-
Notifications
You must be signed in to change notification settings - Fork 3
/
README.Rmd
83 lines (58 loc) · 2.4 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, echo = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "README-"
)
```
# edina
<!-- badges: start -->
[![R build status](https://github.com/tmsalab/edina/workflows/R-CMD-check/badge.svg)](https://github.com/tmsalab/edina/actions)
[![Package-License](http://img.shields.io/badge/license-GPL%20(%3E=2)-brightgreen.svg?style=flat)](http://www.gnu.org/licenses/gpl-2.0.html)
[![CRAN Version Badge](http://www.r-pkg.org/badges/version/edina)](https://cran.r-project.org/package=edina)
[![CRAN Status](https://cranchecks.info/badges/worst/edina)](https://cran.r-project.org/web/checks/check_results_edina.html)
[![RStudio CRAN Mirror's Monthly Downloads](http://cranlogs.r-pkg.org/badges/edina?color=brightgreen)](http://www.r-pkg.org/pkg/edina)
[![RStudio CRAN Mirror's Total Downloads](http://cranlogs.r-pkg.org/badges/grand-total/edina?color=brightgreen)](http://www.r-pkg.org/pkg/edina)
<!-- badges: end -->
Perform a Bayesian estimation of the Exploratory
Deterministic Input, Noisy "And" Gate (EDINA)
cognitive diagnostic model described by Chen et al. (2018).
## Installation
You can install `edina` from CRAN using:
```{r cran-installation, eval = FALSE}
install.packages("edina")
```
Or, you can be on the cutting-edge development version on GitHub using:
```{r gh-installation, eval = FALSE}
if(!requireNamespace("devtools")) install.packages("devtools")
devtools::install_github("tmsalab/edina")
```
## Usage
To use the `edina` package, load it into _R_ using:
```{r example, message = FALSE}
library("edina")
```
From there, the EDINA model can be estimated using:
```{r edina-est, eval = FALSE}
edina_model = edina(<data>, chain_length = 10000)
```
To compute a model underneath different _K_ attribute configured _Q_ matrices, use:
```{r edina-multiple, eval = FALSE}
edina_model = auto_edina(<data>, k = 2:4, chain_length = 10000)
```
**Note:** Higher _K_ configured _Q_ matrices take longer to estimate.
## Authors
James Joseph Balamuta, Steven Andrew Culpepper, and Jeffrey A. Douglas
## Citing the `edina` package
To ensure future development of the package, please cite `edina`
package if used during an analysis or simulation studies. Citation information
for the package may be acquired by using in *R*:
```{r, eval = FALSE}
citation("edina")
```
## License
GPL (>= 2)