-
Notifications
You must be signed in to change notification settings - Fork 0
/
fire_truck.py
371 lines (341 loc) · 15.4 KB
/
fire_truck.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
import pygame
import math
import random
from global_var import *
from robot import *
import threading
import random
from collections import deque
import algorithms
import time
from fire_truck import *
from algorithms import *
from global_var import *
class Block:
def __init__(self, row, col, color, size, type):
self.row = row
self.col = col
self.size = size
self.x = row * size
self.y = col * size
self.color = color
self.type = type
def draw_block(self, world):
pygame.draw.rect(world, self.color, (self.x, self.y, self.size, self.size))
class fire_t:
def __init__(self, SIZE, ROWS, CONFIGURATION_SPACE, VERTICES, EDGES, OBSTACLE_ROWS, PATCH_DENSITY, FOREST_DENSITY):
self.world = []
self.SIZE = SIZE
self.ROWS = ROWS
self.CONFIGURATION_SPACE = CONFIGURATION_SPACE
self.VERTICES = VERTICES
self.EDGES = EDGES
self.OBSTACLE_ROWS = OBSTACLE_ROWS
self.PATCH_DENSITY = PATCH_DENSITY
self.FOREST_DENSITY = FOREST_DENSITY
self.block_size = self.SIZE // self.ROWS
self.grid = [] ## reinitialize to all green
self.obstacle = []
self.patch_centers = []
self.patch_status = [] ##initialize to all False
self.patch_obstacle_coordinates = []
self.patch_obstacle_status = [] ##initialize to all False
self.fire_spread_dist = 30
self.time = 0
self.AStar_time = 0
self.PRM_time = 0
self.total_count = 0
self.burned_count = 0 ##initialize to 0
self.intact_count = 0 ##initialize to self.total_count
self.extinguished_count = 0 ##initialize to 0
self.ignite_patch_center = 0 ##initialize to 0
self.ignite_patch_obstacle = 0 ##initialize to 0
self.queue = deque() ##initilaize to 0
self.NNlist = []
def create_world(self):
return pygame.display.set_mode((self.SIZE, self.SIZE))
def reset_world(self):
for row in self.grid:
for element in row:
if (element.color == BLACK or element.color == RED):
element.color = GREEN
for status in self.patch_status:
status = False
for patch in self.patch_obstacle_status:
for obstacle_status in patch:
if obstacle_status == True:
obstacle_status = False
self.burned_count = 0
self.intact_count = self.total_count
self.extinguished_count = 0
self.ignite_patch_center = 0
self.ignite_patch_obstacle = 0
self.queue.clear()
self.queue = deque()
def initialize_world(self):
self.world = self.create_world()
for i in range(self.ROWS):
self.grid.append([])
DISTANCE.append([])
PREVIOUS.append([])
self.CONFIGURATION_SPACE.append([])
for j in range(self.ROWS):
block = Block(i, j, WHITE, self.block_size, None)
self.grid[i].append(block)
DISTANCE[i].append(math.inf)
PREVIOUS[i].append([])
self.CONFIGURATION_SPACE[i].append(True)
def reinitialize(self):
for i in range(self.ROWS):
for j in range(self.ROWS):
DISTANCE[i][j] = (math.inf)
PREVIOUS[i][j] = []
def draw_grid_borders(self):
for i in range(self.ROWS):
pygame.draw.line(self.world, BLACK, (0, i * self.block_size), (self.SIZE, i * self.block_size))
for j in range(self.ROWS):
pygame.draw.line(self.world, BLACK, (j * self.block_size, 0), (j * self.block_size, self.SIZE))
def draw(self):
for row in self.grid:
for block in row:
block.draw_block(self.world)
# self.draw_grid_borders()
pygame.display.update()
def make_random_obstacle(self):
self.obstacle.clear()
tetris = ['I', 'L', 'J', 'Z', 'S', 'T']
value = random.choice(tetris)
if value == 'I':
for i in range(1):
self.obstacle.append([])
for j in range(4):
block = Block(i, j, GREEN, self.block_size, type="I")
self.obstacle[i].append(block)
elif value == 'L':
for i in range(2):
self.obstacle.append([])
for j in range(3):
block = Block(i, j, GREEN, self.block_size, type="L")
if (i == 1 and j == 0):
block.color = WHITE
self.obstacle[i].append(block)
elif value == 'J':
for i in range(2):
self.obstacle.append([])
for j in range(3):
block = Block(i, j, GREEN, self.block_size, type="J")
if (i == 1 and j == 2):
block.color = WHITE
self.obstacle[i].append(block)
elif value == 'Z':
for i in range(2):
self.obstacle.append([])
for j in range(3):
block = Block(i, j, GREEN, self.block_size, type="Z")
if (i == 1 and j == 2) or (i == 0 and j == 0):
block.color = WHITE
self.obstacle[i].append(block)
elif value == 'S':
for i in range(2):
self.obstacle.append([])
for j in range(3):
block = Block(i, j, GREEN, self.block_size, type="S")
if (i == 1 and j == 0) or (i == 0 and j == 2):
block.color = WHITE
self.obstacle[i].append(block)
elif value == 'T':
for i in range(2):
self.obstacle.append([])
for j in range(3):
block = Block(i, j, GREEN, self.block_size, type="T")
if (i == 0 and j == 1):
block.color = WHITE
self.obstacle[i].append(block)
def check_overlap(self, random_row, random_col):
for i in range(len(self.obstacle)):
for j in range(len(self.obstacle[i])):
if (self.obstacle[i][j].color == GREEN and self.grid[random_row + i][random_col + j].color == GREEN):
return True
return False
def place_random_obstacle(self, x, y):
cells = self.OBSTACLE_ROWS ** 2
obs_cells = self.PATCH_DENSITY * cells
count = 0
obstacle_data = []
obstacle_status = []
top_corner = round((self.OBSTACLE_ROWS - 1)/2)
for i in range(-top_corner, top_corner):
for j in range(-top_corner, top_corner):
self.CONFIGURATION_SPACE[i + x][j + y] = False
while (count < obs_cells - 4):
condition = True
while condition:
self.make_random_obstacle()
max_row = round((self.OBSTACLE_ROWS - 1)/2) - len(self.obstacle)
max_col = round((self.OBSTACLE_ROWS - 1)/2) - len(self.obstacle[0])
random_row = random.randint(-max_row - len(self.obstacle), max_row)
random_col = random.randint(-max_col - len(self.obstacle[0]), max_col)
if (self.check_overlap(random_row + x, random_col + y) == False):
self.intact_count += 1
self.total_count += 1
data = []
condition = False
for i in range(len(self.obstacle)):
for j in range(len(self.obstacle[i])):
self.grid[random_row + i + x][random_col + j + y].color = self.obstacle[i][j].color
# self.CONFIGURATION_SPACE[random_row + i + x][random_col + j + y] = False
if (self.obstacle[i][j].color == GREEN):
coordinate = random_row + i + x, random_col + j + y
data.append(coordinate)
count +=1
obstacle_data.append(data)
obstacle_status.append(False)
return obstacle_data, obstacle_status
def draw_world(self):
self.initialize_world()
total_possible_patches = (self.ROWS // self.OBSTACLE_ROWS) ** 2
total_forest_patches = round(self.FOREST_DENSITY * total_possible_patches)
patch_locations = []
x = round((self.OBSTACLE_ROWS + 1) / 2)
y = round((self.OBSTACLE_ROWS + 1) / 2)
for i in range(round(math.sqrt(total_possible_patches))):
patch_locations.append([])
for j in range(round(math.sqrt(total_possible_patches))):
value = x, y, 0
patch_locations[i].append(value)
y = y + self.OBSTACLE_ROWS
x = x + self.OBSTACLE_ROWS
y = round((self.OBSTACLE_ROWS + 1) / 2)
count = 0
while (count < total_forest_patches):
i = random.randint(0, len(patch_locations) - 1)
j = random.randint(0, len(patch_locations) - 1)
value = patch_locations[i][j]
status = value[2]
if (status == 0):
x = patch_locations[i][j][0]
y = patch_locations[i][j][1]
obstacle_data, obstacle_status = self.place_random_obstacle(x, y)
patch_locations[i][j] = x, y, 1
patch_center = x, y
self.patch_centers.append(patch_center) #list of centers of all patches
self.patch_status.append(False) #list of status of fire at any point in a particular patch
self.patch_obstacle_coordinates.append(obstacle_data) #list of coordinates of all obstacles in a patch for all patches
self.patch_obstacle_status.append(obstacle_status) #list of status of fire at each obstacle in a patch for all patches
count+=1
self.draw()
def ignite_area(self, i, j):
if (self.patch_obstacle_status[i][j] == False):
for k in range(len(self.patch_obstacle_coordinates[i][j])):
coordinate = self.patch_obstacle_coordinates[i][j][k]
x = coordinate[0]
y = coordinate[1]
self.grid[x][y].color = RED
self.patch_obstacle_status[i][j] = True
self.burned_count += 1
if (self.patch_obstacle_coordinates[i][j][0] == GREEN):
self.intact_count -= 1
self.patch_status[i] = True
# self.draw()
def ignite(self):
i = random.randint(0, len(self.patch_centers) - 1)
j = random.randint(0, len(self.patch_obstacle_coordinates[i]) - 1)
while(self.patch_obstacle_status[i][j] == True):
if (self.burned_count / self.total_count == 1):
print("Forest completely burnt!")
return False
i = random.randint(0, len(self.patch_centers) - 1)
j = random.randint(0, len(self.patch_obstacle_coordinates[i]) - 1)
self.ignite_patch_center = i
self.ignite_patch_obstacle = j
fire_obs = i, j
self.queue.append(fire_obs)
if (self.patch_obstacle_status[i][j] == False):
for k in range(len(self.patch_obstacle_coordinates[i][j])):
coordinate = self.patch_obstacle_coordinates[i][j][k]
x = coordinate[0]
y = coordinate[1]
self.grid[x][y].color = RED
self.patch_obstacle_status[i][j] = True
self.burned_count += 1
self.intact_count -= 1
self.patch_status[i] = True
self.draw()
threading.Timer(10, self.ignite).start()
threading.Timer(10, self.simulate_fire_spread).start()
def simulate_fire_spread(self):
x = self.ignite_patch_center
y = self.ignite_patch_obstacle
if (self.patch_obstacle_status[x][y] == True):
radius = self.fire_spread_dist
patch_dist = math.sqrt(2) * self.fire_spread_dist
patch_index = []
for i in range(len(self.patch_centers)):
if (algorithms.calc_dist(self.patch_centers[x], self.patch_centers[i]) < patch_dist):
patch_index.append(i)
for i in patch_index:
for j in range(len(self.patch_obstacle_coordinates[i])):
for k in range(len(self.patch_obstacle_coordinates[i][j])):
if (algorithms.calc_dist(self.patch_obstacle_coordinates[i][j][k], self.patch_obstacle_coordinates[x][y][0]) <= radius):
self.ignite_area(i, j)
# indices = i, j
fire_obs = i, j
self.queue.append(fire_obs)
break
# threading.Timer(3, self.ignite).start()
self.draw()
# threading.Timer(5, self.simulate_fire_spread).start()
def simulate_burning_world(self):
self.ignite()
# threading.Timer(10, self.simulate_fire_spread).start()
def extinguish(self, robot):
for fire in range(len(self.queue)):
# print(len(self.queue))
# print(fire)
element = self.queue[fire]
i = element[0]
j = element[1]
for k in range(len(self.patch_obstacle_coordinates[i][j])):
point = self.patch_obstacle_coordinates[i][j][k]
if (algorithms.calc_dist(point, robot.position) <= 10):
for l in range(len(self.patch_obstacle_coordinates[i][j])):
m = self.patch_obstacle_coordinates[i][j][l][0]
n = self.patch_obstacle_coordinates[i][j][l][1]
self.grid[m][n].color = BLUE
self.patch_obstacle_status[i][j] = False
self.extinguished_count += 1
break
# self.draw()
def fight_fire(self):
parameters = []
pygame.display.set_caption('Fire Truck')
robot = spawn_robot(self.grid)
#pygame.display.set_caption('PRM Planner')
time.sleep(3)
robot.clear_robot(self.grid)
robot = spawn_robot(self.grid)
self.draw()
t_start = time.time()
t_end = t_start + 360
while(time.time() < t_end):
# print(len(self.queue))
if (len(self.queue) != 0):
start = robot.position[0], robot.position[1], robot.heading
fire_obs = self.queue[0]
goal = self.patch_obstacle_coordinates[fire_obs[0]][fire_obs[1]][0]
if (self.patch_obstacle_status[fire_obs[0]][fire_obs[1]] == True):
# algorithms.AStar(self, robot, start, goal)
time_counter_start = time.time()
algorithms.PRM(self, robot, start, goal)
time_counter_end = time.time()
PRM_loop_time = time_counter_end - time_counter_start
self.PRM_time += PRM_loop_time
self.queue.popleft()
self.reinitialize()
while (len(self.queue) == 0):
continue
print("Simulation Complete")
parameter = (self.intact_count / self.total_count), (self.extinguished_count / self.burned_count)
parameters.append(parameter)
print(parameters)
print("PRM_time =",self.PRM_time)