-
Notifications
You must be signed in to change notification settings - Fork 16
/
LiDAR_corruptions.py
342 lines (279 loc) · 9.02 KB
/
LiDAR_corruptions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
from operator import index
import open3d as o3d
import os
import h5py
import json
import numpy as np
import struct
import math
from numpy import random
import distortion
# Weather Corruptions
'''
Rain
'''
def rain_sim(pointcloud,severity):
from utils import lisa
rain_sim = lisa.LISA(show_progressbar=True)
c = [0.20, 0.73, 1.5625, 3.125, 7.29, 10.42][severity-1]
points = rain_sim.augment(pointcloud, c)
return points
'''
Snow
'''
def snow_sim(pointcloud,severity):
from utils import lisa
from utils.wet_ground.augmentation import ground_water_augmentation
snow_sim = lisa.LISA(mode='gunn', show_progressbar=True) # snow sim from lisa
c = [0.20, 0.73, 1.5625, 3.125, 7.29, 10.42][severity-1]
points = snow_sim.augment(pointcloud, c)
return points
'''
Snow for nus
'''
def snow_sim_nus(pointcloud,severity):
'''
first: git clone git@github.com:SysCV/LiDAR_snow_sim.git --recursive
second: wget https://www.trace.ethz.ch/publications/2022/lidar_snow_simulation/snowflakes.zip
then: change the utils in wet ground
'''
import sys
sys.path.append('./LiDAR_snow_sim/')
from tools.snowfall.simulation import augment
from tools.wet_ground.augmentation import ground_water_augmentation
from tools.snowfall.sampling import snowfall_rate_to_rainfall_rate, compute_occupancy
# snow sim from https://github.com/SysCV/LiDAR_snow_sim
c = [0.20, 0.73, 1.5625, 3.125, 7.29, 10.42][severity-1]
snowflake_file_prefix = ['gunn_2.621627143512277_7.716049382716048e-07','gunn_42.730958596843955_4.9603174603174595e-06','gunn_200.20719573938692_1.3888888888888886e-05','gunn_367.80410429625914_2.083333333333333e-05','gunn_791.3884281145265_3.4722222222222215e-05'][severity-1]
_, pc = augment(pc=pointcloud, only_camera_fov=False,
particle_file_prefix=snowflake_file_prefix, noise_floor=0.7,
beam_divergence=float(np.degrees(0.003)),
shuffle=True, show_progressbar=False)
points = ground_water_augmentation(pc)
return points
'''
Fog
'''
def fog_sim(pointcloud,severity):
from utils.fog_sim import simulate_fog
from utils.fog_sim import ParameterSet
c = [0.005, 0.01, 0.02, 0.03, 0.06][severity-1] # form original paper
parameter_set = ParameterSet(alpha=c, gamma=0.000001)
points, _, _ = simulate_fog(parameter_set, pointcloud, 1)
return points
'''
Sunlight
'''
def scene_glare_noise(pointcloud, severity):
N, C = pointcloud.shape
c = [int(0.010*N), int(0.020*N),int(0.030*N),int(0.040*N), int(0.050*N)][severity-1]
index = np.random.choice(N, c, replace=False)
pointcloud[index] += np.random.normal(size=(c, C)) * 2.0
return pointcloud
# Sensor Corruptions
'''
Crosstalk
'''
def lidar_crosstalk_noise(pointcloud, severity):
N, C = pointcloud.shape
c = [int(0.004*N), int(0.008*N),int(0.012*N),int(0.016*N), int(0.020*N)][severity-1]
index = np.random.choice(N, c, replace=False)
pointcloud[index] += np.random.normal(size=(c, C)) * 3.0
return pointcloud
'''
Density
'''
def density_dec_global(pointcloud, severity):
N, C = pointcloud.shape
num = int(N * 0.3)
c = [int(0.2*num), int(0.4*num), int(0.6*num), int(0.8*num), num][severity - 1]
idx = np.random.choice(N, c, replace=False)
pointcloud = np.delete(pointcloud, idx, axis=0)
return pointcloud
# '''
# density_dec
# '''
# def density_dec_local(pointcloud, severity):
# N, C = pointcloud.shape
# num = int(N * 0.10)
# c = [(1, num), (2, num), (3, num), (4, num), (5, num)][severity - 1]
# for _ in range(c[0]):
# i = np.random.choice(pointcloud.shape[0],1)
# picked = pointcloud[i]
# dist = np.sum((pointcloud - picked)**2, axis=1, keepdims=True)
# idx = np.argpartition(dist, c[1], axis=0)[:c[1]]
# idx_2 = np.random.choice(c[1],int((3/4) * c[1]),replace=False)
# idx = idx[idx_2]
# pointcloud = np.delete(pointcloud, idx.squeeze(), axis=0)
# return pointcloud
'''
Cutout
'''
def cutout_local(pointcloud, severity):
N, C = pointcloud.shape
num = int(N*0.02)
c = [(2,num), (3,num), (5,num), (7,num), (10,num)][severity-1]
for _ in range(c[0]):
i = np.random.choice(pointcloud.shape[0],1)
picked = pointcloud[i]
dist = np.sum((pointcloud - picked)**2, axis=1, keepdims=True)
idx = np.argpartition(dist, c[1], axis=0)[:c[1]]
pointcloud = np.delete(pointcloud, idx.squeeze(), axis=0)
return pointcloud
'''
Gaussian (L)
'''
def gaussian_noise(pointcloud, severity):
N, C = pointcloud.shape # N*3
c = [0.02, 0.04, 0.06, 0.08, 0.10][severity-1]
jitter = np.random.normal(size=(N, C)) * c
new_pc = (pointcloud + jitter).astype('float32')
return new_pc
'''
Uniform (L)
'''
def uniform_noise(pointcloud, severity):
# TODO
N, C = pointcloud.shape
c = [0.02, 0.04, 0.06, 0.08, 0.10][severity - 1]
jitter = np.random.uniform(-c, c, (N, C))
new_pc = (pointcloud + jitter).astype('float32')
return new_pc
'''
Impulse (L)
'''
def impulse_noise(pointcloud, severity):
N, C = pointcloud.shape
c = [N // 30, N // 25, N // 20, N // 15, N // 10][severity - 1]
index = np.random.choice(N, c, replace=False)
pointcloud[index] += np.random.choice([-1, 1], size=(c, C)) * 0.1
return pointcloud
'''
Fov lost
'''
def fov_filter(points, severity):
angle1 = [-105, -90, -75, -60, -45][severity-1]
angle2 = [105, 90, 75, 60, 45][severity-1]
if isinstance(points, np.ndarray):
pts_npy = points
elif isinstance(points, BasePoints):
pts_npy = points.tensor.numpy()
else:
raise NotImplementedError
pts_p = (np.arctan(pts_npy[:, 0] / pts_npy[:, 1]) + (
pts_npy[:, 1] < 0) * np.pi + np.pi * 2) % (np.pi * 2)
pts_p[pts_p > np.pi] -= np.pi * 2
pts_p = pts_p / np.pi * 180
assert np.all(-180 <= pts_p) and np.all(pts_p <= 180)
filt = np.logical_and(pts_p >= angle1, pts_p <= angle2)
return points[filt]
# Motion corruptions
'''
Moving Obj.
'''
def moving_noise_bbox(pointcloud,severity,bbox):
cor = 'move_bbox'
from utils import bbox_util
pointcloud = bbox_util.pick_bbox(cor,severity,bbox,pointcloud)
return pointcloud
'''
Motion Compensation
'''
def fulltrajectory_noise(pointcloud, pc_pose, severity):
from utils.lidar_split import lidar_split, reconstruct_pc
ct = [0.02, 0.04, 0.06, 0.08, 0.10][severity-1]
cr = [0.002, 0.004, 0.006, 0.008, 0.010][severity-1]
new_pose_list, new_lidar_list = lidar_split(pointcloud, pc_pose)
r_noise = np.random.normal(size=(100, 3, 3)) * cr
t_noise = np.random.normal(size=(100, 3)) * ct
new_pose_list[:, :3, :3] += r_noise
new_pose_list[:, :3, 3] += t_noise
f_pc = reconstruct_pc(new_lidar_list, new_pose_list)
return f_pc
# Object corruptions
'''
Local Density
'''
def density_dec_bbox(pointcloud,severity,bbox):
cor = 'density_dec_bbox'
from utils import bbox_util
pointcloud = bbox_util.pick_bbox(cor,severity,bbox,pointcloud)
return pointcloud
'''
Local Cutout
'''
def cutout_bbox(pointcloud,severity,bbox):
cor = 'cutout_bbox'
from utils import bbox_util
pointcloud = bbox_util.pick_bbox(cor,severity,bbox,pointcloud)
return pointcloud
'''
Local Gaussian
'''
def gaussian_noise_bbox(pointcloud,severity,bbox):
cor = 'gaussian_noise_bbox'
from utils import bbox_util
pointcloud = bbox_util.pick_bbox(cor,severity,bbox,pointcloud)
return pointcloud
'''
Local Uniform
'''
def uniform_noise_bbox(pointcloud,severity,bbox):
cor = 'uniform_noise_bbox'
from utils import bbox_util
pointcloud = bbox_util.pick_bbox(cor,severity,bbox,pointcloud)
return pointcloud
'''
Local Impulse
'''
def impulse_noise_bbox(pointcloud,severity,bbox):
cor = 'impulse_noise_bbox'
from utils import bbox_util
pointcloud = bbox_util.pick_bbox(cor,severity,bbox,pointcloud)
return pointcloud
'''
Scale
'''
def scale_bbox(pointcloud,severity,bbox):
cor = 'scale_bbox'
from utils import bbox_util
pointcloud = bbox_util.pick_bbox(cor,severity,bbox,pointcloud)
return pointcloud
'''
Shear
'''
def shear_bbox(pointcloud,severity,bbox):
cor = 'shear_bbox'
from utils import bbox_util
pointcloud = bbox_util.pick_bbox(cor,severity,bbox,pointcloud)
return pointcloud
'''
Rotation
'''
def rotation_bbox(pointcloud,severity,bbox):
cor = 'rotation_bbox'
from utils import bbox_util
pointcloud = bbox_util.pick_bbox(cor,severity,bbox,pointcloud)
return pointcloud
# Alignment
'''
Spatial
'''
def spatial_alignment_noise(ori_pose, severity):
'''
input: ori_pose 4*4
output: noise_pose 4*4
'''
ct = [0.02, 0.04, 0.06, 0.08, 0.10][severity-1]*2
cr = [0.002, 0.004, 0.006, 0.008, 0.010][severity-1]*2
r_noise = np.random.normal(size=(3, 3)) * cr
t_noise = np.random.normal(size=(3)) * ct
ori_pose[:3, :3] += r_noise
ori_pose[:3, 3] += t_noise
return ori_pose
'''
Temporal
'''
def temporal_alignment_noise(severity):
frame = [2, 4, 6, 8, 10][severity-1]
return frame