-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfrontend.py
262 lines (211 loc) · 9.2 KB
/
frontend.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
from backend import TinyYolo,FullYolo
import numpy as np
import tensorflow as tf
from keras.layers import Input,Conv2D,Lambda,Reshape,BatchNormalization,Activation
from keras.models import Model
from keras.utils import multi_gpu_model
from preprocessing import BatchGenerator
from keras.callbacks import EarlyStopping,ModelCheckpoint
import cv2
from utils import decode_netout
class YOLO(object):
def __init__(self,architecture,
input_size,
labels,
max_box_per_img,
anchors,
gpus=1):
self.input_size=input_size
self.labels=list(labels)
self.nb_class=len(self.labels)
self.nb_box=5
self.class_wt=np.ones(self.nb_class,dtype="float32")
self.anchors=anchors
self.gpus=gpus
self.max_box_per_img=max_box_per_img
##Define model with cpu
with tf.device("/gpu:0"):
input_=Input(shape=(self.input_size,self.input_size,3))
self.true_boxes=Input(shape=(1,1,1,self.max_box_per_img,4))
if architecture=="Tiny Yolo":
self.feature_extractor=TinyYolo(self.input_size)
elif architecture=="Full Yolo":
self.feature_extractor=FullYolo(self.input_size)
else:
raise Exception("Architecture not found...")
self.grid_h,self.grid_w=self.feature_extractor.get_output_shape()
features=self.feature_extractor.extract(input_)
output=Conv2D(self.nb_box*(4+1+self.nb_class),(1,1),strides=(1,1),padding="same")(features)
output=BatchNormalization()(output)
output=Activation("relu")(output)
output=Reshape((self.grid_h,self.grid_w,self.nb_box,4+1+self.nb_class))(output)
output=Lambda(lambda args:args[0])([output,self.true_boxes])
self.orgmodel=Model([input_,self.true_boxes],output)
layer=self.orgmodel.layers[-6]
weights=layer.get_weights()
new_kernel=np.random.normal(size=weights[0].shape)/(self.grid_h*self.grid_w)
new_bias=np.random.normal(size=weights[1].shape)/(self.grid_h*self.grid_w)
layer.set_weights([new_kernel,new_bias])
if gpus>1:
self.model=multi_gpu_model(self.orgmodel,self.gpus)
else:
self.model=self.orgmodel
def custom_loss(self,y_true,y_pred):
mask_shape=tf.shape(y_true)[:4]
cell_x=tf.to_float(
tf.reshape(
tf.tile(tf.range(self.grid_w),[self.grid_h]),(1,self.grid_h,self.grid_w,1,1)
)
)
cell_y=tf.transpose(cell_x,(0,2,1,3,4))
cell_grid=tf.tile(tf.concat([cell_x,cell_y],-1),[self.batch_size,1,1,self.nb_box,1])
coord_mask=tf.zeros(mask_shape)
conf_mask=tf.zeros(mask_shape)
class_mask=tf.zeros(mask_shape)
"""adjust prediction"""
pred_box_xy=tf.sigmoid(y_pred[...,:2])+cell_grid
pred_box_wh=tf.exp(y_pred[...,2:4])*np.reshape(self.anchors,[1,1,1,self.nb_box,2])
pred_box_conf=tf.sigmoid(y_pred[...,4])
pred_box_class=y_pred[...,5:]
"""adjust ground truth"""
true_box_xy=y_true[...,0:2]
true_box_wh=y_true[...,2:4]
##assign the iou area as the true confidence
true_wh_half=true_box_wh/2.
true_mins=true_box_xy-true_wh_half
true_maxs=true_box_xy+true_wh_half
pred_wh_half=pred_box_wh/2.
pred_mins=pred_box_xy-pred_wh_half
pred_maxs=pred_box_xy+pred_wh_half
intersect_mins=tf.maximum(pred_mins,true_mins)
intersect_maxs=tf.minimum(pred_maxs,true_maxs)
intersect_wh=tf.maximum(intersect_maxs-intersect_mins,0)
intersect_areas=intersect_wh[...,0]*intersect_wh[...,1]
true_areas=true_box_wh[...,0]*true_box_wh[...,1]
pred_areas=pred_box_wh[...,0]*pred_box_wh[...,1]
union_areas=true_areas+pred_areas-intersect_areas
iou_scores=tf.truediv(intersect_areas,union_areas)
true_box_conf=iou_scores*y_true[...,4]
true_box_class=tf.argmax(y_true[...,5:],-1)
"""determine the mask"""
coord_mask=tf.expand_dims(y_true[...,4],axis=-1)*self.coord_scale
##assign the object and no_object penalty with ious
true_xy=self.true_boxes[...,0:2]
true_wh=self.true_boxes[...,2:4]
true_wh_half=true_wh/2.
true_mins=true_xy-true_wh_half
true_maxs=true_xy+true_wh_half
pred_xy=tf.expand_dims(pred_box_xy,4)
pred_wh=tf.expand_dims(pred_box_wh,4)
pred_wh_half=pred_wh/2.
pred_mins=pred_xy-pred_wh_half
pred_maxs=pred_xy+pred_wh_half
intersect_mins=tf.maximum(pred_mins,true_mins)
intersect_maxs=tf.minimum(pred_maxs,true_maxs)
intersect_wh=tf.maximum(intersect_maxs-intersect_mins,0)
intersect_areas=intersect_wh[...,0]*intersect_wh[...,1]
pred_areas=pred_wh[...,0]*pred_wh[...,1]
true_areas=true_wh[...,0]*true_wh[...,1]
union_areas=pred_areas+true_areas-intersect_areas
iou_scores=tf.truediv(intersect_areas,union_areas)
best_iou=tf.reduce_max(iou_scores,axis=4)
conf_mask+=tf.to_float(best_iou<0.6)*(1-y_true[...,4])*self.no_object_scale
conf_mask+=y_true[...,4]*self.object_scale
class_mask+=y_true[...,4]*tf.gather(self.class_wt,true_box_class)*self.class_scale
"""final loss"""
nb_coord_box=tf.reduce_sum(tf.to_float(coord_mask>0.))
nb_conf_box=tf.reduce_sum(tf.to_float(conf_mask>0.))
nb_class_box=tf.reduce_sum(tf.to_float(class_mask>0.))
loss_xy=tf.reduce_sum(coord_mask*tf.square(true_box_xy-pred_box_xy))/(nb_coord_box+1e-6)/2.
loss_wh=tf.reduce_sum(coord_mask*tf.square(true_box_wh-pred_box_wh))/(nb_coord_box+1e-6)/2.
loss_conf=tf.reduce_sum(conf_mask*tf.square(true_box_conf-pred_box_conf))/(nb_conf_box+1e-6)/2.
loss_class=tf.nn.sparse_softmax_cross_entropy_with_logits(labels=true_box_class,logits=pred_box_class)
loss_class=tf.reduce_sum(loss_class*class_mask)/(nb_class_box+1e-6)/2.
loss=loss_xy+loss_wh+loss_conf+loss_class
return loss
def train(self,train_imgs,
valid_imgs,
train_times,
valid_times,
nb_epochs,
learning_rate,
batch_size,
warmup_epochs,
object_scale,
no_object_scale,
coord_scale,
class_scale,
saved_weights_name="best_weights.h5",
train=True):
self.batch_size=batch_size
self.object_scale=object_scale
self.no_object_scale=no_object_scale
self.coord_scale=coord_scale
self.class_scale=class_scale
generator_config={
"IMAGE_H":self.input_size,
"IMAGE_W":self.input_size,
"GRID_H":self.grid_h,
"GRID_W":self.grid_w,
"BOX":self.nb_box,
"LABELS":self.labels,
"CLASS":len(self.labels),
"ANCHORS":self.anchors,
"BATCH_SIZE":self.batch_size,
"TRUE_BOX_BUFFER":self.max_box_per_img
}
train_generator=BatchGenerator(train_imgs,generator_config,norm=self.feature_extractor.normalize)
valid_generator=BatchGenerator(valid_imgs,generator_config,norm=self.feature_extractor.normalize)
self.model.compile(loss=self.custom_loss,optimizer="adam")
early_stopping=EarlyStopping(monitor="loss",patience=20,mode="min",verbose=1)
checkpoint=ModelCheckpoint(saved_weights_name,monitor="loss",verbose=1,save_best_only=False,mode="min")
if train:
self.model.fit_generator(generator=train_generator,
steps_per_epoch=len(train_generator)*train_times,
epochs=nb_epochs,
validation_data=valid_generator,
validation_steps=len(valid_generator)*valid_times,
callbacks=[early_stopping,checkpoint])
def load_weights(self,weights_path):
self.model.load_weights(weights_path)
def predict(self,img):
img=cv2.resize(img,(self.input_size,self.input_size))
img=self.feature_extractor.normalize(img)
input_img=img[:,:,::-1]
input_img=np.expand_dims(input_img,0)
dummy_array=np.zeros((1,1,1,1,self.max_box_per_img,4))
netout=self.model.predict([input_img,dummy_array])[0]
boxes=decode_netout(netout,0.5,0.4,self.anchors,self.nb_class)
return boxes
def compute_loss(self,train_imgs):
generator_config={
"IMAGE_H":self.input_size,
"IMAGE_W":self.input_size,
"GRID_H":self.grid_h,
"GRID_W":self.grid_w,
"BOX":self.nb_box,
"LABELS":self.labels,
"CLASS":len(self.labels),
"ANCHORS":self.anchors,
"BATCH_SIZE":self.batch_size,
"TRUE_BOX_BUFFER":self.max_box_per_img
}
train_generator=BatchGenerator(train_imgs,generator_config,norm=self.feature_extractor.normalize)
[x,b],y=train_generator.__getitem__(0)
print("The first batch loss is "+str(self.model.evaluate([x,b],y,batch_size=self.batch_size)))
print(self.batch_size)
sum_l=0.
for i in range(len(x)):
test_x=x[i];test_b=b[i];test_y=y[i]
from matplotlib import pyplot as plt
l=self.model.evaluate([np.expand_dims(test_x,0),np.expand_dims(test_b,0)],\
np.expand_dims(test_y,0),batch_size=1)
print("The first img loss is "+str(l))
sum_l+=l
print(sum_l)
#plt.imshow(test_x)
#plt.show()
return [test_x,test_b],test_y
if __name__=="__main__":
yolo=YOLO("Tiny Yolo",416,["RBC"],10,[0.57273, 0.677385, 1.87446, 2.06253, 3.33843, 5.47434, 7.88282, 3.52778, 9.77052, 9.16828])
print(yolo.model.summary())