-
Notifications
You must be signed in to change notification settings - Fork 0
/
Derivative-practice-product-rule.tex
75 lines (63 loc) · 1.54 KB
/
Derivative-practice-product-rule.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
\Section{Derivative practice---product rule}
\begin{ProblemSet}[pencil space=2in]
\begin{Problem}[pencil space=1in]
What is $u'(x)$?
\begin{equation*}
\LeftStyle{u(x) = 6 x^2 - 4x + 7}
\end{equation*}
\end{Problem}
\begin{Problem}[pencil space=1in]
What is $v'(x)$?
\begin{equation*}
\RightStyle{v(x) = 3 x^2 + 2 x - 5}
\end{equation*}
\end{Problem}
\begin{Problem}[pencil space=3in]
What is $f'(x)$?
\begin{equation*}
f(x) =
\LeftStyle{\left(6 x^2 - 4x + 7\right)}
\RightStyle{\left(3 x^2 + 2 x - 5\right)}
\end{equation*}
\end{Problem}
\begin{Problem}
What is $g'(t)$?
\begin{equation*}
g(t) = \LeftStyle{\left(8 t^3 - 5t^2 + 3\right)}\cdot\RightStyle{\left(10t - t^2 + 4t^3\right)}
\end{equation*}
\end{Problem}
\begin{Problem}
What is $m'(x)$?
\begin{equation*}
m(x) = x \cdot (4x^2 - 8x)
\end{equation*}
\end{Problem}
\begin{Problem}
What is $r'(u)$?
\begin{equation*}
r(u) = u^{-1} \cdot (4 u^2 - 8 u)
\end{equation*}
\end{Problem}
\begin{Problem}
What is $h'(z)$?
\begin{equation*}
h(z) = (z^2+z)\cdot\left(-z^3 - 4z^2 + z\right)
\end{equation*}
\end{Problem}
\begin{Problem}
What is $k'(w)$?
\begin{equation*}
k(w) = \left(5w^2 - w^{-2}\right)\left(1 + \sqrt{2}\right)
\end{equation*}
\end{Problem}
\begin{Problem}
What is $g'(p)$?
\begin{equation*}
g(p) = \left(3\sqrt{p} + \frac{1}{\sqrt{7p}}\right)(5 p^2 + 9 p - 2)
\end{equation*}
\end{Problem}
\end{ProblemSet}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "Business-calculus-workbook"
%%% End: