-
Notifications
You must be signed in to change notification settings - Fork 0
/
fehsim.py
472 lines (400 loc) · 19.6 KB
/
fehsim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
import pandas as pd
import streamlit as st
from stqdm import stqdm
from tqdm import tqdm
class Simulator:
def __init__(self, settings: dict, streamlit=False):
self.streamlit = streamlit
target_rarity_map = {
'Any Rarity': [
'sh_special_4', 'special_4', 'non_focus_3', 'focus_5', 'non_focus_4', 'non_focus_5', 'focus_4'
],
'Any 5★ Unit or 4★ Special Rate Unit': [
'sh_special_4', 'special_4', 'focus_5', 'non_focus_5'
],
'Any 5★ Unit': [
'focus_5', 'non_focus_5'
],
'Specific 5★ Focus Unit': [
'focus_5'
],
'Specific 5★ Non-Focus Unit': [
'non_focus_5'
],
'Any 4★ Unit or 4★ Special Rate Unit or 4★ SHSR Unit': [
'sh_special_4', 'special_4', 'non_focus_4', 'focus_4'
],
'Any 4★ Unit': [
'non_focus_4', 'focus_4'
],
'Specific 4★ Focus Unit': [
'focus_4'
],
'Specific 4★ Non-Focus Unit': [
'non_focus_4'
],
'Any 4★ Special Rate Unit or 4★ SHSR Unit': [
'sh_special_4', 'special_4'
],
'Specific 4★ Special Rate Unit': [
'special_4'
],
'Specific 4★ SHSR Unit': [
'sh_special_4'
],
}
target_color_map = {
'Any Color': ['red', 'blue', 'green', 'colorless'],
'Red': ['red'],
'Blue': ['blue'],
'Green': ['green'],
'Colorless': ['colorless'],
}
banner_selection_map = {
"(3%/3%) Normal": ['normal', 'normal_4'],
"(4%/2%) Weekly Revival": ['weekly_revival'],
"(4%/2%) Weekly Revival 4★ SHSR": ['weekly_revival_shsr'],
"(5%/3%) Hero Fest": ['hero_fest'],
"(4%/2%) Double Special Heroes": ['double_special', 'double_special_4'],
"(8%/0%) Legendary / Mythic": ['legendary/mythic']
}
banner_rates = pd.DataFrame(
[
['normal', 'focus_5', 0.03],
['normal', 'non_focus_5', 0.03],
['normal', 'special_4', 0.03],
['normal', 'non_focus_4', 0.55],
['normal', 'non_focus_3', 0.36],
['normal_4', 'focus_5', 0.03],
['normal_4', 'non_focus_5', 0.03],
['normal_4', 'focus_4', 0.03],
['normal_4', 'special_4', 0.03],
['normal_4', 'non_focus_4', 0.52],
['normal_4', 'non_focus_3', 0.36],
['weekly_revival', 'focus_5', 0.04],
['weekly_revival', 'non_focus_5', 0.02],
['weekly_revival', 'special_4', 0.03],
['weekly_revival', 'non_focus_4', 0.55],
['weekly_revival', 'non_focus_3', 0.36],
['weekly_revival_shsr', 'focus_5', 0.04],
['weekly_revival_shsr', 'non_focus_5', 0.02],
['weekly_revival_shsr', 'sh_special_4', 0.03],
['weekly_revival_shsr', 'special_4', 0.03],
['weekly_revival_shsr', 'non_focus_4', 0.55],
['weekly_revival_shsr', 'non_focus_3', 0.33],
['hero_fest', 'focus_5', 0.05],
['hero_fest', 'non_focus_5', 0.03],
['hero_fest', 'special_4', 0.03],
['hero_fest', 'non_focus_4', 0.55],
['hero_fest', 'non_focus_3', 0.34],
['double_special', 'focus_5', 0.06],
['double_special', 'special_4', 0.03],
['double_special', 'non_focus_4', 0.57],
['double_special', 'non_focus_3', 0.34],
['double_special_4', 'focus_5', 0.06],
['double_special_4', 'focus_4', 0.03],
['double_special_4', 'special_4', 0.03],
['double_special_4', 'non_focus_4', 0.54],
['double_special_4', 'non_focus_3', 0.34],
['legendary/mythic', 'focus_5', 0.08],
['legendary/mythic', 'special_4', 0.03],
['legendary/mythic', 'non_focus_4', 0.55],
['legendary/mythic', 'non_focus_3', 0.34],
],
columns=['banner_type', 'rarity_pool', 'rate']
)
self.pools = settings.get('Pools')
self.goals = settings.get('Goals')
self.banner_rates = settings.get('Banner Rates')
self.goals_required = settings.get('Goals Required')
self.orb_limit = settings.get('Orb Limit')
self.summon_limit = settings.get('Summon Limit')
self.banner_type = settings.get('Banner Type', '(3%/3%) Normal')
self.n_simulations = settings.get('Simulations', 1000)
self.tickets = settings.get('Tickets', 0)
self.sparks = settings.get('Sparks', 0)
self.focus_charges_enabled = settings.get('Focus Charges', False)
self.color_priority = settings.get('Color Priority', ['red', 'blue', 'green', 'colorless'])
if not any([self.goals_required, self.orb_limit, self.summon_limit]):
raise ValueError('No End Criteria (Goals Required, Orb Limit, Summon Limit) provided.')
self.pools = pd.DataFrame(self.pools)
self.goals = pd.DataFrame(self.goals)
if self.banner_rates is None:
if self.pools.loc['focus_4'].sum() > 0:
mapped_banner_type = banner_selection_map[self.banner_type][-1]
else:
mapped_banner_type = banner_selection_map[self.banner_type][0]
self.banner_rates = banner_rates[banner_rates['banner_type'] == mapped_banner_type]
else:
self.banner_rates = pd.DataFrame(self.banner_rates).reset_index()
self.banner_rates.columns = ['rarity_pool', 'rate']
bool_rate_5 = self.banner_rates.rarity_pool.str.contains('5')
bool_rate_non_5 = ~bool_rate_5
sum_rate_5 = self.banner_rates.loc[bool_rate_5, 'rate'].sum()
sum_rate_non_5 = self.banner_rates.loc[bool_rate_non_5, 'rate'].sum()
self.banner_rates['step'] = 0
pre_calc_rates = [self.banner_rates]
# feh calculates rate up (rate down for non 5 stars) from base, not from previous step!
for i in range(1, 24):
inc_rates_df = self.banner_rates.copy(deep=True)
inc_rates_df.loc[bool_rate_5, 'rate'] *= 1 + (1 / sum_rate_5) * (0.005 * i)
inc_rates_df.loc[bool_rate_non_5, 'rate'] *= 1 - (1 / sum_rate_non_5) * (0.005 * i)
inc_rates_df['rate'] = round(inc_rates_df['rate'], 4)
inc_rates_df['step'] = i
pre_calc_rates.append(inc_rates_df)
# max pity rate
inc_rates_df = self.banner_rates.copy(deep=True)
inc_rates_df.loc[bool_rate_5, 'rate'] /= sum_rate_5
inc_rates_df.loc[bool_rate_non_5, 'rate'] = 0
inc_rates_df['rate'] = round(inc_rates_df['rate'], 4)
inc_rates_df['step'] = 24
pre_calc_rates.append(inc_rates_df)
self.banner_rates_pro_df = pd.concat(pre_calc_rates)
self.pity_step = 0
self.curr_banner_rates_df = self.banner_rates_pro_df[self.banner_rates_pro_df['step'] == self.pity_step]
pools_to_use = [rp for rp in self.pools.index if rp in self.banner_rates.rarity_pool.values]
self.pools = pd.DataFrame(self.pools.loc[pools_to_use])
self.pools.reset_index(inplace=True, names='rarity_pool')
unpivot_unit_pool = pd.melt(self.pools, id_vars=['rarity_pool'], var_name='color', value_name='size')
unit_list = []
for row in unpivot_unit_pool.itertuples():
for _ in range(row.size):
unit_list_row = [row.color, row.rarity_pool]
unit_list.append(unit_list_row)
units_df = pd.DataFrame(unit_list, columns=['color', 'rarity_pool'])
# joining color priority col to df
priority_df = pd.DataFrame(enumerate(self.color_priority, start=1), columns=['color_priority', 'color'])
units_df = units_df.join(priority_df.set_index('color'), on='color', validate='m:1')
# Goals Setup
goals_df = self.goals.copy(deep=True)
max_goal_group = goals_df.groupby('goal_group')['target_count'].max().reset_index()
goals_df = goals_df.join(
max_goal_group.set_index('goal_group'), on='goal_group', rsuffix='_max', validate='m:1'
)
goals_df['target_count'] = goals_df['target_count_max']
goals_df = goals_df.drop('target_count_max', axis=1)
goals_df['target_color'] = goals_df['target_color']
goals_df['current_count'] = 0
# Adding goal_row bool columns to unit_df
reserved_unit_index = []
for goal in goals_df.itertuples():
accepted_pools = target_rarity_map[goal.target_rarity]
accepted_colors = target_color_map[goal.target_color]
gr_col_name = 'goal_row_' + str(goal.Index)
goal_is_specific = 'specific' in goal.target_rarity.lower()
if goal_is_specific:
allowed_units = ~units_df.index.isin(reserved_unit_index)
else:
allowed_units = True
units_df[gr_col_name] = units_df['rarity_pool'].isin(accepted_pools) & units_df['color'].isin(
accepted_colors) & allowed_units
if units_df[gr_col_name].any() and goal_is_specific:
first_true_index = units_df.index[units_df[gr_col_name]].min()
reserved_unit_index.append(first_true_index)
units_df[gr_col_name] = units_df.index == first_true_index
else:
if self.streamlit:
st.warning(f'{gr_col_name} does not have any available units to target.')
st.warning('Target unit may already be reserved by previous goal.')
else:
print(f'{gr_col_name} does not have any available units to target.')
print('Target unit may already be reserved by previous goal.')
# Adding goal_group bool columns to unit_df
goal_groups_dict = {}
for group in set(goals_df['goal_group']):
goals_in_group = ['goal_row_' + str(x) for x in list(goals_df[goals_df['goal_group'] == group].index)]
goal_groups_dict['goal_group_' + str(group)] = goals_in_group
for goal_group in goal_groups_dict:
cols = goal_groups_dict[goal_group]
units_df[goal_group] = units_df[cols].apply(lambda row: pd.Series(row).any(), axis=1)
self.gg_cols = list(goal_groups_dict.keys())
self.gg_cols.sort()
slice_cols = [col for col in list(units_df.columns) if 'goal' not in col] + self.gg_cols
units_df = units_df[slice_cols]
self.base_summon_goals_df = goals_df.copy(deep=True)
self.curr_summon_goals_df = self.base_summon_goals_df.copy(deep=True)
self.banner_units_df = units_df.copy(deep=True)
self.goal_cols = list(self.base_summon_goals_df.columns[5:])
self.colors_to_target = list(set(self.curr_summon_goals_df.target_color))
# small adjustments
self.spark_thresholds = [_ * 40 for _ in range(1, self.sparks + 1)]
self.sparks_redeemed = 0
self.sparked_indexes = []
self.active_focus_charges = 0
self.apply_focus_charges = False
# refs
self.circle_df = None
self.session_type = 'normal'
self.summon_cost = 0
self.n_stones_in_circle = 5
# tracking
self.total_orbs_spent = 0
self.total_summons = 0
self.session_count = 0
self.summons_without_any_5 = 0
self.halt_pity_increase = False
self.end_criteria_met = False
self.summon_log = []
self.prev_summon_log_len = 0
self.orbs_spent_log = []
self.session_count_log = []
self.session_type_log = []
self.session_pity_step_log = []
self.run_num_log = []
self.simulation_log_df = None
self.run_simulations()
def reset_run(self):
self.total_orbs_spent = 0
self.total_summons = 0
self.session_count = 0
self.summons_without_any_5 = 0
self.end_criteria_met = False
self.curr_summon_goals_df = self.base_summon_goals_df.copy(deep=True)
self.sparks_redeemed = 0
self.sparked_indexes = []
self.active_focus_charges = 0
self.apply_focus_charges = False
def run_simulations(self):
if self.streamlit:
progress_bar = stqdm(range(self.n_simulations))
else:
progress_bar = tqdm(range(self.n_simulations))
for n in progress_bar:
self.simulate_run()
self.log_run(n + 1)
self.reset_run()
self.simulation_log_df = pd.DataFrame(self.summon_log)
self.simulation_log_df.rename(columns={'Index': 'unit_id'}, inplace=True)
self.simulation_log_df['unit_id'] += 1
self.simulation_log_df['orbs_spent'] = self.orbs_spent_log
self.simulation_log_df['session_count'] = self.session_count_log
self.simulation_log_df['session_type'] = self.session_type_log
self.simulation_log_df['session_pity_step'] = self.session_pity_step_log
self.simulation_log_df['run_num'] = self.run_num_log
message = f'{self.n_simulations} Simulations Completed'
if self.streamlit:
st.success(message)
else:
print(message)
def simulate_run(self):
while not self.end_criteria_met:
self.setup_session()
self.create_circle()
self.filter_circle()
self.summon_from_circle()
def log_run(self, run_num):
curr_log_len = len(self.summon_log) - self.prev_summon_log_len
self.run_num_log = self.run_num_log + [run_num for _ in range(curr_log_len)]
self.prev_summon_log_len = len(self.summon_log)
def setup_session(self):
self.session_type = 'normal'
self.apply_focus_charges = False
sparks_remain = self.sparks_redeemed != len(self.spark_thresholds)
if sparks_remain and self.total_summons >= self.spark_thresholds[self.sparks_redeemed]:
self.sparks_redeemed += 1
self.session_type = 'spark'
return
if self.focus_charges_enabled and self.active_focus_charges >= 3:
self.apply_focus_charges = True
self.pity_step = int(self.summons_without_any_5 / 5)
self.curr_banner_rates_df = self.banner_rates_pro_df[self.banner_rates_pro_df.step == self.pity_step].copy()
def create_circle(self):
circle = []
if self.session_type == 'spark':
bool_rarity = self.banner_units_df['rarity_pool'] == 'focus_5'
spark_circle = self.banner_units_df.loc[bool_rarity]
spark_circle = spark_circle[
~spark_circle.index.isin(self.sparked_indexes)] # removes previously sparked units
self.circle_df = spark_circle
return
for i in range(self.n_stones_in_circle):
# draws unit rarities
drawn_rarity = self.curr_banner_rates_df.sample(weights='rate')['rarity_pool'].iloc[0]
if self.apply_focus_charges and drawn_rarity == 'non_focus_5':
drawn_rarity = 'focus_5'
units_in_rarity = self.banner_units_df[self.banner_units_df['rarity_pool'] == drawn_rarity]
# draws unit from drawn rarities
drawn_unit = units_in_rarity.sample()
circle.append(drawn_unit)
self.circle_df = pd.concat(circle)
def filter_circle(self):
if self.session_type == 'spark':
circle = self.circle_df[self.circle_df[self.gg_cols].any(axis=1)].head(1)
elif self.goals_required == 'Any Goal Met' or len(self.colors_to_target) == 1:
self.colors_to_target = list(self.curr_summon_goals_df['target_color'].str.lower())
circle = self.circle_df[self.circle_df['color'].isin(self.colors_to_target)].sort_values('color_priority')
elif self.goals_required == 'All Goals Met':
unmet_goals = self.curr_summon_goals_df['current_count'] < self.curr_summon_goals_df['target_count']
self.colors_to_target = list(self.curr_summon_goals_df[unmet_goals]['target_color'].str.lower())
circle = self.circle_df[self.circle_df['color'].isin(self.colors_to_target)].sort_values('color_priority')
else:
circle = self.circle_df
if len(circle) != 0:
self.circle_df = circle
else: # if nothing returns after filtering, filter for first stone
self.circle_df = self.circle_df.sort_values('color_priority').head(1)
def summon_from_circle(self):
price_index = 0
self.session_count += 1
self.halt_pity_increase = False
if self.session_count <= self.tickets + 1:
prices = (0, 4, 4, 4, 3)
else:
prices = (5, 4, 4, 4, 3)
for row in self.circle_df.itertuples(index=True): # keep index as true
if self.session_type == 'spark':
self.sparked_indexes.append(row.Index)
self.summon_cost = 0
else:
self.summon_cost = prices[price_index]
self.eval_end_criteria_limits()
if self.end_criteria_met:
break
self.total_summons += 1
self.orbs_spent_log.append(self.summon_cost)
self.total_orbs_spent += self.summon_cost
self.summon_log.append(row)
self.session_count_log.append(self.session_count)
self.session_type_log.append(self.session_type)
self.session_pity_step_log.append(self.pity_step)
self.update_flags(row)
self.update_goals(row)
self.eval_end_criteria_goals()
if self.end_criteria_met:
break
price_index += 1
if self.end_criteria_met:
return
def update_flags(self, row):
if row.rarity_pool == 'focus_5':
self.halt_pity_increase = True
self.summons_without_any_5 = 0
if self.active_focus_charges >= 3:
self.active_focus_charges = 0
elif row.rarity_pool == 'non_focus_5':
self.summons_without_any_5 = max(0, self.summons_without_any_5 - 20)
self.active_focus_charges += 1
else:
if not self.halt_pity_increase:
self.summons_without_any_5 += 1
def update_goals(self, row): # takes named tuple from circle_df, updates summon goals based on goal group columns
# noinspection PyProtectedMember
row_dict = row._asdict()
for gg in self.gg_cols:
if row_dict[gg]:
gg_num = gg.split('_')[-1]
self.curr_summon_goals_df.loc[self.curr_summon_goals_df['goal_group'] == gg_num, 'current_count'] += 1
def eval_end_criteria_goals(self):
if self.goals_required is not None:
met_goals = self.curr_summon_goals_df['current_count'] >= self.curr_summon_goals_df['target_count']
if self.goals_required == 'Any Goal Group Met' and any(met_goals):
self.end_criteria_met = True
elif self.goals_required == 'All Goal Groups Met' and all(met_goals):
self.end_criteria_met = True
def eval_end_criteria_limits(self):
if self.orb_limit != 0:
if self.total_orbs_spent + self.summon_cost > self.orb_limit:
self.end_criteria_met = True
elif self.summon_limit != 0:
if self.total_summons + 1 > self.summon_limit:
self.end_criteria_met = True