-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbackend.py
169 lines (130 loc) · 6.25 KB
/
backend.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
from keras.layers import Input,BatchNormalization,Conv2D,MaxPooling2D,Lambda,concatenate,LeakyReLU
from keras.models import Model
import tensorflow as tf
ALPHA=1.0
TINY_YOLO_WEIGHTS="models/tiny_yolo_backend.h5"
FULL_YOLO_BACKEND_PATH="models/full_yolo_backend.h5"
class BaseFeatureExtractor(object):
def __init__(self,input_size):
raise NotImplementedError("intialized failed...")
def normalize(self,img):
raise NotImplementedError("normalized failed...")
def get_output_shape(self):
return self.feature_extractor.get_output_shape_at(-1)[1:3]
def extract(self,input_img):
return self.feature_extractor(input_img)
class TinyYolo(BaseFeatureExtractor):
def __init__(self,input_size):
input_=Input(shape=(input_size,input_size,3))
#Layer 1
x=Conv2D(int(ALPHA*16),(3,3),padding="same",use_bias=False)(input_)
x=BatchNormalization()(x)
x=LeakyReLU(alpha=0.1)(x)
x=MaxPooling2D()(x)
#Layer 2-5
for i in range(4):
x=Conv2D(int(ALPHA*32*(2**i)),(3,3),padding="same",use_bias=False)(x)
x=BatchNormalization()(x)
x=LeakyReLU(alpha=0.1)(x)
x=MaxPooling2D()(x)
#Layer 6
x=Conv2D(int(ALPHA*512),(3,3),padding="same",use_bias=False)(x)
x=BatchNormalization()(x)
x=LeakyReLU(alpha=0.1)(x)
x=MaxPooling2D(strides=(1,1),padding="same")(x)
#Layer 7-8
for i in range(2):
x=Conv2D(int(ALPHA*1024),(3,3),padding="same",use_bias=False)(x)
x=BatchNormalization()(x)
x=LeakyReLU(alpha=0.1)(x)
self.feature_extractor=Model(input_,x)
self.feature_extractor.load_weights(TINY_YOLO_WEIGHTS)
print("load weights from "+TINY_YOLO_WEIGHTS)
def normalize(self,img):
return img/255.
class FullYolo(BaseFeatureExtractor):
def __init__(self, input_size):
input_image = Input(shape=(input_size, input_size, 3))
def space_to_depth_x2(x):
return tf.space_to_depth(x, block_size=2)
x = Conv2D(32, (3,3), strides=(1,1), padding='same', name='conv_1', use_bias=False)(input_image)
x = BatchNormalization(name='norm_1')(x)
x = LeakyReLU(alpha=0.1)(x)
x = MaxPooling2D(pool_size=(2, 2))(x)
x = Conv2D(64, (3,3), strides=(1,1), padding='same', name='conv_2', use_bias=False)(x)
x = BatchNormalization(name='norm_2')(x)
x = LeakyReLU(alpha=0.1)(x)
x = MaxPooling2D(pool_size=(2, 2))(x)
x = Conv2D(128, (3,3), strides=(1,1), padding='same', name='conv_3', use_bias=False)(x)
x = BatchNormalization(name='norm_3')(x)
x = LeakyReLU(alpha=0.1)(x)
x = Conv2D(64, (1,1), strides=(1,1), padding='same', name='conv_4', use_bias=False)(x)
x = BatchNormalization(name='norm_4')(x)
x = LeakyReLU(alpha=0.1)(x)
x = Conv2D(128, (3,3), strides=(1,1), padding='same', name='conv_5', use_bias=False)(x)
x = BatchNormalization(name='norm_5')(x)
x = LeakyReLU(alpha=0.1)(x)
x = MaxPooling2D(pool_size=(2, 2))(x)
x = Conv2D(256, (3,3), strides=(1,1), padding='same', name='conv_6', use_bias=False)(x)
x = BatchNormalization(name='norm_6')(x)
x = LeakyReLU(alpha=0.1)(x)
x = Conv2D(128, (1,1), strides=(1,1), padding='same', name='conv_7', use_bias=False)(x)
x = BatchNormalization(name='norm_7')(x)
x = LeakyReLU(alpha=0.1)(x)
x = Conv2D(256, (3,3), strides=(1,1), padding='same', name='conv_8', use_bias=False)(x)
x = BatchNormalization(name='norm_8')(x)
x = LeakyReLU(alpha=0.1)(x)
x = MaxPooling2D(pool_size=(2, 2))(x)
x = Conv2D(512, (3,3), strides=(1,1), padding='same', name='conv_9', use_bias=False)(x)
x = BatchNormalization(name='norm_9')(x)
x = LeakyReLU(alpha=0.1)(x)
x = Conv2D(256, (1,1), strides=(1,1), padding='same', name='conv_10', use_bias=False)(x)
x = BatchNormalization(name='norm_10')(x)
x = LeakyReLU(alpha=0.1)(x)
x = Conv2D(512, (3,3), strides=(1,1), padding='same', name='conv_11', use_bias=False)(x)
x = BatchNormalization(name='norm_11')(x)
x = LeakyReLU(alpha=0.1)(x)
x = Conv2D(256, (1,1), strides=(1,1), padding='same', name='conv_12', use_bias=False)(x)
x = BatchNormalization(name='norm_12')(x)
x = LeakyReLU(alpha=0.1)(x)
x = Conv2D(512, (3,3), strides=(1,1), padding='same', name='conv_13', use_bias=False)(x)
x = BatchNormalization(name='norm_13')(x)
x = LeakyReLU(alpha=0.1)(x)
skip_connection = x
x = MaxPooling2D(pool_size=(2, 2))(x)
x = Conv2D(1024, (3,3), strides=(1,1), padding='same', name='conv_14', use_bias=False)(x)
x = BatchNormalization(name='norm_14')(x)
x = LeakyReLU(alpha=0.1)(x)
x = Conv2D(512, (1,1), strides=(1,1), padding='same', name='conv_15', use_bias=False)(x)
x = BatchNormalization(name='norm_15')(x)
x = LeakyReLU(alpha=0.1)(x)
x = Conv2D(1024, (3,3), strides=(1,1), padding='same', name='conv_16', use_bias=False)(x)
x = BatchNormalization(name='norm_16')(x)
x = LeakyReLU(alpha=0.1)(x)
x = Conv2D(512, (1,1), strides=(1,1), padding='same', name='conv_17', use_bias=False)(x)
x = BatchNormalization(name='norm_17')(x)
x = LeakyReLU(alpha=0.1)(x)
x = Conv2D(1024, (3,3), strides=(1,1), padding='same', name='conv_18', use_bias=False)(x)
x = BatchNormalization(name='norm_18')(x)
x = LeakyReLU(alpha=0.1)(x)
x = Conv2D(1024, (3,3), strides=(1,1), padding='same', name='conv_19', use_bias=False)(x)
x = BatchNormalization(name='norm_19')(x)
x = LeakyReLU(alpha=0.1)(x)
x = Conv2D(1024, (3,3), strides=(1,1), padding='same', name='conv_20', use_bias=False)(x)
x = BatchNormalization(name='norm_20')(x)
x = LeakyReLU(alpha=0.1)(x)
skip_connection = Conv2D(64, (1,1), strides=(1,1), padding='same', name='conv_21', use_bias=False)(skip_connection)
skip_connection = BatchNormalization(name='norm_21')(skip_connection)
skip_connection = LeakyReLU(alpha=0.1)(skip_connection)
skip_connection = Lambda(space_to_depth_x2)(skip_connection)
x = concatenate([skip_connection, x])
x = Conv2D(1024, (3,3), strides=(1,1), padding='same', name='conv_22', use_bias=False)(x)
x = BatchNormalization(name='norm_22')(x)
x = LeakyReLU(alpha=0.1)(x)
self.feature_extractor = Model(input_image, x)
# self.feature_extractor.load_weights(FULL_YOLO_BACKEND_PATH)
def normalize(self, image):
return image / 255.
if __name__=="__main__":
model=TinyYolo(416)
print(model.feature_extractor.summary())