-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathPorts.cpp
executable file
·1352 lines (1220 loc) · 38.1 KB
/
Ports.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/// @file
/// Ports library definitions.
// 2009-02-13 <jc@wippler.nl> http://opensource.org/licenses/mit-license.php
#include "Ports.h"
#include <avr/sleep.h>
#include <util/atomic.h>
// #define DEBUG_DHT 1 // add code to send info over the serial port of non-zero
// ATtiny84 has BODS and BODSE for ATtiny84, revision B, and newer, even though
// the iotnx4.h header doesn't list it, so we *can* disable brown-out detection!
// See the ATtiny24/44/84 datasheet reference, section 7.2.1, page 34.
#if (defined(__AVR_ATtiny84__) || defined(__AVR_ATtiny44__)) && \
!defined(BODSE) && !defined(BODS)
#define BODSE 2
#define BODS 7
#endif
// flag bits sent to the receiver
#define MODE_CHANGE 0x80 // a pin mode was changed
#define DIG_CHANGE 0x40 // a digital output was changed
#define PWM_CHANGE 0x30 // an analog (pwm) value was changed on port 2..3
#define ANA_MASK 0x0F // an analog read was requested on port 1..4
/// @class PortI2C
/// @details
/// The PortI2C class is a special version of class Port implementing the I2C /
/// Two-Wire Interface (TWI) protocol. Allows using any port as I2C bus master.
/// When used for I2C, DIO is used as SDA and AIO as SCL.
/// Unlike the Wire library for the Arduino, which is a more advanced solution
/// for the hardware I2C lines of an ATmega, the PortI2C class is implemented
/// entirely in software using "bit-banging". Another difference is that
/// PortI2C does not use interrupts and will keep the microcontroller occupied
/// while it is performing I/O transfers.
/// @see DeviceI2C
/// @class DeviceI2C
/// @details
/// Since I2C is a bus, there are actually two classes involved. A PortI2C
/// object manages a port as I2C master for one or more objects of class
/// DeviceI2C, each representing a separate device. You can have multiple ports
/// as I2C bus (running at a different speed perhaps), each talking to multiple
/// I2C devices. Devices sharing the same bus must each have a unique ID in the
/// range 0 .. 127.
/// @see PortI2C
/// @fn uint32_t Port::pulse(uint8_t state, uint32_t timeout =1000000L) const
/// @details
/// Measure the length of a pulse in microseconds on the DIO (pulse) or
/// AIO (pulse2) line. The optional timeout value specifies how many
/// microseconds to wait for a pulse - of none is received, 0 is returned.
/// @param state Polarity of the pulse to wait for - HIGH (1) or LOW (0).
/// @param timeout Max number of microseconds to wait.
/// Default is 1,000,000, i.e. 1 second.
/// @see http://arduino.cc/en/Reference/pulseIn for more details.
/// @fn void Port::shift(uint8_t bitOrder, uint8_t value) const
/// @details
/// This can be used to send out a pulse sequence of bits or to read such
/// a pulse sequence in. The AIO line is cycled while the value bits are
/// "shifted" and written out to (shift, shiftWrite) or read in from
/// (shiftRead) the DIO pin.
/// @param bitOrder How to shift bits in or out: either LSBFIRST (0) or
/// MSBFIRST (1), where LSB stands for Least Significant
/// Bit and MSB for Most Significant Bit.
/// @param value The value to shift out, with as many lower bits as needed.
/// This argument is a byte for shift() and a word for the more general
/// shiftWrite() function.
/// @see http://arduino.cc/en/Tutorial/ShiftOut
/// @fn static void Sleepy::powerDown ();
/// Take the ATmega into the deepest possible power down state. Getting out of
/// this state requires setting up the watchdog beforehand, or making sure that
/// suitable interrupts will occur once powered down.
/// Disables the Brown Out Detector (BOD), the A/D converter (ADC), and other
/// peripheral functions such as TWI, SPI, and UART before sleeping, and
/// restores their previous state when back up.
/// Shift a number of bites in to read them.
/// @param bitOrder How to shift bits in or out: either LSBFIRST (0) or
/// MSBFIRST (1), where LSB stands for Least Significant
/// Bit and MSB for Most Significant Bit.
/// @param count The number of bits to shift in or out. Must be in the
/// range 1 .. 16, the default is 8.
/// @see shift()
uint16_t Port::shiftRead(uint8_t bitOrder, uint8_t count) const {
uint16_t value = 0, mask = bit(LSBFIRST ? 0 : count - 1);
for (uint8_t i = 0; i < count; ++i) {
digiWrite2(1);
delayMicroseconds(5);
if (digiRead())
value |= mask;
if (bitOrder == LSBFIRST)
mask <<= 1;
else
mask >>= 1;
digiWrite2(0);
delayMicroseconds(5);
}
return value;
}
/// The shiftWrite() call is similar but more general than the shift() call
/// in that it allows an adjustable number of bits to be sent, not just 8.
/// @param bitOrder How to shift bits in or out: either LSBFIRST (0) or
/// MSBFIRST (1), where LSB stands for Least Significant
/// Bit and MSB for Most Significant Bit.
/// @param value The value to shift out, with as many lower bits as needed.
/// This argument is a byte for shift() and a word for the more general
/// shiftWrite() function.
/// @param count The number of bits to shift in or out. Must be in the
/// range 1 .. 16, the default is 8.
/// @see shift()
void Port::shiftWrite(uint8_t bitOrder, uint16_t value, uint8_t count) const {
uint16_t mask = bit(LSBFIRST ? 0 : count - 1);
for (uint8_t i = 0; i < count; ++i) {
digiWrite((value & mask) != 0);
if (bitOrder == LSBFIRST)
mask <<= 1;
else
mask >>= 1;
digiWrite2(1);
digiWrite2(0);
}
}
RemoteNode::RemoteNode (char id, uint8_t band, uint8_t group)
: nid (id & 0x1F)
{
memset(&data, 0, sizeof data);
RemoteHandler::setup(nid, band, group);
}
void RemoteNode::poll(uint16_t msecs) {
uint8_t pending = millis() >= lastPoll + msecs;
if (RemoteHandler::poll(*this, pending))
lastPoll = millis();
}
void RemotePort::mode(uint8_t value) const {
node.data.flags |= MODE_CHANGE;
bitWrite(node.data.modes, pinBit(), value);
}
uint8_t RemotePort::digiRead() const {
return bitRead(node.data.digiIO, pinBit());
}
void RemotePort::digiWrite(uint8_t value) const {
node.data.flags |= DIG_CHANGE;
bitWrite(node.data.digiIO, pinBit(), value);
}
void RemotePort::anaWrite(uint8_t val) const {
if (portNum == 2 || portNum == 3) {
bitSet(node.data.flags, portNum + 2);
node.data.anaOut[portNum - 2] = val;
} else
digiWrite2(val >= 128);
}
void RemotePort::mode2(uint8_t value) const {
node.data.flags |= MODE_CHANGE;
bitWrite(node.data.modes, pinBit2(), value);
}
uint16_t RemotePort::anaRead() const {
bitSet(node.data.flags, pinBit());
return node.data.anaIn[pinBit()];
}
uint8_t RemotePort::digiRead2() const {
return bitRead(node.data.digiIO, pinBit2());
}
void RemotePort::digiWrite2(uint8_t value) const {
node.data.flags |= DIG_CHANGE;
bitWrite(node.data.digiIO, pinBit2(), value);
}
PortI2C::PortI2C (uint8_t num, uint8_t rate)
: Port (num), uswait (rate)
{
sdaOut(1);
mode2(OUTPUT);
sclHi();
}
uint8_t PortI2C::start(uint8_t addr) const {
sclLo();
sclHi();
sdaOut(0);
return write(addr);
}
void PortI2C::stop() const {
sdaOut(0);
sclHi();
sdaOut(1);
}
uint8_t PortI2C::write(uint8_t data) const {
sclLo();
for (uint8_t mask = 0x80; mask != 0; mask >>= 1) {
sdaOut(data & mask);
sclHi();
sclLo();
}
sdaOut(1);
sclHi();
uint8_t ack = ! sdaIn();
sclLo();
return ack;
}
uint8_t PortI2C::read(uint8_t last) const {
uint8_t data = 0;
for (uint8_t mask = 0x80; mask != 0; mask >>= 1) {
sclHi();
if (sdaIn())
data |= mask;
sclLo();
}
sdaOut(last);
sclHi();
sclLo();
if (last)
stop();
sdaOut(1);
return data;
}
bool DeviceI2C::isPresent () const {
byte ok = send();
stop();
return ok;
}
byte MilliTimer::poll(word ms) {
byte ready = 0;
if (armed) {
word remain = next - millis();
// since remain is unsigned, it will overflow to large values when
// the timeout is reached, so this test works as long as poll() is
// called no later than 5535 millisecs after the timer has expired
if (remain <= 60000)
return 0;
// return a value between 1 and 255, being msecs+1 past expiration
// note: the actual return value is only reliable if poll() is
// called no later than 255 millisecs after the timer has expired
ready = -remain;
}
set(ms);
return ready;
}
word MilliTimer::remaining() const {
word remain = armed ? next - millis() : 0;
return remain <= 60000 ? remain : 0;
}
void MilliTimer::set(word ms) {
armed = ms != 0;
if (armed)
next = millis() + ms - 1;
}
/** Turn on the corresponding leds.
* @param mask 0 for neither led, 1 for the first led, 2 for the second led
* or 3 for both leds.
*/
void BlinkPlug::ledOn (byte mask) {
if (mask & 1) {
digiWrite(0);
mode(OUTPUT);
}
if (mask & 2) {
digiWrite2(0);
mode2(OUTPUT);
}
leds |= mask; //TODO could be read back from pins, i.s.o. saving here
}
/** Turn off the corresponding leds.
* @param mask 0 for neither led, 1 for the first led, 2 for the second led
* or 3 for both leds.
*/
void BlinkPlug::ledOff (byte mask) {
if (mask & 1) {
mode(INPUT);
digiWrite(1);
}
if (mask & 2) {
mode2(INPUT);
digiWrite2(1);
}
leds &= ~ mask; //TODO could be read back from pins, i.s.o. saving here
}
/** Read entire BlinkPlug state.
* @return One byte with the state of the leds on the 1st and 2nd least
* significant bits and the state of the buttons on the 3rd and 4th least
* significant bits.
*/
byte BlinkPlug::state () {
byte saved = leds;
ledOff(1+2);
byte result = !digiRead() | (!digiRead2() << 1);
ledOn(saved);
return result;
}
/// @deprecated This is obsolete code, use buttonCheck().
byte BlinkPlug::pushed () {
if (debounce.idle() || debounce.poll()) {
byte newState = state();
if (newState != lastState) {
debounce.set(100); // don't check again for at least 100 ms
byte nowOn = (lastState ^ newState) & newState;
lastState = newState;
return nowOn;
}
}
return 0;
}
/** Check the state of the buttons.
* @return The corresponding enum state: ON1, OFF1, ON2, or OFF2.
*/
byte BlinkPlug::buttonCheck () {
// collect button changes in the checkFlags bits, with proper debouncing
if (debounce.idle() || debounce.poll()) {
byte newState = state();
if (newState != lastState) {
debounce.set(100); // don't check again for at least 100 ms
if ((lastState ^ newState) & 1)
bitSet(checkFlags, newState & 1 ? ON1 : OFF1);
if ((lastState ^ newState) & 2)
bitSet(checkFlags, newState & 2 ? ON2 : OFF2);
lastState = newState;
}
}
// note that simultaneous button events will be returned in successive calls
if (checkFlags)
for (byte i = ON1; i <= OFF2; ++i) {
if (bitRead(checkFlags, i)) {
bitClear(checkFlags, i);
return i;
}
}
// if there are no button events, return the overall current button state
return lastState == 3 ? ALL_ON : lastState ? SOME_ON : ALL_OFF;
}
void MemoryPlug::load (word page, byte offset, void* buf, int count) {
// also don't load right after a save, see http://forum.jeelabs.net/node/469
while (millis() < nextSave)
;
setAddress(0x50 + (page >> 8));
send();
write((byte) page);
write(offset);
receive();
byte* p = (byte*) buf;
while (--count >= 0)
*p++ = read(count == 0);
stop();
}
void MemoryPlug::save (word page, byte offset, const void* buf, int count) {
// don't do back-to-back saves, last one must have had time to finish!
while (millis() < nextSave)
;
setAddress(0x50 + (page >> 8));
send();
write((byte) page);
write(offset);
const byte* p = (const byte*) buf;
while (--count >= 0)
write(*p++);
stop();
nextSave = millis() + 10;
// delay(5);
}
long MemoryStream::position (byte writing) const {
long v = (curr - start) * step;
if (pos > 0 && !writing)
--v; // get() advances differently than put()
return (v << 8) | pos;
}
byte MemoryStream::get () {
if (pos == 0) {
dev.load(curr, 0, buffer, sizeof buffer);
curr += step;
}
return buffer[pos++];
}
void MemoryStream::put (byte data) {
buffer[pos++] = data;
if (pos == 0) {
dev.save(curr, 0, buffer, sizeof buffer);
curr += step;
}
}
word MemoryStream::flush () {
if (pos != 0) {
memset(buffer + pos, 0xFF, 256 - pos);
dev.save(curr, 0, buffer, sizeof buffer);
}
return curr;
}
void MemoryStream::reset () {
curr = start;
pos = 0;
}
// uart register definitions
#define RHR (0 << 3)
#define THR (0 << 3)
#define DLL (0 << 3)
#define DLH (1 << 3)
#define FCR (2 << 3)
#define LCR (3 << 3)
#define RXLVL (9 << 3)
/** Set a UartPlug register.
* @param reg The register to set.
* @param value The value to write to the register.
*/
void UartPlug::regSet (byte reg, byte value) {
dev.send();
dev.write(reg);
dev.write(value);
}
/** Read a UartPlug register.
* @return reg The contents of the register read.
*/
void UartPlug::regRead (byte reg) {
dev.send();
dev.write(reg);
dev.receive();
}
/** Initialize a UartPlug.
* @param baud Baud rate for the serial port.
*/
void UartPlug::begin (long baud) {
word divisor = 230400 / baud;
regSet(LCR, 0x80); // divisor latch enable
regSet(DLL, divisor); // low byte
regSet(DLH, divisor >> 8); // high byte
regSet(LCR, 0x03); // 8 bits, no parity
regSet(FCR, 0x07); // fifo enable (and flush)
dev.stop();
}
/** Test if UartPlug has incoming data.
* @return True if data in device buffer. False if no data in device buffer.
*/
byte UartPlug::available () {
if (in != out)
return 1;
out = 0;
regRead(RXLVL);
in = dev.read(1);
if (in == 0)
return 0;
if (in > sizeof rxbuf)
in = sizeof rxbuf;
regRead(RHR);
for (byte i = 0; i < in; ++i)
rxbuf[i] = dev.read(i == in - 1);
return 1;
}
/** Read two bytes from the UartPlug's serial input.
* @return Two bytes with the data read.
*/
int UartPlug::read () {
return available() ? rxbuf[out++] : -1;
}
/// Clear the RX and TX queues.
void UartPlug::flush () {
regSet(FCR, 0x07); // flush both RX and TX queues
dev.stop();
in = out;
}
/** Write data on the serial port of the UartPlug.
* @param data Byte of data to send out.
*/
WRITE_RESULT UartPlug::write (byte data) {
regSet(THR, data);
dev.stop();
#if ARDUINO >= 100 && !defined(__AVR_ATtiny84__) && !defined(__AVR_ATtiny85__) && !defined(__AVR_ATtiny44__) && !defined(__AVR_ATtiny45__)
return 1;
#endif
}
void DimmerPlug::begin () {
setReg(MODE1, 0x00); // normal
setReg(MODE2, 0x14); // inverted, totem-pole
setReg(GRPPWM, 0xFF); // set group dim to max brightness
setMulti(LEDOUT0, 0xFF, 0xFF, 0xFF, 0xFF, -1); // all LEDs group-dimmable
}
byte DimmerPlug::getReg(byte reg) const {
send();
write(reg);
receive();
byte result = read(1);
stop();
return result;
}
void DimmerPlug::setReg(byte reg, byte value) const {
send();
write(reg);
write(value);
stop();
}
void DimmerPlug::setMulti(byte reg, ...) const {
va_list ap;
va_start(ap, reg);
send();
write(0xE0 | reg); // auto-increment
for (;;) {
int v = va_arg(ap, int);
if (v < 0) break;
write(v);
}
stop();
}
/** Set the gain mode of the 16x multiplier in the LuxPlug.
* @param high Multiplier is off if 0, otherwise on.
*/
void LuxPlug::setGain(byte high) {
send();
write(0x81); // write to Timing regiser
write(high ? 0x12 : 0x02);
stop();
}
/** Read the raw data from the photodiodes.
* @return Two bytes containing the raw data read from the sensor.
*/
const word* LuxPlug::getData() {
send();
write(0xA0 | DATA0LOW);
receive();
data.b[0] = read(0);
data.b[1] = read(0);
data.b[2] = read(0);
data.b[3] = read(1);
stop();
return data.w;
}
#define LUX_SCALE 14 // scale by 2^14
#define RATIO_SCALE 9 // scale ratio by 2^9
#define CH_SCALE 10 // scale channel values by 2^10
/** Calculate Lux value from the raw data retreived.
* @param iGain gain, where 0:1X, 1:16X.
* @param tInt Integration time, where 0:13.7mS, 1:100mS, 2:402mS, 3:Manual
* @return A 2 byte unsigned number containing the Lux value calculated.
*/
word LuxPlug::calcLux(byte iGain, byte tInt) const
{
unsigned long chScale;
switch (tInt) {
case 0: chScale = 0x7517; break;
case 1: chScale = 0x0fe7; break;
default: chScale = (1 << CH_SCALE); break;
}
if (!iGain)
chScale <<= 4;
unsigned long channel0 = (data.w[0] * chScale) >> CH_SCALE;
unsigned long channel1 = (data.w[1] * chScale) >> CH_SCALE;
unsigned long ratio1 = 0;
if (channel0 != 0)
ratio1 = (channel1 << (RATIO_SCALE+1)) / channel0;
unsigned long ratio = (ratio1 + 1) >> 1;
word b, m;
if (ratio <= 0x0040) { b = 0x01F2; m = 0x01BE; }
else if (ratio <= 0x0080) { b = 0x0214; m = 0x02D1; }
else if (ratio <= 0x00C0) { b = 0x023F; m = 0x037B; }
else if (ratio <= 0x0100) { b = 0x0270; m = 0x03FE; }
else if (ratio <= 0x0138) { b = 0x016F; m = 0x01FC; }
else if (ratio <= 0x019A) { b = 0x00D2; m = 0x00FB; }
else if (ratio <= 0x029A) { b = 0x0018; m = 0x0012; }
else { b = 0x0000; m = 0x0000; }
unsigned long temp = channel0 * b - channel1 * m;
temp += 1 << (LUX_SCALE-1);
return temp >> LUX_SCALE;
}
void GravityPlug::sensitivity(byte range, word bandwidth) {
send();
write(0x14);
byte bwcode = bandwidth <= 25 ? 0 :
bandwidth <= 50 ? 1 :
bandwidth <= 100 ? 2 :
bandwidth <= 190 ? 3 :
bandwidth <= 375 ? 4 :
bandwidth <= 750 ? 5 : 6;
// this only works correctly if range is 2, 4, or 8
write(((range & 0x0C) << 1) | bwcode);
stop();
}
const int* GravityPlug::getAxes() {
send();
write(0x02);
receive();
for (byte i = 0; i < 5; ++i)
data.b[i] = read(0);
data.b[5] = read(1);
stop();
data.w[0] = (data.b[0] >> 6) | (data.b[1] << 2);
data.w[1] = (data.b[2] >> 6) | (data.b[3] << 2);
data.w[2] = (data.b[4] >> 6) | (data.b[5] << 2);
for (byte i = 0; i < 3; ++i)
data.w[i] = (data.w[i] ^ 0x200) - 0x200; // sign extends bit 9
return data.w;
}
/** Select the channel on the multiplexer.
* @param channel A number between 0..15.
*/
void InputPlug::select(uint8_t channel) {
digiWrite(0);
mode(OUTPUT);
delayMicroseconds(slow ? 400 : 50);
byte data = 0x10 | (channel & 0x0F);
byte mask = 1 << (portNum + 3); // digitalWrite is too slow
ATOMIC_BLOCK(ATOMIC_FORCEON) {
for (byte i = 0; i < 5; ++i) {
byte us = bitRead(data, 4 - i) ? 9 : 3;
if (slow)
us <<= 3;
#ifdef PORTD
PORTD |= mask;
delayMicroseconds(us);
PORTD &= ~ mask;
#else
//XXX TINY!
#endif
delayMicroseconds(slow ? 32 : 4);
}
}
}
byte HeadingBoard::eepromByte(byte reg) const {
eeprom.send();
eeprom.write(reg);
eeprom.receive();
byte result = eeprom.read(1);
eeprom.stop();
return result;
}
void HeadingBoard::getConstants() {
for (byte i = 0; i < 18; ++i)
((byte*) &C1)[i < 14 ? i^1 : i] = eepromByte(16 + i);
// Serial.println(C1);
// Serial.println(C2);
// Serial.println(C3);
// Serial.println(C4);
// Serial.println(C5);
// Serial.println(C6);
// Serial.println(C7);
// Serial.println(A, DEC);
// Serial.println(B, DEC);
// Serial.println(C, DEC);
// Serial.println(D, DEC);
}
word HeadingBoard::adcValue(byte press) const {
aux.digiWrite(1);
adc.send();
adc.write(0xFF);
adc.write(0xE0 | (press << 4));
adc.stop();
delay(40);
adc.send();
adc.write(0xFD);
adc.receive();
byte msb = adc.read(0);
int result = (msb << 8) | adc.read(1);
adc.stop();
aux.digiWrite(0);
return result;
}
void HeadingBoard::begin() {
// prepare ADC
aux.mode(OUTPUT);
aux.digiWrite(0);
// generate 32768 Hz on IRQ pin (OC2B)
#ifdef TCCR2A
TCCR2A = bit(COM2B0) | bit(WGM21);
TCCR2B = bit(CS20);
OCR2A = 243;
#else
//XXX TINY!
#endif
aux.mode3(OUTPUT);
getConstants();
}
void HeadingBoard::pressure(int& temp, int& pres) const {
word D2 = adcValue(0);
// Serial.print("D2 = ");
// Serial.println(D2);
int corr = (D2 - C5) >> 7;
// Serial.print("corr = ");
// Serial.println(corr);
int dUT = (D2 - C5) - (corr * (long) corr * (D2 >= C5 ? A : B) >> C);
// Serial.print("dUT = ");
// Serial.println(dUT);
temp = 250 + ((long) dUT * C6 >> 16) - (dUT >> D);
word D1 = adcValue(1);
// Serial.print("D1 = ");
// Serial.println(D1);
word OFF = (C2 + ((C4 - 1024) * dUT >> 14)) << 2;
// Serial.print("OFF = ");
// Serial.println(OFF);
word SENS = C1 + (C3 * dUT >> 10);
// Serial.print("SENS = ");
// Serial.println(SENS);
word X = (SENS * (D1 - 7168L) >> 14) - OFF;
// Serial.print("X = ");
// Serial.println(X);
pres = (X * 10L >> 5) + C7;
}
void HeadingBoard::heading(int& xaxis, int& yaxis) {
// set or reset the magnetometer coil
compass.send();
compass.write(0x00);
compass.write(setReset);
compass.stop();
delayMicroseconds(50);
setReset = 6 - setReset;
// perform measurement
compass.send();
compass.write(0x00);
compass.write(0x01);
compass.stop();
delay(5);
compass.send();
compass.write(0x00);
compass.receive();
byte tmp = compass.read(0);
tmp = compass.read(0);
xaxis = ((tmp << 8) | compass.read(0)) - 2048;
tmp = compass.read(0);
yaxis = ((tmp << 8) | compass.read(1)) - 2048;
compass.stop();
}
int CompassBoard::read2 (byte last) {
byte b = read(0);
return (b << 8) | read(last);
}
float CompassBoard::heading () {
send();
write(0x01); // Configuration Register B
write(0x40); // Reg B: +/- 1.9 Ga
stop();
send();
write(0x02); // Data Output X MSB Register
write(0x00); // Mode: Continuous-Measurement Mode
receive();
int x = read2(0);
/* int z = */ read2(0);
int y = read2(1);
stop();
return degrees(atan2(y, x));
}
InfraredPlug::InfraredPlug (uint8_t num)
: Port (num), slot (140), gap (80), fill (-1), prev (0) {
digiWrite(0);
mode(OUTPUT);
mode2(INPUT);
digiWrite2(1); // pull-up
}
void InfraredPlug::configure(uint8_t slot4, uint8_t gap256) {
slot = slot4;
gap = gap256;
fill = -1;
}
void InfraredPlug::poll() {
byte bit = digiRead2(); // 0 is interpreted as pulse ON
if (fill < 0) {
if (fill < -1 || bit == 1)
return;
fill = 0;
prev = micros();
memset(buf, 0, sizeof buf);
}
// act only if the bit changed, using the low bit of the nibble fill count
if (bit != (fill & 1) && fill < 2 * (int) sizeof buf) {
uint32_t curr = micros(), diff = (curr - prev + 2) >> 2;
if (diff > 65000)
diff = 65000; // * 4 us, i.e. 260 ms
// convert to a slot number, with rounding halfway between each slot
word ticks = ((word) diff + slot / 2) / slot;
if (ticks > 20)
ticks = 20;
// condense upper values to fit in the range 0..15
byte nibble = ticks;
if (nibble > 10)
nibble -= (nibble - 10) / 2;
buf[fill>>1] |= nibble << ((fill & 1) << 2);
++fill;
prev = curr;
}
}
uint8_t InfraredPlug::done() {
byte result = 0;
if (fill > 0)
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
if (((micros() - prev) >> 8) >= gap) {
result = fill;
fill = -2; // prevent new pulses from clobbering buf
}
}
else if (fill < -1)
fill = -1; // second call to done() release buffer again for capture
return result;
}
uint8_t InfraredPlug::decoder(uint8_t nibbles) {
switch (nibbles) {
case 67: // 2 + 64 + 1 nibbles could be a NEC packet
if (buf[0] == 0x8D && buf[33] == 0x01) {
// check that all nibbles are either 1 or 3
for (byte i = 1; i < 33; ++i)
if ((buf[i] & ~0x20) != 0x11)
return UNKNOWN;
// valid packet, convert in-place
for (byte i = 0; i < 4; ++i) {
byte v = 0;
for (byte j = 0; j < 8; ++j)
v = (v << 1) | (buf[1+j+8*i] >> 5);
buf[i] = v;
}
return NEC;
}
break;
case 3: // 2 + 1 nibbles could be a NEC repeat packet
if (buf[0] == 0x4D && buf[1] == 0x01)
return NEC_REP;
break;
}
return UNKNOWN;
}
void InfraredPlug::send(const uint8_t* data, uint16_t bits) {
// TODO: switch to an interrupt-driven design
for (byte i = 0; i < bits; ++i) {
digiWrite(bitRead(data[i/8], i%8));
delayMicroseconds(4 * slot);
}
digiWrite(0);
}
void ProximityPlug::begin() {
delay(100);
setReg(CONFIG, 0x04); // reset, STOP1
delay(100);
// setReg(TPCONFIG, 0xB5); // TPSE, BKA, ACE, TPTBE, TPE
setReg(TPCONFIG, 0xB1); // TPSE, BKA, ACE, TPE
setReg(CONFIG, 0x15); // RUN1
delay(100);
}
void ProximityPlug::setReg(byte reg, byte value) const {
send();
write(reg);
write(value);
stop();
}
byte ProximityPlug::getReg(byte reg) const {
send();
write(reg);
receive();
byte result = read(1);
stop();
return result;
}
void AnalogPlug::begin (byte mode) {
// default mode is channel 1, continuous, 18-bit, gain x1
config = mode;
select(1);
}
void AnalogPlug::select (byte channel) {
send();
write(0x80 | ((channel - 1) << 5) | (config & 0x1F));
stop();
}
long AnalogPlug::reading () {
// read out 4 bytes, caller will need to shift out the irrelevant lower bits
receive();
long raw = read(0) << 8;
raw |= read(0);
raw = (raw << 16) | (read(0) << 8);
raw |= read(1);
stop();
return raw;
}
DHTxx::DHTxx (byte pinNum) : pin (pinNum) {
digitalWrite(pin, HIGH);
}
bool DHTxx::reading (int& temp, int &humi, bool precise) {
pinMode(pin, OUTPUT);
delay(10); // wait for any previous transmission to end
digitalWrite(pin, LOW);
delay(18);
cli();
digitalWrite(pin, HIGH);
delayMicroseconds(30);
pinMode(pin, INPUT);
byte data[6]; // holds a few start bits and then the 5 real payload bytes
#if DEBUG_DHT
static byte times[48];
memset(times, 0, sizeof times);
#endif
// each bit is a high edge followed by a var-length low edge
for (byte i = 7; i < 48; ++i) {
// wait for the high edge, then measure time until the low edge
byte timer;
for (byte j = 0; j < 2; ++j)
for (timer = 0; timer < 250; ++timer)
if (digitalRead(pin) != j)
break;
#if DEBUG_DHT
times[i] = timer;
#endif
// if no transition was seen, return
if (timer >= 250) {
sei();
return false;
}
// collect each bit in the data buffer
byte offset = i / 8;
data[offset] <<= 1;
data[offset] |= timer > 7;
}
sei();
#if DEBUG_DHT
Serial.print("DHT");
for (byte i = 7; i < 48; ++i) {
Serial.print(' ');
Serial.print(times[i]);
}
Serial.println();