-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_critic.py
78 lines (66 loc) · 3.33 KB
/
train_critic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import os
import d4rl
import gym
import numpy as np
import torch
import tqdm
import wandb
from dataset import D4RL_dataset
from BDiffusion import IQL_policy
from utils import get_args, pallaral_simple_eval_policy
def train_critic(args, score_model, data_loader, start_epoch=0):
n_epochs = 150
tqdm_epoch = tqdm.trange(start_epoch, n_epochs)
# evaluation_inerval = 4
evaluation_inerval = 1
save_interval = 10
for epoch in tqdm_epoch:
avg_loss = 0.
num_items = 0
for _ in range(10000):
data = data_loader.sample(256)
loss2 = score_model.update_iql(data)
avg_loss += 0.0
num_items += 1
tqdm_epoch.set_description('Average Loss: {:5f}'.format(avg_loss / num_items))
if (epoch % evaluation_inerval == (evaluation_inerval -1)) or epoch==0:
if (epoch % 5 == 4) or epoch==0:
mean, std = pallaral_simple_eval_policy(score_model.deter_policy.select_actions,args.env,00)
args.run.log({"eval/rew{}".format("deter"): mean}, step=epoch+1)
args.run.log({"loss/v_loss": score_model.q[0].v_loss.detach().cpu().numpy()}, step=epoch+1)
args.run.log({"loss/q_loss": score_model.q[0].q_loss.detach().cpu().numpy()}, step=epoch+1)
args.run.log({"loss/q": score_model.q[0].q.detach().cpu().numpy()}, step=epoch+1)
args.run.log({"loss/v": score_model.q[0].v.detach().cpu().numpy()}, step=epoch+1)
args.run.log({"loss/policy_loss": score_model.policy_loss.detach().cpu().numpy()}, step=epoch+1)
args.run.log({"info/lr": score_model.deter_policy_optimizer.state_dict()['param_groups'][0]['lr']}, step=epoch+1)
if args.save_model and ((epoch % save_interval == (save_interval - 1)) or epoch==0):
# if not os.path.exists(os.path.join("./EDA_model_factory", "{}-baseline-seed{}".format(args.env, args.seed))):
# os.makedirs(os.path.join("./EDA_model_factory", "{}-baseline-seed{}".format(args.env, args.seed)))
# torch.save(score_model.q[0].state_dict(), os.path.join("./EDA_model_factory", "{}-baseline-seed{}".format(args.env, args.seed), "critic_ckpt{}.pth".format(epoch+1)))
torch.save(score_model.state_dict(), os.path.join("./EDA_model_factory", str(args.expid), "critic_ckpt{}.pth".format(epoch+1)))
def critic(args):
for dir in ["./EDA_model_factory"]:
if not os.path.exists(dir):
os.makedirs(dir)
if not os.path.exists(os.path.join("./EDA_model_factory", str(args.expid))):
os.makedirs(os.path.join("./EDA_model_factory", str(args.expid)))
run = wandb.init(project="EDA_model_factory", name=str(args.expid))
wandb.config.update(args)
env = gym.make(args.env)
env.seed(args.seed)
env.action_space.seed(args.seed)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
args.run = run
score_model= IQL_policy(input_dim=state_dim+action_dim, output_dim=action_dim, args=args).to(args.device)
score_model.q[0].to(args.device)
dataset = D4RL_dataset(args)
print("training critic")
train_critic(args, score_model, dataset, start_epoch=0)
print("finished")
run.finish()
if __name__ == "__main__":
args = get_args()
critic(args)