-
Notifications
You must be signed in to change notification settings - Fork 0
/
Derivative-practice-quotient-rule.tex
74 lines (63 loc) · 1.36 KB
/
Derivative-practice-quotient-rule.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
\Section{Derivative practice---quotient rule}
\begin{ProblemSet}[pencil space=2in]
\begin{Problem}[pencil space=1in]
What is $u'(x)$?
\begin{equation*}
\LeftStyle{u(x) = 4 x^2 + 5 x - 10}
\end{equation*}
\end{Problem}
\begin{Problem}[pencil space=1in]
What is $v'(x)$?
\begin{equation*}
\RightStyle{v(x) = - x^2 - 7 x + 8}
\end{equation*}
\end{Problem}
\begin{Problem}[pencil space=3in]
What is $f'(x)$?
\begin{equation*}
f(x) = \frac{
\LeftStyle{4 x^2 + 5 x - 10}
}{
\RightStyle{- x^2 - 7 x + 8}
}
\end{equation*}
\end{Problem}
\begin{Problem}[pencil space=3in]
What is $f'(x)$?
\begin{equation*}
f(x) = \frac{
\LeftStyle{5x - 7}
}{
\RightStyle{6 x^2 + 3 x + 2}
}
\end{equation*}
\end{Problem}
\begin{Problem}
What is $g'(t)$?
\begin{equation*}
g(t) = \frac{t^2 - 4t + 6}{t}
\end{equation*}
\end{Problem}
\begin{Problem}
What is $h'(w)$?
\begin{equation*}
h(w) = \frac{14}{3w^2 - w}
\end{equation*}
\end{Problem}
\begin{Problem}
What is $m'(q)$?
\begin{equation*}
m(q) = \frac{3q^2 - q}{14}
\end{equation*}
\end{Problem}
\begin{Problem}
What is $r'(z)$?
\begin{equation*}
r(z) = \frac{3z^{\nicefrac{7}{5}} + 4z}{5 - z + z^3}
\end{equation*}
\end{Problem}
\end{ProblemSet}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "Business-calculus-workbook"
%%% End: