-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
247 lines (213 loc) · 10.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
'''
.. moduleauthor:: Rasmus Diederichsen <rasmus@peltarion.com>
This module contains functions and classes for simplifying the training of ANN classifiers. It
accepts the following arguments:
.. argparse::
:filename: ../main.py
:func: get_parser
:prog: main.py
'''
####################
# stdlib imports #
####################
from argparse import ArgumentParser, ArgumentTypeError
import warnings
#######################
# 3rd party imports #
#######################
from tqdm import tqdm
from torchvision.transforms import ToTensor
#######################
# 1st party imports #
#######################
from train import Trainer
from ikkuna.utils import load_dataset, seed_everything
from ikkuna.export.subscriber import (RatioSubscriber, HistogramSubscriber, SpectralNormSubscriber,
TestAccuracySubscriber, TrainAccuracySubscriber,
NormSubscriber, MessageMeanSubscriber,
VarianceSubscriber, SVCCASubscriber)
from ikkuna.export import Exporter
from ikkuna.export.messages import MessageBus
import ikkuna.visualization
def _main(dataset_str, model_str, batch_size, epochs, optimizer, **kwargs):
'''Run the training procedure.
Parameters
----------
dataset_str : str
Name of the dataset to use
model_str : str
Unqualified name of the model class to use
batch_size : int
epochs : int
optimizer : str
Name of the optimizer to use
'''
dataset_train, dataset_test = load_dataset(dataset_str, train_transforms=[ToTensor()],
test_transforms=[ToTensor()])
# for some strange reason, python claims 'torch referenced before assignment' when importing at
# the top. hahaaaaa
import torch
bus = MessageBus('main')
trainer = Trainer(dataset_train, batch_size=batch_size,
exporter=Exporter(depth=kwargs['depth'],
module_filter=[torch.nn.Conv2d],
message_bus=bus))
trainer.set_model(model_str)
trainer.optimize(name=optimizer, lr=kwargs.get('learning_rate', 0.01))
if 'exponential_decay' in kwargs:
decay = kwargs['exponential_decay']
if decay is not None:
trainer.set_schedule(torch.optim.lr_scheduler.ExponentialLR, decay)
subsample = kwargs['subsample']
backend = kwargs['visualisation']
subscriber_added = False
if kwargs['hessian']:
from torch.utils.data import DataLoader
from ikkuna.export.subscriber import HessianEigenSubscriber
loader = DataLoader(dataset_train.dataset, batch_size=batch_size, shuffle=True)
trainer.add_subscriber(HessianEigenSubscriber(trainer.model.forward, trainer.loss, loader,
batch_size,
frequency=trainer.batches_per_epoch,
num_eig=1, power_steps=25,
backend=backend))
trainer.create_graph = True
subscriber_added = True
if kwargs['spectral_norm']:
for kind in kwargs['spectral_norm']:
spectral_norm_subscriber = SpectralNormSubscriber(kind, backend=backend)
trainer.add_subscriber(spectral_norm_subscriber)
subscriber_added = True
if kwargs['variance']:
for kind in kwargs['variance']:
var_sub = VarianceSubscriber(kind, backend=backend)
trainer.add_subscriber(var_sub)
subscriber_added = True
if kwargs['test_accuracy']:
test_accuracy_subscriber = TestAccuracySubscriber(dataset_test, trainer.model.forward,
frequency=trainer.batches_per_epoch,
batch_size=batch_size,
backend=backend)
trainer.add_subscriber(test_accuracy_subscriber)
subscriber_added = True
if kwargs['train_accuracy']:
train_accuracy_subscriber = TrainAccuracySubscriber(subsample=subsample,
backend=backend)
trainer.add_subscriber(train_accuracy_subscriber)
subscriber_added = True
if kwargs['ratio']:
for kind1, kind2 in kwargs['ratio']:
ratio_subscriber = RatioSubscriber([kind1, kind2],
subsample=subsample,
backend=backend)
trainer.add_subscriber(ratio_subscriber)
pubs = ratio_subscriber.publications
type, topics = pubs.popitem()
# there can be multiple publications per type, but we know the RatioSubscriber only
# publishes one
trainer.add_subscriber(MessageMeanSubscriber(topics[0]))
subscriber_added = True
if kwargs['histogram']:
for kind in kwargs['histogram']:
histogram_subscriber = HistogramSubscriber(kind, backend=backend)
trainer.add_subscriber(histogram_subscriber)
subscriber_added = True
if kwargs['norm']:
for kind in kwargs['norm']:
norm_subscriber = NormSubscriber(kind, backend=backend)
trainer.add_subscriber(norm_subscriber)
subscriber_added = True
if kwargs['svcca']:
svcca_subscriber = SVCCASubscriber(dataset_test, 500, trainer.model.forward,
subsample=trainer.batches_per_epoch, backend=backend)
trainer.add_subscriber(svcca_subscriber)
subscriber_added = True
if not subscriber_added:
warnings.warn('No subscriber was added, the will be no visualisation.')
batches_per_epoch = trainer.batches_per_epoch
print(f'Batches per epoch: {batches_per_epoch}')
# exporter = trainer.exporter
# modules = exporter.modules
# n_modules = len(modules)
epoch_range = range(epochs)
batch_range = range(batches_per_epoch)
if kwargs['verbose']:
epoch_range = tqdm(epoch_range, desc='Epoch')
batch_range = tqdm(batch_range, desc='Batch')
for e in epoch_range:
# freeze_idx = int(e/epochs * n_modules) - 1
# if freeze_idx >= 0:
# exporter.freeze_module(modules[freeze_idx])
for batch_idx in batch_range:
trainer.train_batch()
def get_parser():
'''Obtain a configured argument parser. This function is necessary for the sphinx argparse
extension.
Returns
-------
argparse.ArgumentParser
'''
def list_of_tuples(input_):
'''argparse type for passing a list of tuples'''
try:
kind1, kind2 = input_.split(',')
return (kind1, kind2)
except: # noqa
raise ArgumentTypeError('Values must be passed as val1,val2 (without space)')
parser = ArgumentParser()
parser.add_argument('-m', '--model', type=str, required=True, help='Model class to train')
data_choices = ['MNIST', 'FashionMNIST', 'CIFAR10', 'CIFAR100']
parser.add_argument('-d', '--dataset', type=str, choices=data_choices, required=True,
help='Dataset to train on')
parser.add_argument('-b', '--batch-size', type=int, default=128)
parser.add_argument('-e', '--epochs', type=int, default=10)
parser.add_argument('-o', '--optimizer', type=str, default='Adam', help='Optimizer to use')
parser.add_argument('-l', '--learning-rate', type=float, default=0.01, help='Learning rate')
parser.add_argument('-a', '--ratio-average', type=int, default=10, help='Number of ratios to '
'average for stability (currently unused)', metavar='N')
parser.add_argument('-s', '--subsample', type=int, default=1,
help='Number of batches to ignore between updates')
# parser.add_argument('-y', '--ylims', nargs=2, type=int, default=None,
# help='Y-axis limits for plots')
parser.add_argument('-v', '--visualisation', type=str, choices=['tb', 'mpl'], default='tb',
help='Visualisation backend to use.')
parser.add_argument('-V', '--verbose', action='store_true', default=False,
help='Show training progress bar')
parser.add_argument('--spectral-norm', nargs='+', type=str, default=None, metavar='TOPIC',
help='Use spectral norm subscriber(s)')
parser.add_argument('--variance', nargs='+', type=str, default=None, metavar='TOPIC',
help='Use variance norm subscriber(s)')
parser.add_argument('--histogram', nargs='+', type=str, default=None, metavar='TOPIC',
help='Use histogram subscriber(s)')
parser.add_argument('--ratio', type=list_of_tuples, nargs='+', default=None,
metavar='TOPIC,TOPIC', help='Use ratio subscriber(s)')
parser.add_argument('--norm', nargs='+', type=str, default=None, metavar='TOPIC',
help='Use 2-norm subscriber(s)')
parser.add_argument('--test-accuracy', action='store_true',
help='Use test set accuracy subscriber')
parser.add_argument('--train-accuracy', action='store_true',
help='Use train accuracy subscriber')
parser.add_argument('--svcca', action='store_true',
help='Use SVCCA subscriber')
parser.add_argument('--depth', type=int, default=-1, help='Depth to which to add modules',
metavar='N')
parser.add_argument('--hessian', action='store_true',
help='Use Hessian tracker (substantially increases training time)')
parser.add_argument('--exponential-decay', type=float, required=False,
help='Decay parameter for exponential decay', metavar='GAMMA')
parser.add_argument('--log-dir', type=str, required=False, help='TensorBoard logdir',
default='runs')
parser.add_argument('--seed', type=int, required=False, default=None,
help='Seed to use. None means don\'t seed')
return parser
def main():
args = get_parser().parse_args()
kwargs = vars(args)
ikkuna.visualization.TBBackend.info = str(kwargs)
ikkuna.visualization.configure_prefix(args.log_dir)
seed = kwargs.pop('seed')
if seed is not None:
seed_everything(seed)
_main(kwargs.pop('dataset'), kwargs.pop('model'), kwargs.pop('batch_size'),
kwargs.pop('epochs'), kwargs.pop('optimizer'), **vars(args))
if __name__ == '__main__':
main()