-
Notifications
You must be signed in to change notification settings - Fork 2
/
finetune_single_gpu.py
273 lines (228 loc) · 13.1 KB
/
finetune_single_gpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
# coding: utf-8
import time
import logging
import tensorflow as tf
import sonnet as snt
import numpy as np
import os
import sys
from tqdm import tqdm, trange
from pprint import pprint
import i3d
from utils import get_data_func_train, get_data_func_val, make_summary, shuffle_and_overwrite
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
#######################################
##### define some constants here #####
#######################################
BATCH_SIZE = 6
EPOCH_NUM = 100
NUM_CLASS = 50
NUM_THREADS = 8 # threads of preprocessing
PREFETCH_BUFFER = 5
OPT_EPSILON = 1.0
TOP_K = 1
L2_PARAM = 1e-7
DROPOUT_KEEP_PRAM = 0.5
IMAGE_SIZE = 224
GLOBAL_STEP_INIT = 0
OPTIMIZER = 'momentum'
LEARNING_RATE_TYPE = 'exponential'
LEARNING_RATE_INIT = 1e-3
LEARNING_RATE_LOWER_BOUND = 1e-5
# only for exponential decay(following two)
LEARNING_DECAY_FACTOR = 0.94
LEARNING_DECAY_FREQ = 8000
# only for piecewise mode(following two)
BOUNDARIES = [10000, 20000, 30000, 40000, 50000]
VALUES = [LEARNING_RATE_INIT, 0.0008, 0.0005, 0.0003, 0.0001, 5e-5]
TXT_DATA_DIR = './train&val_txt_folder'
TRAIN_FILE = 'train.txt'
VAL_FILE = 'val.txt'
TRAIN_LEN = len(open(os.path.join(TXT_DATA_DIR, TRAIN_FILE), 'r').readlines())
VAL_LEN = len(open(os.path.join(TXT_DATA_DIR, VAL_FILE), 'r').readlines())
TENSORBOARD_LOG_DIR = './logs/single_gpu'
PROGROESS_LOG_FILE = './logs/single_gpu.log'
SAVE_DIR = './save/single_gpu'
SHOW_TRAIN_INFO_FREQ = 200
SAVE_FREQ = 1000
if not os.path.exists(TENSORBOARD_LOG_DIR):
os.makedirs(TENSORBOARD_LOG_DIR)
if not os.path.exists(SAVE_DIR):
os.makedirs(SAVE_DIR)
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(levelname)s %(message)s',
datefmt='%a, %d %b %Y %H:%M:%S', filename=PROGROESS_LOG_FILE, filemode='w')
CHECKPOINT_PATH = './checkpoints/rgb_imagenet/model.ckpt'
def config_learning_rate(global_step, batch_num):
if LEARNING_RATE_TYPE == 'exponential':
lr_tmp = tf.train.exponential_decay(LEARNING_RATE_INIT, global_step, LEARNING_DECAY_FREQ,
LEARNING_DECAY_FACTOR, staircase=True, name='exponential_learning_rate')
return tf.maximum(lr_tmp, LEARNING_RATE_LOWER_BOUND)
elif LEARNING_RATE_TYPE == 'fixed':
return tf.convert_to_tensor(LEARNING_RATE_INIT, name='fixed_learning_rate')
elif LEARNING_RATE_TYPE == 'piecewise':
return tf.train.piecewise_constant(global_step, boundaries=BOUNDARIES, values=VALUES,
name='piecewise_learning_rate')
else:
raise ValueError('Unsupported learning rate type!')
def config_optimizer(optimizer_name, learning_rate, epsilon, decay=0.9, momentum=0.9):
if optimizer_name == 'momentum':
return tf.train.MomentumOptimizer(learning_rate, momentum=momentum)
elif optimizer_name == 'rmsprop':
return tf.train.RMSPropOptimizer(learning_rate, decay=decay, momentum=momentum, epsilon=epsilon)
elif optimizer_name == 'adam':
return tf.train.AdamOptimizer(learning_rate, epsilon=epsilon)
elif optimizer_name == 'sgd':
return tf.train.GradientDescentOptimizer(learning_rate)
else:
raise ValueError('Unsupported optimizer type!')
def main():
# manually shuffle the train txt file because tf.data.shuffle is soooo slow!
shuffle_and_overwrite(os.path.join(TXT_DATA_DIR, TRAIN_FILE))
# dataset loading using tf.data module
with tf.device('/cpu:0'):
train_dataset = tf.data.Dataset.from_tensor_slices([os.path.join(TXT_DATA_DIR, TRAIN_FILE)])
train_dataset = train_dataset.apply(tf.contrib.data.parallel_interleave(
lambda x: tf.data.TextLineDataset(x).map(lambda x: tf.string_split([x], delimiter=' ').values),
cycle_length=NUM_THREADS, block_length=1))
train_dataset = train_dataset.apply(
tf.contrib.data.map_and_batch(
lambda x: tuple(tf.py_func(get_data_func_train, [x, IMAGE_SIZE], [tf.float32, tf.int64])),
batch_size=BATCH_SIZE, num_parallel_batches=NUM_THREADS))
train_dataset.prefetch(PREFETCH_BUFFER)
val_dataset = tf.data.Dataset.from_tensor_slices([os.path.join(TXT_DATA_DIR, VAL_FILE)])
val_dataset = val_dataset.shuffle(VAL_LEN)
val_dataset = val_dataset.apply(tf.contrib.data.parallel_interleave(
lambda x: tf.data.TextLineDataset(x).map(lambda x: tf.string_split([x], delimiter=' ').values),
cycle_length=NUM_THREADS, block_length=1))
val_dataset = val_dataset.apply(
tf.contrib.data.map_and_batch(
lambda x: tuple(tf.py_func(get_data_func_val, [x, IMAGE_SIZE], [tf.float32, tf.int64])),
batch_size=BATCH_SIZE, num_parallel_batches=NUM_THREADS))
val_dataset.prefetch(PREFETCH_BUFFER)
train_iterator = train_dataset.make_initializable_iterator()
val_iterator = val_dataset.make_initializable_iterator()
train_handle = train_iterator.string_handle()
val_handle = val_iterator.string_handle()
handle_flag = tf.placeholder(tf.string, [], name='iterator_handle_flag')
dataset_iterator = tf.data.Iterator.from_string_handle(handle_flag, train_dataset.output_types,
train_dataset.output_shapes)
batch_vid, batch_label = dataset_iterator.get_next()
batch_vid.set_shape([None, None, IMAGE_SIZE, IMAGE_SIZE, 3])
train_flag = tf.placeholder(dtype=tf.bool, name='train_flag')
dropout_flag = tf.placeholder(dtype=tf.float32, name='dropout_flag')
# define model here
with tf.variable_scope('RGB'):
model = i3d.InceptionI3d(num_classes=400, spatial_squeeze=True, final_endpoint='Logits')
logits, _ = model(inputs=batch_vid, is_training=train_flag, dropout_keep_prob=dropout_flag)
logits_dropout = tf.nn.dropout(logits, keep_prob=dropout_flag)
out = tf.layers.dense(logits_dropout, NUM_CLASS, activation=None, use_bias=True)
is_in_top_K = tf.nn.in_top_k(predictions=out, targets=batch_label, k=TOP_K)
# maintain a variable map to restore from the ckpt
variable_map = {}
for var in tf.global_variables():
var_name_split = var.name.split('/')
if var_name_split[1] == 'inception_i3d' and 'dense' not in var_name_split[1]:
variable_map[var.name[:-2]] = var
if var_name_split[-1][:-2] == 'w' or var_name_split[-1][:-2] == 'kernel':
tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, tf.nn.l2_loss(var))
# optional: print to check the variable names
# pprint(variable_map)
regularization_loss = tf.losses.get_regularization_loss(name='regularization_loss') # sum of l2 loss
loss_cross_entropy = tf.reduce_mean(
tf.nn.sparse_softmax_cross_entropy_with_logits(labels=batch_label, logits=out, name='cross_entropy'))
total_loss = tf.add(loss_cross_entropy, L2_PARAM * regularization_loss, name='total_loss')
tf.summary.scalar('batch_statistics/total_loss', total_loss)
tf.summary.scalar('batch_statistics/cross_entropy_loss', loss_cross_entropy)
tf.summary.scalar('batch_statistics/l2_loss', regularization_loss)
tf.summary.scalar('batch_statistics/loss_ratio', regularization_loss / loss_cross_entropy)
saver_to_restore = tf.train.Saver(var_list=variable_map, reshape=True)
batch_num = TRAIN_LEN / BATCH_SIZE
global_step = tf.Variable(GLOBAL_STEP_INIT, trainable=False, collections=[tf.GraphKeys.LOCAL_VARIABLES])
learning_rate = config_learning_rate(global_step, batch_num)
tf.summary.scalar('learning_rate', learning_rate)
# set dependencies for BN ops
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
optimizer = config_optimizer(OPTIMIZER, learning_rate, OPT_EPSILON)
train_op = optimizer.minimize(total_loss, global_step=global_step)
# NOTE: if you don't want to save the params of the optimizer into the checkpoint,
# you can place this line before the `update_ops` line
saver_to_save = tf.train.Saver(max_to_keep=40)
with tf.Session() as sess:
sess.run([tf.global_variables_initializer(), tf.local_variables_initializer()])
train_handle_value, val_handle_value = sess.run([train_handle, val_handle])
sess.run(train_iterator.initializer)
saver_to_restore.restore(sess, CHECKPOINT_PATH)
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter(os.path.join(TENSORBOARD_LOG_DIR, 'train'), sess.graph)
sys.stdout.write('\n----------- start to train -----------\n')
intermediate_train_info = [0., 0.]
for epoch in range(EPOCH_NUM):
epoch_acc, epoch_loss = 0., 0.
pbar = tqdm(total=batch_num, desc='Epoch {}'.format(epoch),
unit=' batch (batch_size: {})'.format(BATCH_SIZE))
for i in range(batch_num):
_, _loss_cross_entropy, _is_in_top_K, summary, _global_step, lr = sess.run(
[train_op, loss_cross_entropy, is_in_top_K, merged, global_step, learning_rate],
feed_dict={train_flag: True, dropout_flag: DROPOUT_KEEP_PRAM, handle_flag: train_handle_value})
train_writer.add_summary(summary, global_step=_global_step)
intermediate_train_info[0] += np.sum(_is_in_top_K)
intermediate_train_info[1] += _loss_cross_entropy
epoch_acc += np.sum(_is_in_top_K)
epoch_loss += _loss_cross_entropy
# intermediate evaluation for the training dataset
if _global_step % SHOW_TRAIN_INFO_FREQ == 0:
intermediate_train_acc = float(intermediate_train_info[0]) / (SHOW_TRAIN_INFO_FREQ * BATCH_SIZE)
intermediate_train_loss = intermediate_train_info[1] / SHOW_TRAIN_INFO_FREQ
step_log_info = 'Epoch:{}, global_step:{}, step_train_acc:{:.4f}, step_train_loss:{:4f}, lr:{:.7g}'.format(
epoch, _global_step, intermediate_train_acc, intermediate_train_loss, lr)
sys.stdout.write('\n' + step_log_info + '\n')
sys.stdout.flush()
logging.info(step_log_info)
train_writer.add_summary(
make_summary('accumulated_statistics/train_acc', intermediate_train_acc),
global_step=_global_step)
train_writer.add_summary(
make_summary('accumulated_statistics/train_loss', intermediate_train_loss),
global_step=_global_step)
intermediate_train_info = [0., 0.]
# start to evaluate
if _global_step % SAVE_FREQ == 0:
if intermediate_train_acc >= 0.8:
saver_to_save.save(sess, SAVE_DIR + '/model_step_{}_lr_{:.7g}'.format(_global_step, lr))
pbar.update(1)
pbar.close()
# start to validata on the validation dataset
sess.run(val_iterator.initializer)
iter_num = int(np.ceil(float(VAL_LEN) / BATCH_SIZE))
correct_cnt, loss_cnt = 0, 0
pbar = tqdm(total=iter_num, desc='EVAL train_epoch:{}'.format(epoch),
unit=' batch(batch_size={})'.format(BATCH_SIZE))
for _ in range(iter_num):
_is_in_top_K, _loss_cross_entropy = sess.run([is_in_top_K, loss_cross_entropy],
feed_dict={handle_flag: val_handle_value,
train_flag: False, dropout_flag: 1.0})
correct_cnt += np.sum(_is_in_top_K)
loss_cnt += _loss_cross_entropy
pbar.update(1)
pbar.close()
val_acc = float(correct_cnt) / VAL_LEN
val_loss = float(loss_cnt) / iter_num
log_info = '==>> Epoch:{}, global_step:{}, val_acc:{:.4f}, val_loss:{:4f}, lr:{:.7g}'.format(
epoch, _global_step, val_acc, val_loss, lr)
logging.info(log_info)
sys.stdout.write('\n' + log_info + '\n')
sys.stdout.flush()
# manually shuffle the data with python for better performance
shuffle_and_overwrite(os.path.join(TXT_DATA_DIR, TRAIN_FILE))
sess.run(train_iterator.initializer)
epoch_acc = float(epoch_acc) / TRAIN_LEN
epoch_loss = float(epoch_loss) / batch_num
log_info = '==========Epoch:{}, whole_train_acc:{:.4f}, whole_train_loss:{:4f}, lr:{:.7g}=========='.format(
epoch, epoch_acc, epoch_loss, lr)
logging.info(log_info)
sys.stdout.write('\n' + log_info + '\n')
sys.stdout.flush()
train_writer.close()
if __name__ == '__main__':
main()