-
Notifications
You must be signed in to change notification settings - Fork 2
/
gradient.py
51 lines (38 loc) · 1.13 KB
/
gradient.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import numpy as np
def sigmoid(x):
"""
Calculate sigmoid
"""
return 1/(1+np.exp(-x))
def sigmoid_prime(x):
"""
# Derivative of the sigmoid function
"""
return sigmoid(x) * (1 - sigmoid(x))
learnrate = 0.5
x = np.array([1, 2, 3, 4])
y = np.array(0.5)
# Initial weights
w = np.array([0.5, -0.5, 0.3, 0.1])
### Calculate one gradient descent step for each weight
### Note: Some steps have been consilated, so there are
### fewer variable names than in the above sample code
# TODO: Calculate the node's linear combination of inputs and weights
h = np.matmul(x, w)
# TODO: Calculate output of neural network
nn_output = sigmoid(h)
# TODO: Calculate error of neural network
error = y - nn_output
# TODO: Calculate the error term
# Remember, this requires the output gradient, which we haven't
# specifically added a variable for.
output_grad = sigmoid_prime(h)
error_term = error * output_grad
# TODO: Calculate change in weights
del_w = learnrate * error_term * x
print('Neural Network output:')
print(nn_output)
print('Amount of Error:')
print(error)
print('Change in Weights:')
print(del_w)