-
Notifications
You must be signed in to change notification settings - Fork 45
/
sushi.py
executable file
·843 lines (694 loc) · 37.6 KB
/
sushi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
#!/usr/bin/env python2
import logging
import sys
import operator
import argparse
import os
import bisect
import collections
from itertools import takewhile, izip, chain
import time
import numpy as np
import chapters
from common import SushiError, get_extension, format_time, ensure_static_collection
from demux import Timecodes, Demuxer
import keyframes
from subs import AssScript, SrtScript
from wav import WavStream
try:
import matplotlib.pyplot as plt
plot_enabled = True
except ImportError:
plot_enabled = False
if sys.platform == 'win32':
try:
import colorama
colorama.init()
console_colors_supported = True
except ImportError:
console_colors_supported = False
else:
console_colors_supported = True
ALLOWED_ERROR = 0.01
MAX_GROUP_STD = 0.025
VERSION = '0.5.1'
class ColoredLogFormatter(logging.Formatter):
bold_code = "\033[1m"
reset_code = "\033[0m"
grey_code = "\033[30m\033[1m"
error_format = "{bold}ERROR: %(message)s{reset}".format(bold=bold_code, reset=reset_code)
warn_format = "{bold}WARNING: %(message)s{reset}".format(bold=bold_code, reset=reset_code)
debug_format = "{grey}%(message)s{reset}".format(grey=grey_code, reset=reset_code)
default_format = "%(message)s"
def format(self, record):
if record.levelno == logging.DEBUG:
self._fmt = self.debug_format
elif record.levelno == logging.WARN:
self._fmt = self.warn_format
elif record.levelno == logging.ERROR or record.levelno == logging.CRITICAL:
self._fmt = self.error_format
else:
self._fmt = self.default_format
return super(ColoredLogFormatter, self).format(record)
def abs_diff(a, b):
return abs(a - b)
def interpolate_nones(data, points):
data = ensure_static_collection(data)
values_lookup = {p: v for p, v in izip(points, data) if v is not None}
if not values_lookup:
return []
zero_points = {p for p, v in izip(points, data) if v is None}
if not zero_points:
return data
data_list = sorted(values_lookup.iteritems())
zero_points = sorted(x for x in zero_points if x not in values_lookup)
out = np.interp(x=zero_points,
xp=map(operator.itemgetter(0), data_list),
fp=map(operator.itemgetter(1), data_list))
values_lookup.update(izip(zero_points, out))
return [
values_lookup[point] if value is None else value
for point, value in izip(points, data)
]
# todo: implement this as a running median
def running_median(values, window_size):
if window_size % 2 != 1:
raise SushiError('Median window size should be odd')
half_window = window_size // 2
medians = []
items_count = len(values)
for idx in xrange(items_count):
radius = min(half_window, idx, items_count-idx-1)
med = np.median(values[idx-radius:idx+radius+1])
medians.append(med)
return medians
def smooth_events(events, radius):
if not radius:
return
window_size = radius*2+1
shifts = [e.shift for e in events]
smoothed = running_median(shifts, window_size)
for event, new_shift in izip(events, smoothed):
event.set_shift(new_shift, event.diff)
def detect_groups(events_iter):
events_iter = iter(events_iter)
groups_list = [[next(events_iter)]]
for event in events_iter:
if abs_diff(event.shift, groups_list[-1][-1].shift) > ALLOWED_ERROR:
groups_list.append([])
groups_list[-1].append(event)
return groups_list
def groups_from_chapters(events, times):
logging.info(u'Chapter start points: {0}'.format([format_time(t) for t in times]))
groups = [[]]
chapter_times = iter(times[1:] + [36000000000]) # very large event at the end
current_chapter = next(chapter_times)
for event in events:
if event.end > current_chapter:
groups.append([])
while event.end > current_chapter:
current_chapter = next(chapter_times)
groups[-1].append(event)
groups = filter(None, groups) # non-empty groups
# check if we have any groups where every event is linked
# for example a chapter with only comments inside
broken_groups = [group for group in groups if not any(e for e in group if not e.linked)]
if broken_groups:
for group in broken_groups:
for event in group:
parent = event.get_link_chain_end()
parent_group = next(group for group in groups if parent in group)
parent_group.append(event)
del group[:]
groups = filter(None, groups)
# re-sort the groups again since we might break the order when inserting linked events
# sorting everything again is far from optimal but python sorting is very fast for sorted arrays anyway
for group in groups:
group.sort(key=lambda event: event.start)
return groups
def split_broken_groups(groups):
correct_groups = []
broken_found = False
for g in groups:
std = np.std([e.shift for e in g])
if std > MAX_GROUP_STD:
logging.warn(u'Shift is not consistent between {0} and {1}, most likely chapters are wrong (std: {2}). '
u'Switching to automatic grouping.'.format(format_time(g[0].start), format_time(g[-1].end),
std))
correct_groups.extend(detect_groups(g))
broken_found = True
else:
correct_groups.append(g)
if broken_found:
groups_iter = iter(correct_groups)
correct_groups = [list(next(groups_iter))]
for group in groups_iter:
if abs_diff(correct_groups[-1][-1].shift, group[0].shift) >= ALLOWED_ERROR \
or np.std([e.shift for e in group + correct_groups[-1]]) >= MAX_GROUP_STD:
correct_groups.append([])
correct_groups[-1].extend(group)
return correct_groups
def fix_near_borders(events):
"""
We assume that all lines with diff greater than 5 * (median diff across all events) are broken
"""
def fix_border(event_list, median_diff):
last_ten_diff = np.median([x.diff for x in event_list[:10]], overwrite_input=True)
diff_limit = min(last_ten_diff, median_diff)
broken = []
for event in event_list:
if not 0.2 < (event.diff / diff_limit) < 5:
broken.append(event)
else:
for x in broken:
x.link_event(event)
return len(broken)
return 0
median_diff = np.median([x.diff for x in events], overwrite_input=True)
fixed_count = fix_border(events, median_diff)
if fixed_count:
logging.info('Fixing {0} border events right after {1}'.format(fixed_count, format_time(events[0].start)))
fixed_count = fix_border(list(reversed(events)), median_diff)
if fixed_count:
logging.info('Fixing {0} border events right before {1}'.format(fixed_count, format_time(events[-1].end)))
def get_distance_to_closest_kf(timestamp, keyframes):
idx = bisect.bisect_left(keyframes, timestamp)
if idx == 0:
kf = keyframes[0]
elif idx == len(keyframes):
kf = keyframes[-1]
else:
before = keyframes[idx - 1]
after = keyframes[idx]
kf = after if after - timestamp < timestamp - before else before
return kf - timestamp
def find_keyframe_shift(group, src_keytimes, dst_keytimes, src_timecodes, dst_timecodes, max_kf_distance):
def get_distance(src_distance, dst_distance, limit):
if abs(dst_distance) > limit:
return None
shift = dst_distance - src_distance
return shift if abs(shift) < limit else None
src_start = get_distance_to_closest_kf(group[0].start, src_keytimes)
src_end = get_distance_to_closest_kf(group[-1].end + src_timecodes.get_frame_size(group[-1].end), src_keytimes)
dst_start = get_distance_to_closest_kf(group[0].shifted_start, dst_keytimes)
dst_end = get_distance_to_closest_kf(group[-1].shifted_end + dst_timecodes.get_frame_size(group[-1].end), dst_keytimes)
snapping_limit_start = src_timecodes.get_frame_size(group[0].start) * max_kf_distance
snapping_limit_end = src_timecodes.get_frame_size(group[0].end) * max_kf_distance
return (get_distance(src_start, dst_start, snapping_limit_start),
get_distance(src_end, dst_end, snapping_limit_end))
def find_keyframes_distances(event, src_keytimes, dst_keytimes, timecodes, max_kf_distance):
def find_keyframe_distance(src_time, dst_time):
src = get_distance_to_closest_kf(src_time, src_keytimes)
dst = get_distance_to_closest_kf(dst_time, dst_keytimes)
snapping_limit = timecodes.get_frame_size(src_time) * max_kf_distance
if abs(src) < snapping_limit and abs(dst) < snapping_limit and abs(src-dst) < snapping_limit:
return dst - src
return 0
ds = find_keyframe_distance(event.start, event.shifted_start)
de = find_keyframe_distance(event.end, event.shifted_end)
return ds, de
def snap_groups_to_keyframes(events, chapter_times, max_ts_duration, max_ts_distance, src_keytimes, dst_keytimes,
src_timecodes, dst_timecodes, max_kf_distance, kf_mode):
if not max_kf_distance:
return
groups = merge_short_lines_into_groups(events, chapter_times, max_ts_duration, max_ts_distance)
if kf_mode == 'all' or kf_mode == 'shift':
# step 1: snap events without changing their duration. Useful for some slight audio imprecision correction
shifts = []
times = []
for group in groups:
shifts.extend(find_keyframe_shift(group, src_keytimes, dst_keytimes, src_timecodes, dst_timecodes, max_kf_distance))
times.extend((group[0].shifted_start, group[-1].shifted_end))
shifts = interpolate_nones(shifts, times)
if shifts:
mean_shift = np.mean(shifts)
shifts = zip(*(iter(shifts), ) * 2)
logging.info('Group {0}-{1} corrected by {2}'.format(format_time(events[0].start), format_time(events[-1].end), mean_shift))
for group, (start_shift, end_shift) in izip(groups, shifts):
if abs(start_shift-end_shift) > 0.001 and len(group) > 1:
actual_shift = min(start_shift, end_shift, key=lambda x: abs(x - mean_shift))
logging.warning("Typesetting group at {0} had different shift at start/end points ({1} and {2}). Shifting by {3}."
.format(format_time(group[0].start), start_shift, end_shift, actual_shift))
for e in group:
e.adjust_shift(actual_shift)
else:
for e in group:
e.adjust_additional_shifts(start_shift, end_shift)
if kf_mode == 'all' or kf_mode == 'snap':
# step 2: snap start/end times separately
for group in groups:
if len(group) > 1:
pass # we don't snap typesetting
start_shift, end_shift = find_keyframes_distances(group[0], src_keytimes, dst_keytimes, src_timecodes, max_kf_distance)
if abs(start_shift) > 0.01 or abs(end_shift) > 0.01:
logging.info('Snapping {0} to keyframes, start time by {1}, end: {2}'.format(format_time(group[0].start), start_shift, end_shift))
group[0].adjust_additional_shifts(start_shift, end_shift)
def average_shifts(events):
events = [e for e in events if not e.linked]
shifts = [x.shift for x in events]
weights = [1 - x.diff for x in events]
avg = np.average(shifts, weights=weights)
for e in events:
e.set_shift(avg, e.diff)
return avg
def merge_short_lines_into_groups(events, chapter_times, max_ts_duration, max_ts_distance):
search_groups = []
chapter_times = iter(chapter_times[1:] + [100000000])
next_chapter = next(chapter_times)
events = ensure_static_collection(events)
processed = set()
for idx, event in enumerate(events):
if idx in processed:
continue
while event.end > next_chapter:
next_chapter = next(chapter_times)
if event.duration > max_ts_duration:
search_groups.append([event])
processed.add(idx)
else:
group = [event]
group_end = event.end
i = idx+1
while i < len(events) and abs(group_end - events[i].start) < max_ts_distance:
if events[i].end < next_chapter and events[i].duration <= max_ts_duration:
processed.add(i)
group.append(events[i])
group_end = max(group_end, events[i].end)
i += 1
search_groups.append(group)
return search_groups
def prepare_search_groups(events, source_duration, chapter_times, max_ts_duration, max_ts_distance):
last_unlinked = None
for idx, event in enumerate(events):
if event.is_comment:
try:
event.link_event(events[idx+1])
except IndexError:
event.link_event(last_unlinked)
continue
if (event.start + event.duration / 2.0) > source_duration:
logging.info('Event time outside of audio range, ignoring: %s' % unicode(event))
event.link_event(last_unlinked)
continue
elif event.end == event.start:
logging.info('{0}: skipped because zero duration'.format(format_time(event.start)))
try:
event.link_event(events[idx + 1])
except IndexError:
event.link_event(last_unlinked)
continue
# link lines with start and end times identical to some other event
# assuming scripts are sorted by start time so we don't search the entire collection
same_start = lambda x: event.start == x.start
processed = next((x for x in takewhile(same_start, reversed(events[:idx])) if not x.linked and x.end == event.end),None)
if processed:
event.link_event(processed)
else:
last_unlinked = event
events = (e for e in events if not e.linked)
search_groups = merge_short_lines_into_groups(events, chapter_times, max_ts_duration, max_ts_distance)
# link groups contained inside other groups to the larger group
passed_groups = []
for idx, group in enumerate(search_groups):
try:
other = next(x for x in reversed(search_groups[:idx])
if x[0].start <= group[0].start
and x[-1].end >= group[-1].end)
for event in group:
event.link_event(other[0])
except StopIteration:
passed_groups.append(group)
return passed_groups
def calculate_shifts(src_stream, dst_stream, groups_list, normal_window, max_window, rewind_thresh):
def log_shift(state):
logging.info('{0}-{1}: shift: {2:0.10f}, diff: {3:0.10f}'
.format(format_time(state["start_time"]), format_time(state["end_time"]), state["shift"], state["diff"]))
def log_uncommitted(state, shift, left_side_shift, right_side_shift, search_offset):
logging.debug('{0}-{1}: shift: {2:0.5f} [{3:0.5f}, {4:0.5f}], search offset: {5:0.6f}'
.format(format_time(state["start_time"]), format_time(state["end_time"]),
shift, left_side_shift, right_side_shift, search_offset))
small_window = 1.5
idx = 0
committed_states = []
uncommitted_states = []
window = normal_window
while idx < len(groups_list):
search_group = groups_list[idx]
tv_audio = src_stream.get_substream(search_group[0].start, search_group[-1].end)
original_time = search_group[0].start
group_state = {"start_time": search_group[0].start, "end_time": search_group[-1].end, "shift": None, "diff": None}
last_committed_shift = committed_states[-1]["shift"] if committed_states else 0
diff = new_time = None
if not uncommitted_states:
if original_time + last_committed_shift > dst_stream.duration_seconds:
# event outside of audio range, all events past it are also guaranteed to fail
for g in groups_list[idx:]:
committed_states.append({"start_time": g[0].start, "end_time": g[-1].end, "shift": None, "diff": None})
logging.info("{0}-{1}: outside of audio range".format(format_time(g[0].start), format_time(g[-1].end)))
break
if small_window < window:
diff, new_time = dst_stream.find_substream(tv_audio, original_time + last_committed_shift, small_window)
if new_time is not None and abs_diff(new_time - original_time, last_committed_shift) <= ALLOWED_ERROR:
# fastest case - small window worked, commit the group immediately
group_state.update({"shift": new_time - original_time, "diff": diff})
committed_states.append(group_state)
log_shift(group_state)
if window != normal_window:
logging.info("Going back to window {0} from {1}".format(normal_window, window))
window = normal_window
idx += 1
continue
left_audio_half, right_audio_half = np.split(tv_audio, [len(tv_audio[0])/2], axis=1)
right_half_offset = len(left_audio_half[0]) / float(src_stream.sample_rate)
terminate = False
# searching from last committed shift
if original_time + last_committed_shift < dst_stream.duration_seconds:
diff, new_time = dst_stream.find_substream(tv_audio, original_time + last_committed_shift, window)
left_side_time = dst_stream.find_substream(left_audio_half, original_time + last_committed_shift, window)[1]
right_side_time = dst_stream.find_substream(right_audio_half, original_time + last_committed_shift + right_half_offset, window)[1] - right_half_offset
terminate = abs_diff(left_side_time, right_side_time) <= ALLOWED_ERROR and abs_diff(new_time, left_side_time) <= ALLOWED_ERROR
log_uncommitted(group_state, new_time - original_time, left_side_time - original_time,
right_side_time - original_time, last_committed_shift)
if not terminate and uncommitted_states and uncommitted_states[-1]["shift"] is not None \
and original_time + uncommitted_states[-1]["shift"] < dst_stream.duration_seconds:
start_offset = uncommitted_states[-1]["shift"]
diff, new_time = dst_stream.find_substream(tv_audio, original_time + start_offset, window)
left_side_time = dst_stream.find_substream(left_audio_half, original_time + start_offset, window)[1]
right_side_time = dst_stream.find_substream(right_audio_half, original_time + start_offset + right_half_offset, window)[1] - right_half_offset
terminate = abs_diff(left_side_time, right_side_time) <= ALLOWED_ERROR and abs_diff(new_time, left_side_time) <= ALLOWED_ERROR
log_uncommitted(group_state, new_time - original_time, left_side_time - original_time,
right_side_time - original_time, start_offset)
shift = new_time - original_time
if not terminate:
# we aren't back on track yet - add this group to uncommitted
group_state.update({"shift": shift, "diff": diff})
uncommitted_states.append(group_state)
idx += 1
if rewind_thresh == len(uncommitted_states) and window < max_window:
logging.warn("Detected possibly broken segment starting at {0}, increasing the window from {1} to {2}"
.format(format_time(uncommitted_states[0]["start_time"]), window, max_window))
window = max_window
idx = len(committed_states)
del uncommitted_states[:]
continue
# we're back on track - apply current shift to all broken events
if uncommitted_states:
logging.warning("Events from {0} to {1} will most likely be broken!".format(
format_time(uncommitted_states[0]["start_time"]),
format_time(uncommitted_states[-1]["end_time"])))
uncommitted_states.append(group_state)
for state in uncommitted_states:
state.update({"shift": shift, "diff": diff})
log_shift(state)
committed_states.extend(uncommitted_states)
del uncommitted_states[:]
idx += 1
for state in uncommitted_states:
log_shift(state)
for idx, (search_group, group_state) in enumerate(izip(groups_list, chain(committed_states, uncommitted_states))):
if group_state["shift"] is None:
for group in reversed(groups_list[:idx]):
link_to = next((x for x in reversed(group) if not x.linked), None)
if link_to:
for e in search_group:
e.link_event(link_to)
break
else:
for e in search_group:
e.set_shift(group_state["shift"], group_state["diff"])
def check_file_exists(path, file_title):
if path and not os.path.exists(path):
raise SushiError("{0} file doesn't exist".format(file_title))
def format_full_path(temp_dir, base_path, postfix):
if temp_dir:
return os.path.join(temp_dir, os.path.basename(base_path) + postfix)
else:
return base_path + postfix
def create_directory_if_not_exists(path):
if path and not os.path.exists(path):
os.makedirs(path)
def run(args):
ignore_chapters = args.chapters_file is not None and args.chapters_file.lower() == 'none'
write_plot = plot_enabled and args.plot_path
if write_plot:
plt.clf()
plt.ylabel('Shift, seconds')
plt.xlabel('Event index')
# first part should do all possible validation and should NOT take significant amount of time
check_file_exists(args.source, 'Source')
check_file_exists(args.destination, 'Destination')
check_file_exists(args.src_timecodes, 'Source timecodes')
check_file_exists(args.dst_timecodes, 'Source timecodes')
check_file_exists(args.script_file, 'Script')
if not ignore_chapters:
check_file_exists(args.chapters_file, 'Chapters')
if args.src_keyframes not in ('auto', 'make'):
check_file_exists(args.src_keyframes, 'Source keyframes')
if args.dst_keyframes not in ('auto', 'make'):
check_file_exists(args.dst_keyframes, 'Destination keyframes')
if (args.src_timecodes and args.src_fps) or (args.dst_timecodes and args.dst_fps):
raise SushiError('Both fps and timecodes file cannot be specified at the same time')
src_demuxer = Demuxer(args.source)
dst_demuxer = Demuxer(args.destination)
if src_demuxer.is_wav and not args.script_file:
raise SushiError("Script file isn't specified")
if (args.src_keyframes and not args.dst_keyframes) or (args.dst_keyframes and not args.src_keyframes):
raise SushiError('Either none or both of src and dst keyframes should be provided')
create_directory_if_not_exists(args.temp_dir)
# selecting source audio
if src_demuxer.is_wav:
src_audio_path = args.source
else:
src_audio_path = format_full_path(args.temp_dir, args.source, '.sushi.wav')
src_demuxer.set_audio(stream_idx=args.src_audio_idx, output_path=src_audio_path, sample_rate=args.sample_rate)
# selecting destination audio
if dst_demuxer.is_wav:
dst_audio_path = args.destination
else:
dst_audio_path = format_full_path(args.temp_dir, args.destination, '.sushi.wav')
dst_demuxer.set_audio(stream_idx=args.dst_audio_idx, output_path=dst_audio_path, sample_rate=args.sample_rate)
# selecting source subtitles
if args.script_file:
src_script_path = args.script_file
else:
stype = src_demuxer.get_subs_type(args.src_script_idx)
src_script_path = format_full_path(args.temp_dir, args.source, '.sushi'+ stype)
src_demuxer.set_script(stream_idx=args.src_script_idx, output_path=src_script_path)
script_extension = get_extension(src_script_path)
if script_extension not in ('.ass', '.srt'):
raise SushiError('Unknown script type')
# selection destination subtitles
if args.output_script:
dst_script_path = args.output_script
dst_script_extension = get_extension(args.output_script)
if dst_script_extension != script_extension:
raise SushiError("Source and destination script file types don't match ({0} vs {1})"
.format(script_extension, dst_script_extension))
else:
dst_script_path = format_full_path(args.temp_dir, args.destination, '.sushi' + script_extension)
# selecting chapters
if args.grouping and not ignore_chapters:
if args.chapters_file:
if get_extension(args.chapters_file) == '.xml':
chapter_times = chapters.get_xml_start_times(args.chapters_file)
else:
chapter_times = chapters.get_ogm_start_times(args.chapters_file)
elif not src_demuxer.is_wav:
chapter_times = src_demuxer.chapters
output_path = format_full_path(args.temp_dir, src_demuxer.path, ".sushi.chapters.txt")
src_demuxer.set_chapters(output_path)
else:
chapter_times = []
else:
chapter_times = []
# selecting keyframes and timecodes
if args.src_keyframes:
def select_keyframes(file_arg, demuxer):
auto_file = format_full_path(args.temp_dir, demuxer.path, '.sushi.keyframes.txt')
if file_arg in ('auto', 'make'):
if file_arg == 'make' or not os.path.exists(auto_file):
if not demuxer.has_video:
raise SushiError("Cannot make keyframes for {0} because it doesn't have any video!"
.format(demuxer.path))
demuxer.set_keyframes(output_path=auto_file)
return auto_file
else:
return file_arg
def select_timecodes(external_file, fps_arg, demuxer):
if external_file:
return external_file
elif fps_arg:
return None
elif demuxer.has_video:
path = format_full_path(args.temp_dir, demuxer.path, '.sushi.timecodes.txt')
demuxer.set_timecodes(output_path=path)
return path
else:
raise SushiError('Fps, timecodes or video files must be provided if keyframes are used')
src_keyframes_file = select_keyframes(args.src_keyframes, src_demuxer)
dst_keyframes_file = select_keyframes(args.dst_keyframes, dst_demuxer)
src_timecodes_file = select_timecodes(args.src_timecodes, args.src_fps, src_demuxer)
dst_timecodes_file = select_timecodes(args.dst_timecodes, args.dst_fps, dst_demuxer)
# after this point nothing should fail so it's safe to start slow operations
# like running the actual demuxing
src_demuxer.demux()
dst_demuxer.demux()
try:
if args.src_keyframes:
src_timecodes = Timecodes.cfr(args.src_fps) if args.src_fps else Timecodes.from_file(src_timecodes_file)
src_keytimes = [src_timecodes.get_frame_time(f) for f in keyframes.parse_keyframes(src_keyframes_file)]
dst_timecodes = Timecodes.cfr(args.dst_fps) if args.dst_fps else Timecodes.from_file(dst_timecodes_file)
dst_keytimes = [dst_timecodes.get_frame_time(f) for f in keyframes.parse_keyframes(dst_keyframes_file)]
script = AssScript.from_file(src_script_path) if script_extension == '.ass' else SrtScript.from_file(src_script_path)
script.sort_by_time()
src_stream = WavStream(src_audio_path, sample_rate=args.sample_rate, sample_type=args.sample_type)
dst_stream = WavStream(dst_audio_path, sample_rate=args.sample_rate, sample_type=args.sample_type)
search_groups = prepare_search_groups(script.events,
source_duration=src_stream.duration_seconds,
chapter_times=chapter_times,
max_ts_duration=args.max_ts_duration,
max_ts_distance=args.max_ts_distance)
calculate_shifts(src_stream, dst_stream, search_groups,
normal_window=args.window,
max_window=args.max_window,
rewind_thresh=args.rewind_thresh if args.grouping else 0)
events = script.events
if write_plot:
plt.plot([x.shift for x in events], label='From audio')
if args.grouping:
if not ignore_chapters and chapter_times:
groups = groups_from_chapters(events, chapter_times)
for g in groups:
fix_near_borders(g)
smooth_events([x for x in g if not x.linked], args.smooth_radius)
groups = split_broken_groups(groups)
else:
fix_near_borders(events)
smooth_events([x for x in events if not x.linked], args.smooth_radius)
groups = detect_groups(events)
if write_plot:
plt.plot([x.shift for x in events], label='Borders fixed')
for g in groups:
start_shift = g[0].shift
end_shift = g[-1].shift
avg_shift = average_shifts(g)
logging.info(u'Group (start: {0}, end: {1}, lines: {2}), '
u'shifts (start: {3}, end: {4}, average: {5})'
.format(format_time(g[0].start), format_time(g[-1].end), len(g), start_shift, end_shift,
avg_shift))
if args.src_keyframes:
for e in (x for x in events if x.linked):
e.resolve_link()
for g in groups:
snap_groups_to_keyframes(g, chapter_times, args.max_ts_duration, args.max_ts_distance, src_keytimes,
dst_keytimes, src_timecodes, dst_timecodes, args.max_kf_distance, args.kf_mode)
else:
fix_near_borders(events)
if write_plot:
plt.plot([x.shift for x in events], label='Borders fixed')
if args.src_keyframes:
for e in (x for x in events if x.linked):
e.resolve_link()
snap_groups_to_keyframes(events, chapter_times, args.max_ts_duration, args.max_ts_distance, src_keytimes,
dst_keytimes, src_timecodes, dst_timecodes, args.max_kf_distance, args.kf_mode)
for event in events:
event.apply_shift()
script.save_to_file(dst_script_path)
if write_plot:
plt.plot([x.shift + (x._start_shift + x._end_shift)/2.0 for x in events], label='After correction')
plt.legend(fontsize=5, frameon=False, fancybox=False)
plt.savefig(args.plot_path, dpi=300)
finally:
if args.cleanup:
src_demuxer.cleanup()
dst_demuxer.cleanup()
def create_arg_parser():
parser = argparse.ArgumentParser(description='Sushi - Automatic Subtitle Shifter')
parser.add_argument('--window', default=10, type=int, metavar='<size>', dest='window',
help='Search window size. [%(default)s]')
parser.add_argument('--max-window', default=30, type=int, metavar='<size>', dest='max_window',
help="Maximum search size Sushi is allowed to use when trying to recover from errors. [%(default)s]")
parser.add_argument('--rewind-thresh', default=5, type=int, metavar='<events>', dest='rewind_thresh',
help="Number of consecutive errors Sushi has to encounter to consider results broken "
"and retry with larger window. Set to 0 to disable. [%(default)s]")
parser.add_argument('--no-grouping', action='store_false', dest='grouping',
help="Don't events into groups before shifting. Also disables error recovery.")
parser.add_argument('--max-kf-distance', default=2, type=float, metavar='<frames>', dest='max_kf_distance',
help='Maximum keyframe snapping distance. [%(default)s]')
parser.add_argument('--kf-mode', default='all', choices=['shift', 'snap', 'all'], dest='kf_mode',
help='Keyframes-based shift correction/snapping mode. [%(default)s]')
parser.add_argument('--smooth-radius', default=3, type=int, metavar='<events>', dest='smooth_radius',
help='Radius of smoothing median filter. [%(default)s]')
# 10 frames at 23.976
parser.add_argument('--max-ts-duration', default=1001.0 / 24000.0 * 10, type=float, metavar='<seconds>',
dest='max_ts_duration',
help='Maximum duration of a line to be considered typesetting. [%(default).3f]')
# 10 frames at 23.976
parser.add_argument('--max-ts-distance', default=1001.0 / 24000.0 * 10, type=float, metavar='<seconds>',
dest='max_ts_distance',
help='Maximum distance between two adjacent typesetting lines to be merged. [%(default).3f]')
# deprecated/test options, do not use
parser.add_argument('--test-shift-plot', default=None, dest='plot_path', help=argparse.SUPPRESS)
parser.add_argument('--sample-type', default='uint8', choices=['float32', 'uint8'], dest='sample_type',
help=argparse.SUPPRESS)
parser.add_argument('--sample-rate', default=12000, type=int, metavar='<rate>', dest='sample_rate',
help='Downsampled audio sample rate. [%(default)s]')
parser.add_argument('--src-audio', default=None, type=int, metavar='<id>', dest='src_audio_idx',
help='Audio stream index of the source video')
parser.add_argument('--src-script', default=None, type=int, metavar='<id>', dest='src_script_idx',
help='Script stream index of the source video')
parser.add_argument('--dst-audio', default=None, type=int, metavar='<id>', dest='dst_audio_idx',
help='Audio stream index of the destination video')
# files
parser.add_argument('--no-cleanup', action='store_false', dest='cleanup',
help="Don't delete demuxed streams")
parser.add_argument('--temp-dir', default=None, dest='temp_dir', metavar='<string>',
help='Specify temporary folder to use when demuxing stream.')
parser.add_argument('--chapters', default=None, dest='chapters_file', metavar='<filename>',
help="XML or OGM chapters to use instead of any found in the source. 'none' to disable.")
parser.add_argument('--script', default=None, dest='script_file', metavar='<filename>',
help='Subtitle file path to use instead of any found in the source')
parser.add_argument('--dst-keyframes', default=None, dest='dst_keyframes', metavar='<filename>',
help='Destination keyframes file')
parser.add_argument('--src-keyframes', default=None, dest='src_keyframes', metavar='<filename>',
help='Source keyframes file')
parser.add_argument('--dst-fps', default=None, type=float, dest='dst_fps', metavar='<fps>',
help='Fps of the destination video. Must be provided if keyframes are used.')
parser.add_argument('--src-fps', default=None, type=float, dest='src_fps', metavar='<fps>',
help='Fps of the source video. Must be provided if keyframes are used.')
parser.add_argument('--dst-timecodes', default=None, dest='dst_timecodes', metavar='<filename>',
help='Timecodes file to use instead of making one from the destination (when possible)')
parser.add_argument('--src-timecodes', default=None, dest='src_timecodes', metavar='<filename>',
help='Timecodes file to use instead of making one from the source (when possible)')
parser.add_argument('--src', required=True, dest="source", metavar='<filename>',
help='Source audio/video')
parser.add_argument('--dst', required=True, dest="destination", metavar='<filename>',
help='Destination audio/video')
parser.add_argument('-o', '--output', default=None, dest='output_script', metavar='<filename>',
help='Output script')
parser.add_argument('-v', '--verbose', default=False, dest='verbose', action='store_true',
help='Enable verbose logging')
parser.add_argument('--version', action='version', version=VERSION)
return parser
def parse_args_and_run(cmd_keys):
def format_arg(arg):
return arg if ' ' not in arg else '"{0}"'.format(arg)
args = create_arg_parser().parse_args(cmd_keys)
handler = logging.StreamHandler()
if console_colors_supported and os.isatty(sys.stderr.fileno()):
# enable colors
handler.setFormatter(ColoredLogFormatter())
else:
handler.setFormatter(logging.Formatter(fmt=ColoredLogFormatter.default_format))
logging.root.addHandler(handler)
logging.root.setLevel(logging.DEBUG if args.verbose else logging.INFO)
logging.info("Sushi's running with arguments: {0}".format(' '.join(map(format_arg, cmd_keys))))
start_time = time.time()
run(args)
logging.info('Done in {0}s'.format(time.time() - start_time))
if __name__ == '__main__':
try:
parse_args_and_run(sys.argv[1:])
except SushiError as e:
logging.critical(e.message)
sys.exit(2)