-
Notifications
You must be signed in to change notification settings - Fork 419
/
vae_ssl_adaptive_is.py
233 lines (197 loc) · 8.85 KB
/
vae_ssl_adaptive_is.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import os
import time
import tensorflow as tf
from six.moves import range
import numpy as np
import zhusuan as zs
from examples import conf
from examples.utils import dataset
@zs.meta_bayesian_net(scope="gen", reuse_variables=True)
def build_gen(n, x_dim, n_class, z_dim, n_particles):
bn = zs.BayesianNet()
z_mean = tf.zeros([n, z_dim])
z = bn.normal("z", z_mean, std=1., group_ndims=1, n_samples=n_particles)
h_from_z = tf.layers.dense(z, 500)
y_logits = tf.zeros([n, n_class])
y = bn.onehot_categorical("y", y_logits)
h_from_y = tf.layers.dense(tf.cast(y, tf.float32), 500)
h = tf.nn.relu(h_from_z + h_from_y)
h = tf.layers.dense(h, 500, activation=tf.nn.relu)
x_logits = tf.layers.dense(h, x_dim)
bn.bernoulli("x", x_logits, group_ndims=1)
return bn
@zs.reuse_variables(scope="qz_xy")
def qz_xy(x, y, z_dim):
h = tf.layers.dense(tf.cast(tf.concat([x, y], -1), tf.float32), 500,
activation=tf.nn.relu)
h = tf.layers.dense(h, 500, activation=tf.nn.relu)
z_mean = tf.layers.dense(h, z_dim)
z_logstd = tf.layers.dense(h, z_dim)
return z_mean, z_logstd
@zs.reuse_variables(scope="qy_x")
def qy_x(x, n_class):
h = tf.layers.dense(tf.cast(x, tf.float32), 500, activation=tf.nn.relu)
h = tf.layers.dense(h, 500, activation=tf.nn.relu)
y_logits = tf.layers.dense(h, n_class)
return y_logits
def labeled_proposal(x, y, z_dim, n_particles):
bn = zs.BayesianNet()
z_mean, z_logstd = qz_xy(x, y, z_dim)
bn.normal("z", z_mean, logstd=z_logstd, n_samples=n_particles,
group_ndims=1, is_reparameterized=False)
return bn
def unlabeled_proposal(x, n_class, z_dim, n_particles):
bn = zs.BayesianNet()
y_logits = qy_x(x, n_class)
y = bn.onehot_categorical("y", y_logits)
z_mean, z_logstd = qz_xy(x, y, z_dim)
bn.normal("z", z_mean, logstd=z_logstd, group_ndims=1,
is_reparameterized=False, n_samples=n_particles)
return bn
def main():
tf.set_random_seed(1234)
np.random.seed(1234)
# Load MNIST
data_path = os.path.join(conf.data_dir, "mnist.pkl.gz")
x_labeled, t_labeled, x_unlabeled, x_test, t_test = \
dataset.load_mnist_semi_supervised(data_path, one_hot=True)
x_test = np.random.binomial(1, x_test, size=x_test.shape)
n_labeled, x_dim = x_labeled.shape
n_class = 10
# Define model parameters
z_dim = 100
beta = 1200.
# Build the computation graph
n = tf.placeholder(tf.int32, shape=[], name="n")
n_particles = tf.placeholder(tf.int32, shape=[], name="n_particles")
model = build_gen(n, x_dim, n_class, z_dim, n_particles)
# Labeled
x_labeled_ph = tf.placeholder(tf.float32, shape=[None, x_dim], name="x_l")
x_labeled = tf.cast(
tf.less(tf.random_uniform(tf.shape(x_labeled_ph)), x_labeled_ph),
tf.int32)
y_labeled_ph = tf.placeholder(tf.int32, shape=[None, n_class], name="y_l")
proposal = labeled_proposal(x_labeled, y_labeled_ph, z_dim, n_particles)
# adapting the proposal
labeled_klpq_obj = zs.variational.klpq(
model,
observed={"x": x_labeled, "y": y_labeled_ph},
variational=proposal,
axis=0)
labeled_q_cost = tf.reduce_mean(labeled_klpq_obj.importance())
# learning model parameters
labeled_lower_bound = tf.reduce_mean(
zs.variational.importance_weighted_objective(
model, observed={'x': x_labeled, 'y': y_labeled_ph},
variational=proposal, axis=0))
# Unlabeled
x_unlabeled_ph = tf.placeholder(tf.float32, shape=[None, x_dim],
name="x_u")
x_unlabeled = tf.cast(
tf.less(tf.random_uniform(tf.shape(x_unlabeled_ph)), x_unlabeled_ph),
tf.int32)
proposal = unlabeled_proposal(x_unlabeled, n_class, z_dim, n_particles)
# adapting the proposal
unlabeled_klpq_obj = zs.variational.klpq(
model,
observed={'x': x_unlabeled},
variational=proposal,
axis=0)
unlabeled_q_cost = tf.reduce_mean(unlabeled_klpq_obj.importance())
# learning model parameters
unlabeled_lower_bound = tf.reduce_mean(
zs.variational.importance_weighted_objective(
model, observed={'x': x_unlabeled}, variational=proposal,
axis=0))
# Build classifier
qy_logits_l = qy_x(x_labeled, n_class)
qy_l = tf.nn.softmax(qy_logits_l)
pred_y = tf.argmax(qy_l, 1)
acc = tf.reduce_sum(
tf.cast(tf.equal(pred_y, tf.argmax(y_labeled_ph, 1)), tf.float32) /
tf.cast(tf.shape(x_labeled)[0], tf.float32))
onehot_cat = zs.distributions.OnehotCategorical(qy_logits_l)
log_qy_x = onehot_cat.log_prob(y_labeled_ph)
classifier_cost = -beta * tf.reduce_mean(log_qy_x)
# Gather gradients
proposal_cost = labeled_q_cost + unlabeled_q_cost + classifier_cost
model_cost = -labeled_lower_bound - unlabeled_lower_bound
optimizer = tf.train.AdamOptimizer(learning_rate=3e-4)
model_params = tf.trainable_variables(scope="gen")
model_grads = optimizer.compute_gradients(model_cost,
var_list=model_params)
proposal_params = (tf.trainable_variables(scope="qy_x") +
tf.trainable_variables(scope="qz_xy"))
proposal_grads = optimizer.compute_gradients(proposal_cost,
var_list=proposal_params)
infer_op = optimizer.apply_gradients(model_grads + proposal_grads)
# Define training/evaluation parameters
ll_samples = 10
epochs = 3000
batch_size = 100
iters = x_unlabeled.shape[0] // batch_size
test_freq = 10
test_batch_size = 100
test_iters = x_test.shape[0] // test_batch_size
# Run the inference
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(1, epochs + 1):
time_epoch = -time.time()
np.random.shuffle(x_unlabeled)
lbs_labeled, lbs_unlabeled, train_accs = [], [], []
for t in range(iters):
labeled_indices = np.random.randint(0, n_labeled,
size=batch_size)
x_labeled_batch = x_labeled[labeled_indices]
y_labeled_batch = t_labeled[labeled_indices]
x_unlabeled_batch = x_unlabeled[t * batch_size:
(t + 1) * batch_size]
_, lb_labeled, lb_unlabeled, train_acc = sess.run(
[infer_op, labeled_lower_bound, unlabeled_lower_bound,
acc],
feed_dict={x_labeled_ph: x_labeled_batch,
y_labeled_ph: y_labeled_batch,
x_unlabeled_ph: x_unlabeled_batch,
n_particles: ll_samples,
n: batch_size})
lbs_labeled.append(lb_labeled)
lbs_unlabeled.append(lb_unlabeled)
train_accs.append(train_acc)
time_epoch += time.time()
print('Epoch {} ({:.1f}s), Lower bound: labeled = {}, '
'unlabeled = {} Accuracy: {:.2f}%'.
format(epoch, time_epoch, np.mean(lbs_labeled),
np.mean(lbs_unlabeled), np.mean(train_accs) * 100.))
if epoch % test_freq == 0:
time_test = -time.time()
test_lls_labeled, test_lls_unlabeled, test_accs = [], [], []
for t in range(test_iters):
test_x_batch = x_test[
t * test_batch_size: (t + 1) * test_batch_size]
test_y_batch = t_test[
t * test_batch_size: (t + 1) * test_batch_size]
test_ll_labeled, test_ll_unlabeled, test_acc = sess.run(
[labeled_lower_bound, unlabeled_lower_bound, acc],
feed_dict={x_labeled: test_x_batch,
y_labeled_ph: test_y_batch,
x_unlabeled: test_x_batch,
n_particles: ll_samples,
n: test_batch_size})
test_lls_labeled.append(test_ll_labeled)
test_lls_unlabeled.append(test_ll_unlabeled)
test_accs.append(test_acc)
time_test += time.time()
print('>>> TEST ({:.1f}s)'.format(time_test))
print('>> Test lower bound: labeled = {}, unlabeled = {}'.
format(np.mean(test_lls_labeled),
np.mean(test_lls_unlabeled)))
print('>> Test accuracy: {:.2f}%'.format(
100. * np.mean(test_accs)))
if __name__ == "__main__":
main()