-
Notifications
You must be signed in to change notification settings - Fork 198
/
utils.py
189 lines (151 loc) · 6.81 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import numpy as np
import torch
import os
import h5py
from torch.utils.data import TensorDataset, DataLoader
import IPython
e = IPython.embed
class EpisodicDataset(torch.utils.data.Dataset):
def __init__(self, episode_ids, dataset_dir, camera_names, norm_stats):
super(EpisodicDataset).__init__()
self.episode_ids = episode_ids
self.dataset_dir = dataset_dir
self.camera_names = camera_names
self.norm_stats = norm_stats
self.is_sim = None
self.__getitem__(0) # initialize self.is_sim
def __len__(self):
return len(self.episode_ids)
def __getitem__(self, index):
sample_full_episode = False # hardcode
episode_id = self.episode_ids[index]
dataset_path = os.path.join(self.dataset_dir, f'episode_{episode_id}.hdf5')
with h5py.File(dataset_path, 'r') as root:
is_sim = root.attrs['sim']
original_action_shape = root['/action'].shape
episode_len = original_action_shape[0]
if sample_full_episode:
start_ts = 0
else:
start_ts = np.random.choice(episode_len)
# get observation at start_ts only
qpos = root['/observations/qpos'][start_ts]
qvel = root['/observations/qvel'][start_ts]
image_dict = dict()
for cam_name in self.camera_names:
image_dict[cam_name] = root[f'/observations/images/{cam_name}'][start_ts]
# get all actions after and including start_ts
if is_sim:
action = root['/action'][start_ts:]
action_len = episode_len - start_ts
else:
action = root['/action'][max(0, start_ts - 1):] # hack, to make timesteps more aligned
action_len = episode_len - max(0, start_ts - 1) # hack, to make timesteps more aligned
self.is_sim = is_sim
padded_action = np.zeros(original_action_shape, dtype=np.float32)
padded_action[:action_len] = action
is_pad = np.zeros(episode_len)
is_pad[action_len:] = 1
# new axis for different cameras
all_cam_images = []
for cam_name in self.camera_names:
all_cam_images.append(image_dict[cam_name])
all_cam_images = np.stack(all_cam_images, axis=0)
# construct observations
image_data = torch.from_numpy(all_cam_images)
qpos_data = torch.from_numpy(qpos).float()
action_data = torch.from_numpy(padded_action).float()
is_pad = torch.from_numpy(is_pad).bool()
# channel last
image_data = torch.einsum('k h w c -> k c h w', image_data)
# normalize image and change dtype to float
image_data = image_data / 255.0
action_data = (action_data - self.norm_stats["action_mean"]) / self.norm_stats["action_std"]
qpos_data = (qpos_data - self.norm_stats["qpos_mean"]) / self.norm_stats["qpos_std"]
return image_data, qpos_data, action_data, is_pad
def get_norm_stats(dataset_dir, num_episodes):
all_qpos_data = []
all_action_data = []
for episode_idx in range(num_episodes):
dataset_path = os.path.join(dataset_dir, f'episode_{episode_idx}.hdf5')
with h5py.File(dataset_path, 'r') as root:
qpos = root['/observations/qpos'][()]
qvel = root['/observations/qvel'][()]
action = root['/action'][()]
all_qpos_data.append(torch.from_numpy(qpos))
all_action_data.append(torch.from_numpy(action))
all_qpos_data = torch.stack(all_qpos_data)
all_action_data = torch.stack(all_action_data)
all_action_data = all_action_data
# normalize action data
action_mean = all_action_data.mean(dim=[0, 1], keepdim=True)
action_std = all_action_data.std(dim=[0, 1], keepdim=True)
action_std = torch.clip(action_std, 1e-2, np.inf) # clipping
# normalize qpos data
qpos_mean = all_qpos_data.mean(dim=[0, 1], keepdim=True)
qpos_std = all_qpos_data.std(dim=[0, 1], keepdim=True)
qpos_std = torch.clip(qpos_std, 1e-2, np.inf) # clipping
stats = {"action_mean": action_mean.numpy().squeeze(), "action_std": action_std.numpy().squeeze(),
"qpos_mean": qpos_mean.numpy().squeeze(), "qpos_std": qpos_std.numpy().squeeze(),
"example_qpos": qpos}
return stats
def load_data(dataset_dir, num_episodes, camera_names, batch_size_train, batch_size_val):
print(f'\nData from: {dataset_dir}\n')
# obtain train test split
train_ratio = 0.8
shuffled_indices = np.random.permutation(num_episodes)
train_indices = shuffled_indices[:int(train_ratio * num_episodes)]
val_indices = shuffled_indices[int(train_ratio * num_episodes):]
# obtain normalization stats for qpos and action
norm_stats = get_norm_stats(dataset_dir, num_episodes)
# construct dataset and dataloader
train_dataset = EpisodicDataset(train_indices, dataset_dir, camera_names, norm_stats)
val_dataset = EpisodicDataset(val_indices, dataset_dir, camera_names, norm_stats)
train_dataloader = DataLoader(train_dataset, batch_size=batch_size_train, shuffle=True, pin_memory=True, num_workers=1, prefetch_factor=1)
val_dataloader = DataLoader(val_dataset, batch_size=batch_size_val, shuffle=True, pin_memory=True, num_workers=1, prefetch_factor=1)
return train_dataloader, val_dataloader, norm_stats, train_dataset.is_sim
### env utils
def sample_box_pose():
x_range = [0.0, 0.2]
y_range = [0.4, 0.6]
z_range = [0.05, 0.05]
ranges = np.vstack([x_range, y_range, z_range])
cube_position = np.random.uniform(ranges[:, 0], ranges[:, 1])
cube_quat = np.array([1, 0, 0, 0])
return np.concatenate([cube_position, cube_quat])
def sample_insertion_pose():
# Peg
x_range = [0.1, 0.2]
y_range = [0.4, 0.6]
z_range = [0.05, 0.05]
ranges = np.vstack([x_range, y_range, z_range])
peg_position = np.random.uniform(ranges[:, 0], ranges[:, 1])
peg_quat = np.array([1, 0, 0, 0])
peg_pose = np.concatenate([peg_position, peg_quat])
# Socket
x_range = [-0.2, -0.1]
y_range = [0.4, 0.6]
z_range = [0.05, 0.05]
ranges = np.vstack([x_range, y_range, z_range])
socket_position = np.random.uniform(ranges[:, 0], ranges[:, 1])
socket_quat = np.array([1, 0, 0, 0])
socket_pose = np.concatenate([socket_position, socket_quat])
return peg_pose, socket_pose
### helper functions
def compute_dict_mean(epoch_dicts):
result = {k: None for k in epoch_dicts[0]}
num_items = len(epoch_dicts)
for k in result:
value_sum = 0
for epoch_dict in epoch_dicts:
value_sum += epoch_dict[k]
result[k] = value_sum / num_items
return result
def detach_dict(d):
new_d = dict()
for k, v in d.items():
new_d[k] = v.detach()
return new_d
def set_seed(seed):
torch.manual_seed(seed)
np.random.seed(seed)