forked from marmotlab/PRIMAL2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPrimal2Env.py
215 lines (193 loc) · 9.23 KB
/
Primal2Env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
from Env_Builder import *
from od_mstar3.col_set_addition import OutOfTimeError, NoSolutionError
from od_mstar3 import od_mstar
from GroupLock import Lock
import random
from gym import spaces
'''
Observation:
Action space: (Tuple)
agent_id: positive integer
action: {0:STILL, 1:MOVE_NORTH, 2:MOVE_EAST, 3:MOVE_SOUTH, 4:MOVE_WEST,
5:NE, 6:SE, 7:SW, 8:NW, 5,6,7,8 not used in non-diagonal world}
Reward: ACTION_COST for each action, GOAL_REWARD when robot arrives at target
'''
class Primal2Env(MAPFEnv):
metadata = {"render.modes": ["human", "ansi"]}
def __init__(self, observer, map_generator, num_agents=None,
IsDiagonal=False, frozen_steps=0, isOneShot=False):
super(Primal2Env, self).__init__(observer=observer, map_generator=map_generator,
num_agents=num_agents,
IsDiagonal=IsDiagonal, frozen_steps=frozen_steps, isOneShot=isOneShot)
def _reset(self, new_generator=None):
if new_generator is None:
self.set_world()
else:
self.map_generator = new_generator
self.world = World(self.map_generator, num_agents=self.num_agents, isDiagonal=self.IsDiagonal)
self.num_agents = self.world.num_agents
self.observer.set_env(self.world)
self.fresh = True
if self.viewer is not None:
self.viewer = None
def give_moving_reward(self, agentID):
"""
WARNING: ONLY CALL THIS AFTER MOVING AGENTS!
Only the moving agent that encounters the collision is penalized! Standing still agents
never get punishment.
"""
collision_status = self.world.agents[agentID].status
if collision_status == 0:
reward = self.ACTION_COST
self.isStandingOnGoal[agentID] = False
elif collision_status == 1:
reward = self.ACTION_COST + self.GOAL_REWARD
self.isStandingOnGoal[agentID] = True
self.world.agents[agentID].dones += 1
else:
reward = self.ACTION_COST + self.COLLISION_REWARD
self.isStandingOnGoal[agentID] = False
self.individual_rewards[agentID] = reward
def listValidActions(self, agent_ID, agent_obs):
"""
:return: action:int, pos:(int,int)
in non-corridor states:
return all valid actions
in corridor states:
if standing on goal: Only going 'forward' allowed
if not standing on goal: only going 'forward' allowed
"""
def get_last_pos(agentID, position):
"""
get the last different position of an agent
"""
history_list = copy.deepcopy(self.world.agents[agentID].position_history)
history_list.reverse()
assert (history_list[0] == self.world.getPos(agentID))
history_list.pop(0)
if history_list == []:
return None
for pos in history_list:
if pos != position:
return pos
return None
available_actions = []
pos = self.world.getPos(agent_ID)
# if the agent is inside a corridor
if self.world.corridor_map[pos[0], pos[1]][1] == 1:
corridor_id = self.world.corridor_map[pos[0], pos[1]][0]
if [pos[0], pos[1]] not in self.world.corridors[corridor_id]['StoppingPoints']:
possible_moves = self.world.blank_env_valid_neighbor(*pos)
last_position = get_last_pos(agent_ID, pos)
for possible_position in possible_moves:
if possible_position is not None and possible_position != last_position \
and self.world.state[possible_position[0], possible_position[1]] == 0:
available_actions.append(dir2action(tuple_minus(possible_position, pos)))
elif len(self.world.corridors[corridor_id]['EndPoints']) == 1 and possible_position is not None \
and possible_moves.count(None) == 3:
available_actions.append(dir2action(tuple_minus(possible_position, pos)))
if not available_actions:
available_actions.append(0)
else:
possible_moves = self.world.blank_env_valid_neighbor(*pos)
last_position = get_last_pos(agent_ID, pos)
if last_position in self.world.corridors[corridor_id]['Positions']:
available_actions.append(0)
for possible_position in possible_moves:
if possible_position is not None and possible_position != last_position \
and self.world.state[possible_position[0], possible_position[1]] == 0:
available_actions.append(dir2action(tuple_minus(possible_position, pos)))
else:
for possible_position in possible_moves:
if possible_position is not None \
and self.world.state[possible_position[0], possible_position[1]] == 0:
available_actions.append(dir2action(tuple_minus(possible_position, pos)))
if not available_actions:
available_actions.append(0)
else:
available_actions.append(0) # standing still always allowed
num_actions = 4 + 1 if not self.IsDiagonal else 8 + 1
for action in range(1, num_actions):
direction = action2dir(action)
new_pos = tuple_plus(direction, pos)
lastpos = None
blocking_valid = self.get_blocking_validity(agent_obs, agent_ID, new_pos)
if not blocking_valid:
continue
try:
lastpos = self.world.agents[agent_ID].position_history[-2]
except:
pass
if new_pos == lastpos:
continue
if self.world.corridor_map[new_pos[0], new_pos[1]][1] == 1:
valid = self.get_convention_validity(agent_obs, agent_ID, new_pos)
if not valid:
continue
if self.world.state[new_pos[0], new_pos[1]] == 0:
available_actions.append(action)
return available_actions
def get_blocking_validity(self, observation, agent_ID, pos):
top_left = (self.world.getPos(agent_ID)[0] - self.obs_size // 2,
self.world.getPos(agent_ID)[1] - self.obs_size // 2)
blocking_map = observation[0][5]
if blocking_map[pos[0] - top_left[0], pos[1] - top_left[1]] == 1:
return 0
return 1
def get_convention_validity(self, observation, agent_ID, pos):
top_left = (self.world.getPos(agent_ID)[0] - self.obs_size // 2,
self.world.getPos(agent_ID)[1] - self.obs_size // 2)
blocking_map = observation[0][5]
if blocking_map[pos[0] - top_left[0], pos[1] - top_left[1]] == -1:
deltay_map = observation[0][7]
if deltay_map[pos[0] - top_left[0], pos[1] - top_left[1]] > 0:
return 1
elif deltay_map[pos[0] - top_left[0], pos[1] - top_left[1]] == 0:
deltax_map = observation[0][6]
if deltax_map[pos[0] - top_left[0], pos[1] - top_left[1]] > 0:
return 1
else:
return 0
elif deltay_map[pos[0] - top_left[0], pos[1] - top_left[1]] < 0:
return 0
else:
print('Weird')
else:
return 1
class DummyEnv(Primal2Env):
def __init__(self, observer, map_generator, num_agents=None, IsDiagonal=False):
super(DummyEnv, self).__init__(observer=observer, map_generator=map_generator,
num_agents=num_agents,
IsDiagonal=IsDiagonal)
def _render(self, mode='human', close=False, screen_width=800, screen_height=800):
pass
if __name__ == '__main__':
from matplotlib import pyplot
from Primal2Observer import Primal2Observer
from Map_Generator import maze_generator
from Map_Generator import manual_generator
state0 = [[-1, -1, -1, -1, -1, -1, -1],
[-1, 1, -1, 0, 0, 0, -1],
[-1, 0, -1, -1, -1, 0, -1],
[-1, 0, 0, 0, -1, 0, -1],
[-1, 0, -1, 0, 0, 0, -1],
[-1, 2, -1, 0, 0, 0, -1],
[-1, -1, -1, -1, -1, -1, -1]]
n_agents = 3
env = Primal2Env(num_agents=n_agents,
observer=Primal2Observer(observation_size=5),
map_generator=maze_generator(env_size=(8, 10),
wall_components=(3, 8), obstacle_density=(0.3, 0.7)),
IsDiagonal=False)
print(env.world.state)
print(env.world.goals_map)
c = 0
a = c
b = c
for j in range(0, 50):
movement = {1: a, 2: b, 3: c, 4: c, 5: c, 6: c, 7: c, 8: c}
env.step_all(movement)
obs = env._observe()
print(env.world.state)
a = int(input())
b = int(input())