-
Notifications
You must be signed in to change notification settings - Fork 2
/
fiber_extraction.py
150 lines (125 loc) · 5.3 KB
/
fiber_extraction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import torch
import torch.nn as nn
import torch.nn.functional as F
from skimage import exposure, io, img_as_uint
import numpy as np
from centerline import CenterLine
class UNet(nn.Module):
def __init__(self, n_channels, n_classes, n_filters=64, bilinear=False):
super(UNet, self).__init__()
self.n_channels = n_channels
self.n_classes = n_classes
self.bilinear = bilinear
self.inc = DoubleConv(n_channels, n_filters)
self.down1 = Down(n_filters, n_filters*2)
self.down2 = Down(n_filters*2, n_filters*4)
self.down3 = Down(n_filters*4, n_filters*8)
factor = 2 if bilinear else 1
self.down4 = Down(n_filters*8, n_filters*16 // factor)
self.up1 = Up(n_filters*16, n_filters*8 // factor, bilinear)
self.up2 = Up(n_filters*8, n_filters*4 // factor, bilinear)
self.up3 = Up(n_filters*4, n_filters*2 // factor, bilinear)
self.up4 = Up(n_filters*2, n_filters, bilinear)
self.outc = OutConv(n_filters, n_classes)
def forward(self, x):
x1 = self.inc(x)
x2 = self.down1(x1)
x3 = self.down2(x2)
x4 = self.down3(x3)
x5 = self.down4(x4)
x = self.up1(x5, x4)
x = self.up2(x, x3)
x = self.up3(x, x2)
x = self.up4(x, x1)
logits = self.outc(x)
return torch.sigmoid(logits)
""" Parts of the U-Net model """
class DoubleConv(nn.Module):
"""(convolution => [BN] => ReLU) * 2"""
def __init__(self, in_channels, out_channels, mid_channels=None):
super().__init__()
if not mid_channels:
mid_channels = out_channels
self.double_conv = nn.Sequential(
nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(mid_channels),
nn.ReLU(inplace=True),
nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
def forward(self, x):
return self.double_conv(x)
class Down(nn.Module):
"""Downscaling with maxpool then double conv"""
def __init__(self, in_channels, out_channels):
super().__init__()
self.maxpool_conv = nn.Sequential(
nn.MaxPool2d(2),
DoubleConv(in_channels, out_channels)
)
def forward(self, x):
return self.maxpool_conv(x)
class Up(nn.Module):
"""Upscaling then double conv"""
def __init__(self, in_channels, out_channels, bilinear=True):
super().__init__()
# if bilinear, use the normal convolutions to reduce the number of channels
if bilinear:
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
self.conv = DoubleConv(in_channels, out_channels, in_channels // 2)
else:
self.up = nn.ConvTranspose2d(in_channels, in_channels // 2, kernel_size=2, stride=2)
self.conv = DoubleConv(in_channels, out_channels)
def forward(self, x1, x2):
x1 = self.up(x1)
# input is CHW
diffY = x2.size()[2] - x1.size()[2]
diffX = x2.size()[3] - x1.size()[3]
x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2,
diffY // 2, diffY - diffY // 2])
# if you have padding issues, see
# https://github.com/HaiyongJiang/U-Net-Pytorch-Unstructured-Buggy/commit/0e854509c2cea854e247a9c615f175f76fbb2e3a
# https://github.com/xiaopeng-liao/Pytorch-UNet/commit/8ebac70e633bac59fc22bb5195e513d5832fb3bd
x = torch.cat([x2, x1], dim=1)
return self.conv(x)
class OutConv(nn.Module):
def __init__(self, in_channels, out_channels):
super(OutConv, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)
def forward(self, x):
return self.conv(x)
class FiberExtractor():
def __init__(self, net):
self.net = net.eval()
self.file_list = None
self.norm_range = None
def normalization_range(self, p=(0, 100), file_list=None):
max_val = 0
min_val = 0
self.file_list = file_list
for fname in self.file_list:
im_arr = io.imread(fname)
max_val += np.percentile(im_arr, p[0])
min_val += np.percentile(im_arr, p[1])
max_val = max_val / len(self.file_list)
min_val = min_val / len(self.file_list)
self.norm_range = (min_val, max_val)
return (min_val, max_val)
def compute(self, im_arr, norm_range=(0, 65535), adjust_contrast=None):
im_arr = img_as_uint(im_arr)
with torch.no_grad():
if self.norm_range:
norm_range = self.norm_range
im_arr = exposure.rescale_intensity(im_arr, in_range=(norm_range[0], norm_range[1]), out_range=(0, 1))
if adjust_contrast:
im_arr = [adjust_contrast(im_arr)]
else:
im_arr = [im_arr]
im_tensor = torch.from_numpy(np.vstack(im_arr))[None, :]
outputs_tensor = self.net(im_tensor.float()[:, None])
results = outputs_tensor.cpu().numpy()
results = results.squeeze()
centerline_res = CenterLine(associate_image=results, draw_from_raw=True)
self.results = centerline_res.centerline_image
return self.results