6q&APv6N|WBEOQZ?cA`de3l4h&>=e}9=YXogI@GtH%e^SncTl<~4aokd
zTYGan;S027-74zPtl3&`%W@@^OnaWcowKw6G)B(#X4pjAlOg`J7?6Va4IhOb_LxmI
zw{FGqSRDLx(+1qWyramvPBYkiMguK;O!&s`#x$hY9y~Ei#5WYoh*(c#e$nnh7*{oQ*tFS7}
ze)1?<9xU(+KZ`U1jEdSxud22S$(&=kplKUDf@78tmN3}xf#NYU<$ao}N_`?Yq(2N#
zem=qex@q{jCaTb}K4hi1ZAcoosCQy3S#V{jkZW=#R
z|3~#fs-1)};3mp=Pq5QqHWK+BsI6>QRvz^p&b5?8b^uNy>A@+_&L+^{rR{iyh5gMh
z*`pq^{5eGE3&J|#pBC!JqW2NMYJB~XNggE=ah`N{mJadvBr3QbHZnb>`1sV$IRp!}
zPiP(MMVUEI*EPqAOzJd~aJ-rZe|Nx-bT`(9Ww)(q{~CIP&rH+u?@HY|@+R1M?3)?M
z4ZN^|?c24N*GnF)NMCBrviF5m1#0Pq;fLL32_KtvKz8#d9B&4?yV-V`7;qBddhDhp
z4UXxVyBB%sOzb4a}e<7_3B`p~(|-#q1TNKG71uCLw-I9!YuM;syVG3_NeKo|XB
zV`boTNEKmbYca3#93%SQV4LJBW;p`QCv7%4=(Qz!TZ;9`&GV;(Tc5q_vQ_@
z)daEdURWii_xIYj(JXk#Hbc>W7|)B1)~~Q(Rh&^-@lMmOwP)_%E5mJ0GiNeR_M_
zysFgjbFCzQm+B!K+e4Y<&3bjh4mGBY-WP1RfQo{XzPdLAy&U;5G7T`$sWF$v9npZ<
zKbCa$`Ni5id~0w3zFzh8>Nja+KsjGMCf@gbqd+&4pd3Wem})*wE<>vBP1k(#^Z-d6
zHhR@A;ExYF{WI}f-oH#Q!HqezUE_UUemFh^OZu{|r+~u?qG&z2LA*0dL6^N5_tsHH
zX2}3vi*t|%0Y*E$U7#T#P|g{SXYpD^Nqkkyph~4L;X=M$qs2(f=AU{on4KMPaQz%0
zOZIOrP5Tb6mq@D)+LL=OwTPkZl_%y}rhV|+Zz}bVtnfblX&LbZ;$a29Pr;q@^W{E`|@{Q
z*{V}^wV4s&%}<`|5n0vBgU1;W-LQQHqnS_sL9+-8Y4R(!87(fN1PsetH;_~O=Qi1!
z`rX60fE$*^`+!-MZ~FkSVlp!AT1z$2AaoyB!huXOIlX1ycNJ`_%k@qBduYHjcKMc@
zN)Em0$2jNvFN>+2M1i#kS_u$y-O|;K>Lrqc`L4>ZW8vr%DH)c
zOmdSRv488T#E{P$8=UbCK!7y<8FN)^LQP`$%hTT9tLO0>8?C!%7oAB>KPc17L<}tD
z*H1SGcxW$lNeOq@x5_6y!{p&J*mo1xasV~Tv
zPd^`w5siyqm!2nj)e_GkN|v=)j0@JxX8paGUYrvtks_2lc5Vb4l%Y!1Bf%lJ9#lMJ
zc(o_M4v_PdG+@YBUiAma3OdB<^(~ftCmJc{&ri;UK~7FPzzC{id9fk%qR^}SJhEvh
z9KS_iF9eY@fc^u4%A)dVi%+MfA>_wX`4@M-xO>n2ligDbU8KfnzHfpyC7#GRm!t2>
zX;~}31o_0sO&cyoM5U}=6(&ys0D~vY-Pf$Y*yT+b#~%#alO+J`0dSNEOd7op;Gl8c
zz47^}P=&9|Nh_;J7%&>>l@$j05P8acU=XG{X-3mPx<0<+Klm#nvb)K@^BtSB8jwM>
z=(7{yOGB4{q~+89?ZA|Xn77(Kw=A94{tGRD%to5o*R{G~9&pfgtUN$#CO&6Drn}Qh
z?J^JYUOt@y%xaR4>!Z6tMu*mQk2NNkC}YSBSKCZip>oSy^rsB$OpGwzDzyTl^uBzj^+1MW4rs92%?84c_
z&=gnSPBiiVdm8(%T;t2S=ARlqoox<;d;KYtJ4#cDc!z;7m6Tl@vr3L-@
zHd!m|cIn5uc**Slv)=U|YL!wgFMw3$r}^lgd>6Iw=YAIyaf-7&4}kg681|be5{^0L0R+%5wXHd3~FQYJkl&UJ-O>)O@fg
zJKf<0nu3zT4u8}FwDCrJ^__;mH1T{=MfUF!TZL^fs4xiM89WQyt_kDl%cip@%PY(J
z3r1S!bD)Z^JyoA<;UnzU6u-L#nMzTEaq4wtBn!knaNHuojj3B{=hJen0V07CZZ{=$%SOxrvreicM(mX+_+QL6paB)
z8_-m)NPu{JS*MC(K>7k`!e3O&GCaQ7-w4mIE%y&+ZSY_{mMJ|w8_^DzO#Jf!*iUTr
z0r~96nqehRm=aj(((+&VSr<$=I~9PMgtHyUQAo>jVGw~A=cvT#YA@94EIlW`zZj11
z{km{c6sodmyiK;H_T_YbD7ct#0+Ul?N~keBe}7!3`h5TWZy%&{|HR&_5Vg^
zado2Q-AM(p1uRK$u?j6_@C1EBU5kCEEB)gL2I{V$cu9x2dm8U}?$_m*m&z_xlwi%1
zu^I6aLsCHURLbVWM2Apd@^4E8vvyhff4}sJ*=IxSZNcY>H33CNgogfq);SlB2d;MN
zgXSG>>13O)GcVTm@3)MUa6r#ue8+%RM`9;o5P8eWSas{PrWSC+z1w8$nH&|OuIPWSHauSbu
zz&!{5h&ku7`OR}S>{vZ5r@y^XfaB;2Mt_g+VjCTqsRc_D=mWtJm7^3`f_ULB88=N+=NI6n4<7Vt%
zT?sU|)|z_a3sLGuNo$hGG@YKZh9*(ugpM`4BvXT6!$d*4dq>0M^u&5OZ?B2W(CKN|
z-6gVXimiUhj>c;Uom{yTh0kDHCSB7pZo;+jqYPLv6WBDd7nCIT2&dfHV~C#fsruy<
zn@DP5U8@^LdMFA*7ckw+TaA3$#9eu>v2IeR5F%O)Lwh!gN6xs51V>
z9eVaIWD1o0CJL}9UOwxVu`BQIgLKIVM?nf@g!c!YcF91|pTA$g!0{(cThMO}yiZ6kW^wXcPAZyIjxEkBg3Yy!x30)*q
z6oh@{=5uN2a{R@Zu2E4$S_AWp2t5RSaWv{Qm6N3JiPfEfRfa+S03HLA~&z8Q6~ICFjCBL$Q7@{Jjl
zr6Xw!nbH5>2E3`ahQ+rT)v;%X9+GQ4T&2XD&rl+peLE#R=%evBdDOS6{}LLF>4tF?
zTf#FGjm8a>@J5}q6{i7l3N>K32NRVyBQLnx$&HXg9Qxd+{7fQGl^D<^=ccj(<7?7i
zMX=})i_}*b##5T=FTO40^a--K8C36H1{;q7JtuYd=nCw+{@XFkyat97d7ye>XKop(#M$Y?uISFs(8
z;iXg;2`w^!4|UxxjK+7eVM6=u>;mrG_6+A!
zGCJ8Ar(^K?joW9$c!e8>n2oyOG$;ezh2JN0DMt%WHGIe_fqe0gdpbsd
zYAr=E28S2;y3&@>sJs?u|7zAHdOkY}KOBYs1;v&!5T@qJ#U+Eu9M-p_J)r2nk>5Ld
ztuT(Rxm_fO3wn6|C>hQ7jj_04TjFj)oAAW^y|ZZ2b6D|4Ywst09c7eim0Oud))7Hz
zKL%nFAlszZgiBLY3f{`qFNAc##TxyhG6p#~BUOhEdD^X$yi~Mqw7B1kc5H?~c$G#^M`#=R9_|NosfJ=Dqr*!M`_uGn*3#$GRNRdraoy
zAEn9MhQ!h!X@RH%wZ**=HwGM1MRz-f{!y#|WzJEg
z?B~5M6(-cJPYY&?I1g#nCz?4bkDw@|Q0SBI(P;$842nC`%;z1Fd928{>rdhnA@3G>
zwN+E!h&Al(NZbw%XOZb(s~heIgMJOIN$#2&l4tU+doDH+I5BLTvHxtB8UTgoO#|>SadbZ&oV@%e_NWMrshbHusxaZK)k2
z13syZdZW0yH2-TIaWqr(RAF5tE}FL(3-$JL$Uan=aaTz_1fN4`3AGvB6rMR;IL?nv
zii*J}LX;U$d>x&UmT}b&xYhjZH#bQlthMY=L)5cfl
z=EWc^^)oEnb<7ld$tl?No9;irQ7NkH3gVn=?v_Hm!iX9kjDAflS_W7{*q3`-Q|psXU2
zvE!mQK2e8+ZmYtrZ`>oUXc6VN6vl5Aqi~Q%FHnR_>ab52nw{L=ELsh_#X{QF!760c
z`PGW~VT#QSSK!2)iNd!n{Zrp7{Mt&Ef~YxZ7%T<+9Xc>VR`M7TAGxhHk9ue4KE}uy
z#}*&)fpa@-c9>ia$*6`ep5rN$Kpe4hVN`k4?fg)f<+Yi}W;+<>@#l(H@hwsKf3mb_
zE~~Zann!n0W#fCtH`dmlV30UVgMDp%OUAw2?EMd%7WlSbyoKaxK
z2;LjUkz8d_)cKr<}Ni
zwR{`1EKxRUJJrH4Cen0^Wl&_iB_(S#ci|uyvmd9I+y%G8F23f$z-O!&elY!>Ne|Hu
zhWK7-pwA#=a(BT+e#dS?L>nNAKaKwD0Sz*_`mvXldg5V%Z7+>w7voY1Qct2
ztu~w~P4`3!=!Ds8%!N@D)U6mi#JH8W%&1JJ((>N{7N$v*5JUK?*ZV!m!I#v;bKN`C
zwa#!KWI7kyW|LfPx&;Se4G)!&Q9eaa>lt((tdDQzL}o_j062NOX)Ot+A@B1pVKwlj
zh$*=;=|Myi^(Jc#Vq7vuXqvQES>FU#oggv`Avjnu?ybQcNwBG)g2M2xMnU!Pji{fM
zLQsx=j{j_M`+_OCrVrb-RT0reqKVQKQGH{K8KfH=fT>>YWHly=e4rE7TfU*)MWUbV
zf^%lW;OgGhzVTD@cD23|zeV@>Mn^$P%J(El%K(@%v=&doT=Z)no)Dg
zTGQj8mqjF3b|<}!J5O~xi$B
z=D*wj&4m*^{w`ZZ#`0E5Hwh{xrYA2b?>$g3dI8;BKeV?+7>sAg^Z&m0XF|1BL)K-D
zU6cM@o(Lk94P#+(j8D8=^KtH%3gOZT@f{3-BOwc+W{w9eHg
z(mQka0A;z|TJGz|!?*Z{ro{_!P_(H`h1PX8&9S)CQ1ZGz7si&sTjjePC0X}qHfU-o
zc*CQy-0ZVm6eJyXmiDgQR^2~OuPLbSMbq>#Mj8xhqXSU&{S5GlBIarRrXXv}aDLij
zijH#PG$^c(B$=)2{n4xk*xkY=(uQ|M|lUzfbEqEwkOT{z&lFg)G6l+>d2?
zKpSTbQ*?xuxsq#71JYw+=FS8g`xRPOAq1O2L{j~Y
z#wQ`~`GkjJrP25s3c+SM6_ktu=%~webQ`_@qw@2mE`eko2dOdJ=MQ{`U=NuI3B+mjSrYkYU+b{&mVux(SW9($53e}H3@2^Jk4TJMJ_L0qlhlkCBMs4ut{e%
zeMvO5*I^abcV6vSC3DnGiMYXMEQ~Xg_7~jT|1E#E(qzdLUqy)tVKIWx)
zc^CzuE?E&jKlJYy@-~zH0Mfi?OLFwgrszP;Eb`X%9Suqin2RM624E?2@$1&)%e
zSh^!Ke{YPU%FWdkx_Q--DEzb`)+Ldgc{ImTQ?ValuzsZT>bO=+PU7S0X{vq({MoL{
zcY4@9M*h&|1$&tkcugw1d%Wy9)w`;pbmA}2k9};`f@inw`i$fc&k5#dp}q0ETXs<|
z8nyq}rM}qjH>srg9yIOFb(Ai38dlf;q}TZ1?5)@){u!kzD}E{kAHA4;T|Q|^K7o!$3VO46@fqcmp657U^uA$;SHMnlT$2{Cw$)o|YE=uZ`9tsQ|o
zd7_EykDgZgQ0NTNO6BW;PeVz6Qw#6FR0hQxE|wV;9yLAT%0cmcZ7a?CvV*I~?0VPj
zded?DdWlc@b9<%lqn2}*pOTQh7mS{;JfzneLS7c%TqMnOVml$lS
zisFKTTvL6tuDOut&
z!bUCEPMTNci0@5ezWXnDvG#Bc%MQ7=> ICi9>MxrVeyT|z5h)9(KlhFfFb$;dwY!lJnnn-E7-v^EYYv+
zsU(w$v5nE15`#e5T6Me>YUaliG@B?btKHgMc)1vWCX&ET(NPZ3yq?yiarahA*I1UT
zAUoo0NgeL};uiLT882os8@7q7ANTmFkp3Fm^w?!xiAFltB~Ou9-S+l8M#SqP)%ywq
z_JK>P=|Vr~^n~u!p+!UKg!>?xx(zhr>YczJtmYErPJL&`8)6Ewsl9lBe~#T>9F`SY
zpi6#ljF^qv7LHg_Uo_rh5=meM@3*s6iDTFGMqCGnJIX-*O8;|Ou=v4$Xwm^!xwDoM
z8?C|cewt|
zZLq2`!=J}AX-SA@JApUkre=!n&}fwy5Kci%%O7TwxuHo_LNf1iz!g
zVWN9|u$P)d;QG&zf?d{Q4qI@uaQ=@;zc`aA7gT`jGEjYa2GPvU;8;;tbs8AL_i29A
zL(=(s7^skZd+Z{Hgd>uimPm~bxr9E=luISu3$INR4$!ezbC-1
z?HwOMp&XrLnf*aiq&%m?92!qu&XHu#jg2|BPGwQ4bHG1?djqH0`96Jic{0=(C>>LqScD|?`lQmtTISy9iqSi}
znvPm0FNQ8I3??aq+e4>FmMMM-S?eJT$-0~aHPs~8|3AJO#3Ehgs0e2?z21SfyTBst
zi3yW_Ss&}!ee=0DHtM;>>l`6sB1CYW!$#?!ILd7zdl&riPaiR8@{;x1O%mBMr&nV$
zEH+sQJj)Y&7H;%;p-BG?RWSoRO_V;n@Oaf_p#Fz^427piVM1c;#m+BFTi*%d>@LDkNgbtq93;De*wGI+9hhV|Y5)
zb!rq|!&1WXWtG;2s)GAEw^FEUL`njA=8n-*D9#a!Tqn*wUU
z#~eV!>sX@7CU=)k_+WIpq8|^}5=(w>meT6VmP!rk4ksRIy057LuH{Ki5p!wHpH|?#
z04vS#6TV3Hi=o}l3rJ{
zQMcMsoaz$019ag+hA{TQO0wv0-RUI_9WO`DJ08{vB++rsdWc#m1S$DzVeQ?^EXDL=o%H)b`PR!%$Zy
z3lMUumZ)k*M$|5fixrcfX%izanhhU>1aOnDEu`!f+If})=9GGg(H+`;{F50laU*e^-4-eni>^7=>Pc6cxs
zc7y#b$a1Gs8w$%0wk%y=q2cRSVFxkKwTLO2%hEA}c(mxXXoJ@5NwxDj*GSFF2e*I6
zCZ%z>m;3Np4$*@z8$&GzPP_SMe2TG}Djq?`&K~hONtm>3hZ(Kq7T0{4p)kyis7oJ2
zgCAsfS-*PO?;n4L-jHGcraBQU{&df7q!~%XdD$5o?j85a$KC2SkOro(VMIRhyx_nL
z@lM$gr>QrDylSc%&C^{gNvA7E4rw=r%M-)H!$F3I^vDe*m9!iM9Mz>aghWBiX=J@>
z8qUAlIl`(!_j2UBNF(3T>oYDCf5)V18YUO8A{|j#PLS`wBj|74=Xam^;KjyW(4fqD#jS)2GMJ8um1F|tXbXHZta~9*z_R7Ib5W278j=~>Ac9n
zIN-fTT}bhZ&gs%g(uj4DarM;6gBl1iGA-wRIn84E#LP~n%Cq@abpvb&eAl|`4ixJl
zh|a*kYhqKc2InuRg#Zx3SVY4+%Y(2tI~@MSyLx+Az?l*`B>4`P6S62aua2~>%XYVp
zyZC95+!@oEFdcE|^bUC+ioNovlTKShjt|i$gd#Lqd?C*4!aVwIG@6&-@4e3jl0=|b
zmbQathhDR5cAZFILlK0wllv5aS{^?Nn{=1EQMrh7{`&_xnZLGuu+#hf9k8TAq^-DM
z%4f;)&6bma6|m(u_EUUrG#Wyp{YWT>y!oLWxgzRr-a6V5
zgBR);dRAv}kMhinP544>i)CI#MhAjzT`?S&d5SQVaOBgLF)-D*pVRxJz5=PK5{Ijs
zrn|t?Mp(G?JSRmp0(W!<0ep@FRn{2?2^7>mxB^Bz&5%+p@<~$5ofyf5aUgK48UY`d
zg+82rTu4z+mOVWhi*fOhm@3XurGOF={>w9~ws(|Q6I)8d%cNemf=8>olN)jwAQFym
zB5s#Wms};^mSScS!&2ssCUPMz~~`1I1b^34b1S=pFHoV}<&j{=dPv
z$3u!Q$BQB=*6|DCcAZgwK0~pDi$rH3Rt#l{l&ovolJaI1_UUne?_4*sJ0nd)cVo1f
zmJ~gCiQ3Y$i-a3D-d+a9J735ofgZLTTRWbHyutnT}I4xfC#K^J@e6F#M
zlJ=@9&4@MmlgYr{y~(1qD~L|`1}Em@Iu4cSh9j_P67P4POyp&R^YFBhCh-w!fF)|;
zEt4doU}|O9lz7t)t$&-dgfslj4>cCI(x3}lo6Qw(4bEt@VybE88&H=dCk4BZ2a7~y
zOcp^`YYk)PTTCYcNlUThc|Zu?P~3IyT`N++F;vxw+y)V
zq%&6}`dUWx9uj-l)*QOv4>VvI(U4PAUmp^ihN;cLs@`9LNS;|nmYXu(p|}Vm!V7C{
z*6|;sAXz_h5^g&?)N*zqO*m1KW*c)F14i$lS;pYEHEERn8Jm!|B$Pavnpb&osA
zPA$KUeNg;}%mQ+;N*)hAXyPSsh
z3{8mv{lg;B5RFDjgS9m&1S||Kn4jstvb^J;#q$d7vO|xu3qkB&5%ysV=;p-i#0mJ{
z!X{W_8XdbG?(x4g)c#c}gwW=ht~Ssw%lY7^*Vp7!D;p+ZK#bWQH1Z-f1RaLVzuC=b
z5n;%Sj)9c1$PfHig=fVeotd>Zg2Y`OrEBtM~x|0dj2W;^v-|m=RDXt{G#7k^+}ap|4{eI=
z_?}A0bg+R!rb#!_=ugP0-pcemDB=QK@G9*$}Hk|F;iilIH*LoSSnxFjnk
zH-)UHRbHEIUh4`I=tidT8jUf{*C5q_R(f(BA*2(ZNKHJ=X%PFdym&wsWpIBu2xA>QDw$J
z*yJwMTBYYb-$^a8{lr^tUH{RvQNXj;bBT^CP;~d4*e9W
z4y9}B+My#WMn6=#k)Px6O+K-;-D9i?z`Q;q;A3<1GA>R#8`n+A1
z#`n<0LF3BB2X;#3xVo;-bPglkDa{V`JS8YTgj9=*5P<7Ju&b3y9c^Rqf-+pFLySym
z-nd@FoUB^Yky_^m_1*4Ud>zux%gdW2TNZ3^HRi`9lg^1=yyw23@b5K6)hQ^5mu{ia
zF8mv0jaD^oSgfh>jVH69M01iol;Gk;L)kFN+8Yh0`)4^C7IIB}y+9c>&AqZw>sPw0
z!D&@;oxWt(mDQvO9FwSi4me?y(g?M4%RF6GhB+_Xpitk%$enyj%~Cv;y(Lt8hF5ua
z>A||x<7=|pjqv$;#c!0mFW5S+<(a#zub6JO&JUG>2c1P8sG}%c=VM=sa}_&P4C)(P
zzd5Mh_h>Ipiv@he=_Rp?6ioN^5Y&?7+1R^DkJU}UB6y%Mx~#kONc{3#cN!NvM#lsU
z(_AuL+*H4PVQ4_mlnpZ~8#0~Lt>SukC7Iy8`#zQNyJ53e^L5lr2*Rek6$Bzik|;hN
zLcl=ly@LaUZlf%+!RaCt?e~$K=Oy8lxLSHJ0CCpNkE*S6>D4J|2T3Cpl|MTO;9hbU
zaE8}?$eyQs^ob4L%nSM$p}jFPWcW>Y={Th<634}cG10#o^;K~-;o;LZiT1bAJO(XF
z9y0!FH6a7dMe;negQi56V5Hk@Z)M8?)OLwdk*{6;vfqw{&Q53v8uq{fEjuW
zU3q|{K7nQRBSITNK8_RDbMeDI9krWs;tw}Ay}CfAQ_xWMewFds@7=!6ST9
zG%n|xe~xRQJGR`=Ny6O%>f1r%=r~%`;&=GIYa@BzdjmgXNw_H6_=j=v=RWz|Mj$wK
zUZi8@S7y%HN8unJnyz!6Lg}9eotQxB0OY_KrevWmct5V`lXA~Tqt(lzh)a;*L+&nf*S*^^#)mF`)D=ul1)wF>W*71mE?&mB
zhSeE?Sf5UdieQ?VOH0q?!xh#2%8DaM8xUI$Hn%boA&;QsR}@m*3#3H}<9s#$;=q_o
zx1Eo5V4?bfH2leApbq$K0Kngfr|F)97H}y&@W(rA{?^WnP7v?1rMt7o&EK~4mli!{tL{spW@a!~
zP@}j7ZM^BUHO9pp8a#1$p6uQF>0~EEI4lY8lTbD)lwJk+DJpkV5YOM*p#QBU)
zrlT*3Eo6$f-5;=4%UEVJ>r;U5D1AZKVTq1sKw(CKReAM1h>x1N6W
z9Ae&hJY5-kLt$n=PgghPc1UOHdEksKr%-&z^@bW_^OO%E|E(iF)X_C(ffuZpG7A}l
z|Hs*z2SWA5eZbQ~L}izKuOuWPyCiExge*gmy%`~6UqZ64A-jrX8;xZKV`;HvO_mwP
zP}vzHgzWDb)$e(p_xcxMqzzCWK3uj2oBqxei7ij?$VZ2
zXBB|dfnL)fh0Durqbpj--?R0`lU{0Xhu`Cizox(h;=(qj*HM1t^uql0-WE?5>`Xk@
z9HEEf^{oq8_!Iq&Cv9*U4LpUrNWZ0aOOko6Eg+0ZU9#YL%780au%15iG2?qygrWSm
zxWh0ge9?zT`mME98?8ck{5jc=5BaXnpENSgPhSe4>eDvt8B|IEJL~+0+zFJT@8ohT
z8fI~1TWVtupr`!4jNWQVPl|y0%=i+@aBa>(yLB>}LtS;dXDFkj>`Ap(co|Zq*>&Nf
z#cH^;a5FrBsThnUEw
zC;SMV`Aser8AwtKauzMSIm~vI8*{wF{Ix{XLNKQ8$UIu)kthtNpK({qi86&JceH!(*x=4z<2NiHa@eoC2y=I;?7Ln^Jyewf++lecO`;J{
z4PFp@paNZLlY0EV@!tRJIny=wB!Cj-?`OiA>?ijO+ur)RYlchGLW!+3#@VE~(-lP$
zjkWbaWGFbM8D7Q<&of|6%(~BZIa=&BRSVpx%eI*b`^-xsfGJU{J;Cx*|7i#+(*Y&+
zF^-3DZSm}Rgq$mqGVDeUZtgoPynPpd=Ik2*)tkR0CTCn5T@S(-l#WSHyB-pL4WLU#
z7Uu2w5t$nCwhJCwhi%vswP?V$3&|(fMnHF;PP_?z+IgXePwtYTwMGm1)9MmsQUWR;
zeNbwKKk1aBNwt~%=}pWj?%adE^7LCEME&XmP?ok+3b($<27bg(D2?oF%~u3?9cqEI
z`snyqWHhZEnH4~k!RoGW+jO%b>c<2wdem5PVay(&%X;PIun!5q+~OUpeQb7hil}h(
z%yPS(Qsg1a7QmMWEv`uTOc;+N$hp#DCY149pE33)q>s8W+F-uf$j$Oz9bvmhijv4-
zdj|s+PF)q3DQSoRLpHgleYG+)1thBEurMHHmPsz@JW{WVG
z0H~beq2cSKVj)CmPk%;Vbd5L?fU?koh1t{mW-g6Gvx3GGQN*}B+nVYr@A8`;<#E<7
zZVw4&ehtS^dJztB6BwXg+2AB({J7Pt&YwptN;~cfI|q-#+=r2Ub>94;UwJ3%NL@vtCa!OWIJ^n&SMZY6jTxryg&6Y)o6xQg*Nl
zD6x@o;H|LTHc4yrNy%_DKv}tcRNpujq5H~)2wgqRC$p+2ZR@g`n2uTIq6v=o2arNG
z%&oFGZmz2pHIo6x^+84*d-yQjXcCGG)TOI#U5G@^^ZY18PC$h%Bbn5x^>3v97rGt81g@f^H<(`DO>UOiZ7C7(J
zD5F5zJwf$kK-z~3$WH)Pw1q71kn^K&FtE6I<17X)(7}t|}FZlaZer~Re(&%U(fiFhO|>QLOf`=WJuDfJv8bnm)abSzAXd^BJ1w(yXkL#!E(
zbt)cI4@+*BK1NX^jGawHLXv?x7>oz-x0JrtZ0W*dXw;(*^}Fkt@)ND^(Ph`)eTAS(
z%JI-j-=~SP^1jmn(XOc776~DNG+>RIJ`gDCg6(l8YHRz~F088}yDr!15c8*83}LIJ
zW6kiZN4Z}y7tui?h=Nf>g;Tvvy;qh&bpve%2$p7
zK-*fka^-#uJ~kEm8}PU@=N=!cU@)F`S-Sd-QBa?(kPmy^V1;S0jLG$9-7#f;BI0~h
zcjEC;Zd|RSosoHEEZ|tq5k!oj5?ykr&v6Ki4iUqT0MQJG7=^y}<9)03%XK9bSvTHQ
zyDbX_*dfJ_s7|O$k0>5d_0$?m#BU^Tj^jN1Wg5QxF@unM$#4Tjk(i56}`25;Imyi1MQQ3(xCNi0+PNs^QthHX(|Hs`cKP
z)p$xKDZ-^z*1IM$=}{%v0TB)NaC!2~URKV`u~$)0cBc`3egxOGDyKnK*NP?y!Sv9P
zQwkFLuI;b!JY|UyTx!0|k@CT3A;ItP4UDMFQz$Mia!=6Dv4(B^Y=5V>yJw&Q_wzl-
zO91#M2#Ra*vEBmS8IQA%DIc2;uelD21In>4r!U<2Ra5?qwO07rX`S=ubwitx?Sa!l
z7O#JODAByA|44`XlAV1T$ET=o>o@PCrmxiOP;aIavO1Gb^FPNg
zUL#Fwk<5p`V$JR%8dg?Tw-?8OzW%6*-P+rvqgE?h6rDK@U%cASM
z%cTDJ8IxI%`cov9wZSr}B>I8DKi)c}(nCcg4j)_Bke1+S@uIr~ro}-u6Z2iOY2{Rp
zd3^-&XbUpJ;6!B^V9X+kU8qZ8*p@t5BT?`?0a6AyhVM_q!-p9
zQpvLfSSa_bWom!1kvwM)-*->!u}H<2rQBsec60F~PUKEpri&m-G{bdmaQg01@WN!g
zO#GmcqJ4>=&4%NN2crudalM)CUq&AY>EELmlwmC5{>e{{7AXoiB)NvXm){q^RQ19T
z=f>xM>DWxr^{+O#9S=XCfHui~N`3URxSR{!8$krDI`giKb;ZUx8*tGnqlQVINsr^4{(BlY*$^(!03!|*qO
z->#)NU6UYN1}Dr4BRq==*J6YJ=v5DhHiztQ!2sX87E&a-d
zrCwt`Ox%S^w880^u+{6&NJ|JyRWr-+@xEs!X|h0+t#zY=3VW}hM+jaEF1*bJHix-&
zq6UE0$fQowCvH7MppQCJ@zCt^X%<;5^VSXSU_4R30zo}k55f^VEBL@slU!R_@5Nqv
ztIsyL>-IxNCzu)}oIIFIdAA>LYEMwd;~L@!oK>-_mQ;kb#Y}CTXojyV%*SSmKB#iYCu?fAjYGxM0~D*My^??6t#-B91Usxh>d)V}CJ@@F0j-xEL3V
zR#38X{k0IChlepKpC$ChR&?k9{o>d5aoXCmcj|+>0~=1572h0dW2V4ZXaw>vC%a1b
zTCXTlnV4X{zFC&n%t;Uba*gbqVdmtIzRZ=p;Qiwoa5d;hL`8J+qr@t5E79eSd>Xo1
z5fnsZ=HgfUx`!5inN~nzb7u8}?XO$;qK1FE)<~}Zj7i7*{I%)O6dM6u3>!O@;G<2f
zQnAR0)#K9-&<2s?M0DInsP5Uz)YY)=)U{%qOD?OJA@x-tB^q#~-?fUOsFIM;!S5=v
z+dd2{cZTbe&x!|MF7o474`WcT(pMdK-2U8?bMY%W;z0I+%#adsr#Mk?=Z%}oyxwP}
zhYz8|u9AjyFZ>>S&6+c}U|Kk2_Yz&&LRQ&)sADy3BWGLdmmslGF^s#feP`-YOyPy#
zJ1D<%l8h0dD^cQ1Zy!LQTx`2>WHy7}#J*HH?|1#zjKf)IHuhTivVb_93S;-zr
zHl}wp7tVQkHWVfnbxdNF?jHh)59NXy6ne=tDss_&SSdc?;k=^2mu5Vfsj(GZ#gycS
zWh~Zx0Hen35&bnGC@!E<>yDnQ_L=C~>sBM3*$aAcYRS?!=(sw(uxF!cc;8FFxTuIO
z!3gDdnKD2ItUN0g#<<~%?lf#N2eA^=rVc2h$`e?DmhdG0s3`Nugg3(A7
zjM#pD{U8HF(um9V4nQC{1hh4?IXO$7DEM+(F#6H
zt(j2Xydi(oW!XN@S=Neu<<~I)LoU>AAiTA~toxR9x>*Fo4Nnar^>UNWwS38VRX@tF
z)6SF7woOnfmlU!v>NNFvby!#e(W@2#AXYXQM;n~WdWjK9Q$BpW%PLppG2Uv)Z5S=y
zwd`Du*;-@%oaWb8=wbE4_gT-j&sJzuNDb;tB!T;Djm%S9%wU{d_YiDl7+H;mM(0nU
zkI^h%rdlc#jHuybo!Zl=GmPipKMR78|9zuXbZiSN7Cl^-eQ42ZIFMY``&MS(qD+!J
zEh~LD9Dl+W$Un1n*wy+o8ELF_L;fld{wfgofsUpcM^ZoQ+Q~>ak#3Uq$WITA@^4^x
zr%lo70X(A_Sz&`?z@x=O@T@tEq_qq!=%^;)0>PviS@)xZ)Qe$w7dbf*1)cHu?GFiN
zL2>=!eQ@5ZP|&tuij#aUc%X%RCyYh_SmqvQ5ElIm*wlzvK}7bh$I!2}b0t8ZqOa8F
z(`?q&Ybx$#R^fv%=#VnzPz^)hN+;-akB?P?2#UuUF9r&D3rwl$tI;wAcDdwph|I%d
zOGORiB$2Em^NVjp5I}7xh-eCBtlVTx%7~dbbu=e3-1_&>qo5(_;|!+cI*A_Y4mv9h
zSWSIAmin(y$b2t3b+w{Ol>Eb~M*)l8!d|Tm$hN_>xSn}ercXrUIDbSyWAjr|d^l;|
z&qa(FaFl)WXeP~E^+}kBAhwV5mBmmuGuGd<&)}dHpCW6A!R~d8ib8ZFpw1NjY$Mm(
zl;uT58+#5!)Sv$*^~0<+#ACwN6m9|ap3Mb&(a-dp%VWQ|b1FHe&lpqu#lo1eF-IXG
z8;6dP1AT%OkEn@)Bw+z{8i5Gn;hm(hX@UC|mT1_?+pjTgeO8!=i$4>;@CZC`cK}ZQ
zaKWDhn$ewsCoyAO9uc#fc=m2A8-P?r>WSkl^cOEu3~S$>>kZcX|7Pt
zZ>ASPEUtZYaiVj^p&aev2?(nt0@{V!bP!K~GVcW-qlQs1j3EU7R6Uy5bo(xSW9p}6-dvA#KhAw2;pNg(ge3-<){;X6
zS)VF`vDnRiGDF_YI9REnTsH5Ifj|;@1ic9VSZ!ieXr{I&J3=_Apv4G+niCV%_ulmW
zHVd#97Z1*&9RuiHItWJ;0O|jE*~d<({lXj7>GAf&F5;cM-j0pOJC;BuG;RG5Jlwxj
zqq0~{1zUKiKY98-+k2LP-Wkgh;lq=c7#g|riGL52GcilPkWMPvKnG}j56j$#)^
zY2D&shDgZ0@ll2!S>^${Qde9^viTy2*Se1&?M<`Uxi8zH52rnNchwL4%K~8!GR1z&
zhGu;x3e|9KBR@-VSUpotb(}u`U@v|6G$uEx8D1IjK1NV_0Y;ajm)S5~9+6j8AOl0W
zl!%jRzi>hL{ZCy4u?*=hQq(zfzKg3|(o2z#c0i){0cS|K;XyxcpCDAL7*oRUU)E?h
zeO|gmC~j@lzV*fC<<}ew3jSwa_I~WI*g9Roa_ySsFoy}LHL+KR#11?!R<2iP4+l%Q
za~!y4!x)mFdpWMs?UADabgy&AWNZiWtwWczcP?33bOin{_NdS2Z_!gK{R
z^zEavY^`ev{x`i_;VBj1qyj&XP)@6P>VU9?t$v>gRceQ7a-%XU7o_Aq%E-$U?S-9-
zG&u1#lE8BH^sym)84O3RgjT*Tqn=Tz&dnr+)SbyMxk^_mUr=!rMPR*rgcG7Bg4*T<
z{#M|sr?9U>X4;!n%@QOp*x3DPZ)r@X&rp}TbaFR$wh5nls)pk#^E<|;D1onU8tjqJ
z@SYM;LleJi`)0gP9NtY5L0IfGOF@F8+~wv=iD&+fGrz_L=MZkmLHTN5PW?sp$Ol=E=A!y&_LRCHXwO3nG|x?3qJd5(eKx#dvte|
zP8mvz?}!6dVQ>fKqL(%?a~|aNp9ciCczE_KA}IDWMRZ8m;H*il%36D^hrmaDY$uvD
zUH?XbKtlM9NR7uRZy2%n0Xbo?X(Q7wjR<+JJM-_S*ngf(n?R4mFW|>(FW$luJ1C$?Z-o=eqO`&)|qjv6N;M_Cn?T-0LTNWoP|Oi#FiLdwKwkU@}Og1dv&W8
zq(v-ryVokZbn`;<(7YFY(^JCyipk@Bh9$phf=JzqtX|cPf>fcuoxGevCaO_)`=|E(
z(Xcs^!s{cTjEQrrz8;HBYr`0xxQ&I%M_kYmXHT?<;Jrm@|JM;Nxd=i-kJP;z#k}Rx
zAd4%Sf@p@^NBP}QcgN)1j=6NOa@wNoHm%pEO|qxx0S}Mhzpd=B-^z%6HN&n>+Jaff
zdVt^vNaY5_6e31t4BJIxE+0I`fZb%kUP7P9*j*6RAONI{g*ajQO29fJw(Qkn5&Abb
z*q7jKsLqcr2U