-
Notifications
You must be signed in to change notification settings - Fork 0
/
Antiderivative-practice-basics.tex
41 lines (37 loc) · 1.25 KB
/
Antiderivative-practice-basics.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
\Section{Antiderivative practice---basics}
Find the following antiderivatives.
\begin{multicols}{2}
\begin{ProblemSet}[pencil space=3.75in]
\EqProb{F(x) = \IndefiniteIntegral{x^5}{x}}
\EqProb{G(x) = \IndefiniteIntegral{8 x^5}{x}}
\EqProb{H(p) = \IndefiniteIntegral{\left( 8 p^5 + 6 p^4 + 3 p - 6\right)}{p}}
\EqProb{M(w) = \IndefiniteIntegral{w^{\nicefrac{1}{3}}}{w}}
\EqProb{K(t) = \IndefiniteIntegral{\frac{10}{t}}{t}}
\EqProb{P(z) = \IndefiniteIntegral{\frac{10}{3z}}{z}}
\EqProb{F(x) = \IndefiniteIntegral{\left(5 x\right)^2}{x}}
\EqProb{G(x) = \IndefiniteIntegral{\left(5 + x\right)^2}{x}}
\end{ProblemSet}
\end{multicols}
\begin{ProblemSet}[pencil space=2in]
\begin{Problem}
Find the function $F(x)$ with the properties that
\begin{itemize}
\item $F'(x) = 5 x^2$
\item $F(0) = 10$
\end{itemize}
\end{Problem}
\begin{Problem}
Find the function $G(x)$ with the properties that
\begin{itemize}
\item $G'(x) = 3 x - x^2$
\item $G(4) = 1$
\end{itemize}
\end{Problem}
\begin{Problem}
Find a degree-three polynomial that has a local minimum at the point $(0, -4)$ and a local maximum at the point $(2, 2)$.
\end{Problem}
\end{ProblemSet}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "Business-calculus-workbook"
%%% End: