-
Notifications
You must be signed in to change notification settings - Fork 0
/
Derivative-rules-exponential-and-logarithmic-functions.tex
70 lines (69 loc) · 1.49 KB
/
Derivative-rules-exponential-and-logarithmic-functions.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
\Section{Derivative rules---exponential and logarithmic functions}
\begin{multicols}{2}
\begin{FormulaBox}{Derivative of $\ln$}
Derivative of natural logarithm is reciprocal:
\WithSymbolDefs{
\[ \D{\big.\LN{\X}} = \frac{1}{\X} \]
}
\bigskip
With chain rule:
\WithSymbolDefs{
\[
\D{\big.\LN{\W}}
= \pfrac{1}{\W} \cdot \Deriv{\W}{\X}
\]
}
\WithWordDefs{
\[
\D{\big.\LN{\W}}
= \pfrac{1}{\W} \cdot \D{\W}
\]
}
\end{FormulaBox}
\begin{FormulaBox}{Derivative of $\me^x$}
Natural exponential function is its own derivative:
\WithSymbolDefs{
\[ \D{\big.\me^{\X}} = \me^{\X} \]
}
\bigskip
With chain rule:
\WithSymbolDefs{
\[
\D{\big.\me^{\W}}
= \me^{\W} \cdot \D{\W}
\]
}
\WithWordDefs{
\[
\D{\me^{\W}}
= \me^{\W} \cdot \D{\W}
\]
}
\end{FormulaBox}
\begin{FormulaBox}{Derivative of other logarithms}
For a different base, convert to $\ln$ first.
\begin{equation*}
\log_b (x) = \frac{\LN{x}}{\LN{b}}
\end{equation*}
\WithSymbolDefs{
\[
\D{\big.\log_b(\X)} = \frac{1}{\LN{b} \cdot \X}
\]
}
\end{FormulaBox}
\begin{FormulaBox}{Derivative of other exponentials}
For a different base, convert to $\me$ first.
\begin{equation*}
b^x = \me^{x \cdot \LN{b}}
\end{equation*}
\WithSymbolDefs{
\[
\D{b^\X} = \LN{b} \cdot \me^{\X \cdot \LN{b}} = \LN{b} \cdot b^\X
\]
}
\end{FormulaBox}
\end{multicols}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "Business-calculus-workbook"
%%% End: