-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest2-unoptimized-grid.txt
282 lines (248 loc) · 6.7 KB
/
test2-unoptimized-grid.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
#include"FastCollisionDetectionLib.h"
#include<iostream>
template<typename CoordType>
struct Vector3D
{
CoordType x,y,z;
Vector3D<CoordType> crossProduct(Vector3D<CoordType> vec)
{
Vector3D<CoordType> res;
res.x = y*vec.z - z*vec.y;
res.y = z*vec.x - x*vec.z;
res.z = x*vec.y - y*vec.x;
return res;
}
Vector3D<CoordType> operator - (Vector3D<CoordType> vec)
{
Vector3D<CoordType> result;
result.x = x-vec.x;
result.y = y-vec.y;
result.z = z-vec.z;
return result;
}
Vector3D<CoordType> operator + (Vector3D<CoordType> vec)
{
Vector3D<CoordType> result;
result.x = x+vec.x;
result.y = y+vec.y;
result.z = z+vec.z;
return result;
}
Vector3D<CoordType> operator * (CoordType v)
{
Vector3D<CoordType> result;
result.x = x*v;
result.y = y*v;
result.z = z*v;
return result;
}
CoordType abs()
{
return std::sqrt(x*x+y*y+z*z);
}
};
template<typename CoordType>
struct PointCloud
{
Vector3D<CoordType> point[125];
PointCloud(CoordType x, CoordType y, CoordType z)
{
for(int i=0;i<125;i++)
{
point[i].x=x+i%5-2.5f;
point[i].y=y+(i/5)%5-2.5f;
point[i].z=z+i/25-2.5f;
}
}
};
template<typename CoordType>
bool pointCloudIntersection(PointCloud<CoordType>& cl1, PointCloud<CoordType>& cl2)
{
for(Vector3D<CoordType>& p:cl1.point)
{
for(Vector3D<CoordType>& p2:cl2.point)
{
if((p-p2).abs()<1.0f)
{
return true;
}
}
}
return false;
}
template<typename CoordType>
bool intersectDim(const CoordType minx, const CoordType maxx, const CoordType minx2, const CoordType maxx2)
{
return !((maxx < minx2) || (maxx2 < minx));
}
#include"Generator.h"
template<typename CoordType>
struct AABBofPointCloud
{
AABBofPointCloud(int idPrm, PointCloud<CoordType> * pCloudPrm)
{
id=idPrm;
pCloud = pCloudPrm;
xmin=pCloud->point[0].x;
ymin=pCloud->point[0].y;
zmin=pCloud->point[0].z;
xmax=pCloud->point[0].x;
ymax=pCloud->point[0].y;
zmax=pCloud->point[0].z;
for(int i=0;i<125;i++)
{
if(xmin>pCloud->point[i].x)
xmin=pCloud->point[i].x;
if(ymin>pCloud->point[i].y)
ymin=pCloud->point[i].y;
if(zmin>pCloud->point[i].z)
zmin=pCloud->point[i].z;
if(xmax<pCloud->point[i].x)
xmax=pCloud->point[i].x;
if(ymax<pCloud->point[i].y)
ymax=pCloud->point[i].y;
if(zmax<pCloud->point[i].z)
zmax=pCloud->point[i].z;
}
}
int id;
PointCloud<CoordType>* pCloud;
CoordType xmin;
CoordType ymin;
CoordType zmin;
CoordType xmax;
CoordType ymax;
CoordType zmax;
};
template<typename CoordType, int Size, int ObjectsPerCell>
class Grid
{
public:
Grid(CoordType minCor, CoordType maxCor)
{
id=0;
mincorner=minCor;
maxcorner=maxCor;
cellData.resize(Size*Size*Size*(ObjectsPerCell+1));
for(int i=0;i<cellData.size();i++)
cellData[i]=0;
}
template<typename Func>
void forEachCellColliding(AABBofPointCloud<CoordType>* aabb, const Func& func)
{
// calculate cell size (equal for all dimensions for now)
const CoordType step = (maxcorner - mincorner)/Size;
// calculate overlapping region's cell indices
const int mincornerstartx = std::floor((aabb->xmin - mincorner) / step);
const int maxcornerendx = std::floor((aabb->xmax - mincorner) / step);
const int mincornerstarty = std::floor((aabb->ymin - mincorner) / step);
const int maxcornerendy = std::floor((aabb->ymax - mincorner) / step);
const int mincornerstartz = std::floor((aabb->zmin - mincorner) / step);
const int maxcornerendz = std::floor((aabb->zmax - mincorner) / step);
for(int i=mincornerstartz;i<=maxcornerendz;i++)
for(int j=mincornerstarty;j<=maxcornerendy;j++)
for(int k=mincornerstartx;k<=maxcornerendx;k++)
{
if(i<0 || i>=Size || j<0 || j>=Size || k<0 || k>=Size)
continue;
func(k,j,i,aabb);
}
}
void addObject(AABBofPointCloud<CoordType>* aabb)
{
forEachCellColliding(aabb, [&](int k, int j, int i, AABBofPointCloud<CoordType>* aabb){
const int collidingCellIndex = (k+j*Size+i*Size*Size)*(ObjectsPerCell+1);
const int lastUsedIndex = cellData[collidingCellIndex]++;
cellData[collidingCellIndex+lastUsedIndex+1]=id;
idMapping[id++]=aabb;
});
}
std::vector<AABBofPointCloud<CoordType>*> checkCollisionsWithSingleAABB(AABBofPointCloud<CoordType>* aabb)
{
std::vector<AABBofPointCloud<CoordType>*> result;
forEachCellColliding(aabb, [&](int k, int j, int i, AABBofPointCloud<CoordType>* aabb){
const int collidingCellIndex = (k+j*Size+i*Size*Size)*(ObjectsPerCell+1);
const int numObjectsInCell = cellData[collidingCellIndex];
for(int p=0;p<numObjectsInCell;p++)
{
const int idObj = cellData[collidingCellIndex+1+p];
AABBofPointCloud<CoordType>* aabbPtr = idMapping[idObj];
// evade self-collision and duplicated collisions
if( aabb->id < aabbPtr->id)
if(intersectDim(aabb->xmin, aabb->xmax, aabbPtr->xmin, aabbPtr->xmax))
if(intersectDim(aabb->ymin, aabb->ymax, aabbPtr->ymin, aabbPtr->ymax))
if(intersectDim(aabb->zmin, aabb->zmax, aabbPtr->zmin, aabbPtr->zmax))
{
result.push_back(aabbPtr);
}
}
});
return result;
}
private:
int id;
CoordType mincorner,maxcorner;
std::map<int,AABBofPointCloud<CoordType>*> idMapping;
std::vector<int> cellData;
};
int main()
{
using cotype = float;
PointCloud<cotype> ico1(0,0,0);
// heating the CPU for benchmarking
for(int i=0;i<10000;i++)
{
PointCloud<cotype> ico2(0,0.1f,i*0.1f);
pointCloudIntersection(ico1,ico2);
}
const int N = 10000;
std::vector<PointCloud<cotype>> objects;
oofrng::Generator<64> gen;
for(int i=0;i<N;i++)
{
objects.push_back(PointCloud<cotype>(gen.generate1Float()*450,gen.generate1Float()*450,gen.generate1Float()*450));
}
std::vector<AABBofPointCloud<cotype>> AABBs;
for(int i=0;i<N;i++)
{
AABBs.push_back(AABBofPointCloud<cotype>(i,&objects[i]));
}
// benchmark begin
size_t nano;
std::map<int,std::map<int,bool>> collisionMatrix;
{
FastColDetLib::Bench bench(&nano);
// uniform grid for 32x32x32 cells each with 30 objects max
// mapped to (0,0,0) - (450,450,450) cube
Grid<cotype,32,30> grid(0,450);
// add AABBs to grid
for(int i=0;i<N;i++)
{
grid.addObject(&AABBs[i]);
}
for(int i=0;i<N;i++)
{
std::vector<AABBofPointCloud<cotype>*> collisions = grid.checkCollisionsWithSingleAABB(&AABBs[i]);
for(AABBofPointCloud<cotype>* aabb:collisions)
{
if(pointCloudIntersection(*aabb->pCloud, *AABBs[i].pCloud))
{
collisionMatrix[AABBs[i].id][aabb->id]=true;
collisionMatrix[aabb->id][AABBs[i].id]=true;
}
}
}
}
std::cout<<N<<" vs "<<N<<" point-clouds collision checking by uniform grid= "<<nano<<" nanoseconds"<<std::endl;
int total = 0;
for(auto c:collisionMatrix)
{
for(auto c2:c.second)
{
if(c2.second)
total++;
}
}
std::cout<<total<<" total collisions (half as many for pairs)"<<std::endl;
return 0;
}