-
Notifications
You must be signed in to change notification settings - Fork 482
/
MRFNetwork.py
963 lines (819 loc) · 43 KB
/
MRFNetwork.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
from scipy.misc import imread, imresize, imsave
from scipy.optimize import fmin_l_bfgs_b
from sklearn.feature_extraction.image import reconstruct_from_patches_2d, extract_patches_2d
import scipy.interpolate
import scipy.ndimage
import numpy as np
import time
import os
import argparse
import h5py
from keras.models import Sequential
from keras.layers.convolutional import Convolution2D, ZeroPadding2D, AveragePooling2D
from keras import backend as K
"""
Neural Style Transfer with Keras 1.0.6
Uses the VGG-16 model as described in the Keras example below :
https://github.com/keras-team/keras-io/blob/master/examples/generative/neural_style_transfer.py
Note:
Before running this script, download the weights for the VGG16 model at:
https://drive.google.com/file/d/0Bz7KyqmuGsilT0J5dmRCM0ROVHc/view?usp=sharing
(source: https://gist.github.com/baraldilorenzo/07d7802847aaad0a35d3)
and make sure the variable `weights_path` in this script matches the location of the file.
-----------------------------------------------------------------------------------------------------------------------
"""
def _calc_patch_grid_dims(shape, patch_size, patch_stride):
x_w, x_h, x_c = shape
num_rows = 1 + (x_h - patch_size) // patch_stride
num_cols = 1 + (x_w - patch_size) // patch_stride
return num_rows, num_cols
def make_patch_grid(x, patch_size, patch_stride=1):
'''x shape: (num_channels, rows, cols)'''
x = x.transpose(2, 1, 0)
patches = extract_patches_2d(x, (patch_size, patch_size))
x_w, x_h, x_c = x.shape
num_rows, num_cols = _calc_patch_grid_dims(x.shape, patch_size, patch_stride)
patches = patches.reshape((num_rows, num_cols, patch_size, patch_size, x_c))
patches = patches.transpose((0, 1, 4, 2, 3))
#patches = np.rollaxis(patches, -1, 2)
return patches
def combine_patches_grid(in_patches, out_shape):
'''Reconstruct an image from these `patches`
input shape: (rows, cols, channels, patch_row, patch_col)
'''
num_rows, num_cols = in_patches.shape[:2]
num_channels = in_patches.shape[-3]
patch_size = in_patches.shape[-1]
num_patches = num_rows * num_cols
in_patches = np.reshape(in_patches, (num_patches, num_channels, patch_size, patch_size)) # (patches, channels, pr, pc)
in_patches = np.transpose(in_patches, (0, 2, 3, 1)) # (patches, p, p, channels)
recon = reconstruct_from_patches_2d(in_patches, out_shape)
return recon.transpose(2, 1, 0)
class PatchMatcher(object):
'''A matcher of image patches inspired by the PatchMatch algorithm.
image shape: (width, height, channels)
'''
def __init__(self, input_shape, target_img, patch_size=1, patch_stride=1, jump_size=0.5,
num_propagation_steps=5, num_random_steps=5, random_max_radius=1.0, random_scale=0.5):
self.input_shape = input_shape
self.patch_size = patch_size
self.patch_stride = patch_stride
self.jump_size = jump_size
self.num_propagation_steps = num_propagation_steps
self.num_random_steps = num_random_steps
self.random_max_radius = random_max_radius
self.random_scale = random_scale
self.num_input_rows, self.num_input_cols = _calc_patch_grid_dims(input_shape, patch_size, patch_stride)
self.target_patches = make_patch_grid(target_img, patch_size)
self.target_patches_normed = self.normalize_patches(self.target_patches)
self.coords = np.random.uniform(0.0, 1.0, # TODO: switch to pixels
(2, self.num_input_rows, self.num_input_cols))# * [[[self.num_input_rows]],[[self.num_input_cols]]]
self.similarity = np.zeros(input_shape[:2:-1], dtype ='float32')
self.min_propagration_row = 1.0 / self.num_input_rows
self.min_propagration_col = 1.0 / self.num_input_cols
self.delta_row = np.array([[[self.min_propagration_row]], [[0.0]]])
self.delta_col = np.array([[[0.0]], [[self.min_propagration_col]]])
def update(self, input_img, reverse_propagation=False):
input_patches = self.get_patches_for(input_img)
self.update_with_patches(self.normalize_patches(input_patches), reverse_propagation=reverse_propagation)
def update_with_patches(self, input_patches, reverse_propagation=False):
self._propagate(input_patches, reverse_propagation=reverse_propagation)
self._random_update(input_patches)
def get_patches_for(self, img):
return make_patch_grid(img, self.patch_size)
def normalize_patches(self, patches):
norm = np.sqrt(np.sum(np.square(patches), axis=(2, 3, 4), keepdims=True))
return patches / norm
def _propagate(self, input_patches, reverse_propagation=False):
if reverse_propagation:
roll_direction = 1
else:
roll_direction = -1
sign = float(roll_direction)
for step_i in range(self.num_propagation_steps):
new_coords = self.clip_coords(np.roll(self.coords, roll_direction, 1) + self.delta_row * sign)
coords_row, similarity_row = self.eval_state(new_coords, input_patches)
new_coords = self.clip_coords(np.roll(self.coords, roll_direction, 2) + self.delta_col * sign)
coords_col, similarity_col = self.eval_state(new_coords, input_patches)
self.coords, self.similarity = self.take_best(coords_row, similarity_row, coords_col, similarity_col)
def _random_update(self, input_patches):
for alpha in range(1, self.num_random_steps + 1): # NOTE this should actually stop when the move is < 1
new_coords = self.clip_coords(self.coords + np.random.uniform(-self.random_max_radius, self.random_max_radius, self.coords.shape) * self.random_scale ** alpha)
self.coords, self.similarity = self.eval_state(new_coords, input_patches)
def eval_state(self, new_coords, input_patches):
new_similarity = self.patch_similarity(input_patches, new_coords)
delta_similarity = new_similarity - self.similarity
coords = np.where(delta_similarity > 0, new_coords, self.coords)
best_similarity = np.where(delta_similarity > 0, new_similarity, self.similarity)
return coords, best_similarity
def take_best(self, coords_a, similarity_a, coords_b, similarity_b):
delta_similarity = similarity_a - similarity_b
best_coords = np.where(delta_similarity > 0, coords_a, coords_b)
best_similarity = np.where(delta_similarity > 0, similarity_a, similarity_b)
return best_coords, best_similarity
def patch_similarity(self, source, coords):
'''Check the similarity of the patches specified in coords.'''
target_vals = self.lookup_coords(self.target_patches_normed, coords)
err = source * target_vals
return np.sum(err, axis=(2, 3, 4))
def clip_coords(self, coords):
# TODO: should this all be in pixel space?
coords = np.clip(coords, 0.0, 1.0)
return coords
def lookup_coords(self, x, coords):
x_shape = np.expand_dims(np.expand_dims(x.shape, -1), -1)
i_coords = np.round(coords * (x_shape[:2] - 1)).astype('int32')
return x[i_coords[0], i_coords[1]]
def get_reconstruction(self, patches=None, combined=None):
if combined is not None:
patches = make_patch_grid(combined, self.patch_size)
if patches is None:
patches = self.target_patches
patches = self.lookup_coords(patches, self.coords)
recon = combine_patches_grid(patches, self.input_shape)
return recon
def scale(self, new_shape, new_target_img):
'''Create a new matcher of the given shape and replace its
state with a scaled up version of the current matcher's state.
'''
new_matcher = PatchMatcher(new_shape, new_target_img, patch_size=self.patch_size,
patch_stride=self.patch_stride, jump_size=self.jump_size,
num_propagation_steps=self.num_propagation_steps,
num_random_steps=self.num_random_steps,
random_max_radius=self.random_max_radius,
random_scale=self.random_scale)
new_matcher.coords = congrid(self.coords, new_matcher.coords.shape, method='neighbour')
new_matcher.similarity = congrid(self.similarity, new_matcher.coords.shape, method='neighbour')
return new_matcher
def congrid(a, newdims, method='linear', centre=False, minusone=False):
'''Arbitrary resampling of source array to new dimension sizes.
Currently only supports maintaining the same number of dimensions.
To use 1-D arrays, first promote them to shape (x,1).
Uses the same parameters and creates the same co-ordinate lookup points
as IDL''s congrid routine, which apparently originally came from a VAX/VMS
routine of the same name.
method:
neighbour - closest value from original data
nearest and linear - uses n x 1-D interpolations using
scipy.interpolate.interp1d
(see Numerical Recipes for validity of use of n 1-D interpolations)
spline - uses ndimage.map_coordinates
centre:
True - interpolation points are at the centres of the bins
False - points are at the front edge of the bin
minusone:
For example- inarray.shape = (i,j) & new dimensions = (x,y)
False - inarray is resampled by factors of (i/x) * (j/y)
True - inarray is resampled by(i-1)/(x-1) * (j-1)/(y-1)
This prevents extrapolation one element beyond bounds of input array.
'''
if not a.dtype in [np.float64, np.float32]:
a = np.cast[float](a)
m1 = np.cast[int](minusone)
ofs = np.cast[int](centre) * 0.5
old = np.array( a.shape )
ndims = len( a.shape )
if len( newdims ) != ndims:
print ("[congrid] dimensions error. "
"This routine currently only support "
"rebinning to the same number of dimensions.")
return None
newdims = np.asarray( newdims, dtype=float )
dimlist = []
if method == 'neighbour':
for i in range( ndims ):
base = np.indices(newdims)[i]
dimlist.append( (old[i] - m1) / (newdims[i] - m1) \
* (base + ofs) - ofs )
cd = np.array( dimlist ).round().astype(int)
newa = a[list( cd )]
return newa
elif method in ['nearest','linear']:
# calculate new dims
for i in range( ndims ):
base = np.arange( newdims[i] )
dimlist.append( (old[i] - m1) / (newdims[i] - m1) \
* (base + ofs) - ofs )
# specify old dims
olddims = [np.arange(i, dtype = np.float) for i in list( a.shape )]
# first interpolation - for ndims = any
mint = scipy.interpolate.interp1d( olddims[-1], a, kind=method )
newa = mint( dimlist[-1] )
trorder = [ndims - 1] + range( ndims - 1 )
for i in range( ndims - 2, -1, -1 ):
newa = newa.transpose( trorder )
mint = scipy.interpolate.interp1d( olddims[i], newa, kind=method )
newa = mint( dimlist[i] )
if ndims > 1:
# need one more transpose to return to original dimensions
newa = newa.transpose( trorder )
return newa
elif method in ['spline']:
oslices = [ slice(0,j) for j in old ]
oldcoords = np.ogrid[oslices]
nslices = [ slice(0,j) for j in list(newdims) ]
newcoords = np.mgrid[nslices]
newcoords_dims = [i for i in range(np.rank(newcoords))]
#make first index last
newcoords_dims.append(newcoords_dims.pop(0))
newcoords_tr = newcoords.transpose(newcoords_dims)
# makes a view that affects newcoords
newcoords_tr += ofs
deltas = (np.asarray(old) - m1) / (newdims - m1)
newcoords_tr *= deltas
newcoords_tr -= ofs
newa = scipy.ndimage.map_coordinates(a, newcoords)
return newa
else:
print("Congrid error: Unrecognized interpolation type.\n",
"Currently only \'neighbour\', \'nearest\',\'linear\',",
"and \'spline\' are supported.")
return None
class BaseModel(object):
'''Model to be extended.'''
def __init__(self, net, args):
self.set_net(net)
self.args = args
def set_net(self, net):
self.net = net
self.net_input = net.layers[0].input
self.layer_map = dict([(layer.name, layer) for layer in self.net.layers])
self._f_layer_outputs = {}
def build(self, a_image, ap_image, b_image, output_shape):
self.output_shape = output_shape
loss = self.build_loss(a_image, ap_image, b_image)
# get the gradients of the generated image wrt the loss
grads = K.gradients(loss, self.net_input)
outputs = [loss]
if type(grads) in {list, tuple}:
outputs += grads
else:
outputs.append(grads)
self.f_outputs = K.function([self.net_input], outputs)
def build_loss(self, a_image, ap_image, b_image):
'''Create an expression for the loss as a function of the image inputs.'''
loss = K.variable(0.0)
# get the symbolic outputs of each "key" layer (we gave them unique names).
loss += self.args.tv_weight * total_variation_loss(self.net_input)
return loss
def precompute_static_features(self, a_image, ap_image, b_image):
# figure out which layers we need to extract
a_layers, ap_layers, b_layers = set(), set(), set()
if self.args.analogy_weight:
for layerset in (a_layers, ap_layers, b_layers):
layerset.update(analogy_layers)
if self.args.mrf_weight:
ap_layers.update(mrf_layers)
if self.args.b_bp_content_weight:
b_layers.update(feature_layers)
if self.args.style_weight:
ap_layers.add(args.content_layer)
# let's get those features
all_a_features = self.get_features(a_image, a_layers)
all_ap_image_features = self.get_features(ap_image, ap_layers)
all_b_features = self.get_features(b_image, b_layers)
return all_a_features, all_ap_image_features, all_b_features
def get_features(self, x, layers):
if not layers:
return None
f = K.function([self.net_input], [self.get_layer_output(layer_name) for layer_name in layers])
feature_outputs = f([x])
features = dict(zip(layers, feature_outputs))
return features
def get_f_layer(self, layer_name):
return K.function([self.net_input], [self.get_layer_output(layer_name)])
def get_layer_output(self, name):
if not name in self._f_layer_outputs:
layer = self.layer_map[name]
self._f_layer_outputs[name] = layer.output
return self._f_layer_outputs[name]
def get_layer_output_shape(self, name):
layer = self.layer_map[name]
return layer.output_shape
def eval_loss_and_grads(self, x):
x = x.reshape(self.output_shape)
outs = self.f_outputs([x])
loss_value = outs[0]
if len(outs[1:]) == 1:
grad_values = outs[1].flatten().astype('float64')
else:
grad_values = np.array(outs[1:]).flatten().astype('float64')
return loss_value, grad_values
class NNFModel(BaseModel):
'''Faster model for image analogies.'''
def build(self, a_image, ap_image, b_image, output_shape):
self.output_shape = output_shape
loss = self.build_loss(a_image, ap_image, b_image)
# get the gradients of the generated image wrt the loss
grads = K.gradients(loss, self.net_input)
outputs = [loss]
if type(grads) in {list, tuple}:
outputs += grads
else:
outputs.append(grads)
f_inputs = [self.net_input]
for nnf in self.feature_nnfs:
f_inputs.append(nnf.placeholder)
self.f_outputs = K.function(f_inputs, outputs)
def eval_loss_and_grads(self, x):
x = x.reshape(self.output_shape)
f_inputs = [x]
# update the patch indexes
start_t = time.time()
for nnf in self.feature_nnfs:
nnf.update(x, num_steps=self.args.mrf_nnf_steps)
new_target = nnf.matcher.get_reconstruction()
f_inputs.append(new_target)
print('PatchMatch update in {:.2f} seconds'.format(time.time() - start_t))
# run it through
outs = self.f_outputs(f_inputs)
loss_value = outs[0]
if len(outs[1:]) == 1:
grad_values = outs[1].flatten().astype('float64')
else:
grad_values = np.array(outs[1:]).flatten().astype('float64')
return loss_value, grad_values
def build_loss(self, a_image, ap_image, b_image):
'''Create an expression for the loss as a function of the image inputs.'''
print('Building loss...')
loss = super(NNFModel, self).build_loss(a_image, ap_image, b_image)
# Precompute static features for performance
print('Precomputing static features...')
all_a_features, all_ap_image_features, all_b_features = self.precompute_static_features(a_image, ap_image, b_image)
print('Building and combining losses...')
if self.args.analogy_weight:
for layer_name in analogy_layers:
a_features = all_a_features[layer_name][0]
ap_image_features = all_ap_image_features[layer_name][0]
b_features = all_b_features[layer_name][0]
# current combined output
layer_features = self.get_layer_output(layer_name)
combination_features = layer_features[0, :, :, :]
al = nnf_analogy_loss(
a_features, ap_image_features, b_features, combination_features,
num_steps=self.args.analogy_nnf_steps, patch_size=self.args.patch_size,
patch_stride=self.args.patch_stride, jump_size=1.0)
loss += (self.args.analogy_weight / len(analogy_layers)) * al
existing_feature_nnfs = getattr(self, 'feature_nnfs', [None] * len(mrf_layers))
self.feature_nnfs = []
if self.args.mrf_weight:
for layer_name, existing_nnf in zip(mrf_layers, existing_feature_nnfs):
ap_image_features = all_ap_image_features[layer_name][0]
# current combined output
layer_features = self.get_layer_output(layer_name)
combination_features = layer_features[0, :, :, :]
input_shape = self.get_layer_output_shape(layer_name)
if existing_nnf and not self.args.randomize_mnf_nnf:
matcher = existing_nnf.matcher.scale((input_shape[3], input_shape[2], input_shape[1]), ap_image_features)
else:
matcher = PatchMatcher(
(input_shape[3], input_shape[2], input_shape[1]), ap_image_features,
patch_size=self.args.patch_size, jump_size=1.0, patch_stride=self.args.patch_stride)
nnf = NNFState(matcher, self.get_f_layer(layer_name))
self.feature_nnfs.append(nnf)
sl = content_loss(combination_features, nnf.placeholder)
loss += (self.args.mrf_weight / len(mrf_layers)) * sl
if self.args.content_weight:
for layer_name in feature_layers:
b_features = K.variable(all_b_features[layer_name][0])
# current combined output
bp_features = self.get_layer_output(layer_name)
cl = content_loss(bp_features, b_features)
loss += self.args.content_weight / len(feature_layers) * cl
if self.args.style_weight != 0.0:
#for layer_name in self.args.content_layer:
layer_name = self.args.content_layer
ap_image_features = K.variable(all_ap_image_features[layer_name][0])
layer_features = self.get_layer_output(layer_name)
layer_shape = self.get_layer_output_shape(layer_name)
# current combined output
combination_features = layer_features[0, :, :, :]
nsl = style_loss(ap_image_features, combination_features)
loss += (self.args.style_weight / len(self.args.content_layer)) * nsl
return loss
class AnalogyModel(BaseModel):
'''Brute Force Model for image analogies.'''
def build_loss(self, a_image, ap_image, b_image):
'''Create an expression for the loss as a function of the image inputs.'''
print('Building loss...')
loss = super(AnalogyModel, self).build_loss(a_image, ap_image, b_image)
# Precompute static features for performance
print('Precomputing static features...')
all_a_features, all_ap_image_features, all_b_features = self.precompute_static_features(a_image, ap_image, b_image)
print('Building and combining losses...')
if self.args.analogy_weight != 0.0:
for layer_name in analogy_layers:
a_features = all_a_features[layer_name][0]
ap_image_features = all_ap_image_features[layer_name][0]
b_features = all_b_features[layer_name][0]
# current combined output
layer_features = self.get_layer_output(layer_name)
combination_features = layer_features[0, :, :, :]
al = analogy_loss(a_features, ap_image_features,
b_features, combination_features,
use_full_analogy=self.args.use_full_analogy,
patch_size=self.args.patch_size,
patch_stride=self.args.patch_stride)
loss += (self.args.analogy_weight / len(self.args.analogy_layers)) * al
if self.args.mrf_weight != 0.0:
for layer_name in mrf_layers:
ap_image_features = K.variable(all_ap_image_features[layer_name][0])
layer_features = self.get_layer_output(layer_name)
# current combined output
combination_features = layer_features[0, :, :, :]
sl = mrf_loss(ap_image_features, combination_features,
patch_size=self.args.patch_size,
patch_stride=self.args.patch_stride)
loss += (self.args.mrf_weight / len(self.args.mrf_layers)) * sl
if self.args.b_bp_content_weight != 0.0:
for layer_name in feature_layers:
b_features = K.variable(all_b_features[layer_name][0])
# current combined output
bp_features = self.get_layer_output(layer_name)
cl = content_loss(bp_features, b_features)
loss += self.args.content_weight / len(feature_layers) * cl
if self.args.style_weight != 0.0:
for layer_name in self.args.content_layer:
ap_image_features = K.variable(all_ap_image_features[layer_name][0])
layer_features = self.get_layer_output(layer_name)
layer_shape = self.get_layer_output_shape(layer_name)
# current combined output
combination_features = layer_features[0, :, :, :]
nsl = style_loss(ap_image_features, combination_features)
loss += (self.args.style_weight / len(self.args.content_layer)) * nsl
return loss
"""
This is the beginning of the program
"""
parser = argparse.ArgumentParser(description='Neural style transfer with Keras.')
parser.add_argument('style_image', metavar='base', type=str,
help='Path to the image to transform.')
parser.add_argument('style_image_mask_path', metavar='base_mask', type=str,
help='Path to the image mask.')
parser.add_argument('content_image_path', metavar='ref', type=str,
help='Path to the style reference image.')
parser.add_argument('result_prefix', metavar='res_prefix', type=str,
help='Prefix for the saved results.')
parser.add_argument("--image_size", dest="img_size", default=512, type=int, help='Output Image size')
parser.add_argument("--content_weight", dest="content_weight", default=0.025, type=float, help="Weight of content") # 0.025
parser.add_argument("--style_weight", dest="style_weight", default=1, type=float, help="Weight of content") # 1.0
parser.add_argument("--style_scale", dest="style_scale", default=1.0, type=float, help="Scale the weightage of the style") # 1, 0.5, 2
parser.add_argument("--total_variation_weight", dest="tv_weight", default=1e-3, type=float, help="Total Variation in the Weights") # 1.0
parser.add_argument("--num_iter", dest="num_iter", default=10, type=int, help="Number of iterations")
parser.add_argument("--rescale_image", dest="rescale_image", default="True", type=str, help="Rescale image after execution to original dimentions")
parser.add_argument("--rescale_method", dest="rescale_method", default="bilinear", type=str, help="Rescale image algorithm")
parser.add_argument("--maintain_aspect_ratio", dest="maintain_aspect_ratio", default="True", type=str, help="Maintain aspect ratio of image")
parser.add_argument("--content_layer", dest="content_layer", default="conv5_2", type=str, help="Optional 'conv4_2'")
parser.add_argument("--init_image", dest="init_image", default="content", type=str, help="Initial image used to generate the final image. Options are 'content' or 'noise")
parser.add_argument('--analogy-w', dest='analogy_weight', type=float, default=1.0, help='Weight for analogy loss.')
parser.add_argument('--analogy-layers', dest='analogy_layers', default=['conv3_1', 'conv4_1'], help='Comma-separated list of layer names to be used for the analogy loss')
parser.add_argument('--use-full-analogy', dest='use_full_analogy', action="store_true", help='Use the full set of analogy patches (slower/more memory but maybe more accurate)')
parser.add_argument('--mrf-w', dest='mrf_weight', type=float, default=1, help='Weight for MRF loss between A\' and B\'')
parser.add_argument('--mrf-layers', dest='mrf_layers', default=['conv3_1', 'conv4_1'], help='Comma-separated list of layer names to be used for the MRF loss')
parser.add_argument('--b-content-w', dest='b_bp_content_weight', type=float, default=4.0, help='Weight for content loss between B and B\'')
parser.add_argument('--mrf-nnf-steps', dest='mrf_nnf_steps', type=int, default=5, help='Number of patchmatch updates per iteration for local coherence loss.')
parser.add_argument('--analogy-nnf-steps', dest='analogy_nnf_steps', type=int, default=15, help='Number of patchmatch updates for the analogy loss (done once per scale).')
parser.add_argument('--patch-stride', dest='patch_stride', type=int, default=1, help='Patch stride used for matching. Currently required to be 1.')
parser.add_argument('--randomize-mrf-nnf', dest='randomize_mnf_nnf', action='store_true', help='Randomize the local coherence similarity matrix at the start of a new scale instead of scaling it up.')
parser.add_argument('--patch-size', dest='patch_size', type=int, default=1, help='Patch size used for matching.')
args = parser.parse_args()
style_image_path = args.style_image
style_image_mask_path = args.style_image_mask_path
content_image_path = args.content_image_path
result_prefix = args.result_prefix
weights_path = r"vgg16_weights.h5"
def strToBool(v):
return v.lower() in ("true", "yes", "t", "1")
rescale_image = strToBool(args.rescale_image)
maintain_aspect_ratio = strToBool(args.maintain_aspect_ratio)
# these are the weights of the different loss components
total_variation_weight = args.tv_weight
style_weight = args.style_weight * args.style_scale
content_weight = args.content_weight
# dimensions of the generated picture.
img_width = img_height = args.img_size
assert img_height == img_width, 'Due to the use of the Gram matrix, width and height must match.'
analogy_layers =['conv4_1'] # 'conv1_1','conv2_1','conv3_1', 'conv4_1'
mrf_layers = ['conv4_1', 'conv5_1'] # 'conv3_1', 'conv4_1'
img_WIDTH = img_HEIGHT = 0
aspect_ratio = 0
b_scale_ratio_width = b_scale_ratio_height = 0
# util function to open, resize and format pictures into appropriate tensors
def preprocess_image(image_path, load_dims=False, style_image=False):
global img_WIDTH, img_HEIGHT, aspect_ratio, b_scale_ratio_height, b_scale_ratio_width
img = imread(image_path, mode="RGB") # Prevents crashes due to PNG images (ARGB)
if load_dims:
img_WIDTH = img.shape[0]
img_HEIGHT = img.shape[1]
aspect_ratio = img_HEIGHT / img_WIDTH
if style_image:
b_scale_ratio_width = float(img.shape[0]) / img_WIDTH
b_scale_ratio_height = float(img.shape[1]) / img_HEIGHT
img = imresize(img, (img_width, img_height))
img = img.transpose((2, 0, 1)).astype('float64')
img = np.expand_dims(img, axis=0)
return img
# util function to convert a tensor into a valid image
def deprocess_image(x):
x = x.transpose((1, 2, 0))
x = np.clip(x, 0, 255).astype('uint8')
return x
def make_patches(x, patch_size, patch_stride):
'''Break image `x` up into a bunch of patches.'''
from theano.tensor.nnet.neighbours import images2neibs
x = K.expand_dims(x, 0)
patches = images2neibs(x,
(patch_size, patch_size), (patch_stride, patch_stride),
mode='valid')
# neibs are sorted per-channel
patches = K.reshape(patches, (K.shape(x)[1], K.shape(patches)[0] // K.shape(x)[1], patch_size, patch_size))
patches = K.permute_dimensions(patches, (1, 0, 2, 3))
patches_norm = K.sqrt(K.sum(K.square(patches), axis=(1,2,3), keepdims=True))
return patches, patches_norm
def combine_patches(patches, out_shape):
'''Reconstruct an image from these `patches`'''
patches = patches.transpose(0, 2, 3, 1)
recon = reconstruct_from_patches_2d(patches, out_shape)
return recon.transpose(2, 0, 1)
def find_patch_matches(a, a_norm, b):
'''For each patch in A, find the best matching patch in B'''
# we want cross-correlation here so flip the kernels
convs = K.conv2d(a, b[:, :, ::-1, ::-1], border_mode='valid')
argmax = K.argmax(convs / a_norm, axis=1)
return argmax
def find_analogy_patches(a, a_prime, b, patch_size=3, patch_stride=1):
'''This is for precalculating the analogy_loss
Since A, A', and B never change we only need to calculate the patch matches once.
'''
# extract patches from feature maps
a_patches, a_patches_norm = make_patches(K.variable(a), patch_size, patch_stride)
a_prime_patches, a_prime_patches_norm = make_patches(K.variable(a_prime), patch_size, patch_stride)
b_patches, b_patches_norm = make_patches(K.variable(b), patch_size, patch_stride)
# find best patches and calculate loss
p = find_patch_matches(b_patches, b_patches_norm, a_patches / a_patches_norm)
#best_patches = a_prime_patches[p]
best_patches = K.reshape(a_prime_patches[p], K.shape(b_patches))
f = K.function([], best_patches)
best_patches = f([])
return best_patches
def make_patches_grid(x, patch_size, patch_stride):
'''Break image `x` up into a grid of patches.
input shape: (channels, rows, cols)
output shape: (rows, cols, channels, patch_rows, patch_cols)
'''
from theano.tensor.nnet.neighbours import images2neibs # TODO: all K, no T
x = K.expand_dims(x, 0)
xs = K.shape(x)
num_rows = 1 + (xs[-2] - patch_size) // patch_stride
num_cols = 1 + (xs[-1] - patch_size) // patch_stride
num_channels = xs[-3]
patches = images2neibs(x,
(patch_size, patch_size), (patch_stride, patch_stride),
mode='valid')
# neibs are sorted per-channel
patches = K.reshape(patches, (num_channels, K.shape(patches)[0] // num_channels, patch_size, patch_size))
patches = K.permute_dimensions(patches, (1, 0, 2, 3))
# arrange in a 2d-grid (rows, cols, channels, px, py)
patches = K.reshape(patches, (num_rows, num_cols, num_channels, patch_size, patch_size))
patches_norm = K.sqrt(K.sum(K.square(patches), axis=(2,3,4), keepdims=True))
return patches, patches_norm
# get tensor representations of our images
content_img = preprocess_image(content_image_path, load_dims=True)
style_img = preprocess_image(style_image_path, style_image=True)
style_img_mask = preprocess_image(style_image_mask_path)
style_image_tensor = K.variable(style_img)
style_image_mask_tensor = K.variable(style_img_mask)
content_image_tensor = K.variable(content_img)
# this will contain our generated image
combination_image = K.placeholder((1, 3, img_width, img_height))
# combine the 4 images into a single Keras tensor
input_tensor = K.concatenate([style_image_tensor,
style_image_mask_tensor,
content_image_tensor,
combination_image], axis=0)
# build the VGG16 network with our 3 images as input
first_layer = ZeroPadding2D((1, 1), )
first_layer.set_input(input_tensor, shape=(4, 3, img_width, img_height))
model = Sequential()
model.add(first_layer)
model.add(Convolution2D(64, 3, 3, activation='relu', name='conv1_1'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(64, 3, 3, activation='relu', name='conv1_2'))
model.add(AveragePooling2D((2, 2), strides=(2, 2)))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(128, 3, 3, activation='relu', name='conv2_1'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(128, 3, 3, activation='relu', name='conv2_2'))
model.add(AveragePooling2D((2, 2), strides=(2, 2)))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(256, 3, 3, activation='relu', name='conv3_1'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(256, 3, 3, activation='relu', name='conv3_2'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(256, 3, 3, activation='relu', name='conv3_3'))
model.add(AveragePooling2D((2, 2), strides=(2, 2)))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, 3, 3, activation='relu', name='conv4_1'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, 3, 3, activation='relu', name='conv4_2'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, 3, 3, activation='relu', name='conv4_3'))
model.add(AveragePooling2D((2, 2), strides=(2, 2)))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, 3, 3, activation='relu', name='conv5_1'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, 3, 3, activation='relu', name='conv5_2'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, 3, 3, activation='relu', name='conv5_3'))
model.add(AveragePooling2D((2, 2), strides=(2, 2)))
# load the weights of the VGG16 networks
# (trained on ImageNet, won the ILSVRC competition in 2014)
# note: when there is a complete match between your model definition
# and your weight savefile, you can simply call model.load_weights(filename)
assert os.path.exists(weights_path), 'Model weights not found (see "weights_path" variable in script).'
f = h5py.File(weights_path)
for k in range(f.attrs['nb_layers']):
if k >= len(model.layers):
# we don't look at the last (fully-connected) layers in the savefile
break
g = f['layer_{}'.format(k)]
weights = [g['param_{}'.format(p)] for p in range(g.attrs['nb_params'])]
model.layers[k].set_weights(weights)
f.close()
print('Model loaded.')
# get the symbolic outputs of each "key" layer (we gave them unique names).
outputs_dict = dict([(layer.name, layer.output) for layer in model.layers])
# compute the neural style loss
# first we need to define 4 util functions
# the gram matrix of an image tensor (feature-wise outer product)
def gram_matrix(x):
assert K.ndim(x) == 3
if K.image_dim_ordering() == "th":
features = K.batch_flatten(x)
else:
features = K.batch_flatten(K.permute_dimensions(x, (2, 0, 1)))
gram = K.dot(features, K.transpose(features))
return gram
# the "style loss" is designed to maintain
# the style of the reference image in the generated image.
# It is based on the gram matrices (which capture style) of
# feature maps from the style reference image
# and from the generated image
def style_loss(style, combination):
assert K.ndim(style) == 3
assert K.ndim(combination) == 3
S = gram_matrix(style)
C = gram_matrix(combination)
channels = 3
size = img_width * img_height
return K.sum(K.square(S - C)) / (4. * (channels ** 2) * (size ** 2))
# an auxiliary loss function
# designed to maintain the "content" of the
# base image in the generated image
def content_loss(base, combination):
return K.sum(K.square(combination - base))
# the 3rd loss function, total variation loss,
# designed to keep the generated image locally coherent
def total_variation_loss(x):
assert K.ndim(x) == 4
a = K.square(x[:, :, 1:, :img_width - 1] - x[:, :, :img_height - 1, :img_width - 1])
b = K.square(x[:, :, :img_height - 1, 1:] - x[:, :, :img_width - 1, :img_height - 1])
#a = K.square(x[:, :, :img_width-1, :img_height-1] - x[:, :, 1:, :img_height-1])
#b = K.square(x[:, :, :img_width-1, :img_height-1] - x[:, :, :img_width-1, 1:])
return K.sum(K.pow(a + b, 1.25))
def analogy_loss(a, a_prime, b, b_prime, patch_size=3, patch_stride=1, use_full_analogy=False):
'''http://www.mrl.nyu.edu/projects/image-analogies/index.html'''
best_a_prime_patches = find_analogy_patches(a, a_prime, b, patch_size=patch_size, patch_stride=patch_stride)
if use_full_analogy: # combine all the patches into a single image
b_prime_patches, _ = make_patches(b_prime, patch_size, patch_stride)
loss = content_loss(best_a_prime_patches, b_prime_patches) / patch_size ** 2
else:
bs = b.shape
b_analogy = combine_patches(best_a_prime_patches, (bs[1], bs[2], bs[0]))
loss = content_loss(np.expand_dims(b_analogy, 0), b_prime)
return loss
def mrf_loss(source, combination, patch_size=3, patch_stride=1):
'''CNNMRF http://arxiv.org/pdf/1601.04589v1.pdf'''
# extract patches from feature maps
combination_patches, combination_patches_norm = make_patches(combination, patch_size, patch_stride)
source_patches, source_patches_norm = make_patches(source, patch_size, patch_stride)
# find best patches and calculate loss
patch_ids = find_patch_matches(combination_patches, combination_patches_norm, source_patches / source_patches_norm)
best_source_patches = K.reshape(source_patches[patch_ids], K.shape(combination_patches))
loss = K.sum(K.square(best_source_patches - combination_patches)) / patch_size ** 2
return loss
def nnf_analogy_loss(a, a_prime, b, b_prime, num_steps=5, jump_size=1.0, patch_size=1, patch_stride=1):
'''image shapes: (channels, rows, cols)
'''
bs = b.shape
matcher = PatchMatcher((bs[2], bs[1], bs[0]), a, jump_size=jump_size, patch_size=patch_size, patch_stride=patch_stride)
b_patches = matcher.get_patches_for(b)
b_normed = matcher.normalize_patches(b_patches)
for i in range(num_steps):
matcher.update_with_patches(b_normed, reverse_propagation=bool(i % 2))
target = matcher.get_reconstruction(combined=a_prime)
loss = content_loss(target, b_prime)
return loss
class NNFState(object):
def __init__(self, matcher, f_layer):
self.matcher = matcher
mis = matcher.input_shape
self.placeholder = K.placeholder(mis[::-1])
self.f_layer = f_layer
def update(self, x, num_steps=5):
x_f = self.f_layer([x])[0]
x_patches = self.matcher.get_patches_for(x_f[0])
x_normed = self.matcher.normalize_patches(x_patches)
for i in range(num_steps):
self.matcher.update_with_patches(x_normed, reverse_propagation=bool(i % 2))
# combine these loss functions into a single scalar
loss = K.variable(0.)
layer_features = outputs_dict[args.content_layer] # 'conv5_2' or 'conv4_2'
base_image_features = layer_features[0, :, :, :]
combination_features = layer_features[3, :, :, :]
loss += content_weight * content_loss(base_image_features,
combination_features)
feature_layers = ['conv1_1', 'conv2_1', 'conv3_1', 'conv4_1', 'conv5_1']
for layer_name in feature_layers:
layer_features = outputs_dict[layer_name]
style_reference_features = layer_features[1, :, :, :]
combination_features = layer_features[3, :, :, :]
sl = style_loss(style_reference_features, combination_features)
loss += (style_weight / len(feature_layers)) * sl
loss += total_variation_weight * total_variation_loss(combination_image)
# get the gradients of the generated image wrt the loss
grads = K.gradients(loss, combination_image)
outputs = [loss]
if type(grads) in {list, tuple}:
outputs += grads
else:
outputs.append(grads)
f_outputs = K.function([combination_image], outputs)
def eval_loss_and_grads(x):
x = x.reshape((1, 3, img_width, img_height))
outs = f_outputs([x])
loss_value = outs[0]
if len(outs[1:]) == 1:
grad_values = outs[1].flatten().astype('float64')
else:
grad_values = np.array(outs[1:]).flatten().astype('float64')
return loss_value, grad_values
"""
"""
# this Evaluator class makes it possible
# to compute loss and gradients in one pass
# while retrieving them via two separate functions,
# "loss" and "grads". This is done because scipy.optimize
# requires separate functions for loss and gradients,
# but computing them separately would be inefficient.
class Evaluator(object):
def __init__(self, model):
self.loss_value = None
self.grads_values = None
self.model = model
def loss(self, x):
assert self.loss_value is None
loss_value, grad_values = self.model.eval_loss_and_grads(x)
self.loss_value = loss_value
self.grad_values = grad_values
return self.loss_value
def grads(self, x):
assert self.loss_value is not None
grad_values = np.copy(self.grad_values)
self.loss_value = None
self.grad_values = None
return grad_values
nnf = NNFModel(model, args)
nnf.build(style_img, style_img_mask, content_img, (1, 3, img_width, img_height))
#analogy = AnalogyModel(model, args)
#analogy.build(style_img, style_img_mask, content_img, (1, 3, img_width, img_height))
evaluator = Evaluator(nnf)
# run scipy-based optimization (L-BFGS) over the pixels of the generated image
# so as to minimize the neural style loss
assert args.init_image in ["content", "noise"] , "init_image must be one of ['original', 'noise']"
if "content" in args.init_image:
x = preprocess_image(content_image_path, True, )
else:
x = np.random.uniform(0, 255, (1, 3, img_width, img_height))
num_iter = args.num_iter
for i in range(num_iter):
print('Start of iteration', (i+1))
start_time = time.time()
x, min_val, info = fmin_l_bfgs_b(evaluator.loss, x.flatten(),
fprime=evaluator.grads, maxfun=20, maxiter=20, m=4)
print('Current loss value:', min_val)
# save current generated image
img = deprocess_image(x.reshape((3, img_width, img_height)))
if (maintain_aspect_ratio) & (not rescale_image):
img_ht = int(img_width * aspect_ratio)
print(img_width, img_ht)
print("Rescaling Image to (%d, %d)" % (img_width, img_ht))
img = imresize(img, (img_width, img_ht), interp=args.rescale_method)
if rescale_image:
print("Rescaling Image to (%d, %d)" % (img_WIDTH, img_HEIGHT))
img = imresize(img, (img_WIDTH, img_HEIGHT), interp=args.rescale_method)
fname = result_prefix + '_at_iteration_%d.png' % (i+1)
imsave(fname, img)
end_time = time.time()
print('Image saved as', fname)
print('Iteration %d completed in %ds' % (i+1, end_time - start_time))